

Re: J1132071

Full Tilt Construction

Tri-State Engineering, Inc. 12810 NE 178th Street Suite 218 Woodinville, WA 98072 425.481.6601

> City of Puyallup Development & Permitting Services (ISSUED PERMIT Building Planning Engineering Public Works Fire Contraffic

The truss drawing(s) referenced below have been prepared by Tri-State Engineering under my direct supervision based on the parameters provided by The Truss Company (Sumner).

Pages or sheets covered by this seal: I14581059 thruI14581072

My license renewal date for the state of Washington is August 20, 2024.

THE APPROVED CONSTRUCTION PLANS, DOCUMENTS AND ALL ENGINEERING MUST BE POSTED ON THE JOB AT ALL INSPECTIONS IN A VISIBLE AND READILY ACCESSIBLE LOCATION.

FULL SIZED LEDGIBLE COLOR PLANS ARE REQUIRED TO BE PROVIDED BY THE PERMITEE ON SITE FOR INSPECTION

January 5,2023

Terry Powell

The seal on these drawings indicate acceptance of professional engineering responsibility solely for the truss components shown. The suitability and use of this component for any particular building is the responsibility of the building designer, per ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	Full Tilt Construction	
J1132071	A01	Piggyback Base Structural Gable	1	1	Job Reference (optional)	114581059

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries. Inc. Thu Jan 05 10:43:19

The Truss Company (Sumner), Sumner, WA - 98390,

LUMBER TOP CHORD BOT CHORD WEBS OTHERS	2x4 HF No.2 2x6 DF SS 2x4 HF No.2 *I 3-30,4-27,32-2 :2x4 DF Stud, 2x4 DF Stud, *F HF No.2	Except* 230-2,10-16,11-16,12-16,15-12 11-33,33-17:2x6 DF SS Except* 20-34,37-38,55-56:2x4		Max Grav	13=639 (LC 37), 17=1383 (LC 31), 18=549 (LC 20), 19=107 (LC 5), 20=552 (LC 19), 22=53 (LC 5), 23=511 (LC 19), 24=81 (LC 5), 25=95 (LC 21), 26=47 (LC 21), 27=533 (LC 35), 28=102 (LC 21), 29=50 (LC 5), 30=345 (LC 35), 31=87 (LC 22), 32=165 (LC 35)	1)	Vinc: ASCE 7-16; Vilt=110mph (3-second gust) Vasd=87mph; TCDL=4.8psf; BCDL=4.2psf; h=25ft; Cat. II; Exp B; Partially Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 2-9-14 to 7-5-14, Interior (1) 7-5-14 to 17-9-5, Exterior(2R) 17-9-5 to 33-8-10, Interior (1) 33-8-10 to 48-9-14, Exterior(2E) 48-9-14 to 53-5-14 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for mambers and forces & MWERS for reacting about.
BRACING	a		FORCES	(Ib) - Maxi	mum Compression/Maximum		Lumber DOI =1 60 plate grip DOI =1 60
TOP CHORD	except end ver (2-2-0 max.): 6	nd sheathing directly applied, rticals, and 2-0-0 oc purlins 5-7.	TOP CHORD	1-2=0/54, 3-68=-11/3	2-67=-25/180, 3-67=-15/186, 361, 4-68=0/405, 4-69=-5/638,	2)	Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face),
BOT CHORD	Rigid ceiling di bracing, Exce	irectly applied or 6-0-0 oc		5-69=0/66 6-7=0/773	9, 5-70=0/672, 6-70=0/709, 9, 7-8=0/887, 8-71=-46/1051,		see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
WEBS	10-0-0 oc brac 1 Row at midp	cing: 15-16,13-15. t 4-23, 6-23, 7-18, 8-17, 7-20, 6-20, 8-18, 10-17,		71-72=-57 9-10=-71/ 11-73=-55	7/1038, 9-72=-59/932, 891, 10-73=-45/246, 5/188, 11-12=-461/22,	3)	TCLL: ASCE 7-16; PI=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
		17-33		12-74=-11	50/197, 13-74=-1205/178,	4)	Unbalanced show loads have been considered for this design
REACTIONS	1 Brace at Jt(s (size) 13= 19= 23= 26= 29= 32= Max Horiz 32= Max Uplift 13= 18= 23= 27= 32=); 33 0-5-8, 17=26-1-8, 18=26-1-8, 26-1-8, 20=26-1-8, 25=26-1-8, 26-1-8, 27=26-1-8, 25=26-1-8, 26-1-8, 27=26-1-8, 28=26-1-8, 26-1-8, 30=26-1-8, 31=26-1-8, 26-1-8 -120 (LC 13) -127 (LC 13), 17=-196 (LC 13), -128 (LC 13), 20=-74 (LC 8), -111 (LC 12), 26=-4 (LC 5), -135 (LC 12), 30=-127 (LC 12), -87 (LC 31)	BOT CHORD	31-32=-85 29-30=-15 27-28=-15 25-26=-33 23-24=-33 21-22=-62 19-20=-83 17-18=-84 15-16=-89 3-30=-344 4-27=-462 6-23=-307 2-30=-150 8-18=-64/ 16-33=0/4 12-16=-72 11-33=-54	11, 2-22-20 11, 47, 30-31=-85/147, i3/159, 28-29=-153/159, i3/159, 26-27=-335/220, i5/220, 24-25=-335/220, i5/220, 22-23=-620/297, i0/297, 20-21=-620/297, i3/327, 18-19=-833/327, i8/317, 16-17=-61/148, i/1093, 13-15=-101/1116 i/124, 3-27=-204/67, i/154, 4-23=-406/110, i/78, 7-18=-672/38, 8-17=-517/105, i/48, 7-20=-108/180, 6-20=-529/91, 115, 10-17=-711/162, 10-33=0/389, 03, 11-16=-28/370, 24/238, 12-15=-6/208, i/797, 17-33=-515/102		POINT

NOTES

January 5,2023

Page: 1

the**TRUSS**CO. INC.

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. $\mathbf{\Lambda}$ Design valid for use only with MITek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult **ANSI/TPI1 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information** available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty Ply		Full Tilt Construction		
J1132071	A01	Piggyback Base Structural Gable	1	1	Job Reference (optional)	114581059	

- 5) This truss has been designed for greater of min roof live load of 16.0 psf or 1.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) All plates are MT20 plates unless otherwise indicated.
- 8) All plates are 2x4 MT20 unless otherwise indicated.
- 9) Gable studs spaced at 2-0-0 oc.10) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 11) * This truss has been designed for a live load of 23.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members, with BCDL = 7.0psf.
 12) Bearing at joint(s) 13 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 87 lb uplift at joint 32, 196 lb uplift at joint 17, 127 lb uplift at joint 30, 135 lb uplift at joint 27, 111 lb uplift at joint 23, 128 lb uplift at joint 18, 74 lb uplift at joint 20 and 4 lb uplift at joint 26.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Thu Jan 05 10:43:19 ID:qQDnaFgAzpgA5p2yT7R8a2y6n_I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

PRRASF20221937

City of Puyallup Development & Permitting Services ISSUED PERMIT									
Building	Planning								
Engineering	Public Works								
Fire	Traffic								

Page: 2

WARNING - Verity design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MITek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer. Bracing shown is for lateral support of individual we members only. Additional temporary bracing to insure stability during constructions is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult Safety information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type Qty Ply Full Tilt Construction		Full Tilt Construction		
J1132071	A02	Piggyback Base	4	1	Job Reference (optional)	114581060

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Thu Jan 05 10:43:22 ID:noKX?xhQVRwuL7CLbXTcfTy6n_j-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale =	1:90
---------	------

Plate Offsets	(X, Y): [2:0-	2-8,0-1-12], [6:0-4-0,0-1-13], [7	7:0-4-8,0-2	2-0], [9:0-6-0,E	dge], [13:0-3-1,0-0)-8], [23:()-2-8,0-2-0]							
Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 8.0 0.0* 7.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MS	1.00 0.82 0.92	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.77 -1.22 0.40	(loc) 16-17 16-17 13	l/defl >728 >459 n/a	L/d 360 240 n/a	PLATES MT20 MT18HS Weight: 301 lb	GRIP 185/148 185/148 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD	2x4 HF N No.1&Btr 2x6 DF S 2x4 HF N 24-2,23-2 2x4 DF S Structural except er (2-2-0 ma Rigid ceili bracing. 1 Row at (size) Max Horiz Max Uplift Max Grav (lb) - Max Tension 1-2=0/54, 3-4=-277 5-29=-25 6-30=-24;	0.2 *Excep S 0.2 *Excep ,11-16,12- tud I wood she id verticals ix.): 6-7. ing directly midpt 13=0-5-8, 24=-120 (13=-318 (13=2039 (imum Com 2-28=-250 9/553, 4-29 10/560, 5-3 93/574, 6-7	t* 6-7,9-14:2x4 DF t* 16,15-12,23-3,22-3,2 athing directly applie , and 2-0-0 oc purlin applied or 6-0-0 oc 8-18, 10-17, 4-21, 7 6-19 24=0-5-8 LC 13) LC 13), 24=-289 (LC (LC 2), 24=2069 (LC pression/Maximum)7/434, 3-28=-2444/- 1=-255/554, 30=-2503/561, '=-2378/568, -2014	W 22-4: ed, N s 1) (-19, (-19, (-12) (-2) (-2) (-2) (-2) (-2) (-2) (-2) (-	CTES Wind: ASCI Vasd=87mp II; Exp B; Pi exterior zon Interior (1) 7 33-8-10, Int 48-9-14 to 5 exposed ; e members ai Lumber DO TCLL: ASC DOL=1.15); Cs=1.00; C Unbalanced design. This truss h load of 16.0	6-21=-81/559, 7-1 8-18=-1068/207, 8 2-23=-322/2327, 7 12-16=-424/177, 7 10-16=-565/4363, 4-21=-581/161, 3- 3-22=-33/377, 4-2 7-19=-433/130, 6- E 7-16; Vult=110m, bh; TCDL=4.8psf; E artially Enclosed; N te and C-C Exterior 7-5-14 to 17-9-5, E erior (1) 33-8-10 to 53-5-14 zone; canti nd vertical left and nd forces & MWFR L=1.60 plate grip IE E 7-16; Pf=25.0 ps Is=1.0; Rough Ca t=1.10 d snow loads have as been designed psf or 1.00 times 1	8=-224/1 8-17=-12 11-16=-2 10-17=-1: , 12-15=- -23=-656, 22=-141/1 -19=-76/4 ph (3-sec BCDL=4.: WWFRS (r(2E) 2-9 ixterior(2I) 0-48-9-14 viewer left I right exp \$S for rea DOL=1.60 of (Lum D tt B; Parti been cor for great flat roof k	139,)/899, 34/105, 323/342, 39/70, (162, 32, 66 2004 gust) 2psf; h=25ft; l envelope) -14 to 7-5-14, R) 17-9-5 to , Exterior(2E) ister of pt and right and right and right ally Exp.; Ce- sidered for th er of min roof ad of 25.0 p;	Cat. ; ; =1.0; his live sf on	10) Pro bea join 11) This Inte R8(12) Gra or ti bott LOAD (vide mec rring plat t 24 and s truss is rrnationa 02.10.2 a uphical pu he orient tom chor CASE(S)	shanic: e capag 318 lb desig l Resic nd ref- rrlin re ation c d. Star	al connection (by ble of withstand o uplift at joint 13 ned in accordan dential Code sec erenced standar presentation do of the purlin alon ndard	others) of truss to ng 289 lb uplift at tons R502.11.1 ar d ANSI/TPI 1. ss not depict the si g the top and/or	o nd ize
BOT CHORD	31-32=-21 9-10=-29(11-33=-7(12-34=-7(23-24=-6(22-35=-3(20-21=-2) 18-19=-2(16-17=-5(13-15=-1(841/612, 9- 02/596, 10- 569/1197, 19- 50/1208, 10- 51, 2-24=-1 6/151, 22-2 00/2524, 21 39/2294, 11 64/2435, 11 05/3726, 11 036/7506	-32=-2002/597, -33=-7544/1210, 11-12=-7587/1161, 13-34=-8012/1189, 975/412 13=-295/2291, 1-35=-300/2524, 9-20=-239/2294, 7-18=-295/2601, 5-16=-1034/7522,	5) 6) 7) 8) 9)	overnangs 1 Provide adé All plates ar This truss h chord live lc * This truss on the botto 3-06-00 tall chord and a Bearing at j using ANSI, designer sh	non-concurrent with equate drainage to re MT20 plates unl- has been designed bad nonconcurrent has been designe- om chord in all area by 2-00-00 wide w iny other members oint(s) 13 consider (TPI 1 angle to gra ould verify capacity	n other in prevent ess other for a 10.0 with any d for a liv as where vill fit betw s, with BC rs parallel in formula y of bear	water ponding wise indicate 0 psf bottom other live loa e load of 23.0 a rectangle veen the bottw DL = 7.0psf. to grain valu a. Building ng surface.	g. d. Opsf om e			C. C	The second	1969 STELED NOA AL UNA	5 202

January 5,2023

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MITek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty Ply		Full Tilt Construction		
J1132071	B01	Common Supported Gable	1	1	Job Reference (optional)	114581061	

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Thu Jan 05 10:43:22 ID:BN0gdzkloMiSCaxwGg1JH6y6n_g-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

PRRASF20221937

Scale = 1:77.5

Loading TCLL (Roof Snow = 2 TCDL BCLL	25.0)	(psf) 25.0 8.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-I	0.27 0.08 0.26 MS	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 50	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 185/148	
BCDL		7.0										Weight: 217 I	o FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 HF No 2x4 HF No 2x4 DF St HF No.2 Structural 6-0-0 oc p Rigid ceili bracing. 1 Row at (size) Max Horiz Max Horiz Max Uplift	0.2 0.2 100 *Except 100 sheat 1141-10-0 25=41-10-0 27=41-10-2 27=41-10-2 27=41-10-2 27=41-10-31=41-10-31=41-10-36=41-10-36=41-10-45=41-10-45=41-10-45=41-10-45=41-10-1=-118 (Lu 12=-118 (Lu	t* 35-12,36-11,34-13 athing directly applie applied or 10-0-0 oc 12-35 0, 23=41-10-0, 0, 28=41-10-0, 0, 28=41-10-0, 0, 28=41-10-0, 0, 33=41-10-0, 0, 37=41-10-0, 0, 37=41-10-0, 0, 40=41-10-0, 0, 40=41-10-0, 0, 44=41-10-0, 0, 44=41-10-0, 0, 46=41-10-0, 0, 46=41-10-0, 0, 213), 28=-44 (LC 12, 13), 28=-44 (LC 12, 13), 38=-47 (LC 13), 38=-47 (LC 13), 33=-47 (LC 13), 33=-47 (LC 13), 33=-47 (LC 13), 33=-47 (LC 13), 33=-44 (LC 13), 21=-48 (LC 13), 33=-47 (LC 13), 3	 :2x4 d or FORCES TOP CHORD 3), 3), 3), 2), 3), 4), <l< td=""><td>(lb) - Max Tension 1-2=-134/ 3-4=-72/7 9-10=-83/ 11-12=-11 13-14=-10 15-16=-60 23-54=-82/ 1-45=-42/ 43-44=-42 41-42=-42 39-40=-42 35-36=-42 33-34=-42 31-32=-42 23-38=-42 23-38=-42 23-38=-42 23-38=-42 25-26=-42</td><td>1=100 (LC 19), ; 25=158 (LC 20), 27=159 (LC 20), 29=161 (LC 20), 34=245 (LC 20), 36=249 (LC 19), 39=226 (LC 19), 41=160 (LC 1), , 43=167 (LC 1), , 45=240 (LC 1), ,</td><td>23=290 (LC 1 26=162 (LC 28=160 (LC 30=160 (LC 33=234 (LC 35=146 (LC 40=164 (LC 42=158 (LC 1 44=132 (LC 1 46=100 (LC 1 0n/Maximum 3-53=-91/70, 6=-58/106, 8-9=-60/150, (218, 16/249, 3/183, 147, 147, 1429, 129, 129, 129, 129, 129, 129, 129, 1</td><td>), 1), 1), 20), 25), 19), 9), 9), 9), 9), 9),</td><td>WEBS NOTES 1) Wii Va II; I Exi 24 39 ext Exi 24 39 ext Lui</td><td>S nd: ASCI sd=87m P; erior zon terior(2N -11-1, Ex -7-13 to 4 oosed ; e mbers a mber DO</td><td>12-35 10-37 6-41= 3-44= 13-34 15-31 18-29 20-27 22-25 5 7-16(- bh; TCI artially e and) 4-2-3 terior(C, 33-10-(C, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,</td><td>=</td><td> >=-221/61, =-198/66, 7-40= 131/67, 4-43=- 174/121, >=-206/71, >=-132/67, >=-132/68, (3-second gust; DL=4.2psf; h=24 FRS (envelope) 0-0-0 to 4-2-3 rner(3R) 16-8-1 39-7-13, Cornee er left and right ht exposed;C-C or reactions sh:_=1.60 </td><td>137/67, 135/68, 5ft; Cat.), (4 to r(3E) C for own;</td></l<>	(lb) - Max Tension 1-2=-134/ 3-4=-72/7 9-10=-83/ 11-12=-11 13-14=-10 15-16=-60 23-54=-82/ 1-45=-42/ 43-44=-42 41-42=-42 39-40=-42 35-36=-42 33-34=-42 31-32=-42 23-38=-42 23-38=-42 23-38=-42 23-38=-42 25-26=-42	1=100 (LC 19), ; 25=158 (LC 20), 27=159 (LC 20), 29=161 (LC 20), 34=245 (LC 20), 36=249 (LC 19), 39=226 (LC 19), 41=160 (LC 1), , 43=167 (LC 1), , 45=240 (LC 1), ,	23=290 (LC 1 26=162 (LC 28=160 (LC 30=160 (LC 33=234 (LC 35=146 (LC 40=164 (LC 42=158 (LC 1 44=132 (LC 1 46=100 (LC 1 0n/Maximum 3-53=-91/70, 6=-58/106, 8-9=-60/150, (218, 16/249, 3/183, 147, 147, 1429, 129, 129, 129, 129, 129, 129, 129, 1), 1), 1), 20), 25), 19), 9), 9), 9), 9), 9),	WEBS NOTES 1) Wii Va II; I Exi 24 39 ext Exi 24 39 ext Lui	S nd: ASCI sd=87m P; erior zon terior(2N -11-1, Ex -7-13 to 4 oosed ; e mbers a mber DO	12-35 10-37 6-41= 3-44= 13-34 15-31 18-29 20-27 22-25 5 7-16(- bh; TCI artially e and) 4-2-3 terior(C, 33-10-(C, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,	=	 >=-221/61, =-198/66, 7-40= 131/67, 4-43=- 174/121, >=-206/71, >=-132/67, >=-132/68, (3-second gust; DL=4.2psf; h=24 FRS (envelope) 0-0-0 to 4-2-3 rner(3R) 16-8-1 39-7-13, Cornee er left and right ht exposed;C-C or reactions sh:_=1.60 	137/67, 135/68, 5ft; Cat.), (4 to r(3E) C for own;
		,										2.00	ASTERED	1

Continued on page 2

January 5,2023

Page: 1

Y

ONAL

Job	Truss	Truss Type	Qty Ply		Full Tilt Construction	
J1132071	B01	Common Supported Gable	1	1	Job Reference (optional)	114581061

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 16.0 psf or 1.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- 6) All plates are 1.5x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- 8) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 23.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 10 lb uplift at joint 1, 42 lb uplift at joint 36, 46 lb uplift at joint 37, 43 lb uplift at joint 39, 44 lb uplift at joint 40, 44 lb uplift at joint 41, 43 lb uplift at joint 42, 46 lb uplift at joint 43, 35 lb uplift at joint 44, 69 lb uplift at joint 45, 40 lb uplift at joint 34, 47 lb uplift at joint 33, 43 lb uplift at joint 30, 44 lb uplift at joint 20, 44 lb uplift at joint 28, 44 lb uplift at joint 29, 44 lb uplift at joint 26, 47 lb uplift at joint 25, 44 lb uplift at joint 23, 10 lb uplift at joint 1 and 44 lb uplift at joint 23.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Thu Jan 05 10:43:22 ID:BN0gdzkloMISCaxwGg1JH6y6n_g-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

PRRASF20221937

City of Puyallup Development & Permitting Services ISSUED PERMIT									
Building	Planning								
Engineering	Public Works								
Fire OF W	Traffic								

Page: 2

WARNING - Verity design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MITek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer. Bracing shown is for lateral support of individual we members only. Additional temporary bracing to insure stability during constructions is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult Safety information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty Ply Full Tilt Construction		Full Tilt Construction	
J1132071	B02	Common	6	1	Job Reference (optional)	114581062

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Thu Jan 05 10:43:23 ID:fZa2rJkwZfQJpkW6qNYYpJy6n_f-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

PRRASF20221937

Scale = 1:79.4

Plate Offsets (X, Y): [1:0-0)-6,Edge],	[3:0-3-8,0-3-0], [5:0-	-4-0,Edg	9], [7:0-8-0,0-0-6	6]								
Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 8.0 0.0* 7.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MS	0.87 0.75 0.42	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.29 -0.54 0.16	(loc) 9-11 9-11 7	l/defl >999 >934 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 176 lb	GRIP 185/148 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD	2x4 DF No 2x4 DF No No.2 2x4 DF Stu No.2 Structural 1 2-1-0 oc pi Rigid ceilir bracing. 1 Row at ni (size) Max Horiz Max Horiz Max Grav (lb) - Maxiir Tension 1-20=-366i	.1&Btr *E> .1&Btr *E> .1&Btr *E> ud *Except wood shea urlins. ng directly nidpt 1= Mecha 1=-118 (Lt 1=-266 (Lt 1=1670 (L mum Com 6/599, 2-2	xcept* 5-8:2x4 HF N xcept* 12-10:2x4 HF * 11-4,11-5,11-3:2x athing directly applie applied or 8-9-2 oc 5-11, 3-11 nical, 7=0-5-8 C 17) C 12), 7=-292 (LC 1: C 1), 7=1808 (LC 1) pression/Maximum 0=-3593/612,	1 0.2 4 HF ed or 2 3) 3) 4	 Wind: ASCE Vasd=87mpl II; Exp B; Pa exterior zone Interior (1) 4. 25-1-4, Interi 39-7-13 to 4. exposed ; er members an Lumber DOL TCLL: ASCE DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha load of 16.0 overhangs n This truss ha chord live loa 	7-16; Vult=110mph 7; TCDL=4.8psf; BC trially Enclosed; MV and C-C Exterior(2 -2-3 to 16-8-14, Ext ior (1) 25-1-4 to 39- 3-10-0 zone; cantile d vertical left and ri d forces & MWFRS =1.60 plate grip DC :=1.60 plate grip DC :=1.60 plate grip DC :=1.60 plate grip DC :=1.60 plate grip DC :=1.10 snow loads have b sis been designed fc psf or 1.00 times fla on-concurrent with is been designed fc ad nonconcurrent	n (3-sec CDL=4.: CDL=4.: VFRS (2E) 0-0 erior(2I 7-13, E ght exp for real of for real DL=1.60 (Lum D B; Parti een cor or great at roof k other lin or a 10.0 vith any	cond gust) 2psr, h=25ft; 2psr, h=25ft; 2psr, h=25ft; 10 ct -2-3, 2 to 4-2-3, 2 to 4-2-3,	Cat. ;; =1.0; his live sf on ds.					
BOT CHORD WEBS NOTES	2-3=-3294, 4-21=-219 22-23=-22 5-6=-3270, 7-24=-364 1-13=-573, 11-12=-38, 9-10=-323, 4-11=-184, 5-9=-59/54 3-13=-65/5	(353, 2-2) (563, 3-21) (9/470, 4-2) (9/455, 5- (545, 6-24) (9/565, 7-8) (3337, 12- (2686, 10) (2677, 7-9) (1262, 5-1) (14, 6-9=-4) (567, 2-13=	2-353/345, 2=-2283/445, =-3574/587, =0/51 13=-382/2686,)-11=-323/2677, =-455/3299 1=-989/271, 77/208, 3-11=-1035/ -500/212	6 7 8 /274, L	 * This truss h on the bottor tall by 0-00 v any other me Refer to gird Provide mec bearing plate joint 1 and 2ⁱ This truss is International R802.10.2 ar 	an abeen designed nas been designed n chord in all areas vide will fit between embers. er(s) for truss to tru hanical connection e capable of withsta 92 lb uplift at joint 7 designed in accord Residential Code s nd referenced stand Standard	for a liv where the bo ss conr (by oth nding 2 ance w sections dard AN	e load of 0.0; a rectangle C ttom chord ar nections. ers) of truss t 266 lb uplift at ith the 2018 § R502.11.1 a USI/TPI 1.	ind				PROVINE NOT W	POW

January 5,2023

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MITek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the building designer. For general quidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Tru	lss		Truss Type		Qty	Ply	Full Tilt Construction		14 150 1000
J1132071	B03)3		Common		4	1	Job Reference (optional)		114581063
The Truss Compan	ny (Sumner), Sumne ASF2022193	er, WA - 98390 8 7	,		Run: 8.63 S N ID:7m8Q2flZKz	ov 19 2022 Print: 8 2YARu5JN53nMXy	.630 S Nov 1 6n_e-RfC?Ps	9 2022 MiTek Industries, Inc. Thu B70Hq3NSgPqnL8w3ulTXbGKW	ı Jan 05 10:43:23 /rCDoi7J4zJC?f	Page: 1
F	7-4-14	4	14-1	-15	20-11-1	27-8-2		34-5-3	41-10-0	
1	7-4-14	4	6-9	-1 '	6-9-1	6-9-1		6-9-1	7-4-13	'
					5)	×6=			City	of Puyallup
Ţ				5x8 ≠ 20	21		22 5x	8.	Development ISSU Building	& Permitting Services

Scale = 1:74.4

Plate Offsets (X, Y): [1:0-0-6,Edge], [3:0-3-8,0-3-0], [5:0-3-8,0-3-0]

			-										
Loading TCLL (Roof Snow = TCDL BCLL BCDL	(psf) 25.0 25.0) 8.0 0.0* 7.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MS	0.82 0.75 0.41	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.27 -0.49 0.17	(loc) 10 8-10 7	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 177 lb	GRIP 185/148 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 DF No.1&Btr 2x4 DF No.1&Btr *E: 2x4 DF Stud *Excep No.2 Structural wood she 2-2-0 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (size) 1= Mecha Max Horiz 1=99 (LC Max Uplift 1=-266 (L Max Grav 1=1673 (L	xcept* 11-9:2x4 HF N t* 10-4,10-5,10-3:2x4 athing directly applied applied or 8-8-3 oc 5-10, 3-10 inical, 7=0-5-8 12) C 12), 7=-266 (LC 13 .C 1), 7=1673 (LC 1)	1) 0.2 HF 1 or 2) 3) 4)	Wind: ASCE Vasd=87mpl II; Exp B; Pa exterior zone Interior (1) 4 25-1-4, Inter 37-7-13 to 4 exposed ; er members an Lumber DOL TCLL: ASCE DOL=1.15); Cs=1.00; Ct: Unbalanced design. This truss ha	7-16; Vult=110mp h; TCDL=4.8psf; B rtially Enclosed; M e and C-C Exterior -2-3 to 16-8-14, Ep ior (1) 25-1-4 to 37 1-10-0 zone; cantil nd vertical left and d forces & MWFR =1.60 plate grip D 57-16; Pf=25.0 psi Is=1.0; Rough Cat =1.10 snow loads have I	bh (3-sec 3CDL=4.3 IWFRS (c(2E) 0-0: xterior(2F) 7-7-13, E lever left right exp S for rea 0CL=1.60 f (Lum D t B; Parti: been cor for a 10.0	cond gust) 2psf; h=25ft; envelope) -0 to 4-2-3, R) 16-8-14 to xterior(2E) and right bosed;C-C fo ctions showr OL=1.15 Pla ally Exp.; Ce sidered for t	Cat. r n; tte =1.0; his					
FORCES	(lb) - Maximum Com Tension 1-19=-3674/605, 2-1 2-3=-3302/570, 3-20 20-21=-2276/461, 4- 4-22=-2198/477, 22- 5-23=-2291/452, 5-6 6-24-9502/619, 7-2	pression/Maximum 9=-3602/618,)=-2291/452, -21=-2198/477, -23=-2276/462, i=-3300/570, Mu- 2671/605	5) 6) 7)	chord live loa * This truss h on the bottor tall by 0-00 v any other me Refer to gird Provide mec	ad nonconcurrent i nas been designed n chord in all area vide will fit betwee embers. er(s) for truss to tr hanical connection	with any d for a liv is where in the bot russ conr n (by oth	other live loa e load of 0.0 a rectangle (tom chord an nections. ers) of truss	ads. psf 0-00 nd to				- 14 B	A. 83 (a) .
BOT CHORD	1-12=-583/3344, 11- 10-11=-392/2693, 9- 8-9=-368/2692, 7-8=	-12=-307/7005 -12=-392/2693, -10=-368/2692, 507/3341	8)	joint 1 and 2 This truss is International	e capable of withst 66 lb uplift at joint designed in accor Residential Code	anding 2 7. dance w sections	ith the 2018 R502.11.1 a	t and				BRARY L.	POWER
WEBS	4-10=-189/1268, 5-1 5-8=-65/566, 6-8=-4 3-12=-65/568, 2-12=	0=-1004/274, 98/212, 3-10=-1005/2 500/212	^{74,} LC	R802.10.2 a	nd referenced star Standard	ndard AN	ISI/TPI 1.						MAL
NOTES											- 1		Contraction of the second seco

NOTES

ONA

January 5,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MITek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult **ANSI/TP11 Quality Criteria**, **DSB-89 and BCS11 Building Component Safety Information** available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	Full Tilt Construction	
J1132071	B04	Common	1	1	Job Reference (optional)	114581064

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Thu Jan 05 10:43:23

ID:byioG?mB5Hg132fVxoa0uky6n_d-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

The Truss Company (Sumner), Sumner, WA - 98390,

	(, .). [[[]]]	,]										
Loading TCLL (Roof Snow = TCDL BCLL BCDL	(psf) 25.0 25.0) 8.0 0.0* 7.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MS	0.82 0.75 0.41	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.27 -0.49 0.17	(loc) 10 8-10 7	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 177 lb	GRIP 185/148 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD	2x4 DF No.1&Btr 2x4 DF No.1&Btr *E 2x4 DF Stud *Excep No.2 Structural wood she 2-2-0 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (size) 1=0-5-8, 7 Max Horiz 1=99 (LC Max Uplift 1=-266 (L Max Grav 1=1673 (I (lb) - Maximum Com Tension 1-19=-3674/605, 2-1 2-3=-3302/570, 3-22 20-21=-2276/461, 4 4-22=-2198/477, 22 5-23=-2291/452, 5-6	xcept* 11-9:2x4 HF N athing directly applied applied or 8-8-3 oc 5-10, 3-10 7=0-5-8 12) C 12), 7=-266 (LC 13 _C 1), 7=1673 (LC 1) pression/Maximum 19=-3602/618,)=-2291/452, -21=-2198/477, -23=-2276/462, 5=-3300/570, 24=-3671/605	1) lo.2 l HF d or 2) 3) 3) 4) 5) 6)	Wind: ASCE Vasd=87mpH II; Exp B; Pa exterior zone Interior (1) 4. 25-1-4, Interi 37-7-13 to 4' exposed ; en members an Lumber DOL TCLL: ASCE DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha chord live loa * This trus ha * This trus ha	7-16; Vult=110mp 7-16; Vult=110mp 7, TCDL=4.8psf; E trially Enclosed; N and C-C Exterior 2-3 to 16-8-14, E: ior (1) 25-1-4 to 37 1-10-0 zone; canti d vertical left and d forces & MWFR =1.60 plate grip E 5-16; Pf=25.0 psi Is=1.0; Rough Cat =1.10 snow loads have I ad nonconcurrent has been designed ad nonconcurrent has been designed n chord in all area wide will fit betwee embers. hanical connections a capable of withst 66 hu pulift at joint	bh (3-sec 3CDL=4.2 MWFRS (r(2E) 0-0- xterior(2F 7-7-13, E lever left right exp S for rea DOL=1.60 f (Lum D t B; Parti- been cor for a 10.0 with any d for a livu s where in the bot n (by oth tanding 2 7	orond gust) 2psf; h=25ft; envelope) -0 to 4-2-3, 2) 16-8-14 to xterior(2E) and right toosed;C-C for ctions showr 0 OL=1.15 Plai ally Exp.; Ce: asidered for th 0 psf bottom other live loa e load of 0.0 a rectangle C tom chord ar ers) of truss 1 66 lb uplift at	Cat. r n; =1.0; his ads. psf 0-00 nd to t					-Sh (B c
BOT CHORD	1-12=-583/3344, 11 10-11=-392/2693, 9 8-9=-368/2692, 7-8=	-12=-392/2693, -10=-368/2692, 507/3341	7)	This truss is International R802.10.2 at	designed in accor Residential Code nd referenced star	dance w sections	ith the 2018 R502.11.1 a ISI/TPI 1.	and				PROFW	POWEA
WEBS	4-10=-189/1268, 5-1 5-8=-65/566, 6-8=-4 3-12=-65/568, 2-12=	10=-1004/274, 98/212, 3-10=-1005/2 =-500/212	LC 274,	OAD CASE(S)	Standard						A. B. B.		
NULES											6		2244 IG1 4

Page: 1

WARNING - Verity design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MITek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual we members only. Additional temporary bracing to insure stability during constructions is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult **ANSI/TPI1 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information** available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	Full Tilt Construction	
J1132071	B05	Common	6	1	Job Reference (optional)	114581065

Scale = 1:77.5

Plate Offsets ((X, Y): [2:0-0-14,Edge], [4:0-3-8,0-3-4], [6:0)-4-0,Edge	e], [8:0-0-14,Ec	lge]									
Loading TCLL (Roof Snow = TCDL BCLL BCDL	(psf) 25.0 25.0) 8.0 0.0* 7.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MS	0.99 0.75 0.42	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.31 -0.56 0.16	(loc) 11-13 11-13 8	l/defl >999 >895 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 174 lb	GRIP 185/148 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 DF No.1&Btr *E: No.2 2x4 DF No.1&Btr *E: No.2 2x4 DF Stud *Excep No.2 Structural wood she Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-5-8, 8 Max Horiz 2=118 (LC Max Uplift 2=-292 (L Max Gray 2=1808 (J	xcept* 1-4,6-8:2x4 HI xcept* 12-10:2x4 HF t* 11-5,11-6,11-4:2x4 athing directly applied applied or 8-9-8 oc 6-11, 4-11 3=0-5-8 C 12), 8=-266 (LC 13 C 12), 8=-266 (LC 13 C 12), 8=-1670 (LC 13)	= 1) F HF d. 2) 3) 4)	Wind: ASCE Vasd=87mpH II; Exp B; Pa exterior zone Interior (1) 2- 25-1-4, Interi 37-7-13 to 4' exposed ; en members an Lumber DOL TCLL: ASCE DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha	7-16; Vult=110mph r; TCDL=4.8psf; BC trially Enclosed; MV and C-C Exterior(2 -2-3 to 16-8-14, Ext or (1) 25-1-4 to 37- 1-10-0 zone; cantile d vertical left and ri d forces & MWFRS =1.60 plate grip DC 7-16; Pf=25.0 psf Is=1.0; Rough Cat Is =1.10 snow loads have but s been designed for	(3-sec CDL=4.: WFRS (2E) -2-C erior(2I 7-13, E ever left ght exp ght exp ght exp ght exp ght exp and CL=1.60 (Lum D B; Parti een cor	cond gust) 2psf; h=25ft; envelope) 0-0 to 2-2-3, R) 16-8-14 to xterior(2E) and right oosed;C-C fo ctions showr 0 OL=1.15 Pla ally Exp.; Ce asidered for t	Cat. r l; te =1.0; his f live						
FORCES TOP CHORD BOT CHORD WEBS NOTES	(lb) - Maximum Com Tension 1-2=0/51, 2-20=-365 3-4=-3273/545, 4-21 21-22=-2268/455, 5- 5-23=-2190/470, 6-2 6-7=-3292/563, 7-24 8-24=-3661/598 2-13=-573/3302, 12- 11-12=-388/2677, 11 9-10=-361/2685, 8-9 5-11=-184/1262, 6-1 6-9=-65/566, 7-9=-4 4-13=-60/546, 3-13=	ppression/Maximum 52/565, 3-20=-3577/5 I=-2283/445, 22=-2190/471, 23=-2283/455, I=-3588/611, -13=-388/2677, 0-11=-361/2685, 0=-501/3330 I1=-1029/274, 93/212, 4-11=-990/27 -479/208	87, 5) 6) 7) 8) 71, LC	overhangs n This truss ha chord live loa * This truss ha chord live loa * This truss fa on the bottor tall by 0-00 v any other me Provide mec bearing plate joint 2 and 20 This truss is International R802.10.2 ar	short not the sha on-concurrent with s been designed fo ad nonconcurrent w has been designed n chord in all areas vide will fit between embers. hanical connection capable of withsta 56 lb uplift at joint 8 designed in accord Residential Code s nd referenced stance Standard	(by other liver other liver ith any for a liver where the bor (by oth nding 2 ance w sections dard AN	ve loads. D psf bottom other live loa e load of 0.0 a rectangle (ttom chord ar ers) of truss : 92 lb uplift ar ith the 2018 s R502.11.1 a ISI/TPI 1.	ads. psf -00 nd to t			S. S	PRO PRO PRO	POW	

January 5,2023

Page: 1

WARNING - Verity design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MITek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual we members only. Additional temporary bracing to insure stability during constructions is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult **ANSI/TPI1 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information** available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Thu Jan 05 10:43:24 ID:byioG?mB5Hg132fVxoa0uky6n_d-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Job	Truss	Truss Type	Qty	Ply	Full Tilt Construction	
J1132071	C01	Common Supported Gable	1	1	Job Reference (optional)	114581066

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Thu Jan 05 10:43:24 ID:48GBTKnpraouhCEhVW5FRxy6n_c-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:46.2

Plate Offsets (X, Y): [2:0-0-14,Edge], [12:0-0-14,Edge]

Loading TCLL (psf) TCLL Spacing (sof Snow = 25.0) Spacing (Roof Snow = 25.0) Spacing Plate Grip DOL Lumber DOL 1.15 1.15 CSI TC DEFL (vert(LL) in (loc) l/deft / usf / / usf CDL 8.0 BCLL 0.0* BCDL 8.0 Code Rep Stress Incr YES WB 0.06 Matrix-MS WB 0.06 Matrix-MS Vert(CT) n/a - n/a 99 Horz(CT) 0.00 28 n/a n/a LUMBER TOP CHORD 2x4 HF No.2 Code IRC2018/TPI2014 WB 2-23=-128/112, 22-23=-17/76, 12-22=-17/76, 12-22=-17/76, 12-22=-17/76, 12-22=-17/76, 12-12=-17/76, 12	
TCLL 25.0 Piate Grip DOL 1.15 TC 0.27 Vert(LL) n/a - n/a 99 (Roof Snow = 25.0) Rep Stress Incr YES BC 0.08 Vert(CT) n/a - n/a 99 TCDL 8.0 Rep Stress Incr YES BC 0.08 Vert(CT) n/a - n/a 99 BCLL 0.0* Code IRC2018/TPI2014 Matrix-MS Vert(CT) n/a - n/a 99 LUMBER Code IRC2018/TPI2014 Matrix-MS Vert(CT) n/a - n/a - n/a 99 LUMBER Code IRC2018/TPI2014 Matrix-MS Vert(CT) 0.00 28 n/a n/a BOT CHORD 2x4 HF No.2 BOT CHORD 2x4 HF No.2 EOT CHORD 2x4 HF No.2 Solo-00 tall by 2 - 10) * This truss has on the bottom c - - - - - - - - - - - - - - - - - - -	PLATES GRIP
(Roof Snow = 25.0) Lumber DOL 1.15 BC 0.08 Vert(CT) n/a - n/a 99 TCDL 8.0 BCLL 0.0* Code IRC2018/TPI2014 BC 0.08 Vert(CT) n/a - n/a 99 BCLL 0.0* Code IRC2018/TPI2014 BC 0.08 Vert(CT) n/a - n/a 99 LUMBER Code IRC2018/TPI2014 BC 0.08 Vert(CT) n/a - n/a 99 LUMBER Code IRC2018/TPI2014 BC 0.08 Vert(CT) n/a - n/a 99 LUMBER Code IRC2018/TPI2014 BC 0.08 Vert(CT) 10) * This truss has on the bottom c 3-06-00 tall by 2 -<	MT20 185/148
Rep Stress Incr YES WB 0.06 Horz(CT) 0.00 28 n/a n/a BCLL 0.0* Code IRC2018/TPI2014 WB 0.06 Horz(CT) 0.00 28 n/a n/a LUMBER TOP CHORD 2x4 HF No.2 Soft CHORD 2x4 HF No.2 10) * This truss has on the bottom c BCCL 2x4 DF Stud BOT CHORD 2x4 HF No.2 17-18=-17/76, 16-17=-17/76, 15-16=-17/76, 15-16=-17/76, 15-16=-17/76, 15-16=-17/76, 15-16=-17/76, 15-16=-17/76, 15-16=-17/76, 15-16=-17/76, 15-16=-17/76, 15-16=-17/76, 15-16=-17/76, 15-16=-17/76, 15-16=-17/76, 15-16=-17/76, 15-16=-17/76, 10-10, 17-18=-17/76, 100, 8-17=-217/68, 9-16=-202/66, 10-15=-171/72, 11-14=-122/60 10) * This truss has on the bottom c BRACING KeBS 7-19=-111/0, 6-20=-217/68, 5-21=-202/66, 10-15=-171/72, 11-14=-122/60 10) * Tois truss has on the bottom c BRACING KeBS 7-19=-111/0, 6-20=-217/68, 5-21=-202/66, 10-15=-171/72, 11-14=-122/60 11) Provide mechar BOT CHORD 2=21-4-0, 12=21-4-0, 14=21-4-0, 15=21-4-0, 15=21-4-0, 12=21-4-0, 22=-21-4-0, 22	
Both Both Both Both Both Both Both Both	
BCLL 0.0 Code IRC2018/TP12014 Mainx-Mis BCDL 7.0 Mainx-Mis Mainx-Mis Mainx-Mis LUMBER 7.0 BOT CHORD 2x4 HF No.2 10) * This truss has on the bottom c BOT CHORD 2x4 HF No.2 17.76, 19-20=-17/76, 18-19=-17/76, 18-19=-17/76, 18-19=-17/76, 16-17=-17/76, 15-16=-17/76, 15-16=-17/76, 16-17=-17/76, 15-16=-17/76, 16-17=-17/76, 15-16=-17/76, 16-17=-17/76, 1	
BCDL 7.0 LUMBER TOP CHORD 2x4 HF No.2 TOP CHORD 2x4 HF No.2 20-21=-17/76, 19-20=-17/76, 18-19=-17/76, 15-16=-17/76, 12-12=-17/76, 15-16=-17/76, 12-14=-17/76, 15-16=-17/76, 12-14=-17/76, 15-16=-17/76, 12-14=	
LUMBER BOT CHORD 2x4 HF No.2 20-21=-17/76, 19-20=-17/76, 18-19=-17/76, 15-16=-17/76, 17-18=-17/76, 15-16=-17	Weight: 86 lb $FI = 20\%$
TOP CHORD $2x4$ HF No.2 $20-21=-17/76, 19-20=-17/76, 18-19=-17/76, 15-16=-17/76,$	been designed for a live load of 23.0psf
BOT CHORD 2x4 HF No.2 17-18=-17/76, 16-17=-17/76, 15-16=-17/76, 15-	ord in all areas where a rectangle
OTHERS 2x4 DF Stud 14-15=-17/76, 12-14=-17/76 chord and any c BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. 14-15=-17/76, 12-14=-17/76 11) Provide mechar bearing plate cz 9-16=-202/66, 10-15=-171/72, 11-14=-122/60 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 7-19=-111/0, 6-20=-217/68, 5-21=-202/66, 10-15=-171/72, 3-23=-122/60, 8-17=-217/68, 9-16=-202/66, 10-15=-171/72, 11-14=-122/60 11) Provide mechar bearing plate cz 9, 60 lb uplift at uplift at joint 21, 23, 46 lb uplift Vasd=87mph; TCDL=4.8psf; BCDL=4.2psf; h=25ft; Cat. II; Exp B; Partially Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -2-0-0 to 10-0, 22=21-4-0, 23=21-4-0, 24=21-4-0, 28=21-4-0 12) This truss is des International Re R802.10.2 and 10 23-40 zone; cantilever left and right exposed; c-C for members and Max Horiz 2=-60 (LC 13), 24=-60 (LC 13) 23-40 zone; cantilever left and right exposed; c-C for members and LOAD CASE(S) S	00-00 wide will fit between the bottom
BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. WEBS 7-19=-111/0, 6-20=-217/68, 5-21=-202/66, 4-22=-171/72, 3-23=-122/60, 8-17=-217/68, 9-16=-202/66, 10-15=-171/72, 11-14=-122/60 11) Provide mechar bearing plate ca 9, 60-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 7-19=-111/0, 6-20=-217/68, 5-21=-202/66, 9-16=-202/66, 10-15=-171/72, 11-14=-122/60 11) Provide mechar bearing plate ca 9, 60 lb uplift at 9, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,	her members.
BACCING Structural wood sheathing directly applied or 6-0-0 cc purlins. 4-22=-171/72, 3-23=-122/60, 8-17=-217/68, 9-16=-202/66, 10-15=-171/72, 11-14=-122/60 bearing plate cc 2, 60 lb uplift at uplift at joint 12, 23, 46 lb uplift at uplift at joint 12, 2, 46 lb uplift at uplift at joint 12, 2 and 60 lb uplift 12) This truss is des International Re R802.10.2 and 10 Exterior(2N) 13-8-0 to 20-4-0, Corner(3E) 20-4-0 to Exterior(2N) 13-8-0 to 20-4-0, Corner(3E) 20-4-0 to Exterior 20, 20-4-0 t	cal connection (by others) of truss to
Notes 9-16=-202/66, 10-15=-171/72, 11-14=-122/60 2, 60 lb uplift at uplift at joint 21, 23, 46 lb uplift at joint 12, 23, 46 lb uplift at joint 12, 23, 46 lb uplift at joint 12, 23, 46 lb uplift at joint 15, 23, 46 lb uplift at joint 16, 23, 46 lb uplift at joint 15, 23, 46 lb u	able of withstanding 57 lb uplift at joint
NOTES uplift at joint 21, 23, 46 lb uplift at joint 15, 2 and 60 lb uplift at joint 15, 2 and 60 lb uplift 15=21-4-0, 12=21-4-0, 14=21-4-0, 15=21-4-0, 12=21-4-0, 12=21-4-0, 15=21-4-0, 22=21-4-0, 21=21-4-0, 22=21-4-0, 23=21-4-0, 24=21-4-0, 28=21-4-0 NOTES uplift at joint 21, 23, 46 lb uplift 15, 2 and 60 lb uplift 10, 10-0 to 7-8-0, Corner(3E) -2-0-0 to 1-0-0, 22=21-4-0, 23=21-4-0, 24=21-4-0, 28=21-4-0 Max Horiz 2=-60 (LC 13), 24=-60 (LC 13) NOTES 10, 10-0 to 7-8-0, Corner(3E) -2-0-0 to 1-0-0, 23-4-0 zone; cantilever left and right exposed; c-C for members and 11, Exp B; Partially Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -2-0-0 to 1-0-0, 23-4-0 zone; cantilever left and right exposed; c-C for members and 12) This truss is dest International Re R802.10.2 and 10	pint 12, 47 lb uplift at joint 20, 43 lb
Reactions (size) 2=21-4-0, 12=21-4-0, 14=21-4-0, 15=21-4-0, 15=21-4-0, 16=21-4-0, 16=21-4-0, 16=21-4-0, 22=21-4-0, 21=21-4-0, 22=21-4-0, 21=21-4-0, 22=21-4-0, 21=21-4-0, 22=21-4-0, 21=21-4-0, 22=21-4-0, 21=21-4-0, 22=21-4-0, 21=21-4-0, 22=21-4-0, 21=21-4-0, 22=21-4-0, 21=21-4-0, 22=21-4-0, 21=21-4-0, 22=21-4-0, 21=21-4-0, 22=21-4-0, 21=21-4-0, 22=21-4-0, 21=21-4-0, 21=21-4-0, 21=21-4-0, 21=21-4-0, 22=21-4-0, 21=21-4-0, 22=21-4-0, 21=21-4-0, 21=21-4-0, 22=21-4-0, 21=21-4-0, 22=21-4-0, 21=21-4-0, 22=21-4-0, 21=4-0, 21=4-	15 lb uplift at joint 22, 41 lb uplift at joint
max Horiz 2=-60 (LC 13), 24=-60 (LC 13), 24=-60 (LC 13) 11<	ioint 17, 44 lb uplift at joint 16, 45 lb
REACTIONS (size) 2=21-4-0, 12=21-4-0, 14=21-4-0, 14=21-4-0, 15=2	41 lb uplift at joint 14, 57 lb uplift at joint
15=21-4-0, 16=21-4-0, 17=21-4-0, ii, Exp B, Partially Enclosed, MWFR3 (envelope) 12) This truss is develope 19=21-4-0, 20=21-4-0, 21=21-4-0, exterior zone and C-C Corner(3E) -2-0-0 to 1-0-0, 12) This truss is develope 22=21-4-0, 23=21-4-0, exterior zone and C-C Corner(3E) -2-0-0 to 13-8-0, 12) This truss is develope 28=21-4-0 Exterior(2N) 10-0 to 7-8-0, Corner(3E) 20-4-0 to 13) This truss is develope Max Horiz 2=-60 (LC 13), 24=-60 (LC 13) 23-4-0 zone; cantilever left and right exposed; end LOAD CASE(S) S Max Horiz 2=-60 (LC 13), 24=-60 (LC 0) vertical left and right exposed; C-C for members and LOAD CASE(S) S	at joint 12.
19=21-4-0, 20=21-4-0, 21=21-4-0, 22=21-4-0, 22=21-4-0, 23=21-4-0, 23=21-4-0, 23=21-4-0 Exterior (2N) 1-0-0 to 7-8-0, Corner(3R) 7-8-0 to 13-8-0, Exterior(2N) 13-8-0 to 20-4-0, to 20-4-0 to 23-4-0 to 2	aned in accordance with the 2018
22=21-4-0, 23=21-4-0, 24=21-4-0, 28=21-4-0 Max Horiz 2=-60 (LC 13), 24=-60 (LC 13) May Hariz 2=-60 (LC 1	idential Code sections R502 11 1 and
$\begin{array}{c} 28=21-4-0 \\ \text{Max Horiz} & 2=-60 (LC 13), 24=-60 (LC 13) \\ \text{Max Horiz} & 2=-60 (LC 13), 24=-60 (LC 13) \\ \text{Max Horiz} & 2=-60 (LC 13), 24=-60 (LC 13) \\ \text{Max Horiz} & 2=-60 (LC 13), 24=-60 (LC 13) \\ \text{Max Horiz} & 2=-60 (LC 13), 24=-60 (LC 13) \\ \text{Max Horiz} & 2=-60 (LC 13), 24=-60 (LC 13) \\ \text{Max Horiz} & 2=-60 (LC 13), 24=-60 (LC 13) \\ \text{Max Horiz} & 2=-60 (LC$	eferenced standard ANSI/TPI 1
Max Horiz 2=-60 (LC 13), 2460 (LC 13) 23-4-0 2016, calified and ngin exposed, end LCAP CASL(a) c	andard
wax upinit $2=57$ (LC 8), $12=50$ (LC 9), for a set of the set of	
14=-41 (LC 13), 15=-45 (LC 13), 101CES & MWFRS 101 reactions showin, Lumber	
16=-44 (LC 13), $17=-46$ (LC 13), $10L=1.60$ plate glip DOL=1.60	
20=-47 (LC 12), 21=-43 (LC 12), 2) Truss designed for wind loads in the plane of the truss	
22=-45 (LC 12), 23=-41 (LC 12), only. For study exposed to wind (normal to the face), construction of the face of	
24=-57 (LC 8), 28=-60 (LC 9) see Standard Industry Gable End Details as applicable,	
Max Grav 2=287 (LC 19), 12=287 (LC 20), or consult qualified building designer as per ANS/TPT1.	
14=137 (LC 1), 15=204 (LC 20), 3) TCLL: ASCE 7-16; PT=25.0 pst (Lum DOL=1.15 Plate	a la Balla a
16=228 (LC 20), 17=245 (LC 20), DOL=1.15); IS=1.0; Rough Cat B; Partially Exp.; Ce=1.0;	ALL DOM
19=139 (LC 19), 20=245 (LC 19), CS=1.00; Ct=1.10	Nor L. FOUS
21=228 (LC 19), 22=204 (LC 19), 4) Unbalanced snow loads have been considered for this	WASHD A
23=137 (LC 1), 24=287 (LC 19), design.	State No. 00
28=287 (LC 20) 5) This truss has been designed for greater of min roof live	ASTO ALLO ANTO
FORCES (Ib) - Maximum Compression/Maximum load of 16.0 pst or 1.00 times tlat root load of 25.0 pst on	
Tension overhangs non-concurrent with other live loads.	
TOP CHORD 1-2=0/51, 2-31=-82/115, 3-31=-50/45. 6) All plates are 1.5x4 MT20 unless otherwise indicated.	
3-4=-48/47, 4-5=-49/67, 5-6=-49/98, 7) Gable requires continuous bottom chord bearing.	
6-7=-60/132, 7-8=-60/132, 8-9=-49/98. 8) Gable studs spaced at 2-0-0 oc.	A the 19969 /24
9-10=-49(66, 10-11=-36(30, 11-32=-31/25. 9) This truss has been designed for a 10.0 psf bottom	A B AD TO COM
12-32=-40/18, 12-13=0/51 chord live load nonconcurrent with any other live loads.	O'O'C CISTERS
	ONAL VA

January 5,2023

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MITek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual we members only. Additional temporary bracing to insure stability during constructions is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult **ANSI/TPI1 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information** available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Loading TCLL(psf) 25.0Spacing Plate Grip DOL2-0-0 1.15CSI TC0.46DEFLin(loc)I/deflL/dPLATESGRIP(Roof Snow = 25.0)Plate Grip DOL1.15TC0.46Vert(LL)-0.229-12>999360MT20185/148TCDL8.0Rep Stress IncrYESBC0.78WB0.38Horz(CT)0.056n/an/aBCDL7.07.0CodeIRC2018/TPI2014Matrix-MSMatrix-MSWB0.38Weight: 78 lbFT = 20%LUMBER TOP CHORD2x4 HF No.2 BCT CHORD2x4 HF No.2 2x4 DF Stud3)Unbalanced snow loads have been considered for this design.4)This truss has been designed for greater of min roof live load of 16.0 psf or 1.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.Vertige loads.		(X, 1): [2:0-3-0,0-1-0],	, [4.0-2-0,0-2-4], [0.0	-3-0,0-1-	0]									
LUMBER 3) Unbalanced snow loads have been considered for this TOP CHORD 2x4 HF No.2 design. BOT CHORD 2x4 HF No.2 4) This truss has been designed for greater of min roof live load of 16.0 psf or 1.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.	Loading TCLL (Roof Snow = TCDL BCLL BCDL	(psf) 25.0 25.0) 8.0 0.0* 7.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20)18/TPI2014	CSI TC BC WB Matrix-MS	0.46 0.78 0.38	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.22 -0.40 0.05	(loc) 9-12 9-12 6	l/defl >999 >638 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 78 lb	GRIP 185/148 FT = 20%
 TOP CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing. REACTIONS (size) 2=0-5-8, 6=0-5-8 (Max Horiz 2=-60 (LC 13) (Max Word 2=-1032 (LC 12), 6=-162 (LC 13) (Max Grav 2=1032 (LC 19), 6=1032 (LC 20) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/51, 2-16=-1783/328, 16-17=-1780/330, 3-17=-1676/346, 3-18=-1139/235, 4-18=-1139/235, 5-20=-1676/346, 20-21=-1780/330, 6-21=-1783/328, 6-7=0/51 BOT CHORD 2-9=-252/1613, 8-9=-230/1613, 6-8=-230/1613, 6-8=-230/1613, 6-8=-230/1613 WEBS 4-9=-47/556, 5-9=-668/199 NOTES Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.8ps; BCDL=4.2ps; h=25t; Cat. 	LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASI Vasd=87r U: Evo B:	2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 2x4 DF Stud Structural wood she 4-0-1 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-8, 6 Max Horiz 2=-60 (LC Max Uplift 2=-162 (L Max Grav 2=-1032 (L (lb) - Maximum Com Tension 1-2=0/51, 2-16=-178 3-17=-1676/346, 3-1 4-18=-1123/247, 4-1 5-19=-1198/235, 5-2 20-21=-1780/330, 6 2-9=-252/1613, 8-9= 6-8=-230/1613 4-9=-47/556, 5-9=-6 CE 7-16; Vult=110mph nph; TCDL=4.8psf; BC	eathing directly applie y applied or 10-0-0 oc 6=0-5-8 2 (3) C 12), 6=-162 (LC 1 LC 19), 6=1032 (LC 2 10, 6=1032 (LC 3 10, 6=1032 (ed or c 3) 20) 3/330, c0/51 99 Cat.	 3) Unbalanced design. 4) This truss ha load of 16.0 overhangs n 5) This truss ha chord live lo 6) * This truss la chord live lo 6) * This truss lo on the botton 3-06-00 tall 1 chord and al 7) Provide mec bearing plate joint 2 and 1 8) This truss is International R802.10.2 a LOAD CASE(S) 	snow loads have as been designed psf or 1.00 times i on-concurrent witi as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w ny other members chanical connectio e capable of withs 62 lb uplift at joint designed in accor Residential Code nd referenced sta Standard	been cor for great flat roof le h other li for a 10. with any d for a liv as where rill fit betv s. n (by oth tanding 1 6. rdance w s sections ndard AN	hsidered for t er of min rool oad of 25.0 p ve loads. 0 psf bottom other live loa re load of 23.1 a rectangle veen the bott ers) of truss 1 (62 lb uplift ar ith the 2018 s R502.11.1 a VSI/TPI 1.	his f live sisf on ads. Opsf to t t t and				BARRY L	POWER

- Vasd=8/mpn; 1CDL=4.8ps; BCDL=4.2ps; n=25f; Cat II; Exp B; Partially Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -2-0-0 to 1-0-0, Interior (1) 1-0-0 to 7-8-0, Exterior(2R) 7-8-0 to 13-8-0, Interior (1) 13-8-0 to 20-4-0, Exterior(2E) 20-4-0 to 23-4-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

January 5,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MITek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job		Truss		Truss Ty	rpe				Qty	,	Ply	Full Ti	It Cons	structio	n			
J1132071		C03		Commo	on Girde	er			1		3	Job R	eferenc	ce (opt	ional)			114581068
The Truss Company ((Sumner), Su	mner, W	A - 98390,				Run: 8.63	S Nov 19	2022 F	Print: 8.6	530 S Nov 1	9 2022 N sB70Ha?	liTek Ind	dustries	, Inc. T	hu Jan 05 1	0:43:25	Page: 1
PRRASE	2022193	37	4-6- 4-6-	11		<u>7-7-6</u> 3-1-5		<u>10-8-</u> 3-0-1	<u>.0</u> 0		<u>13-8-10</u> 3-0-10		<u>16</u> 3.	<u>-9-15</u> -1-5			<u>21-4-0</u> 4-6-1	{
4-9-6	0-9-4 4-9-6 0-9-4 4-0-2 0-4-1		1 6x18 = MSH29		5 3x4 = 2 3 13 3x8 = 129	12 - 19 MSH29 7-7-6 3.1 5	4x4 3 1220 12x12 MSF	4 = 0 = 10-8- 2.0.1	21 0	5x6 II 4 11 12x12 9	10 = MSH29 13-8-10 2-0 40	4x4. 5 9 1 MSH	2x12 = 29	9-15 1-5	3x2 2 8 3x 229	4 a 6 23 x8 II MSH29	City c velopment & /ISSUI Building Engineering Fire 6 MSH	f Puyallup Permitting Services D PERMIT Planning Public Works Traffic 24 7 ix18 s 29
Scale = 1:44.7			4-6-			3-1-5		3-0-1	0		3-0-10		3.	-1-5	·	01 140 0 4	4-6-1	I
Plate Offsets (X, Y)): [1:0-10-3	3,Edge]	, [3:0-1-12,0-2-0], [5:0)-1-12,0-2	2-0], [7:0-	-1-13,Ed	lge], [8:0-4	4-12,0-1-8	8], [9:0	0-3-8,0)-8-0], [11:0)-6-0,0-	7-4], [1	2:0-3-	8,0-8-	-0], [13:0-4 	-12,0-1-8]	
Loading TCLL (Roof Snow = 25.0) TCDL BCLL	(2	psf) 25.0 8.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	/TPI201	4 N	SI C 3C VB Matrix-MS).76).75).67	DEFL Vert(L Vert(C Horz(L) -0. CT) -0. CT) 0.	in (l 24 9 38 9 07	oc) -11 > -11 > 7	/defl >999 >665 n/a	L/d 360 240 n/a	PLATES MT20	6 G	RIP 85/148
LUMBER TOP CHORD 2x4 BOT CHORD 2x1 WEBS 2x4 BRACING TOP CHORD Str 4-3 BOT CHORD Rig bra REACTIONS (size Max Max Max FORCES (lb) Tel TOP CHORD 1-2 3-4 5-6 BOT CHORD 1-1 13. 12- 11. 9-1 8-2	4 HF No.2 10 DF SS 4 DF Stud ⁴ ructural wo 3-6 oc purfil gid ceiling (acing. e) 1=(< Horiz 1=4 < Uplift 1=- < Grav 1={ 0) - Maximum 2=-18446/3 4=-12839/2 6=-16209/2 6=-16209/2 6=-16209/2 6=-2788/1 1-19=-2788/1 1-21=-2481/1 10=-2783/1 2=2-753/1	Except od shea ns. directly a 0-5-8, 7- 49 (LC 1 1471 (L 3974 (L m Comp 020, 2-3 131, 4-5 658, 6-7 6972, 1 16972, 1 16972, 1 16972, 1 14883, 9 7070 8	* 11-4:2x4 HF No.2 thing directly applied applied or 10-0-0 oc =0-5-8 [4] C 10), 7=-1535 (LC 1 C 16), 7=9365 (LC 17 oression/Maximum 3=-16154/2651, 5=-12839/2133, 7=-18552/3035 -18=-2788/16972, 20-21=-2411/14883, 10-11=-2368/14933, -22=-2753/17070, -23=-2753/17070, -23=-2753/17070,	1) or 2) 1) 3) 4) 5)	3-ply tri (0.131" Top chi oc. Bottom staggel Web cc 0-4-0 o All load except CASE(i provide unless Wind: <i>A</i> Vasd=& II; Exp exterion vertical grip DC TCLL: <i>J</i> DOL=1 CS=1.0 Unbala design. The tri	uss to be x3") nail ords con chords of red at 0- onnected c. Is are co if noted S) sectic otherwis ASCE 7- 37mph; T B; Partia zone; c left and DL=1.60 ASCE 7- .15); Is= .15; Is= .0; Ct=1. nced snot	e connected s as follow nnected as connected 4-0 oc. d as follow insidered if as follow insidered if as fort (F or Ply to p inibute only the indicate 16; Vult=1 rrobL=4.8 ally Enclos antilever I right expo 16; Pf=25 1.0; Roug 10 ow loads I	ed togeth vs: s follows: d as follows: d as follow s: 2x4 - 2 equally a conne d as follow y loads no d. 10mph (i psf; BCD sed; MWF ed; MWF ed; Lun 5.0 psf (Lu h Cat B; have bee	er witi 2x4 - vs: 2x ? rows pplied ((B) fr ctions oted a 3-secco RS (e ght ex nber [um D0 Partia n con:	h 10d 1 row : (10 - 4 s stagg t to all s have s (F) c ond gu upsf; h= novelop posed DOL=1.1 DL=1.1 DL=1.5 Sidereco	at 0-4-0 rows ered at plies, the LOAD been or (B), st) =25ft; Cat. be) ; end .60 plate 5 Plate b; Ce=1.0; d for this	10) 11) LO. 1)	Use M 4-10d max. s conne Fill all Deac Incre Unifc Ve Conc Ve 18 21 24	liTek N nails i starting ct trus nail h SE(5) d + Sni rasse=1 port: 1-4 centrat =-165 =-165	MSH22 nto Tr g at 1- s(es) i bles w Star ow (ba =-66, eed Lo. =-1656 6 (B), 6 (B), 9 (B)	9 (With 18- 2005) or equi- 11-4 from to back face to back face there hang ndard alanced): L b/ft) 4-7=-66, 1 ads (lb) 6 (B), 9=-11 19=-1656 22=-1659	-10d nails ivialent sj the left en ce of botto er is in co .umber Ind I-7=-14 (B), 20=-1 (B), 23=-1	into Girder & baced at 2-0-0 oc d to 19-11-4 to m chord. ntact with lumber. crease=1.15, Plate 4=-1656 (B), 656 (B), 659 (B),
8-2 7-2 7-2 WEBS 2-1 3-1 4-1 5-9 6-8 NOTES	22=-2753/1 23=-2753/1 24=-2237/1 13=-289/18 12=-637/39 11=-1569/9 9=-647/402 8=-295/191	7070, 8 7070, 7 3897 72, 2-12 58, 3-1 ⁻¹ 585, 5- ⁻¹ 9, 6-9=- 4	-23=-2735/17070, -24=-2256/14015, 2=-2372/429, I=-4304/738, I1=-4374/749, 2427/437,	6) 7) 8) 9)	I his tru chord li * This t on the I 3-06-00 chord a Provide bearing joint 1 a This tru Interna R802.1	iss has be ve load russ has bottom c) tall by 2 and any c e mechai plate ca and 1535 iss is de tional Re 0.2 and	been designonconcu s been designonconcu shord in al 2-00-00 w other men nical conn apable of 5 lb uplift a signed in esidential reference	gned for a rrent with signed for I areas wl ide will fit hbers. lection (b withstand at joint 7. accordan Code sec d standar	a 10.0 any o a live here a betw y othe ling 14 ce wit ctions rd AN	psf bo other li e load o a recta een the ers) of t 471 lb th the 2 R502. SI/TPI	ottom ve loads. of 23.0psf ngle e bottom truss to uplift at 2018 11.1 and 1.				2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	A CLARK PROFESS	NOT WAS DI WAS D	

January 5,2023

WARNING - Verity design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MITek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	Full Tilt Construction	
J1132071	D01	Scissor	8	1	Job Reference (optional)	114581069

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Thu Jan 05 10:43:25 ID:czI_rroGOs5WLQdcECsx6Czyn3H-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

PRRASF20221937

Scale = 1:47.7

Plate Offsets (X, Y): [4:0-2-0,0-2-8], [9:0-4-0,0-3-0]

Loading TCLL (Roof Snow = TCDL BCLL BCDL	(psf) 25.0 25.0) 8.0 0.0* 7.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MS	0.61 0.75 0.42	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.28 -0.45 0.26	(loc) 9-10 9-10 6	l/defl >914 >563 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 75 lb	GRIP 185/148 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 HF No.2 2x4 HF No.2 2x4 DF Stud Structural wood she 3-0-7 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-8, Max Horiz 2=-59 (LC Max Uplift 2=-160 (I Max Grav 2=1021 (eathing directly applie / applied or 8-11-3 or 6=0-5-8 C 13) _C 12), 6=-160 (LC 1 LC 19), 6=1021 (LC)	3) 4) ed or 5) c 6) 3) 7) 20)	Unbalanced design. This truss ha load of 16.0 overhangs n This truss ha chord live loa * This truss l on the botton 3-06-00 tall l chord and an Bearing at jc using ANSI/	snow loads have las been designed l psf or 1.00 times f on-concurrent with as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w hy other members int(s) 6, 2 conside TPI 1 angle to grai ould verify canacity	been col for great flat roof I n other li for a 10. with any d for a liv s where ill fit betv ers parall in formul y of bear	hsidered for t er of min roo bad of 25.0 p ve loads. D psf bottom other live loa e load of 23. a rectangle veen the bott el to grain va a. Building ing surface	this f live osf on ads. 0psf tom					
FORCES	(Ib) - Maximum Con Tension 1-2=0/51, 2-17=-30 3-18=-2116/342, 4- 4-19=-2057/353, 5- 5-20=-2987/474, 6-	npression/Maximum 76/458, 3-17=-2987/4 18=-2057/353, 19=-2116/342, 20=-3076/458, 6-7=0	8) 474, 9) 0/51	Provide mec bearing plate joint 6 and 1 This truss is International R802 10 2 a	capable of withs capable of withs 60 lb uplift at joint designed in acco Residential Code	n (by oth anding 1 2. dance w sections	ith the 2018 R502.11.1 a	to it and					
BOT CHORD WEBS	2-10=-402/2838, 9- 8-9=-361/2849, 6-8 4-9=-140/1255, 5-9	10=-403/2849, =-357/2838 =-939/238, 3-9=-939/	LC /231.	DAD CASE(S)	Standard								
	3-10=0/151, 5-8=0/	151	,									JAMA .	ALA B.
NOTES 1) Wind: AS Vasd=87r II; Exp B; exterior z Interior (1 23-0-0 zo vertical le	CE 7-16; Vult=110mpt mph; TCDL=4.8psf; BC Partially Enclosed; MV one and C-C Exterior(;) 0-10-7 to 7-6-0, Exte) 13-6-0 to 20-0, Ext ne; cantilever left and ft and right exposed;C	n (3-second gust) CDL=4.2psf; h=25ft; C VFRS (envelope) 2E) -2-0-0 to 0-10-7, rior(2R) 7-6-0 to 13-6 erior(2E) 20-0-0 to right exposed ; end -C for members and	Cat. 6-0,									PROPERTY	POW

forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate

2) TCLL: ASCE 7-16; PT=25.0 psr [Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

January 5,2023

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MITek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

	Building	Planning
	Engineering	Public Works
	Fire	Traffic
15	o	

Page: 1

ning

Scale = 1:30.8

Plate Offsets (X, Y): [2:0-4-13,0-0-4]

				-											
Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 8.0 0.0* 7.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.42 0.25 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 23 lb	GRIP 185/148 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: AS(C Vasd=87n II; Exp B; I exterior zc Exterior zc	2x4 HF Nc 2x4 HF Nc 2x4 HF Nc 2x4 DF St 2x4 DF St Structural 6-0-0 cp Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav (lb) - Maxi Tension 1-2=0/51, 3-4=-89/4 2-6=-172/ 3-6=-510/ CE 7-16; Vul ph; TCDL= Partially Enc one and C-C N) 0-10-7 to ne; cantileve t and right e WFRS for r plate grip E signed for wi	2.2 2.2 ud wood she: urlins, exima g directly 2=7-0-0, 5 2=88 (LC 2=-52 (LC 6=596 (LC mum Com 2-11=-181 6, 4-5=-46, 133, 5-6=-: 283 t=110mph 4.8psf; BC losed; MW Corner(3E 3-10-4, Cc r left and r xposed;C eactions si VDL=1.60 nd loads ir ed to wind	athing directly applie sept end verticals. applied or 6-0-0 oc 5=7-0-0, 6=7-0-0, 7=: 9), 7=88 (LC 9) 81, 5=-67 (LC 19), C 12), 7=-52 (LC 8) C 19), 5=52 (LC 12), C 19), 5=52 (LC 12), C 19), 7=402 (LC 19) pression/Maximum /154, 3-11=-74/107, /96 23/36 (3-second gust) DL=4.2psf; h=25ft; C (FRS (envelope) E) -2-0-0 to 0-10-7, ymer(3E) 3-10-4 to ight exposed ; end C for members and hown; Lumber	3 4 5 d or 7-0-0 9 1 1 1 1 1 1 1 1 1 1 5 5 5 5	TCLL: ASCE DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha load of 16.0 overhangs n Gable requir Gable studs This truss ha chord live loa * This truss fa on the bottor 3-06-00 tall t chord and ar D) Bearing at jo value using <i>A</i> designer sho D) Provide mec bearing plate 2, 67 lb uplift uplift at joint 2) Beveled plat surface with 3) This truss is International R802.10.2 ar DAD CASE(S)	is 7-16; Pf=25.0 p is 7-16; Pf=25.0 p is 5=1.0; Rough C =1.10 snow loads have psf or 1.00 times on-concurrent w es continuous be spaced at 2-0-0 is been designed ad nonconcurren has been designed ad nonconcurren has been designed n chord in all are by 2-00-00 wide by other member int(s) 2, 5, 6, 2 c ANSI/TPI 1 angle uid verify capac hanical connecti e capable of with at joint 5, 114 lb 2. e or shim require truss chord at jo designed in acco Residential Cod nd referenced st Standard	osf (Lum Du at B; Partia e been con d for greate s flat roof k ith other liv ottom chore oc. d for a 10.0 t with any ed for a 10.0 to grain fi ity of beari ion (by othe standing 5 to uplift at jo ed to provid init(s) 5, 6. ordance wi le sections andard AN	OL=1.15 Plat ally Exp.; Ce= isidered for the er of min roof pad of 25.0 p: re loads. d bearing.) psf bottom other live loa e load of 23.0 a rectangle recen the bottot arallel to grai ormula. Build org surface. ers) of truss the 2 lb uplift at j bint 6 and 52 de full bearing th the 2018 R502.11.1 a SI/TPI 1.	e =1.0; =1.0; inis live sf on ds. Dpsf om ding o o o o o tin lb				PROPERTY L	PO H	

see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MITek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

January 5,2023

ONA

-late Ottsets (X, Y): [2:0-0-10,Edge], [3:0-2-0,Edge], [4:0-0-10,Edge]														
Loading TCLL (Roof Snow = TCDL BCLL BCDL	: 25.0)	(psf) 25.0 8.0 0.0* 7.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.08 0.08 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 13 lb	GRIP 185/148 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS	2x4 HF No 2x4 HF No Structural 6-0-0 oc p Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav	0.2 burlins. ng directly 2=4-4-11, 10=4-4-11 2=14 (LC 2=-37 (LC 6=-37 (LC 6=-270 (LC 6=270 (LC	athing directly applie applied or 10-0-0 oc 4=4-4-11, 6=4-4-11, 1 16), 6=14 (LC 16) 12), 4=-33 (LC 13), 12), 10=-33 (LC 13), 12), 10=-33 (LC 20) 219), 4=278 (LC 20)	4 5 6 7 8 9 9 1 1 0) 1	 Unbalanced design. This truss ha load of 16.0 overhangs n Gable requir Gable studs This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall h chord and ar Provide mec bearing plate 2, 33 lb uplifi 	snow loads have b as been designed for psf or 1.00 times fli on-concurrent with es continuous bottt spaced at 4-0-0 oc as been designed for ad nonconcurrent v has been designed in chord in all areas by 2-00-00 wide will by other members. hanical connection e capable of withsta at joint 4, 37 lb up	or great at roof I other li or a to. or a 10. vith any for a liv s where I fit betw (by oth anding 3 lift at jo	nsidered for t er of min roo bad of 25.0 p ve loads. d bearing. 0 psf bottom other live loa re load of 23. a rectangle veen the bott ers) of truss 87 lb uplift at int 2 and 33 l	his f live sof on ads. Opsf to joint b					
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASI Vasd=87r II; Exp B; exterior zc and right exposed;(reactions DOL=1.6(0 2) True do	VRCES (lb) - Maximum Compression/Maximum Tension VP CHORD 1-2=0/25, 2-3=-188/95, 3-4=-188/93, 4-5=0/25 VT CHORD 2-4=-38/165 VTES Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.8psf; BCDL=4.2psf; h=25ft; Cat. II; Exp B; Partially Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; c-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60				 Los to spin a pint a pint a pint a pint 2 and 30 b pint a pint 2 and 30 b pint at pint 2 and 30 b pint 2 and 30 b pint at pin								POWER	
 Truss des only. For 	signed for wi studs expos	nd loads in ed to wind	n the plane of the true (normal to the face)	ss ,									R	

- see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MITek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing insure stability during construction is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

January 5,2023

Loading TCLL (Roof Snow = 25.0) TCDL BCLL BCDL	(psf) 25.0 8.0 0.0* 7.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.08 0.08 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 13 lb	GRIP 185/148 FT = 20%
LUMBER TOP CHORD 2x4 HF BOT CHORD 2x4 HF BRACING TOP CHORD Structur 6-0-0 oc BOT CHORD Rigid ce bracing. REACTIONS (size) Max Hori: Max Uplif	No.2 No.2 al wood she purlins. illing directly 2=4-4-11 10=4-4-1 z 2=14 (LC t 2=-37 (LC 6=-37 (LC 6=270 (LI	athing directly applied r applied or 10-0-0 oc , 4=4-4-11, 6=4-4-11, 16), 6=14 (LC 16) ; 12), 4=-33 (LC 13), ; 12), 10=-33 (LC 20), ; 19), 4=278 (LC 20), ; 19), 10=278 (LC 20)	4) 5) l or 6) 7) 8) 9) 9)	Unbalanced design. This truss ha load of 16.0 overhangs n Gable requir Gable studs This truss ha chord live loa * This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall b chord and ar D) Provide mec bearing plate	snow loads have us been designed psf or 1.00 times i on-concurrent with es continuous bot spaced at 4-0-0 o us been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w y other members hanical connectio e capable of withs	been cor for great flat roof k h other liv tom chor c. for a 10.0 with any d for a liv as where rill fit betv i. n (by oth tanding 3 pitt et id	nsidered for the er of min roof bad of 25.0 per ve loads. d bearing. D psf bottom other live load e load of 23.0 a rectangle veen the botto ers) of truss to r7 lb uplift at 22.0	his live sf on ds. Opsf om o oint					
FORCES (ib) - Ma Tension TOP CHORD 1-2=0/2: 4-5=0/2: BOT CHORD 2-4=-38 NOTES 1) Wind: ASCE 7-16; V Vasd=87mph; TCDL II; Exp B; Partially E exterior zone and C and right exposed ; o	ximum Con 5, 2-3=-188/ 5 /165 /ult=110mph .=4.8psf; BC nclosed; MV C Exterior(2 end vertical	pression/Maximum 95, 3-4=-188/93, 0 (3-second gust) DL=4.2psf; h=25ft; Ca VFRS (envelope) 2E) zone; cantilever lei left and right	11 12 at. L(ft	 2, 53 ib dpint uplift at joint This truss is International R802.10.2 a See Standar Detail for Co consult quali 	4. designed in accord Residential Code nd referenced sta d Industry Piggyb nnection to base i fied building desig Standard	rdance w e sections ndard AN ack Trus truss as a gner.	ith the 2018 : R502.11.1 a ISI/TPI 1. s Connection applicable, or	nd				ARA ANY L	POWER

and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
2) Truss designed for wind loads in the plane of the truss

- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MITek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

General Safety Notes

- 20. Design assumes manufacture in accordance with is not sufficient.
- ANSI/TPI 1 Quality Criteria.