

Structural Calculations

PREPARED FOR:

BOE Architects, PLLC 1130 Broadway, Suite 207 Tacoma, WA 98402

PROJECT:

Korum Ford EV Court DC Charger Foundations 2230458.20

PREPARED BY:

Andrew McEachern, P.E., S.E. Principal

DATE:

June, 2023

Structural Calculations Korum Ford EV Court 100 River Road, Puyallup

Project # 2230458.20

Project Principal

Andrew D. McEachern, P.E., S.E.

Design Criteria

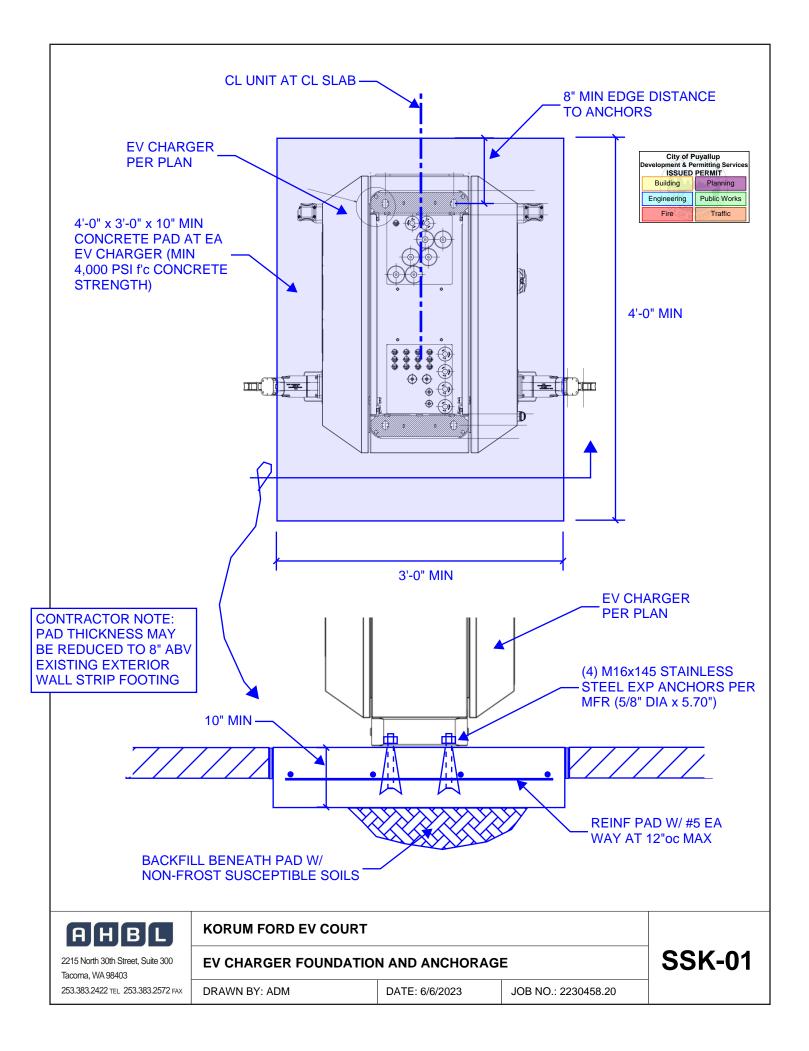
Design Codes and Standards

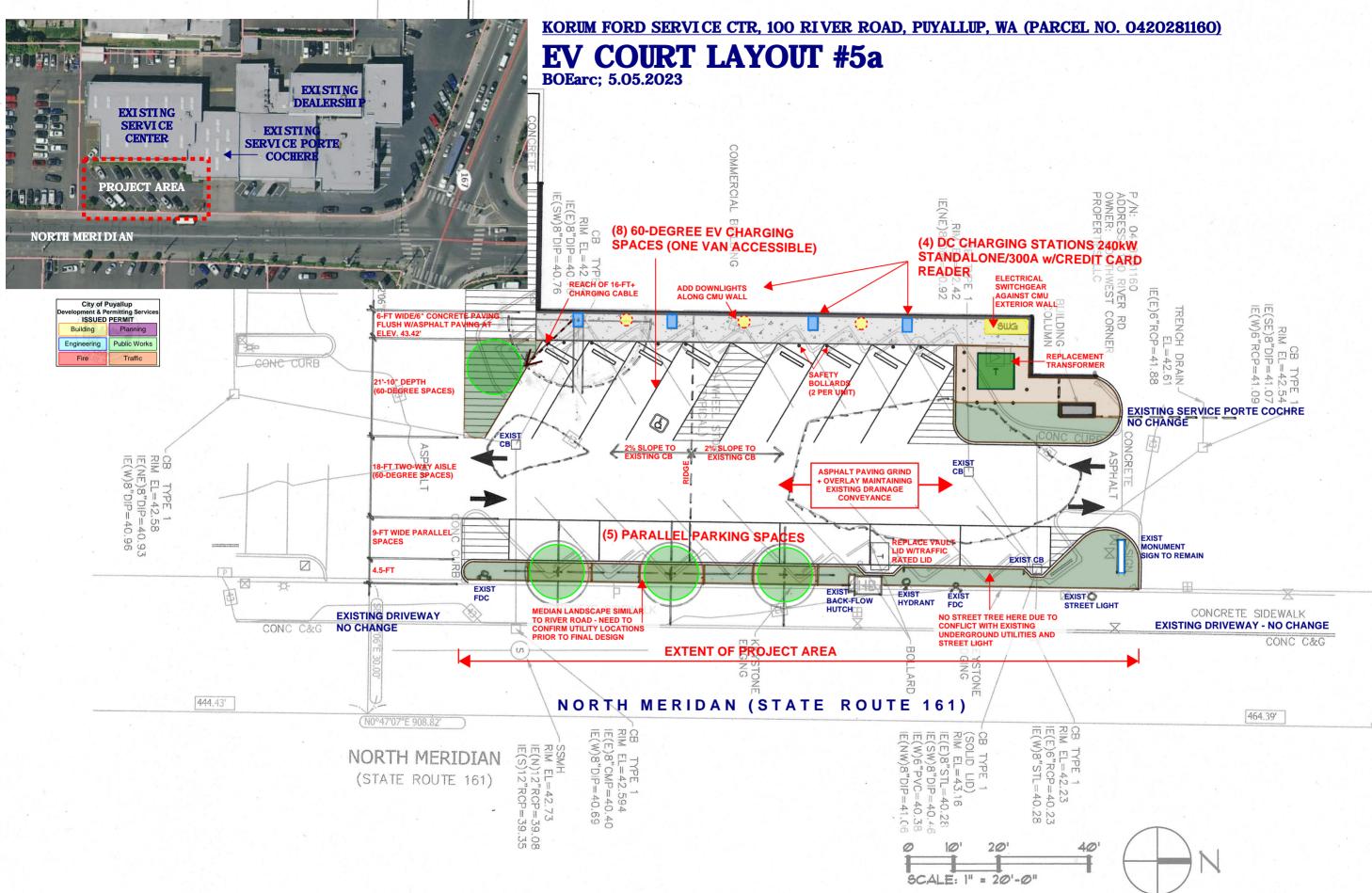
<u>Codes and Standards</u>: Structural design and construction shall be in accordance with the applicable sections of the following codes and standards as adopted and amended by the local building authority: International Building Code, 2018 Edition.

Structural Design Criteria:

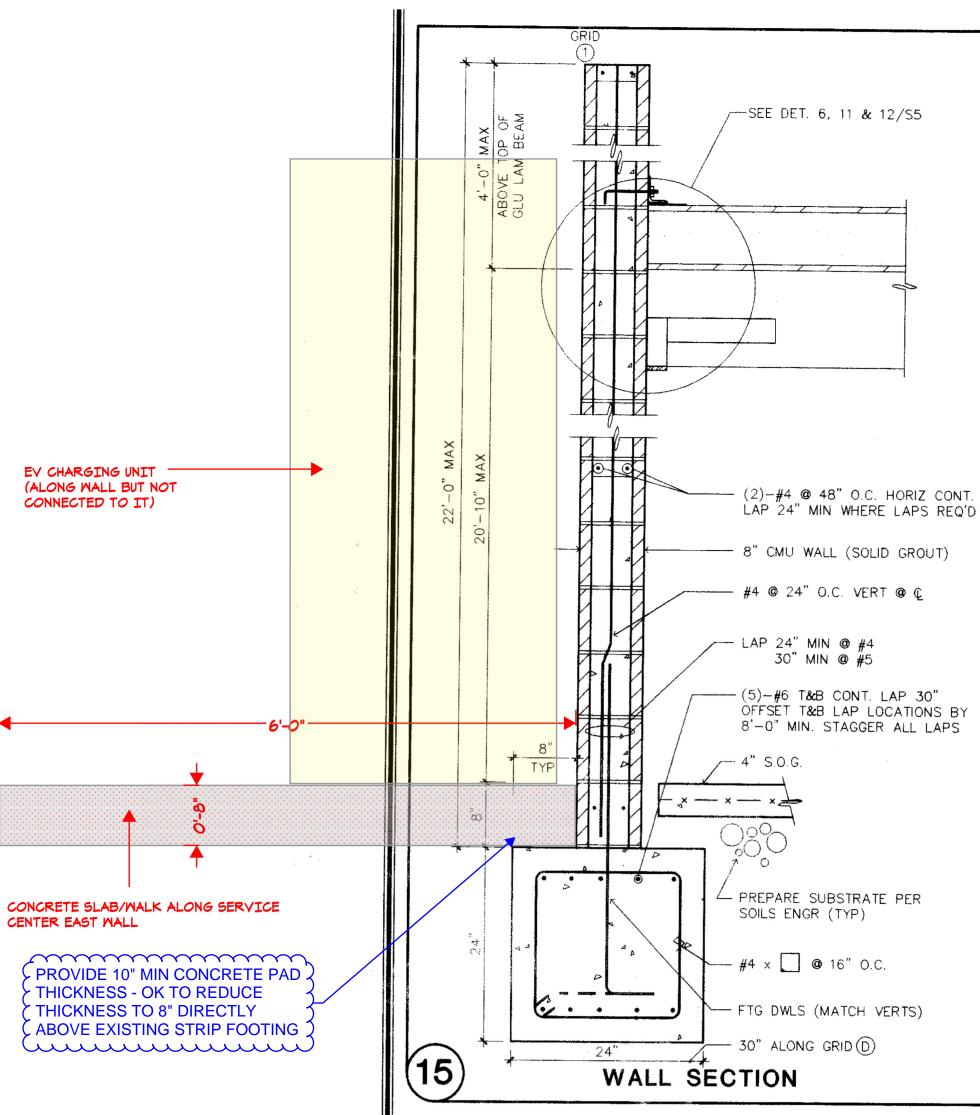
Live Lo	ad Criteria:			
	Roof (Min Blanket Snow):			25 psf
	Slab on Grade:			125 psf
Wind Lo	oad Criteria:			
	Basic Wind Speed:			98 mph
	Risk Category:			II
	Wind Exposure:			В
	Topographic Factor:			1.0
<u>Seismic</u>	<u>c Criteria:</u>			
	Risk Category:			II
	Seismic Importance Factor:			1.0
	$S_s = 1.274$	S1	=	0.438
	$S_{ds} = 1.019$	S_{d1}	=	N/A
	Site Class:			D - default
	Seismic Design Category:			D

Soil Criteria:


Soil Bearing Capacity: 1,500 psf (assumed). Allow 33% increase for wind or seismic loads.


Project Description

The structural scope of work for this project involves the structural design of foundations and anchorage for new exterior electric vehicle charging stations. It is the intention of the structural design to satisfy the force levels of the IBC 2018.


City of Puyallup Development & Permitting Services ISSUED PERMIT		
Building Planning		
Engineering Public Works		
Fire		

City of Puyallup Development & Permitting Services ISSUED PERMIT		
Building	Planning	
Engineering	Public Works	
Fire Traffic		

KORUM FORD E.V. COURT STRUCTURAL DETAIL FOR SLAB/FOUNDATION AT CHARGERS BOEarc; 6.05.2023

Installation Manual

Ford Pro[™]DC Charging Station 240kw

City of Puyallup Development & Permitting Services ISSUED PERMIT		
Building	Planning	
Engineering	Public Works	
Fire	Traffic	

2.TECHNICAL CHARACTERISTICS

Depending on the regulation to be followed, the equipment will fulfill different technical characteristics.

Standalone NB 240 – IEC / UL

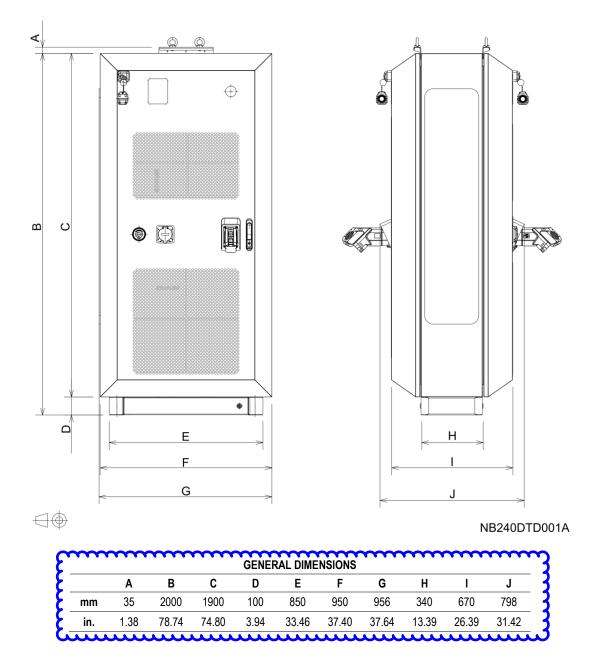
REFERENCE		NB1500H NB1500U NB150SH NB150SU	NB1800H NB1800U NB180SH NB180SU	NB2100H NB2100U NB210SH NB210SU	NB2400H NB2400U NB240SH NB240SU	
	Maximum power [kW]	150	180	210	240	
	Voltage range [V]		150 – 1	000 [1]		
	Available connectors	CCS-1, CCS-2, CHAdeMO				
	Maximum continuous current CCS [A]	300				
DC OUTPUT	Peak current CCS [A] [2]		50)0		
	CCS nominal current [A]	Stand	dard: 200. Optional:	250 (only for IEC)	or 300	
	Maximum current CHAdeMO [A]		12			
	Maximum number of EVs charging simultaneously		2			
	Power [kW]		2	2		
AC OUTPUT	Voltage range [V]		400 ±			
(OPTIONAL, ONLY	Maximum current [A]		3			
FOR IEC)	Available connectors		AC Type			
	Voltage range [V]	-	150 – 1000 [1]			
	Available connectors	-				
DC OUTPUT FOR	CCS connector nominal current	Standard: 200. Optional: 250 (only for IEC), 300, 500				
ADDITIONAL	[A]	- (cooled)				
SATELLITE DISPENSER	Peak current CCS [A] [2]	- 500				
(OPTIONAL)	Maximum current CHAdeMO [A]	-		125		
()	Number of additional EVs					
	charging simultaneously	-	1	1	2 (slim) / 1 (cooled	
	Power [kVA]	158	189	221	253	
	Voltage [V]	400 IEC / 480 UL (3ph + N + PE) ± 10%				
AC INPUT FOR DC OUTPUT	Power factor	> 0.99				
OUIFUI	Frequency [Hz]	50 (IEC) / 60 (IEC & UL)				
	Efficiency	95%				
		10" Touchscreen				
	Interface		E-stop pu	ishbutton		
	—		Credit / debit card	reader (optional)		
	RFID reader	ISO14443 A/B, MIFARE, Calypso, ISO18092, ISO15693 and more				
GENERAL	_	Surge arrester Type 2 (optional)				
	Protections —	D	C Charge: RCD Typ		ICB	
	—		• •	,		
		AC charge (optional): MCB + RCD Type A + RCM Smart Fleet Management (optional)				
	Others —	Smart Power Balance (optional)				

REFERENCE		NB1500H NB1500U NB150SH NB150SU	NB1800H NB1800U NB180SH NB180SU	NB2100H NB2100U NB210SH NB210SU	NB2400H NB2400U NB240SH NB240SU	
	_		Internal DC ener	gy measurement		
	Energy meter		DC meter for DC	output (optional)		
			AC MID meter	for AC output		
	Cable length [m/ft]	5 / 16.4 wi	5 / 16.4 with cable management system (optionally, 7.6 / 25)			
GENERAL	Enclosure / foot / glass color	White (RAL 9016) / Grey (RAL 7016) / Black				
	Customization [3]	Enclosure / Foot / Glass / Logo / Display				
	Protection rating	NEMA 3R IP54 IK10 (IK08 for ventilation grilles)				
	Operating temperature range [ºC/ºF]	-30 to 50 / -22 to 122				
GENERAL	Relative humidity	From 4% to 95%				
	Maximum altitude above sea [m/ft]	Without derating: 2000 / 6561. Max: 3000 / 9842				
	O	Ethernet (10/100) + Wi-Fi				
	Communications -	Cellular data: 4G, 3G, GSM				
	Dimensions (WxDxH) [mm/ft]	670 x 950 x 2000 / 2.19 x 3.12 x 6.56				
		E6-61851	-1,126-64851-23,1	E& & 4894-24, IE& &	1851-242	
	Regulation	ι	JL 2202, NEC 625, I	FCC Part 15 Class /	4	

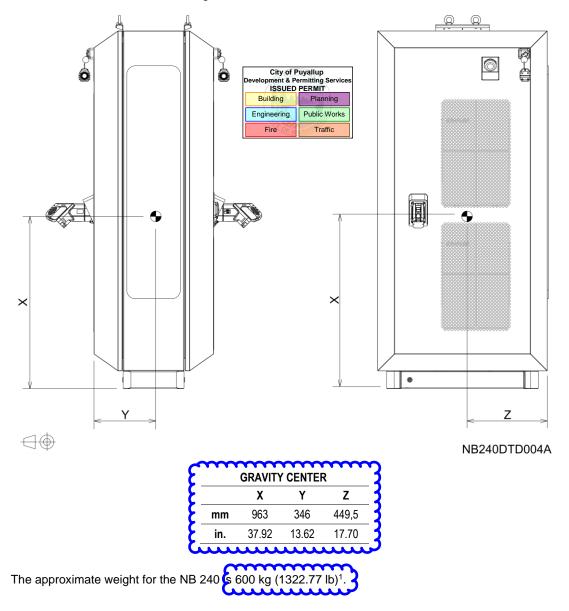
Notes: [1] 150 - 500 Vdc for CHAdeMO. Maximum power from 300 V. [2] Consult with Power Electronics for more information about the connector overload capability.

[3] Consult with Power Electronics for further information.

Be aware that Power Electronics is not responsible for the charger's input power connection, nor its installation.


City of Puyallup Development & Permitting Services ISSUED PERMIT		
Building Planning		
Engineering	Public Works	
Fire	Traffic	

3.DIMENSIONS AND WEIGHT


City of Puyallup Development & Permitting Services ISSUED PERMIT			
Building	Planning		
Engineering	Public Works		
Fire			

The dimensions, gravity center and the weight of the **NB 240** equipment are detailed in this section.

The right and front view, from left to right, are shown below:

Note: The bottom-up view is shown in the "<u>Anchoring of the equipment</u>" and "<u>Access</u>" section of this document.

The front and left view, from left to right, are shown below:

¹ For other equipment of the NB 240 range, consult Power Electronics.

5.PREPARATION FOR INSTALLING THE EQUIPMENT

Engineering Public V

Site recommendations

When deciding the location of the equipment and planning its installation, it is recommended to follow a series of guidelines derived from its characteristics.

To guarantee proper electrical installation, it is very important to comply with the bend radius of the cable. The customer must ensure the cables enter the equipment perpendicularly and the spacing between them is appropriate.

Avoid corrosive environments that may affect the equipment's proper functioning.

The instructions given in this section must not replace in any way the mandatory regulations of the country in which the equipment will be installed.

Prior to installation, a geotechnical study of the terrain where the equipment will be installed must be carried out to determine its characteristics and to decide the most suitable type of foundation.

It is the customer's responsibility to design and build concrete foundations with the necessary piping and ground network in accordance with the applicable regulatory requirements.

Proper installation is absolutely necessary, and it is not within the scope of the manufacturer's responsibility.

Soil

The soil should have the following characteristics:

- It must be dry, compacted, stable and homogeneous.
- The land will be gravel, ballast, or pebble.
- It must have hard or medium harshness characteristics.
- The calculation of the maximum permissible pressure on the ground must comply with local and national standards, as well as with any other requirements regarding natural disasters (hurricanes, earthquakes, etc.) that may apply to the place of installation.
- Do not install on floodplains.
- The soil must be provided with a drainage system, especially in locations with high water tables and / or heavy precipitation sites.
- It is recommended that the ground should not exceed the level of the foundation.
- Soil compaction degree of 98 %.
- Maximum slope is 0,25 %.
- It must not be a direct place of passage so that the load cables do not interrupt the movement of pedestrians or traffic.

Site basis

Power Electronics recommends making a concrete foundation slab to support the charger. The support surface for the equipment must be perfectly level. The client is responsible for the correct dimensioning and construction of the foundation in accordance with current regulations. The foundation must meet the following characteristics:

- It is recommended that a layer of cleaning concrete be installed between the ground and the foundation.
- The sizing should be appropriate for the weight of the equipment and the characteristics of the soil
- It must be thick enough to support the equipment.
- It must have trenches wide enough to ensure proper wiring passage (the suggested cable access size is shown below).
- It is advisable to leave the slab at the same level as the ground to facilitate maintenance works.
- If the slab is above ground level, the maximum height allowed is 200 m (7.87 in.).

The client is responsible for building a solid concrete base perfectly leveled and elevated with respect to the user's floor height.

The equipment is not designed for mobile installations. In case of installing the equipment over a mobile platform, the warranty may be voided.

For further information on this kind of applications, please contact Power Electronics.

In case of specification of variable actions such as snow, wind or earthquake, the slab must comply with the following requirements, not being excluding those indicated by the specific regulations of the country of installation: 3,625 psi

Ability to withstand compression forces of 25 N/mm².

72,519 psi

17,985 lbs

-2.248 lbs

- Steel reinforcement capable of withstanding tensile forces of 500 N/mm².
- Taking into account severe wind conditions (60 m/s), the reinforcement should be dimensioned as follows: - 134 mph

o The longitudinal side of the reinforcement must be able to withstand forces of up to 80 kN.

o The transverse side of the reinforcement must be able to withstand forces of up to 10 kN.

Note that the thickness of the slab must be determined from the results of the geotechnical study.

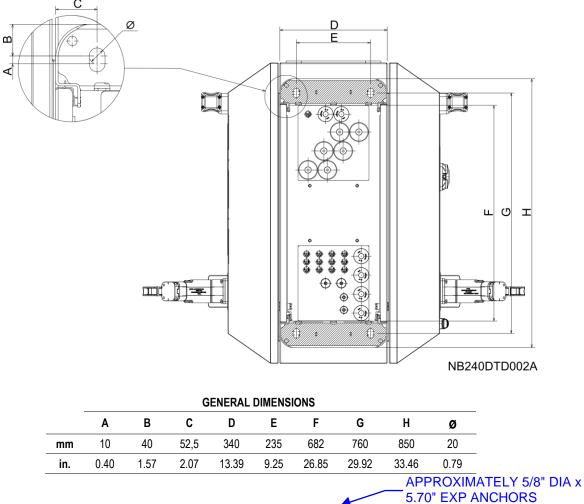
See anchor recommendations at the "Anchoring of the equipment" section.

NOTICE

Each charger must be anchored to a foundation which guarantees its stability towards vertical and horizontal actions.

It is customer's responsibility to design and build the foundation to guarantee stability of each equipment.

Anchoring of the equipment


City of Puyallup Development & Permitting Services ISSUED PERMIT		
Building Planning		
Engineering	Public Works	
Fire Traffic		

It is the customer's responsibility to dimension correctly posts anchoring to the foundation, guaranteeing stability towards horizontal actions.

The equipment must be anchored to a solid and leveled surface (slab), see slab recommendations at the "<u>Site basis</u>" section.

The following image (bottom-up view) shows the location and diameter of the charger's anchoring holes. They are located at the foot of the charger.

It is recommended to use an expansive anchoring M16x145, with a tightening torque of 120 Nm (manufacturer's recommendation). To guarantee the proper fixing of the equipment, install a total of 4 anchors.

ASCE 7 Hazards Report

Address: 100 River Rd Puyallup, Washington 98371 Standard: ASCE/SEI 7-16

Risk Category: II Soil Class: D

II D - Default (see Section 11.4.3) Latitude: 47.198106 Longitude: -122.294367 Elevation: 43.09182229757344 ft (NAVD 88)

Wind

Results:

Wind Speed	98 Vmph
10-year MRI	67 Vmph
25-year MRI	73 Vmph
50-year MRI	78 Vmph
100-year MRI	83 Vmph

Data Source:	ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2
Date Accessed:	Tue Jun 06 2023

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is not in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2.

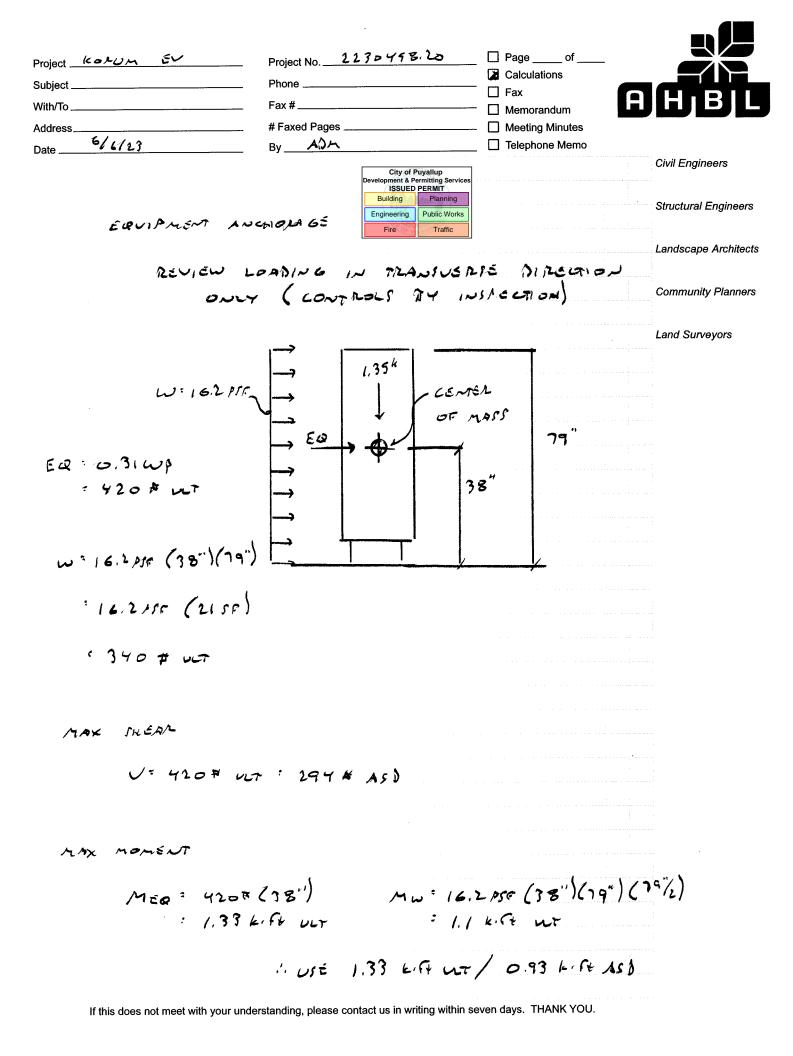
Site Soil Class:

City of Puyallup Development & Permitting Services ISSUED PERMIT		
Building Planning		
Engineering	Public Works	
Fire OF V	Traffic	

Results:					
S _s :	1.274	S _{D1} :	N/A		
S ₁ :	0.438	Τ _L :	6		
F _a :	1.2	PGA :	0.5		
F _v :	N/A	PGA M:	0.6		
S _{MS} :	1.529	F _{PGA} :	1.2		
S _{M1} :	N/A	l _e :	1		
S _{DS} :	1.019	C _v :	1.355		
Ground motion hazard analysis n	nay be required. See AS	CE/SEI 7-16 Section	11.4.8.		
Data Accessed:	Tue Jun 06 2023				
Date Source:	USGS Seismic Design Maps				

D - Default (see Section 11.4.3)

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.


ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

2215 N. 30th Tacoma, WA 98 253-383-242	5. St. 8403	City of Puyallup Development & Permitting Services ISSUED PERMIT Building Planning Engineering Public Works Fire Traffic	JOE	ITLE Korum Ford E 3 NO. 2230458.20 d by d by ADM	V Court	SHEET NO. DATE DATE	6/6/23
Wind Loads - Other S	tructure	s: ASCE 7- 16			Ultim	ate Wind Pre	ssures
Wir Gust Effect Fa A. Solid Freestanding Wa	Kzt =		posure =	98 mph B s than 30% one	an)		
					,,,,		
		s/h =	0.93	(Case A &	<u>. B</u>	
Dist to sign top (h)	7.0 ft	s/h = B/s =	0.93 0.50	2	<u>Case A &</u> C _f =		
0 1 ()	7.0 ft 6.5 ft					1.59	5
Dist to sign top (h) Height (s) Width (B)		B/s =	0.50		C _f =	1.59 16.2 As	;
Height (s)	6.5 ft	B/s = Lr/s =	0.50 0.00		C _f = GCfAs =	1.59 16.2 As 22.0 sf	
Height (s) Width (B)	6.5 ft	B/s = Lr/s = Kz =	0.50 0.00 0.575		C _f = GCfAs = As =	1.59 16.2 As 22.0 sf	
Height (s) Width (B) Wall Return (Lr) =	6.5 ft 3.3 ft 0.85	B/s = Lr/s = Kz =	0.50 0.00 0.575		C _f = GCfAs = As =	1.59 16.2 As 22.0 sf 356 lbs	
Height (s) Width (B) Wall Return (Lr) = Directionality (Kd)	6.5 ft 3.3 ft 0.85	B/s = Lr/s = Kz = qz =	0.50 0.00 0.575		C _f = CfAs = As = F =	1.59 16.2 As 22.0 sf 356 lbs	
Height (s) Width (B) Wall Return (Lr) = Directionality (Kd) Percent of open area	6.5 ft 3.3 ft 0.85	B/s = Lr/s = Kz = qz =	0.50 0.00 0.575 12.0 psf 1.00	F = qz G Horiz dist from	C _f = G Cf As = As = F = <u>CaseC</u>	1.59 16.2 As 22.0 sf 356 lbs	<u>sf)</u>
Height (s) Width (B) Wall Return (Lr) = Directionality (Kd) Percent of open area	6.5 ft 3.3 ft 0.85	B/s = Lr/s = Kz = qz = Open reduction factor =	0.50 0.00 0.575 12.0 psf 1.00	F = qz G Horiz dist from <u>windward edge</u>	C _f = G Cf As = As = F = <u>CaseC</u> <u>Cf</u>	1.59 16.2 As 22.0 sf 356 lbs <u>F=qzGCfAs (ps</u>	<u>sf)</u>
Height (s) Width (B) Wall Return (Lr) = Directionality (Kd) Percent of open area	6.5 ft 3.3 ft 0.85 a 0.0%	B/s = Lr/s = Kz = qz = Open reduction factor = Case C reduction factors	0.50 0.00 0.575 12.0 psf 1.00	F = qz G Horiz dist from <u>windward edge</u> 0 to s	$C_{f} = G Cf As = G As = F F = G CaseC Cf As = Cf As = Cf 1.96$	1.59 16.2 As 22.0 sf 356 lbs <u>F=qzGCfAs (pr</u> 20.0 As	<u>sf)</u>

for Cf at 0 to s = 1.00

Project	KORUM EV	_ Project No. 2230459.20	Page of	
Subject			Calculations	
Vith/To		Fax #	D Memorandum	A H B L
Address_		_ # Faxed Pages	Meeting Minutes	
Date	4/6/23		Telephone Memo	
		City	of Puyallup	Civil Engineers
		Development / ISSU	& Permitting Services ED PERMIT	
		Building	Planning g Public Works	Structural Engineers
	SEISMIC LOADS	Fire	Traffic	
			_	Landscape Architects
	per As	LE 7-16 SECTION /	3.3	
				Community Planners
	- 4 a. 5.			
	Fp = Coropsi	$\frac{1}{(p)} (1 + 2 \frac{1}{h})$	GIVÊN	Land Surveyors
	· (• • • • •	(71	94 , 1.0	
	,	11 - 1.1.		
	0.4(1.0	$\frac{1}{5}(1,0)9$ W_{P} $(1+20)$)) Ip · 1.0	
	(2	.5 /1.0)	=/h : 0,0	
	· 0.163 1	•	505-1.019	
	· 0,163 L	Jp	305 1.01	
	•	~		
	FAMA O.3 St	منه ما ده		· · · · · · · · · · · · · · · · · · ·
	: 0.3 (1	.019)(1.0) wp		· · · · · · · · · · · · · · · · · · ·
	5 0,309	i7 wy		
		•		
				· · · · · · · · · · · · · · · · · · ·
,		· usé 0.31 wp		
				· · · · · · · · · · · · · · · · · · ·

City of Puyallup Development & Permitting Services ISSUED PERMIT				
Building Planning				
Engineering	Public Works			
Fire OF W	Traffic			

Project Title:Korum Ford EV CourtEngineer:ADMProject ID:2230458.20Project Descr:Foundation for Exterior EV Charging Station

General Footing

LIC# : KW-06014847, Build:20.23.04.05

AHBL, INC

Project File: 2230458.ec6

(c) ENERCALC INC 1983-2023

DESCRIPTION: EV Foundation

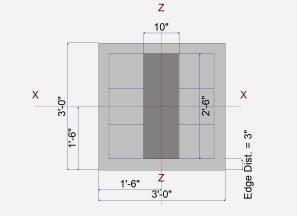
Code References

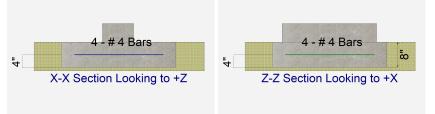
Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16 Load Combinations Used : IBC 2018

General Information

Material Properties			
fc : Concrete 28 day strength	=	3	.0 ksi
fy : Rebar Yield	=	60	.0 ksi
Ec : Concrete Elastic Modulus	=	3,122	.0 ksi
Concrete Density	=	145	.0 pcf
$_{m 0}$ Values Flexure	=	0.9	90
Shear	=	0.75	50
Analysis Settings			
Min Steel % Bending Reinf.		=	
Min Allow % Temp Reinf.		=	0.00180
Min. Overturning Safety Factor		=	1.0 : 1
Min. Sliding Safety Factor		=	1.0:1
Add Ftg Wt for Soil Pressure		:	Yes
Use ftg wt for stability, moments & sl	hears	:	Yes
Add Pedestal Wt for Soil Pressure		:	No
Use Pedestal wt for stability, mom &	shear	:	No

Soil Design Values Allowable Soil Bearing Soil Density Increase Bearing By Footing Weight Soil Passive Resistance (for Sliding) Soil/Concrete Friction Coeff.	= = = =	1.50 ksf 110.0 pcf No 250.0 pcf 0.30
Increases based on footing Depth Footing base depth below soil surface Allow press. increase per foot of depth when footing base is below	= = =	0.670 ft ksf ft
Increases based on footing plan dimension Allowable pressure increase per foot of de		
when max. length or width is greater than	=	ksf
	=	ft


Dimensions


Width parallel to X-X Axis	=	3.0 ft
Length parallel to Z-Z Axis	=	3.0 ft
Footing Thickness	=	8.0 in

Pedestal dimensions		
px : parallel to X-X Axis	=	10.0 in
pz : parallel to Z-Z Axis	=	30.0 in
Height	-	6.0 in
Rebar Centerline to Edge of	Concrete	
at Bottom of footing	=	4.0 in

Reinforcing

Bars parallel to X-X Axis Number of Bars Reinforcing Bar Size	= =	#	4 4
Bars parallel to Z-Z Axis			
Number of Bars	=		4
Reinforcing Bar Size	=	#	4
Bandwidth Distribution Ch	eck (ACI 15	.4.4.2)	
Direction Requiring Closer	Separation		
			n/a
# Bars required within zone	•		n/a
# Bars required on each sid	e of zone		n/a

Applied Loads

		D	Lr	L	S	w	E	н
P : Column Load OB : Overburden	=	1.40				0.0		k ksf
M-xx M-zz	=					1.10	1.40	k-ft k-ft
V-x V-z	=					0.340	0.420	k k

City of P Development & Po ISSUED	Engineer:	
Building	Planning	Project ID
Engineering	Public Works	Project De
Fire OF V	Traffic	

Korum Ford EV Court ADM 2230458.20 Project Title: Project ID: Project Descr: Foundation for Exterior EV Charging Station

General Footing

LIC# : KW-06014847, Build:20.23.04.05

DESCRIPTION: EV Foundation

DESIGN SUMMARY

ESIGN SL	JMMARY				Design OK
	Min. Ratio	Item	Applied	Capacity	Governing Load Combination
PASS	0.3777	Soil Bearing	0.5666 ksf	1.50 ksf	+0.60D+0.70E about Z-Z axis
PASS	n/a	Overturning - X-X	0.0 k-ft	0.0 k-ft	No Overturning
PASS	1.546	Overturning - Z-Z	1.323 k-ft	2.045 k-ft	+0.60D+0.70E
PASS	1.964	Sliding - X-X	0.2940 k	0.5774 k	+0.60D+0.70E
PASS	n/a	Sliding - Z-Z	0.0 k	0.0 k	No Sliding
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
PASS	0.07022	Z Flexure (+X)	0.3150 k-ft/ft	4.486 k-ft/ft	+0.90D+E
PASS	0.02847	Z Flexure (-X)	0.1277 k-ft/ft	4.486 k-ft/ft	+1.40D
PASS	0.001514	X Flexure (+Z)	0.006791 k-ft/ft	4.486 k-ft/ft	+1.40D
PASS	0.001514	X Flexure (-Z)	0.006791 k-ft/ft	4.486 k-ft/ft	+1.40D
PASS	0.1009	1-way Shear (+X)	8.290 psi	82.158 psi	+0.90D+E
PASS	0.04140	1-way Shear (-X)	3.401 psi	82.158 psi	+1.40D
PASS	n/a	1-way Shear (+Z)	0.0 psi	82.158 psi	n/a
PASS	n/a	1-way Shear (-Z)	0.0 psi	82.158 psi	n/a
PASS	0.02395	2-way Punching	3.279 psi	136.931 psi	+1.40D

AHBL, INC

Detailed Results

Soil Bearing								
Rotation Axis &		Xecc	Zecc	Actual	Soil Bearing	Stress @ Loc	ation	Actual / Allow
Load Combination	Gross Allowable	(ir	ו)	Bottom, -Z	Top, +Z	Left, -X	Right, +X	Ratio
X-X, D Only	1.50	n/a	0.0	0.2525	0.2525	n/a	n/a	0.168
X-X, +D+0.60W	1.50	n/a	0.0	0.2525	0.2525	n/a	n/a	0.168
X-X, +D+0.70E	1.50	n/a	0.0	0.2525	0.2525	n/a	n/a	0.168
X-X, +D+0.450W	1.50	n/a	0.0	0.2525	0.2525	n/a	n/a	0.168
X-X, +D+0.5250E	1.50	n/a	0.0	0.2525	0.2525	n/a	n/a	0.168
X-X, +0.60D+0.60W	1.50	n/a	0.0	0.1515	0.1515	n/a	n/a	0.101
X-X, +0.60D+0.70E	1.50	n/a	0.0	0.1515	0.1515	n/a	n/a	0.101
Z-Z, D Only	1.50	0.0	n/a	n/a	n/a	0.2525	0.2525	0.168
Z-Z, +D+0.60W	1.50	4.742	n/a	n/a	n/a	0.05494	0.4501	0.300
Z-Z, +D+0.70E	1.50	6.986	n/a	n/a	n/a	0.0	0.5472	0.365
Z-Z, +D+0.450W	1.50	3.556	n/a	n/a	n/a	0.1043	0.4007	0.267
Z-Z, +D+0.5250E	1.50	5.240	n/a	n/a	n/a	0.03421	0.4708	0.314
Z-Z, +0.60D+0.60W	1.50	7.903	n/a	n/a	n/a	0.0	0.3580	0.239
Z-Z, +0.60D+0.70E	1.50	11.643	n/a	n/a	n/a	0.0	0.5666	0.378

Overturning Stability

Rotation Axis &				
Load Combination	Overturning Moment	Resisting Moment	Stability Ratio	Status
X-X, D Only	None	0.0 k-ft	Infinity	Ok
X-X, +D+0.60W	None	0.0 k-ft	Infinity	OK
X-X, +D+0.70E	None	0.0 k-ft	Infinity	OK
X-X, +D+0.450W	None	0.0 k-ft	Infinity	Oł
X-X, +D+0.5250E	None	0.0 k-ft	Infinity	Oł
X-X, +0.60D+0.60W	None	0.0 k-ft	Infinity	Oł
X-X, +0.60D+0.70E	None	0.0 k-ft	Infinity	Oł
Z-Z, D Only	None	0.0 k-ft	Infinity	Oł
Z-Z, +D+0.60W	0.8980 k-ft	3.409 k-ft	3.796	Oł
Z-Z, +D+0.70E	1.323 k-ft	3.409 k-ft	2.577	O
Z-Z, +D+0.450W	0.6735 k-ft	3.409 k-ft	5.061	Oł
Z-Z, +D+0.5250E	0.9923 k-ft	3.409 k-ft	3.435	Oł
Z-Z, +0.60D+0.60W	0.8980 k-ft	2.045 k-ft	2.278	Oł
Z-Z, +0.60D+0.70E	1.323 k-ft	2.045 k-ft	1.546	Oł

Project File: 2230458.ec6

(c) ENERCALC INC 1983-2023

	Puyallup ermitting Services PERMIT
Building	Planning
Engineering	Public Works
Fire	Traffic

Project Title:Korum Ford EV CourtEngineer:ADMProject ID:2230458.20Project Descr:Foundation for Exterior EV Charging Station

General Footing

LIC# : KW-06014847, Build:20.23.04.05

DESCRIPTION: EV Foundation

Sliding Stability

Force Application Axis Load Combination	Sliding Force	Resisting Force	Stability Ratio	Status
X-X, D Only	0.0 k	0.8501 k	No Sliding	OK
X-X, +D+0.60W	0.2040 k	0.8501 k	4.167	OK
X-X, +D+0.70E	0.2940 k	0.8501 k	2.891	OK
X-X, +D+0.450W	0.1530 k	0.8501 k	5.556	OK
X-X, +D+0.5250E	0.2205 k	0.8501 k	3.855	OK
X-X, +0.60D+0.60W	0.2040 k	0.5774 k	2.830	OK
X-X, +0.60D+0.70E	0.2940 k	0.5774 k	1.964	OK
Z-Z, D Only	0.0 k	0.8501 k	No Sliding	OK
Z-Z, +D+0.60W	0.0 k	0.8501 k	No Sliding	OK
Z-Z, +D+0.70E	0.0 k	0.8501 k	No Sliding	OK
Z-Z, +D+0.450W	0.0 k	0.8501 k	No Sliding	OK
Z-Z, +D+0.5250E	0.0 k	0.8501 k	No Sliding	OK
Z-Z, +0.60D+0.60W	0.0 k	0.5774 k	No Sliding	OK
Z-Z, +0.60D+0.70E	0.0 k	0.5774 k	No Sliding	OK
ooting Flexure			0	

AHBL, INC

Flexure Axis & Load Combination	Mu k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. As in^2	s Actual A in^2	As Phi*N k-ft		Status
X-X, +1.40D	0.006791	+Z	Bottom	0.1728	AsMin	0.2667	4.	486	ок
X-X, +1.40D	0.006791	-Z	Bottom	0.1728	AsMin	0.2667	4.	486	OK
X-X, +1.20D	0.005821	+Z	Bottom	0.1728	AsMin	0.2667	4.	486	OK
X-X, +1.20D	0.005821	-Z	Bottom	0.1728	AsMin	0.2667	4.	486	OK
X-X, +1.20D+0.50W	0.005821	+Z	Bottom	0.1728	AsMin	0.2667	4.	486	OK
X-X, +1.20D+0.50W	0.005821	-Z	Bottom	0.1728	AsMin	0.2667	4.	486	OK
X-X, +1.20D+W	0.005821	+Z	Bottom	0.1728	AsMin	0.2667	4.	486	OK
X-X, +1.20D+W	0.005821	-Z	Bottom	0.1728	AsMin	0.2667	4.	486	OK
X-X, +1.20D+E	0.005821	+Z	Bottom	0.1728	AsMin	0.2667	4.	486	OK
X-X, +1.20D+E	0.005821	-Z	Bottom	0.1728	AsMin	0.2667	4.	486	OK
X-X, +0.90D+W	0.004366	+Z	Bottom	0.1728	AsMin	0.2667	4.	486	OK
X-X, +0.90D+W	0.004366	-Z	Bottom	0.1728	AsMin	0.2667		486	OK
X-X, +0.90D+E	0.004366	+Z	Bottom	0.1728	AsMin	0.2667	4.	486	OK
X-X, +0.90D+E	0.004366	-Z	Bottom	0.1728	AsMin	0.2667		486	OK
Z-Z, +1.40D	0.1277	-X	Bottom	0.1728	AsMin	0.2667		486	OK
Z-Z, +1.40D	0.1277	+X	Bottom	0.1728	AsMin	0.2667		486	OK
Z-Z, +1.20D	0.1095	-X	Bottom	0.1728	AsMin	0.2667		486	OK
Z-Z, +1.20D	0.1095	+X	Bottom	0.1728	AsMin	0.2667		486	OK
Z-Z, +1.20D+0.50W	0.03539	-X	Bottom	0.1728	AsMin	0.2667		486	OK
Z-Z, +1.20D+0.50W	0.1836	+X	Bottom	0.1728	AsMin	0.2667		486	OK
Z-Z, +1.20D+W	0.03772	-X	Тор	0.1728	AsMin	0.2667		686	OK
Z-Z, +1.20D+W	0.2582	+X	Bottom	0.1728	AsMin	0.2667		486	OK
Z-Z, +1.20D+E	0.06170	-X	Тор	0.1728	AsMin	0.2667		686	OK
Z-Z, +1.20D+E	0.3066	+X	Bottom	0.1728	AsMin	0.2667		486	OK
Z-Z, +0.90D+W	0.04874	-X	Тор	0.1728	AsMin	0.2667		686	OK
Z-Z, +0.90D+W	0.2415	+X	Bottom	0.1728	AsMin	0.2667		486	OK
Z-Z, +0.90D+E	0.05125	-X	Тор	0.1728	AsMin	0.2667		686	OK
Z-Z, +0.90D+E	0.3150	+X	Bottom	0.1728	AsMin	0.2667		486	OK
One Way Shear	0.0100		Dottom	0.1120	/ 0/////	0.2001		100	on
Load Combination	Vu @ -X	Vu @	+X Vu (🖞 -Z Vu @	+Z \	Vu:Max F	Phi Vn Vu	/ Phi*Vn	Status
+1.40D	3.40 p	-	3.40 psi	0.00 psi	0.00 psi	3.40 psi	82.16 psi	0.04	OK
+1.20D	2.92 p		2.92 psi	0.00 psi	0.00 psi	2.92 psi	82.16 psi	0.04	OK
+1.20D+0.50W	0.97 p		4.86 psi	0.00 psi	0.00 psi	4.86 psi	82.16 psi	0.06	OK
+1.20D+W	0.97 p 0.97 p		6.83 psi	0.00 psi	0.00 psi	6.83 psi	82.16 psi	0.00	OK
+1.20D+E			8.10 psi	0.00 psi	0.00 psi	8.10 psi	82.16 psi	0.00	OK
	1.73 p			•					
+0.90D+W	1.36 p		6.38 psi	0.00 psi	0.00 psi	6.38 psi	82.16 psi	0.08	OK
+0.90D+E	1.37 p	SI	8.29 psi	0.00 psi	0.00 psi	8.29 psi	82.16 psi	0.10	OK
Гwo-Way "Punching" Shear								All units	k
Load Combination		Vu		Phi*Vn		Vu / Phi*Vn			Status
+1.40D		3.2	8 psi	136.93psi		0.02395			ОК
+1.20D			1 psi	136.93 psi		0.02053			OK

Project File: 2230458.ec6

(c) ENERCALC INC 1983-2023

All units k

City of P Development & Pe ISSUED	ermitting Services
Building	Planning
Engineering	Public Works
Fire OF W	Traffic

Project Title: Engineer: Project ID: Project Descr: Korum Ford EV Court ADM 2230458.20 Foundation for Exterior EV Charging Station

General Footing

LIC# : KW-06014847, Build:20.23.04.05

DESCRIPTION: EV Foundation

Two-Way "Punching" Shear

AHBL, INC

Project File: 2230458.ec6

(c) ENERCALC INC 1983-2023

(-) = = = =	

wo-Way "Punching" Shear			All units k	
Load Combination	Vu	Phi*Vn	Vu / Phi*Vn	Status
+1.20D+W	2.82 psi	136.93 psi	0.02057	OK
+1.20D+E	2.85 psi	136.93 psi	0.02078	ОК
+0.90D+W	2.14 psi	136.93 psi	0.01564	ОК
+0.90D+E	2.19 psi	136.93 psi	0.01601	OK

SIMPSON

Strong-J

Anchor Designer™ Software Version 3.1.2209.3

Company:	AHBL	Date:	9/8/2022	
Engineer:	ADM	Page:	1/6	
Project:	Korum Ford EV Court			
Address:	2215 North 30th, Suite 300			
Phone:	253.383.2422			
E-mail:	dmceachern@ahbl.com			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Seismic forces have been increased by overstrength factor (2.0) per ACI.

2. Input Data & Anchor Parameters

General

Design method:ACI 318-19 Units: Imperial units

Anchor Information:

Anchor type: Torque controlled expansion anchor Material: Carbon Steel Diameter (inch): 0.625 Nominal Embedment depth (inch): 5.125 Effective Embedment depth, h_{ef} (inch): 4.500 Code report: ICC-ES ESR-3037 Anchor category: 1 Anchor ductility: Yes h_{min} (inch): 7.88 c_{ac} (inch): 9.00 C_{min} (inch): 8.00 S_{min} (inch): 2.75

Recommended Anchor

Anchor Name: Strong-Bolt® 2 - 5/8"Ø CS Strong-Bolt 2, hnom:5.125" (130mm) Code Report: ICC-ES ESR-3037

Project description: Anchorage of EV Chargers Location: Fastening description:

Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 8.00 State: Cracked Compressive strength, f_c (psi): 3000 $\Psi_{c,V}$: 1.0 Reinforcement condition: Supplementary reinforcement not present Supplemental edge reinforcement: Not applicable Reinforcement provided at corners: No Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No Ignore 6do requirement: Not applicable Build-up grout pad: No

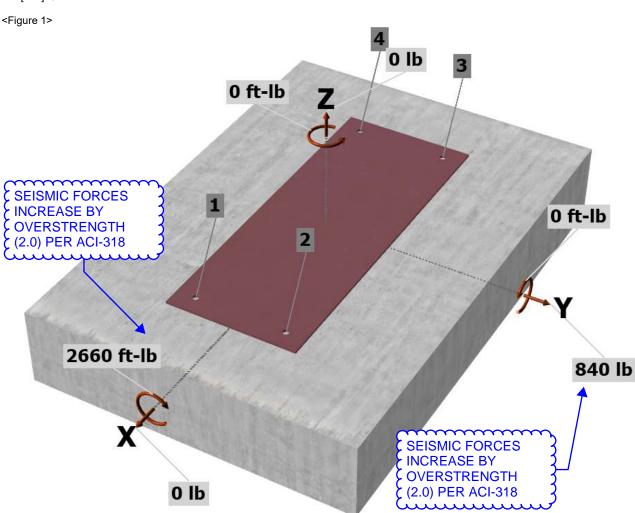
Base Plate

Length x Width x Thickness (inch): 33.50 x 13.25 x 0.25

SIMPSON

Strong-Tie

Anchor Designer™ Software Version 3.1.2209.3


Company:	AHBL	Date:	9/8/2022
Engineer:	ADM	Page:	2/6
Project:	Korum Ford EV Court		
Address:	2215 North 30th, Suite 300		
Phone:	253.383.2422		
E-mail:	dmceachern@ahbl.com		

Load and Geometry

Load factor source: ACI 318 Section 5.3 Load combination: not set Seismic design: Yes Anchors subjected to sustained tension: Not applicable Ductility section for tension: 17.10.5.3 (d) is satisfied Ductility section for shear: 17.10.6.3 (c) is satisfied Ω_0 factor: not set Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: Yes

Strength level loads:

 $\begin{array}{l} N_{ua} \; [lb]: \; 0 \\ V_{uax} \; [lb]: \; 0 \\ V_{uay} \; [lb]: \; 840 \\ M_{ux} \; [ft-lb]: \; -2660 \\ M_{uy} \; [ft-lb]: \; 0 \\ M_{uz} \; [ft-lb]: \; 0 \end{array}$

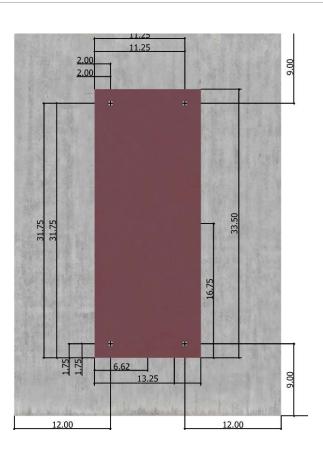
Anchor Designer™ Software Version 3.1.2209.3

Company:	AHBL	Date:	9/8/2022	
Engineer:	ADM	Page:	3/6	
Project:	Korum Ford EV Court			
Address:	2215 North 30th, Suite 300			
Phone:	253.383.2422			
E-mail:	dmceachern@ahbl.com			

City of Puyallup opment & Permitting Service ISSUED PERMIT

Planning

Public Works


Traffic

Building

Engineering

Fire

<Figure 2>

SIMPSON Strong-Ti	Anchor Designer™ Software Version 3.1.2209.3	Pr Ac Př	ompany: ngineer: oject: ddress: none: mail:	AHBL ADM Korum Ford EV Court 2215 North 30th, Suit 253.383.2422 dmceachern@ahbl.co	e 300	9/8/2022 4/6
<u>3. Resulting Ar</u> Anchor	Tension load,	Shear load x,	,	Shear load y,	Shear load co	
	Nua (Ib) 1466.6	V _{uax} (lb) 0.0		V _{uay} (lb) 210.0	√(V _{uax})²+(V _{uay})² 210.0	(ID)

210.0

210.0

210.0

840.0

<Figure 3>

210.0

210.0

210.0

840.0

•4

Engineering Public Works Fire Traffic	Eccentricity of resultant tension forces in y-axis, e_{Vy} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e_{Vy} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e_{Vy} (inch): 0.00	City of Puyallup Development & Permitting Services / ISSUED PERMIT Buildina Planning	-
		Engineering Public Works	

0.0

0.0

0.0

0.0

4. Steel Strength of Anchor in Tension (Sec. 17.6.1)

90.9

90.9

1466.6

3115.0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 4.08 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00

Maximum concrete compression strain (‰): 0.03

Maximum concrete compression stress (psi): 134

Resultant tension force (lb): 3115 Resultant compression force (lb): 3115

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
19070	0.75	14303

2

3

4

Sum

5. Concrete Breakout Strength of Anchor in Tension (Sec. 17.6.2)

$N_b = K_c \lambda_a \forall T$	" _c h _{ef} ¹.⁵ (Eq. 17.6	5.2.2.1)							
k _c	λa	<i>f'c</i> (psi)	<i>h</i> ef (in)	N₂ (lb))				
17.0	1.00	3000	4.500	8888					
0.75 <i>¢</i> N _{cbg} =	=0.75 <i>ф</i> (A _{Nc} / A _I	Nco) Yec,N Yed,N Yc	,N Ycp,NNb (Sec.	. 17.5.1.2 & Eq	ı. 17.6.2.1a)			
0.75 <i>¢N_{cbg} = A_{Nc} (in²)</i>	=0.75 <i>ф</i> (А _{Nc} / Ал А _{Nco} (in ²)	vco)	,NΨ _{cp,N} N _b (Sec Ψ _{ec,N}	. 17.5.1.2 & Eq <i>Ψ_{ed,N}</i>	<mark>ן. 17.6.2.1</mark> а <i>Ψ_{с,N}</i>) <i>Ψ_{ср,N}</i>	<i>N</i> ₅ (Ib)	ϕ	0.75 <i>¢N_{cbg}</i> (lb)

6. Pullout Strength of Anchor in Tension (Sec. 17.6.3)

0.75 <i>¢</i> Npn =	= $0.75\phi \Psi_{c,P}\lambda_{al}$	N _p (f'c/2,500) ⁿ (Sec. ⁻	17.5.1.2, Eq. ⁻	17.6.3.1 & Co	ode Report)	
Ψ_{cP}	2 -	$N_{\rm e}$ (lb)	f'c (psi)	n	d	

Ψc,P	λa	N _P (lb)	f'c (psi)	n	φ	0.75 <i>∲N_{pn}</i> (lb)
1.0	1.00	6895	3000	0.50	0.65	3682

SIMPS	SON And	hor Desig	hor™	Company:	AHBL		Dat	e: 9/8/202	22
				Engineer:	ADM		Pa	ge: 5/6	
Strong)= 1 (A			Project:	Korum Ford EV	/ Court			
	Versic	on 3.1.2209.3		Address:	2215 North 30t	h, Suite 300			
	w and the second			Phone:	253.383.2422				
				E-mail:	dmceachern@	ahbl.com			
			(200, 4774)				Development &	Puyallup Permitting Services D PERMIT Planning	s
3. Steel Str	ength of Anch	ior in Shear (S	<u>bec. 17.7.1)</u>				Dunung	1 iaining	
<u>3. Steel Str</u> Vsa (lb)	<u>ength of Anch</u> ¢ _{grout}	ϕ	<i>φ_{grout}φVsa</i> (lb)				Engineering	Public Works	
	•	•	-						
V _{sa} (lb) 9930). Concreto Shear perp	φ _{grout} 1.0 e Breakout Str pendicular to e	<i>∲</i> 0.65 ength of Anch dge in y-direc	¢ _{grout} ¢V _{se} (lb) 6455 nor in Shear (Sec. tion:		.2.1b)		Engineering	Public Works	
V _{sa} (lb) 9930). Concreto Shear perp	φ _{grout} 1.0 e Breakout Str pendicular to e	<i>∲</i> 0.65 ength of Anch dge in y-direc	φ _{grout} φV _{sa} (lb) 6455 nor in Shear (Sec.		.2.1b) V⊳y (Ib)		Engineering	Public Works	
<i>V_{sa}</i> (lb) 9930 9. Concreta Shear perp ∕ _{by} = min 7(¢grout 1.0 e Breakout Str pendicular to e	¢ 0.65 ength of Anch dge in y-direc "cca1 ^{1.5} ; 9λa√fcc	¢grout¢Vsa (lb) 6455 nor in Shear (Sec. etion: car ^{1.5}] (Eq. 17.7.2.2.1	a & Eq. 17.7.2			Engineering	Public Works	
$\frac{V_{se} \text{ (lb)}}{9930}$ b. Concrete Shear perp $\frac{V_{by}}{V_{by}} = \min[7(1 + 1)]$ 4.50	$\frac{\phi_{grout}}{1.0}$ e Breakout Str pendicular to e $(I_e / d_a)^{0.2} \sqrt{d_a \lambda_a} \sqrt{f}$ d_a (in) 0.625	ϕ 0.65 ength of Anct dge in y-direc r_{cca1} , $9\lambda_a\sqrt{f_{cc}}$ λ_a 1.00	¢grout¢Vsa (lb) 6455 hor in Shear (Sec. etion: ter 1.5 (Eq. 17.7.2.2.1 f'c (psi)	a & Eq. 17.7.2 <i>ca1</i> (in) 10.00	V _{by} (lb)		Engineering	Public Works	
$\frac{V_{se} (lb)}{9930}$ 3. Concrete Shear perp $\frac{V_{by}}{le (in)} = \min[7(le (in))]$ 4.50	$\frac{\phi_{grout}}{1.0}$ e Breakout Str pendicular to e $(I_e / d_a)^{0.2} \sqrt{d_a \lambda_a} \sqrt{f}$ d_a (in) 0.625	ϕ 0.65 ength of Anct dge in y-direc r_{cca1} , $9\lambda_a\sqrt{f_{cc}}$ λ_a 1.00	$\phi_{grout}\phi V_{sa}$ (lb) 6455 nor in Shear (Sec. tion: $\sigma^{1.5}$] (Eq. 17.7.2.2.1 f'_{c} (psi) 3000	a & Eq. 17.7.2 <i>ca1</i> (in) 10.00	V _{by} (lb) 14225	V _{by} (Ib)	Engineering	Public Works	(lb)

Shear parallel to edge in x-direction:

$V_{by} = \min[7($	le / da) $^{0.2}\sqrt{d_a\lambda_a}\sqrt{f'}$	c c a1 ^{1.5} ; 9λa√ f ′co	c _{a1} 1.5 (Eq. 17.7.2	.2.1a & Eq. 17.7	7.2.2.1b)			
I _e (in)	da (in)	λa	f'c (psi)	<i>c</i> a1 (in)	V _{by} (lb)			
4.50	0.625	1.00	3000	8.00	10179			
$\phi V_{cbgx} = \phi$ (2)(Avc / Avco) Vec, V	/ Ψed, V Ψc, V Ψh, V	/ _{by} (Sec. 17.5.1.2	2, 17.7.2.1(c) &	Eq. 17.7.2.1b)			
A_{Vc} (in ²)	A _{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{\textit{ed},\textit{V}}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{by} (lb)	ϕ	ϕV_{cbgx} (lb)
266.00	288.00	1.000	1.000	1.000	1.225	10179	0.70	16120

10. Concrete Pryout Strength of Anchor in Shear (Sec. 17.7.3)

$\phi V_{cpg} = \phi k$	$\phi V_{cpg} = \phi K_{cp} N_{cbg} = \phi K_{cp} (A_{Nc} / A_{Nco}) \Psi_{ec,N} \Psi_{ed,N} \Psi_{cp,N} N_b (\text{Sec. 17.5.1.2 \& Eq. 17.7.3.1b})$									
<i>K</i> _{cp}	A_{Nc} (in ²)	A _{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	ϕ	ϕV_{cpg} (lb)	
2.0	614.25	182.25	1.000	1.000	1.000	1.000	8888	0.70	41941	

11. Results

Interaction of Tensile and Shear Forces (Sec. 17.8)

Tension	Factored Load, N _{ua} (Ib)	Design Strength, øNn (lb)	Ratio	Status
Steel	1467	14303	0.10	Pass
Concrete breakout	3115	9098	0.34	Pass
Pullout	1467	3682	0.40	Pass (Governs)
Shear	Factored Load, V _{ua} (Ib)	Design Strength, øVո (lb)	Ratio	Status
Steel	210	6455	0.03	Pass
T Concrete breakout y+	- 840	10239	0.08	Pass (Governs)
Concrete breakout x-	420	16120	0.03	Pass (Governs)
Pryout	840	41941	0.02	Pass
Interaction check Nua	/øNn Vua/øVn	Combined Rati	o Permissible	Status
Sec. 17.8.1 0.4	0.00	39.8%	1.0	Pass

5/8"Ø CS Strong-Bolt 2, hnom:5.125" (130mm) meets the selected design criteria.

Anchor Designer™ Software Version 3.1.2209.3

Company:	AHBL	Date:	9/8/2022
Engineer:	ADM	Page:	6/6
Project:	Korum Ford EV Court		
Address:	2215 North 30th, Suite 300		
Phone:	253.383.2422		
E-mail:	dmceachern@ahbl.com		

City of Puyallup evelopment & Permitting Servi ISSUED PERMIT

Planning

Public Works

Building

Engineering

Fire

12. Warnings

- Per designer input, ductility requirements for tension have been determined to be satisfied - designer to verify.

- Per designer input, ductility requirements for shear have been determined to be satisfied - designer to verify.

- Designer must exercise own judgement to determine if this design is suitable.

- Refer to manufacturer's product literature for hole cleaning and installation instructions.