STORM DRAINAGE REPORT

Copperberry Condominiums

4002, 4010 and 4018 10th Street SE

Puyallup, WA

Prepared For:

Bill Riley Communities Family 1002 39th Avenue SW, Suite 104 Puyallup, WA 98373

Revised: June 10, 2023 Revised: April 8, 2023 Date: November 6, 2022

4625 – 126th Avenue East, Edgewood, WA 98372

(206) 450-5096

www.tebaldiengineering.com

ENGINEER'S CERTIFICATION

I hereby state that this Stormwater Site Plan for Copperberry Condominiums has been prepared by me or under my supervision and meets the standard of care and expertise which is usual and customary in this community for professional engineers. I understand that the City of Puyallup does not and will not assume liability for the sufficiency, suitability or performance of drainage facilities prepared by me.

Chris M. Tebaldi, P.E.

TABLE OF CONTENTS

1.0 PROPOSED PROJECT DESCRIPTION

A. Analysis of the Minimum Requirements

Figure 1.1 - Vicinity Map

Figure 1.2 - Flow Chart for Determining Requirements for New Development

2.0 EXISTING CONDITIONS DESCRIPTION

Figure 2.1 - Soils Map

- 3.0 INFILTRATION RATES / SOILS REPORTS
- 4.0 WELLS AND SEPTIC SYSTEM
- 5.0 FUEL TANKS
- 6.0 SUBBASIN DESCRIPTION
- 7.0 FLOODPLAIN ANALYSIS

Figure 7.1 – FEMA Floodplain Map

8.0 AESTHETIC CONSIDERATIONS FOR FACILITIES

9.0 FACILITY SIZING AND OFFSITE ANALYSIS

- A. Existing Site Hydrology
- B. Developed Site Hydrology
- C. Low Impact Development Features
- D. Performance Standards and Goals
- E. Flow Control System
- F. Water Quality System
- G. Conveyance System Analysis and Design
- Figure 9.1 Post-Developed Basin Map
- Appendix A WWHM Calculations
- Appendix B Geotechnical Soil Observation Report Dated March 5, 2021 prepared By Leroy Surveyors and Engineers, Inc.
- Appendix C Conveyance Calculations

1.0 PROJECT OVERVIEW

The proposed project site is located within a portion of the NE ¼ of Section 10, Township 19 North, Range 4 East of the Willamette Meridian with a total project site area of 0.86 acres. More specifically, the site is located at 4002, 4010 and 4018 10th Street SE, Puyallup, WA on tax parcel numbers 4389000160, -0170 and -0180. See Figure 1.1-Vicinity Map in this section for the location of the proposed project site.

The proposed development includes two new six plex condominiums along with the associated driveway and utilities. The project will involve the removal and disturbance of existing on-site soils and vegetation, and installation of site improvements required for development. The site is gently sloped, with approximately 20 feet of topographic relief from east to west. The existing site contains one storm drainage conveyance line along the western boundary.

The project site consists of a single Threshold Discharge Area and intends to match the existing drainage patterns on site. Under this proposal, the project contains 0.54 acres of new impervious surface, which is subject to all minimum requirements as specified in the flow chart (Figure 1.2) of this report. As part of the drainage requirements, the project intends to infiltrate all runoff from the improvements associated with the development. This Stormwater Site Plan will serve to address the drainage requirements contained within the 2019 Department of Ecology Stormwater Management Manual for Western Washington and City of Puyallup requirements. Please see the remainder of this plan for the project's design intent for mitigating any adverse impacts as a result of on-site improvements.

Area Summary			
	Pre-Developed	Developed	
Parcel Area	37,501 SF	37,501 SF	
Project Area (clearing limits)	31,124 SF	31,124 SF	
Pervious	31,124 SF	7,746 SF	
Driveway (PGIS)	-	8,259 SF	
North Building Roof	-	5,739 SF	
South Building Roof	-	6,343 SF	
Walk	-	3,307 SF	
Total Impervious	0 SF	23,378 SF	

A. ANALYSIS OF THE MINIMUM REQUIREMENTS

Minimum Requirement No. 1: Preparation of Stormwater Site Plan:

Response: The Stormwater Site Plan has been prepared pursuant to the City of Puyallup Stormwater Requirements and the 2019 Department of Ecology Surface Water Management Manual for Western Washington.

Minimum Requirement No. 2: Construction Stormwater Pollution Prevention:

Response: A Stormwater Pollution Prevention Plan (SWPPP) has been prepared pursuant to the 2019 Department of Ecology Surface Water Management Manual for Western Washington.

Minimum Requirement No. 3: Source Control of Pollution:

Response: The project will implement source control BMPs associated in accordance with the 2019 Department of Ecology Surface Water Management Manual for Western Washington. A maintenance and source control manual has been prepared as a part of this project.

Minimum Requirement No. 4: Preservation of Natural Drainage System and Outfalls:

Response: In the existing condition, stormwater generally sheet flows west to 9th Street Place SE. All runoff associated with the development is expected to be infiltrated and any bypass will be done such that the post-developed discharge off-site will be less than the pre-developed discharge.

Minimum Requirement No. 5: On-Site Stormwater Management:

Response: The proposed project is subject to City of Puyallup requirements which follow the 2019 Department of Ecology Surface Water Management Manual for Western Washington. The proposed project will meet the Low Impact Development Performance Standard.

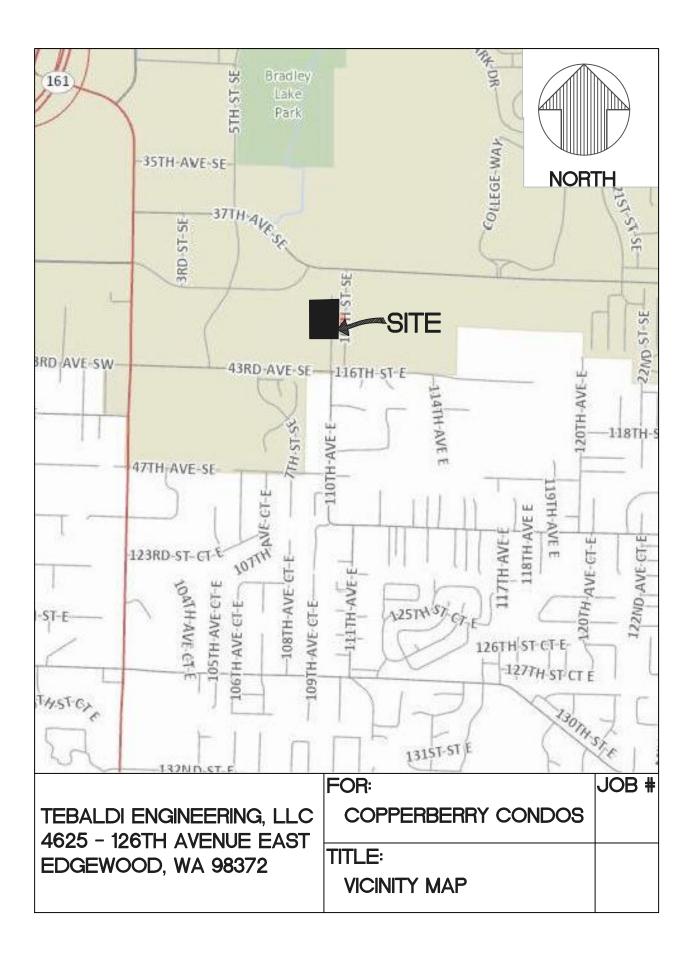
Minimum Requirement No. 6: Runoff Treatment:

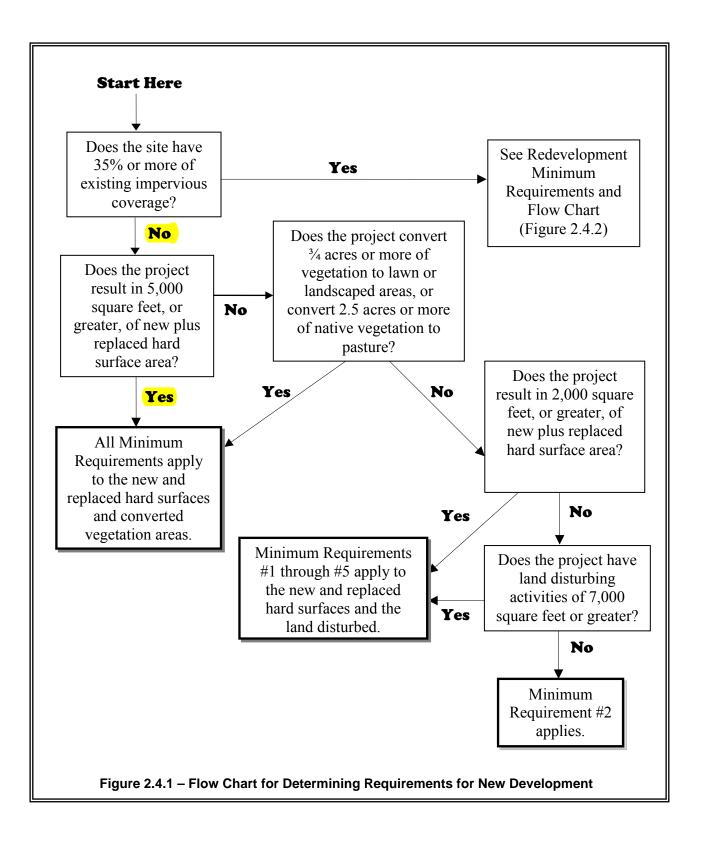
Response: The proposed project exceeds more than 5,000 square feet, therefore, water quality treatment will be required. Water quality requirements will be met in accordance with the stormwater manual.

Minimum Requirement No. 7: Flow Control:

Response: Flow control applies to the project. Flow control requirements will be met through the use of infiltration.

Minimum Requirement No. 8: Wetland Protection:


Response: The project does not discharge to any downstream wetlands.


Minimum Requirement No. 9: Operations and Maintenance:

Response: A maintenance and source control manual has been prepared that provides guidance on the requirements to maintain stormwater BMPs.

Minimum Requirement No. 10: Financial Liability

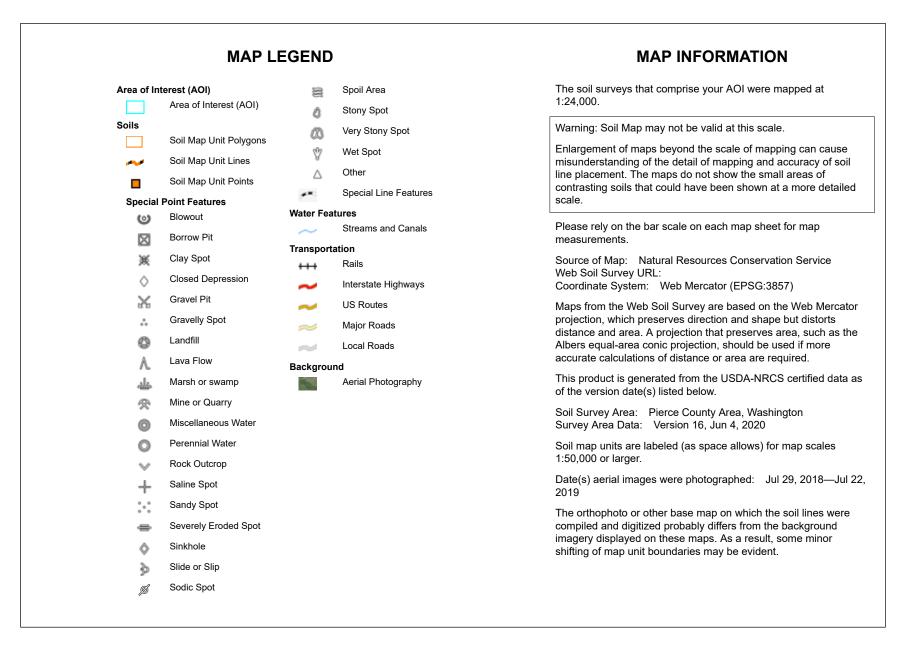
Response: All required financial guarantees/bonds will be provided for the proposed project.

2.0 EXISTING CONDITIONS SUMMARY

The project site is located at 4002, 4010 and 4018 10th Street SE, Puyallup, WA. The site is abutted by commercial and multi-family developments to the north and south. The project is bound by 9th Street Place SE to the west and 10th Street SE to the east. The site is vacant and contains approximately 37,501 square feet of existing vegetation. The site generally slopes from east to west with slopes ranging from 0 to 30 percent.

Stormwater runoff generally flows to the west across 9th Street PI SE and continuing west through the apartment complex ultimately discharging to the existing wetland south of 39th Ave SE. There is no upstream flow contributing to the property as the eastern edge of the property is the sidewalk along the west side of 10th Street SE.

The site does not contain any on-site critical areas.


On-site native soils are classified as Kapowsin Gravelly Ashy Loam with 0 to 6 percent slopes per the NRCS soil survey. This soil is a hydrologic soil group B soil and suitable for infiltration. The soils report done for the subject property identified more sandy-gravelly soils during exploration that are suitable for infiltration. See section 3.0 of this report for additional information.

See Figure 2.1 - Soils Map.

Conservation Service

Web Soil Survey National Cooperative Soil Survey

USDA

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
19B	Kapowsin gravelly ashy loam, 0 to 6 percent slopes	0.8	100.0%
Totals for Area of Interest		0.8	100.0%

3.0 INFILTRATION RATE / SOILS REPORT

A Geotechnical Soil Observation Report has been prepared by Leroy Surveyors and Engineers, Inc. dated March 5, 2021. On-site soils were identified to be coarse sand and gravel and well-draining. A design infiltration rate was determined by the geotechnical engineer using the grain size analysis method to be 6.5 inches/hr.

See Geotechnical Soil Observation Report included in Appendix B of this report.

4.0 WELLS AND SEPTIC SYSTEM

There are no wells or septic systems within the vicinity of the project.

5.0 FUEL TANKS

No existing in-use or abandoned fuel tanks were identified on or adjacent to the project site.

6.0 SUBBASIN DESCRIPTION

There is no upstream run-on tributary to the proposed project. The eastern property line is bound by an existing sidewalk for 10th Street SE that flows back into the storm drainage system for 10th Street SE.

The existing subbasin for the project consists of a single basin that discharges from the site via sheet flow to the west to the existing storm drainage system in 9th Street Place SE.

The downstream drainage path consists of the sheetflow leaving the site and flowing west across 9th Street PI SE and continuing west through the apartment complex ultimately discharging to the existing wetland south of 39th Ave SE. A majority of the runoff created by the proposed development will be infiltrated on-site resulting in a reduction of downstream flows from the subject property.

7.0 FLOODPLAIN ANALYSIS

The project site resides in Panel 53053C0344E, effective March 7, 2017, of FEMA's National Flood Hazard Layer, and is designated Zone X at minimal risk for flood hazard. The site does not Reside in and is not near the 100-year flood plain.

See Figure 7.1 – FEMA floodplain map.

8.0 AESTHETIC CONSIDERATIONS FOR FACILITIES

There are no proposed above-ground or surface drainage facilities associated with the project. The storm drainage facilities are proposed to be located below ground and installed in accordance with City of Puyallup requirements.

9.0 FACILITY SIZING AND DOWNSTREAM ANALYSIS

A. EXISTING SITE HYDROLOGY

The project site is located at 4002, 4010 and 4018 10th Street SE, Puyallup, WA. The site is vacant and contains approximately 37,501 square feet of existing vegetation. The site generally slopes from east to west with slopes ranging from 0 to 30 percent.

Stormwater runoff generally flows to the west across 9th Street PI SE and continuing west through the apartment complex ultimately discharging to the existing wetland south of 39th Ave SE. There is no upstream run-on tributary to the proposed project. The eastern property line is bounded by an existing sidewalk for 10th Street SE that flows back into the storm drainage system for 10th Street SE.

B. DEVELOPED SITE HYDROLOGY

The proposed development includes two new six plex condominiums along with the associated driveway and utilities. A majority of the runoff generated from the development will be collected and infiltrated on-site in an infiltration gallery. The gallery has been sized to meet the LID performance standard and flow control requirements. There will be some bypass of impervious sidewalk and some converted vegetation. See developed basin map in this section. The bypass of flows have been accounted for in the WWHM stormwater model. See stormwater runoff table below:

Area Summary			
	Pre-Developed	Developed	
Parcel Area	37,501 SF	37,501 SF	
Project Area (clearing limits)	31,124 SF	31,124 SF	
Predeveloped forest	31,124 SF	-	
Pervious (to trench)	-	2,035 SF	
Driveway (PGIS)	-	8,259 SF	
North Building Roof	-	5,739 SF	
South Building Roof	-	6,343 SF	
Walk (to trench)	-	1,859 SF	
Total Impervious (to trench)	-	22,200 SF	
Walk (bypass)	-	1,178 SF	
Pervious (bypass)	-	5,711 SF	

The general site topography and drainage patterns in the developed condition will maintain the natural drainage patterns present on site.

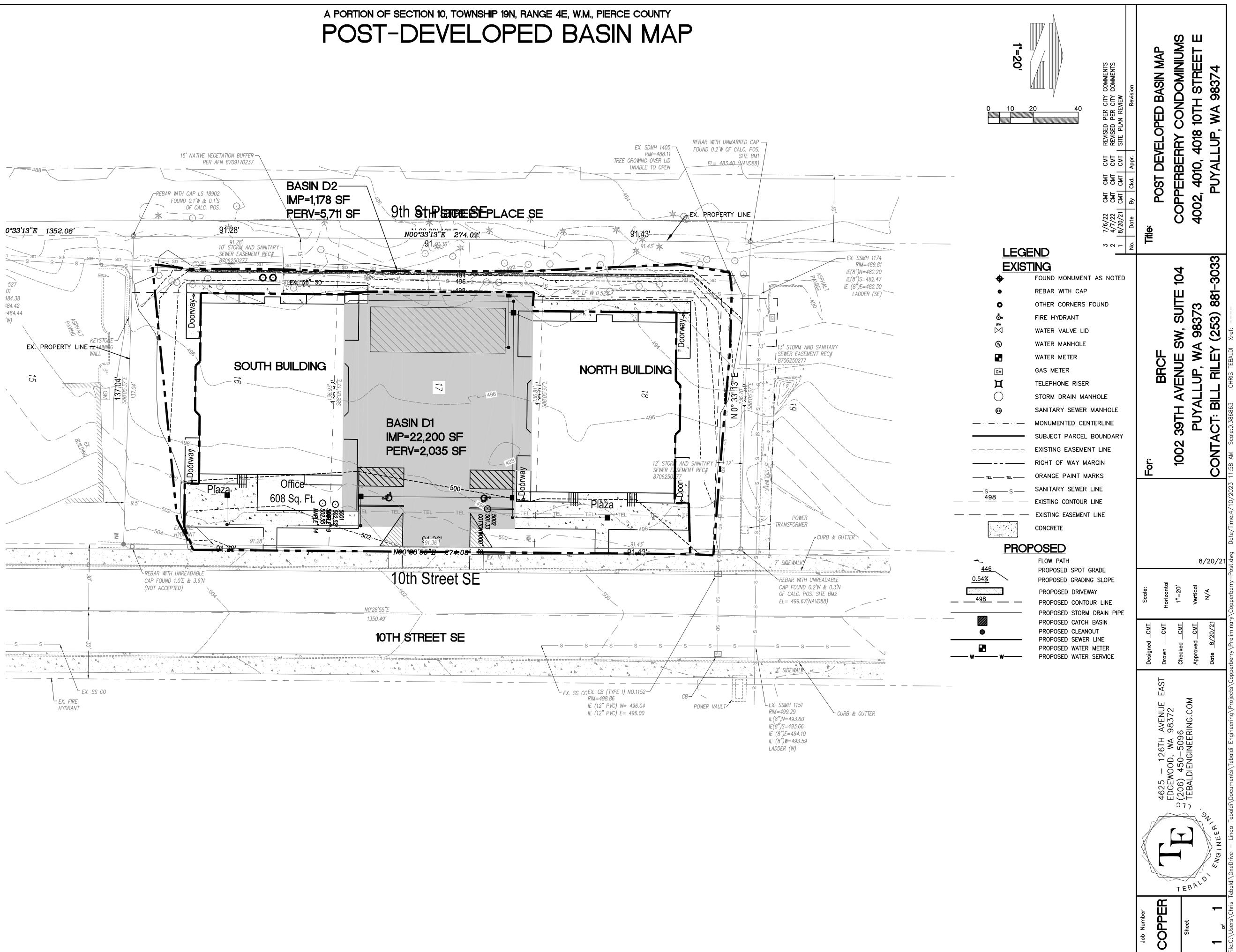
C. LOW IMPACT DEVELOPMENT FEATURES

Low impact development (LID) features are required for this project in accordance with the 2014 Ecology Stormwater Manual and Minimum Requirement No. 5. Compost amended topsoil is proposed for all disturbed soils that will be vegetated as a part of the project. The project proposed to meet the LID performance standard as the method of meeting minimum requirement No. 5.

D. PERFORMANCE STANDARDS AND GOALS

The project is subject to requirements pertaining to Low Impact Development and Flow Control. The infiltration gallery has been designed to infiltration the full influent runoff file. The overall project has been designed to meet the LID performance standards which matches post-developed discharge durations to the pre-developed for the range of discharges between 8% of the 2-year storm and 50% of the 2-year storm. The project has also been designed to meet the flow control standard which matches post-developed discharge durations to the pre-developed for the range of discharges between 50% of the 2-year storm to the full 50-year storm. Water quality will be designed to comply with the requirements of the 2019 Department of Ecology Stormwater Management Manual for Western Washington.

E. FLOW CONTROL SYSTEM


Flow control facilities will be achieved through the use of an infiltration gallery. Runoff from the tributary surfaces will be collected in a series of catch basins and pipes and routed to the proposed infiltration gallery.

F. WATER QUALITY SYSTEM

Water quality treatment will be provided for new pollution generating impervious surfaces. A Contech Stormfilter is proposed for water quality treatment. See sizing calculations in Appendix A.

G. CONVEYANCE SYSTEM ANALYSIS AND DESIGN

Conveyance sizing has been done to demonstrate that a 6-inch pipe can convey the 100-year design flow.

APPENDIX A

<section-header>

General Model Information

TRUST Project Name:		COPPERBERRY
Site Name:	Copperb	berry
Site Address:		
City:		
Report Date:	6/11/202	23
Gage:	40 IN EA	AST
Data Start:	10/01/19	901
Data End:	09/30/20)59
Timestep:	15 Minut	te
Precip Scale:	1.000	
Version Date:	2022/07/	/07
Version:	4.2.18	

POC Thresholds

Low Flow Threshold for POC1:	50 Percent of the 2 Year
High Flow Threshold for POC1:	50 Year

Landuse Basin Data Predeveloped Land Use

Predeveloped

Bypass:	No
GroundWater:	No
Pervious Land Use C, Forest, Mod	acre 0.87
Pervious Total	0.87
Impervious Land Use	acre
Impervious Total	0
Basin Total	0.87

Mitigated Land Use

Developed D1

No
No
acre 0.05
0.05
acre 0.19 0.28 0.04
0.51
0.56

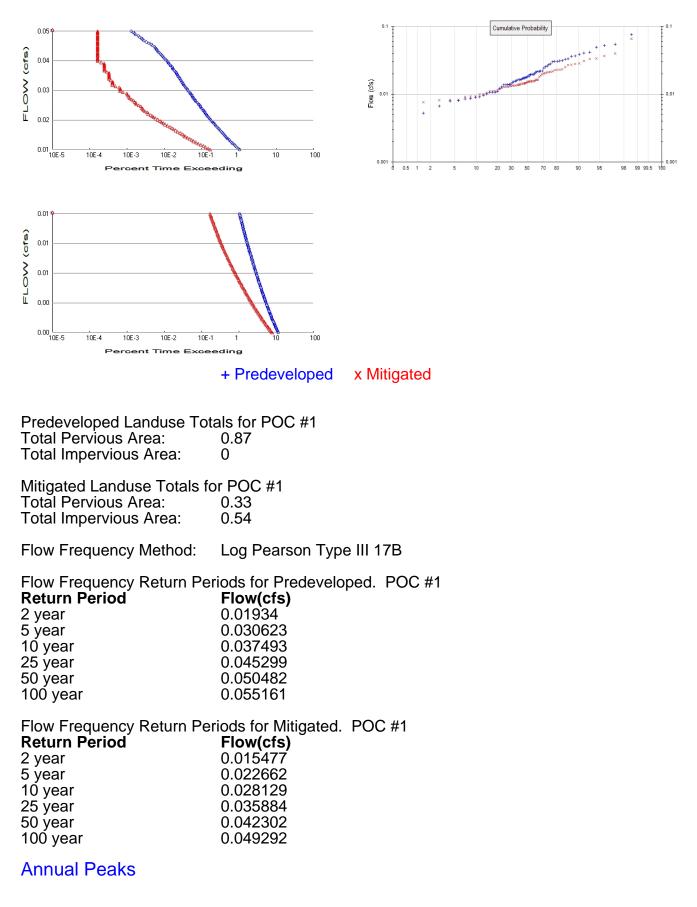
D2

Bypass:	Yes
GroundWater:	No
Pervious Land Use C, Pasture, Mod	acre 0.28
Pervious Total	0.28
Impervious Land Use SIDEWALKS FLAT	acre 0.03
Impervious Total	0.03
Basin Total	0.31

Routing Elements Predeveloped Routing

Mitigated Routing

StormTech 1


Chamber Model:	740	
Dimensions		
Max Row Length:	51.42	
Number of Chambers	: 20	
Number of Endcaps:	6	
Top Stone Depth:	6	
Bottom Stone Depth:	6	
Infiltration On		
Infiltration rate:	6.5	
Infiltration safety facto	r: 1	
Total Volume Infiltrate	d (ac-ft.):	100.931
Total Volume Through	n Riser (ac-ft.):	0
Total Volume Through	n Facility (ac-ft.):	100.931
Percent Infiltrated:		100
Total Precip Applied to	o Facility:	0
Total Evap From Facil		0
Discharge Structure	,	
Riser Height:	3.5 ft.	
Riser Diameter:	12 in.	
Element Flows To:		
Outlet 1	Outlet 2	

StormTech Hydraulic Table

Stage(feet) 0.0000 0.0833 0.1667 0.2500 0.3333 0.4167 0.5000 0.5833 0.6667 0.7500 0.8333 0.9167 1.0000 1.0833 1.1667 1.2500 1.3333 1.4167	Area(ac.) 0.015	Volume(ac-ft.) 0.000 0.001 0.001 0.002 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010 0.012 0.013 0.014 0.015	0.000 0.000	0.000 0.101
1.0000	0.015	0.009	0.000	0.101
1.0833	0.015	0.010	0.000	0.101
1.1667	0.015	0.012	0.000	0.101
1.2500	0.015	0.013	0.000	0.101
1.3333	0.015	0.014	0.000	0.101
1.4167	0.015	0.015	0.000	0.101
1.5000	0.015	0.016	0.000	0.101
1.5833	0.015	0.017	0.000	0.101
1.6667	0.015	0.018	0.000	0.101
1.7500	0.015	0.019	0.000	0.101
1.8333	0.015	0.020	0.000	0.101
1.9167	0.015	0.021	0.000	0.101
2.0000	0.015	0.022	0.000	0.101
2.0833	0.015	0.023	0.000	0.101
2.1667	0.015	0.024	0.000	0.101
2.2500	0.015	0.024	0.000	0.101

2.3333 2.4167	0.015 0.015	0.025 0.026	0.000 0.000	0.101 0.101
2.5000	0.015	0.027	0.000	0.101
2.5833	0.015	0.028	0.000	0.101
2.6667	0.015	0.028	0.000	0.101
2.7500	0.015	0.029	0.000	0.101
2.8333	0.015	0.030	0.000	0.101
2.9167	0.015	0.030	0.000	0.101
3.0000	0.015	0.031	0.000	0.101
3.0833	0.015	0.031	0.000	0.101
3.1667	0.015	0.032	0.000	0.101
3.2500	0.015	0.032	0.000	0.101
3.3333	0.015	0.033	0.000	0.101
3.4167	0.015	0.033	0.000	0.101
3.5000	0.015	0.034	0.000	0.101

Analysis Results POC 1

Year 1902 1903 1904 1905 1906 1907 1908	for Predeveloped Predeveloped 0.016 0.012 0.024 0.010 0.005 0.030 0.022	Mitigated 0.013 0.014 0.033 0.011 0.008 0.022 0.013	POC #1
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919	0.022 0.030 0.020 0.076 0.031 0.008 0.013 0.020 0.007 0.021 0.021 0.016	0.015 0.022 0.016 0.066 0.015 0.037 0.011 0.015 0.007 0.013 0.011	
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930	0.020 0.022 0.022 0.017 0.008 0.011 0.020 0.014 0.015 0.031 0.019	0.014 0.015 0.023 0.014 0.016 0.010 0.015 0.011 0.013 0.020 0.016	
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941	0.019 0.014 0.016 0.040 0.018 0.017 0.028 0.016 0.001 0.001 0.018 0.011	0.013 0.015 0.027 0.012 0.014 0.023 0.013 0.009 0.016 0.018	
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952	0.027 0.014 0.030 0.022 0.014 0.009 0.042 0.036 0.011 0.014 0.055	0.020 0.015 0.031 0.014 0.016 0.008 0.023 0.023 0.023 0.009 0.014 0.040	
1953 1954 1955 1956 1957	0.049 0.017 0.015 0.008 0.026	0.034 0.013 0.009 0.008 0.013	

1958	0.052	0.028
1959	0.033	0.025
1960	0.010	0.010
1961	0.033	0.027
1962	0.018	0.014
1963	0.009	0.008
1964	0.009	0.028
1965	0.037	0.021
1966	0.011	0.011
1967	0.017	0.020
1968	0.017	0.012
1969	0.016	0.014
1970	0.025	0.019
1971	0.039	0.021

Ranked Annual Peaks Ranked Annual Peaks for Predeveloped and Mitigated. POC #1

	Peaks for Prede	
Rank	Predeveloped	
1	0.0756	0.0656
2 3	0.0548	0.0398
3	0.0522	0.0368
4	0.0493	0.0337
5	0.0418	0.0333
6	0.0404	0.0310
7	0.0387	0.0284
8	0.0367	0.0279
9	0.0363	0.0273
10	0.0331	0.0269
11	0.0327	0.0249
12	0.0311	0.0234
13	0.0308	0.0229
14	0.0305	0.0228
15	0.0304	0.0227
16	0.0301	0.0216
17	0.0279	0.0215
18	0.0270	0.0210
19	0.0260	0.0209
20	0.0253	0.0205
21	0.0244	0.0202
22	0.0220	0.0197
23	0.0219	0.0188
24	0.0218	0.0179
25	0.0217	0.0164
26	0.0215	0.0163
27	0.0209	0.0163
28	0.0200	0.0157
29	0.0197	0.0156
30	0.0195	0.0154
31	0.0195	0.0154
32	0.0195	0.0154
33	0.0185	0.0153
34	0.0185	0.0152
35	0.0180	0.0151
36	0.0177	0.0147
37	0.0174	0.0145
38	0.0173	0.0143
39	0.0173	0.0143
40	0.0169	0.0143
-		

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63	0.0167 0.0163 0.0163 0.0159 0.0157 0.0152 0.0150 0.0141 0.0140 0.0139 0.0137 0.0137 0.0129 0.0121 0.0109 0.0107 0.0107 0.0106 0.0096 0.0091 0.0090	0.0142 0.0139 0.0138 0.0137 0.0135 0.0133 0.0133 0.0133 0.0131 0.0129 0.0111 0.0110 0.0100 0.0099 0.0093
59	0.0106	0.0110
60	0.0101	0.0106
61	0.0096	0.0100
63	0.0090	0.0093
64	0.0086	0.0092
65	0.0085	0.0092
66	0.0080	0.0083
67	0.0080	0.0082
68	0.0067	0.0082
69	0.0052	0.0076
70	0.0014	0.0065

LID Duration Flows The Facility PASSED

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.0015	274972	189068	68	Pass
0.0016	265888	178339	67	Pass
0.0017	257049	168518	65	Pass
0.0018	248457	159361	64	Pass
0.0019	240355	150915	62	Pass
0.0020	232695	142985	61	Pass
0.0020	225329	135399	60	Pass
0.0021	218283	128402	58	Pass
0.0022	211507	121847	57	Pass
0.0023	205026	115586	56	Pass
0.0024	198814	109866	55	Pass
0.0024	192848	104465	54	Pass
0.0025	187153	99456	53	Pass
0.0026	181481	94571	52	Pass
0.0027	176203	89955	51	Pass
0.0028	171121	85683	50	Pass
0.0029	166235	81657	49	Pass
0.0029	161521 157028	77753	48 47	Pass
0.0030 0.0031	152707	74242 70903	46	Pass Pass
0.0031	148509	67638	40 45	Pass
0.0033	144458	64594	44	Pass
0.0034	140579	61721	43	Pass
0.0034	136774	58922	43	Pass
0.0035	133091	56271	42	Pass
0.0036	129556	53791	41	Pass
0.0037	126168	51459	40	Pass
0.0038	122878	49225	40	Pass
0.0038	119711	47064	39	Pass
0.0039	116667	45125	38	Pass
0.0040	113720	43283	38	Pass
0.0041	110823	41516	37	Pass
0.0042	108074	39797	36	Pass
0.0043	105299	38128	36	Pass
0.0043	102697	36581	35 34	Pass
0.0044	100242 97811	35083	•	Pass
0.0045 0.0046	95356	33709 32383	34 33	Pass Pass
0.0040	92999	31082	33	Pass
0.0047	90716	29854	32	Pass
0.0048	88482	28676	32	Pass
0.0049	86272	27522	31	Pass
0.0050	84186	26441	31	Pass
0.0051	82172	25410	30	Pass
0.0052	80208	24367	30	Pass
0.0052	78244	23412	29	Pass
0.0053	76427	22476	29	Pass
0.0054	74660	21590	28	Pass
0.0055	73015	20802	28	Pass
0.0056	71345	20004	28	Pass
0.0056	69750	19287	27	Pass
0.0057	68203 66705	18511	27	Pass
0.0058	66705	17866	26	Pass

0.0059 0.0060 0.0061 0.0062 0.0063 0.0064 0.0065 0.0066 0.0066 0.0067 0.0068 0.0069 0.0070 0.0070 0.0070 0.0071 0.0072 0.0073 0.0074 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0078 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 0.0080 0.0079 0.0081 0.0081 0.0082 0.0083 0.0084 0.0085 0.0084 0.0085 0.0086 0.0087 0.0088 0.0088 0.0088 0.0089 0.0090 0.0091 0.0092 0.0093	65232 63759 62335 60985 59684 58358 57106 55878 54651 53448 52318 51189 50109 48979 47899 46868 45837 44904 43995 43087 42203 41295 40436 39576 38791 37980 37244 36483 35746 35059 34396 35759 34396 35759 34396 33709 33095 32432 31843 35746 35059 34396 33709 33095 32432 31843 31278 30738 30173 29584 29068 28528 27988	$\begin{array}{c} 17215\\ 16572\\ 15978\\ 15389\\ 14858\\ 14323\\ 13837\\ 13363\\ 12909\\ 12442\\ 12047\\ 11645\\ 11244\\ 10859\\ 10508\\ 10147\\ 9793\\ 9489\\ 9150\\ 8865\\ 8576\\ 8291\\ 8048\\ 7807\\ 7581\\ 7360\\ 7164\\ 6941\\ 6747\\ 6597\\ 6425\\ 6261\\ 6067\\ 5895\\ 5740\\ 5583\\ 5411\\ 5266\\ 5136\\ 5001\\ 4868\\ 4731\\ \end{array}$	$\begin{array}{c} 26\\ 25\\ 25\\ 25\\ 24\\ 24\\ 24\\ 23\\ 23\\ 23\\ 23\\ 22\\ 22\\ 22\\ 21\\ 21\\ 21\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 19\\ 19\\ 19\\ 19\\ 19\\ 19\\ 19\\ 19\\ 19\\ 19$	Pass Pass Pass Pass Pass Pass Pass Pass
0.0091	29068	5001	17	Pass
0.0094	27006	4466	16	Pass
0.0095 0.0096	26515 26024	4355 4242	16 16	Pass Pass
0.0097	25533	4132	16	Pass

Duration Flows

The Facility PASSED

Flow(cfs) 0.0097 0.0101 0.0105 0.0109 0.0113 0.0117 0.0121 0.0126 0.0130 0.0134 0.0138 0.0142 0.0146 0.0150 0.0154 0.0159 0.0163 0.0167 0.0171 0.0175 0.0179 0.0183 0.0187 0.0192 0.0183 0.0187 0.0192 0.0196 0.0200 0.0204 0.0200 0.0204 0.0208 0.0212 0.0216 0.0220 0.0224 0.0229 0.0233 0.0237 0.0241 0.0245 0.0249 0.0253 0.0257 0.0262 0.0266 0.0270 0.0270 0.0270	Predev 25533 23461 21575 19818 18259 16825 15600 14409 13299 12359 11532 10761 10056 9408 8772 8212 7655 7135 6683 6288 5917 5563 5202 4824 4488 4198 3955 3717 3563 5202 4824 4488 4198 3955 3717 3302 3135 2993 2855 2688 2521 2392 2260 2136 2037 1900 1765 1656 1555 1479	$\begin{array}{c} \text{Mit} \\ 4132 \\ 3626 \\ 3140 \\ 2708 \\ 2329 \\ 1986 \\ 1729 \\ 1505 \\ 1313 \\ 1159 \\ 1006 \\ 892 \\ 809 \\ 725 \\ 644 \\ 557 \\ 489 \\ 429 \\ 391 \\ 346 \\ 297 \\ 258 \\ 205 \\ 188 \\ 163 \\ 141 \\ 126 \\ 115 \\ 105 \\ 90 \\ 84 \\ 73 \\ 68 \\ 64 \\ 61 \\ 57 \\ 50 \\ 43 \\ 42 \\ 39 \\ 36 \\ 32 \\ 29 \end{array}$	Percentage 16 15 14 13 12 11 11 10 9 9 8 8 8 7 7 6 6 6 6 5 5 5 4 4 4 4 4 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2	Pass/Fail Pass Pass Pass Pass Pass Pass Pass Pas
0.0249 0.0253 0.0257 0.0262 0.0266	2136 2037 1900 1765 1656	50 43 42 39 36	2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1	Pass Pass Pass Pass Pass

0.041423541Pass0.041821941Pass0.042220641Pass	0.041423541Pass0.041821941Pass0.042220641Pass	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0315 0.0319 0.0323 0.0328 0.0332 0.0336 0.0340 0.0344 0.0348 0.0352 0.0356 0.0365 0.0369 0.0373 0.0377 0.0381 0.0385 0.0389 0.0394 0.0398 0.0402 0.0406 0.0410	859 813 777 740 712 680 643 614 581 556 536 514 487 453 428 410 392 364 342 324 310 288 272 254	12 10 10 10 9 8 8 8 8 8 8 8 7 6 6 6 6 6 6 6 6 5 4 4 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pass Pass Pass Pass Pass Pass Pass Pass
0.0422 200 4 1 Fass 0.0426 192 4 2 Pass 0.0431 176 4 2 Pass 0.0435 166 4 2 Pass 0.0439 156 4 2 Pass	0.0422 200 4 1 Pass 0.0426 192 4 2 Pass 0.0431 176 4 2 Pass 0.0435 166 4 2 Pass 0.0439 156 4 2 Pass 0.0443 148 4 2 Pass 0.0447 140 4 2 Pass 0.0451 133 4 3 Pass 0.0455 119 4 3 Pass	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0410 0.0414 0.0418	254 235 219	4 4 4	1 1 1	Pass Pass Pass
	0.0443 148 4 2 Pass 0.0447 140 4 2 Pass 0.0451 133 4 3 Pass 0.0455 119 4 3 Pass	0.0468 81 4 4 Pass	0.04688144Pass0.04726945Pass0.04766446Pass0.04806046Pass0.04845347Pass0.04884948Pass	0.0426 0.0431 0.0435	192 176 166	4 4 4	2 2 2 2	Pass Pass Pass

Water QualityWater Quality BMP Flow and Volume for POC #1On-line facility volume:0 acre-feetOn-line facility target flow:0 cfs.Adjusted for 15 min:0 cfs.Off-line facility target flow:0 cfs.Adjusted for 15 min:0 cfs.

LID Report

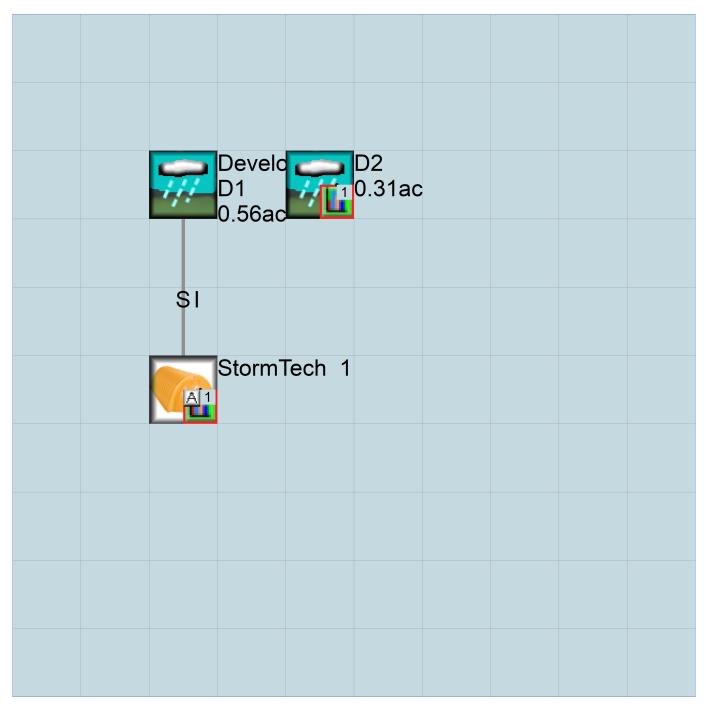
LID Technique	Used for Treatment ?		Volume Through Facility (ac-ft)	Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated		Percent Water Quality Treated	Comment
StormTech 1 POC		91.85				100.00			
Total Volume Infiltrated		91.85	0.00	0.00		100.00	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Passed

Model Default Modifications

Total of 0 changes have been made.

PERLND Changes

No PERLND changes have been made.


IMPLND Changes

No IMPLND changes have been made.

Appendix Predeveloped Schematic

Prede	veloper			
Prede 0.87a				

Mitigated Schematic

Predeveloped UCI File

RUN

GLOBAL WWHM4 model simulation END 3 0 START 1901 10 01 2059 09 30 RUN INTERP OUTPUT LEVEL RESUME 0 RUN 1 UNIT SYSTEM 1 END GLOBAL FILES <File> <Un#> <-----File Name---->*** * * * <-ID-> WDM 26 COPPERBERRY.wdm MESSII 25 PreCOPPERBERRY.MES PreCOPPERBERRY.L61 27 28 PreCOPPERBERRY.L62 30 POCCOPPERBERRY1.dat END FILES OPN SEOUENCE INGRP 11 INDELT 00:15 PERLND 501 COPY 1 DISPLY END INGRP END OPN SEQUENCE DISPLY DISPLY-INF01 # - #<-----Title---->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND 1 Predeveloped 1 2 30 MAX 9 END DISPLY-INF01 END DISPLY COPY TIMESERIES # - # NPT NMN *** 1 1 1)1 1 1 501 END TIMESERIES END COPY GENER OPCODE # # OPCD *** END OPCODE PARM K *** # # END PARM END GENER PERLND GEN-INFO <PLS ><-----Name----->NBLKS Unit-systems Printer *** User t-series Engl Metr *** # - # in out * * * 1 1 1 1 27 0 11 C, Forest, Mod END GEN-INFO *** Section PWATER*** ACTIVITY

 # # ATMP SNOW PWAT
 SED
 PST
 PWG
 PQAL
 MSTL
 PEST
 NITR
 PHOS
 TRAC

 11
 0
 0
 1
 0
 0
 0
 0
 0
 0

 END ACTIVITY PRINT-INFO

 # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC

 11
 0
 0
 0
 0
 0
 0
 1
 9

 END PRINT-INFO

PWAT-PARM1 <PLS > PWATER variable monthly parameter value flags ***

 # - # CSNO RTOP UZFG VCS VUZ VNN VIFW VIRC VLE INFC HWT ***

 11
 0
 0
 0
 0
 0
 0
 0

 END PWAT-PARM1 PWAT-PARM2
 <PLS >
 PWATER input info: Part 2

 # - # ***FOREST
 LZSN
 INFILT
 LSUR
 SLSUR
 KVARY
 AGWRC

 11
 0
 4.5
 0.08
 400
 0.1
 0.5
 0.996
 END PWAT-PARM2 PWAT-PARM3 PWAT-PARM3<PLS >PWATER input info: Part 3***# - # ***PETMAXPETMININFEXPINFILDDEEPFR1100220 BASETP AGWETP 0 0 0 END PWAT-PARM3 PWAT-PARM4 <PLS > PWATER input info: Part 4 * * *
 # - #
 CEPSC
 UZSN
 NSUR
 INTFW
 IRC
 LZETP ***

 11
 0.2
 0.5
 0.35
 6
 0.5
 0.7
 END PWAT-PARM4 PWAT-STATE1 <PLS > *** Initial conditions at start of simulation ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 ***
 # # *** CEPS
 SURS
 UZS
 IFWS
 LZS
 AGWS

 .1
 0
 0
 0
 0
 2.5
 1
 GWVS 11 0 END PWAT-STATE1 END PERLND IMPLND GEN-INFO <PLS ><-----Name----> Unit-systems Printer *** # - # User t-series Engl Metr *** * * * in out END GEN-INFO *** Section IWATER*** ACTIVITY # - # ATMP SNOW IWAT SLD IWG IQAL *** END ACTIVITY PRINT-INFO <ILS > ******* Print-flags ******* PIVL PYR # - # ATMP SNOW IWAT SLD IWG IQAL ******** END PRINT-INFO IWAT-PARM1 <PLS > IWATER variable monthly parameter value flags *** # - # CSNO RTOP VRS VNN RTLI *** END IWAT-PARM1 IWAT-PARM2 <PLS > IWATER input info: Part 2 ***
- # *** LSUR SLSUR NSUR RETSC END IWAT-PARM2 IWAT-PARM3 <PLS > IWATER input info: Part 3 * * * # - # ***PETMAX PETMIN END IWAT-PARM3 IWAT-STATE1 <PLS > *** Initial conditions at start of simulation # - # *** RETS SURS END IWAT-STATE1

SCHEMATIC <--Area--> <-Target-> MBLK *** <-factor-> <Name> # Tbl# *** <-Source-> <Name> # Predeveloped*** 0.87 COPY 501 12 0.87 COPY 501 13 PERLND 11 PERLND 11 *****Routing***** END SCHEMATIC NETWORK <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # #<-factor->strg <Name> # # <Name> # COPY 501 OUTPUT MEAN 1 1 48.4 DISPLY 1 INPUT TIMSER 1 <Name> # # *** <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # #<-factor->strg <Name> # # <Name> # # *** END NETWORK RCHRES GEN-INFO * * * RCHRES Name Nexits Unit Systems Printer # - #<----- User T-series Engl Metr LKFG * * * * * * in out END GEN-INFO *** Section RCHRES*** ACTIVITY # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG *** END ACTIVITY PRINT-INFO # - # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR ******** END PRINT-INFO HYDR-PARM1 * * * RCHRES Flags for each HYDR Section END HYDR-PARM1 HYDR-PARM2 # - # FTABNO LEN DELTH STCOR KS DB50 * * * <----><----><----><----> * * * END HYDR-PARM2 HYDR-INIT RCHRES Initial conditions for each HYDR section # *** . *** ac-ft <----> <---><---><---><---><---> END HYDR-INIT END RCHRES SPEC-ACTIONS END SPEC-ACTIONS FTABLES END FTABLES EXT SOURCES <-Volume-> <Member> SsysSgap<--Mult->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # tem strg<-factor->strg <Name> # # <Name WDM 2 PREC ENGL 1 PERLND 1 999 EXTNL PREC WDM 2 PREC ENGL 1 IMPLND 1 999 EXTNL PREC <Name> # # *** WDM

END IMPLND

6/11/2023 11:29:42 PM

WDM	1 EVAP	ENGL	1	perlnd 1	999 EXTNL	PETINP
WDM	1 EVAP	ENGL	1	IMPLND 1	999 EXTNL	PETINP
END EXT	SOURCES					
EXT TARG						
						sys Tgap Amd ***
	#					tem strg strg***
COPY 5 END EXT	01 OUTPUT	MEAN 1	1 48.4	WDM 501	FLOW E	NGL REPL
END EXI	TARGETS					
MASS-LIN	К					
	-		-> <mult></mult>	<target></target>	<-Grp>	<-Member->***
<name></name>			#<-factor->	<name></name>		<name> # #***</name>
MASS-L PERLND	INK PWATER	12 SUBO	0.083333	COPY	INPUT	MEAN
	SS-LINK	12	0.003333	COPI	INPUI	MEAN
		12				
MASS-L	INK	13				
PERLND	PWATER		0.083333	COPY	INPUT	MEAN
END MA	SS-LINK	13				

END MASS-LINK

END RUN

Mitigated UCI File

RUN GLOBAL WWHM4 model simulation END 3 0 START 1901 10 01 2059 09 30 RUN INTERP OUTPUT LEVEL RESUME 0 RUN 1 UNIT SYSTEM 1 END GLOBAL FILES <File> <Un#> <-----File Name---->*** * * * <-ID-> WDM 26 COPPERBERRY.wdm MESSU 25 MitCOPPERBERRY.MES 27 MitCOPPERBERRY.L61 28 MitCOPPERBERRY.L62 POCCOPPERBERRY1.dat 30 END FILES OPN SEOUENCE INGRP INDELT 00:15 16 PERLND 1 IMPLND IMPLND 4 IMPLND 8 PERLND 14 1 RCHRES 1 COPY COPY 501 COPY 601 DISPLY 1 END INGRP END OPN SEQUENCE DISPLY DISPLY-INF01 # - #<-----Title---->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND 1 StormTech 1 1 2 30 9 MAX END DISPLY-INFO1 END DISPLY COPY TIMESERIES # - # NPT NMN *** 1 1 1 501 1 1 601 1 1 END TIMESERIES END COPY GENER OPCODE # # OPCD *** END OPCODE PARM # K *** # END PARM END GENER PERLND GEN-INFO <PLS ><----Name---->NBLKS Unit-systems Printer *** User t-series Engl Metr *** # - # * * * in out 16 C, Lawn, Flat 14 C, Pasture, Mod 1 1 27 0 1 1 1 1 1 1 27 0 END GEN-INFO *** Section PWATER*** ACTIVITY # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ***

16 14 END ACTIV	0 0 VITY	0 0	1 1	0 0	0 0	0 0	0 0	0 0	0 0		0 0	0 0	
PRINT-INF <pls> # - # 16 14 END PRINT</pls>	***** ATMP 0 0	SNOW P 0 0	***** WAT S 4 4	SED 0	pst 0	PWG	PQAL 0	***** MSTL 0 0	pest 0	' NITR 0	PHOS	TRAC	******** 1 9
PWAT-PARN <pls> # - # 16 14 END PWAT-</pls>	PWAT CSNO 0 0	RTOP U 0	ZFG V	7CS 0	VUZ 0	VNN 0	VIFW O	VIRC 0	VLE 0	gs * INFC 0 0	НWТ О	* * *	
PWAT-PARN <pls> # - # 16 14 END PWAT-</pls>	***F0	REST 0 0	LZ	SN	IN	art 2 FILT 0.03 0.06		, LSUR 400 400		SLSUR 0.05 0.1		XVARY 0.5 0.5	0.996
PWAT-PARM <pls> # - # 16 14 END PWAT-</pls>	***PE'	TMAX 0 0	input PETM	inf IIN 0 0	IN	art 3 FEXP 2 2	II	vFILD 2 2	*** D	EEPFR 0 0		ASETP 0 0	
PWAT-PARN <pls> # - # 16 14 END PWAT-</pls>	P C	EPSC 0.1 0.15	UZ	SN 25		rt 4 NSUR 0.25 0.3		INTFW 6 6		IRC 0.5 0.5		LZETP 0.25 0.4	
PWAT-STA: <pls> # - # 16 14 END PWAT-</pls>	*** I: ra: ***	n from CEPS 0 0	1990	to e	end o		2 (pa	at 1-1	1-95			** AGWS 1 1	GWVS 0 0
END PERLND													
IMPLND GEN-INFO PLS > # - # 1 4 8 END GEN- *** Sect	ROADS ROOF ' SIDEW. INFO	/FLAT TOPS/F ALKS/F	LAT LAT			t-se	ries out 1 1	Pri Engl 27 27 27	Metr 0	* * *			
ACTIVITY <pls> # - # 1 4 8 END ACTIV</pls>	ATMP 0 0 0					ions IQAL 0 0 0	* * * * *		* * * *	****	* * * * *	* * * *	
PRINT-IN <ils> # - #</ils>	****							PYR *****	* * *				
COPPERBERR	Y					6/1	1/2023	11:29:4	2 PM				Pa

Page 28

1 0 4 0 8 0 END PRINT-INFO	$\begin{matrix} 0 & 4 \\ 0 & 4 \\ 0 & 4 \end{matrix}$	$\begin{array}{cccc} 0 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	1 9 1 9 1 9			
IWAT-PARM1 <pls> IWATE # - # CSNO R 1 0 4 0 8 0 END IWAT-PARM1</pls>			neter value fl ***	lags ***		
# - # *** L 1 4		01 0.1 01 0.1				
IWAT-PARM3 <pls> I # - # ***PET 1 4 8 END IWAT-PARM3</pls>	-	info: Part 3 IIN 0 0 0	; ***			
IWAT-STATE1 <pls> *** In # - # *** R 1 4 8 END IWAT-STATE1</pls>		tions at star NRS 0 0 0 0	t of simulati	Lon		
END IMPLND						
SCHEMATIC <-Source-> <name> # Developed D1*** PERLND 16 PERLND 16 IMPLND 1 IMPLND 4 IMPLND 8</name>		<area/> <-factor-> 0.05 0.05 0.19 0.28 0.04	<-Target-> <name> # RCHRES 1 RCHRES 1 RCHRES 1 RCHRES 1 RCHRES 1</name>	Tbl# *	* * *	
D2*** PERLND 14 PERLND 14 PERLND 14 PERLND 14 IMPLND 8 IMPLND 8		0.28 0.28 0.28 0.28 0.28 0.03 0.03	COPY 501 COPY 601 COPY 501 COPY 601 COPY 601 COPY 501 COPY 601 COPY 601 COPY 501 COPY 601	12 12 13 13 15 15		
*****Routing**** PERLND 16 IMPLND 1 IMPLND 4 IMPLND 8 PERLND 16 RCHRES 1 END SCHEMATIC	* *	0.05 0.19 0.28 0.04 0.05 1	COPY 1 COPY 1 COPY 1 COPY 1 COPY 1 COPY 501	12 15 15 15 13 17		
NETWORK <-Volume-> <-Grp> <name> # COPY 501 OUTPUT</name>	<name> # #</name>	<mult>Tra <-factor->str 48.4</mult>		#	<name> # #</name>	* * * * * *

<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** END NETWORK RCHRES GEN-INFO RCHRES Name Nexits Unit Systems Printer * * * * * * # - #<----> User T-series Engl Metr LKFG * * * in out 1 1 1 28 0 1 1 StormTech 1 2 END GEN-INFO *** Section RCHRES*** ACTIVITY # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG *** 1 1 0 0 0 0 0 0 0 0 0 0 0 END ACTIVITY PRINT-INFO # - # Hydr AdCa Cons heat sed GQL OXRX nutr plnk phcb pivl pyr ******** 1 4 0 0 0 0 0 0 0 0 0 0 1 9 END PRINT-INFO HYDR-PARM1 END HYDR-PARM1 HYDR-PARM2 #-# FTABNO LEN DELTH STCOR KS DB50 * * * <----><----><----><----> * * * 1 1 0.01 0.0 0.0 0.5 0.0 END HYDR-PARM2 HYDR-INIT RCHRES Initial conditions for each HYDR section * * * 4.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 0 END HYDR-INIT END RCHRES SPEC-ACTIONS END SPEC-ACTIONS FTABLES FTABLE 1 42 5 Depth Area Volume Outflow1 Outflow2 Velocity Travel Time*** (ft)(acres)(acre-ft)(cfs)(cfs)0.0000000.0155210.0000000.0000000.0000000.0833330.0155210.0005180.0000000.1017260.1666670.0155210.0010360.0000000.101726 (ft/sec) (Minutes)*** 0.250000 0.015521 0.001556 0.000000 0.101726 0.333333 0.015521 0.002074 0.000000 0.101726 0.416667 0.015521 0.002593 0.000000 0.101726 0.500000 0.015521 0.003111 0.000000 0.101726 $0.583333 \quad 0.015521 \quad 0.004237 \quad 0.000000 \quad 0.101726$ 0.666667 0.015521 0.005360 0.000000 0.101726 0.750000 0.015521 0.006477 0.000000 0.101726 0.833333 0.015521 0.007588 0.000000 0.101726 0.916667 0.015521 0.008692 0.000000 0.101726 1.000000 0.015521 0.009790 0.000000 0.101726 1.083333 0.015521 0.010879 0.000000 0.101726

1.166667 0.0155 1.250000 0.0155 1.33333 0.0155 1.416667 0.0155 1.500000 0.0155 1.583333 0.0155 1.666667 0.0155 1.750000 0.0155 1.916667 0.0155 2.000000 0.0155 2.083333 0.0155 2.166667 0.0155 2.250000 0.0155 2.33333 0.0155 2.416667 0.0155 2.583333 0.0155 2.583333 0.0155 2.583333 0.0155 2.583333 0.0155 2.583333 0.0155 2.583333 0.0155 2.583333 0.0155 2.583333 0.0155 3.000000 0.0155 3.083333 0.0155 3.166667 0.0155 3.250000 0.0155 3.250000 0.0155 3.250000 0.0155 3.33333 0.0155 3.416667 0.0155 END FTABLE 1 END FTABLES	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.000000 0 0.000000 0).101726).101726		
EXT SOURCES <-Volume-> <member <name> # <name> WDM 2 PREC WDM 2 PREC WDM 1 EVAP WDM 1 EVAP</name></name></member 	<pre>SsysSgap<] # tem strg<-f. ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL 1</pre>		<name> # # PERLND 1 999 IMPLND 1 999 PERLND 1 999</name>		<-Member-> *** <name> # # *** PREC PREC PETINP PETINP</name>
END EXT SOURCES					
EXT TARGETS <-Volume-> <-Grp> <name> # COPY 1 OUTPUT COPY 501 OUTPUT COPY 601 OUTPUT RCHRES 1 HYDR RCHRES 1 HYDR RCHRES 1 HYDR RCHRES 1 HYDR END EXT TARGETS</name>	<name> # #<-f: MEAN 1 1 MEAN 1 1</name>			t	

END MASS-LINK	12					
MASS-LINK PERLND PWATER END MASS-LINK	13 IFWO 13		0.083333	СОРҮ	INPUT	MEAN
MASS-LINK IMPLND IWATER END MASS-LINK	15 SURO 15		0.083333	СОРҮ	INPUT	MEAN
MASS-LINK RCHRES OFLOW END MASS-LINK	17 OVOL 17	1		СОРҮ	INPUT	MEAN

END MASS-LINK

END RUN

Predeveloped HSPF Message File

Mitigated HSPF Message File

ERROR/WARNING ID: 341 6 DATE/TIME: 1952/ 1/10 8:45 RCHRES: 1 The volume of water in this reach/mixed reservoir is greater than the value in the "volume" column of the last row of RCHTAB(). To continue the simulation the table has been extrapolated, based on information contained in the last two rows. This will usually result in some loss of accuracy. If depth is being calculated it will also cause an error condition. Relevant data are: NROWS V1 V2 VOL 42 1453.4 1476.0 1536.2 ERROR/WARNING ID: 341 5 DATE/TIME: 1952/ 1/10 8:45 RCHRES: 1 Calculation of relative depth, using Newton's method of successive approximations, converged to an invalid value (not in range 0.0 to 1.0). Probably ftable was extrapolated. If extrapolation was small, no problem. Remedy; extend ftable. Relevant data are: С RDEP1 rdep2 Α R COUNT 0.0000E+00 1352.2 -4.951E+03 3.6613 3.6613 2 ERROR/WARNING ID: 341 6 DATE/TIME: 1952/ 1/10 9: 0 RCHRES: 1 The volume of water in this reach/mixed reservoir is greater than the value in the "volume" column of the last row of RCHTAB(). To continue the simulation the table has been extrapolated, based on information contained in the last two rows. This will usually result in some loss of accuracy. If depth is being calculated it will also cause an error condition. Relevant data are: NROWS V1 V2 VOL 42 1453.4 1476.0 1617.8 ERROR/WARNING ID: 341 5 DATE/TIME: 1952/ 1/10 9: 0 RCHRES: 1 Calculation of relative depth, using Newton's method of successive approximations, converged to an invalid value (not in range 0.0 to 1.0). Probably ftable was extrapolated. If extrapolation was small, no problem. Remedy; extend ftable. Relevant data are: Α B С RDEP1 RDEP2 COUNT 0.0000E+00 1352.2 -9.834E+03 7.2724 7.2724E+00 2 ERROR/WARNING ID: 341 6 DATE/TIME: 1952/ 1/10 9:15 RCHRES: 1

The volume of water in this reach/mixed reservoir is greater than the value in the "volume" column of the last row of RCHTAB(). To continue the simulation the table has been extrapolated, based on information contained in the last two rows. This will usually result in some loss of accuracy. If depth is being calculated it will also cause an error condition. Relevant data are:

NROWS V1 V2 VOL 42 1.4534E+03 1476.0 1692.2

ERROR/WARNING ID: 341 5

DATE/TIME: 1952/ 1/10 9:15

1

RCHRES:

Calculation of relative depth, using Newton's method of successive approximations, converged to an invalid value (not in range 0.0 to 1.0). Probably ftable was extrapolated. If extrapolation was small, no problem. Remedy; extend ftable. Relevant data are:

A B C RDEP1 RDEP2 COUNT 0.0000E+00 1352.2 -1.429E+04 10.565 1.0565E+01 2

ERROR/WARNING ID: 341 6

DATE/TIME: 1952/ 1/10 9:30

1

RCHRES:

The volume of water in this reach/mixed reservoir is greater than the value in the "volume" column of the last row of RCHTAB(). To continue the simulation the table has been extrapolated, based on information contained in the last two rows. This will usually result in some loss of accuracy. If depth is being calculated it will also cause an error condition. Relevant data are:

NROWS V1 V2 VOL 42 1.4534E+03 1476.0 1762.6

ERROR/WARNING ID: 341 5

DATE/TIME: 1952/ 1/10 9:30

1

RCHRES:

Calculation of relative depth, using Newton's method of successive approximations, converged to an invalid value (not in range 0.0 to 1.0). Probably ftable was extrapolated. If extrapolation was small, no problem. Remedy; extend ftable. Relevant data are:

 A
 B
 C
 RDEP1
 RDEP2
 COUNT

 0.0000E+00
 1352.2
 -1.849E+04
 13.677
 1.3677E+01
 2

ERROR/WARNING ID: 341 6

DATE/TIME: 1952/ 1/10 9:45

1

RCHRES:

The volume of water in this reach/mixed reservoir is greater than the value in the "volume" column of the last row of RCHTAB(). To continue the simulation the table has been extrapolated, based on information contained in the last two rows. This will usually result in some loss of accuracy. If depth is being calculated it will also cause an error condition. Relevant data are:

NROWS V1 V2 VOL 42 1.4534E+03 1476.0 1830.6

COPPERBERRY

6/11/2023 11:29:42 PM

ERROR/WARNING ID: 341 5 DATE/TIME: 1952/ 1/10 9:45 RCHRES: 1 Calculation of relative depth, using Newton's method of successive approximations, converged to an invalid value (not in range 0.0 to 1.0). Probably ftable was extrapolated. If extrapolation was small, no problem. Remedy; extend ftable. Relevant data are: RDEP1 RDEP2 COUNT C Ά R 0.0000E+00 1352.2 -2.256E+04 16.686 1.6686E+01 2 ERROR/WARNING ID: 341 6 DATE/TIME: 1952/ 1/10 10: 0 RCHRES: 1 The volume of water in this reach/mixed reservoir is greater than the value in the "volume" column of the last row of RCHTAB(). To continue the simulation the table has been extrapolated, based on information contained in the last two rows. This will usually result in some loss of accuracy. If depth is being calculated it will also cause an error condition. Relevant data are: NROWS V2VOT. V1 42 1.4534E+03 1476.0 1897.3 ERROR/WARNING ID: 341 5 DATE/TIME: 1952/ 1/10 10: 0 RCHRES: 1 Calculation of relative depth, using Newton's method of successive approximations, converged to an invalid value (not in range 0.0 to 1.0). Probably ftable was extrapolated. If extrapolation was small, no problem. Remedy; extend ftable. Relevant data are: С RDEP1 RDEP2 COUNT Α В 0.0000E+00 1352.2 -2.655E+04 19.637 1.9637E+01 2 ERROR/WARNING ID: 341 6 DATE/TIME: 1952/ 1/10 10:15 RCHRES: 1 The volume of water in this reach/mixed reservoir is greater than the value in the "volume" column of the last row of RCHTAB(). To continue the simulation the table has been extrapolated, based on information contained in the last two rows. This will usually result in some loss of accuracy. If depth is being calculated it will also cause an error condition. Relevant data are: NROWS V2 VOL W1 42 1.4534E+03 1476.0 1911.1 ERROR/WARNING ID: 341 5 DATE/TIME: 1952/ 1/10 10:15 RCHRES: 1 Calculation of relative depth, using Newton's method of successive

6/11/2023 11:29:42 PM

approximations, converged to an invalid value (not in range 0.0 to 1.0).

Probably ftable was extrapolated. If extrapolation was small, no problem. Remedy; extend ftable. Relevant data are: С RDEP1 RDEP2 COUNT Δ 0.0000E+00 1352.2 -2.738E+0420.246 2.0246E+01 2 ERROR/WARNING ID: 341 6 DATE/TIME: 1952/ 1/10 10:30 RCHRES: 1 The volume of water in this reach/mixed reservoir is greater than the value in the "volume" column of the last row of RCHTAB(). To continue the simulation the table has been extrapolated, based on information contained in the last two rows. This will usually result in some loss of accuracy. If depth is being calculated it will also cause an error condition. Relevant data are: NROWS V1 V2 VOL 42 1.4534E+03 1476.0 1897.0 ERROR/WARNING ID: 5 341 DATE/TIME: 1952/ 1/10 10:30 RCHRES: 1 Calculation of relative depth, using Newton's method of successive approximations, converged to an invalid value (not in range 0.0 to 1.0). Probably ftable was extrapolated. If extrapolation was small, no problem. Remedy; extend ftable. Relevant data are: RDEP2 COUNT А B С RDEP1 0.0000E+00 1352.2 -2.654E+04 19.624 1.9624E+01 2 ERROR/WARNING ID: 341 6 DATE/TIME: 1952/ 1/10 10:45 RCHRES: 1 The volume of water in this reach/mixed reservoir is greater than the value in the "volume" column of the last row of RCHTAB(). To continue the simulation the table has been extrapolated, based on information contained in the last two rows. This will usually result in some loss of accuracy. If depth is being calculated it will also cause an error condition. Relevant data are: NROWS V1 V2 VOL 1867.1 42 1.4534E+03 1476.0 ERROR/WARNING ID: 341 5 DATE/TIME: 1952/ 1/10 10:45 RCHRES: 1 Calculation of relative depth, using Newton's method of successive approximations, converged to an invalid value (not in range 0.0 to 1.0). Probably ftable was extrapolated. If extrapolation was small, no problem. Remedy; extend ftable. Relevant data are: RDEP2 COUNT R С RDEP1 0.0000E+00 1352.2 -2.474E+04 18.300 1.8300E+01 2 ERROR/WARNING ID: 341 6 DATE/TIME: 1952/ 1/10 11: 0 COPPERBERRY 6/11/2023 11:29:42 PM Page 36 RCHRES:

The volume of water in this reach/mixed reservoir is greater than the value in the "volume" column of the last row of RCHTAB(). To continue the simulation the table has been extrapolated, based on information contained in the last two rows. This will usually result in some loss of accuracy. If depth is being calculated it will also cause an error condition. Relevant data are:

NROWS V1 V2 VOL 42 1.4534E+03 1476.0 1827.4

ERROR/WARNING ID: 341 5

1

DATE/TIME: 1952/ 1/10 11: 0

1

RCHRES:

Calculation of relative depth, using Newton's method of successive approximations, converged to an invalid value (not in range 0.0 to 1.0). Probably ftable was extrapolated. If extrapolation was small, no problem. Remedy; extend ftable. Relevant data are:

A B C RDEP1 RDEP2 COUNT 0.0000E+00 1352.2 -2.237E+04 16.546 1.6546E+01 2

ERROR/WARNING ID: 341 6

DATE/TIME: 1952/ 1/10 11:15

1

RCHRES:

The volume of water in this reach/mixed reservoir is greater than the value in the "volume" column of the last row of RCHTAB(). To continue the simulation the table has been extrapolated, based on information contained in the last two rows. This will usually result in some loss of accuracy. If depth is being calculated it will also cause an error condition. Relevant data are:

NROWS V1 V2 VOL 42 1.4534E+03 1476.0 1777.6

ERROR/WARNING ID: 341 5

DATE/TIME: 1952/ 1/10 11:15

1

RCHRES:

Calculation of relative depth, using Newton's method of successive approximations, converged to an invalid value (not in range 0.0 to 1.0). Probably ftable was extrapolated. If extrapolation was small, no problem. Remedy; extend ftable. Relevant data are:

 A
 B
 C
 RDEP1
 RDEP2
 COUNT

 0.0000E+00
 1352.2
 -1.939E+04
 14.342
 1.4342E+01
 2

ERROR/WARNING ID: 341 6

DATE/TIME: 1952/ 1/10 11:30

1

RCHRES:

The volume of water in this reach/mixed reservoir is greater than the value in the "volume" column of the last row of RCHTAB(). To continue the simulation the table has been extrapolated, based on information contained in the last two rows. This will usually result in some loss of accuracy. If depth is being calculated it will also cause an error condition. Relevant data are:

VOL NROWS V2 V1 42 1.4534E+03 1476.0 1721.2 ERROR/WARNING ID: 341 5 DATE/TIME: 1952/ 1/10 11:30 RCHRES: 1 Calculation of relative depth, using Newton's method of successive approximations, converged to an invalid value (not in range 0.0 to 1.0). Probably ftable was extrapolated. If extrapolation was small, no problem. Remedy; extend ftable. Relevant data are: RDEP2 COUNT С RDEP1 Α R 0.0000E+00 1352.2 -1.602E+04 11.847 1.1847E+01 2 ERROR/WARNING ID: б 341 DATE/TIME: 1952/ 1/10 11:45 1 RCHRES: The volume of water in this reach/mixed reservoir is greater than the value in the "volume" column of the last row of RCHTAB(). To continue the simulation the table has been extrapolated, based on information contained in the last two rows. This will usually result in some loss of accuracy. If depth is being calculated it will also cause an error condition. Relevant data are: NROWS V2 VOL V1 1660.4 42 1.4534E+03 1476.0 ERROR/WARNING ID: 341 5 DATE/TIME: 1952/ 1/10 11:45 RCHRES: 1 Calculation of relative depth, using Newton's method of successive approximations, converged to an invalid value (not in range 0.0 to 1.0). Probably ftable was extrapolated. If extrapolation was small, no problem. Remedy; extend ftable. Relevant data are: С RDEP1 RDEP2 COUNT Α В 0.0000E+00 1352.2 -1.238E+04 9.1560 9.1560E+00 2 ERROR/WARNING ID: 341 6 DATE/TIME: 1952/ 1/10 12: 0 RCHRES: 1 The volume of water in this reach/mixed reservoir is greater than the value in the "volume" column of the last row of RCHTAB(). To continue the simulation the table has been extrapolated, based on information contained in the last two rows. This will usually result in some loss of accuracy. If depth is being calculated it will also cause an error condition. Relevant data are: NROWS V2 VOL V1 42 1.4534E+03 1476.0 1596.5 ERROR/WARNING ID: 341 5 DATE/TIME: 1952/ 1/10 12: 0 RCHRES: 1

COPPERBERRY

Calculation of relative depth, using Newton's method of successive approximations, converged to an invalid value (not in range 0.0 to 1.0). Probably ftable was extrapolated. If extrapolation was small, no problem. Remedy; extend ftable. Relevant data are: RDEP2 COUNT Α R С RDEP1 0.0000E+00 1352.2 -8.558E+03 6.3292 6.3292E+00 2 ERROR/WARNING ID: 341 6 DATE/TIME: 1952/ 1/10 12:15 RCHRES: 1 The volume of water in this reach/mixed reservoir is greater than the value in the "volume" column of the last row of RCHTAB(). To continue the simulation the table has been extrapolated, based on information contained in the last two rows. This will usually result in some loss of accuracy. If depth is being calculated it will also cause an error condition. Relevant data are: NROWS V1 V2 VOL 42 1.4534E+03 1476.0 1531.5 ERROR/WARNING ID: 341 5 DATE/TIME: 1952/ 1/10 12:15 RCHRES: 1 Calculation of relative depth, using Newton's method of successive approximations, converged to an invalid value (not in range 0.0 to 1.0). Probably ftable was extrapolated. If extrapolation was small, no problem. Remedy; extend ftable. Relevant data are: RDEP1 RDEP2 COUNT Α R С -4.673E+03 0.0000E+00 1352.2 3.4556 3.4556E+00 2 ERROR/WARNING ID: 341 6 DATE/TIME: 1972/ 6/10 18:30 RCHRES: 1 The volume of water in this reach/mixed reservoir is greater than the value in the "volume" column of the last row of RCHTAB(). To continue the simulation the table has been extrapolated, based on information contained in the last two rows. This will usually result in some loss of accuracy. If depth is being calculated it will also cause an error condition. Relevant data are: NROWS V1 V2 VOL 1487.5 42 1.4534E+03 1476.0 ERROR/WARNING ID: 341 5 DATE/TIME: 1972/ 6/10 18:30 RCHRES: 1 Calculation of relative depth, using Newton's method of successive approximations, converged to an invalid value (not in range 0.0 to 1.0). Probably ftable was extrapolated. If extrapolation was small, no problem. Remedy; extend ftable. Relevant data are: В С RDEP1 RDEP2 COUNT Α 0.0000E+00 1352.2 -2.039E+03 1.5076 1.5076E+00 2

ERROR/WARNING ID: 341 6 DATE/TIME: 1972/ 6/10 18:45 RCHRES: 1 The volume of water in this reach/mixed reservoir is greater than the value in the "volume" column of the last row of RCHTAB(). To continue the simulation the table has been extrapolated, based on information contained in the last two rows. This will usually result in some loss of accuracy. If depth is being calculated it will also cause an error condition. Relevant data are: NROWS VOL V1 V2 42 1.4534E+03 1476.0 1563.0 ERROR/WARNING ID: 341 5 DATE/TIME: 1972/ 6/10 18:45 RCHRES: 1 Calculation of relative depth, using Newton's method of successive approximations, converged to an invalid value (not in range 0.0 to 1.0). Probably ftable was extrapolated. If extrapolation was small, no problem. Remedy; extend ftable. Relevant data are: R С RDEP1 RDEP2 COUNT 0.0000E+00 1352.2 -6.555E+03 4.8477 4.8477 2 ERROR/WARNING ID: 341 6 DATE/TIME: 1972/ 6/10 19: 0 RCHRES: 1 The volume of water in this reach/mixed reservoir is greater than the value in the "volume" column of the last row of RCHTAB(). To continue the simulation the table has been extrapolated, based on information contained in the last two rows. This will usually result in some loss of accuracy. If depth is being calculated it will also cause an error condition. Relevant data are: NROWS V2 VOL V1 1627.6 1476.0 42 1453.4 ERROR/WARNING ID: 341 5 DATE/TIME: 1972/ 6/10 19: 0 RCHRES: 1 Calculation of relative depth, using Newton's method of successive approximations, converged to an invalid value (not in range 0.0 to 1.0). Probably ftable was extrapolated. If extrapolation was small, no problem. Remedy; extend ftable. Relevant data are: С RDEP1 RDEP2 COUNT Α B 7.7067 7.7067E+00 -1.042E+04 0.0000E+00 1352.2 2 ERROR/WARNING ID: 341 6 DATE/TIME: 1972/ 6/10 19:15 RCHRES: 1 The volume of water in this reach/mixed reservoir is greater than the value

in the "volume" column of the last row of RCHTAB(). To continue the

simulation the table has been extrapolated, based on information contained in the last two rows. This will usually result in some loss of accuracy. If depth is being calculated it will also cause an error condition. Relevant data are: NROWS V1 V2 VOL 42 1.4534E+03 1476.0 1631.5 ERROR/WARNING ID: 341 5 DATE/TIME: 1972/ 6/10 19:15 RCHRES: 1 Calculation of relative depth, using Newton's method of successive approximations, converged to an invalid value (not in range 0.0 to 1.0). Probably ftable was extrapolated. If extrapolation was small, no problem. Remedy; extend ftable. Relevant data are: С RDEP1 RDEP2 COUNT Α В 0.0000E+00 1352.2 -1.065E+04 7.8780 7.8780E+00 2 ERROR/WARNING ID: 341 6 DATE/TIME: 1972/ 6/10 19:30 RCHRES: 1 The volume of water in this reach/mixed reservoir is greater than the value in the "volume" column of the last row of RCHTAB(). To continue the simulation the table has been extrapolated, based on information contained in the last two rows. This will usually result in some loss of accuracy. If depth is being calculated it will also cause an error condition. Relevant data are: NROWS V2 VOL V1 42 1.4534E+03 1476.0 1603.8 The count for the WARNING printed above has reached its maximum. If the condition is encountered again the message will not be repeated. ERROR/WARNING ID: 341 5 DATE/TIME: 1972/ 6/10 19:30 RCHRES: 1 Calculation of relative depth, using Newton's method of successive approximations, converged to an invalid value (not in range 0.0 to 1.0). Probably ftable was extrapolated. If extrapolation was small, no problem. Remedy; extend ftable. Relevant data are: RDEP2 COUNT С RDEP1 Α В 0.0000E+00 1352.2 -8.999E+03 6.6552 6.6552E+00 2

Disclaimer

Legal Notice

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2023; All Rights Reserved.

Clear Creek Solutions, Inc. 6200 Capitol Blvd. Ste F Olympia, WA. 98501 Toll Free 1(866)943-0304 Local (360)943-0304

www.clearcreeksolutions.com

APPENDIX B

March 5, 2021

BRCF 1002 39th Ave SW, #104 Puyallup, WA. 98373 253-881-3046

> <u>Geotechnical Soil Observation Report</u> Parcel Nos. 4389000160, 0170, 0180 Site Address – 4002 10th St SE LS&E Job No. 13298 Assessments Performed: 3/1/2021

Project Description

A geotechnical site and soil assessment is necessary for the proposed development of multifamily apartment buildings and the associated hard surfaces on the above referenced properties in order to make recommendations for site development and stormwater design plans. For this report we reviewed available published geological and soil information and made on site observations to gather additional in-situ information. Using a track-mounted excavator, we made several excavations throughout the sites and examined soil depth, texture, and gathered samples for grain-size analysis testing.

Information Sources

Soil identification and mapping for this assessment is supported by information from the Natural Resource Conservation Service (the Survey) and from the excavation and observations of test pits in representative locations on the site conducted for our review. Geologic information for this assessment is supported by information from the United States Geological Survey (USGS) *Draft* Geologic Map of the Puyallup 7.5 Minute Quadrangle, Washington. Our understanding of site geology is supported by the review of geologic mapping, published topographic and relief map layers from the Pierce County Geographical Information System (GIS), and site observations. Our opinions are based on our interpretation of the cumulative information and the contemporary conditions of the geologic setting.

Published Information Accuracy

It should be noted that the Survey, the USGS and/or DNR geologic maps, and the Pierce County GIS define general areas of soil deposits, geology, and landforms. Given the large areas to identify and limited sample points, the authors of the above sources had to infer boundaries, contacts, and other representations in some areas. Only through on-site reconnaissance can we further detail and adjust information from the maps as they relate to each site. They are not (from our experience) accurate on a lot by lot basis in all cases. In this case, the Survey does not agree with the in-situ conditions. There was another type of soil present. See 'Soil' section below for more explanation. The USGS unit identification agrees with the in-situ conditions.

BRCF Geotechnical Soil Observation Report March 5, 2021 Page 2 of 12

Site Description

General

This proposed project site is located in the City of Puyallup and includes three contiguous parcels, each 0.29-acres according to the Pierce County Assessor-Treasurer Information Portal. Slopes are variable throughout the site. Significant fill has been placed at differing depths, creating modified contours that do not follow the natural, predeveloped ground surface. An approximate 6 to 8 percent slope descends generally from east to west through the uppermost, near-level portion of the site. Placement of the fill created a steeper slope of approximately 10 to 29 percent near the western parcel boundaries on all three sites. This slope increases from south to north. The site is undeveloped and has several large deciduous trees and a few conifers in the western, sloped section. A few trees exist in the eastern portion of the site; blackberries dominate the eastern portion of the site. The site is bounded on the north and south by medical office buildings on mostly cleared lots, to the west by 9th St Pl SE and homes on partially cleared lots, and to the east by 10th St SE and several apartment buildings. Figure 1 illustrates the test pit locations on the site, within the local terrain.

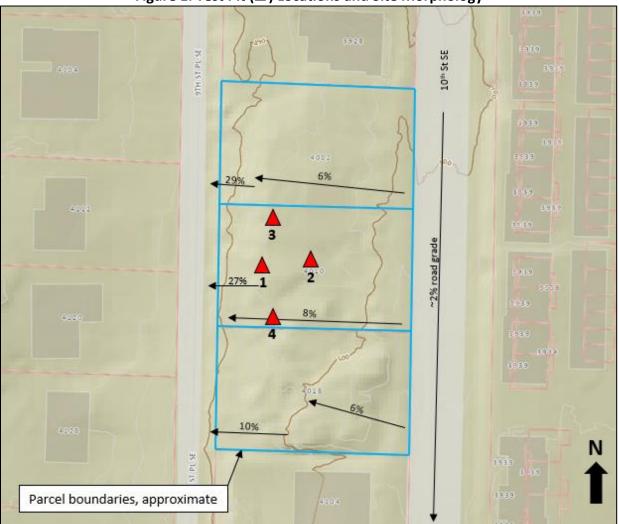
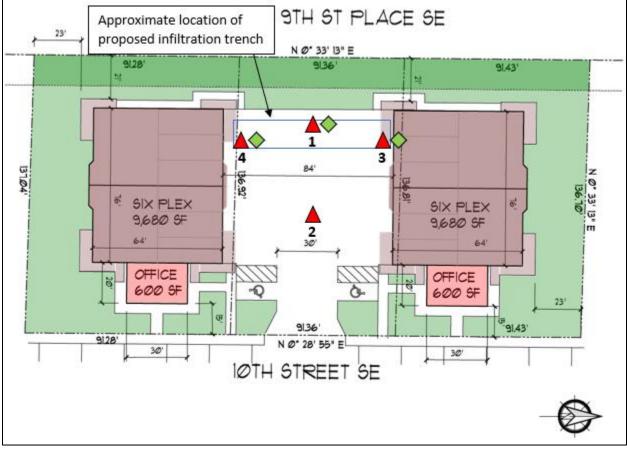



Figure 1: Test Pit (▲) Locations and Site Morphology

LeRoy Surveyors & Engineers, Inc. • P.O. Box 740, Puyallup, Washington 98371 253.848.6608 • fax 253.840.4140 • www.lseinc.com

Soil

As discussed in the 'Published Information Accuracy' section above; on-site reconnaissance is necessary to verify soil conditions on specific properties. Both the Survey and the geologic map describe materials of similar origin but disagree on the characteristics and location. Per the Survey, the type of soil throughout the site is the Kapowsin gravelly ashy loam. Indianola loamy sand and Everett very gravelly sandy loam is mapped just to the west and north of the project site. See Figure 3 below for site soil mapping.

Our in-situ examination of soil identifies a lodgment till layer within the lower horizon, approximately 24 inches below ground surface in test pit 2, and between 87 to 90 inches below ground surface (bgs) in the vicinity of test pits 1, 3, and 4. The soil series more descriptive of this lower soil horizon is Alderwood gravelly sandy loam. Another family of soils is present in the upper horizon. This soil is more indicative of the Everett soil series, found approximately 36 to 47 inches bgs in the vicinity of test pits 1, 3, and 4, extending to approximately 87 to 90 inches bgs before transitioning to Alderwood soil at depth. This upper in-situ soil texture is slightly coarser and classifies as a medium to coarse sand with gravel and cobbles rather than a gravelly ashy loam (till). A medium to coarse sand with gravel (or recessional outwash/outburst flood deposit) is consistent with the USGS findings. The soil found within the uppermost horizon is fill material. See soil logs attached.

BRCF Geotechnical Soil Observation Report March 5, 2021 Page 4 of 12

Alderwood 1B – Alderwood gravelly sandy loam, 0 – 6 percent slopes

This nearly level to undulating soil is moderately well drained. It formed in glacial till and is one of the most extensive soils in the broad uplands of the central part of the county. The predominant vegetation in this soil is made up of hardwoods and conifers. The typical elevation range is from 200 to 800 feet. Granite boulders and stones are strewn across some slopes. Included with this soil in mapping in some areas are as much as 10 percent poorly drained Bellingham and Norma soils and very poorly drained Dupont soils; other areas area as much as 5 percent Everett soils.

In a typical profile, a thin mat of undecomposed needles and wood fragments overlies a 1 ½ inch very dark grayish brown gravely sandy loam surface layer. The subsoil and the upper part of the substratum, to a depth of 38 inches, are dark yellowish brown, brown, and dark grayish brown gravelly sandy loam. The lower part of the substratum, to a depth of more than 60 inches is weakly cemented, compact glacial till. A perched water table develops for short periods during the winter and spring rainy seasons. Permeability is very slow in the weakly cemented, compact part of the substratum. Commonly root growth is generally matted directly above this layer. The available water capacity is low. Surface runoff is very slow to slow, and the erosion hazard is slight.

Everett 13C – Everett gravelly sandy loam, 5 - 15 percent slopes

This rolling soil is somewhat excessively drained. It formed in gravelly glacial outwash under conifers. Elevation ranges from 200 to 700 feet. Areas range from five acres to more than 400 acres in size. Included with this soil in mapping are about eight percent Alderwood soils. Also included are some areas that are as much as five percent sandy Indianola soils and ten percent gravelly Neilton soils and less sloping Everett soils. In a typical profile the surface layer is very dark brown gravelly sandy loam about two inches thick. The subsoil, between depths of two and 19 inches, is dark yellowish brown gravelly sandy loam and dark brown very gravelly coarse sandy loam. The substratum, between depths of 19 and more than 60 inches, is clean, loose very gravelly sand. Permeability is rapid. The available water capacity is low. Surface runoff is slow, and the erosion hazard is low. The effective rooting depth is more than four feet.

The USGS geologic mapping, found below in 'Geology', concurs with our in-situ test pit observations, and should be the source utilized for this report. While the NRCS mapping identifies soils of similar *origin*, they are not similar in characteristics or location.

Figure 3: Site Position in NRCS Soil Mapping (Excerpt)

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
13B	Everett very gravelly sandy loam, 0 to 8 percent slopes	0.0	0.1%
18C	Indianola loamy sand, 5 to 15 percent slopes	2.4	5.1%
19B	Kapowsin gravelly ashy loam, 0 to 6 percent slopes	41.2	89.6%
20B	Kitsap silt loam, 2 to 8 percent slopes	2.4	5.2%
Totals for Area of Interest		45.9	100.0%

Geology and Morphology

The property is situated on the margin of a broad deposit of glacial outburst flood deposits that occurred during and at the end of the Vashon Stade of the Fraser glaciation period. The margin of this flood deposit contacts a large glacial till formation to the east of the site, emplaced during the Vashon advance of the Fraser glaciation period. This stratigraphic unit is a basal, or lodgment, till, deposited and compressed under advancing glaciation. It is structurally stable and erosionally resistant. Its deposition occurred during the most recent advance of the Fraser Glaciation period. This lowland deposit is common in western Washington.

As glacial Lake Puyallup, located at the base of the Cascade Range foothills, would fill with seasonal runoff, the valley glaciers (acting as a natural dam) would repeatedly fail releasing vast amounts of water that would erode the lowland formations and subsequently deposit new

BRCF Geotechnical Soil Observation Report March 5, 2021 Page 6 of 12

sediment as floodwater abated. This local landscape still includes Kettle depressions formed by portions of ice blocks that were trapped in place. Outwash deposits surrounded the ice blocks. Figure 4 below illustrates the site position in the regional geology.

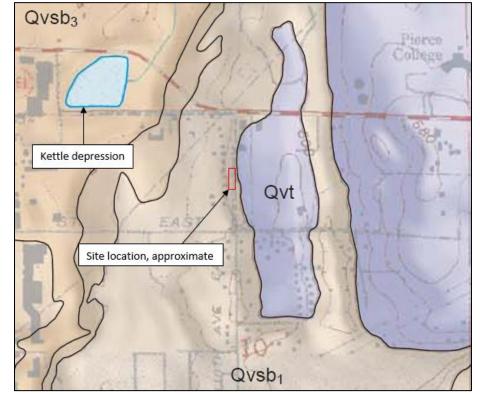


Figure 4: USGS *Draft* Geologic Map of the Puyallup 7.5 Minute Quadrangle (Excerpt)

Geologic Map Unit Descriptions:

Qvs	Steilacoom Grave	el of Walters and Kimmel (1968)—Sandy gravel and cobbles; clean to silty; poorly to well sorted; horizontally to cross bedded; loose to dense. Deposits vary from veneer of <1 to 15 m (3 to ~ 50 ft) thick. Deposited by multiple outburst floods from subsequently lower elevations of Glacial Lake Puyallup. Locally subdivided first by channel affiliation (Clover Creek or Bradley) and secondarily by relative age in descending series of deposits; higher number denotes younger (lower) deposit. Clover Creek channel (Bretz, 1913) begins in section 8, T19N, R4E. Bradley channel; herein named for Lake Bradley in section 3, T19N, R4E; begins in section 2, T19N, R4E. Numbering system contiguous w/adjacent Tacoma South quadrangle where multiple Clover Creek deposits are mapped (Troost, 2006). Mapable deposits consist of:
	QVS cc1	Clover Creek deposit at elevation ~380 ft
	QVS b4	Bradley deposit at elevation ~400 ft
	Qvs b3	Bradley deposit at elevation 420 - 440 ft
	Qvs b2	Bradley deposit at elevation 440 - 460 ft
	Qvs bl	Bradley deposit at elevation 460 - 480 ft

BRCF Geotechnical Soil Observation Report March 5, 2021 Page 7 of 12

Qvt	Vashon till—diamict with silty sand matrix supporting gravel and lesser amounts of bullet-shaped cobbles and boulders more than 3 m (10 ft) in diameter; few erratics; matrix varies locally in relative proportions of silt and sand; locally weakly stratified and contains well sorted, stratified and/or deformed beds and lenses of sand, gravel, and silt; commonly near saturation giving rise to an impression of cementation; dense to very dense; glacially overridden. One to >18 meters (3 to >60 ft) thick, discontinuous within mapped areas. Sub-horizontal to vertical joints common. Clasts subangular to well-rounded; predominantly northern Cascades provenance. Gray where unoxidized, light yellowish gray and loose where oxidized. Weak soil commonly developed in the till, oxidation rarely extends more than about a meter into the deposit. Generally forms undulating, striated, drumlinized surface. Also found sporadically within areas mapped as unit Qvi. Forms variously gradational and abrupt contacts with underlying advance outwash

Soil Characteristics

Depth

The City of Puyallup requires the available soil depth above seasonal groundwater to be verified between December 21st and March 31st, as required by the Stormwater Management Manual for Western Washington. To perform this observation, we monitored the 4 test pits advanced for the purpose of infiltration testing for groundwater or seepage.

	Depth Below	Depth Below	Depth Below	Depth Below
Date	Ground	Ground	Ground	Ground
	TP-1	TP-2	TP-3	TP-4
3/1/2021	95 in. (dry)	36 in. (dry)	95 in. (dry)	95 in. (dry)
	88 in. (mott'd)	24 in. (mott'd)	87 in. (mott'd)	90 in. (mott'd)

Table 1: Groundwater Monitoring Results

Based on the measured depths as per Table 1, approximately 7 feet of permeable native soil exists in the current setting above seasonal groundwater for design consideration. The location of TP-2 is not considered for placement of stormwater infiltration facilities. The depths observed are far greater than the potential influence of proposed infiltration facilities, and the level of precipitation has been at or greater than the normal expected amount for the region.

Findings

Based on these findings we have definitive understanding of soil depth and conditions throughout the site. As such, we can make infiltration trench design recommendations.

Infiltration Rates

Using the grain-size analysis method, test sites were selected in representative locations for the project design as shown in Figure 2. The depth at which soil samples were obtained for the grain-size analysis was established at the expected infiltrative soil horizon (which exists at approximately 60 inches below the existing ground surface). The soils in and around the

BRCF Geotechnical Soil Observation Report March 5, 2021 Page 8 of 12

proposed location of the stormwater infiltration trench are well-drained, medium to coarse sands with gravel that have not been consolidated by glacial advance.

Recommended Design Rate (Reference: 2015 Pierce County Stormwater Management & Site Development Manual, Appendix III-A, Method 3 – Soil Grain Size Analysis Method)

Estimated Initial Saturated Hydraulic Conductivity (K_{sat}):

 $Log_{10}(K_{sat}) = -1.57 + 1.90D_{10} + 0.015D_{60} - 0.013D_{90} - 2.08f_{fines}$

<u>SOIL</u> SAMPLE	<u>D10</u>	<u>D60</u>	<u>D90</u>	<u>fines</u>	<u>1.90D10</u>	<u>0.015D60</u>	0.013D90	2.08fines	<u>log10</u> <u>(Ksat)</u>	<u>Ksat (cm/s)</u>	<u>Ksat</u> (in/hr)
1	0.014	3.60	22.0	0.27	0.0266	0.054	0.286	0.5616	-2.3370	0.004603	6.52
2	0.024	3.00	24.0	0.21	0.0456	0.045	0.312	0.4368	-2.2282	0.005913	8.38
3	0.15	17.0	42.0	0.073	0.285	0.255	0.546	0.1518	-1.7278	0.018714	26.52

Table 2: Soil Grain-size Analysis Method R
--

DESIGN INFILTRATION RATE

KSAT_(DESIGN) = 6.52, use **6.50 in./hr**.

Soil Sample 1 gives the lowest, most conservative value for K_{sat} of the three samples taken. This is the value that will be used for design, rounding to a final design rate of 6.50 in./hr. It is our opinion that this is the most conservative approach to determining an infiltration design rate for a specific soil type. It is our experience is that actual infiltration rates far exceed this value.

Stormwater Design Recommendations

Given the coarse, sandy soil conditions in the vicinity of test pits 1, 3, and 4, infiltration trenches are feasible for stormwater control. Infiltration rates of the in-situ soil is found to be 6.50 in./hr. using the grain-size analysis correction factors, shown above. Correction factors for the grain-size analysis method are the most conservative of all common methods. This procedure and form of analysis is utilized and accepted in all jurisdictions we have assessed, and it is our experience that stormwater infiltration design values derived from this method are by far the most conservative.

Foundation Bearing Capacity

Test pits demonstrate that the subsurface conditions throughout the site are composed predominantly of 1-4' of long-existing fine to medium sand with gravel fill placed directly upon native soils. There is a layer within this fill that includes organics, found at depths of approximately 2.5 to 4 feet bgs. Geologic maps and soil maps illustrate that the subsurface conditions throughout the sites are composed of medium to coarse sand with gravel, and at varying depth, this is overlaying a compact till layer. Sand is favorable for projects requiring average bearing capacity. The gravelly sand found throughout the project site is shown below as having a presumptive load-bearing value of 3000 psf. We recommend a conservative design value of 2000 psf bearing capacity per Figure 5. This is provided that the organic layer of fill identified in the attached soil logs is removed and replaced with well-drained structural fill. Organics within the foundation zone break down over time, accelerating settlement and

possible failure of the foundation. The 2018 International Building Code (IBC) Chapter 18 provides expected capacities based on material classification. Please see Figure 5 below for an illustration of expected bearing capacity per the IBC.

Bearing surfaces should be medium dense or denser, undisturbed native soils which have been stripped of surficial organic soils, or on properly compacted structural fill which bears on undisturbed native soils which have been stripped of surficial organic soils. In general, before foundation concrete is placed, any localized zones of loose soils exposed across the footing subgrades should be compacted to a firm, unyielding condition, and any localized zones of soft, organic, or debris-laden soils should be over-excavated and replaced with suitable structural fill.

TABLE 1806.2 PRESUMPTIVE LOAD-BEARING VALUES				
CLASS OF MATERIALS	VERTICAL	LATERAL BEARING PRESSURE (psf/ft below natural grade)	LATERAL SLIDING RESISTANCE	
CLASS OF MATERIALS	PRESSURE (psf)		Coefficient of friction ^a	Cohesion (psf) ^b
1. Crystalline bedrock	12,000	1,200	0.70	
2. Sedimentary and foliated rock	4,000	400	0.35	
3. Sandy gravel and gravel (GW and GP)	3,000	200	0.35	
4. Sand, silty sand, clayey sand, silty gravel and clayey gravel (SW, SP, SM, SC, GM and GC)	2,000 Use	150	0.25	
5. Clay, sandy clay, silty clay, clayey silt, silt and sandy silt (CL, ML, MH and CH)	1,500	100		130

Figure 5: 2018 International Building Code (IBC) Excerpt

On-Site Soils

We offer the following evaluation of these on-site soils in relation to potential use as structural fill.

Surficial organic soils: The duff and topsoil mantling most of the site are not suitable for use as structural fill under any circumstances due to their high organic content. Consequently, these materials can be used only for non-structural purposes such as landscaping areas.

Weathered and unweathered glacial till: Any present weathered and unweathered glacial till layers are sensitive to moisture content variations. These soils can be reused during dry conditions but will become increasingly difficult to reuse as conditions become wetter.

BRCF Geotechnical Soil Observation Report March 5, 2021 Page 10 of 12

Permanent Slopes and Walls

All permanent cut slopes and fill slopes should be adequately inclined to minimize long-term raveling, sloughing, and erosion. We generally recommend no permanent slopes be steeper than 2H:1V. For all soil types, the use of flatter slopes, such as 2.5H:1V, would further reduce long-term erosion and facilitate revegetation. Fill slopes should consist of free-draining material placed on terraced cuts in native material, compacted to unyielding condition in 12 inch lifts. Landscape walls shall be no more than 4 feet in height, should have the bottom rock or block buried half its height in compacted fill or native soil, placed on a foundation of 4 inches of crushed rock, minimum, and have a surcharge of 4H:1V or less. As stated prior for bearing surfaces of foundations above, surfaces for foundation of landscape walls should be medium dense or denser, undisturbed native soils which have been stripped of surficial organic soils. In general, before crushed rock foundation is placed, any localized zones of loose soils exposed across the subgrades should be compacted to a firm, unyielding condition, and any localized zones of soft, organic, or debris-laden soils should be over-excavated and replaced with suitable structural fill.

Slope Protection

We recommend a hardy vegetative groundcover should be established as soon as feasible to protect the slopes from runoff water erosion. Alternatively, permanent slopes could be armored with quarry spalls or a geosynthetic erosion mat.

Lateral Resistance

Footings and structures that have been properly backfilled as recommended above will resist lateral movements by means of passive earth pressure and base friction. Passive earth pressures developed from compacted granular fill could be estimated using an equivalent fluid unit weight (using Hf Fill criteria) of 300 pcf. This value assumes that the structures extend at least 1.5 feet below the lowest adjacent exterior grade, are properly drained, and that the backfill around the structure is compacted in accordance with the recommendations for structural fill outlined herein. If footings are cast directly against native, undisturbed glacial till, passive earth pressure could be increased to an equivalent fluid unit weight of 450 pcf. Passive resistance against below-grade retaining walls or buried structures can be assumed to be equivalent to an equivalent fluid unit weight of 450 pcf. The above equivalent fluid unit weights include a factor of safety of 1.5 to limit lateral deflection. Also, cohesion of soil was neglected making these numbers inherently conservative. Active Earth Pressures are estimated at 30 pcf. We recommend an allowable base friction coefficient of 0.5 for use between cast-inplace concrete and undisturbed, dense, glacially overridden soil. An allowable base friction coefficient of 0.35 should be used for footings bearing on undisturbed sandy gravels and compacted structural fill.

BRCF Geotechnical Soil Observation Report March 5, 2021 Page 11 of 12

Conclusions

<u>Roof Runoff Control</u>: Based on soil depth and texture, subsurface infiltration trenches are appropriate.

<u>Construction Timing</u>: Site construction on many properties with shallow soil, fine soil (moisture sensitivity), and shallow groundwater must be carefully considered and include geotechnical monitoring. Fortunately, this site has well-drained soils throughout the western half of the property. Inclement weather would have little to no impact on the native soils, provided the lower till layer is relatively undisturbed.

<u>Geotechnical Oversight</u>: For this or any similar design to be successfully implemented, we recommend coordination with LS&E to ensure compliance with design.

Recommended Additional Services

Please feel free to contact LS&E for consultation as needed during site development. A preconstruction meeting may be beneficial. Preparation of a letter summarizing all review comments (if required by Pierce County) may be necessary. LS&E is available to check all completed subgrades for footings before concrete is poured to verify their bearing capacity, as well as inspect all trenches prior to backfill. LS&E is available to oversee and inspect compaction of all fill and backfill. Preparation of a post-construction letter summarizing all field observations, inspections, and test results (if required by Pierce County) can be provided by LS&E in the future.

References

Debray, S. and Savage, W.Z., 2001, A Preliminary Finite-Element Analysis of a Shallow Landslide in the Alki Area of Seattle, Washington: U.S. Geological Survey Open File Report 01-0357, 5 p.

Koloski, J.W., Schwarz, S.D., and Tubbs, D.W., 1989, Engineering Geology in Washington, Volume 1, "Geotechnical Properties of Geologic Materials: Washington Division of Geology and Earth Resources Bulletin 78, 1989", 9p.

Savage, W.Z., Morrissey, M.M., and Baum, R.L., 2000, Geotechnical Properties for Landslide-Prone Seattle-Area Glacial Deposits: U.S. Geological Survey Open File Report 00-228, 5p.

Shannon & Wilson, Inc., 2017, Geotechnical Report: 18th Avenue and Cherry Street Medical Office Building, Seattle, Washington, 59 p.

BRCF Geotechnical Soil Observation Report March 5, 2021 Page 12 of 12

Closure

The information gathered for this report is standard practice and relevant for this type of project. The number and distribution of sampling locations is typical and reliable for obtaining an accurate understanding of the site. The conclusions and recommendations presented in this letter are based on our observations, interpretations, and assumptions regarding shallow subsurface conditions. However, if any variations in the site conditions are discovered later, please contact our office to review and if necessary, modify this report accordingly. We appreciate the opportunity to be of service on this project. If you have any questions regarding this letter or any aspects of the project, please feel free to contact our office.

Respectfully submitted, LeRoy Surveyors & Engineers, Inc.

William Creveling, L.G. Principal Geologist

mpon

Joshua Thompson, E.I.T. Civil Engineering Technician

Attached: Graphic Soil Logs Grain-size Laboratory Results

Damon DeRosa, P.E. Principal Engineer

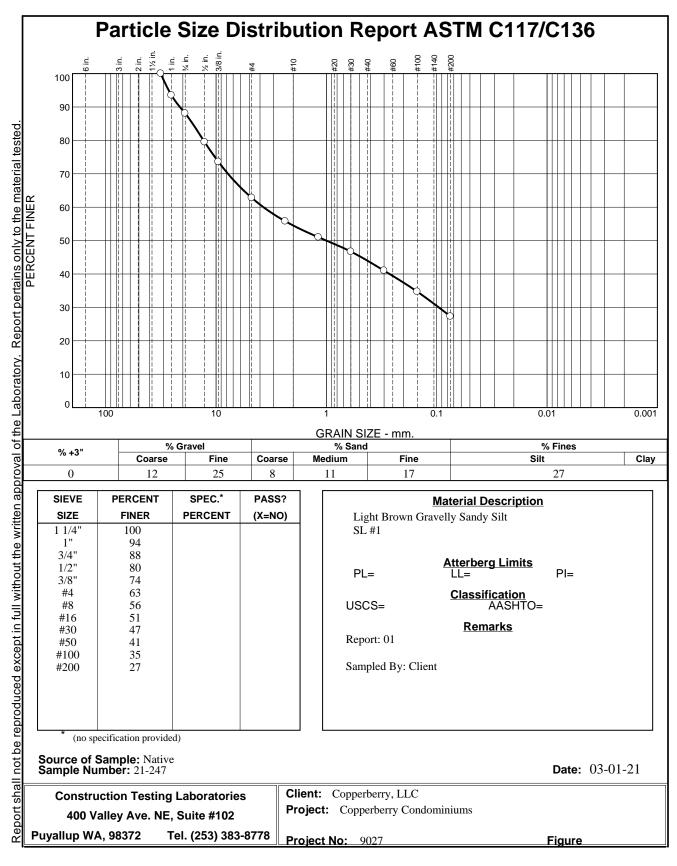
1			URVEYORS & ENGINE		
Client	BRCF			Test Pit Number: TP-1	
Job N	Job Number: 13298			Project Name: BRCF 10th St SE	
Date Started: <u>3/1/2021</u> Date Completed: <u>3/1/2021</u>			Ground Elevation: <u>496</u> Test Pit Size: <u>2' x 8'</u>		
Date (Completed	: <u>5/1/2021</u> ractor: B0	b Goodman	Ground Water Levels: At Time of Excavation: <u>None</u>	
Excav	ation Meth	nod: Exca	vator	At End of Excavation None	
Logge	ed By: <u>BC</u>	_ Chec	ked By: <u>BC</u>	Static Water Depth: None	
	bo				
_	lic L	<i>(</i>)			
Depth	Graphic Log	nscs		Material Description	
0			Brown fine-med sand w/silt, gra	avel (FILL)	
-			Dark brown fine sand w/organic	cs, gravel (FILL)	
-5-	0000		Brown med-coarse SAND w/gra	avel, cobbles, loose, dry	
-					
		,	Gray fine-coarse sand w/gravel	l, dense, mottled, dry (TILL)	
-					
10 ⊥					

Bottom of Test Pit at: Ground Water/Seepage: None Side Wall Caving: None

Client: BRC Job Numbe Date Starte Date Comp Excavation Excavation Logged By Notes:	CF er: <u>1329</u> ed: <u>3/</u> bleted: Contra Metho BC	98 1/2021 3/1/2021 actor: <u>Bol</u> od: <u>Excav</u> _ Check	b Goodman rator	Test Pit Number: TP-2 Project Name: BRCF 10th St SE Ground Elevation: 498 Test Pit Size: 2' x 6' Ground Water Levels: At Time of Excavation: None At End of Excavation None Static Water Depth: None
Depth Granhic Lod		NSCS	Material Desc	cription
-5			Brown fine SAND w/gravel, silt Tan/gray fine SAND w/gravel, silt, mottled, dry Gray fine sand with silt, dense, mottled, dry (TI	/
-10				

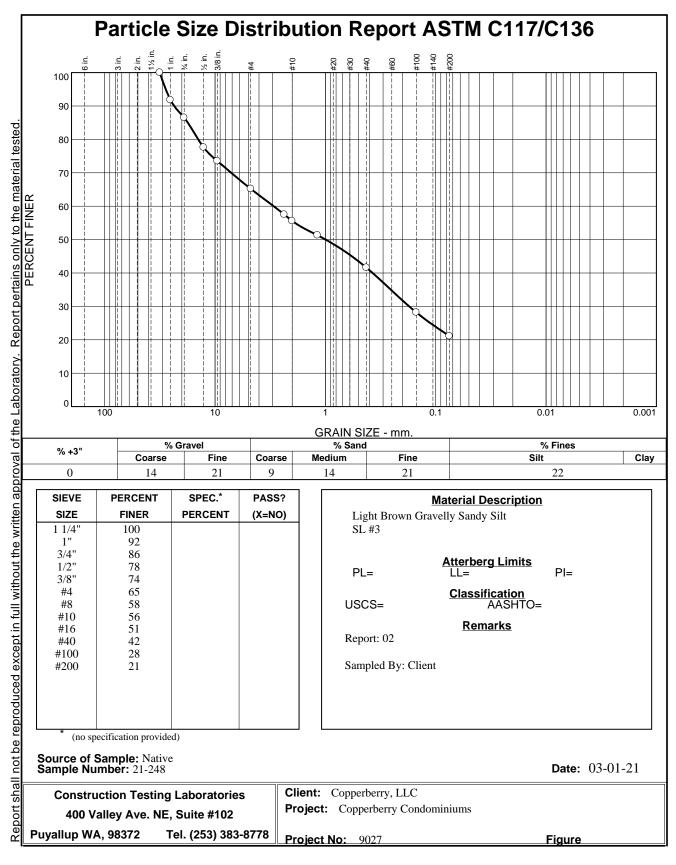
Bottom of Test Pit at: Ground Water/Seepage: None Side Wall Caving: None

Page 1 of 1

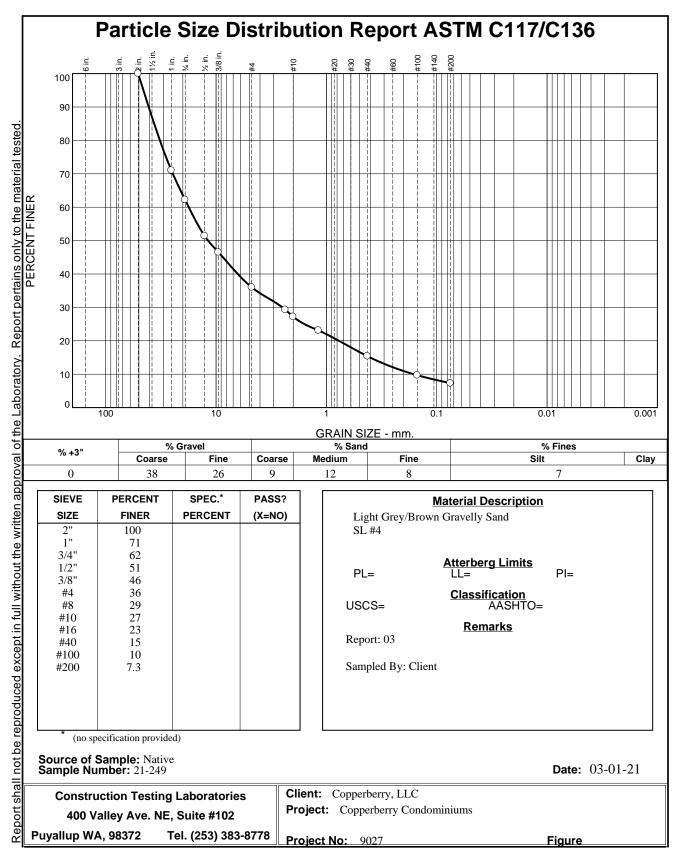

1			URVEYORS & ENGINEERS, INC. Engineering • Geology • Septic Design • GPS • GIS Mapping
Client	BRCF		Test Pit Number: TP-3
Job N	umber: 132	298	Project Name: BRCF 10th St SE
Date	Started: <u>3</u>	3/1/2021	Ground Elevation: <u>496</u> Test Pit Size: <u>2' x 8'</u>
Date (Completed	: <u>5/1/2021</u> ractor: BC	I Ground Water Levels: bb Goodman At Time of Excavation: None
Excav	ation Meth	lod: Exca	vator At End of Excavation None
Logge	ed By: <u>BC</u>	_ Chec	ked By: BC Static Water Depth: None
	6o		
Depth	Graphic Log	nscs	Material Description
_ 0		_	
-			Brown fine-med sand w/silt, gravel (FILL)
-			Dark brown fine sand w/organics, gravel (FILL)
-5 +			Brown med-coarse SAND w/gravel, cobbles, loose, dry
-			
			Gray fine-coarse sand w/gravel, dense, mottled, dry (TILL)
-			
-10 ⊥			

Bottom of Test Pit at: Ground Water/Seepage: None None None

-	0	Surveying •	Engineering • Geology • Septic Design • GPS • GIS Ma	apping		
Client:	BRCF			Test Pit Number: <u>TP-4</u>		
Job Nu	Job Number: <u>13298</u>			Project Name: BRCF 10th St SE		
Date S	Started: <u>3</u>	8/1/2021		Ground Elevation: <u>496</u> Test Pit Size: <u>2' x 8'</u>		
Date C	Completed	: <u>3/1/202</u>		Ground Water Levels:		
Excav	ation Cont ation Meth	ractor: P	bb Goodman vator	At Time of Excavation: None		
			ked By: <u>BC</u>	At End of Excavation <u>None</u> Static Water Depth: <u>None</u>		
Logge Notes:			кеа Бу: <u>20</u>			
10103.						
	bo					
	Graphic Log					
Depth	aph	USCS				
De	5 U	N	Ma	aterial Description		
0—						
		2	Brown fine-med sand w/silt, gravel ((FILL)		
F						
			Dark brown fine sand w/organics, gr			
F			Dark brown line sand w/organics, gi			
			Brown med-coarse SAND w/gravel,	cobbles, loose, dry		
-5+						
	$\bigcirc \ \ \ \ \ \ \ \ \ \ \ \ \ $					
F						
			Gray fine-coarse sand w/gravel, der	ase mottled dry (TILL)		
ŀ						


Bottom of Test Pit at: 7.9 Ground Water/Seepage: None Side Wall Caving: None

Page 1 of 1


Tested By: <u>M Armstrong</u>

Checked By: C Pedersen

Tested By: <u>M Armstrong</u>

Checked By: C Pedersen

Tested By: <u>M Armstrong</u>

Checked By: C Pedersen

APPENDIX C

Pipe Conveyance Capacity

Capacity	/ of	6-inch	nine	at 1%	
Capacity		0-IIICII	pipe	aι 1/0	

0.52243
0.32243
(A/P) ^{2/3} S ^{1/2} 2.660714
1.49
0.014
0.19635
0.25
r 1.570796
e 0.01

Capacity of 4-inch pipe at 1%

Flow (cfs)	Q=VA	0.175311
Velocity (fps)	V=(k/n)(A/P) ^{2/3} S ^{1/2}	2.025087
	k=	1.49
Manning's n	n=	0.014
X-Sec Area (sf)	A=pi*r ²	0.08657
Pipe Radius (ft)	r=	0.166
Wetted Perim.	P=2*pi*r	1.043009
Slope (ft/ft)	S=slope	0.01

Capacity of 6-inch pipe at 2%

Flow (cfs)	Q=VA	0.738828
Velocity (fps)	V=(k/n)(A/P) ^{2/3} S ^{1/2}	3.762818
	k=	1.49
Manning's n	n=	0.014
X-Sec Area (sf)	A=pi*r ²	0.19635
Pipe Radius (ft)	r=	0.25
Wetted Perim.	P=2*pi*r	1.570796
Slope (ft/ft)	S=slope	0.02

Capacity of 4-inch pipe at 2%

Flow (cfs)	Q=VA	0.247927
Velocity (fps)	V=(k/n)(A/P) ^{2/3} S ^{1/2}	2.863905
	k=	1.49
Manning's n	n=	0.014
X-Sec Area (sf)	A=pi*r ²	0.08657
Pipe Radius (ft)	r=	0.166
Wetted Perim.	P=2*pi*r	1.043009
Slope (ft/ft)	S=slope	0.02

WWHM2012

PROJECT REPORT

Conveyance Calculations

General Model Information

Project Name:	default[2]	
Site Name:		
Site Address:		
City:		
Report Date:	9/24/2021	Assume worst case
Gage:	52 IN EAST	WWHM rainfall
Data Start:	10/01/1901	
Data End:	09/30/2059	
Timestep:	15 Minute	
Precip Scale:	1.000	
Version Date:	2019/09/13	
Version:	4.2.17	

POC Thresholds

Low Flow Threshold for POC1:	50 Percent of the 2 Year
High Flow Threshold for POC1:	50 Year
Low Flow Threshold for POC2:	50 Percent of the 2 Year
High Flow Threshold for POC2:	50 Year
Low Flow Threshold for POC3:	50 Percent of the 2 Year
High Flow Threshold for POC3:	50 Year

5,000 SF Tributary Area - POC 1

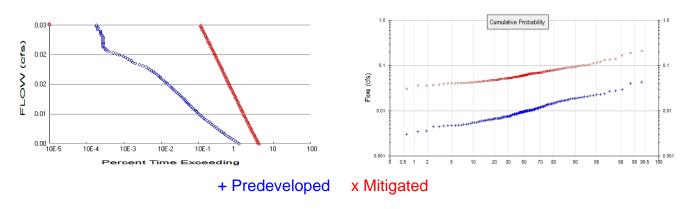
5,000 SF Bypass:	No
GroundWater:	No
Pervious Land Use	acre
Pervious Total	0
Impervious Land Use ROADS MOD	acre 0.12
Impervious Total	0.12
Basin Total	0.12
Element Flows To: Surface	Interflow

Groundwater

Mitigated Land Use

10,000 SF

Bypass:	No
GroundWater:	No
Pervious Land Use	acre
Pervious Total	0
Impervious Land Use ROADS MOD	acre 0.23
Impervious Total	0.23
Basin Total	0.23
Element Flows To: Surface	Interflow


Groundwater

15,000 SF Tributary Area - POC 3

15,000 SF Bypass:	No
GroundWater:	No
Pervious Land Use	acre
Pervious Total	0
Impervious Land Use ROADS MOD	acre 0.35
Impervious Total	0.35
Basin Total	0.35
Element Flows To: Surface	Interflow

Groundwater

Analysis Results POC 1

Totals for POC #1
0.23
0

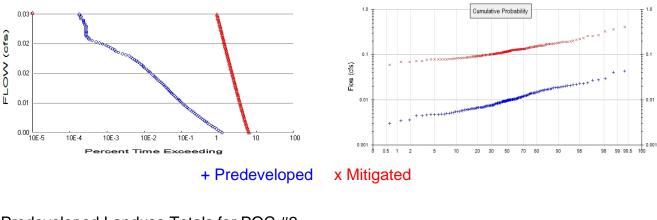
Mitigated Landuse Totals for POC #1 Total Pervious Area: 0 Total Impervious Area: 0.12

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1Return PeriodFlow(cfs)2 year0.0096035 year0.01465510 year0.0184525 year0.02375650 year0.028081

Flow Frequency Return Periods for Mitigated. POC #1 Return Period Flow(cfs) 2 year 0.060376 5 year 0.081552 10 year 0.097655 25 year 0.120514 100 year peak flow 50 vear 0.139469 100 year 0.160167 <

0.032727


Annual Peaks

100 year

Annual Peaks for Predeveloped and Mitigated. POC #1 Year Predeveloped Mitigated

leal	Freuevelopeu	wiiliyale
1902	0.007	0.068
1903	0.007	0.073
1904	0.019	0.083
1905	0.007	0.047
1906	0.003	0.047
1907	0.014	0.054
1908	0.010	0.046
1909	0.009	0.058
1910	0.013	0.056
1911	0.010	0.062

POC 2

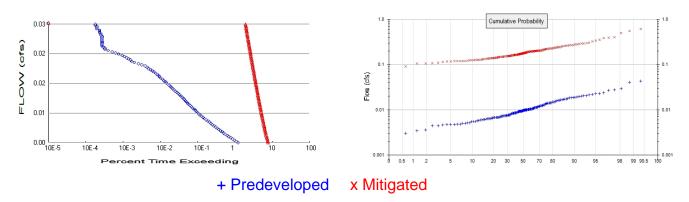
Predeveloped Landuse Totals for POC #2Total Pervious Area:0.23Total Impervious Area:0

Mitigated Landuse Totals for POC #2 Total Pervious Area: 0 Total Impervious Area: 0.23

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #2 Return Period Flow(cfs)

2 year	0.009603
5 year	0.014655
10 year	0.01845
25 year	0.023756
50 year	0.028081
100 year	0.032727


Flow Frequency Return Periods for Mitigated. POC #2 Return Period Flow(cfs) 0.11572 2 year 5 year 0.156308 0.187173 10 year 25 year 0.230986 100 year peak flow 50 year 0.267316 100 year 0.306987

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #2 Year Predeveloped Mitigated

i cai	i redeveloped	wiitigat
1902	0.007	0.130
1903	0.007	0.140
1904	0.019	0.159
1905	0.007	0.091
1906	0.003	0.090
1907	0.014	0.103
1908	0.010	0.088
1909	0.009	0.110
1910	0.013	0.107
1911	0.010	0.119
1912	0.040	0.202

POC 3

Predeveloped Landuse	Totals for POC #3
Total Pervious Area:	0.23
Total Impervious Area:	0

Mitigated Landuse Totals for POC #3 Total Pervious Area: 0 Total Impervious Area: 0.35

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #3 Return Period Flow(cfs)

2 year	0.009603
5 year	0.014655
10 year	0.01845
25 year	0.023756
50 year	0.028081
100 year	0.032727

	Return Periods for Mitigated.	POC #3
Return Period	Flow(cfs)	
2 year	0.176096	
5 year	0.23786	
10 year	0.284828	
25 year	0.3515	– 100-year peak flow
50 year	0.406786	ree year pear new
100 year	0.406786 0.467154	

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #3 Year Predeveloped Mitigated

i cai	i ieuevelopeu	wiitiyate
1902	0.007	0.198
1903	0.007	0.213
1904	0.019	0.242
1905	0.007	0.138
1906	0.003	0.137
1907	0.014	0.157
1908	0.010	0.134
1909	0.009	0.168
1910	0.013	0.164
1911	0.010	0.181
1912	0.040	0.308

Mitigated Schematic

5,000 SF				
		~ -		
10,000	15,000	SF		