

March 30, 2023 ES-8303

Earth Solutions NW LLC

Geotechnical Engineering, Construction Observation/Testing and Environmental Services

HC Homes, Inc. P.O. Box 7707 Bonney Lake, Washington 98391

Attention: Mr. Roger Hebert

- Subject: Infiltration Evaluation and Seasonal Groundwater Monitoring Proposed Duplexes 433 and 409 – 43rd Avenue Southwest Puyallup, Washington
- Reference: CES NW, Inc. Site Plan, dated January 20, 2022

J.E. Schuster et al. Geologic Map of the Tacoma 1:100,000-scale Quadrangle, Washington, 2015

United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) Online Web Soil Survey (WSS) resource

Puyallup Municipal Code (PMC) Chapter 21.06 – Critical Areas

Liquefaction Susceptibility Map of Pierce County, dated September 2004

Washington State Department of Ecology 2014 Stormwater Management Manual for Western Washington (2014 SWMMWW)

Dear Mr. Hebert:

As requested, Earth Solutions NW, LLC (ESNW) has prepared this letter for the proposed project. The letter was prepared in general accordance with the scope of services outlined in our proposal dated November 15, 2021, which was authorized by you on November 19, 2021. A summary of the subsurface explorations on site and geotechnical recommendations to aid with site design are provided in this letter.

Project Description

According to the referenced site plan, the currently unimproved site will be developed with two duplex structures, proposed within roughly the southern quarter of the site, along with associated improvements. Each duplex will be two stories. Four dispersion trenches (with 50-foot flowpaths toward the wetland) and an infiltration gallery are proposed. It is noted that, per discussion with the civil engineer, certain elements of design and/or the site layout (as shown on the referenced site plan) had not been finalized as of the date of this letter, including the driveway layout and the locations of the dispersion trenches and infiltration gallery. A 60-foot wetland buffer has been incorporated into the site plan.

Surface Conditions

The subject site is located on the north side of 43rd Avenue Southwest, between 98th Avenue East and 99th Avenue Court East, in Puyallup, Washington. The approximate location of the property is illustrated on Plate 1 (Vicinity Map). The site consists of two adjacent tax parcels (Pierce County Parcel No. 041909-5003 and -5022), totaling roughly 2.5 acres. The existing topography descends generally from south to north, with an estimated 10 to 15 feet of elevation change across the parcels. A wetland and associated buffer encompass most of the site, with only the southern site area and eastern site margin located outside of the wetland and buffer. The site is moderately to heavily vegetated and undeveloped.

Subsurface Conditions

An ESNW representative observed, logged, and sampled five test pits on December 8, 2021. Four additional test pits, three of which had standpipe piezometers installed for seasonal groundwater monitoring purposes, were excavated on January 13, 2022. The test pits were excavated within accessible site areas, using a mini trackhoe and operator retained by ESNW. The test pits were completed to evaluate and classify site soils, characterize groundwater conditions within accessible site areas, and perform in-situ infiltration testing.

The approximate locations of the test pits are depicted on Plate 2 (Test Pit Location Plan). Please refer to the attached test pit logs for a more detailed description of subsurface conditions. Representative soil samples collected at the test pit locations were analyzed in general accordance with both Unified Soil Classification System (USCS) and USDA methods and procedures.

Topsoil and Fill

Where encountered at surface grades, the topsoil was about six to eight inches thick. The topsoil was characterized by the observed dark brown hue, the presence of fine organics, and small root intrusions.

Fill was encountered at test pit locations TP-2, TP-3, TP-4, TP-5, TP-8, and TP-9 to depths of about six to nine-and-one-half feet below the existing ground surface (bgs). The fill was characterized as silty sand with and without gravel, primarily in a loose to medium dense and damp to moist condition. Small pieces of asphalt, wood, and plastic were observed in the fill.

Native Soil

Underlying the topsoil and fill, native soil consisted primarily of silty sands with gravel (USCS: SM), with well-graded gravels with sand (USCS: GW) present along the western end of the site. The in-situ density of the native soil was characterized primarily as medium dense to dense, and the in-situ moisture content was observed to be damp to wet at the time of exploration. The maximum exploration depth was approximately 11 feet bgs.

Geologic Setting

The referenced geologic map resource identifies recessional outwash (Qgo) as the primary native soil unit underlying the subject site and proximate areas. As reported on the geologic map resource, recessional outwash is typically composed of silts, sands, and gravels deposited by glacial meltwater. The referenced WSS resource identifies Everett very gravelly sandy loam as the primary soil unit underlying the subject development area. The Everett series was formed in glacial drift plains. Based on our field observations, the on-site native soil is consistent with the local geologic mapping of recessional outwash.

Groundwater

The groundwater table was encountered at test pits TP-1, TP-2, TP-4, and TP-7 during the December 2021 and January 2022 explorations. At the time of the explorations, the groundwater table was observed at depths of about 8 to 11 feet bgs. Shallow groundwater seepage was observed at TP-6 at a depth of roughly seven feet bgs during the January 2022 exploration.

To supplement the field observations, ESNW was contracted to complete a groundwater monitoring program through most of the 2021–2022 wet season. The program consisted of installing three standpipe piezometers (at TP-6, TP-8, and TP-9) for groundwater monitoring purposes. The piezometers were arranged in a triangular array across the proposed development area.

After the installation of the groundwater wells on January 13, 2022, ESNW personnel visited the site periodically (about twice per month), through the end of the wet season, to collect data and perform manual measurements at each monitoring location using a depth-to-water meter. Upon review of the data collected at the piezometers using dataloggers, it was determined the data was corrupt and unreliable, e.g., the dataloggers were indicating groundwater levels far shallower than those measured manually. As such, the manual measurements were relied upon for purposes of evaluating the seasonal high groundwater table. The tables below summarize the groundwater data collected during the monitoring program.

Test Pit	Depth of Test Pit (ft)	Ground Elevation* (ft)	Peak GWT Depth (ft bgs)	Peak GWT Elevation* (ft)	Peak Date
TP-6	8.0	434	6.75	427.25	03/17/2022
TP-8	7.5	435	N/A	N/A	N/A
TP-9	9.0	435	N/A	N/A	N/A

* Ground elevations are approximate and based on readily available topographic survey data. The test pit locations were not surveyed.

Date of Manual Measurement	TP-6 GWT (ft bgs)	TP-8 GWT (ft bgs)	TP-9 GWT (ft bgs)
01/13/2022	(Dry)	(Dry)	(Dry)
02/04/2022	7.1	(Dry)	(Dry)
02/24/2022	7.0	(Dry)	(Dry)
03/17/2022	6.7	(Dry)	(Dry)
04/07/2022	6.9	(Dry)	(Dry)

Based on our field observations and monitoring, the following recommendations are offered:

- Groundwater was not observed within the monitored depths of the standpipe piezometers at TP-8 and TP-9. Therefore, it is our opinion the seasonal high groundwater table elevation occurs at a depth of not higher than 7.5 feet bgs in the south-central and southeast areas of the site.
- The recommended seasonal high groundwater table elevation within the southwest site area (near TP-6) is 6.7 feet bgs.

Geologically Hazardous Areas

ESNW reviewed the referenced Puyallup Municipal Code (PMC) chapter and the City of Puyallup interactive GIS resource to evaluate the presence of geologically hazardous areas on site. PMC 21.06.1210 recognizes erosion, landslide, seismic, and volcanic hazard areas as geologically hazardous. Based on our review, a small area of moderate (shallow) landslide hazard is mapped on site. The location of the mapped hazard area appears to coincide with the location of the wetland. No other geologically hazardous areas are recognized or mapped on site.

Landslide hazard areas are defined in PMC 21.06.1210(3)(b) as areas subject to landslides based on a combination of geologic, topographic, and hydrologic factors. The most relevant hazard criteria to the subject site include PMC 21.06.1210(3)(b)(ii) and 21.06.1210(3)(b)(ix), which characterize landslide hazard (in part) by slope gradient. Based on review of the referenced site plan, the site does not contain slopes steeper than 15 percent over a vertical relief of 10 feet. As such, it is our opinion the site does not meet the PMC definition of a landslide hazard area.

According to PMC 21.06.1210(3)(c), seismic hazard areas are defined as "areas subject to severe risk of damage as a result of earthquake-induced ground shaking, slope failure, settlement or subsidence, soil liquefaction, or tsunamis." The referenced liquefaction susceptibility map indicates the site and surrounding areas possess very low liquefaction susceptibility. Based on our field observations, it is our opinion that the site is correctly mapped as not located within a seismic hazard area.

Geotechnical Recommendations

Based on our investigation, the proposed residential development is feasible from a geotechnical standpoint. The primary geotechnical considerations for the proposal are associated with structural fill placement and compaction, earthwork and grading activities, foundation support, stormwater management, and drainage. Based on our field observations and understanding of the proposed development, pertinent geotechnical recommendations and design parameters are presented in the following sections.

In-situ and Imported Soil

From a geotechnical standpoint, in general, our field observations indicate on-site soils likely to be encountered during construction will not be suitable for use as structural fill unless the in-situ soil moisture content is at (or slightly above) the optimum level at the time of placement and compaction. Successful use of on-site soils as structural fill will largely be dictated by the moisture content at the time of placement and compaction. It should be noted that most of the on-site soil is moisture sensitive (silty sand). However, areas of well-drained gravels, where encountered, are not considered moisture sensitive.

As discussed in the *Topsoil and Fill* section above, artificial fill soils were encountered at several test locations. Various amounts of debris, including asphalt, wood, and plastic were observed in the fill. To be suitable for reuse as structural fill, the existing fill must be primarily free of debris (both organic and inorganic) and deleterious material; as such, efforts to screen and remove the observed debris should be incorporated into construction activities if the existing fill will be considered for reuse as structural fill. ESNW should be retained to observe earthwork, grading, and/or screening activities pertaining to the existing fill during construction, as necessary.

Performing grading activities during summer months of relatively low rainfall activity is recommended to minimize site degradation. In our opinion, a contingency should be provided in the project budget for the export of soil that cannot be successfully compacted as structural fill, particularly if grading activities take place during periods of extended rainfall activity. In general, soil with an appreciable fines content (greater than 5 percent) typically degrades rapidly when exposed to periods of rainfall.

Imported soil intended for use as structural fill should be evaluated by ESNW during construction. The imported soil must be able to achieve the necessary moisture content, as determined by the Modified Proctor Method (ASTM D1557), at the time of placement and compaction. During wet weather conditions, imported soil intended for use as structural fill should consist of a well-graded, granular soil with a fines content of 5 percent or less (where the fines content is defined as the percent passing the Number 200 sieve, based on the minus three-quarter-inch fraction).

Structural Fill

Structural fill is defined as compacted soil placed in foundation, slab-on-grade, roadway, permanent slope, retaining wall, and utility trench backfill areas. Structural fill placed and compacted during site grading activities should meet the following specifications:

٠	Structural fill material	Granular soil
•	Moisture content	At or slightly above optimum
•	Relative compaction (minimum)	95 percent (Modified Proctor)
•	Loose lift thickness (maximum)	12 inches

The existing soil may not be suitable for use as structural fill unless the in-situ moisture content is at (or slightly above) the optimum moisture content at the time of placement and compaction. Soil shall not be placed dry of the optimum moisture content and should be evaluated by ESNW during construction. With respect to underground utility installations and backfill, local jurisdictions may dictate the soil type(s) and compaction requirements. Unsuitable material or debris must be removed from structural areas, if encountered.

Foundations

The proposed residential structures may be supported on conventional continuous and spread footing foundations bearing on either suitably compact structural fill or competent native soil. Because the existing fill thicknesses across the site are relatively significant, it is difficult to estimate a consistent depth where suitable bearing soil is likely to be encountered. For preliminary design purposes, ESNW recommends an overexcavation depth of two feet as well as placement of a biaxial geotextile at the overexcavated subgrade elevation be incorporated into the plans.

Existing fill intended for reuse as structural fill must be free of debris and should be evaluated by ESNW prior to use. In general, if loose or unsuitable soil conditions are exposed at foundation subgrade elevations, additional mechanical compactive effort or overexcavation and replacement with suitable structural fill will likely be necessary.

Provided foundations will be supported as prescribed, the following parameters may be used for design:

Allowable soil bearing capacity	2,500 psf
Passive earth pressure	300 pcf (equivalent fluid)
Coefficient of friction	0.40

A one-third increase in the allowable soil bearing capacity may be assumed for short-term wind and seismic loading conditions. The above passive pressure and friction values include a factorof-safety of 1.5. With structural loading as expected, about one inch of total static settlement and about one-half inch of differential static settlement is anticipated. Most of the anticipated settlement should occur during construction when dead loads are applied.

Seismic Design

The 2018 International Building Code (2018 IBC) recognizes the most recent edition of the Minimum Design Loads for Buildings and Other Structures manual (ASCE 7-16) for seismic design, specifically with respect to earthquake loads. Based on the soil conditions encountered at the test pit locations, the parameters and values provided below are recommended for seismic design per the 2018 IBC.

Parameter	Value
Site Class	D*
Mapped short period spectral response acceleration, $S_S(g)$	1.262
Mapped 1-second period spectral response acceleration, $S_1(g)$	0.436
Short period site coefficient, Fa	1.0
Long period site coefficient, F_v	1.864†
Adjusted short period spectral response acceleration, S_{MS} (g)	1.262
Adjusted 1-second period spectral response acceleration, $S_{M1}(g)$	0.813†
Design short period spectral response acceleration, $S_{DS}(g)$	0.841
Design 1-second period spectral response acceleration, $S_{D1}(g)$	0.542†

* Assumes dense native soil conditions, encountered to a maximum depth of 11 feet bgs during the December 2021 and January 2022 field explorations, remain dense to at least 100 feet bgs.

† Values assume F_v may be determined using linear interpolation per Table 11.4-2 in ASCE 7-16.

As indicated in the table footnote, several of the seismic design values provided above are dependent on the assumption that site-specific ground motion analysis (per Section 11.4.8 of ASCE 7-16) will not be required for the subject project. ESNW recommends the validity of this assumption be confirmed at the earliest available opportunity during the planning and early design stages of the project. Further discussion between the project structural engineer, the project owner, and ESNW may be prudent to determine the possible impacts to the structural design due to increased earthquake load requirements under the 2018 IBC. ESNW can provide additional consulting services to aid with design efforts, including supplementary geotechnical and geophysical investigation, upon request.

Liquefaction is a phenomenon where saturated or loose soil suddenly loses internal strength and behaves as a fluid. This behavior is in response to increased pore water pressures resulting from an earthquake or another source of intense ground shaking. As mentioned in the *Geologically Hazardous Areas* section of this letter, it is our opinion site susceptibility to liquefaction is low. The relatively consistent density of the native soils was the primary basis for this opinion.

Slab-on-Grade Floors

Slab-on-grade floors for the proposed residential structure should be supported on firm and unyielding subgrades comprised of competent native soil, compacted structural fill, or new structural fill. Unstable or yielding subgrade areas should be recompacted or overexcavated and replaced with suitable structural fill prior to slab construction.

A capillary break, consisting of at least four inches of free-draining crushed rock or gravel, should be placed below each slab. The free-draining material should have a fines content of 5 percent or less (where the fines content is defined as the percent passing the Number 200 sieve, based on the minus three-quarter-inch fraction). In areas where slab moisture is undesirable, installation of a vapor barrier below each slab should be considered. If a vapor barrier is to be utilized, it should be a material specifically designed for use as a vapor barrier and should be installed in accordance with the specifications of the manufacturer.

Retaining Walls

Retaining walls must be designed to resist earth pressures and applicable surcharge loads. The following parameters may be used for design:

Active earth pressure (unrestrained condition)	35 pcf (equivalent fluid)
At-rest earth pressure (restrained condition)	55 pcf
 Traffic surcharge* (passenger vehicles) 	70 psf (rectangular distribution)
Passive earth pressure	300 pcf (equivalent fluid)
Coefficient of friction	0.40
Seismic surcharge	8H psf [†]

* Where applicable.

† Where H equals the retained height (in feet).

The above design parameters are based on a level backfill condition and level grade at the wall toe. Revised design values will be necessary if sloping grades are to be used above or below retaining walls. Additional surcharge loading from adjacent foundations, sloped backfill, or other relevant loads should be included in the retaining wall design.

Retaining walls should be backfilled with free-draining material that extends along the height of the wall and a distance of at least 18 inches behind the wall. The upper 12 inches of the wall backfill may consist of a less permeable soil, if desired. A perforated drainpipe should be placed along the base of the wall and connected to an approved discharge location. A typical retaining wall drainage detail is provided on Plate 3. If drainage is not provided, hydrostatic pressures should be included in the wall design.

Drainage

Groundwater will likely be encountered in site excavations, especially those necessary to construct utility trenches. Temporary measures to control surface water runoff and groundwater during construction would likely involve interceptor trenches and sumps. ESNW should be consulted during preliminary grading to both identify areas of seepage and provide recommendations to reduce the potential for seepage-related instability.

Finish grades must be designed to direct surface drain water away from structures and slopes. Water must not be allowed to pond adjacent to structures. In our opinion, foundation drains should be installed along building perimeter footings. A typical foundation drain detail is provided on Plate 4.

Infiltration Evaluation

In accordance with the requirements of the referenced 2014 SWMMWW, which is adopted by the City of Puyallup, one small-scale Pilot Infiltration Test (PIT) was completed during the January 2022 fieldwork. The PIT was completed at TP-7 at a depth of about four feet bgs. Per the 2014 SWMMWW, the measured infiltration rate must be reduced by correction factors that account for site variability and number of locations tested (CF_v), test method (CF_t), and the degree of influent control to prevent siltation and bio-buildup (CF_m). The following is a summary of the measured rate, applicable correction factors, and the recommended design rate:

 K_{sat} initial (measured rate at TP-7) 	600 inches per hour (in/hr)
• CFt	0.5 (small-scale PIT)
• CF _v	0.7
• CFm	0.9
• K _{sat} design (calculated rate)	30 in/hr*

* Recommended maximum (capped) design infiltration rate.

HC Homes, Inc. March 30, 2023

Based on the field investigations, the above infiltration rate is applicable only within the southwest site corner (in the area of TP-1, TP-6, and TP-7). Elsewhere on site, infiltration is not feasible from a geotechnical standpoint given the widespread existing fill and the presence of relatively impermeable native soil at depth.

ESNW should be contacted to review stormwater management plans if infiltration is used for design. Supplementary recommendations and/or testing may be necessary depending on the size, depth, and siting of infiltration facilities.

Dispersion Feasibility

Based on our field observations of on-site conditions and the subsurface makeup, it is our opinion that dispersion is feasible from a geotechnical standpoint. The erosion potential of the vegetated flow paths can be considered low provided proper vegetation is maintained and/or reestablished (as needed). This opinion is based on the depicted siting of the dispersion trenches (per the referenced site plan) and the relatively stable nature of the native soils, which are not likely to be adversely affected from a dispersion scheme. Where fill will be present underlying dispersion systems, ESNW should be contacted to review the proposed layouts and provide recommendations, as necessary, to ensure adequate long-term performance. We anticipate a portion of the outflow will infiltrate into the substratum as interflow.

Limitations & Additional Services

This letter has been prepared for the exclusive use of HC Homes, Inc., and its representatives. No warranty, express or implied, is made. The recommendations and conclusions provided in this letter are professional opinions consistent with the level of care and skill that is typical of other members in the profession currently practicing under similar conditions in this area. Variations in the soil and groundwater conditions encountered at the test pit locations may exist and may not become evident until construction. ESNW should reevaluate the contents of this letter if variations are encountered during construction, or if the design assumptions outlined herein either change or are incorrect.

ESNW should have an opportunity to review final project plans with respect to the geotechnical recommendations provided in this report. ESNW should also be retained to provide testing and consultation services during construction. Provided that ESNW is retained during construction, we can provide supplementary geotechnical recommendations, as necessary, where differing soil conditions are encountered.

HC Homes, Inc. March 30, 2023 ES-8303 Page 11

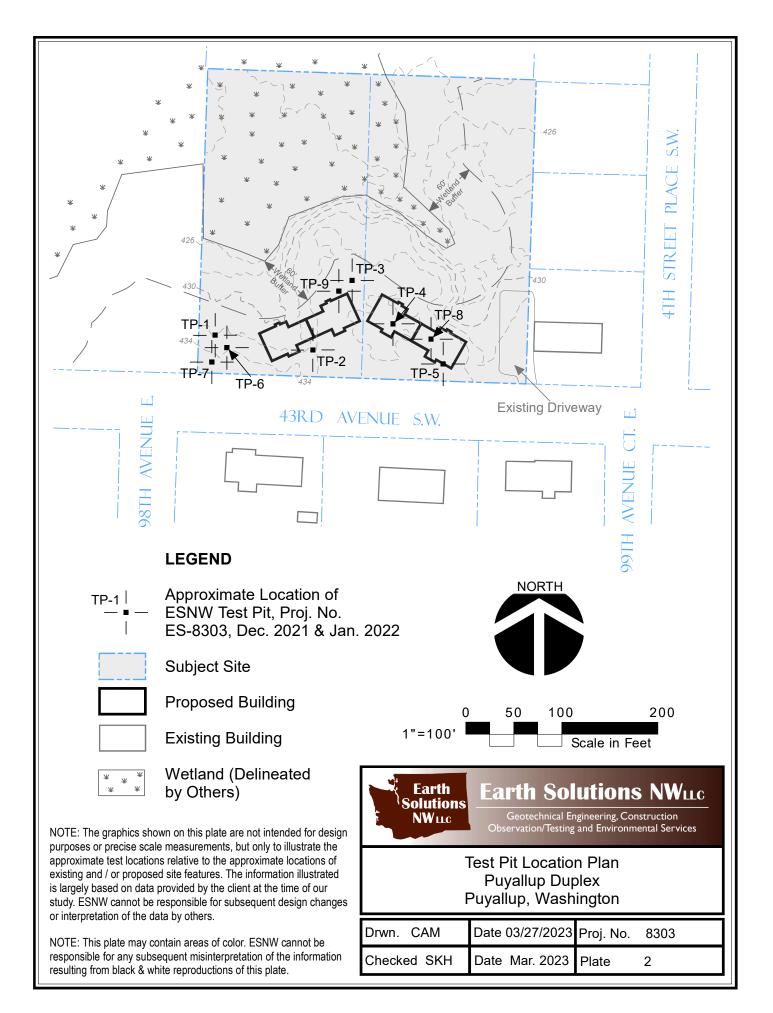
We trust this letter meets your current needs. Please call if you have any questions about this letter or if we can be of further assistance.

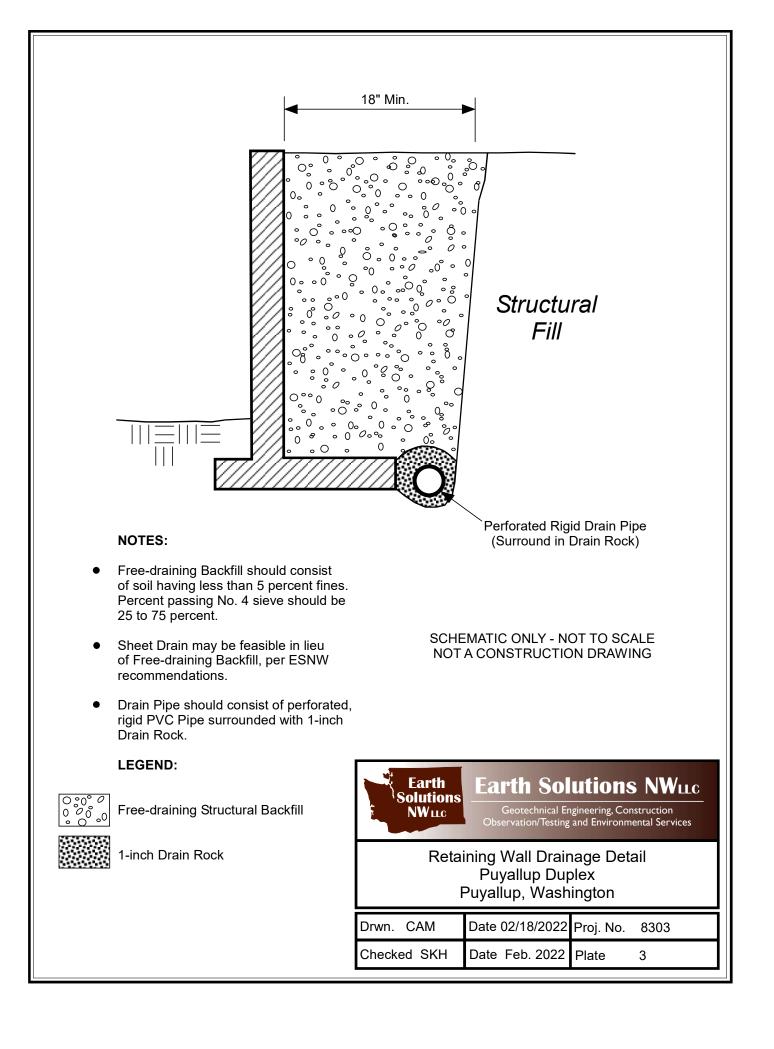
Sincerely,

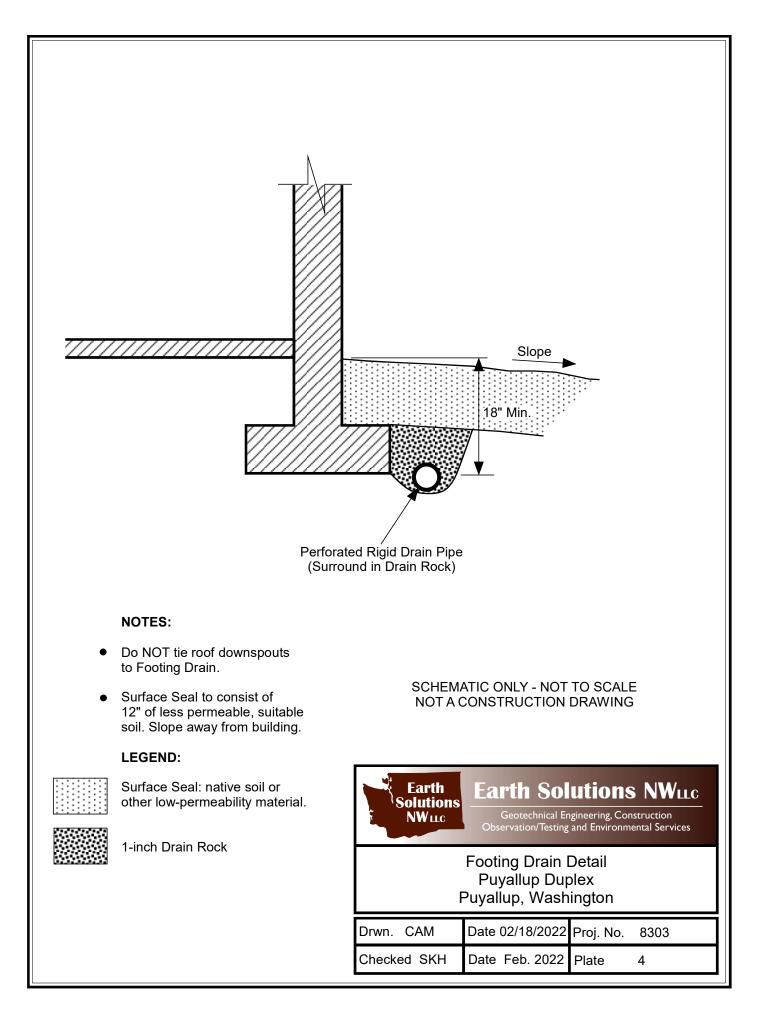
EARTH SOLUTIONS NW, LLC

Steven K. Hartwig, G.I.T. Staff Geologist

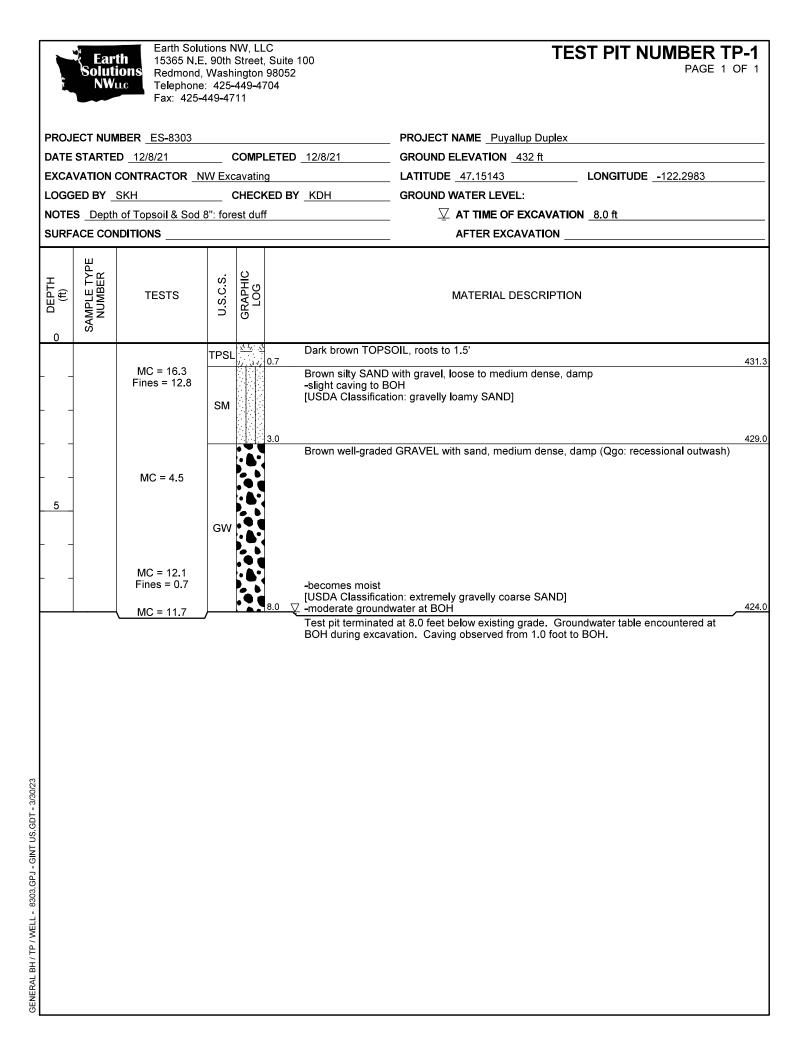
Keven D. Hoffmann, P.E. Associate Principal Engineer


Attachments: Plate 1 – Vicinity Map Plate 2 – Test Pit Location Plan Plate 3 – Retaining Wall Drainage Detail Plate 4 – Footing Drain Detail Test Pit Logs Grain Size Distribution


CC:


CES NW, Inc. Attention: Mr. Craig Deaver (Email only) Mr. Eric Oehler, P.E. (Email only) Ms. Dawn Markakis (Email only)

HC Homes, Inc. Attention: Mr. Gregg Johnson (Email only)

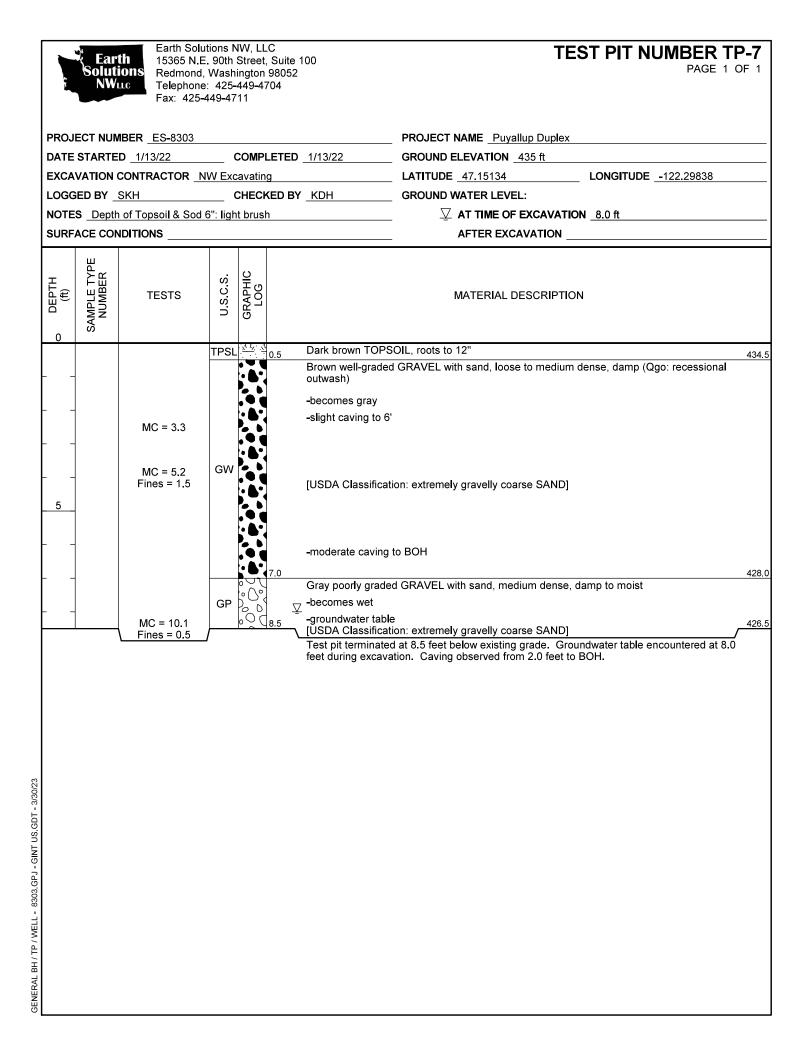


	e e		GW	Well-graded gravel with	Moisture	e Content	Symbols				
	f Coarse 4 Sieve			or without sand, little to no fines	Dry - Absence of m the touch	noisture, dusty, dry to	ATD = At time				
	50% o n No. ₄				Damp - Perceptible moisture, likely below optimum MC		Static water ⊻ level (date) Grout				
ieve	e Than	00°00	<u> </u>		Moist - Damp but n at/near optimum M	no visible water, likely C	seal ⊈∷ Filter pack with				
200	ravels - More Than 50% of Fraction Retained on No. 4			Silty gravel with or without sand	Wet - Water visible likely above optimu	e but not free draining, ım MC	↓ ↓ ↓ blank casing ↓ ↓ ↓ section ↓ ↓ ↓ Screened casing ↓ ↓ ↓ or Hydrotip with				
Coarse-Grained Soils - 50% Retained on No.	Gravels - Fractior	12%	GC	Clayey gravel with or		earing - Visible free ow groundwater table	filter pack				
ined ned	Сп			without sand	Terms I	Describing Relativ	e Density and Consistency				
-Gra Retai				Well-graded sand with	Coarse-Graine		Test Symbols & Units				
arse)% F	Coarse Sieve	Fines	SW	or without gravel, little to no fines	<u>Density</u> Very Loose	SPT blows/foot < 4	Fines = Fines Content (%)				
n 50	Coarse Sieve	E			Loose	4 to 9	MC = Moisture Content (%)				
C More Than	of (0	SP	Poorly graded sand with or without gravel, little to	Medium Dense	10 to 29	DD = Dry Density (pcf)					
Dre	Mor ss N			no fines	Dense	30 to 49	Str = Shear Strength (tsf)				
Ĕ	ó or asse			Silty agod with an with and	Very Dense	≥ 50	PID = Photoionization Detector (ppm)				
	50% n P;	12% Fines to	SM	Silty sand with or without gravel	Fine-Grained	l Soils:	OC = Organic Content (%)				
	. 0				Consistency	SPT blows/foot	CEC = Cation Exchange Capacity (meq/100 g				
	Sands . Fracti	7///	er	Clayey sand with or	Very Soft Soft	< 2 2 to 3	LL = Liquid Limit (%)				
	SC SC	30	without gravel	Medium Stiff	2 to 3 4 to 7	PL = Plastic Limit (%)					
			4	Silt with or without sand	Stiff	8 to 14	PI = Plasticity Index (%)				
	1 50	ML	or gravel; sandy or	Very Stiff	15 to 29						
	ays Tha		,	gravelly silt	Hard	≥ 30					
é	and Clays it Less Than			Clay of low to medium plasticity; lean clay with		Componen	nt Definitions				
Sieve	s anc nit L	s an nit L		CL	or without sand or gravel; sandy or gravelly lean clay	Descriptive Term		e and Sieve Number			
s - 200	Silts I im	Silts and Liquid Limit L		1	Sandy of gravely learn day	Boulders	Larger that	n 12"			
					OL	Organic clay or silt of low plasticity	Cobbles Gravel	3" to 12" 3" to No. 4	· (4.75 mm)		
ses					Coarse Gravel Fine Gravel	3" to 3/4"	. 4 (4.75 mm)				
Brair Das				Elastic silt with or without	Sand		5 mm) to No. 200 (0.075 mm)				
Fine-Grained More Passes	lays or More	Silts and Clays		МН	sand or gravel; sandy or gravelly elastic silt	Coarse Sand Medium Sand	No. 4 (4.75	5 mm) to No. 10 (2.00 mm) 00 mm) to No. 40 (0.425 mm)			
ΞŇ			lays or N	lays or N	lays or N	lays or N				Fine Sand No. 40 (0.	
Fine-Grained Soil 50% or More Passes No.	d C		СН	Clay of high plasticity; fat clay with or without	Silt and Clay	Smaller the	an No. 200 (0.075 mm)				
50	s ar imit			sand or gravel; sandy or gravelly fat clay	Demonstra	Modifier	Definitions				
	Silts and C				Percentage by Weight (Approx.)	Modifier					
		5	OH	Organic clay or silt of medium to high plasticity	< 5	Trace (san	nd, silt, clay, gravel)				
	~		<u></u>		5 to 14	Slightly (sa	andy, silty, clayey, gravelly)				
Highly Organic Soils 不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不		PT	Peat, muck, and other	15 to 29	Sandy, silt	y, clayey, gravelly					
Hig	Sco	<u>77</u> 7 77777		highly organic soils	≥ 30	Very (sand	ly, silty, clayey, gravelly)				
			8	Made Ground	field and/or laboratory obs plasticity estimates, and s Visual-manual and/or labo	servations, which include de should not be construed to i	d as shown on the exploration logs are based on visual ensity/consistency, moisture condition, grain size, and imply field or laboratory testing unless presented hereir ds of ASTM D2487 and D2488 were used as an System.				
		Eart	th ions	Earth Solution	identification guide for the	Unified Soil Classification					

Earth Solutions NWLC

Geotechnical Engineering, Construction Observation/Testing and Environmental Services

EXPLORATION LOG KEY

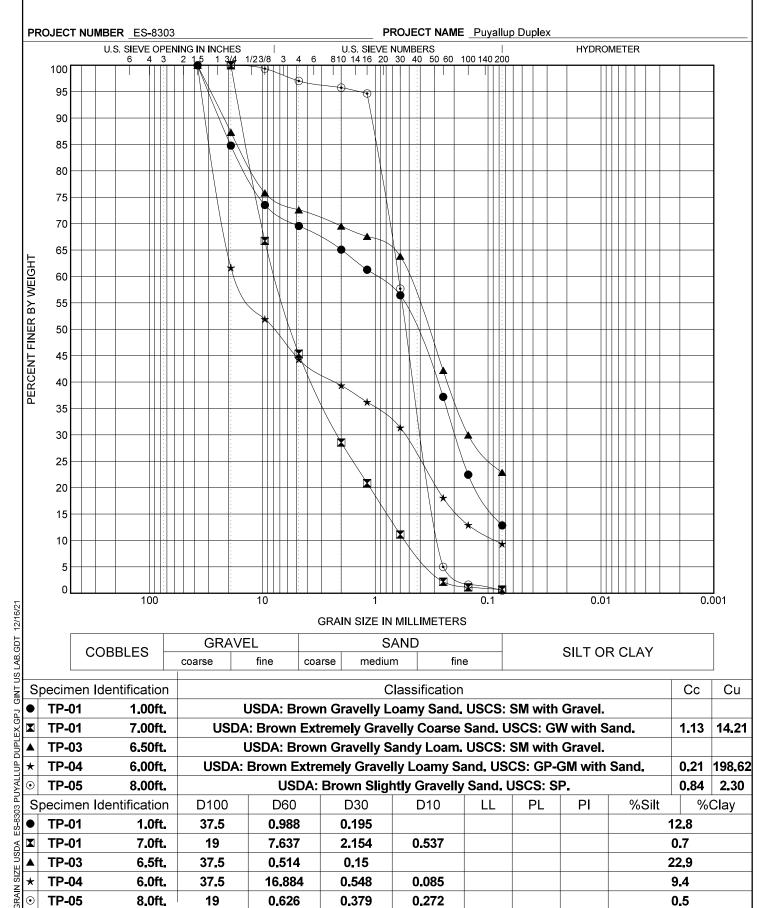

So	arth 15365 N.I utions Redmond	utions NW, LLC E. 90th Street, \$ I, Washington 9 e: 425-449-470 -449-4711	Suite 100 98052	TEST PIT NUMBER TE PAGE 1 C	
DATE STAF EXCAVATIO LOGGED B NOTES _D	TED _ 12/8/21 DN CONTRACTOR _ I Y _ SKH epth of Topsoil & Sod	COMPLE	ETED <u>12/8/21</u>		
O DEPTH (ft) SAMPLE TYPE	TESTS	U.S.C.S. GRAPHIC LOG		MATERIAL DESCRIPTION	
	MC = 32.5	SM	Brown silty SANE -asphalt debris, s -wood debris -wood/asphalt/con	SOIL, roots to 18" with gravel, medium dense, damp (Fill) light caving to BOH ncrete debris	<u>433.</u> <u>426.</u>
10			0.0 <u>∨</u> -moderate ground		424.
	MC = 17.5	GP KA	Test pit terminate	ad GRAVEL, medium dense, wet (Qgo: recessional outwash) d at 10.5 feet below existing grade. Groundwater table encountered at xcavation. Caving observed from 1.0 foot to BOH.	423.

Ear Solut NW	th 15365 N.E tions Redmond,	utions NW, LLC E. 90th Street, Su , Washington 980 e: 425-449-4704 449-4711	052	TEST PIT NUMBER TP-
PROJECT NU	MBER ES-8303			PROJECT NAME _ Puyallup Duplex
				GROUND ELEVATION 435 ft
EXCAVATION		W Excavating		LATITUDE47.15159LONGITUDE122.29784
LOGGED BY	SKH		BY KDH	GROUND WATER LEVEL:
NOTES Dept	h of Topsoil & Sod	6": brush		$_$ AT TIME OF EXCAVATION
SURFACE CO				AFTER EXCAVATION
o DEPTH (ft) SAMPLE TYPE NUMBER	TESTS	U.S.C.S. GRAPHIC LOG		MATERIAL DESCRIPTION
		TPSL 0.5	Dark brown TOF	PSOIL, roots to 2' 43
 	MC = 11.9 MC = 17.4 Fines = 22.9	SM 6.0	-asphalt debris, -plastic debris Brown silty SAN [USDA Classific	D, loose to medium dense, damp (Fill) slight to moderate caving to BOH 22 D with gravel, medium dense, damp ation: gravelly sandy LOAM] 42
	- <u>MC = 44.9</u>	<u> </u>	Test pit termina	ed at 10.0 feet below existing grade due to caving. No groundwater ing excavation. Caving observed from 1.0 foot to BOH.

Ear Soluti	th 15365 N.I ions Redmond LLC Telephone		eet, Suite 100 ton 98052 9-4704	TEST PIT NUMBER TP-4 PAGE 1 OF 1
PROJECT NUN	NBER <u>ES-8303</u>			PROJECT NAME Puyallup Duplex
DATE STARTE	D <u>12/8/21</u>	co	MPLETED 12/8	21 GROUND ELEVATION 437 ft
EXCAVATION		W Excav	ating	LATITUDE _47.1514 LONGITUDE122.2977
				GROUND WATER LEVEL:
	n of Topsoil & Sod			$\underline{\nabla}$ AT TIME OF EXCAVATION <u>11.0 ft</u>
SURFACE CON				AFTER EXCAVATION
o DEPTH (ft) SAMPLE TYPE NUMBER	TESTS	U.S.C.S. GRAPHIC	507	MATERIAL DESCRIPTION
		TPSL 🖄		prown TOPSOIL, roots to 2' 436.5
		SP 🕅	Brow	poorly graded SAND, loose to medium dense, damp (Fill)
			<u>1.5</u> Brow	435.5 a poorly graded GRAVEL with silt and sand, loose to medium dense, damp (Fill)
			-woo	and plastic debris
		GP- GM	-sligt	caving to BOH
	MC = 16.7 Fines = 9.4	GW	USE	A Classification: extremely gravelly loamy SAND] 427.5
10	MC = 28.5			silty SAND with gravel, medium dense, moist to wet
	10 - 20.0	SM		state aroundwater at POH
	MC = 28.0			erate groundwater at BOH 426.0 A prit terminated at 11.0 feet below existing grade due to caving. Groundwater table
				ntered at BOH during excavation. Caving observed from 4.0 feet to BOH.

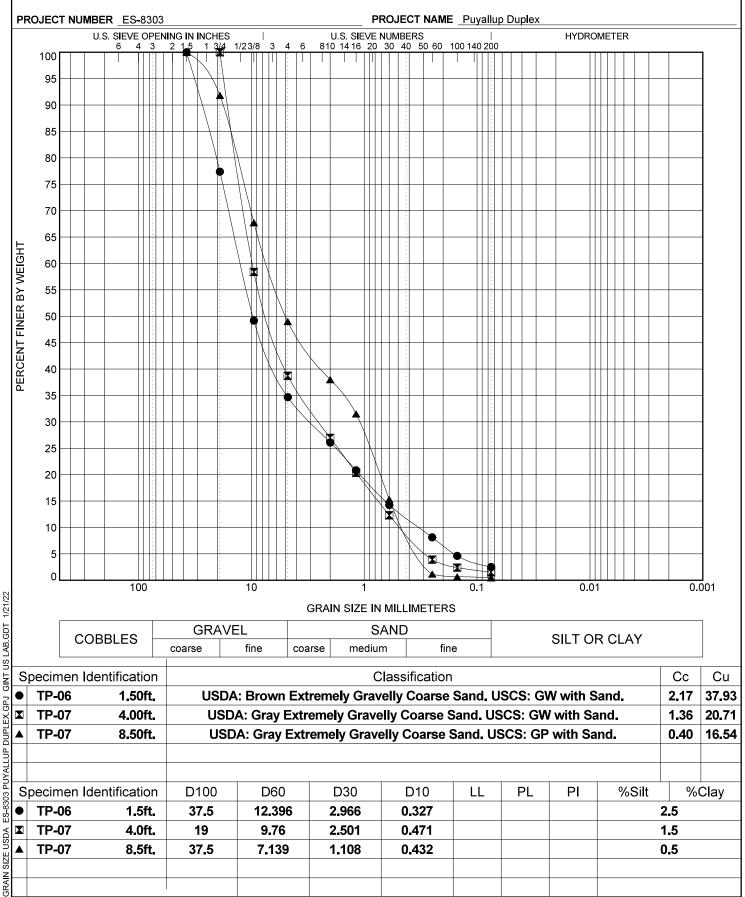
Soluti NW	ONS Redmond	E. 90th : I, Washi e: 425-	Street, S ington 9 449 <mark>-</mark> 470	Suite 100 8052		TEST PIT NUMBER	
DATE STARTE		c	COMPLE	ETED 12/8/21	GROUND ELEVATION 435 ft		
OGGED BY	SKH of Topsoil & Soc	(6": bru	CHECKE		GROUND WATER LEVEL: $\[equivalence]{2}$ AT TIME OF EXCA	LONGITUDE122.29755	
o UEPTH (ft) SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCR	RIPTION	
-		TPSL			OIL, roots to 1.5' with gravel, loose to medium de	nse, moist (Fill)	43
-		SM		-slight caving to 5			
<u>5</u> _ _	MC = 14.3		7	-moderate caving			42
	MC = 7.4 Fines = 0.5	SP	8	0 [USDA Classificat	led SAND, medium dense, damp ion: slightly gravelly SAND] d at 8.0 feet below existing grade	to moist due to caving. No groundwater	4:

Solutions NW, LLC N.E. 90th Street, Suite 100 ond, Washington 98052 one: 425-449-4704 25-449-4711	TEST PIT NUMBER TP-6 PAGE 1 OF 1		
3	PROJECT NAME _Puyallup Duplex		
	GROUND ELEVATION _434 ft		
	LATITUDE _47.1514 LONGITUDE122.29831		
CHECKED BY KDH	GROUND WATER LEVEL:		
Sod 6": bare soil/light brush	$_$ AT TIME OF EXCAVATION		
	AFTER EXCAVATION		
U.S.C.S. GRAPHIC LOG	MATERIAL DESCRIPTION		
	PSOIL, roots to 12" 433.5		
	led GRAVEL with sand, medium dense, damp (Qgo: recessional outwash) ation: extremely gravelly coarse SAND] moist		
GW -slight caving to	ВОН		
-light to modera	te groundwater seenage		
	426.C		
Test pit termina	ted at 8.0 feet below existing grade. Groundwater seepage encountered at excavation. Caving observed from 4.0 feet to BOH.		
	N.E. 90th Street, Suite 100 and, Washington 98052 one: 425-449-4704 25-449-4711 3 COMPLETED 1/13/22 CHECKED BY KDH CHECKED BY KDH CHECKED BY KDH CHECKED BY COM Sod 6": bare soil/light brush TPSL OF Solution Solution GW Solution Solution GW Solution Solution Solution Solution Solutio		


	Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711						TEST PIT NUMBER TP-8 PAGE 1 OF 1			
PROJ	PROJECT NUMBER ES-8303						PROJECT NAME Puyallup Duplex			
							GROUND ELEVATION _435 ft			
							LATITUDE _47.15147 LONGITUDE122.29737			
LOGO	SED BY _	SKH	(CHEC	KED BY	KDH	GROUND WATER LEVEL:			
NOTE	NOTES _Depth of Topsoil & Sod 6": brush						_ $\begin{tabular}{lllllllllllllllllllllllllllllllllll$			
SURF		IDITIONS					AFTER EXCAVATION			
o DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG			MATERIAL DESCRIPTION			
			TPSL	<u>×1/</u>	0.5	Dark brown TOPS	OIL, roots to 12"	434.5		
			SM			Brown silty SAND	, loose to medium dense, damp to moist (Fill) ughout	104.0		
		MC = 24.3			7.5	-becomes moist to		427.5		
GENERAL BH / I P / WELL - 8303.0PJ - GIN I US.GDI - 3/30/23						groundwater enco	untered during excavation. Caving observed from 3.5 feet to BOH.			

ions Redmond	E. 90th : I, Washi e: 425-	Street, Suit ington 9808 449 - 4704		TEST PIT NUMBER TP-9 PAGE 1 OF 1		
IBER ES-8303				PROJECT NAME Puyallup Dupl	ex	
	NW Exc	avating		LATITUDE 47.15162	LONGITUDE122.29777	
SKH	(CHECKED	BY KDH	GROUND WATER LEVEL:		
n of Topsoil & Sod	l 6": bru	sh		${ar ar ar ar ar ar ar ar ar ar $	TION	
				AFTER EXCAVATION	۱	
TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIP	TION	
	TPSL	0.5				434.5
			Brown silty SAND,	loose to medium dense, damp (Fil	I)	
			-asphalt debris			
			-moderate caving	to BOH		
	SM					
			Brown poorly grad	ed SAND with silt, medium dense	damn	429.0
MC = 10.7	SP- SM		Diemi poony grad			
		90	-becomes moist to	wet		426.0
MC = 21.2		1.119.0	Test pit terminated	at 9.0 feet below existing grade.	No groundwater encountered during	420.0
				-		
	In Dissipation 15365 N. Redmond Telephon Fax: 425 IBER ES-8303 D 1/13/22 CONTRACTOR SKH of Topsoil & Soci IDITIONS	15365 N.E. 90th Redmond, Wash Telephone: 425- Fax: 425-449-47 IBER ES-8303 D 1/13/22 CONTRACTOR NW Exc SKH 0 of Topsoil & Sod 6": bru JDITIONS	15365 N.E. 90th Street, Suit Redmond, Washington 9805 Telephone: 425-449-4704 Fax: 425-449-4711 IBER ES-8303 D 1/13/22 COMPLETE CONTRACTOR NW Excavating SKH CHECKED of Topsoil & Sod 6": brush IDITIONS TESTS Si D 1/13/22 TESTS Si D 1/13/20 MC = 10.7 SP-SM SM 6.0	15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4704 Fax: 425-449-4704 Fax: 425-449-4704 Fax: 425-449-4704 Fax: 425-449-4704 COMPLETED 1/13/22 COMPLETED 1/13/22 COMPLETED 1/13/22 COMPLETED 1/13/22 CONTRACTOR NW Excavating SKH CHECKED BY KDH In OT Topsoil & Sod 6": brush IDTIONS TESTS OF O	13365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4711 IBER ES-8303 D 1/13/22 COMPLETED 1/13/22 GROUND ELEVATION435 ft CONTRACTOR NW Excavating LATITUDEGROUND WATER LEVEL: SKH CHECKED BY KDH GROUND WATER LEVEL: Of Topsoil & Sod 6": brush VIDITIONS TESTS VIDITIONS TESTS VIDITIONS TPSL VIDITIONS TESTS VIDITIONS TPSL VIDITIONS TPSL VIDITIONS TESTS VIDITIONS TOTAL VIDITIONS TOTAL VIDITIONS TOTAL VIDITIONS TESTS VIDITIONS TOTAL VIDITIONS TOTAL VIDITIONS TOTAL Brown silty SAND, loose to medium dense, da	TECOTIFICIONIDECTION TECOTIFICONIDECTION TECOTIFICONIDECTION TECOTIFICONIDECTION TECOTIFICONIDECTION TECOTIFICONIDECTION D 1/13/22 COMPLETED 1/13/22 COMPLETED 1/13/22 COMPLETED 1/13/22 COMPLETED 1/13/22 COMPLETED 1/13/22 GROUND ELEVATION 435 ft CONTRACTOR NW Excavating LATITUDE 47,15162 LONGITUDE -122,29777 SKH CHECKED BY KDH GROUND WATER LEVEL: Q AT TIME OF EXCAVATION ATTENE 05 D 1/13/22 COMPLETED 1/13/22 GROUND WATER LEVEL: Q ATTIME OF EXCAVATION INTENC TESTS O,5 Dark brown TOPSOIL, roots to 12" TOTON SM Brown soity SAND, loose to medium dense, damp M

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711


GRAIN SIZE DISTRIBUTION

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

GRAIN SIZE DISTRIBUTION

EX GPJ DUPLI ES-8303 PUYALLUP USDA