

8600 W Bryn Mawr Avenue Suite 800N Chicago, IL 60631 847.788.9200 www.greenbergfarrow.com Designing Solutions Together

STRUCTURAL CALCULATIONS FOR

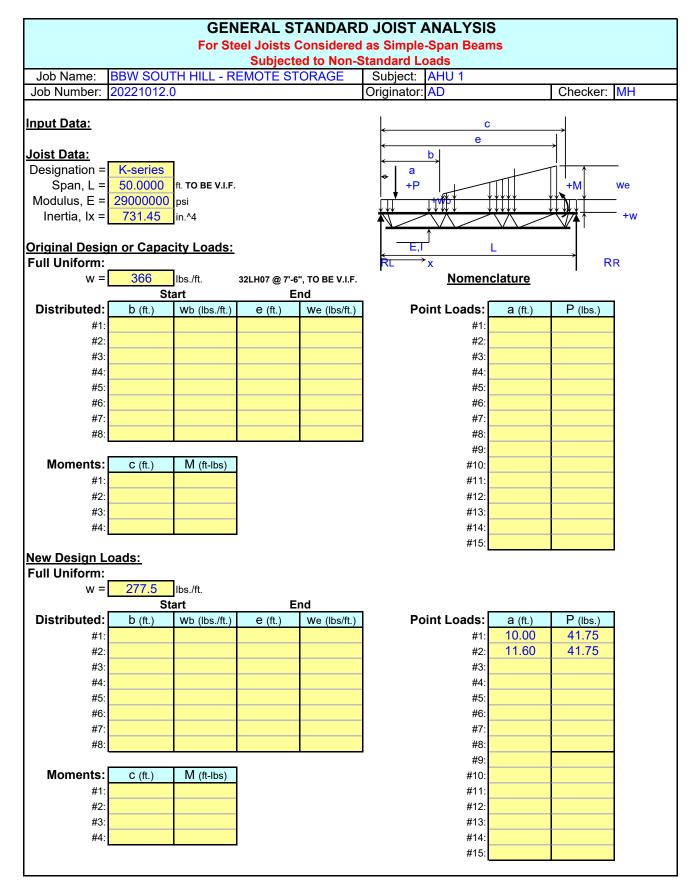
RETAIL TENANT IMPROVEMENT

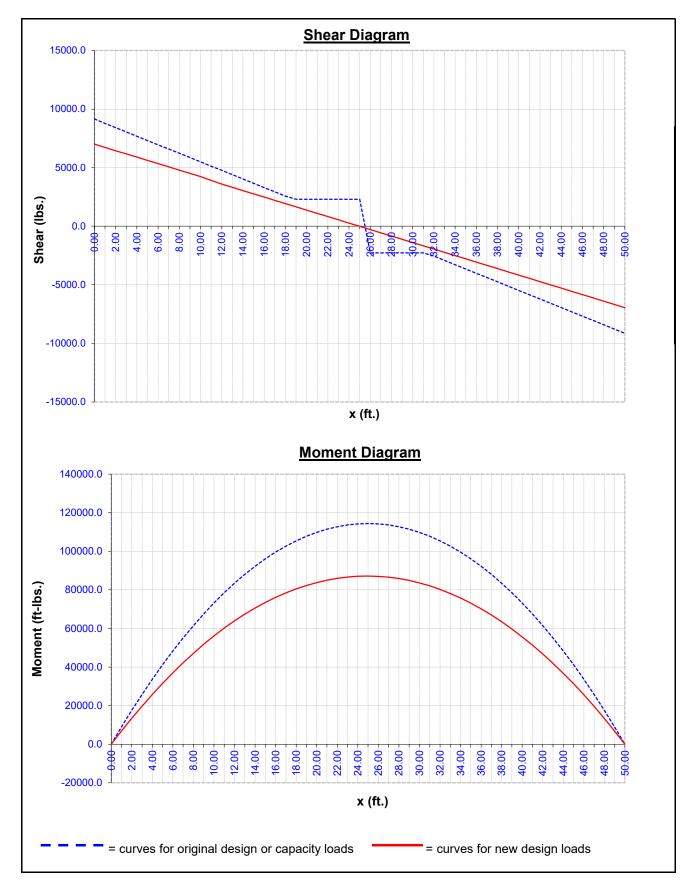
Bath & Body Works - SOUTH HILL MALL (Remote Storage)

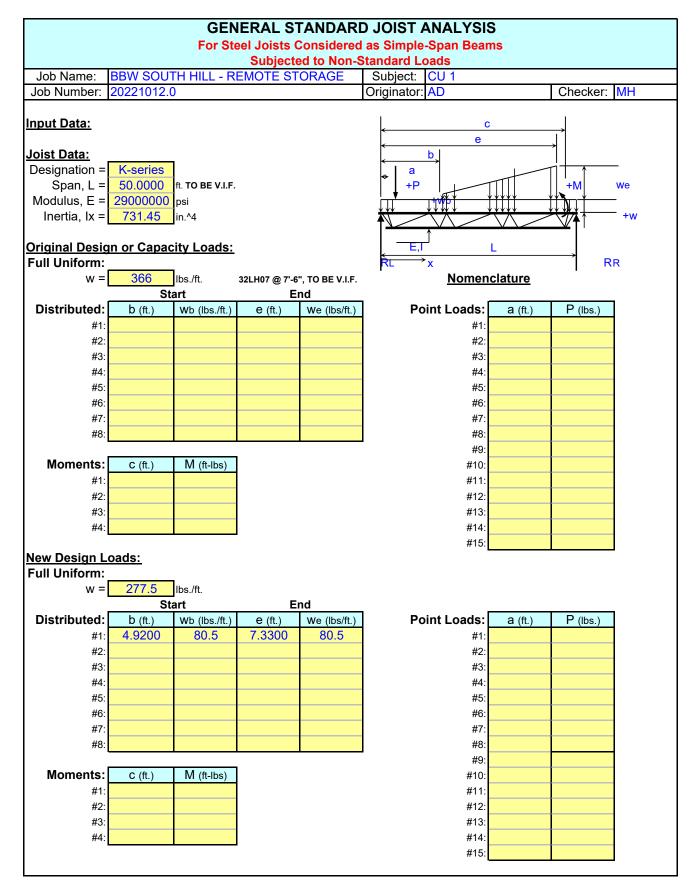
Space No. 235

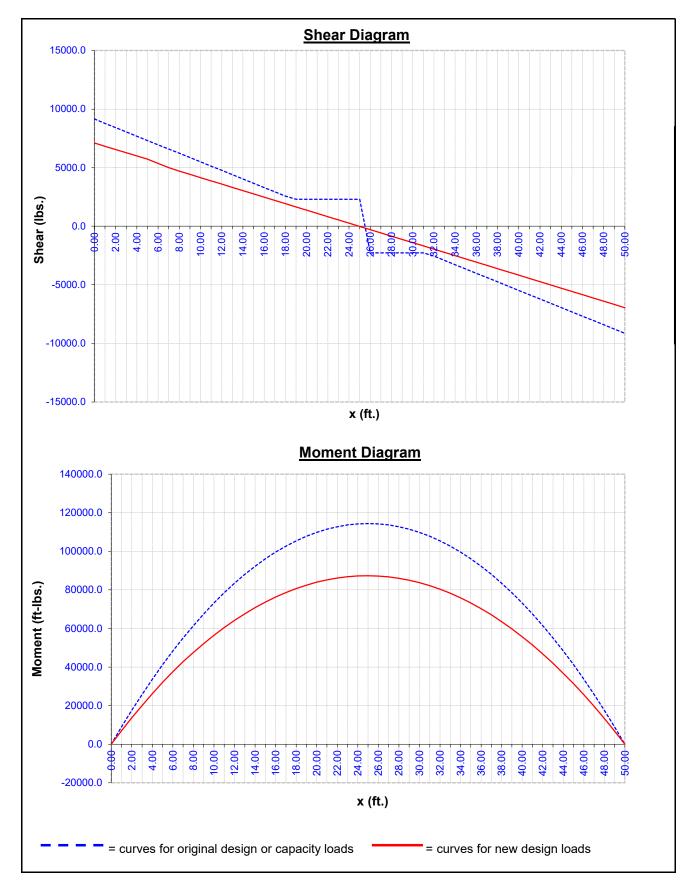
3500 S. Meridian Street

Puyallup, WA 98373


REV	Issue Date	Issue	Revised/Added Pages
	4/20/2023		Initial Calc Submittal


GF Project # 20221012.0


Building Code: 2018 International Building Code



Results of Joist Analysis:	
Original Design or Capacity Loads:	
End Reactions: RL = 9150.0 lbs.	RR = 9150.0 lbs.
Minimum Design Web Member Shear: Vw(min) = 2287.5 Ibs. (25% of maximu	um end reaction for K-series and LH-series joists per SJI Spec's.)
	@ x = 25.00 ft. @ x = 0.00 ft.
$+\Delta(\max) = 0.000$ in. $\Delta(\text{ratio}) = L/215$	@ x = 25.00 ft. @ x = 0.00 ft. 15% increase above the values calculated using traditional
	pre closely match actual test results obtained by SJI.
New Design Loads:	
End Reactions: RL = 7003.0 lbs.	RR = 6955.5 lbs.
	@ x = 24.94 ft. @ x = 0.00 ft.
$+\Delta(\max) = 0.000$ in. $\Delta(\text{ratio}) = L/282$	 @ x = 24.98 ft. @ x = 0.00 ft. 15% increase above the values calculated using traditional
	pre closely match actual test results obtained by SJI.
Maximum Stress Ratios:	
	@ x = 10.00 ft. @ x = 10.00 ft.
<u>Comments:</u>	

Results of Joist Analysis:	
Original Design or Capacity Loads:	
End Reactions:	
RL = 9150.0 lbs.	RR = 9150.0 lbs.
Minimum Design Web Member Shea	
	aximum end reaction for K-series and LH-series joists per SJI Spec's.)
Maximum Moments:	
+Mx(max) = 114375.0 ft-lbs	@ $x = 25.00$ ft.
-Mx(max) = 0.0 ft-lbs	@ x = 0.00 ft.
*Maximum Deflections:	
$-\Delta(\max) = -2.790$ in.	@ x = 25.00 ft.
$+\Delta(\max) = 0.000$ in.	
Δ (ratio) = L/215	
	e a 15% increase above the values calculated using traditional
"simple-beam" flexure in order to	o more closely match actual test results obtained by SJI.
<u>New Design Loads:</u>	
End Reactions:	
RL = 7107.7 Ibs.	RR = 6961.3 lbs.
Maximum Moments:	
+Mx(max) = 87313.9 ft-lbs	@ x = 24.91 ft.
-Mx(max) = 0.0 ft-lbs	$@ x = 0.00 ext{ ft.}$
*Maximum Deflections:	
$-\Delta(\max) = -2.133$ in.	@ x = 24.97 ft.
$+\Delta(\max) = 0.000$ in.	@ x = 0.00 ft.
Δ (ratio) = <u>L/281</u>	
	e a 15% increase above the values calculated using traditional of more closely match actual test results obtained by SJI.
Maximum Stress Ratios:	
S.R. = 0.781 for Shear	@ x = <u>5.00</u> ft.
S.R. = 0.779 for Moment	@ $x = 5.00$ ft.
<u>Comments:</u>	

Bath&BodyWorks

South Hill

ASCE 7-16 WIND LOADING ON MECHANICAL EQUIPMENT

Wind Design Crite	$q_h = 0.00256 K_h K_{zt} K_d K_e V^2$ (Equation 26.10-1)							
		z =	19.00	ft	K _d =	0.85	(Table 26.6-1)	
$F_v = q_h GC_r A_r$	(Eq. 29.4-3)	K _h =	0.89	(Table 26.10-1)	K _e =	0.98	(Table 26.9-1)	
		K _{zt} =	1.00	(Section 26.8.2)	V =	97	mph	
		z _g =	433.00	(ft)				
		q _z =	17.98	psf			Wu	
Uplift on Mec	hanical Unit							
$F_v = q_h Q_h$	GC _r A _r							
GC _r = 1.5	(Eq 29.4-3)							
W _r = 26.9	7 x A _r]						

	Uplift on Mechanical Units											
Unit(s)	Weight	Ar	A _h	x	Curb Length	Curb Width	Fv	Net Uplift 0.6W-0.6D	Curb Uplift			
	D (lbs)	(ft^2)	(ft ²)	(ft)	(ft)	(ft)	(lbs)	(lbs)	(plf)			
CU 1	161	6.88	6.65	2.38	2.75	2.50	185	15	1			

 A_r = Width x Length

 A_h = Height x Length

x = Component center of gravity above point of attachment

- Uplift = Unit Weight > Uplift Load

Connection Notes:

Connect CU Curb to Framing w/ 1/8"x2"X10" Plate w/ (4) #12 screws ea. Curb

Tallow = 383 Ibs (Wood Connection)

Tallow = 353.75 Ibs (Cold-Formed Connection)

Tallow = 707.5 Ibs per plate (Tension)

Straps have adequate capacity

South Hill

ASCE 7-16 WIND LOADING ON MECHANICAL EQUIPMENT

Wind Design Crite	$q_{h} = 0.00256 K_{h} K_{zt} K_{d} K_{e} V^{2}$ (Equation 26.10-1)							
		z =	19.00	ft		K _d =	0.85	(Table 26.6-1)
$F_h = q_h GC_r Af$	(Eq. 29.4-2)	K _h =	0.89	(Table 26.10-	1)	K _e =	0.98	(Table 26.9-1)
		K _{zt} =	1.00	(Section 26.8.	2)	V =	97	mph
		q _z =	17.98	psf				
Lateral on Me							Wu	
$F_h = q_h$	GC _r A _f							
GC _r = 1.9	(Eq 29.4-2)							• 4
$F_{h} = 34.17 \times A_{f}$]						
								b

			(Combined	Lateral a	& Uplift or	n Mechan	ical Units			
Unit(s)	Weight	A _h	x	Curb Length	Curb Width	Fv	F _h	М _{от} (0.6W)	M _R (0.6D)	Tension (0.6W-0.6D)	т
	D (lbs)	(ft ²)	(ft)	(ft)	(ft)	(lbs)	(lbs)	(lb-ft)	(lb-ft)	(lbs)	(plf)
CU 1	161	6.646	2.38	2.75	2.5	185	15	160	120.75	16	6

 A_h = Height x Length

x = Component center of gravity above point of attachment

- T = Resisting Moment > Overturning Moment, no tension loads

Connection Notes:

Connect CU Curb to Framing w/ 1/8"x2"X10" Plate w/ (4) #12 screws ea. Curb

Tallow = 383 Ibs (Wood Connection)

- Tallow = 353.75 Ibs (Cold-Formed Connection)
- Tallow = 707.5 Ibs per plate (Tension)

Straps have adequate capacity

Bath&BodyWorks

South Hill

ASCE 7-16 SEISMIC LOADING ON NONSTRUCTURAL COMPONENTS

 Seismic Design Criteria

 S_{DS} =
 1.011
 ft

 h =
 19.00
 ft (Average Roof Height)

	Component Input											
Component	Weight (lbs)	a _p	R_p	z (ft)	I _p	x (ft)	Length (ft)	Width (ft)	z/h			
CU 1	161	2.50	6.00	19.00	1.00	2.38	2.75	2.50	1.00			

 $a_p \& R_p = Per ASCE 7-16 Table 13.5-1 or 13.6-1$

z = Height in structure of point of attachment w/ respect to base

x = Component center of gravity above point of attachment

	Component Seismic Calculations												
Fp Limit	Fp Limit Fp Calculated (Eq. 13.3-1)		F _p Design (lbs)		± Vert Force (Ibs)	M _{OT} (0.7E _h) M _R (0.6D-0.7E _v)**		Tension	Tensior				
(13.3-2)	(13.3-3)	Component	Connection	Component	Connection	(Section 13.3.1.2)	(ft-lbs)	(ft-lbs)	(plf)	(lbs)			
260.4	48.8	81.4	81.4	81.4	81.4	32.6	135.3	92.3	6.3	17.2			

**M_R assumes worst case direction

- Tension = Resisting Moment > Overturning Moment, no tension loads

Connection Notes:

Connect CU Curb to Framing w/ 1/8"x2"X10" Plate w/ (4) #12 screws ea. Curb

Tallow = 383 Ibs (Wood Connection)

Tallow = 353.75 Ibs (Cold-Formed Connection)

Tallow = 707.5 Ibs per plate (Tension)

Straps have adequate capacity