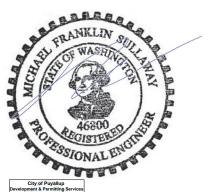

11545 W. BERNARDO COURT, SUITE 201 SAN DIEGO, CA 92127 PROJECTMANAGER@SULLAWAYENG.COM PHONE: 1-858-312-5150 FAX: 1-858-777-3534

DATE: 2/13/2023

PROJECT: FERRUCCI JHS, 3213 WILDWOOD PARK DR., PUYALLUP, WA


PROJECT #: 38928-1 ENGINEER: TH
CLIENT: EVERGREEN SIGN CO LAST REVISED:

THE APPROVED CONSTRUCTION PLANS AND ALL ENGINEERING DOCUMENTS MUST BE POSTED ON THE JOB AT ALL INSPECTIONS IN A VISIBLE AND READILY ACCESSIBLE LOCATION.



#### **GENERAL NOTES**

- 1. DESIGN CODE: IBC 2018 & WASHINGTON SBCC 2018
- 2. DESIGN LOADS: ASCE 7-16
- 3. WIND VELOCITY 100 MPH EXPOSURE C
- 4. CONCRETE 2500 PSI MINIMUM
- 5. SQ. HSS STEEL ASTM A500 GR. B,  $F_v$ = 46 KSI MIN.
- 6. PLATE STEEL ASTM A36
- 7. WELDING STRENGTH, Fexx = 70 KSI
- 8. THREADED ANCHOR ROD STEEL ASTM F1554 GR. 36
- 9. STEEL REINFORCEMENT IN CONCRETE ASTM A615 GR 60
- 10. PROVIDE MIN. 3" CLEAR COVER ON ALL STEEL EMBEDDED IN CONCRETE WHEN CAST AGAINST SOIL AND ALL STEEL EXPOSED TO SOIL
- 11. LATERAL SOIL BEARING PER IBC CLASS 4 (150 PSF/FT)
- 12. PROVIDE PROTECTION AGAINST DISSIMILAR METALS
- 13. ALL DIMENSIONS TO BE VERIFIED PRIOR TO FABRICATION
- 14. ALL EXISTING ELEMENTS AND DIMENSIONS TO BE VERIFIED IN FIELD.



City of Puyallup
Development & Permitting Service
ISSUED PERMIT
Building Planning
Engineering Public Works
Fire Traffic

2/13/2023

PRSG20230064



PROJECT: FERRUCCI JHS

DATE: 2/13/23

PROJ. NO.: 38928-1

ENGINEER: TH

CLIENT: EVERGREEN SIGN CO

V5.5

units; pounds, feet unless noted otherwise

## **Applied Wind Loads; from ASCE 7-16**

| $F=q_z*G*C_f*A_f$   |          | with $q_z = 0.002$ | $256K_zK_{zt}K_dV^2$ | (29.3.2 &   | 29.4) |      |              |       |
|---------------------|----------|--------------------|----------------------|-------------|-------|------|--------------|-------|
| $C_f=$              | 1.604    | (Fig. 29.3-1)      | 2 pole Cf factor     | or= 0.87    |       | 5 r  | max. height= | 12.50 |
| $K_{zt}=$           | 1.0      | (26.8.2) (=1.0 ui  | nless unusual        | landscape)  |       |      |              |       |
| K <sub>z</sub> = fr | om table | e 28.3-1           |                      | Exposure= c |       |      |              |       |
| $K_d =$             | 0.85     | for signs (table 2 | 26.6-1)              |             |       |      |              |       |
| V=                  | 100      | mph                |                      |             |       |      |              |       |
| G=                  | 0.85     | (26.9)             |                      | weight=     | 0.379 | kips |              |       |
| s/h=                | 0.100    |                    |                      | $M_{DL}=$   | 0.00  | k-ft |              |       |
| B/s=                | 5.40     |                    |                      |             |       |      |              |       |

| Pole  | structure | height at    |         |       | pressure      |       |       | Wind                  |
|-------|-----------|--------------|---------|-------|---------------|-------|-------|-----------------------|
| Loads | component | section c.g. | $K_{z}$ | $q_z$ | $q_z^*G^*C_f$ | $A_f$ | shear | Moment M <sub>W</sub> |
|       | 1         | 0.25         | 0.85    | 18.50 | 25.22         | 0.00  | 0     | 0                     |
|       | 2         | 4.54         | 0.85    | 18.50 | 25.22         | 8.08  | 204   | 926                   |
|       | 3         | 9.88         | 0.85    | 18.50 | 25.22         | 20.02 | 505   | 4985                  |
|       | 4         | 11.21        | 0.85    | 18.50 | 25.22         | 0.08  | 2     | 24                    |
|       | 5         | 11.88        | 0.85    | 18.50 | 25.22         | 9.69  | 244   | 2901                  |

sums: 37.88 955 8.84  $(M_w)$  k-ft arm= 9.3 two pole distribution factor \*b\*s (asce fig. 29.4-1 ): x 0.53 508 4.70  $P_u$ = 0.45 kip M= 4.70 k-ft M=sqrt( $M_{D_1}$ <sup>2</sup>+ $M_w$ <sup>2</sup>)

 $M_u = sqrt(1.2M_{DL}^2 + 1.0M_W^2) = 4.70$  k-ft

# Pole Design section; tube

| $M_u \le \phi M_n$ with $M_n = f_y Z$ | f <sub>y</sub> = | 46 ksi        | φ=       | 0.9    |     |                                   |
|---------------------------------------|------------------|---------------|----------|--------|-----|-----------------------------------|
| Н                                     | $M_u(k-ft)$      | Z req'd. (in) | Size(in) | t (in) | Z   | Use                               |
| at 6" below grade                     | 4.70             | 1.36          | 3        | 0.174  | 2.0 | 6x6x3/16" SQ.HSS, φMn = 27.8 k-ft |

### Footing Design footprint: rectangle

| $\omega$ = 1.3 | IBC 1605.3.2 | IBC Table 1806.2, sections 18  | S=(1.3x2x150psf/ft)    |                |
|----------------|--------------|--------------------------------|------------------------|----------------|
| P= 0.40        | kip          | S1 = S x d / 3                 | A = 2.34 x P / (S1 x b | s= 400         |
| S1= 426        |              | d =0.5xA (1+ (1+4.36x h/A) ^.5 | 5)                     | IBC 1807.3.2.1 |
| A= 0.77        |              |                                |                        |                |

footing: 2' - 0" by 2' - 0 " 3' - 2" deep

4' - 0" deep OK





PROJECT: FERRUCCI JHS

PROJ. NO.: 38928-1

DATE: 2/13/23

ENGINEER: TH

CLIENT: EVERGREEN SIGN CO

units; pounds, feet unless noted otherwise

# Check 0.625" dia. Threaded Anchor Rods, F1554 Gr.36

Mu = at 6" below grade = 4.70 k-ft (See Page#2) Vu = at 6" below grade = 0.508 kips (See Page#2)

n = #bolts per row = 2 s = 9 in

Tu per bolt = Mu/s/n = 3.133 kipsVu per bolt = Vu/n = 0.254 kips

Per AISC J3:

 $\phi$ Rnt =  $\phi$ \*Fnt \* A(bolt) = 10.01 kips **OK**  $\phi$ Rnv =  $\phi$ \*Fnv \* A(bolt) = 6.01 kips **OK** 

Combined Tension & Shear Check:

frv = V per bolt / A(bolt) = 0.83 ksi F'nt = 1.3Fnt - Fnt/ $\phi$ Fnv\*frv  $\leq$  Fnt = 43.50 ksi  $\phi$ Rnt =  $\phi$ F'nt\*A(bolt) = 10.01 kips **OK** 

Embedment Length Calculation:

D= (Dia. of smaller anchor or rebar)= 0.500 in lap length=  $40^{\circ}$ D= 20 in min. embed=  $3^{\circ}$ +lap length= 23 in

## Check 12x12x0.5" Steel Base Plate, A36

#### **Check Vertical Rebar**

2\*Tu per bolt/#bars 1.57 k  $f_V =$ 60 ksi # of bars (within embed. length): 4 db = 0.500 in bar #:  $Ab = 0.1963 \text{ in}^2$ 4  $Tc = \phi \text{ fy Ab} =$ 8.84 k OK 0.75  $\phi =$ 

