

City of Puyallup Building ACCEPTED JMontgomery

08/09/2023 7:11:01 AM

Structural Calculations

For

Red Dot - Mechanical

Puyallup, WA

Project # 2220760.21

Project Principal Project Manager Andrew D McEachern PE SE Larry A Higgins PE

Design Criteria

Design Codes and Standards

<u>Codes and Standards</u>: Structural design and construction shall be in accordance with the applicable sections of the following codes and standards as adopted and amended by the local building authority: International Building Code, 2018 Edition.

Structural Design Criteria:

Live Load Criteria:

Roof (Min Blanket Snow)	25 psf
Seismic Criteria:	
Risk Category	II
Seismic Importance Factor	1.0
S _s = 1.43	
S _{ds} = 1.03	
Site Class	= D (original building)
Seismic Design Category	= D
Response Modification Coeff. (F	Rp):2.5 Ap=1
Seismic Response Coeff. (Fp):	0.49

Project Description

The project consists of adding a couple of large fans and one condenser to the roof of an existing concrete tilt warehouse currently occupied by Red Dot. Units require minor penetrations through plywood roof deck but are sitting in areas not specifically designed for heavy mechanical units. The original building was designed by AHBL and included a 2psf dead load into the building roof structure for minor mechanical units. Calculations show the new units fall into that category so only minor wood sleepers are necessary to support them between the existing roof joists.

ASCE 7 Hazards Report

Standard:ASCE/SEI 7-22Risk Category:IISoil Class:D - Stiff Soil

Latitude: 47.1911 Longitude: -122.26 Elevation: 61.13679585729604 ft (NAVD 88)

D - Stiff Soil

Site Soil Class:

Results:

PGA M:	0.53	T∟ :	6
S _{MS} :	1.54	S _s :	1.43
S _{M1} :	0.92	S1 :	0.44
S _{DS} :	1.03	V _{S30} :	260
S _{D1} :	0.62		

Seismic Design Category: D

 $\label{eq:MCER} \mbox{Vertical Response Spectrum} \\ \mbox{Vertical ground motion data has not yet been made} \\ \mbox{available by USGS.} \\$

Design Vertical Response Spectrum Vertical ground motion data has not yet been made available by USGS.

Data Accessed:

Wed Aug 02 2023

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-22 and ASCE/SEI 7-22 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-22 Ch. 21 are available from USGS.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

PRMH20231156

Project	Project No	
Subject	Phone	
With/To	Fax #	
Address	# Faxed Pages	A H B L
Date	Ву	

Mechanical Unit Seismic ASCE 7-16 Chapter 13

Unit Length	<i>UL</i> := 52 ⋅ <i>in</i>	Unit Weight	<i>Wt</i> ≔ 672 • <i>Ibf</i>
Unit Width	<i>UW</i> ≔ 31 • <i>in</i>	$Cg := 32 \cdot in$	Curb := 0 • in
Unit Height to Cg	UH := Cg + Curb UH =	$= 2.67 \ ft \qquad P := 2 \cdot (UW + $	UH) P=10.5 ft
Seismic	<i>Sds</i> := 1.03	<i>Ap</i> := 1 <i>Rp</i> := 2	2.5 <i>Ip</i> := 1.0
Unit Elevation	z := 33.5 • ft	Building Roof Elevatio	$h \coloneqq 33.5 \cdot ft$
	$zh := \frac{z}{h}$ if $(zh \le 1, zh)$	u, 1) = 1	
Attachment Load	$Fp1 \coloneqq Wt \cdot 0.4 \cdot Sds \cdot Ap \cdot Ip \cdot (-$	$\frac{1+2\cdot zh)}{Rp} \qquad \qquad Fp1 =$	332 lbf
	Fpmin := Wt • .3 • Sds • Ip	Fpmin =	208 <i>lbf</i>
	Fp := if (Fpmin > Fp1 , Fpmin , I Fp = 332 Ibf L : La	E^{p_1} $= \frac{Fp}{P}$ $L = 31.64 \text{ plf}$	Curb Attachment Load (ult) plf Curb Attachment Load (asd)
Overturning Width	OTMw := Fp • UH OTMw	∕ = 885.96 (ft·lbf)	·
	$RMw := Wt \cdot \frac{UW}{2}$ $RMw =$	= 868 (ft·lbf)	
	$.9 \cdot D + E$ $Upw := \frac{OT}{D}$	$\frac{Ww9 \cdot RMw)}{UW} \qquad Upw = 40.55$ No Uplift	uplift pretty small, typ if Negconnection
Overturning Length	OTMI := Fp • UH OTMI = 88	5.96 (<i>ft·lbf</i>)	okay by inspection
	$RMI \coloneqq Wt \cdot \frac{UL}{2} \qquad RMI = 145$	6 (ft·lbf)	
	$.9 \cdot D + E$ $Upl := \frac{(OTM)}{C}$	$\frac{U9 \cdot RMI}{UL} \qquad Upl = -97.95 II \\ \boxed{\text{No Uplift}} $ if	<i>lbf</i> Negative

+D+0.750S

+0.60D

AHBL Inc 2215 N. 30th Street; Suie 300 Tacoma, WA 98403 253-383-2422

Project Title: Re Engineer: La Project ID: 22 Project Descr:

Red Dot HVAC Larry Higgins PE 2220760.21

Printed: 2 AUG 2023, 11:25AM Project File: 2220760_RedDotHVAC.ec6 Steel Beam LIC# : KW-06014847, Build:20.23.05.25 AHBL, INC (c) ENERCALC INC 1983-2023 **DESCRIPTION:** 60' Joist Simulation max Loads **CODE REFERENCES** Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set : IBC 2021 **Material Properties** Analysis Method : Allowable Strength Design Fy: Steel Yield: 50.0 ksi E: Modulus : Beam Bracing : 29,000.0 ksi Beam is Fully Braced against lateral-torsional buckling Bending Axis : Major Axis Bending D(0.120) S(0.250) NOTE, W36 USED ONLY W36x135 BECAUSE IT WAS SAME Span = 60.0 ft DEPTH AS JOIST. BEAM WEIGHT NOT INCLUDED IN CHECKIGN DESIGNS Service loads entered. IMAX MOMENT FOR Applied Loads ations JOIST WITH DESIGN Beam self weight NOT internally calculated and added Uniform Load : D = 0.0120, S = 0.0250 ksf, Tributary Width = 10.0 ft LOADS **DESIGN SUMMARY** Design OK 0.029:1 Maximum Bending Stress Ratio = 0.131:1 Maximum Shear Stress Ratio = Section used for this span Section used for this span W36x135 W36x135 Ma: Applied 166.500 k-ft Va: Applied 11.10 k Mn / Omega : Allowable 1,269.960 k ft Vn/Omega : Allowable 383.713 k Load Combination +D+S Load Combination +D+S Location of maximum on span 0.000 ft Span # where maximum occurs Span #1 Span # where maximum occurs Span #1 Maximum Deflection Max Downward Transient Deflection 0.324 in Ratio = 2,223 >=360 Span: 1 : S Only Max Upward Transient Deflection 0 in Ratio = <360 0 n/a Max Downward Total Deflection 0.479 in Ratio = >=180 Span: 1 : +D+S 1503 Max Upward Total Deflection 0 in Ratio = <180 0 n/a Maximum Forces & Stresses for Load Combinations Max Stress Ratios Summary of Moment Values Summary of Shear Values Load Combination V Μ Mmax + Mmax -Ma Max Mnx Mnx/Omega Cb Va Max Vnx Vnx/Omega Segment Length Span # Rm D Only Dsgn. L = 60.00 ft 0.009 640.80 0.043 54.00 54.00 2,120.83 1,269.96 1.00 1.00 3.60 383.71 1 +D+S Dsgn. L = 60.00 ft 1 0.131 0.029 166.50 166.50 2,120.83 1,269.96 1.00 1.00 11.10 640.80 383.71 +D+0.750S Dsgn. L = 60.00 ft 0.109 0.024 138.38 138.38 2,120.83 1,269.96 1.00 1.00 640.80 383.71 1 9.23 +0.60D 0.026 Dsgn. L = 60.00 ft1 0.006 32.40 32.40 2,120.83 1,269.96 1.00 1.00 2.16 640.80 383.71 **Overall Maximum Deflections** Max. "-" Defl Location in Span Max. "+" Defl Location in Span Load Combination Span Load Combination +D+S 0.4792 30.171 0.0000 0.000 1 Values in KIPS Support notation : Far left is #1 Vertical Reactions Load Combination Support 1 Support 2 Max Upward from all Load Conditions 11.100 11.100 11.100 Max Upward from Load Combinations 11.100 Max Upward from Load Cases 7.500 7.500 D Only 3.600 3.600 +D+S 11.100 11.100

9.225

2.160

9.225

AHBL Inc 2215 N. 30th Street; Suie 300 Tacoma, WA 98403 253-383-2422

Project Title: Engineer: Project ID: Project Descr: Red Dot HVAC Larry Higgins PE 2220760.21

Printed: 2 AUG 2023, 11:25AM

Steel Beam			Project File: 2220760_RedDotHVAC.ec6
LIC# : KW-06014847, Build:20	.23.05.25	AHBL, INC	(c) ENERCALC INC 1983-2023
DESCRIPTION: 60'	Joist Simulation max Loa	ds	
Vertical Reactions		Support notation : Far le	eft is #1 Values in KIPS
Load Combination	Support 1	Support 2	
S Only	7.500	7.500	

7.500 7.500

Max Upward from all Load Conditions

Max Upward from Load Combinations

10.711

10.711

10.711

10.711

AHBL Inc 2215 N. 30th Street; Suie 300 Tacoma, WA 98403 253-383-2422

Project Title: Re Engineer: La Project ID: 22 Project Descr:

Red Dot HVAC Larry Higgins PE 2220760.21

Printed: 2 AUG 2023, 11:26AM Project File: 2220760_RedDotHVAC.ec6 Steel Beam LIC# : KW-06014847, Build:20.23.05.25 AHBL, INC (c) ENERCALC INC 1983-2023 **DESCRIPTION:** joist simulation with Fans 2PSF REMOVED AND 1/2 MECHANICAL UNIT LOAD ADDED **CODE REFERENCES** AS IT'S SPLIT BETWEEN TWO Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16 JOISTS Load Combination Set : IBC 2021 **Material Properties** Analysis Method : Allowable Strength Design Fy: Steel Yield: 50.0 ksi E: Modulus : 29,000.0 ksi Beam Bracing : Beam is Fully Braced against lateral-torsional buckling Bending Axis : Major Axis Bending D(0.2110) D(0.2110) D(0.10) S(0.250) W36x135 Span = 60.0 ft Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight NOT internally calculated and added Uniform Load : D = 0.010, S = 0.0250 ksf, Tributary Width = 10.0 ft Point Load : D = 0.2110 k @ 8.0 ft Ma AND Va WITH UNIT LOADS ARE LESS THAN DESIGN LOADS. UNIT Point Load : D = 0.2110 k @ 52.0 ft LOCATION OKAY DESIGN SUMMARY Design OK Maximum Bending Stress Ratio = 0.125:1 Maximum Shear Stress Ratio = 0.028 : 1 Section used for this span Section used for this span W36x135 W36x135 Ma: Applied Va: Applied 159.188 k-ft 10.711 k Mn / Omega : Allowable Vn/Omega: Allowable 1.269.960 k-ft 383.713 k Load Combination +D+S Load Combination +D+S Location of maximum on span 0.000 ft Span # where maximum occurs Span # where maximum occurs Span #1 Span #1 Maximum Deflection Max Downward Transient Deflection 0.324 in Ratio = >=360 Span: 1 : S Only 2,223 Max Upward Transient Deflection 0 in Ratio = <360 0 n/a 0.459 in Ratio = Max Downward Total Deflection >=180 1569 Span: 1 : +D+S Max Upward Total Deflection 0 in Ratio = <180 n/a 0 Maximum Forces & Stresses for Load Combinations Max Stress Ratios Summary of Moment Values Summary of Shear Values Load Combination Μ v Va Max Vnx Vnx/Omega Segment Length Span # Mmax + Mmax -Ma Max Mnx Mnx/Omega Cb Rm D Only Dsgn. L = 60.00 ft 0.037 0.008 46.69 46.69 2,120.83 1,269.96 1.00 1.00 640.80 383.71 1 3.21 +D+S 159.19 Dsgn. L = 60.00 ft 1 0.125 0.028 159.19 2,120.83 1,269.96 1.00 1.00 10.71 640.80 383.71 +D+0.750S 0.103 0.023 131.06 131.06 2,120.83 1,269.96 1.00 1.00 640.80 Dsgn. L = 60.00 ft 1 8.84 383.71 +0.60D Dsgn. L = 60.00 ft 0.022 0.005 28.01 28.01 2,120.83 1,269.96 1.00 1.00 640.80 383.71 1 1.93 **Overall Maximum Deflections** Max. "-" Defl Location in Span Max. "+" Defl Location in Span Load Combination Span Load Combination +D+S 0.4590 30.171 0.0000 0.000 1 Vertical Reactions Support notation : Far left is #1 Values in KIPS Load Combination Support 1 Support 2

AHBL Inc 2215 N. 30th Street; Suie 300 Tacoma, WA 98403 253-383-2422 Project Title: Red Dot HVAC Engineer: Larry Higgins PE Project ID: 2220760.21 Project Descr:

Printed: 2 AUG 2023, 11:26AM

Steel Beam				Project File: 2220760_RedDotHVAC.ec6
LIC# : KW-06014847, Build:20.23.05.25		A	HBL, INC	(c) ENERCALC INC 1983-2023
DESCRIPTION: joist simulatio	n with Fans			
Vertical Reactions		S	upport notation : Far left is #1	Values in KIPS
Load Combination	Support 1	Support 2		
Max Upward from Load Cases	7.500	7.500		
D Only	0.014	0.011		

 D Only
 3.211
 3.211

 +D+S
 10.711
 10.711

 +D+0.750S
 8.836
 8.836

 +0.60D
 1.927
 1.927

 S Only
 7.500
 7.500

RMH20231156		AHBL Inc 2215 N. 30th Street; Suie 300 Tacoma, WA 98403 253-383-2422	Project Title: Engineer: Project ID: Project Descr:	Red Dot HVAC Larry Higgins PE 2220760.21	
					Printed: 2 AUG 2023, 11:25AM
Steel Beam				Project File	e: 2220760_RedDotHVAC.ec6
LIC# : KW-06014847, E	auild:20.23.05.25 50' Joist Simulat	AHBL, № ion max Loads	IC		(c) ENERCALC INC 1983-2023
CODE REFERE	INCES				
Calculations per A Load Combination	NSC 360-16, IBC 201 n Set : IBC 2021	8, CBC 2019, ASCE 7-16			
Material Propert	ies				
Analysis Method : Beam Bracing : Bending Axis :	Allowable Strength Desig Beam is Fully Braced Major Axis Bending	n I against lateral-torsional buc	F kling E	y : Steel Yield : : Modulus :	50.0 ksi 29,000.0 ksi
		D(0.120) S(0.250)		
		W36v11	35		× Č
		VUSUAR			
		Span = 50	.0 π		\
Applied Loads			Service load	ls entered. Load Factor	s will be applied for calculations.
Beam self weig Uniform Lo	ght NOT internally cal bad: D = 0.0120, S:	culated and added = 0.0250 ksf, Tributary Widtl	n = 10.0 ft		
DESIGN SUMMA	ARY	ORIGINAL	CIOT DECICIN	LOADING	Design OK
Maximum Bend Section used for Ma Mn Load Combinatio	ing Stress Ratio = this span : Applied / Omega : Allowable on	0.091 : 1 Max W36x135 115.625 k-ft 1,269.960 k-ft +D+S	kimum Shear Str Section used f Va : App Vn/Ome Load Combinat	ess Ratio = or this span Jied ga : Allowable ion	0.024 : 1 W36x135 9.250 k 383.713 k +D+S
Span # where m	aximum occurs	Span # 1	Span # where r	maximum occurs	Span # 1
Maximum Defle Max Downward Max Upward Tra	ction Transient Deflection ansient Deflection	0.156 in Ratio = 3,842 0 in Ratio = 0	>=360 Span: 1 <360 n/a	: S Only	

Maximum Forces & Stresses for Load Combinations

Max Downward Total Deflection

Max Upward Total Deflection

Load Combination		Max Stres	s Ratios		Su	ummary of N	Ioment Valu	ies			Summ	ary of Shea	r Values
Segment Length	Span #	М	V	Mmax +	Mmax -	Ma Max	Mnx M	nx/Omega	Cb	Rm	Va Max	Vnx Vnx	√Omega
D Only													
Dsgn. L = 50.00 ft	1	0.030	0.008	37.50		37.50	2,120.83	1,269.96	1.00	1.00	3.00) 640.80	383.71
+D+S													
Dsgn. L = 50.00 ft	1	0.091	0.024	115.63		115.63	2,120.83	1,269.96	1.00	1.00	9.25	640.80	383.71
+D+0.750S													
Dsgn. L = 50.00 ft	1	0.076	0.020	96.09		96.09	2,120.83	1,269.96	1.00	1.00	7.69	640.80	383.71
+0.60D													
Dsgn. L = 50.00 ft	1	0.018	0.005	22.50		22.50	2,120.83	1,269.96	1.00	1.00	1.80) 640.80	383.71
Overall Maximum	Deflectio	ons											
Load Combination		Span M	lax. "-" De	fl Locatior	n in Span	Load Co	mbination			Мах	. "+" Defl	Location in	span
+D+S		1	0.231	1	25.143						0.0000	0	.000
Vertical Reactions	5				Suppo	rt notation : I	Far left is #	1		Values	in KIPS		
Load Combination			Suppo	ort 1 Supp	ort 2								
Max Upward from all	Load Condi	itions	9.	250 9	9.250								
Max Upward from Loa	ad Combina	ations	9.	250 9	9.250								
Max Upward from Loa	ad Cases		6.	250 6	6.250								
D Only			3.	000 3	3.000								
+D+S			9.	250 9	.250								
+D+0.750S			7.	688 7	.688								
+0.60D			1.	800 1	.800								

2597 >=180

<mark>0</mark> <180

Span: 1 : +D+S

n/a

0.231 in Ratio = 0 in Ratio =

AHBL Inc 2215 N. 30th Street; Suie 300 Tacoma, WA 98403 253-383-2422

Project Title: Engineer: Project ID: Project Descr: Red Dot HVAC Larry Higgins PE 2220760.21

Printed: 2 AUG 2023, 11:25AM

Steel Beam			Project File: 2220760_RedDotHVAC.ec6
LIC# : KW-06014847, Build:20	.23.05.25	AHBL, INC	(c) ENERCALC INC 1983-2023
DESCRIPTION: 50'	Joist Simulation max Load	ds	
Vertical Reactions		Support notation : Far	left is #1 Values in KIPS
Load Combination	Support 1	Support 2	
S Only	6.250	6.250	

+D+S

AHBL Inc 2215 N. 30th Street; Suie 300 Tacoma, WA 98403 253-383-2422

Project Title:	Re
Engineer:	Lar
Project ID:	222
Project Descr:	

d Dot HVAC rry Higgins PE 20760.21

Printed: 2 AUG 2023, 11:28AM Project File: 2220760_RedDotHVAC.ec6 Steel Beam LIC# : KW-06014847, Build:20.23.05.25 AHBI INC (c) ENERCALC INC 1983-2023 **DESCRIPTION:** Joist Simulation with Condenser Unit **CODE REFERENCES** Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set : IBC 2021 **Material Properties** Analysis Method : Allowable Strength Design Fy: Steel Yield: 50.0 ksi E: Modulus : 29,000.0 ksi Beam Bracing : Beam is Fully Braced against lateral-torsional buckling Bending Axis : Major Axis Bending D(0.350) D(0.10) S(0.250) W36x135 Span = 50.0 ft Service loads entered. Load Factors will be applied for calculations. Applied Loads Beam self weight NOT internally calculated and added Uniform Load : D = 0.010, S = 0.0250 ksf, Tributary Width = 10.0 JST MOMENTS WITH 2PSF REMOVED AND MECHANICAL UNIT ADDED, MOMENT AND SHEAR LESS THAN DESIGN, EXIST JOISTS Point Load : D = 0.350 k @ 25.0 ft OKAY WITH UNIT **DESIGN SUMMARY** Design OK Maximum Bending Stress Ratio = 0.090:1 Maximum Shear Stress Ratio = 0.023:1 Section used for this span Section used for this span W36x135 W36x135 Va: Applied Ma: Applied 113.750 k-ft 8.925 k Vn/Omega : Allowable Mn / Omega : Allowable 1,269.960 k-ft 383.713 k Load Combination Load Combination +D+S +D+S Location of maximum on span 0.000 ft Span # where maximum occurs Span #1 Span # where maximum occurs Span #1 Maximum Deflection Max Downward Transient Deflection 0.156 in Ratio = 3.842 >=360 Span: 1 : S Only 0 in Ratio = Max Upward Transient Deflection <360 n/a 0 Max Downward Total Deflection 0.226 in Ratio = 2660 >=180 Span: 1 : +D+S 0 in Ratio = Max Upward Total Deflection <180 n/a 0 Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Μ V Mmax + Mmax -Ma Max Mnx Mnx/Omega Cb Rm Va Max Vnx Vnx/Omega Span # D Only 0.028 0.007 35.63 35.63 2,120.83 1,269.96 1.00 1.00 640.80 383.71 Dsgn. L = 50.00 ft1 2.68 +D+SDsgn. L = 50.00 ft 0.090 0.023 113.75 113.75 2,120.83 1,269.96 1.00 1.00 640.80 383.71 1 8.93 +D+0.750S Dsgn. L = 50.00 ft 0.074 0.019 94.22 94.22 2,120.83 1,269.96 1.00 1.00 7.36 640.80 383.71 +0.60D 21.38 2,120.83 1,269.96 1.00 1.00 Dsgn. L = 50.00 ft 0.017 0.004 21.38 640.80 383.71 1 1.61 **Overall Maximum Deflections**

Load Combination Span Max. "-" Defl Location in Span Load Combination Max. "+" Defl Location in Span +D+S 0.2256 25.143 0.000 0.0000 1 Values in KIPS Support notation : Far left is #1 Vertical Reactions Load Combination Support 1 Support 2 Max Upward from all Load Conditions 8.925 8,925 Max Upward from Load Combinations 8.925 8.925 Max Upward from Load Cases 6.250 6.250 D Only 2.675 2.675

8.925

S Only

AHBL Inc 2215 N. 30th Street; Suie 300 Tacoma, WA 98403 253-383-2422

6.250

Project Title: Red Dot HVAC Engineer: Larry Higgins PE Project ID: 2220760.21 Project Descr:

Printed: 2 AUG 2023, 11:28AM

Steel Beam			Project File: 2220760_RedDotHVAC.ec6
LIC# : KW-06014847, Build:	20.23.05.25	AHBL, INC	(c) ENERCALC INC 1983-2023
DESCRIPTION:	Joist Simulation with Condens	ser Unit	
Vertical Reactions		Support notation :	a : Far left is #1 Values in KIPS
Vertical Reactions	Support 1	Support notation : Support 2	n : Far left is #1 Values in KIPS
Vertical Reactions Load Combination +D+0.750S	Support 1 7.363	Support notation : Support 2 7.363	n : Far left is #1 Values in KIPS

AHBL Inc 2215 N. 30th Street; Suie 300 Tacoma, WA 98403 253-383-2422 Project Title:
Engineer:Red Dot HVAC
Larry Higgins PE
2220760.21Project ID:
Project Descr:2220760.21

Printed: 2 AUG 2023, 1:13PM

Wood Beam			Project File: 2220760_	RedDotHVAC.ec6
LIC# : KW-06014847, Build:20.23.05.25 DESCRIPTION: Condenser Support Beam	AHBL, INC		(c) ENER	CALC INC 1983-2023
CODE REFERENCES				
Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7- Load Combination Set : IBC 2021	16			
Material Properties				
Analysis Method : Allowable Stress Design Load Combination : IBC 2021	Fb + Fb - Fc - Prll	1,000.0 psi 1,000.0 psi 1,000.0 psi	E : Modulus of Elast Ebend- xx Eminbend - xx	<i>icity</i> 1,300.0 ksi 1,300.0 ksi
Wood Species : Douglas Fir-Larch (North) Wood Grade : No. 1/No. 2 Beam Bracing : Completely Unbraced	Fc - Perp Fv Ft	1,000.0 psi 65.0 psi 65.0 psi	Density	34.0 pcf
×	D(0,35)	HALF CONDEN LOAD AT MID F OKAY	ICER POINT.	×
	6x6			
-	Span = 10.0 ft			

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Beam self weight NOT internally calculated and added Point Load : D = 0.350 k @ 5.0 ft

DESIGN SUMMARY						Design OK
Maximum Bending Stress Ratio Section used for this span	=	0.421 : 1 6x6	Maximum S Section	hear Stress Ratio	=	0.148:1 6x6
fb: Actual	=	378.66psi		fv: Actual	=	8.68 psi
F'b	=	900.00psi		F'v	=	58.50 psi
Load Combination Location of maximum on span Span # where maximum occurs	= =	D Only 5.000ft Span # 1	Load Combination Location of maximum on span Span # where maximum occurs		= =	D Only 0.000 ft Span # 1
Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection	n	0 in Ratio = 0 in Ratio = 0.128 in Ratio = 0 in Ratio =	0 <360 0 <360 938 >=180 0 <180	n/a n/a Span: 1 : D Only n/a		

Maximum Forces & Stresses for Load Combinations

Load Combination		Max St	ress Rat	ios								Moment	Values		Sh	ear Valu	les
Segment Length	Span #	М	V	CD	СМ	ct	CLx	C _F	Cfu	с _і	C r	М	fb	F'b	V	fv	F'v
D Only														0.0	0.00	0.0	0.0
Length = 10.0 ft	1	0.421	0.148	0.90	1.00	1.00	1.00	1.000	1.00	1.00	1.00	0.87	378.7	900.0	0.18	8.7	58.5
+0.60D					1.00	1.00	1.00	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 10.0 ft	1	0.142	0.050	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	0.53	227.2	1,600.0	0.11	5.2	104.0

Overall Maximum Deflections

Load Combination Sp	an M	ax. "-" Defl L	ocation in Span	Load Combination	Max. "+" Defl	Location in Span
D Only	1	0.1278	5.000		0.0000	0.000
Vertical Reactions			Suppo	ort notation : Far left is #1	Values in KIPS	
Load Combination		Support	1 Support 2			
Max Upward from all Load Conditions		0.1	75 0.175			

D Only

+0.60D

Max Upward from Load Cases

AHBL Inc 2215 N. 30th Street; Suie 300 Tacoma, WA 98403 253-383-2422

0.175

0.175

0.105

Project Title: Red Dot HVAC Engineer: Larry Higgins PE Project ID: 2220760.21 Project Descr:

Printed: 2 AUG 2023, 1:13PM

Wood Beam			Project File: 2220760_RedDotHVAC.ec6
LIC# : KW-06014847, Build:20.23.05.25		AHBL, INC	(c) ENERCALC INC 1983-2023
DESCRIPTION: Condenser Suppo	ort Beam		
Vertical Reactions		Support notation : Far left is #1	Values in KIPS
Load Combination	Support 1 S	Support 2	
Max Upward from Load Combinations	0.105	0.105	

0.175

0.175

DELES BI-RM SERIES Belt Drive Utility Blowers

ROOF MOUNT VENTILATION

BI-RM/BI-RM-HS SERIES

MOTOR AND DRIVE COMPARTMENT WITH COVER REMOVED TO ILLUSTRATE 3 SIDE MOTOR ACCESS AND SLOPED MOTOR BASE FOR BELT TENSIONING.

FEATURES - BI-RM SERIES

- · Complete range of sizes from 10" to 36".
- Full AMCA Class 1 Operation.
- Non-overloading backward inclined (BI) welded wheels.
 Aluminum wheel (AMCA type B classification for spark
- resistant construction) available as an option.Aluminum wheels only on BI-RM-30 to BI-RM-36.
- Discharge position can be field rotated to any of 8 discharge positions.
- Counter clock wise rotation is standard. Clock wise available.
- Outlet flanges on models BI-24 to BI-36.
- Temperature Ratings without a heat slinger 250° F with a heat slinger, steel wheel 400° F, aluminum wheel 300° F.
- Motor access from 3 sides.
- · Sloped motor base for ease of motor installation.
- Vented motor and drive compartment cover, with handles, for safety & weather protection.
 16 gauge or heavier blower housing.
- Heavy duty pillow block ball bearings.
- UL 705 Supplement SC Power Ventilator for Restaurant Exhaust Appliances Listed for removal of cooking vapours.
- · Meets NFPA 96 guidelines.
- · Upblast discharge directs exhaust away from roof.
- · Integral handles for single person removal of motor and drive compartment cover.
- · Continuously welded 16 gauge or heavier blower housing.
- Bolted clean out door.
- 2" drain for easy removal of cleaning solutions.
- Complete range of sizes from 10" to 36".
- Vinyl shaft seal.

TYPICAL MAXIMUM CFM @ SP									
MODEL	1" SP	2" SP	3" SP	4" SP	5" SP	Min HP	Max HP		
BI-RM-10	2300	2050	1700	1500	1300	1/2	2		
BI-RM-12*	3200	2950	2675	2350	1925	-	3		
BI-RM-13	3900	3625	3400	2975	2450	1/2	5		
BI-RM-15*	4775	4450	4075	3650	3000	-	5		
BI-RM-16	5700	5350	4900	4300	3500	3/4	7 1/2		
BI-RM-18	6175	5600	4925	3900	-	3/4	7 1/2		
BI-RM-20	8400	7775	7050	6200	4650	1	7 1/2		
BI-RM-22*	10000	9550	8700	7600	5550	-	10		
BI-RM-24	11100	10100	8800	6600	-	1 1/2	15		
BI-RM-27	15250	14050	12750	11150	8250	1 1/2	15		
BI-RM-30-AW	18000	17000	16000	14000	11750	2	15		
BI-RM-33-AW	22500	21000	19000	17000	14000	-	20		
BI-RM-36-AW	27000	25000	23000	20000	16000	3	25		

Power rating (BHP) does not include transmission losses. Performance certified is for installation type B: Free inlet, Ducted outlet. Performance ratings do not include the effect of appurtenances (accessories).

CFM values listed above are summarized for convenience.

FOR FAN CURVES & FULL PERFORMANCE DATA, CONSULT OUR DELAIR SOFTWARE. DOWNLOAD DELAIR @ WWW.CANARM.COM/DELAIR

BI-RM-HS SERIES *SPECIAL ORDER Belt Drive Utility Blowers with Heat Slinger for Smoke & Heat

The smoke and heat model of the BI & BI-RM series is suitable for use in clean, dry air with a maximum ambient temperature of 204°C (400°F).

They are designed to exhaust smoke in the event of a fire. It is in compliance with smoke control systems requirements of 500°F for 4 hours and 1000°F for 15 minutes.

FEATURES - BI-RM-HS SERIES

- · Sizes from 10" to 24".
- · Non-overloading backward inclined (BI) welded steel wheels only.
- Counter clockwise rotation is standard.
- Outlet flanges on model BI-24.
- Heat slinger with vinyl shaft seal.
- Upblast discharge directs exhaust away from roof.

Canarm certifies that the BI-RM Series shown herein are licensed to bear the AMCA Seal. The ratings shown are based on tests and procedures performed in accordance with AMCA Publication 211 and comply with the requirements of the AMCA Certified Ratings Programme.

UL705 Supplement SC - Power Ventilator for Restaurant Exhaust Appliances certified, refer to our UL705 Supplement SC - Power Ventilator for Restaurant Exhaust Appliances Catalogue page C in Roof Mount Ventilation for all installation requirements

AVAILABLE WITH MOTORS & DRIVES FACTORY INSTALLED. CONSULT OUR DELAIR FAN SELECTION SOFTWARE FOR DETAILS.

DIMENSIONS

BI & BI-RM SERIES

MODELS BI-30 TO BI-36

E

Belt Drive Utility Blowers

ROOF MOUNT VENTILATION

MODELS BI-10 TO BI-27 (STANDARD TOP HORIZONTAL DISCHARGE)

MODELS BI-RM(-HS)-10 TO BI-RM(-HS)-24 (UL 762 LISTED FOR REMOVAL OF COOKING VAPOURS)

н

					τυο	LET						SHAFT DIA.	INLET					
MODEL	A (STANDARD MODELS)	A (BI-RM MODELS)	в	с	D	E	F	G	н	K (CABINET WIDTH)	L	N	о	Р	S	т	v	WEIGHT (Ibs) without motors
BI-10	26 3/4"	23 5/8"	8 3/8"	19 3/16"	11 5/16"	8 1/4"	27 3/4" No Leg	15 5/6"	21 5/16"	13 1/4"	17 1/2"	3/4"	11"	17 1/4"	11 5/8"	11 1/4"	-	78
BI-12	33 3/16"	30 3/16"	9 15/16"	27 7/16"	13 1/16"	9 7/8"	33 5/16"	20 3/16"	29 1/8"	16 3/4"	20 9/16"	1"	12 7/16"	21 3/16"	11 1/2"	14 3/4"	13 1/16"	112
BI-13	34 1/2"	30 15/16"	10 3/4"	24 1/2"	14 3/8"	10 3/4"	34 1/4"	20 3/16"	29 1/8"	16 3/4"	22 7/16"	1"	14 3/8"	21 1/4"	11 1/2"	14 3/4"	14"	134
BI-15	35 15/16"	31 15/16"	11 3/4"	27 1/4"	15 13/16"	12 3/4"	36 1/4"	20 3/16"	29 1/8"	16 3/4"	24 7/8"	1"	15 7/8"	21 3/16"	11 1/2"	14 3/4"	16"	140
BI-16	39 7/16"	34 11/16"	12 11/16"	29 15/16"	17 1/2"	13 1/8"	36 5/8"	22"	30 15/16"	16 3/4"	26 15/16"	1 3/16"	17 3/8"	21 1/4"	11 1/2"	14 3/4"	16 1/2"	162
BI-18	41 5/16"	35 7/8"	13 13/16"	33 3/16"	19 3/8"	14 1/2"	38 1/4"	22"	30 15/16"	16 3/4"	29 9/16"	1 3/16"	19 3/8"	21 1/2"	11 1/2"	14 3/4"	17 7/8"	172
BI-20	49 3/16"	42 15/16"	14 15/16"	36 7/16"	21 3/16"	15 3/4"	46 3/8"	28"	40 15/16"	25 1/8"	32 3/16"	1 3/16"	21 1/4"	27 5/8"	14 9/16"	22 3/4"	19 3/4"	289
BI-22	51 9/16"	44 3/8"	16 3/8"	40 7/16"	23 9/16"	17 3/4"	48 7/16"	28"	40 15/16"	25 1/8"	35 9/16"	1 3/16"	23 5/8"	27 5/8"	14 9/16"	22 3/4"	21 13/16"	322
BI-24	58 3/16"	49 15/16"	17 15/16"	44 11/16"	26 1/8"	19 3/8"	51 5/16"	32 1/8"	46 11/16"	28 15/16"	39 1/8"	1 7/16"	26"	28 15/16"	18 5/16"	26 3/8"	23 3/8"	385
BI-27	60 11/16"	51 1/2"	19 1/2"	49"	28 11/16"	21 1/4"	53 1/8"	32 1/8"	46 11/16"	28 15/16"	42 13/16"	1 7/16"	28 5/8"	28 7/8"	18 5/16"	26 3/8"	25 1/4"	411
BI-30	65 15/16"	68 3/16"	24 7/8"	54 1/2"	31 7/8"	23 5/8"	58 5/8"	43 5/16"	65 5/16"	44 5/16"	50 15/16"	1 11/16"	31 3/4"	32"	17"	40"	29"	517
BI-33	68 3/16"	68 5/8"	25 3/8"	58 15/16"	34 7/8"	25 15/16"	60 15/16"	43 5/16"	65 5/16"	44 5/16"	53 7/8"	1 11/16"	35"	32"	17"	40"	31 5/16"	607
BI-36	70 7/8"	69"	25 1/2"	66 3/16"	38 9/16"	28 11/16"	63 11/16"	43 5/16"	65 5/16"	44 5/16"	56 15/16"	1 15/16"	38 3/4"	32"	17"	40"	34 1/16"	747

ACCESSORIES

- V-Cap
- Bolted Clean Out Door
- Heat Slinger
- Vibration Isolators

- Shaft Seal
- Corrosion Resistant Coating
- Aluminum Wheel
- Back Draft Dampers

Inlet & Outlet Screens

2" Drain Fitting

For more information on accessories, see page C14.

VRF Outdoor Unit 38VMA096RDS6-1 - Heat Recovery

Submittal Data

Job Data		Location	
Buyer	Buyer PO #	Carrier #	
Unit Number	Model	Number	
Performance Data Certified By		Dat	e
	Heat R • Moc 28 t • Moc scrc • Dire outc • Up t tota line) • 656 leng furtt • Up t wirit units	ecovery Features dules available from 6 to ons dules have inverter-driven bil compressors ect-drive, inverter-driven door motor to 3280 ft (1000 m) actual I system piping (liquid) ft (200 m) actual piping gth from outdoor unit to nest fan coil to 3937 ft (1200 m) control ng between the outdoor s and indoor units	 Operating temperature range Cooling (db): 5° to 125°F (-15° to 52°C) Heating (wb): -13° to 64°F (-25° to 18°C) Protection: high pressure sensor and switch, low pressure sensor and switch, process controller board fuse, inverter overload protection 7-year compressor limited warranty 5-year parts limited warranty

Header Unit Model		38VMA096RDS6-1
PERFORMANCE		
Nominal Cooling Capacity	Btu/h	96,000
Nominal Heating Capacity	Btu/h	108,000
Maximum Total Connected Indoor Unit Capacity		50% to 150%
SIMULTANEOUS COOLING AND HEAT	ING EFF	ICIENCY†
SCHE, Ducted FCUs		27.70
SCHE, Ductless FCUs		30.00
COOLING EFFICIENCY [†]		
EER/IEER, Ducted FCUs	Btu/Wh	12.40/24.30
Power Consumption, Ducted FCUs	kW	7.10
EER/IEER, Ductless FCUs	Btu/Wh	13.20/23.70
Power Consumption, Ductless FCUs	kW	6.20
HEATING EFFICIENCY†		
COP at 47°F, Ducted FCUs		3.63
Power Consumption, Ducted FCUs	kW	8.00
COP at 47°F, Ductless FCUs		3.82
Power Consumption, Ductless FCUs	kW	7.20
Fan Type (Qty)		Propeller (2)
Airflow, Standard Range	CFM	7600
Sound Pressure	dBA	61.7
External Static Pressure*	in. wg	0.24

db COP EER FCU IEER

wb SCHE

LEGEND — Dry Bulb P — Coefficient of Performance R — Energy Efficiency Ratio U — Fan Coil Unit ER — Integrated Energy Efficiency Ratio — Wet Bulb CHE — Simultaneous Cooling and Heating Efficiency

ELECTRICAL		
Power Supply	V/Ph/Hz	460/3/60
Minimum Circuit Amps (MCA)	А	22
Recommended Fuse Size	А	30
COMPRESSORS		
Type (Number)		Inverter Hermetic Scroll (1)
FAN MOTOR		
Motor Type (Steps)	Inverter	Direct Driven (13)
Motor Output	kW	2 x 0.21
PHYSICAL DATA		
Pipe Connection Size - Liquid (High Pressure)	in.	3/4 (Brazed)
Pipe Connection Size - Gas (Low Pressure)	in.	7/8 (Brazed)
Refrigerant		R-410A
Factory Charge ++	lb	26.5
Unit Width	in.	52-3/4
Unit Height	in.	64-3/8
Unit Depth	in.	31-1/8
Net Weight	lb	672

†Rated per AHRI (Air-Conditioning, Heating and Refrigeration Institute) 1230 Standard.

Cooling: Indoor 80°F (27°C) db/67°F (20°C) wb; Outdoor 95°F (35°C) db Heating: Indoor 70°F (21°C) db; Outdoor 47°F (8°C) db/43°F (6°C) wb *Requires setting by menu functions.

††Additional charge required.

NOTE: Unit cabinet and coil slab shall be capable of withstanding 500-hour salt spray test.

Manufacturer reserves the	right to discontinue, or change at any time, s	pecifications or des	igns without notice and v	without incurring obligations.
Printed in U.S.A.	Form 38VMR0966-C-2SD	Pg 1	05-18	Replaces: 38VMR0966-C-1SD

Printed in U.S.A.

DIMENSIONAL DRAWING OUTDOOR UNIT 38VMA096RDS6-1

© Carrier Corporation 2018 Generation applies only when the complete system is listed with AHRI.

Pg 2

05-18

Form 38VMR0966-C-2SD

Replaces: 38VMR0966-C-1SD

PARTIAL ROOF PLAN SOUTHEAST CORNER OF EXISTING BUILDING

AHBL INC. LARRY HIGGINS PE 8-1-2023 RED DOT MECHANICAL 2220760.21

PRMH20231156

