

Enterprise TI 733 River Road Puyallup, WA 98371

Tenant Improvement Structural Calculations

THE APPROVED CONSTRUCTION PLANS, DOCUMENTS AND ALL ENGINEERING MUST BE POSTED ON THE JOB AT ALL INSPECTIONS IN A VISIBLE AND READILY ACCESSIBLE LOCATION.

FULL SIZED LEDGIBLE COLOR PLANS ARE REQUIRED TO BE PROVIDED BY THE PERMITEE ON SITE FOR INSPECTION

Project Number 22460 2/17/2023

Calculation Index

Scope Of Work	Page 3
Wind Loads	Page 4
Seismic Analysis	Page 11
North Wall	Page 16
West Wall	Page 20
Coiling Door Header	Page 55

PRCTI20230247

BUILDING CODE

The 2018 edition of the 'international existing building code (IEBC), as adopted or amended by the city of Puyallup, shall govern design and construction.

SCOPE OF WORK

Design of the wall door cutouts on the west and north sides of the existing building. The scope of this package is not a seismic upgrade of the entire building, our is limited to replacing the seismic strength lost by wall cutouts. A full seismic upgrade is beyond the scope of this tenant improvement. The west wall requires additional seismic capacity and a concrete shearwall was added. The north wall of the building is approximately 190-feet long and did not require additional seismic capacity. Additional out of plane wall seismic bracing was added along the west wall to accommodate the additional out of plane loads at the location of the new concrete shear wall. New cutouts were framed with structural steel to support roof framing and coil doors. The 190-foot east-west length of the building spans numerous tenants and the tenant improvement associated with this submittal covers the western 50-feet of this building. We did not observe the interior framing of the eastern 140-feet of this building, it is assumed to be in similar condition to the western 50-foot of the building that we did observe.

Project: ______ Date: _____

City of Psychology (Psychology of Psychology (Psychology of Psychology (Psychology of Psychology (Psychology of Psychology of Psychology (Psychology of Psychology of Psy

PRCTI20230247

City of Puyallup
Development & Permitting Services
ISSUED PERMIT
Building Planning
Engineering Public Works

- ▲ This is a beta release of the new ATC Hazards by Location website. Please contact us with feedback.
- The ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

A Hazards by Location

Search Information

Address: 733 River Rd, Puyallup, WA 98371, USA

Coordinates: 47.2020095, -122.3033086

Elevation: 37

Timestamp: 2022-12-28T17:01:07,916Z

Hazard Type: Wind

ASCE 7-16		ASCE 7-10		ASCE 7-05	
MRI 10-Year	67 mph	MRI 10-Year	72 mph	ASCE 7-05 Wind Speed	85 mph
MRI 25-Year	73 mph	MRI 25-Year	79 mph		
MRI 50-Year	78 mph	MRI 50-Year	85 mph		
MRI 100-Year .	82 mph	MRI 100-Year	91 mph		
Risk Category I	92 mph	Risk Category I	100 mph		
Risk Category II	97 mph	Risk Category II	110 mph		
Risk Calegory III	104 mph	Risk Category III-IV	115 mph		
Risk Category IV	108 mph	97 MPH	RISK	CATI	

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Please note that the ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

Disclaimer

Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer. Per ASCE 7, Islands and coastal areas outside the last contour should use the last wind speed contour of the coastal area – in some cases, this website will extrapolate past the last wind speed contour and therefore, provide a wind speed that is slightly higher. NOTE: For queries near wind-borne debris region boundaries, the resulting determination is sensitive to rounding which may affect whether or not it is considered to be within a wind-borne debris region.

Mountainous terrain, gorges, ocean promonlories, and special wind regions shall be examined for unusual wind conditions.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by tatitude/longitude location in the report.

BSE	Project:	Date:
SSUED PERMIT Building Planning Public Works Price Traffic	ctural E ngineers, P.S.	
	N-S WIND LOADING	
	(MAIN FORCE RESISTADIO SYSTEM)	
	PW = 16psf DER WIND AND WIT MIN CONTROLLED	alyses output.
	Vw = /6psf (16x190°)=24,3k	LE VSETSMEC = 205
And the Contract of Contract o	SEISMIC CONTROLS -	
	By FASPECTION SEISMIL WILL CON AS WELL.	STROL E-W DER

MecaWind v2405

```
Software Developer: Meca Enterprises Inc., www.meca.biz, Copyright 3 2020
 Calculations Prepared by:
                                                   Calculations Prepared For:
 Client:
 Date: Jan 19, 2023
                                                      Project #:
                                                                             Ω
 Designer: 0
                                                      Location:
                                                                             0
 File Location:
G:\2022\22460 Enterprise Puyallup TI\Calcs\Enterprise Puyallup TI Wind Design.wnd
Basic Wind Parameters
Wind Load Standard
Wind Design Speed
                                     = ASCE 7-16 Exposure Category
= 97.0 mph Risk Category
= Building Building Type
                                                                                              = B
                                                                                              = TT
Structure Type
                                                                                               = Enclosed
General Wind Settings
Incl_LF = Include ASD Load Factor of 0.6 in Pressures
                                                                                         = False
DynType = Dynamic Type of Structure
                                                                                        = Rigid
Zg = Altitude (Ground Elevation) above Sea Level
                                                                                        = 39.000 ft
           = Base Elevation of Structure
                                                                                        = 0.000 ft
SDB
           = Simple Diaphragm Building
SDB = Simple Diaphragm Bullding
Reacs = Show the Base Reactions in the output
                                                                                        = True
                                                                                        = False
MWFRSType = MWFRS Method Selected
                                                                                        = Ch 27 Pt 1
Topographic Factor per Fig 26.8-1
Topo = Topographic Feature
                                                                                        - None
           = Topographic Factor
                                                                                         = 1.000
Building Inputs
RoofType: Building Roof Type = Flat RfHt : Roof Height
W : Building Width = 100.000 ft L : Building Length
Par : Is there a Parapet = False
                                                                                            = 16.500 ft
                                                                                            = 380.000 ft
Exposure Constants per Table 26.11-1:
Alpha: Table 26.11-1 Const = 7.000 Zg: Table 26.11-1 Const = 1200.000 ft
At: Table 26.11-1 Const = 0.143 Bt: Table 26.11-1 Const = 0.840
Am: Table 26.11-1 Const = 0.250 Bm: Table 26.11-1 Const = 0.450
C: Table 26.11-1 Const = 0.300 Eps: Table 26.11-1 Const = 0.333
Overhang Inputs:
Std = Overhangs on all sides are the same
                                                                                        = True
           = Type of Roof Wall Intersections
                                                                                        = None
Main Wind Force Resisting System (MWFRS) Calculations per Ch 27 Part 1:
          = Mean Roof Height above grade
                                                                                        = 16.500 ft
Kh
           = 15 ft [4.572 \text{ m}] < Z < Zg --> (2.01*(Z/zg)^(2/Alpha) {Table 26.10-1} = 0.591
           = Topographic Factor is 1 since no Topographic feature specified = 1.000
Kzt
           = Wind Directionality Factor per Table 26.6-1
           = Elevation above Sea Level
                                                                                        = 39.000 ft
           = Ground Elevation Factor: Ke = e^{-(0.0000362*Zg)} {Table 26.9-1} = 0.999
Κe
GCPi
          = Ref Table 26.13-1 for Enclosed Building
                                                                                        = +/-0.18
RA
           = Roof Area
                                                                                        = 38000.00 \text{ sq ft}
           = Load Factor based upon STRENGTH Design
LF
                                                                                        = 1.00
qh
          = (0.00256 * Kh * Kzt * Kd * Ke * V^2) * LF
                                                                                       = 12.07 psf
          = For Negative Internal Pressure of Enclosed Building use qh*LF = 12.07 psf

= For Positive Internal Pressure of Enclosed Building use qh*LF = 12.07 psf
qin
Gust Factor Calculation:
Gust Factor Category I Rigid Structures - Simplified Method
      = For Rigid Structures (Nat. Freq.>1 Hz) use 0.85
                                                                                        = 0.85
Gust Factor Category II Rigid Structures - Complete Analysis
Zm = Max(0.6 * Ht, Zmin)
Izm = Cc * (33 / Zm) ^ 0.167
Lzm = L * (Zm / 33) ^ Eps
                                                                                        = 30.000 \text{ ft}
                                                                                        = 0.305
                                                                                        = 309.993
В
          = Structure Width Normal to Wind
                                                                                       = 380.000 \text{ ft}
Q = (1 / (1 + 0.63 * ((B + Ht) / Lzm)^0.63))^0.5

G2 = 0.925*((1+0.7*Izm*3.4*Q)/(1+0.7*3.4*Izm))
                                                                                       = 0.759
                                                                                        = 0.783
Gust Factor Used in Analysis
      = Lessor Of G1 Or G2
                                                                                        = 0.783
```

= 16.500 ft


```
MWFRS Wind Normal to Ridge (Ref Fig 27.3-1)
h = Mean Roof Height Of Building
                                                                                      = 16.500 ft
RHt
          = Ridge Height Of Roof
                                                                                      = 16.500 \text{ ft}
В
           = Horizontal Dimension Of Building Normal To Wind Direction = 380.000 ft
           = Horizontal Dimension Of building Parallel To Wind Direction
                                                                                      = 100.000 ft
L/B
           = Ratio Of L/B used For Cp determination
                                                                                      = 0.263
           = Ratio Of h/L used For Cp determination
h/L
                                                                                      = 0.165
Slope
           = Slope of Roof
                                                                                      = 0.0 Deg
Roof
           = Roof Coeff (0 to h/2) (0.000 ft to 8.250 ft)
                                                                                      = -0.18, -0.9
Roof
           = Roof Coeff (h/2 \text{ to } h) (8.250 \text{ ft to } 16.500 \text{ ft})
                                                                                      = -0.18, -0.9
Roof
         = Roof Coeff (h to 2h) (16.500 ft to 33.000 ft)
                                                                                      = -0.18, -0.5
Roof
           = Roof Coeff (>2h) (>33.000 ft)
                                                                                      = -0.18, -0.3
           = Windward Wall Coefficient (All L/B Values)
Cp_LW
           = Leward Wall Coefficient using L/B
                                                                                      = -0.50
Cp SW
           = Side Wall Coefficient (All L/B values)
           = Parapet Combined Net Pressure Coefficient (Windward Parapet)
GCpn WW
                                                                                      = 1.50
GCpn LW
           = Parapet Combined Net Pressure Coefficient (Leeward Parapet)
   Wall Wind Pressures based On Positive Internal Pressure (+GCPi) - Normal to Ridge
                     All wind pressures include a load factor of 1.0
             Elev
      £t
      16.50 0.591 1.000 12.07 0.18 5.39 -6.90 -8.79 12.29
   Wall Wind Pressures based on Negative Internal Pressure (-GCPi) - Normal to Ridge
                     All wind pressures include a load factor of 1.0
                                                                                                   MFRS
            Kz Kzt qz GCPi Windward Leeward Side Total Minimum
      Elev
                    Press Press Press Press Pressure*
psf psf psf psf psf
      ft.
      16.50 0.591 1.000 12.07 -0.18 9.74 -2.55 -4.44 12.29
                                                                                     ( 16.00
      Notes Wall Pressures:
      Kz = Velocity Press Exp Coeff Kzt = Topographical Factor qz = 0.00256*Kz*Kzt*Kd*V^2 GCPi = Internal Press Coefficient
      qz = 0.00256*Kz*Kzt*Kd*V^2 GGFI - INCEINAL ILEO GGELLESSING = qh * G * Cp_SW - qip * +GCPi Windward = qz * G * Cp_WW - qip * +GCPi Leeward = qh * G * Cp_LW - qip * +GCPi Total = Windward Press - Leeward Press
      * Minimum Pressure: Para 27.1.5 no less than 16.00 psf (Incl LF) applied to Walls
      + Pressures Acting TOWARD Surface
                                                   - Pressures Acting AWAY from Surface
 Roof Wind Pressures for Positive & Negative Internal Pressure (+/- GCPi) - Normal to
                                              Ridge
                      All wind pressures include a load factor of 1.0
       Roof Var Start End Cp_min Cp_max GCPi Pressure Pressure Pressure Pressure
                                                       Pn_min* Pp_min* Pn_max Pp_max
psf psf psf psf
                  Dist Dist
                   ft ft
     Roof (All) 0.000 8.250 -0.180 -0.900 0.180 0.47 -3.87 -6.33 -10.68 Roof (All) 8.250 16.500 -0.180 -0.900 0.180 0.47 -3.87 -6.33 -10.68 Roof (All) 16.500 33.000 -0.180 -0.500 0.180 0.47 -3.87 -2.55 -6.90 Roof (All) 33.000 100.000 -0.180 -0.300 0.180 0.47 -3.87 -0.66 -5.01
     Notes Roof Pressures:
     Start Dist = Start Dist from Windward Edge End Dist = End Dist from Windward Edge
     Cp_Max = Largest Coefficient Magnitude Cp_Min = Smallest Coefficient Magnitude Pp_max = qh*G*Cp_max - qip*(+GCPi) Pn_max = qh*G*Cp_max - qin*(-GCpi) Pp_min* = qh*G*Cp_min - qip*(+GCPi) Pn_min* = qh*G*Cp_min - qin*(-GCPi) OH = Overhang X = Dir along Ridge Y = Dir Perpendcular to Ridge Z = Vertical
      * The smaller uplift pressures due to Cp_Min can become critical when wind is combined
       with roof live load or snow load; load combinations are given in ASCE 7
     + Pressures Acting TOWARD Surface
                                                     - Pressures Acting AWAY from Surface
MWFRS Wind Parallel to Ridge (Ref Fig 27.3-1)
```

= Mean Roof Height Of Building


```
RHt
         = Ridge Height Of Roof
                                                                          = 16.500 \text{ ft}
В
         = Horizontal Dimension Of Building Normal To Wind Direction
                                                                          = 100.000 ft
                                                                       = 380.000 ft
        = Horizontal Dimension Of building Parallel To Wind Direction
T.
L/B
         = Ratio Of L/B used For Cp determination
                                                                          = 3.800
         = Ratio Of h/L used For Cp determination
h/L
                                                                          = 0.043
Slope
         = Slope of Roof
                                                                          = 0.0 \text{ Deg}
        = Roof Coeff (0 to h/2) (0.000 ft to 8.250 ft)
                                                                          = -0.18, -0.9
Roof
         = Roof Coeff (h/2 to h) (8.250 ft to 16.500 ft)
                                                                          = -0.18, -0.9
Roof
         = Roof Coeff (h to 2h) (16.500 ft to 33.000 ft)
                                                                          = -0.18, -0.5
Roof
         = Roof Coeff (>2h) (>33.000 ft)
                                                                          = -0.18, -0.3
Cp WW
         = Windward Wall Coefficient (All L/B Values)
                                                                          = 0.80
         = Leward Wall Coefficient using L/B
Cp LW
                                                                          = -0.21
Cp SW
         = Side Wall Coefficient (All L/B values)
                                                                          = -0.70
GCpn WW
         = Parapet Combined Net Pressure Coefficient (Windward Parapet)
                                                                          = 1.50
GCpn_LW = Parapet Combined Net Pressure Coefficient (Leeward Parapet)
                                                                          = -1.00
 Wall Wind Pressures based On Positive Internal Pressure (+GCPi) - Parallel to Ridge
                  All wind pressures include a load factor of 1.0
     Elev
            Κz
                                GCPi Windward Leeward Side
                  Kzt
                                                                  Total
                                     Press
                                               Press
                                                          Press
                                                                  Press
                                                                          Pressure*
     ft
                          psf
                                       psf
                                                  psf
                                                           psf
                                                                  psf
                                                                             psf
                                        . . . . . . . .
```

Wall Wind Pressures based on Negative Internal Pressure (-GCPi) - Parallel to Ridge All wind pressures include a load factor of 1.0

Elev	Κz	Kzt	qz	GCPi	Windward				Minimum
ft			psf		Press psf	Press psf	Press psf	Press psf	Pressure* psf
				~					
16.50	0.591	1.000	12.07	-0.18	9.74	0.19	-4.44	9.55	16.00

-4.16

-8.79

9.55

16.00

Notes Wall Pressures:

16.50 0.591 1.000 12.07 0.18 5.39

Kz = Velocity Press Exp Coeff Kzt = Topographical Factor
qz = 0.00256*Kz*Kz*Kd*V^2 GCPi = Internal Press Coefficient
Side = qh * G * Cp_SW - qip * +GCPi Windward = qz * G * Cp_WW - qip * +GCPi
Leeward = qh * G * Cp_LW - qip * +GCPi Total = Windward Press - Leeward Press
* Minimum Pressure: Para 27.1.5 no less than 16.00 psf (Incl LF) applied to Walls
+ Pressures Acting TOWARD Surface - Pressures Acting AWAY from Surface

Roof Wind Pressures for Positive & Negative Internal Pressure (+/- GCPi) - Parallel to Ridge All wind pressures include a load factor of 1.0

Roof Var	Start Dist ft	End Dist ft	Cp_min	Cp_max	GCPi	Pn_min*		Pressure Pn_max psf	
Roof (All) Roof (All) Roof (All) Roof (All)	8.250 16.500	16.500 33.000	-0.180 -0.180	-0.900 -0.500	0.180	0.47 0.47	-3.87	-6.33 -6.33 -2.55 -0.66	-6.90
Pp_max Pp_min* OH = Overh	= Start = Large = qh*G* = qh*G* ang X ler upli f live 1	Dist for set Coeff Cop max cop min = Dir all for set Coeff c	ficient - qip*(- - qip*(- long Ric sures du snow loa	Magnitu +GCPi) +GCPi) dge Y le to Cr ad; loa	ide Cp Pr Pr = Dir p_Min comb	p_Min = n_max = n_min* = Perpendou can become coinations	Smallest qh*G*Cp_r qh*G*Cp_r alar to R critical are given	Coefficie max - qin* min - qin* idge Z = l when wir n in ASCE	(-GCPi) Vertical dd is combined 7

Components and Cladding (C&C) Zone Summary per Ch 30 Pt 1:

```
h/W = Ratio of mean roof height to building width = 0.165

h/L = Ratio of mean roof height to building length = 0.043

h = Mean Roof Height above grade = 16.500 ft

Kh = 15 ft [4.572 \text{ m}] < \text{Z} < \text{Zg} --> (2.01*(\text{Z/zg})^(\text{Z/Alpha}) } \{\text{Table 26.10-1}\} = 0.591
```



```
Kzt
         = Topographic Factor is 1 since no Topographic feature specified = 1.000
         = Wind Directionality Factor per Table 26.6-1
                                                                           = 0.85
GCPi
         = Ref Table 26.13-1 for Enclosed Building
                                                                           = +/-0.18
LF
         = Load Factor based upon STRENGTH Design
                                                                           = 1.00
qh
         = (0.00256 * Kh * Kzt * Kd * Ke * V^2) * LF
                                                                           = 12.07 psf
         = Least Horizontal Dimension: Min(B, L)
                                                                           = 100.000 ft
         = Min(0.1 * LHD, 0.4 * h)
                                                                           = 6.600 ft
         = Max(a1, 0.04 * LHD, 3 ft [0.9 m])
                                                                           = 6.600 ft
h/B
         = Ratio of mean roof height to least hor dim: h / B
                                                                           = 0.165
0.2*h
         = Parameter used to define Zone 3
                                                                           = 3.300 ft
0.6*h
         = Parameter used to define Zones 1 and 2
                                                                           = 9.900 ft
```

Wind Pressure Summary for C&C Zones based Upon Areas Ch 30 Pt 1 (Table 1 of 2) All wind pressures include a load factor of 1.0

Zone	1			A <= 10.00 sq ft psf		A = 20.00 sq ft psf	i	A = 50.00 sq ft psf		A = 100.00 sq ft psf
	_	~~	160	$\omega + \omega + \omega$	-		_		_	
1		30.3-2A	X	16.00 -22.70		16.00 -21.20		16.00 -19.22		16.00 -17.73
1.		30.3-2A	1	16.00 -16.00		16.00 -16.00		16.00 -16.00		16.00 -16.00
2		30.3-2A	1	16.00 -29.94		16.00 -28.02		16.00 -25.47		16.00 -23.55
3	1	30.3-2A	1	16.00 -40.81	., 1	16.00 -36.96		16.00 -31.87		16.00 -28.02
4	1	30.3-1	100	16.00 -16.00	(I	16.00 -16.00		16.00 -16.00		16.00 -16.00
5	Ü	30.3-1	1	16.00 -17.39	JE	16.00 -16.23	1	16.00 -16.00		16.00 -16.00
3 4 5		30.3-1	1	16.00 -16.00		16.00 -16.00	1	16.00 -16.00	 	16.00 -16.0

Wind Pressure Summary for C&C Zones based Upon Areas Ch 30 Pt 1 (Table 2 of 2) All wind pressures include a load factor of 1.0

Zone		Figure		A = 200.00 sq ft psf		A = 500.00 sq ft psf	I	A > 1000.00 sq ft psf
	-		_		-		_	
1		30.3-2A	1	16.00 -16.23	1	16.00 -16.00		16.00 -16.00
1'		30.3-2A	-	16.00 -16.00		16.00 -16.00	ĺ	16.00 -16.00
2		30.3-2A		16.00 -21.62		16.00 -19.08	i	16.00 -19.08
3		30.3-2A		16.00 -24.17		16.00 -19.08	ĺ	16.00 -19.08
4		30.3-1		16.00 -16.00		16.00 -16.00	İ	16.00 -16.00
5		30.3-1		16.00 -16.00		16.00 -16.00	ĺ	16.00 -16.00

- * A is effective wind area for C&C: Span Length * Effective Width
- * Effective width need not be less than 1/3 of the span length
- * Maximum and minimum values of pressure shown.
- * + Pressures acting toward surface, Pressures acting away from surface
- * Per Para 30.2.2 the Minimum Pressure for C&C is 16.00 psf [0.766 kPa] {Includes LF}
- * Interpolation can be used for values of A that are between those values shown.

COMPONENTS & CLAPTIFUES -

WALL WIRG LOAD ULTIMATE IS: ZONE 4 ±16psf ZONE 5 +16psf - 18psf

City of Poysilisp volcopinist & Permitting Services (ISSUED PERM) Paulsing Paulsing	Project:		Date:
Priement Structural Engineering Trate Priemen Structural Engineering	ngineers, P.S.		
	SEIGNIC	ANALY STS	
		- Y	
-			
-			
			1
	-		
		- Anne-Politics	
	wellerma-		
			1
1			
			+
/			

PRCTI20230247

⚠ This is a beta release of the new ATC Hazards by Location website. Please contact us with feedback.

The ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

ards by Location

Search Information

Address: 733 River Rd, Puyallup, WA 98371, USA

Coordinates: 47.2020095, -122.3033086

Elevation: 37 ft

Timestamp: 2022-12-28T16:59:56,174Z

Hazard Type: Seismic

Reference Document: ASCE7-16

DEFAULT SITE CLASS

	Name	Value	Description
	SS	1,279	MCE _R ground motion (period=0.2s)
	S ₁	0.44	MCE _R ground motion (period=1.0s)
	S _{MS}	1.535	Site-modified spectral acceleration value
	S _{M1}	¹ null	Site-modified spectral acceleration value
0	DS	1.023	Numeric seismic design value at 0.2s SA Sps = 1.023
	S _{D1}	* null	Numeric seismic design value at 1.0s SA

^{*} See Section 11.4.8

▼Additional Information

	Name	Value	Description
	SDC	* null	Seismic design category
	Fa	1.2	Site amplification factor at 0.2s F4 = 1.2
_	F_{ν}	" null	Site amplification factor at 1.0s
	CRS	0.914	Coefficient of risk (0.2s)
	CR ₁	0.899	Coefficient of risk (1.0s)
	PGA	0.5	MCE _G peak ground acceleration
	F _{PGA}	1.2	Site amplification factor at PGA
	PGA _M	0.6	Site modified peak ground acceleration
	T_L	6	Long-period transition period (s)
	SsRT	1.279	Probabilistic risk-targeted ground motion (0.2s)
	SsUH	1.399	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
	SsD	1,5	Factored deterministic acceleration value (0,2s)
	SIRT	0.44	Probabilistic risk-targeted ground motion (1.0s)
	S1UH	0.49	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
	S1D	0.6	Factored deterministic acceleration value (1,0s)
	PGAd	0.5	Factored deterministic acceleration value (PGA)

^{*} See Section 11,4,8

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Please note that the ATC Hazards by Location wabsite will not be updated to support ASCE 7-22. Find out why.

Disclaimer

Hazard loads are provided by the U.S. Geological Survey $\underline{\text{Seismic Design Web Services}}.$

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals. Narroy experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. User of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by fallitude/longitude location in the report.

City of Payallup prints & Payallup SISSUED PERMITS ENGINEENTS EN	Project:	Date:
Planning Planning		

SEESMEC	PERCES
TEBC 2018	<u> </u>
SECTION	806.3 -
T	OF REDUCED SETSMIC FORCES PERMITTED FOR ALTERATION.
OFC	CEO SETSMIK FORCE IS 75% OF ODE PLESCRIBED FULLS PER COSECTION 303.3.2
SETGE	SYSTEM
N-S	DERECTION -
	WEST WALL (MEW) CONCRETE SHEARWALL (SPE R=5 . 1 = 21/2 Cd=5
	EAST WALL (EXIST) ORDINARY CMUWALL R=2 D=21/2 Cd=13/4
-	MUST USE SMALLER OF THE TWO
	": R=2 II=21/2 W=134
E-W	O INECTION -
	NORTH WALL - ORDINARY CMU WALL SAME KS ABOVE.

Project: _____ Date: ____

Prienen **S**tructural **E**ngineers, P.S.

	SEISMIC	ωŢ		
	19	0		
	Le	"cmu		
1800	иО	1	4	žmu –
2	PLAN	V#B	tous From	ST COVERHANS
12 (14') (190			150	(Exest) North WALL
				(E)WEST WALL INCludes Z' Parapet
1/2 (13') (50	·)(75psf)	and a self-dependent of the self-dependent o	24.4 4	(NEW) WEST WALL
1/2 (16) (100))(61 NSF) CMU	A COLUMNICA CONTRACTOR	48.8	(E) EAST WALL
109'x 190'	x 15 psf	and the second s	310.6K	Roof+CEILIUG
1/2 (121) (500 LF)	(10psf)		30 K	INTERTOR PARTITIONS
	TOTAL		535 K	

	·
Project:	Date:

PSE rienen Structural Engineers, P.S.

Phone: (206) 397-0000

BASE SHEAR CALCULATION								
ORDINARY MASONRY SHEARWALL -	A STATE OF THE STA							
R=Z D=z1/2 CJ=134 I==/	Sds = 1.02							
$C_s = \frac{50s}{R} \frac{T_e(.75)_{-1.02}(.)(.75)_{-383W}}{2}$								
Vult = 1383 (535*) = 205 k								
VASO = .7 (VULT = 205") = 143"								
	The state of the s							
	the delayer							
	¥							
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
	an can							

BSE PR	.C1120230247	
relopment & Permitting Services ISSUED PERMIT	Project:	Date:
Brienen Structural Engineering	gineers, P.S.	
	NORTH WALL	
		as excellent as provide the second as a se
		
		
and consider de		
2 <u> </u>		
		-
		
		
Ph.		

TABLE 2 Net Section for Shear Calculations in Running Bond Type of Construction

(2 Core Concrete Block Units)

ASSUMED FOR SEIGNAL MASS

				/	
Nominal Wall Thickness		6 in.	8 in./	10 in.	12 in.
		Net Section in.2/in.			
Solid	Grouted	5.60 7.60 9.6 11.60			11.60
	16 in. O.C.	3.20	5.00	5.2	6.40
	24 in. O.C.	2.80	3.80	4.5	5.30
	32 in. O.C.	3.60	3.45	4.1	4.70
	40 in. O.C.	2.45	3.25	3.9	4.40
	48 in. O.C.	2.40	3.15	3.7	4.15
No Gro	out in Wall	2.0	2.5	3.0	3.0

-Assumed Fool Desten LWALL

PRCTI20230247

Project:	Date:
Project.	Date.

rienen **S**tructural **E**ngineers, P.S.

		- MT - MT -	Management of the second secon	PACKAGE AND		
71	orth C	mo W)ALL_			
Exzy U	Jan Lew	41H =	190'-	(8×4') = 15	ව ්
Les	ist = 158			1 Door	t Fugs	
LENATH TO	BE REM	THE WEST			= 20'	
THE STATE OF THE S	:	A CONTRACTOR CONTRACTOR		140 pages to the page of the p		
L DEW		39'	1+14	14/0	STRESS	Tuchense
STRESS -	S VASI	, = (1.3)	(143 ^L)	= 134	17 PLF	
Anet= 3,15 (12)" 48" ex (snout		= /3	47	= 36p:	SC < 39	7 psi ok
	Vallow		3	And the second s	!	(.2 ()
	MORTH	WALL :	1	CTURKLY	Accepte	a particular and a part
				AND	Alar A	
			2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Dir maratividele		August 52.

RSE	PRCTI20230247

Project: _____

Date:

Brienen **S**tructural **E**ngineers, P.S.

CHECK	FTG	+T	MORTH	WALL

TRIB WIDTH
6+4+6=16

4

12° 44 12'

8' LONG X Z' WIDE

$$D = 1/032^{\#}$$

$$L = \frac{25'}{2}(16')(25psf) = 5000^{\#}$$

$$P = \frac{16032}{9'\times2'} = 1000psf < 3000psf$$

$$OK$$

DOE	PRCTI20230247
City of Puyallup Development & Permitting Service ISSUED PERMIT	

Project:	Date:
1 Tojoot	

			1
XIEST	WALL		

PRCTI20230247

Project:	Date:

rienen **S**tructural **E**ngineers, P.S.

MASO	ury wan	+ - \ \ - \ \ \ \	/EST		and the second s
S PASO	= (1.3)205 K)(50 ft	= 2665	PUF	
& VASD	= 2405/3	15 X12"	= 70.3 ps	i Klspsi less Glouted	e 46'
V4 1100	= 15psi		ttan 8.2.		\$
EXISTA	NES WES	7 Maso	ney war	TS BU	3PS4D
ATO,	A NEW CO	VCRETE	WALL -		
SE	E MEXT	PAGE -		1	4 Nove 1140
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	W Y Y		
			And the second s		900b
WITTER TO CONTINUE OF THE PARTY			Market and the first of		A as
		The state of the s		100 March 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
The second secon	Figure 1991				

Project: _____ Date: _

Brienen **S**tructural **E**ngineers, P.S.

New	CONCRETE WAN (WEST STOX)	
L= 50'	LONG	
T=6"	Thick	
f' = 300	DO PSI	-
S VULT =	(1.3)(205/2) = 37 psi (50'x12)(6")	

$$A V_n = A(x, x) F_c + F_t F_y$$
ALT 18.10.4.1

$$h = \frac{13}{50} = .9 < 1.5 = 0 \quad x = 3.0 \quad x = 1.0 \quad \text{mon mer}$$

$$F_t = .0025 \quad (m:n) \quad f_y = 60 \quad \text{ksi}$$

$$A V_n = (6) (3)(1) \overline{3000} + (.0025)(60.000)$$

"! USE MIN REINF OF
$$S_{t} = .0025$$

#40/2 $S = \frac{.201}{12^{4} \times L^{4}} = .0028 \times .0025 ok$

USE #40/2" OC EW

DCE	PRCTI20230247

roject:	Date:	
•		

Brienen **S**tructural **E**ngineers, P.S.

CHECK FOR	Boundary Bu	ements —
$S = \frac{13h^2}{2} = 0$	(1)(50×121/2)2	= 360000 in 3
		(cb) = 71, pst 2600 25
		=600 PET 1 ACT 18.10-63

" No BOUNDARY ELEMENTS REQUELED.

RCE	PRCTI20230247
City of Puyallup	

Project:		

Date:

Brienen **S**tructural **E**ngineers, P.S.

			400		
0	HE	C16		FOOTENG	STRES

WEST WHIL

MOT = SVASO h = 1.3(143")(16') = 1487 Kft

Prin = (-6-145ds) D=

(-54)[(75pfx13'x50')+(Lpsfx18'x50')+(15pfx3'x50')+(300pfx52')]

Conc cmo (200f Trib)

F75
Welle

WHIL

D=121.5

Pmin = 68K

PM4x = (1+,145ds)D+L = 1,14 (121.5k) + (25056 x 3'x 50')] = D D Roof Live

Pmax = 143K

Assumed ALLOWARD BEARING PRESSURG

3000 ps 1 AS SOIL HAVE BEEN COMPRESSENG, FOR SOME TEME HOW WITH NO. SIGNS OF SETTLEMENT ISSUES

1	DC	PRCTI20230247
	-	

Project:

Date: _____

Brienen **S**tructural **E**ngineers, P.S.

PMEW.	WEST WALL FTY (CONTINUED)
CONDITION	50'
3"-	Phin 3 PARTH CONSTREETING PRAY 2'wide FTG
e= Moti = 1487 = 6	$\frac{1.9'}{\sqrt{M+x}} = \frac{4P_{min}}{3w(1-2e)} = \frac{4(68^{k})}{3(2)(56-2(21.9))}$
	[may = 3716psf 24/3(3000)= 4000pol
PMAX CONDETTON	
e= Mot = 1487 / 143 K	$= 10.4 \text{gmax} = 4 \text{Pmax} = 4 (143^{12})$ $= 10.4 \text{gmax} = 3 (2) (52-2(10.4))$

DCE	PRCTI20230247

Project:	Date:	

rienen **S**tructural **E**ngineers, P.S.

	TRANSFE	n of shear lead.	FWTO WALL
	FPX = 0.4 Sps MAX	I= Up= = 0.4 (1.013)(1)	(535k)=110k
	V pen #	4 ADHESTUG DOWEL	= 1.4 K/DOWEL SEB ATTACKED
	$N = \frac{1/6}{1/4}$	= 79 Dowars	HILTI OUTPUT
and the same of th			
2'1		7/vort x 13 vert =	91 DONELS > 79 DOWEL
TYP			
		PND DOWBUS	- b/-
	4/19/2	DOWBUS TO FUD	V FER DONGL = 4 / pa
	NR	110K = 28	OUTPU'
		VERTS & PROUD (ZSENFORCENC)	DE MOUN PER
		SHEARWALL D CRETERIA.	>€≤±6N
5 margan - Samuran Bras August.			

www.hilti.com

Fastening point:

Company: Address: Phone I Fax:

Design:

Enterprise Concrete Wall Anchor

Page:

Specifier: E-Mail:

Date:

2/15/2023

Specifier's comments:

1 Input data

Anchor type and diameter:

HY 270 + Rebar A615 Gr.60 #4

Item number:

not available (element) / 2194247 HIT-HY 270 (adhesive)

Effective embedment depth:

Evaluation Service Report:

 $h_{ef} = 4.500 in.$

Material:

ASTM A 615 GR.60

Issued I Valid:

ESR-4143

3/1/2021 | 1/1/2022

Proof:

Design Method ASD Masonry

 $e_b = 0.000$ in. (no stand-off); t = 0.400 in.

Anchor plate^R:

Stand-off installation:

 $I_x \times I_y \times t = 12.000$ in. x 12.000 in. x 0.400 in.; (Recommended plate thickness: not calculated)

Profile:

no profile

Base material:

Grout-filled CMU, L x W x H: 16.000 in. x 8.000 in. x 8.000 in.;

Joints: vertical: 0.375 in.; horizontal: 0.375 in.

Base material temperature: 68 °F

Installation:

Face installation

Seismic loads

Geometry [in.]

 $^{^{\}mbox{\scriptsize R}}$ - The anchor calculation is based on a rigid anchor plate assumption.

www.hilti.com

Company: Page: Address: Specifier: E-Mail:

Design: Enterprise Concrete Wall Anchor Date: 2/15/2023

Fastening point:

Geometry [in.] & Loading [lb, in.lb]

1.1 Design results

i. i Design result	5			
Case	Description	Forces [lb] / Moments [in.lb]	Seismic	Max. Util. Anchor [%]
1	Combination 1	$N = 0$; $V_x = 1,400$; $V_y = 0$;	no	94
		$M = 0 \cdot M = 0 \cdot M = 0$		

2 Load case/Resulting anchor forces

Load case: Service loads

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	0	1,400	1,400	0

Anchor forces are calculated based on the assumption of a rigid anchor plate.

PRCTI20230247

Enterprise Concrete Wall Anchor

www.hilti.com

Company:

Address:

Phone I Fax:

Design: Fastening point: Page:

Specifier:

E-Mail: Date:

2/15/2023

3

3 Tension load (Most utilized anchor 1)

Load P_s [lb]

Capacity P, [lb]

Utilization $\beta_P = P_s/P_t$ [%]

Status

Overall strength

N/A

N/A

N/A

N/A

www.hilti.com

Company: Address: Phone I Fax:

1

Page: Specifier:

Design: Fastening point: Enterprise Concrete Wall Anchor

E-Mail: Date:

2/15/2023

4 Shear load (Most utilized anchor 1)

	Load V _s [lb]	Capacity V _t [lb]	Utilization $\beta_V = V_s/V_t$ [%]	Status
Steel strength	1,400	3,060	46	OK
Bond strength para and perp, $(Dir. x+)^1$	-	-	94	OK

¹Shear utilization may result from parallel and perpendicular shear (see details)

4.1 Steel strength

 $V_{t,s}$ = ESR Value

refer to ICC-ES ESR-4143

 $V_{t,s} \geq V_s$

Results

V _{t.s} [lb]	V _s [lb]
3,060	1,400

4.2 Bond strength parallel

 $V_{t,b,Base,\parallel}$ = ESR Value

refer to ICC-ES ESR-4143

 $V_{t,b,\parallel} = V_{t,b,\mathsf{Base},\parallel} \cdot f_{\mathsf{red},\mathsf{E},\parallel} \cdot f_{\mathsf{red},\mathsf{E},\parallel} \cdot f_{\mathsf{red},\mathsf{Temp}}$

 $V_{t,b,j} \ge V_{s,j}$

Variables

c _{min} [in.]	c _{cr} [in.]	s _{min} [in.]	s _{cr} [in.]	Temperature [°F]
4.000	12.000	4.000	18.000	68

Results

$V_{t,b,\perp}$ [lb]	V _{t.b,Base,}} [lb]	$V_{s,\parallel}$ [lb]	$f_{red,E,3}$	$\mathbf{f}_{red,S,\parallel}$	$f_{red,Temp}$	Utilization β _v [%]
0	1,495	0	0.000	0.000	1.000	0

4.3 Bond strength perpendicular

 $V_{t,b,\mathsf{Base},\perp}$ = ESR Value

refer to ICC-ES ESR-4143

 $V_{t,b,\perp} = V_{t,b,\mathsf{Base},\perp} \cdot f_{\mathsf{red},\mathsf{E},\perp} \cdot f_{\mathsf{red},\mathsf{S},\perp} \cdot f_{\mathsf{red},\mathsf{Temp}}$

 $V_{t,b,L} \ge V_{s,L}$

Variables

c _{min} [in.]	c _{cr} [in.]	s _{min} [in.]	s _{cr} [in.]	Temperature [°F]
4.000	12.000	4.000	18.000	68

Results

$V_{\mathrm{t,b,\perp}}$ [lb]	$V_{t,b,Base,\perp}$ [lb]	V _{s⊥} [lb]	$f_{red,E,\perp}$	$f_{red,S,\perp}$	$f_{red,Temp}$	Utilization β _v [%]
1,495	1,495	1,400	1.000	1.000	1.000	94

www.hilti.com

Fastening point:

Company: Address: Phone I Fax:

Design:

1

Page:

Specifier:

Enterprise Concrete Wall Anchor

E-Mail: Date:

2/15/2023

5

4.4 Shear interaction

$$\beta_{V,||} = \frac{V_{s,||}}{V_{t,||}}$$

 $\beta_{V,\perp} = \frac{V_{s,}}{V_{t,}}$

δ 1.667

Utilization β_V [%]

Status OK

 $\beta_V = \beta_{V,\parallel}^{\delta} + \beta_{V,\parallel}^{\delta} <= 1.0$

5 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Refer to the manufacturer's product literature for cleaning and installation instructions.
- For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- The min. sizes of the bricks, the masonry compressive strength, the type / strength of the mortar and the grout (in case of fully grouted CMU walls) has to fulfill the requirements given in the relevant ESR-approval or in the PTG.
- · Only the local load transfer from the anchor(s) to the wall is considered, a further load transfer in the wall is not covered by PROFIS!
- Wall is assumed as being perfectly aligned vertically checking required(!): Noncompliance can lead to significantly different distribution of forces
 and higher tension loads than those calculated by PROFIS. Masonry wall must not have any damages (neither visible nor not visible)! While
 installation, the positioning of the anchors needs to be maintained as in the design phase i.e. either relative to the brick or relative to the mortar
 joints.
- · The effect of the joints on the compressive stress distribution on the plate / bricks was not taken into consideration.
- If no significant resistance is felt over the entire depth of the hole when drilling (e.g. in unfilled butt joints), the anchor should not be set at this position or the area should be assessed and reinforced. Hilti recommends the anchoring in masonry always with sieve sleeve. Anchors can only be installed without sieve sleeves in solid bricks when it is guaranteed that it has not any hole or void.
- The accessories and installation remarks listed on this report are for the information of the user only. In any case, the instructions for use
 provided with the product have to be followed to ensure a proper installation.
- The compliance with current standards (e.g. 2018, 2015, 2012, 2009 and 2006 IBC) is the responsibility of the user.
- · Drilling method (hammer, rotary) to be in accordance with the approval!
- · Masonry needs to be built in a regular way in accordance with state-of the art guidelines!
- · Warnings/Notes OST in Masonry HNA!

Fastening meets the design criteria!

Cry of Payable Developed and the Company of Paya

www.hilti.com

Company:

Address: Phone I Fax:

Design: Fastening point:

Enterprise Concrete Wall Anchor

Page:

Specifier: E-Mail:

Date:

2/15/2023

6

6 Installation data

Profile: no profile

Hole diameter in the fixture: $d_f = -in$. Plate thickness (input): 0.400 in.

Drilling method: Drilled in hammer mode

Anchor type and diameter: HY 270 + Rebar A615 Gr.60

#4

Item number: not available (element) / 2194247 HIT-HY

270 (adhesive)

Maximum installation torque: - in.lb

Hole diameter in the base material: 0.625 in. Hole depth in the base material: 4.500 in.

Minimum thickness of the base material: 7.625 in.

Rebar with HIT-HY 270 injection mortar with 4.5 in embedment h ef, #4, Hammer drilled installation per ESR-4143

Coordinates Anchor [in.]

www.hilti.com			
Company:		Page:	7
Address:		Specifier:	
Phone I Fax:	1	E-Mail:	
Design:	Enterprise Concrete Wall Anchor	Date:	2/15/2023
Fastening point:			

7 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you.

PRCTI20230247

BUILDING CODE

The 2018 edition of the 'international existing building code (IEBC), as adopted or amended by the city of Puyallup, shall govern design and construction.

SCOPE OF WORK

Design of the wall door cutouts on the west and north sides of the existing building. The scope of this package is not a seismic upgrade of the entire building, our is limited to replacing the seismic strength lost by wall cutouts. A full seismic upgrade is beyond the scope of this tenant improvement. The west wall requires additional seismic capacity and a concrete shearwall was added. The north wall of the building is approximately 190-feet long and did not require additional seismic capacity. Additional out of plane wall seismic bracing was added along the west wall to accommodate the additional out of plane loads at the location of the new concrete shear wall. New cutouts were framed with structural steel to support roof framing and coil doors. The 190-foot east-west length of the building spans numerous tenants and the tenant improvement associated with this submittal covers the western 50-feet of this building. We did not observe the interior framing of the eastern 140-feet of this building, it is assumed to be in similar condition to the western 50-foot of the building that we did observe.

#4 DOWEL FROM WALL TO FND

www.hilti.com

Company: Address: Phone I Fax:

1

Page: Specifier: E-Mail:

Design: Fastening point: Concrete - Feb 15, 2023 (1)

Date:

2/15/2023

Specifier's comments:

1 Input data

Anchor type and diameter:

HIT-RE 500 V3 + Rebar A615 Gr.60 #4

Item number:

not available (element) / 2123401 HIT-RE 500 V3

(adhesive)

Effective embedment depth:

 $h_{ef,act} = 6.000 \text{ in. } (h_{ef,limit} = - \text{ in.})$

Material:

ASTM A 615 Gr.60

Evaluation Service Report:

ESR-3814

Issued I Valid:

3/1/2021 | 1/1/2023

Proof:

Design Method ACI 318-19 / Chem

Stand-off installation:

Profile:

Base material:

cracked concrete, 3000, f_c' = 3,000 psi; h = 420.000 in., Temp. short/long: 32/32 °F

Installation:

hammer drilled hole, Installation condition: Dry

Reinforcement:

tension: not present, shear: not present; no supplemental splitting reinforcement present

edge reinforcement: none or < No. 4 bar

Seismic loads (cat. C, D, E, or F)

Tension load: yes (17.10.5.3 (d))

Shear load: yes (17.10.6.3 (c))

Geometry [in.] & Loading [lb, in.lb]

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2023 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: E-Mail:

Design: Concrete - Feb 15, 2023 (1) Date: 2/15/2023

Fastening point:

1.1 Design results

Case	Description	Forces [lb] / Moments [in.lb]	Seismic	Max. Util. Anchor [%]
1	Combination 1	$N = 0$; $V_x = 0$; $V_y = 4,000$;	yes	100
		$M_{} = 0$: $M_{} = 0$: $M_{-} = 0$:		

2 Load case/Resulting anchor forces

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor Tension force Shear force Shear force x Shear force y

1 0 4,000 0 4,000

 $\label{eq:max_concrete} \begin{array}{ll} \text{max. concrete compressive strain:} & \text{- [\%]} \\ \text{max. concrete compressive stress:} & \text{- [psi]} \\ \text{resulting tension force in } (x/y) = (0.000/0.000): & 0 \text{ [lb]} \\ \text{resulting compression force in } (x/y) = (0.000/0.000): & 0 \text{ [lb]} \\ \end{array}$

3 Tension load

	Load N _{ua} [lb]	Capacity [♠] N _n [lb]	Utilization $\beta_N = N_{ua}/\Phi N_n$	Status
Steel Strength*	N/A	N/A	N/A	N/A
Bond Strength**	N/A	N/A	N/A	N/A
Sustained Tension Load Bond Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Failure**	N/A	N/A	N/A	N/A

^{*} highest loaded anchor **anchor group (anchors in tension)

2

Company: Address: Phone I Fax:

Design: Concrete - Feb 15, 2023 (1) Fastening point:

2/15/2023

3

4 Shear load

	Load V _{ua} [lb]	Capacity V _n [lb]	Utilization $\beta_V = V_{ua}/\Phi V_n$	Status
Steel Strength*	4,000	4,032	100	ОК
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength (Bond Strength controls)**	4,000	16,598	25	OK
Concrete edge failure in direction **	N/A	N/A	N/A	N/A

4.1 Steel Strength

 $V_{\rm sa,eq} = {\sf ESR} \ {\sf value}$ refer to ICC-ES ESR-3814 $\phi \ V_{\rm steel} \geq V_{\rm ua}$ ACI 318-19 Table 17.5.2

Variables

A _{se,V} [in. ²]	f _{uta} [psi]	o. _{V,seis}	
0.20	80,000	0.700	

Calculations

V_{sa,eq} [ib] 6,720

Results

V _{sa,eq} [lb]	φ _{steel}	φ V _{sa,eq} [lb]	V _{ua} [ib]
6,720	0.600	4,032	4.000

Company: Address: Phone I Fax:

Concrete - Feb 15, 2023 (1)

Page: Specifier: E-Mail:

Date:

2/15/2023

4

Design: Fastening point:

4.2 Pryout Strength (Bond Strength controls)

$$V_{cp} = k_{cp} \left[\left(\frac{A_{Na}}{A_{Na0}} \right) \psi_{ed,Na} \psi_{cp,Na} N_{ba} \right]$$

 $A_{Na0} = (2 c_{Na})^2$ $c_{Na} = 10 d_a \sqrt{\frac{\tau \text{ uncr}}{1100}}$

 $\psi_{\text{ed,Na}} = 0.7 \pm 0.3 \left(\frac{c_{a,\text{min}}}{c_{\text{Na}}}\right) \leq 1.0$

$$\begin{split} \psi_{\text{cp,Na}} &= \text{MAX}\bigg(\frac{c_{a,\text{min}}}{c_{ac}}, \frac{c_{Na}}{c_{ac}}\bigg) \leq 1.0 \\ N_{ba} &= \lambda_{a} \cdot \tau_{k,c} \cdot \alpha_{N,\text{seis}} \cdot \pi \cdot d_{a} \cdot h_{ef} \end{split}$$

ACI 318-19 Eq. (17.6.5.1.2b)

ACI 318-19 Eq. (17.7.3.1a)

ACI 318-19 Table 17.5.2

ACI 318-19 Eq. (17.6.5.4.1b)

ACI 318-19 Eq. (17.6.5.1.2a)

ACI 318-19 Eq. (17.6.5.5.1b) ACI 318-19 Eq. (17.6.5.2.1)

h_{ef} [in.]

6.000

c_{a min} [in.]

τ_{kc} [psi]

1,398

d_a [in.]

0.500

Variables

K _{cp}	^{CL} overhead	τ _{k.c.uncr} [psi]
2	1.000	1,821
c _{ac} [in.]	λ _a	$lpha_{N,seis}$
10.061	1.000	0.900

11,856

Calculations

1.000

c _{Na} [in.]	A _{Na} [in. ²]	A _{Na0} [in. ²]	$\psi_{\text{ed,Na}}$
6.404	164.07	164.07	1.000
Ψ _{cp,Na}	N _{ba} [lb]		

Results

V _{cp} [lb]	oncrete concrete	$\phi_{\sf seismic}$	φ _{nonductile}	φ V _{cp} [lb]	V _{ua} [lb]
23,712	0.700	1.000	1.000	16,598	4,000

Cry of Psysillap

Cry of Psysillap

ROFIS Engineering 3.0.83

L.	ЛАІ	14/	h	ы	#i	~	om
w	, 44	AA		ш	Ų.	, 6,	2131

 Company:
 Page:

 Address:
 Specifier:

 Phone I Fax:
 |

 Design:
 Concrete - Feb 15, 2023 (1)

 Date:
 Date:

Design: Concrete - Feb 15, 2023 (1) Date: 2/15/2023
Fastening point:

5 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential
 concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout
 or pryout strength governs.
- Design Strengths of adhesive anchor systems are influenced by the cleaning method. Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions.
- · For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- "An anchor design approach for structures assigned to Seismic Design Category C, D, E or F is given in ACI 318-19, Chapter 17, Section 17.10.5.3 (a) that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure. If this is NOT the case, the connection design (tension) shall satisfy the provisions of Section 17.10.5.3 (b), Section 17.10.5.3 (c), or Section 17.10.6.3 (d). The connection design (shear) shall satisfy the provisions of Section 17.10.6.3 (a), Section 17.10.6.3 (b), or Section 17.10.6.3 (c)."
- Section 17.10.5.3 (b) / Section 17.10.6.3 (a) require the attachment the anchors are connecting to the structure be designed to undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength. Section 17.10.5.3 (c) / Section 17.10.6.3 (b) waive the ductility requirements and require the anchors to be designed for the maximum tension / shear that can be transmitted to the anchors by a non-yielding attachment. Section 17.10.5.3 (d) / Section 17.10.6.3 (c) waive the ductility requirements and require the design strength of the anchors to equal or exceed the maximum tension / shear obtained from design load combinations that include E, with E increased by ω₀.
- Installation of Hilti adhesive anchor systems shall be performed by personnel trained to install Hilti adhesive anchors. Reference ACI 318-19, Section 26.7.

Fastening meets the design criteria!

5

Company: Address: Phone | Fax:

Design: Fastening point: Concrete - Feb 15, 2023 (1)

Page: Specifier:

E-Mail: Date:

2/15/2023

6

6 Installation data

Profile: -

Hole diameter in the fixture: -Plate thickness (input): -

Drilling method: Hammer drilled

Cleaning: Compressed air cleaning of the drilled hole according to instructions

for use is required

#4 Rebar with Hilti HIT-RE 500 V3

Anchor type and diameter: HIT-RE 500 V3 + Rebar A615

Gr.60 #4

Item number: not available (element) / 2123401 HIT-RE

500 V3 (adhesive)

Maximum installation torque: -

Hole diameter in the base material: 0.625 in. Hole depth in the base material: 6.000 in.

Minimum thickness of the base material: 7.250 in.

6.1 Recommended accessories

Drilling	Cleanir
Suitable Rotary Hammer	• Com

- · Properly sized drill bit

· Compressed air with required accessories to blow from the bottom of the hole

· Proper diameter wire brush

Setting

- · Dispenser including cassette and mixer
- For deep installations, a piston plug is necessary
- · Torque wrench

Coordinates Anchor in.

Anchor	Х	У	C-x	C+x	C _{-y}	C _{+y}
1	0.000	0.000	-	-	-	-

www.hilti.com

Company:		Page:
Address:		Specifie
Phone I Fax:		E-Mail:
Design:	Concrete - Feb 15, 2023 (1)	Date:

Fastening point:

7 Remarks; Your Cooperation Duties

• Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.

r:

You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you.

2/15/2023

DCE	PRCTI20230247

Project:	Date:
Project:	Date:

OVI	OF P	LANE WAL	L SUPPORT		
				= 136psf	?
Ma	EN ANCHOR		PER ASC67-1	L STECTEDN 1	
				(136ps) = 111ps	
vi _					
105C		M Concrete wall		(888 pu=) = 622	af.
	1				

DCE	PRCTI20230247

Project: Date:	
----------------	--

Out of Pla	ne Wall Support Cont.
	777 PH
	$E = R_{ASD} \times (RPT) = 1554 \pm per brace$
CNO	At Agrange and the second of t
Try #K	SUS into 43mil brace
V _c	= 263# ea per 35UA
7	/ Val = 1554# / 263# = 5.9 screns Use (6) #10 SUS @ each brace connection
See H.1.	ti printout for brace anchor design

DCE	PRCTI20230247

Project:	Date:
•	

Out of Plane Wall Support Cont. EXISTING 22 GA MIL	
LOW AUGLE BRACE X X X X X X X X X X X X X X X X X X	AUGLE
F = 1554 # per brace	CONNECTION
$T_{ry} # D SMS in b 22ga roof de Van = 111#ea per SSMA FN_{gn} = 1554# / 111# = 14$	zek (30, m; 1)
See following Simpson CFS Designer Cor brace in compression check.	printout

Screw and Weld Capacities

PRCTI20230247

Screw Capacities

Table Notes

- 1. Capacities based on AISI S100 Section E4.
- When connecting materials of different steel thicknesses or tensile strengths, use the lowest values. Tabulated values assume two sheets of equal thickness are connected.
- Capacities are based on Allowable Strength Design (ASD) and include safety factor of 3.0.
- Where multiple fasteners are used, screws are assumed to have a center-to-center spacing of at least 3 times the nominal diameter (d).
- Screws are assumed to have a center-of-screw to edge-of-steel dimension of at least 1.5 times the nominal diameter (d) of the screw.

- 6. Pull-out capacity is based on the lesser of pull-out capacity in sheet closest to screw tip or tension strength of screw.
- 7. Pull-over capacity is based on the lesser of pull-over capacity for sheet closest to screw header or tension strength of screw.
- 8. Values are for pure shear or tension loads. See AISI Section E4.5 for combined shear and pull-over.
- 9. Screw Shear (Pss), tension (Pts), diameter, and head diameter are from CFSEI Tech Note (F701-12).
- 10. Screw shear strength is the average value, and tension strength is the lowest value listed in CFSEI Tech Note (F701-12).
- 11. Higher values for screw strength (Pss, Pts), may be obtained by specifying screws from a specific manufacturer.

Allowable Screw Connection Capacity (lbs)																		
					#6 Screw		#8 Screw					#12 Screw		,	1/4" Screw			
Thickness (Mils)	Design Thickness	Fy Yield (ksi)	Fu Tensile (ksi)	,	43 lbs, Pts : ' dia, 0.272'				ss= 1644 lbs, Pts = 1158 lbs) (Pss= 2330 lbs, Pts 0.190" dia, 0.340" Head			i i						
				Shear	Pull-Out	Pull-Over	Shear	Pull-Out	Pull-Over	Shear	Pull-Out	Pull-Over	Shear	Pull-Out	Pull-Over	Shear	Pull-Out	Pull-Over
18	0.0188	33	33	44	24	84	48	29	84	52	33	105	55	38	105	60	44	127
27	0.0283	33	33	82	37	127	89	43	127	96	50	159	102	57	159	110	66	191
30	0.0312	33	33	95	40	140	103	48	140	(111)	55	175	118	63	175	127	73	211
33	0.0346	33	45	151	61	140	164	72	195	177	84	265	188	95	265	203	110	318
43	0.0451	33	45	214	79	140	244	94	195	263	109	345	280	124	345	302	144	415
54	0.0566	33	45	214	100	140	344	118	195	370	137	386	394	156	433	424	180	521
68	0.0713	33	45	214	125	140	426	149	195	523	173	386	557	196	545	600	227	656
97	0.1017	33	45	214	140	140	426	195	195	548	246	386	777	280	775	1,016	324	936
118	0.1242	33	45	214	140	140	426	195	195	548	301	386	777	342	775	1.016	396	1.067
54	0.0566	50	65	214	140	140	426	171	195	534	198	386	569	225	625	613	261	752
68	0.0713	50	65	214	140	140	426	195	195	548	249	386	777	284	775	866	328	948
97	0.1017	50	65	214	140	140	426	195	195	548	356	386	777	405	775	1.016	468	1,067
118	0.1242	50	65	214	140	140	426	195	195	548	386	386	777	494	775	1.016	572	1.067

Weld Capacities

Table Notes

- Capacities based on the AISI S100 Specification Sections E2.4 for fillet welds and E2.5 for flare groove welds.
- 2. When connecting materials of different steel thicknesses or tensile strengths, use the lowest values.
- 3. Capacities are based on Allowable Strength Design (ASD).
- 4. Weld capacities are based on E60 electrodes. For material thinner than 68 mil, 0.030" to 0.035" diameter wire electrodes may provide best results.
- Longitudinal capacity is considered to be loading in the direction of the length of the weld.
- 6. Transverse capacity is loading in perpendicular direction of the length of the weld.
- For flare groove welds, the effective throat of weld is conservatively assumed to be less than 2t.
- For longitudinal fillet welds, a minimum value of EQ E2.4-1, E2.4-2, and E2.4-4 was used.
- For transverse fillet welds, a minimum value of EQ E2.4-3 and E2.4-4 was used.
- 10. For longitudinal flare groove welds, a minimum value of EQ E2.5-2 and E2.5-3 was used.

Allowable Weld Capacity (lbs / in)								
Thickness	Design	Fy Yield	Fu Tensile	Fillet \	Welds	Flare Groove Welds		
(Mils)	Thickness	(ksi)	(ksi)	Longitudinal	Transverse	Longitudinal	Transverse	
43	0.0451	33	45	499	864	544	663	
54	0.0566	33	45	626	1084	682	832	
68	0.0713	33	45	789	1365	859	1048	
97	0.1017	33	45	1125	1269	21	_1	
54	0.0566	50	65	905	1566	985	1202	
68	0.0713	50	65	1140	1972	1241	1514	
97	0.1017	50	65	1269	1269	.1		

Weld capacity for material thickness greater than 0.10" requires engineering judgment to determine leg of welds, W1 and W2.

Company: Page: Address: Specifier:

Phone I Fax: | E-Mail:

Design: Masonry - Feb 15, 2023 Date: 2/15/2023 Fastening point:

Specifier's comments:

1 Input data

Anchor type and diameter: KWIK HUS-EZ (KH-EZ) 1/4 (2 1/2)

Item number: 418046 KH-EZ 1/4"x3"

Effective embedment depth: $h_{\rm ef}$ = 2.500 in. Material: Carbon Steel

Evaluation Service Report: ESR-3056

Issued I Valid: 1/1/2021 | 10/1/2022

Proof: Design Method ASD Masonry

Stand-off installation: $e_b = 0.000$ in. (no stand-off); t = 0.118 in.

Anchor plate R: $I_x \times I_y \times t = 3.000$ in. x 10.000 in. x 0.118 in.; (Recommended plate thickness: not calculated)

Profile: no profile

Base material: Grout-filled CMU, L x W x H: 16.000 in. x 8.000 in. x 8.000 in.;

Joints: vertical: 0.375 in.; horizontal: 0.375 in.

Base material temperature: 68 °F

Installation: Face installation

Seismic loads no

Geometry [in.]

 $^{^{\}mbox{\scriptsize R}}$ - The anchor calculation is based on a rigid anchor plate assumption.

Fastening point:

Company: Address: Phone I Fax:

Design:

1

| Masonry - Feb 15, 2023 Page:

Date:

Specifier: E-Mail:

2/15/2023

2

Geometry [in.] & Loading [lb, in.lb]

1.1 Design results

Case	Description	Forces [lb] / Moments [in.lb]	Seismic	Max. Util. Anchor [%]
1	Combination 1	$N = 1,554; V_x = 0; V_v = 0;$	no	82
		$M_x = 0$; $M_y = 0$; $M_z = 0$;		

Company: Address: Phone I Fax:

Page: Specifier: E-Mail:

Date:

Design: Fastening point: . Masonry - Feb 15, 2023

2/15/2023

3

2 Load case/Resulting anchor forces

Load case: Service loads

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	518	0	0	0
2	518	0	0	0
3	518	0	0	0

Anchor forces are calculated based on the assumption of a rigid anchor plate.

Company: Address:

Phone I Fax: Design:

Fastening point:

| Masonry - Feb 15, 2023 Page: Specifier:

E-Mail: Date:

2/15/2023

4

3 Tension load (Most utilized anchor 1)

	Load P _s [lb]	Capacity P _t [lb]	Utilization $\beta_P = P_s/P_t$ [%]	Status	
Overall strength	518	633	82	OK	

3.1 Overall strength

 $P_{t,Base}$ = ESR Value

refer to ICC-ES ESR-3056

 $P_{t} = P_{t, \text{Base}} \circ f_{\text{red,E}} \circ f_{\text{red,S}} \circ f_{\text{red,Temp}} \circ f_{\text{red,Bedjoint}}$ $P_{t} \geq P_{s}$

Variables

c _{min} [in.]	c _{cr} [in.]	s _{min} [in.]	s _{cr} [in.]	Temperature [°F]
4.000	4.000	4.000	4.000	68

Results

P _t [lb]	P _{t,Base} [lb]	P _s [lb]	$f_{red,E}$	f _{red,S}	f _{red,Temp}	f _{red,Bedjoint}
633	728	518	1.000	1.000	1.000	0.870

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

Design: Masonry - Feb 15, 2023 Date: 2/15/2023

Fastening point:

4 Shear load (Most utilized anchor 1)

	Load V _s [lb]	Capacity V _t [lb]	Utilization $\beta_V = V_s/V_t$ [%]	Status	
Overall strength	N/A	N/A	N/A	N/A	

5 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- · Refer to the manufacturer's product literature for cleaning and installation instructions.
- For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- The min. sizes of the bricks, the masonry compressive strength, the type / strength of the mortar and the grout (in case of fully grouted CMU walls) has to fulfill the requirements given in the relevant ESR-approval or in the PTG.
- · Only the local load transfer from the anchor(s) to the wall is considered, a further load transfer in the wall is not covered by PROFIS!
- Wall is assumed as being perfectly aligned vertically checking required(!): Noncompliance can lead to significantly different distribution of forces
 and higher tension loads than those calculated by PROFIS. Masonry wall must not have any damages (neither visible nor not visible)! While
 installation, the positioning of the anchors needs to be maintained as in the design phase i.e. either relative to the brick or relative to the mortar
 joints.
- · The effect of the joints on the compressive stress distribution on the plate / bricks was not taken into consideration.
- If no significant resistance is felt over the entire depth of the hole when drilling (e.g. in unfilled butt joints), the anchor should not be set at this
 position or the area should be assessed and reinforced. Hilti recommends the anchoring in masonry always with sieve sleeve. Anchors can only
 be installed without sieve sleeves in solid bricks when it is guaranteed that it has not any hole or void.
- The accessories and installation remarks listed on this report are for the information of the user only. In any case, the instructions for use
 provided with the product have to be followed to ensure a proper installation.
- The compliance with current standards (e.g. 2018, 2015, 2012, 2009 and 2006 IBC) is the responsibility of the user.
- . Drilling method (hammer, rotary) to be in accordance with the approval!
- Masonry needs to be built in a regular way in accordance with state-of the art guidelines!
- · Warnings/Notes OST in Masonry HNA!

Fastening meets the design criteria!

5

Company: Address: Phone I Fax:

Design:

| Masonry - Feb 15, 2023 Page: Specifier: E-Mail:

Date:

2/15/2023

6

Fastening point:

6 Installation data

Profile: no profile

Hole diameter in the fixture: $d_f = -in$. Plate thickness (input): 0.118 in.

Drilling method: Drilled in hammer mode

Anchor type and diameter: KWIK HUS-EZ (KH-EZ) 1/4 (2

1/2)

Item number: 418046 KH-EZ 1/4"x3"

Maximum installation torque: 252 in.lb

Hole diameter in the base material: 0.250 in.

Hole depth in the base material: 2.875 in.

Minimum thickness of the base material: 7.625 in.

Hilti KH-EZ screw anchor with 2.5 in embedment, 1/4 (2 1/2), Steel galvanized, installation per ESR-3056

Coordinates Anchor [in.]

Anchor	x	У	C-x	C+x	C _{-y}	C _{+y}
1	0.000	-4.000	20.000	16.000	32.000	40.000
2	0.000	0.000	20.000	16.000	36.000	36.000
3	0.000		20.000			

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2023 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

ww.	hı	lt i	COM

Fastening point:

Company: Address: Phone I Fax:

Design:

Masonry - Feb 15, 2023

Page: Specifier:

E-Mail: Date:

2/15/2023

7 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you.

PRCTI20230247

Screw Capacities

Table Notes

- 1. Capacities based on AISI S100 Section E4.
- When connecting materials of different steel thicknesses or tensile strengths, use the lowest values. Tabulated values assume two sheets of equal thickness are connected.
- Capacities are based on Allowable Strength Design (ASD) and include safety factor of 3.0.
- 4. Where multiple fasteners are used, screws are assumed to have a center-to-center spacing of at least 3 times the nominal diameter (d).
- Screws are assumed to have a center-of-screw to edge-of-steel dimension of at least 1.5 times the nominal diameter (d) of the screw.

- 6. Pull-out capacity is based on the lesser of pull-out capacity in sheet closest to screw tip or tension strength of screw.
- Pull-over capacity is based on the lesser of pull-over capacity for sheet closest to screw header or tension strength of screw.
- 8. Values are for pure shear or tension loads. See AISI Section E4.5 for combined shear and pull-over.
- Screw Shear (Pss), tension (Pts), diameter, and head diameter are from CFSEI Tech Note (F701-12).
- 10. Screw shear strength is the average value, and tension strength is the lowest value listed in CFSEI Tech Note (F701-12).
- 11. Higher values for screw strength (Pss, Pts), may be obtained by specifying screws from a specific manufacturer.

						Allo	wable :	Screw	Connec	tion C	apacity	(lbs)		1808	1010	1633	Carry Contract	NI H
					#6 Screw			#8 Screw			#10 Screw			#12 Screw	,		1/4" Screw	,
Thickness (Mils)	Design Thickness	Fy Yield (ksi)	Fu Tensile (ksi)		43 lbs, Pts ' dia, 0.272			78 lbs, Pts ' dia, 0.272	= 586 lbs) " Head		4 lbs, Pts : dia, 0.340			30 lbs, Pts ' dia, 0.340			18 lbs, Pts " dia, 0.409	
				Shear	Pull-Out	Pull-Over	Shear	Pull-Out	Pull-Over	Shear	Pull-Out	Pull-Over	Shear	Pull-Out	Pull-Over	Shear	Pull-Out	Pull-Over
18	0.0188	33	33	44	24	84	48	29	84	52	33	105	55	38	105	60	44	127
27	0.0283	33	33	82	37	127	89	43	127	-06	50	159	102	57	159	110	66	191
30	0.0312	33	33	95	40	140	103	48	140	(2111 B	- 55	175	118	63	175	127	73	211
33	0.0346	33	45	151	61	140	164	72	195	200	84	265	188	95	265	203	110	318
43	0.0451	33	45	214	79	140	244	94	195	263	109	345	280	124	345	302	144	415
54	0.0566	33	45	214	100	140	344	118	195	2070	137	386	394	156	433	424	180	521
68	0.0713	33	45	214	125	140	426	149	195	523	173	386	557	196	545	600	227	656
97	0.1017	33	45	214	140	140	426	195	195	548	246	386	777	280	775	1.016	324	936
118	0.1242	33	45	214	140	140	426	195	195	548	301	386	777	342	775	1.016	396	1,067
54	0.0566	50	65	214	140	140	426	171	195	534	198	386	569	225	625	613	261	752
68	0.0713	50	65	214	140	140	426	195	195	548	249	386	777	284	775	866	328	948
97	0.1017	50	65	214	140	140	426	195	195	548	356	386	777	405	775	1.016	468	1.067
118	0.1242	50	65	214	140	140	426	195	195	548	386	386	777	494	775	1.016	572	1,067

#10 Van for / Screw to stud Screw to roof deck

Weld Capacities

Table Notes

- Capacities based on the AISI S100 Specification Sections E2.4 for fillet welds and E2.5 for flare groove welds.
- When connecting materials of different steel thicknesses or tensile strengths, use the lowest values.
- 3. Capacities are based on Allowable Strength Design (ASD).
- Weld capacities are based on E60 electrodes. For material thinner than 68 mil, 0.030" to 0.035" diameter wire electrodes may provide best results.
- Longitudinal capacity is considered to be loading in the direction of the length of the weld.
- Transverse capacity is loading in perpendicular direction of the length of the weld.
- For flare groove welds, the effective throat of weld is conservatively assumed to be less than 2t.
- For longitudinal fillet welds, a minimum value of EQ E2.4-1, E2.4-2, and E2.4-4 was used.
- For transverse fillet welds, a minimum value of EQ E2.4-3 and E2.4-4 was used.
- 10. For longitudinal flare groove welds, a minimum value of EQ E2.5-2 and E2.5-3 was used.

Allowable Weld Capacity (lbs / in)										
Thickness Design (Mils) Thickness		Fy Yield	Fu Tensile	Fillet \	Welds	Flare Groove Welds				
(mile)	imckness	(ksi)	(ksi)	Longitudinal	Transverse	Longitudinal	Transverse			
43	0.0451	33	45	499	864	544	663			
54	0.0566	33	45	626	1084	682	832			
68	0.0713	33	45	789	1365					
97	0.1017	33	45	1125	1269	859	1048			
54	0.0566	50	65	905	1566	200	4000			
68	0.0713	50	65	1140	1972	985	1202			
97	0.1017	50	65	1269	1269	1241	1514			

Weld capacity for material thickness greater than 0.10" requires engineering judgment to determine leg of welds, W1 and W2.

PRCTI20230247

Name: Out of Plane Brace

Out of Plane Brace

Code: 2012 NASPEC [AISI S100-2012]

Page 1 of 1

Date: 02/15/2023

Simpson Strong-Tie® CFS Designer™ 4.2.0.13

	888.0 ft-lb			739.1			1.22 in^4	,
Section :	400\$250-43	(33 ksi)	@ 2	4" o.c.	Single (C Stud	(unpunched)	

Loads have not been modified for strength checks Loads have been multiplied by 0.70 for deflection calculations

Bridging Connectors - Design Method =AISI S100 Axial Flexual. Stress Span KyLy, KtLt Connector **Distortional** Ratio Span None, None None, 48.0" N/A

Web Crip	ppling	Bearing	Pa	М		
Support	Load (lb)	(in)	(lb)	(ft-lbs)	Max Int.	Stiffener?
R2	0.0	Shear C	onnec	tion w/ clip-		NO
R1	0.0	Stud/Tra	ck De	sign, Ref Co	onnectors	NO
Gravity L	.oad					
Type	Load (lb)					

Uniform 0.00plf P₁y 1554.00lb @ 4.00ft

		Code Check	Required	Allowed	Interaction	Notes		
Span		Max. Axial, lbs	1554.0(c)	4998.0(c)	31%	КФ=0.00 lb-in/in Max	KL/r = 51	
		Max. Shear, Ibs	0.0	1739.1	0%			
1	Max. Moment (MaFy, Ma-dist), ft-lbs		0.0	867.9	0%	Ma-dist (control),KΦ=0.00 lb-in/in		
		Moment Stability, ft-lbs	0.0	888.0	0%			
		Shear/Moment	0.00	1.00	0%	Shear 0.0, Moment 0	1.0	
		Axial/Moment	0.31	1.00	31%	Axial 1554.0(c), Moment 0.0		
		Deflection Span, in		meets L/0		(-),		
Support Rx(lb)		Ry(lb)	Simpsor	n Strong-Tie Con	Connector Interaction	Anchor Interaction		
R2	0.0	0.0 SCI	345.5(2) & A	nchorage Design	ed by Engineer	0.00 %	NA	
D4	0.0	4554.0						

Support	Rx(lb)	Ry(lb)	Simpson Strong-Tie Connector	Interaction	Interaction
R2	0.0	0.0	SCB45.5(2) & Anchorage Designed by Engineer	0.00 %	NA
R1	0.0	1554.0	400T125-33 (33) & Anchorage Designed by Engineer	0.00 %	NA
* Reference	catalog for	connector an	d anchor requirement notes as well as screw placement requ	uirements	

PRCTI20230247 Project: Date:____ **B**rienen **S**tructural **E**ngineers, P.S. COFLENG DOOR HEADER

19	
DCL	PRCTI20230247

Project:	

A Total Control of the Control of th	HEADER C	WESTOP	ENTING CHORT	H SMALLER)
	Poor = 8		sf) + 5 (80psf) cmo) = 50\$ pur
310/ Anntwrg 7. self = 50	5pl=x = 1 = 1		Counters	self ws
T= 338 ^{#'} [14"]	. 0	338#' 2'8" = 338#' 248"	Conscionation 145#	re to ignore

DCE	PRCTI20230247

Project: _____ Date: ____

Control of the Contro	Print Cris	E + TC		145#+ 30#+	SO# = 275#
L = 18	Thomas and the state of the sta		Merellin	25 K/OF (18.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
S=12	HARACOL BALLO	8×4×1/4 Axis		M = 8.1	
	$\frac{1}{2} = 3$ $\frac{M}{5} = 3$		= 27 E	LITTLE CONSU	-67 (96 FSi) = 31 KSI
				a cluds the m	

DCE	PRCTI20230247

Project: _____ Date: ____

	HÉADED DESTAN (oestical load)
	L=18° TRES ARG	$A = \frac{40}{2} = 20$
CALAUTY LOADS PROW NOUTY HEADER	$D = \frac{25}{2} \times 15 psf + 1201$	PF + 320 + 50 = 677 PLF DOT CMUHGADOR STED USB. Header BODDEF
Me.	L = 25 psf 5 pm x = 2	= 313 pl= USE 500 PUF
The state of the s	WASO = 800 PLF + 500 PL	== 1.34/02
	M= we2 = 1,3 (18')	= 53 k-ft
	1 = M = 53 x Pa (12) Z5,4 in 3 CHSS 14×4	- = 25 toi
	NOTE THAT A DOWN PROVIDE SURFACE	RIG TUBE ITS USED TO FOR CORLESSE DOOR

RSE	PRCTI20230247
M 10 - 70 M	

Project: _____ Date: ____

	JAMB STE	EL @ WEST	opentuc	
	C7 M = 16	= 616 # R. × 338 #/FL Tonson		rotal = 785 [#] ASO
±13'		(, ()/2+)	# 0	2.7 ^{LSE} #
W=8× (CA	2006 4 NOD ASO		GIL# Rmon= RTOTAL= 785# ASO	16 - 167
	HELL HSSS: 2 = M = (2		5.1×5i < .671	Fy=31 KSi OK

	0	
K	-	
		No.

PRCTI20230247

Project:	Doto:
10Ject	Date:

	manufacture a minute manufacture			
JAMBS_	HT W	ITN DOW	OPENDU	5