

THE APPROVED CONSTRUCTION PLANS AND ALL ENGINEERING DOCUMENTS MUST BE POSTED ON THE JOB AT ALL INSPECTIONS IN A VISIBLE AND READILY ACCESSIBLE LOCATION.

New Level 360 - Unit 900-20

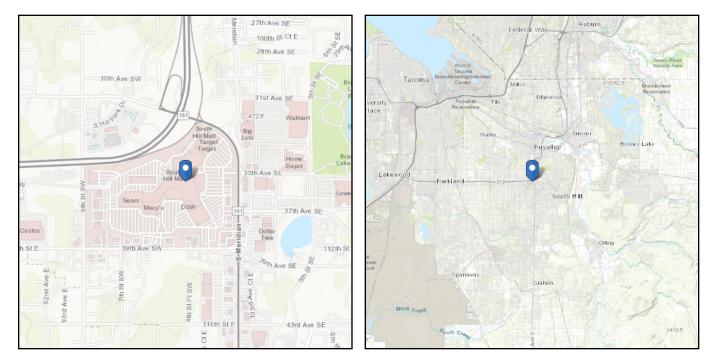
South Hill Mall 3500 South Meridian Blvd Puyallup, WA 98373

Wall Openings in Existing Tilt-Up Concrete Structural Calculations

Project Number 22458 12/12/2022

1316 Central Avenue South, Suite 200, Kent, WA 98032

www.bse-ps.com



AMERICAN SOCIETY OF CIVIL ENGINEERS Address: 3500 S Meridian Puyallup, Washington 98373

ASCE 7 Hazards Report

Standard: ASCE/SEI 7-16 Risk Category: III

Risk Category: III Soil Class: D - Default (see Section 11.4.3) Latitude: 47.158062 Longitude: -122.296741 Elevation: 438.21 ft (NAVD 88)

Wind

Res	uŀ	ts	:
	\sim		\sim

ç	
Wind Speed	104 Vmph
10-year MRI	67 Vmph
25-year MRI	73 Vmph
50-year MRI	78 Vmph
100-year MRI	83 Vmph

Data Source:	ASCE/SEI 7-16, Fig. 26.5-1C and Figs. CC.2-1–CC.2-4, and Section 26.5.2
Date Accessed:	Mon Dec 12 2022

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 3% probability of exceedance in 50 years (annual exceedance probability = 0.000588, MRI = 1,700 years).

Site is not in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2.

https://asce7hazardtool.online/

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

https://asce7hazardtool.online/

Software Developer: Meca Enterprises Inc., www.meca.biz, Copyright © 2020

Calculations Prepared by:

Brienen Structural Engineers 1316 Central Ave S Ste 200 Kent, WA, 98032 Date: Dec 12, 2022 Designer: BJB

Basic Wind Parameters

Calculations Prepared For: Calculations reputed Client: Cafaro Co Project #: 24458 Location: Puyallup, WA Description: Round One

File Location : G:\2022\24458 Round One Wall Openings\Calcs\24458 Round One Wind Load.wnd

Wind Load Standard Wind Design Speed = ASCE 7-16 Exposure Category = 104.0 mph Risk Category = Building Building Type = B = TTTStructure Type = Enclosed General Wind Settings Incl LF = Include ASD Load Factor of 0.6 in Pressures = False DynType = Dynamic Type of Structure = Rigid Zg = Altitude (Ground Elevation) above Sea Level Bdist = Base Elevation of Structure = 0.000 ft = 0.000 ft SDB= Simple Diaphragm BuildingReacs= Show the Base Reactions in the output = True = False MWFRSType = MWFRS Method Selected = Ch 27 Pt 1 Topographic Factor per Fig 26.8-1 Topo = Topographic Feature = None = Topographic Factor = 1.000 Kzt

Building Inputs

RoofType: Building Roof Type= FlatRfHt: Roof Height= 21.000 ftW: Building Width= 262.000 ft L: Building Length= 314.000 ftPar: Is there a Parapet= False= False

Exposure Constants per Table 26.11-1:

Alpha: Tabl	e 26.11-1 Const	= 7.000	Zg:	Table 26.11-1 Const	= 1200.000 ft
At: Tabl	e 26.11-1 Const	= 0.143	Bt:	Table 26.11-1 Const	= 0.840
Am: Tabl	e 26.11-1 Const	= 0.250	Bm:	Table 26.11-1 Const	= 0.450
C: Tabl	e 26.11-1 Const	= 0.300	Eps:	Table 26.11-1 Const	= 0.333

Main Wind Force Resisting System (MWFRS) Calculations per Ch 27 Part 1:	
h = Mean Roof Height above grade	= 21.000 ft
Kh = 15 ft [4.572 m]< Z <zg>(2.01*(Z/zg)^(2/Alpha) {Table 26.10-1</zg>	}= 0.633
Kzt = Topographic Factor is 1 since no Topographic feature specified	= 1.000
Kd = Wind Directionality Factor per Table 26.6-1	= 0.85
Zg = Elevation above Sea Level	= 0.000 ft
Ke = Ground Elevation Factor: $Ke = e^{-(0.0000362*Zg)}$ {Table 26.9-1}	= 1.000
GCPi = Ref Table 26.13-1 for Enclosed Building	= +/-0.18
RA = Roof Area	= 82268.00 sq ft
LF = Load Factor based upon STRENGTH Design	= 1.00
$qh = (0.00256 * Kh * Kzt * Kd * Ke * V^2) * LF$	= 14.89 psf
qin = For Negative Internal Pressure of Enclosed Building use qh*LF	= 14.89 psf
qip = For Positive Internal Pressure of Enclosed Building use qh*LF	= 14.89 psf
Gust Factor Calculation:	
Gust Factor Category I Rigid Structures - Simplified Method	
G1 = For Rigid Structures (Nat. Freq.>1 Hz) use 0.85	= 0.85
Gust Factor Category II Rigid Structures - Complete Analysis	
Zm = Max(0.6 * Ht, Zmin)	= 30.000 ft
$Izm = Cc * (33 / Zm) ^ 0.167$	= 0.305
Lzm = L * (Zm / 33) ^ Eps	= 309.993

Lzm = L * (Zm / 33) ^ Eps В = Structure Width Normal to Wind 0

= 314.000 ft = (1 / (1 + 0.63 * ((B + Ht) / Lzm)^0.63))^0.5 = 0.776

G2 Gust Fac	= 0.925*((1+0.7*Izm*3.4*Q)/(1+0.7*3.4*Izm)) tor Used in Analysis	= 0.793
G G	= Lessor Of G1 Or G2	= 0.793
MWFRS Wi	nd Normal to Ridge (Ref Fig 27.3-1)	
h	= Mean Roof Height Of Building	= 21.000 ft
RHt	= Ridge Height Of Roof	= 21.000 ft
В	= Horizontal Dimension Of Building Normal To Wind Direction	= 314.000 ft
L	= Horizontal Dimension Of building Parallel To Wind Direction	= 262.000 ft
L/B	= Ratio Of L/B used For Cp determination	= 0.834
h/L	= Ratio Of h/L used For Cp determination	= 0.080
Slope	= Slope of Roof	= 0.0 Deg
Roof	= Roof Coeff (0 to $h/2$) (0.000 ft to 10.500 ft)	= -0.18, -0.9
Roof	= Roof Coeff $(h/2 \text{ to } h)$ (10.500 ft to 21.000 ft)	= -0.18, -0.9
Roof	= Roof Coeff (h to 2h) (21.000 ft to 42.000 ft)	= -0.18, -0.5
Roof	= Roof Coeff (>2h) (>42.000 ft)	= -0.18, -0.3
Cp WW	= Windward Wall Coefficient (All L/B Values)	= 0.80
Cp_LW	= Leward Wall Coefficient using L/B	= -0.50
Cp_SW	= Side Wall Coefficient (All L/B values)	= -0.70
GCpn WW	= Parapet Combined Net Pressure Coefficient (Windward Parapet)	= 1.50
GCpn_LW	= Parapet Combined Net Pressure Coefficient (Leeward Parapet)	= -1.00

Wall Wind Pressures based On Positive Internal Pressure (+GCPi) - Normal to Ridge All wind pressures include a load factor of 1.0

Elev	Kz	Kzt	qz	GCPi	Windward Press	Leeward Press	Side Press	Total Press	Minimum Pressure*
ft			psf		psf	psf	psf	psf	psf
21.00	0.633	1.000	14.89	0.18	6.76	-8.58	-10.94	15.35	16.00

Wall Wind Pressures based on Negative Internal Pressure (-GCPi) - Normal to Ridge All wind pressures include a load factor of 1.0

Elev	Kz	Kzt	qz	GCPi	Windward Press	Leeward Press	Side Press	Total Press	Minimum Pressure*
ft			psf		psf	psf	psf	psf	psf
21.00	0.633	1.000	14.89	-0.18	12.12	-3.22	-5.58	15.35	16.00

Notes Wall Pressures:

Kz= Velocity Press Exp CoeffKzt= Topographical Factorqz= 0.00256*Kz*Kz*Kd*V^2GCPi= Internal Press CoefficientSide= qh * G * Cp_SW - qip * +GCPiWindward = qz * G * Cp_WW - qip * +GCPiLeeward= qh * G * Cp_LW - qip * +GCPiTotal= Windward Press - Leeward Press* Minimum Pressure:Para 27.1.5 no less than 16.00 psf (Incl LF) applied to Walls+ Pressures Acting TOWARD Surface- Pressures Acting AWAY from Surface

Roof Wind Pressures for Positive & Negative Internal Pressure (+/- GCPi) - Normal to Ridge

All wind pressures include a load factor of $1.0\,$

Roof Var	Dist	End Dist ft	Cp_min	Cp_max	GCPi	Pn_min*	Pp_min*	Pressure Pn_max psf	Pp_max
						psr	psr	psr	psi
Roof (All) Roof (All) Roof (All) Roof (All)	10.500 21.000	21.000 42.000	-0.180 -0.180	-0.900 -0.500	0.180	0.56 0.56 0.56 0.56	-4.81 -4.81	-3.22	-13.30 -8.58

Notes Roof Pressures: Start Dist = Start Dist from Windward Edge End Dist = End Dist from Windward Edge Cp_Max = Largest Coefficient Magnitude Cp_Min = Smallest Coefficient Magnitude Pp_max = qh*G*Cp_max - qip*(+GCPi) Pn_max = qh*G*Cp_max - qin*(-GCpi)

Pp_min* = qh*G*Cp_min - qip*(+GCPi) Pn_min* = qh*G*Cp_min - qin*(-GCPi)
OH = Overhang X = Dir along Ridge Y = Dir Perpendcular to Ridge Z = Vertical
* The smaller uplift pressures due to Cp_Min can become critical when wind is combined
with roof live load or snow load; load combinations are given in ASCE 7
+ Pressures Acting TOWARD Surface - Pressures Acting AWAY from Surface

MWFRS Wind Parallel to Ridge (Ref Fig 27.3-1)

h RHt B L/B h/L Slope Roof Roof Roof	<pre>= Mean Roof Height Of Building = Ridge Height Of Roof = Horizontal Dimension Of Building Normal To Wind Direction = Horizontal Dimension Of building Parallel To Wind Direction = Ratio Of L/B used For Cp determination = Ratio Of h/L used For Cp determination = Slope of Roof = Roof Coeff (0 to h/2) (0.000 ft to 10.500 ft) = Roof Coeff (h/2 to h) (10.500 ft to 21.000 ft) = Roof Coeff (h to 2h) (21.000 ft to 42.000 ft)</pre>	= 21.000 ft = 21.000 ft = 262.000 ft = 314.000 ft = 1.198 = 0.067 = 0.0 Deg = -0.18, -0.9 = -0.18, -0.9 = -0.18, -0.5
Roof Cp_WW Cp_LW Cp_SW GCpn_WW GCpn_LW	<pre>= Roof Coeff (>2h) (>42.000 ft) = Windward Wall Coefficient (All L/B Values) = Leward Wall Coefficient using L/B = Side Wall Coefficient (All L/B values) = Parapet Combined Net Pressure Coefficient (Windward Parapet) = Parapet Combined Net Pressure Coefficient (Leeward Parapet)</pre>	= -0.18, -0.3 $= 0.80$ $= -0.46$ $= -0.70$ $= 1.50$ $= -1.00$

Wall Wind Pressures based On Positive Internal Pressure (+GCPi) - Parallel to Ridge All wind pressures include a load factor of 1.0

Elev	Kz	Kzt	qz	GCPi	Windward	Leeward	Side	Total	Minimum
					Press	Press	Press	Press	Pressure*
ft			psf		psf	psf	psf	psf	psf
21.00	0.633	1.000	14.89	0.18	6.76	-8.11	-10.94	14.88	16.00

Wall Wind Pressures based on Negative Internal Pressure (-GCPi) - Parallel to Ridge All wind pressures include a load factor of 1.0

Elev	Kz	Kzt	qz	GCPi	Windward Press	Leeward Press			Minimum Pressure*
ft			psf		psf	psf	psf	psf	psf
21.00	0.633	1.000	14.89	-0.18	12.12	-2.75	-5.58	14.88	16.00

Notes Wall Pressures:	
Kz = Velocity Press Exp Coeff	Kzt = Topographical Factor
$qz = 0.00256 Kz Kzt Kd^{2}$	GCPi = Internal Press Coefficient
Side = qh * G * Cp_SW - qip * +GCPi	Windward = qz * G * Cp_WW - qip * +GCPi
Leeward = qh * G * Cp_LW - qip * +GCPi	Total = Windward Press - Leeward Press
* Minimum Pressure: Para 27.1.5 no less	than 16.00 psf (Incl LF) applied to Walls
+ Pressures Acting TOWARD Surface	- Pressures Acting AWAY from Surface

Roof Wind Pressures for Positive & Negative Internal Pressure (+/- GCPi) - Parallel to Ridge

All wind pressures include a load factor of 1.0

Roof Var	Start Dist ft	End Dist ft	Cp_min	Cp_max	GCPi	Pn_min*	Pp_min*	Pressure Pn_max psf	Pp_max
Roof (All)	0.000	10.500	-0.180	-0.900	0.180	0.56	-4.81	-7.94	-13.30
Roof (All)	10.500	21.000	-0.180	-0.900	0.180	0.56	-4.81	-7.94	-13.30
Roof (All)	21.000	42.000	-0.180	-0.500	0.180	0.56	-4.81	-3.22	-8.58
Roof (All)	42.000	314.000	-0.180	-0.300	0.180	0.56	-4.81	-0.86	-6.22

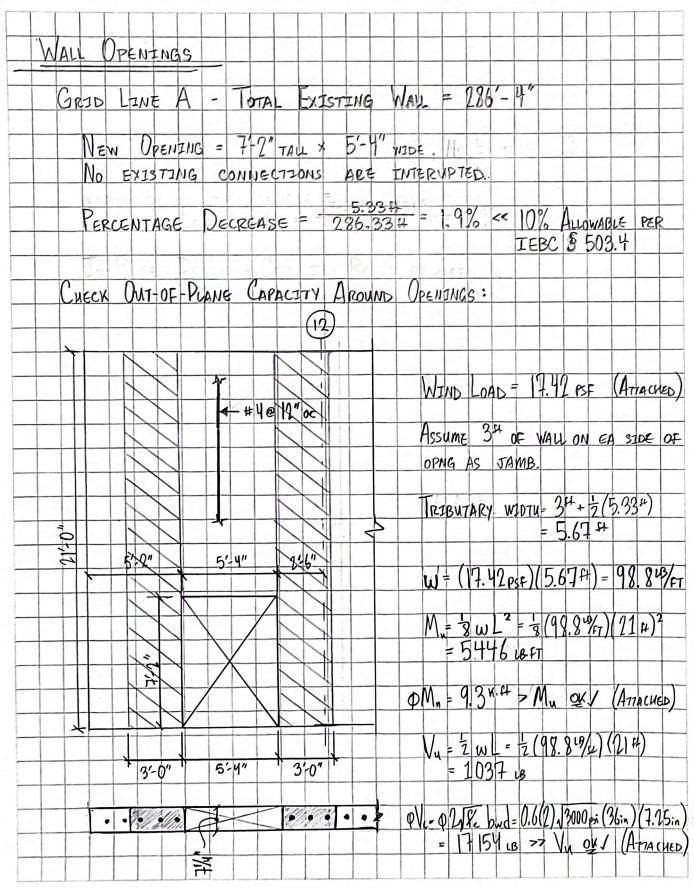
Notes Roof Pressures:

Start Dist = Start Dist from Windward Edge End Dist = End Dist from Windward Edge
Cp_Max = Largest Coefficient Magnitude
Pp_max = qh*G*Cp_max - qip*(+GCPi) Pn_max = qh*G*Cp_max - qin*(-GCpi)
Pp_min* = qh*G*Cp_min - qip*(+GCPi) Pn_min* = qh*G*Cp_min - qin*(-GCPi)
OH = Overhang X = Dir along Ridge Y = Dir Perpendcular to Ridge Z = Vertical
* The smaller uplift pressures due to Cp_Min can become critical when wind is combined
with roof live load or snow load; load combinations are given in ASCE 7
+ Pressures Acting TOWARD Surface - Pressures Acting AWAY from Surface

Components and Cladding (C&C) Zone Summary per Ch 30 Pt 1:

h/W	= Ratio of mean roof height to building width	= 0.080
h/L	= Ratio of mean roof height to building length	= 0.067
h	= Mean Roof Height above grade	= 21.000 ft
Kh	= 15 ft [4.572 m] < Z <zg>(2.01*(Z/zg)^(2/Alpha) {Table 26.10-1</zg>	}= 0.633
Kzt	= Topographic Factor is 1 since no Topographic feature specified	= 1.000
Kd	= Wind Directionality Factor per Table 26.6-1	= 0.85
GCPi	= Ref Table 26.13-1 for Enclosed Building	= +/-0.18
LF	= Load Factor based upon STRENGTH Design	= 1.00
qh	= (0.00256 * Kh * Kzt * Kd * Ke * V^2) * LF	= 14.89 psf
LHD	= Least Horizontal Dimension: Min(B, L)	= 262.000 ft
a1	= Min(0.1 * LHD, 0.4 * h)	= 8.400 ft
a	= Max(a1, 0.04 * LHD, 3 ft [0.9 m])	= 10.480 ft
h/B	= Ratio of mean roof height to least hor dim: h / B	= 0.080
0.2*h	= Parameter used to define Zone 3	= 4.200 ft
0.6*h	= Parameter used to define Zones 1 and 2	= 12.600 ft

Wind Pressure Summary for C&C Zones based Upon Areas Ch 30 Pt 1 (Table 1 of 2) All wind pressures include a load factor of 1.0

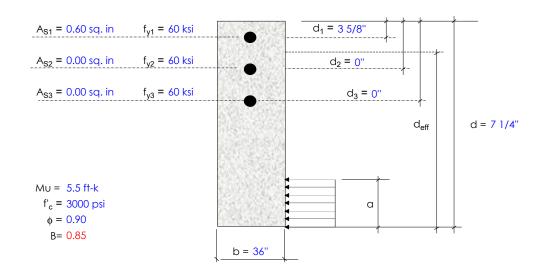

Zone	 	Figure	 	A <= 10.00 sq ft psf	 	A = 20.00 sq ft psf	 	A = 50.00 sq ft psf		A = 100.00 sq ft psf
	_		_		_		_		-	
1 1' 2 3	 	30.3-2A 30.3-2A 30.3-2A 30.3-2A		16.00 -28.00 16.00 -16.08 16.00 -36.93 16.00 -50.33		16.00 -26.15 16.00 -16.08 16.00 -34.56 16.00 -45.58		16.00 -23.71 16.00 -16.08 16.00 -31.42 16.00 -39.31		16.00 -21.86 16.00 -16.08 16.00 -29.04 16.00 -34.56
4 5		30.3-1 30.3-1		16.08 -17.42 16.08 -21.44		16.00 -16.71 16.00 -20.02		16.00 -16.00 16.00 -18.14		16.00 -16.00 16.00 -16.71

Brienen Structural Engineers, P.S.

Phone: (206) 397-0000

PRCTI20221551

1316 Central Avenue South, Suite 200, Kent, WA 98032


www.bse-ps.com

JOB TITLE: Round One Wall Openings	JOB NO :22458
SUBJECT: Grid A Wall Opening	DESIGNER: BJB
SHFFT'	DATE: 12/12/2022
	Grid A Wall Opening

G:\2022\24458 Round One Wall Openings\Calcs\[Concrete bending Capacity.xlsx]Grid A Wall Opening

Diagram/Input

Results

$\phi M_n = \phi T \left(d_{eff} - \frac{a}{2} \right) =$	9.3 ft-k	> Mu =	5.5 ft-k	OK
Maximum Reinforcing Check		Minimum Reinf	•	
$\rho = 0.0046$ < 0.75*p bal = 0.0160		ρ_min > 0.000	33 or	4/3* ∲ Mn > Mu

Result Summary Strength - OK Maximum Reinforcing Ratio - OK Minimum Reinforcing Ratio - OK

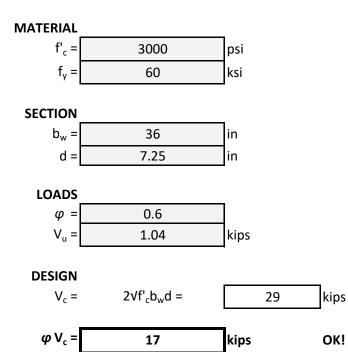
Calculations:

т.-۸ f

$$T = A_{S1} f_{y1} + A_{S2} f_{y2} + A_{S3} f_{y3} = 36.00 k$$

$$d_{eff} = d - \left(\frac{A_{S1} f_{y1} d_1 + A_{S2} f_{y2} d_2 + A_{S3} f_{y3} d_3}{T} \right) = 7 \frac{1}{4''} - \left(\frac{130.50 \text{ in-}k}{36.00 \text{ k}} \right) = 3.63''$$

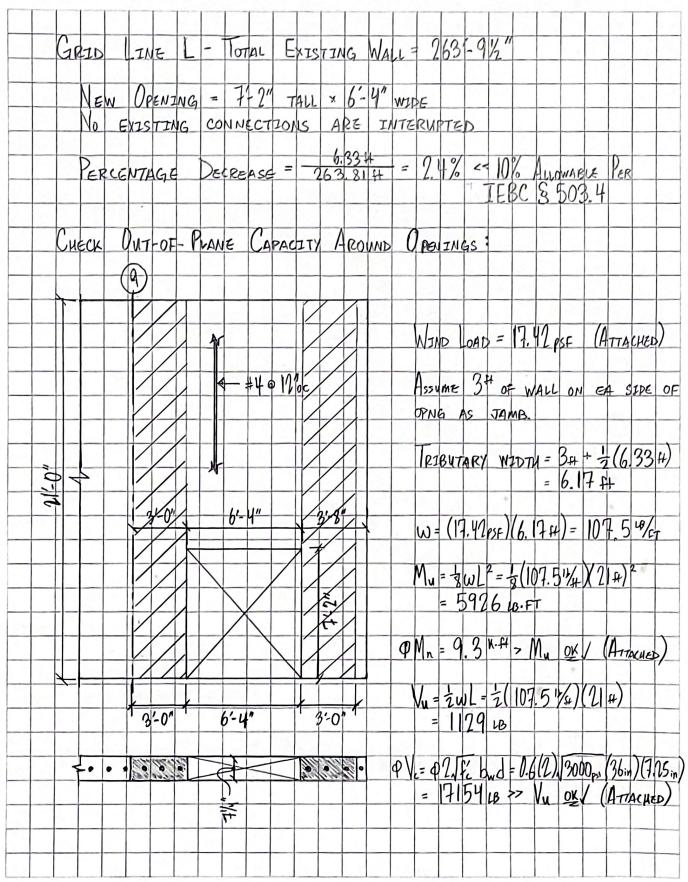
$$\alpha = \frac{T}{0.85} f_c' b = \frac{36.00 \text{ k}}{91.80 \text{ k/in}} = 0.39''$$


$$c = \alpha/B1 = 0.46''$$

$$Ku = Mu^{*}12000/bd^{2} = 140$$

$$Ku = \phi Mn^{*}12000/bd^{2} = 235$$

Beam Shear Design



Project: ROUND ONE OPINGS

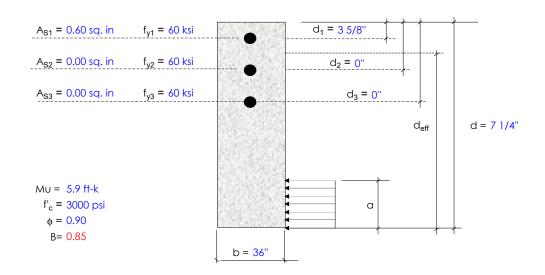
Date: 12/12/2022

Brienen Structural Engineers, P.S.

Phone: (206) 397-0000

PRCTI20221551

1316 Central Avenue South, Suite 200, Kent, WA 98032


www.bse-ps.com

JOB TITLE :	Round One Wall Openings	JOB NO ;	22458
SUBJECT :	Grid L Wall Opening	DESIGNER	BJB
SHEFT!		DATE :	12/12/2022
0/12211		D///2/	Grid L Wall Opening

G:\2022\24458 Round One Wall Openings\Calcs\[Concrete bending Capacity.xlsx]Grid L Wall Opening

Diagram/Input

Results

$\phi M_n = \phi T \left(d_{eff} - \frac{a}{2} \right) =$	9.3 ft-k	> Mu =	5.9 ft-k	OK
Maximum Reinforcing Check		Minimum Reinf	-	
$\rho = 0.0046$ < 0.75*p bal = 0.0160 Steel Strain = 0.0206 > 0.005	ACI-19	ρ_min > 0.000	33 or	4/3* φ Mn > Mu

Result Summary Strength - OK Maximum Reinforcing Ratio - OK Minimum Reinforcing Ratio - OK

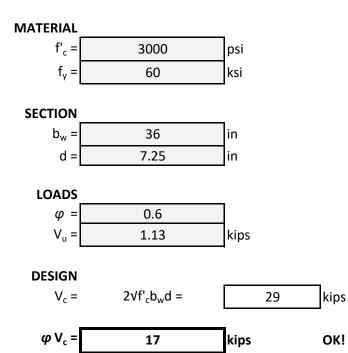
Calculations:

£ . .

$$T = A_{S1} f_{y1} + A_{S2} f_{y2} + A_{S3} f_{y3} = 36.00 k$$

$$d_{eff} = d - \left(\frac{A_{S1} f_{y1} d_1 + A_{S2} f_{y2} d_2 + A_{S3} f_{y3} d_3}{T} \right) = 7 \frac{1}{4''} - \left(\frac{130.50 \text{ in-}k}{36.00 \text{ k}} \right) = 3.63''$$

$$\alpha = \frac{T}{0.85} f_c' b = \frac{36.00 \text{ k}}{91.80 \text{ k/in}} = 0.39''$$


$$c = \alpha/B1 = 0.46''$$

$$K_U = M_U \frac{12000}{bd^2} = 150$$

$$K_U = \phi M_n \frac{12000}{bd^2} = 235$$

Beam Shear Design

