

PRRWF20230497 Revision: Wall height/design.

See Civil permit and plans for site plan and location.

Approval of submitted plans is not an approval of omissions or oversight by this office or noncompliance with any applicable regulations of local government. The contractor is responsible for making sure that the building complies with all applicable building codes and regulations of the local government.

THE APPROVED CONSTRUCTION PLANS AND ALL ENGINEERING MUST BE POSTED ON THE JOB AT ALL INSPECTIONS IN A VISIBLE AND READILY ACCESSIBLE LOCATION.

SOUTH HILL BUSINESS &TECHNOLOGY CENTER PARKING EXPANSION STORMWATER PLANTER WALLS Draft Submittal

PMX#253-604-6600

Prepared for

July 17, 2023

Prepared by **Parametrix**

SOUTH HILL BUSINESS AND TECHNOLOGY CENTER

(East Parking Lot Expansion)

Description of Calculation

In this calculation package the structural design of stormwater planter walls located at the South Hill Business and Technology Center in Puyallup, Washington is presented. Construction of the stormwater planer walls is a portion of the east parking lot expansion project.

Design Codes

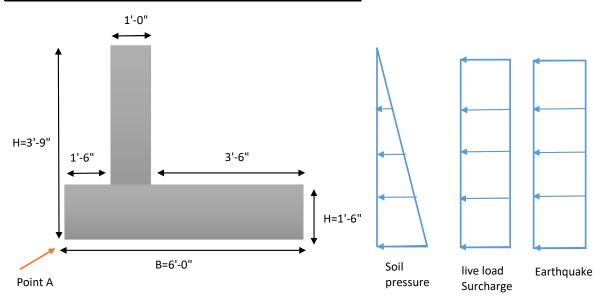
The following design codes were used for this design:

- International Building Code (IBC) 2018 Global Stability
- AASHTO LRFD Bridge Design Specification 9th Edition Structural Design

Summary of Results

The expanded parking lot will contain several stormwater planters whose wall heights range from 3'-0" to 6'-9" (i.e., measured from top of the wall to the bottom of footing). For walls with a height up to 3' the City of Tacoma's standard plans for walled bioretention walls and structural footing can be used, however, for walls taller than 3', four different wall design are prepared in this calculation package. Only the footing width changes by design height change, so that the footing width are 6', 7', 8', and 9' for walls with 3.75', 4.75', 5.75' and 6.75' height, respectively.

TABLE OF CONTENTS


Stability Check- Stormwater planter wall (H=3.75')	4
Stability Check- Stormwater planter wall (H=4.75'):	
Stability Check- Stormwater planter wall (H=5.75'):	
Stability Check- Stormwater planter wall (H=6.75'):	
Wall Flexural Resistance	
Interface Shear Resistance	17
Wall Shrinkage and Temperature Reinforcement	18
Footing Flexural Resistance	19
Footing Shrinkage and Temperature Reinforcement	20
Wall Sketch	

Prepared By: MJ Date: 05/16/2 Badding Planning
Checked By: AM Date: 05/23/2023 Traffic

Stability Check- Stormwater planter wall (H=3.75'):

Summary - Factor of Safeties (FOS):

Load Set	FOS	Allowable Factor of Safety
Overturning (1)	11.3	1.5
Overturning (2)	9.6	1.1
Sliding (1)	1.9	1.5
Sliding (2)	1.6	1.1
Bearing (1)	6.4	1
Bearing (2)	6.4	1

Geometry		
t_stem	1 ft	Stem thickness
h_stem	2.25 ft	Stem height
t_footing	1.5 ft	Footing thickness
В	6 ft	Footing width
w_toe	1.5 ft	Toe width
Н	3.75 ft	Design height
h_backfill	2.25 ft	Backfill height
w_backfill	3.5 ft	Backfill width
h_front fill	0	Frontfill height
w_frontfill	1.5 ft	Frontfill width
W-C	0.155 kcf	Concrete unit weight - per WSDOT BDM Table 3.8-1
w_soil_b	0.125 kcf	Backfill unit weight - per geotech engineer report
w_soil_f	0.11 kcf	Frontfill unit weight - per geotech engineer report
EH_ active	35 pcf	equivalent fluid density (active condition)
EH_ passive	300 pcf	equivalent fluid density (passive condition)
LS_H	70 psf	Live load surcharge pressure = K_a * 250 psf
EQ	30 psf	Seismic earth pressure, per Geotech engineer report = 8H (H is design hight)
μn	0.35	Soil sliding coefficient
qn	3.00 ksf	Allowable soil bearing resistance (per geotech engineer report)

Prepared By: MJ Date: 05/16/2 Checked By: AM Date: 05/23/20

Considered Loads:

DC - dead load of structural components and nonstructural attachments

EH - horizontal earth pressure load

EV - vertical pressure from dead load of earth fill

EQ - earthquake load

LS - live load surcharge

Summary of Unfactored loads and moments

	Vertical Loads & Moments				
Load Type	Description	V	Moment	MV	
		(kip/ft)	Arm (ft)	(kip-ft.)/ft	
DC1	Stem dead load	0.35	2.00	0.70	
DC2	Footing dead load	1.40	3.00	4.19	
EV1	Vertical pressure from dead load of fill on heel		4.25	4.18	
EV2	Vertical pressure from dead load of fill on toe	0.00	0.75	0.00	

	Horizontal Loads & Moments				
Load Type	Description	Н	Moment	МН	
		(kip/ft)	Arm (ft)	(kip-ft.)/ft	
EH_H	Horizontal component of active earth pressure	0.25	1.25	0.31	
LS_H	Horizontal component of live load surcharge	0.26	1.88	0.49	
EQ	Earthquake load	0.11	1.88	0.21	

Stability check per IBC 2018 - section 1807-2.3:

1807.2.3 Safety factor.

Retaining walls shall be designed to resist the lateral action of soil to produce sliding and overturning with a minimum safety factor of 1.5 in each case. The load combinations of Section 1605 shall not apply to this requirement. Instead, design shall be based on 0.7 times nominal earthquake loads, 1.0 times other *nominal loads*, and investigation with one or more of the variable loads set to zero. The safety factor against lateral sliding shall be taken as the available soil resistance at the base of the retaining wall foundation divided by the net lateral force applied to the retaining wall.

Exception: Where earthquake loads are included, the minimum safety factor for retaining wall sliding and overturning shall be 1.1.

load sets:

1. D + EH: Dead load + Soil lateral load

2. D + EH + 0.7*EQ: Dead load + Soil lateral load + 0.7 * Earthquake load

Summary of two load sets:

Load set	Vertical Loads & Moments	Horizontal Loads & Moments
	V_u MV_u	H_u MH_u
	(kip/ft) (kip-ft.)/ft	(kip/ft) (kip-ft.)/ft
D + EH	2.73 9.07	0.51 0.80
D + EH + 0.7 * EQ	2.73 9.07	0.59 0.95

Prepared By: MJ Date: 05/16/2
Checked By: AM Date: 05/23/2023

Overturning Check:

1. D + EH:

Resisting Moments: 9.07 (kip-ft.)/ft
Overturning Moments: 0.80 (kip-ft.)/ft

Safety factor = Resisting moments / Overturning moments = 11.34 > 1.5 Okay

2. D + EH + 0.7*EQ:

Resisting Moments: 9.07
Overturning Moments: 0.95

Safety factor = Resisting moments / Overturning moments = 9.6 > 1.1 Okay

Sliding Check:

1. D + EH:

Resisting Force: 0.95 (kip-ft.)/ft Sliding Load: 0.51 (kip-ft.)/ft Safety factor * = Resisting Force / Sliding Load:

Safety factor * = Resisting Force / Sliding Load = <u>1.88</u> > 1.5 Okay

2. D + EH + 0.7*EQ:

Resisting Force: 0.95 Sliding Load: 0.59

Safety factor * = Resisting Force / Sliding Load = 1.6 > 1.1 Okay

Bearing Check:

1. D + EH:

Eccentricity (e): 0.03 ft

Soil Bearing Resistance: 3.00 (kip-ft.)/ft Bearing Stresses: 0.47 (kip-ft.)/ft

Safety factor = Soil Bearing Resistance / Bearing Stresses = 6.41 > 1.0 Okay

2. D + EH + 0.7*EQ:

Eccentricity (e): 0.02 ft

Soil Bearing Resistance: 3.00 (kip-ft.)/ft Bearing Stresses: 0.47 (kip-ft.)/ft

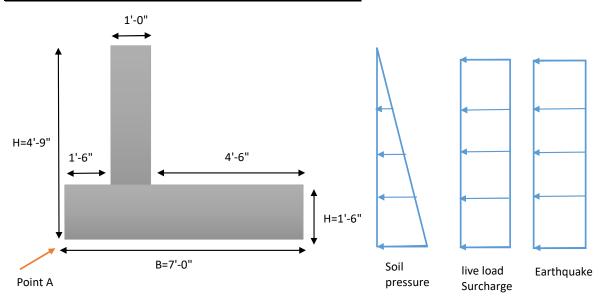
Safety factor = Soil Bearing Resistance / Bearing Stresses = 6.4 > 1.0 Okay

^{*} conservatively passive resistance associated with soil above the footing toe are disregarded

Date: 05/16/20 Padity Parking Benica Sulphy Padic Works

Date: 05/23/20 Packet Traffic Padic Works

Date: 05/23/20 Traffic Padic Works


Stability Check- Stormwater planter wall (H=4.75'):

3.00 ksf

qn

Summary - Factor of Safeties (FOS):

Load Set	FOS	Allowable Factor of Safety
Overturning (1)	10.9	1.5
Overturning (2)	9.0	(1.1)
Sliding (1)	1.9	1.5
Sliding (2)	1.6	1.1
Bearing (1)	5.2	1
Bearing (2)	5.1	1

Geometry		
t stem	1 ft	Stem thickness
h_stem	3.25 ft	Stem height
t_footing	1.5 ft	Footing thickness
В	7 ft	Footing width
w_toe	1.5 ft	Toe width
Н	4.75 ft	Design height
h_backfill	3.25 ft	Backfill height
w_backfill	4.5 ft	Backfill width
h_front fill	0	Frontfill height
$w_frontfill$	1.5 ft	Frontfill width
W-C	0.155 kcf	Concrete unit weight - per WSDOT BDM Table 3.8-1
w_soil_b	0.125 kcf	Backfill unit weight - per geotech engineer report
w_soil_f	0.11 kcf	Frontfill unit weight - per geotech engineer report
EH_ active	35 pcf	equivalent fluid density (active condition)
EH_ passive	300 pcf	equivalent fluid density (passive condition)
LS_H	70 psf	Live load surcharge pressure = K_a * 250 psf
EQ	38 psf	Seismic earth pressure, per Geotech engineer report = 8H (H is design hight)
μn	0.35	Soil sliding coefficient

Allowable soil bearing resistance (per geotech engineer report)

Prepared By: MJ Date: 05/16/2

Considered Loads:

DC - dead load of structural components and nonstructural attachments

EH - horizontal earth pressure load

EV - vertical pressure from dead load of earth fill

EQ - earthquake load

LS - live load surcharge

Summary of Unfactored loads and moments

	Vertical Loads & Moments				
Load Type	Description	V	Moment	MV	
		(kip/ft)	Arm (ft)	(kip-ft.)/ft	
DC1	Stem dead load	0.50	2.00	1.01	
DC2	Footing dead load	1.63	3.50	5.70	
EV1	EV1 Vertical pressure from dead load of fill on heel		4.75	8.68	
EV2	Vertical pressure from dead load of fill on toe	0.00	0.75	0.00	

	Horizontal Loads & Moments				
Load Type	Description	Н	Moment	МН	
		(kip/ft)	Arm (ft)	(kip-ft.)/ft	
EH_H	Horizontal component of active earth pressure	0.39	1.58	0.63	
LS_H	Horizontal component of live load surcharge	0.33	2.38	0.79	
EQ	Earthquake load	0.18	2.38	0.43	

Stability check per IBC 2018 - section 1807-2.3:

1807.2.3 Safety factor.

Retaining walls shall be designed to resist the lateral action of soil to produce sliding and overturning with a minimum safety factor of 1.5 in each case. The load combinations of Section 1605 shall not apply to this requirement. Instead, design shall be based on 0.7 times nominal earthquake loads, 1.0 times other *nominal loads*, and investigation with one or more of the variable loads set to zero. The safety factor against lateral sliding shall be taken as the available soil resistance at the base of the retaining wall foundation divided by the net lateral force applied to the retaining wall.

Exception: Where earthquake loads are included, the minimum safety factor for retaining wall sliding and overturning shall be 1.1.

load sets:

1. D + EH: Dead load + Soil lateral load

2. D + EH + 0.7*EQ: Dead load + Soil lateral load + 0.7 * Earthquake load

Summary of two load sets:

Load set	Vertical Loads & Moments	Horizontal Loads & Moments
	V_u MV_u	H_u MH_u
	(kip/ft) (kip-ft.)/ft	(kip/ft) (kip-ft.)/ft
D + EH	3.96 15.39	0.73 1.41
D + EH + 0.7 * EQ	3.96 15.39	0.85 1.71

Date: 05/16/2 Description of Publishing Desc

Prepared By: MJ

Checked By: AM

Overturning Check:

1. D + EH:

Resisting Moments: 15.39 (kip-ft.)/ft
Overturning Moments: 1.41 (kip-ft.)/ft

Safety factor = Resisting moments / Overturning moments = 10.88 > 1.5 Okay

2. D + EH + 0.7*EQ:

Resisting Moments: 15.39

Overturning Moments: 1.71

Safety factor = Resisting moments / Overturning moments = 9.0 > 1.1 Okay

Sliding Check:

1. D + EH:

Resisting Force: 1.39 (kip-ft.)/ft
Sliding Load: 0.73 (kip-ft.)/ft
Safety factor * = Resisting Force / Sliding Load =

Safety factor * = Resisting Force / Sliding Load = 1.91 > 1.5 Okay

2. D + EH + 0.7*EQ:

Resisting Force: 1.39 Sliding Load: 0.85

Safety factor * = Resisting Force / Sliding Load = 1.6 > 1.1 Okay

Bearing Check:

1. D + EH:

Eccentricity (e): 0.03 ft

Soil Bearing Resistance: 3.00 (kip-ft.)/ft Bearing Stresses: 0.58 (kip-ft.)/ft

Safety factor = Soil Bearing Resistance / Bearing Stresses = 5.18 > 1.0 Okay

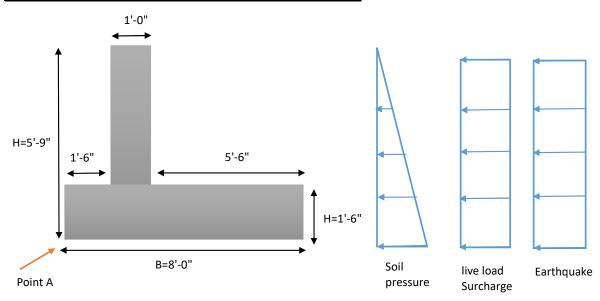
2. D + EH + 0.7*EQ:

Eccentricity (e): 0.05 ft

Soil Bearing Resistance: 3.00 (kip-ft.)/ft

Bearing Stresses: 0.59 (kip-ft.)/ft

Safety factor = Soil Bearing Resistance / Bearing Stresses = 5.1 > 1.0 Okay


^{*} conservatively passive resistance associated with soil above the footing toe are disregarded

Prepared By: MJ Date: 05/16/2023 Checked By: AM Date: 05/23/2023

Stability Check- Stormwater planter wall (H=5.75'):

Summary - Factor of Safeties (FOS):

Load Set	FOS	Allowable Factor of Safety
Overturning (1)	10.6	1.5
Overturning (2)	8.6	1.1
Sliding (1)	1.9	1.5
Sliding (2)	1.6	1.1
Bearing (1)	4.4	1
Bearing (2)	4.1	1

Geometry		
t_stem	1 ft	Stem thickness
h_stem	4.25 ft	Stem height
t_footing	1.5 ft	Footing thickness
В	8 ft	Footing width
w_toe	1.5 ft	Toe width
Н	5.75 ft	Design height
h_backfill	4.25 ft	Backfill height
w_backfill	5.5 ft	Backfill width
h_front fill	0	Frontfill height
w_frontfill	1.5 ft	Frontfill width
W-C	0.155 kcf	Concrete unit weight - per WSDOT BDM Table 3.8-1
w_soil_b	0.125 kcf	Backfill unit weight - per geotech engineer report
w_soil_f	0.11 kcf	Frontfill unit weight - per geotech engineer report
EH_ active	35 pcf	equivalent fluid density (active condition)
EH_ passive	300 pcf	equivalent fluid density (passive condition)
LS_H	70 psf	Live load surcharge pressure = K_a * 250 psf
EQ	46 psf	Seismic earth pressure, per Geotech engineer report = 8H (H is design hight)
μn	0.35	Soil sliding coefficient
qn	3.00 ksf	Allowable soil bearing resistance (per geotech engineer report)

Date: 05/16/2 Charles Problem Packet Vision Parket Vision Packet Vision

Considered Loads:

DC - dead load of structural components and nonstructural attachments

EH - horizontal earth pressure load

EV - vertical pressure from dead load of earth fill

EQ - earthquake load

LS - live load surcharge

Summary of Unfactored loads and moments

	Vertical Loads & Moments			
Load Type	Description	V	Moment	MV
		(kip/ft)	Arm (ft)	(kip-ft.)/ft
DC1	Stem dead load	0.66	2.00	1.32
DC2	Footing dead load	1.86	4.00	7.44
EV1	Vertical pressure from dead load of fill on heel	2.92	5.25	15.34
EV2	Vertical pressure from dead load of fill on toe	0.00	0.75	0.00

	Horizontal Loads & Moments				
Load Type	Description	Н	Moment	МН	
		(kip/ft)	Arm (ft)	(kip-ft.)/ft	
EH_H	Horizontal component of active earth pressure	0.58	1.92	1.11	
LS_H	Horizontal component of live load surcharge	0.40	2.88	1.16	
EQ	Earthquake load	0.26	2.88	0.76	

Stability check per IBC 2018 - section 1807-2.3:

1807.2.3 Safety factor.

Retaining walls shall be designed to resist the lateral action of soil to produce sliding and overturning with a minimum safety factor of 1.5 in each case. The load combinations of Section 1605 shall not apply to this requirement. Instead, design shall be based on 0.7 times nominal earthquake loads, 1.0 times other *nominal loads*, and investigation with one or more of the variable loads set to zero. The safety factor against lateral sliding shall be taken as the available soil resistance at the base of the retaining wall foundation divided by the net lateral force applied to the retaining wall.

Exception: Where earthquake loads are included, the minimum safety factor for retaining wall sliding and overturning shall be 1.1.

load sets:

1. D + EH: Dead load + Soil lateral load

2. D + EH + 0.7*EQ: Dead load + Soil lateral load + 0.7 * Earthquake load

Summary of two load sets:

Load set	Vertical Loads & Moments	Horizontal Loads & Moments
	V_u MV_u	H_u MH_u
	(kip/ft) (kip-ft.)/ft	(kip/ft) (kip-ft.)/ft
D + EH	5.44 24.10	0.98 2.27
D + EH + 0.7 * EQ	5.44 24.10	1.17 2.80

Date: 05/16/2

Prepared By: MJ

Checked By: AM

Overturning Check:

1. D + EH:

Resisting Moments: 24.10 (kip-ft.)/ft
Overturning Moments: 2.27 (kip-ft.)/ft

Safety factor = Resisting moments / Overturning moments = 10.63 > 1.5 Okay

2. D + EH + 0.7*EQ:

Resisting Moments: 24.10

Overturning Moments: 2.80

Safety factor = Resisting moments / Overturning moments = 8.6 > 1.1 Okay

Sliding Check:

1. D + EH:

Resisting Force: 1.90 (kip-ft.)/ft
Sliding Load: 0.98 (kip-ft.)/ft
Safety factor * - Posisting Force / Sliding Load:

Safety factor * = Resisting Force / Sliding Load = 1.94 > 1.5 Okay

2. D + EH + 0.7*EQ:

Resisting Force: 1.90 Sliding Load: 1.17

Safety factor * = Resisting Force / Sliding Load = 1.6 > 1.1 Okay

Bearing Check:

1. D + EH:

Eccentricity (e): 0.01 ft

Soil Bearing Resistance: 3.00 (kip-ft.)/ft Bearing Stresses: 0.69 (kip-ft.)/ft

Safety factor = Soil Bearing Resistance / Bearing Stresses = 4.37 > 1.0 Okay

2. D + EH + 0.7*EQ:

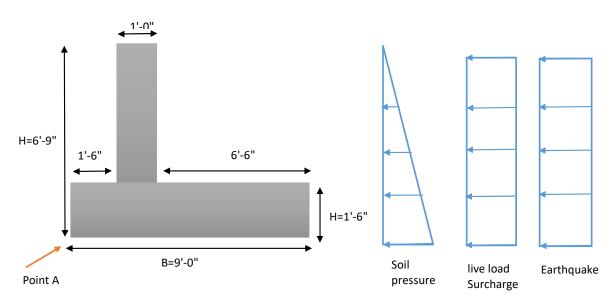
Eccentricity (e): 0.09 ft

Soil Bearing Resistance: 3.00 (kip-ft.)/ft

Bearing Stresses: 0.72 (kip-ft.)/ft

Safety factor = Soil Bearing Resistance / Bearing Stresses = 4.1 > 1.0 Okay

^{*} conservatively passive resistance associated with soil above the footing toe are disregarded


Prepared By: MJ

Checked By: AM

Stability Check- Stormwater planter wall (H=6.75'):

Summary - Factor of Safeties (FOS):

Load Set	FOS	Allowable Factor of Safety
Overturning (1)	10.5	1.5
Overturning (2)	8.4	1.1
Sliding (1)	2.0	1.5
Sliding (2)	1.6	1.1
Bearing (1)	3.7	1
Bearing (2)	3.5	1

Geometry		
t_stem	1 ft	Stem thickness
h_stem	5.25 ft	Stem height
t_footing	1.5 ft	Footing thickness
В	9 ft	Footing width
w_toe	1.5 ft	Toe width
Н	6.75 ft	Design height
h_backfill	5.25 ft	Backfill height
w_backfill	6.5 ft	Backfill width
h_front fill	0	Frontfill height
w_frontfill	1.5 ft	Frontfill width
W-C	0.155 kcf	Concrete unit weight - per WSDOT BDM Table 3.8-1
w_soil_b	0.125 kcf	Backfill unit weight - per geotech engineer report
w_soil_f	0.11 kcf	Frontfill unit weight - per geotech engineer report
EH_ active	35 pcf	equivalent fluid density (active condition)
EH_ passive	300 pcf	equivalent fluid density (passive condition)
LS_H	70 psf	Live load surcharge pressure = K_a * 250 psf
EQ	54 psf	Seismic earth pressure, per Geotech engineer report = 8H (H is design hight)
μn	0.35	Soil sliding coefficient
qn	3.00 ksf	Allowable soil bearing resistance (per geotech engineer report)

City of Puyallup
Darte: 05/16/2

Date: 05/23/2

Date: 05/23/2

City of Puyallup
Darte Specification
City of Puyallup
Darte Specification
City of Puyallup
Darte Specification
City of Puyallup
City of Puyallup
Darte Specification
City of Puyallup

Considered Loads:

DC - dead load of structural components and nonstructural attachments

EH - horizontal earth pressure load

EV - vertical pressure from dead load of earth fill

EQ - earthquake load

LS - live load surcharge

Summary of Unfactored loads and moments

	Vertical Loads & Moments			
Load Type	Description	V	Moment	MV
		(kip/ft)	Arm (ft)	(kip-ft.)/ft
DC1	Stem dead load	0.81	2.00	1.63
DC2	Footing dead load	2.09	4.50	9.42
EV1	Vertical pressure from dead load of fill on heel	4.27	5.75	24.53
EV2	Vertical pressure from dead load of fill on toe	0.00	0.75	0.00

	Horizontal Loads & Moments				
Load Type	Description	Н	Moment	МН	
		(kip/ft)	Arm (ft)	(kip-ft.)/ft	
EH_H	Horizontal component of active earth pressure	0.80	2.25	1.79	
LS_H	Horizontal component of live load surcharge	0.47	3.38	1.59	
EQ	Earthquake load	0.36	3.38	1.23	

Stability check per IBC 2018 - section 1807-2.3:

1807.2.3 Safety factor.

Retaining walls shall be designed to resist the lateral action of soil to produce sliding and overturning with a minimum safety factor of 1.5 in each case. The load combinations of Section 1605 shall not apply to this requirement. Instead, design shall be based on 0.7 times nominal earthquake loads, 1.0 times other *nominal loads*, and investigation with one or more of the variable loads set to zero. The safety factor against lateral sliding shall be taken as the available soil resistance at the base of the retaining wall foundation divided by the net lateral force applied to the retaining wall.

Exception: Where earthquake loads are included, the minimum safety factor for retaining wall sliding and overturning shall be 1.1.

load sets:

1. D + EH: Dead load + Soil lateral load

2. D + EH + 0.7*EQ: Dead load + Soil lateral load + 0.7 * Earthquake load

Summary of two load sets:

Load set	Vertical Loads & Moments	Horizontal Loads & Moments
	V_u MV_u	H_u MH_u
	(kip/ft) (kip-ft.)/ft	(kip/ft) (kip-ft.)/ft
D + EH	7.17 35.57	1.27 3.39
D + EH + 0.7 * EQ	7.17 35.57	1.52 4.25

Date: 05/16/2

Prepared By: MJ

Checked By: AM

Overturning Check:

1. D + EH:

Resisting Moments: 35.57 (kip-ft.)/ft
Overturning Moments: 3.39 (kip-ft.)/ft

Safety factor = Resisting moments / Overturning moments = 10.50 > 1.5 Okay

2. D + EH + 0.7*EQ:

Resisting Moments: 35.57

Overturning Moments: 4.25

Safety factor = Resisting moments / Overturning moments = 8.4 > 1.1 Okay

Sliding Check:

1. D + EH:

Resisting Force: 2.51 (kip-ft.)/ft
Sliding Load: 1.27 (kip-ft.)/ft
Safety factor * = Resisting Force / Sliding Load =

Safety factor * = Resisting Force / Sliding Load = 1.98 > 1.5 Okay

2. D + EH + 0.7*EQ:

Resisting Force: 2.51 Sliding Load: 1.52

Safety factor * = Resisting Force / Sliding Load = 1.6 > 1.1 Okay

Bearing Check:

1. D + EH:

Eccentricity (e): 0.01 ft

Soil Bearing Resistance: 3.00 (kip-ft.)/ft Bearing Stresses: 0.80 (kip-ft.)/ft

Safety factor = Soil Bearing Resistance / Bearing Stresses = 3.73 > 1.0 Okay

2. D + EH + 0.7*EQ:

Eccentricity (e): 0.13 ft

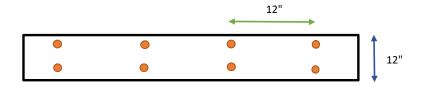
Soil Bearing Resistance: 3.00 (kip-ft.)/ft

Bearing Stresses: 0.87 (kip-ft.)/ft

Safety factor = Soil Bearing Resistance / Bearing Stresses = 3.5 > 1.0 Okay

^{*} conservatively passive resistance associated with soil above the footing toe are disregarded

Date: 05/16/2


Date: 05/23/2

Date: 05/23/2

Wall Flexural Resistance (at critical section):

#6 vertical bars spaced at 12" with a staggered pattern is used:

The top view of wall:

Concrete Properties Reinforcment Properties Design Moments 60 ksi f'c = 4 ksi Fy = 0.150 kcf 29000 ksi 2.95 k-ft wc = Es = $M_u =$ 4266 ksi Ec = **Section Geometry**

Flexural Reinforcement

12.00 in 12.00 in

b =

h = Cover =

Layer	Bar Size	# of Bars	As (in^2)	d (in)
1	#6	1.000	0.44	9.63
2				
3				
4				
As =	0.44	in^2		
d =	9.63	in		
dt =	9.63	in		
S	12.00	in	Reinforcen	nent Spacing

Flexural Strength Check

i lexulal d	diengin Check	
c =	0.761 in	Solve for c using goal seek. (Press Control + i to run macro)
$\varepsilon_{\rm c}$ =	0.003	Concrete compression strain limit per LRFD 5.6.2.1
$B_1 =$	0.85	Rectangualr stress distribution factor per LRFD 5.6.2.2
a =	0.647 in	$a = B_1c$ per LRFD 5.6.2.2
C =	26.4 kip	Concrete Compression Force: C = 0.85f'c*a*bf
$\varepsilon_{\rm s}$ =	0.03493	Reinforcment Strain: $\varepsilon_s = \varepsilon_c (d/c - 1)$
fs =	60.0 ksi	Reinforcement Tension Stress: fs = min(ϵ_s *Es,Fy)
T =	26.4 kip	Reinforcement Tension Force: T = fs*As
T - C =	0.000 kip	Sum of Forces
Mn =	20.5 k-ft	Nominal Moment Strength: Mn = T(d - a/2)
φ =	0.9	$\phi = 0.75 + 0.15(\epsilon t - \epsilon cl) = <0.9 \text{ per LRFD } 5.5.4.2-2$
φMn =	18.4 k-ft	Factored Moment Strength
18.4 > 3 O	K	

Flexural Crack Control

$\gamma_{\rm e}$ =	0.75	Exposure factor per LRFD 5.6.7	
dc =	2.38	in Distance from extreme tension fiber to CG of closest bar	
s =	12.00	in Spacing of steel reinforcment	
n =	6.80	Modular Ratio: n = Es/Ec	
ρ =	0.00381	Reinforcment Ratio: $\rho = As/(b*d)$	
• •			

City of Popullary Development of Popullary Services ISSUED PERMIT

Date: 05/16/2

Page 18/2019

Date: 05/23/2

Traffic

k =	0.203	$k = SQRT[(\rho n)^2 + 2\rho n] - \rho n$
j =	0.932	j = 1 - k/3
fs _{service} =	9.0 ksi	$fs_{service} = M_{service} / (As*j*d)$
βs =	1.35	$\beta s = 1 + dc/[0.7*(h-dc)]$
smax =	38.48 in	
12 < 38.5 OK		

Minimum Reinforcement Check

I =	1728	in^4	Moment of Inertia
St =	288	in^3	Section Modulus for Extreme Tensile Fiber
Υ1	1.6		flexural cracking variability factor LRFD 5.6.3.3
Υ3	0.67		ratio of specified minimum yield strength to
			ultimate tensile of the nonprestressed reinforcement
fr =	0.480	ksi	Modulus of Rupture per LRFD 5.4.2.6
Mcr =	12.3	k-ft	Cracking Moment: Mcr = Y3*[(Y1*fr)Sc]
Mcr =	12.3	k-ft	
1.33Mu =	3.9	k-ft	1.33Mu Controls

3.9 < 18.4 OK

Interface Shear Resistance (at Stem - Footing Connection, AASHTO 5.7.4.3)

fy	60.00 ksi	Specified minimum yield strength of reinforcement (ksi)
f'c	4.00 ksi	Compressive strength of concrete for use on design (ksi]
С	0.24 ksi	for normal weight concrete placed against roughened surface to 0.25'
μ	1.00	for normal weight concrete placed against roughened surface to 0.25'
t	12.00 in	the wall thickness
Avc	144.00 in^2/ft	area of concrete considered to be engaged in interface shear transfer
Avf	0.88 in^2/ft	area of interface shear reinforcement crossing the shear plane
Pc	0.00 kip	permanent net compressive force normal to the shear plane
K1	0.25	fraction of concrete strength available to resist interface shear (AASHTO 5.7.4.4
K2	1.50	limiting interface shear resistance (AASHTO 5.7.4.4)
φ	1.00	AASHTO 5.5.4.2
Vni	87.36 kip/ft	
φVni	87.36 kip/ft	
	4 0 71 : 15:	

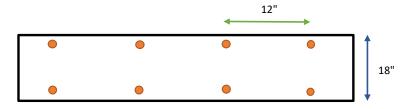
 ϕ Vni > Vu = 1.37kips/ft Ok

Wall Shear Strength (at critical section):

Vu	1.37 kip/ft		
φ =	0.9		
bv	12.00 in		
dv	9.30 in	= max (ds-a/2= 9.3 in, 0.9*de = 8.66 in,	0.72*h= 8.64 in)
β	2	AASHTO 5.7.3.4.1	
Vc	14.11 kip	Vc=0.0316 * β * sqrt(fc) [b_v * d_v]	
ФVс	12.70 kip	Ok	

South Hill Business Technology Center Parametrix Prepared By: MJ Date: 05/16/2 Plating Expansion - Retaining Wall Design 217-7312-004 Checked By: AM Date: 05/23/2023 Trailing Control of the Control of

Shrinkage and Temperature Reinforcement (AASHTO 5.10.6)


As	0.11 in^2/ft	1.3bh/(2*(b+h)*fy) 0.11= <as=<0.6< th=""><th>area of reinforcement in each direction and each face</th></as=<0.6<>	area of reinforcement in each direction and each face
b	12 in		
h	12 in		

#4 @ 12" reinforcement should be used for bars that are parallel to barrier

Footing Flexural Resistance (at critical section):

#6 vertical bars spaced at 12" with a staggered pattern is used:

Footing side view:

Concrete Properties f'c = 4 ksi

wc = 0.150 kcf Ec = 4266 ksi Section Geometry

12.00 in

18.00 in

b =

h =

Cover =

Reinforcment Properties Ev = 60 ksi

Reminorchient i ropertie.		
Fy =	60	ksi
Es =	29000	ksi

Design Moments

 $M_u = 20.01 \text{ k-ft}$ 2.95 k-ft moment due to soil bearing moment due to wall loads

Flexural Reinforcement

Layer	Bar Size	# of Bars	As (in^2)	d (in)
1	#6	1.000	0.44	15.63
2				
3				
4				
As =	0.44	in^2		
d -	15.60	in		

d = 15.63 in dt = 15.63 in S 12.00 in Reinforcement Spacing

Flexural Strength Check

. ioxuiui e	Juliongui Ondok	
c =	0.761 in	Solve for c using goal seek. (Press Control + i to run macro)
$\varepsilon_{\rm c}$ =	0.003	Concrete compression strain limit per LRFD 5.6.2.1
B ₁ =	0.85	Rectangualr stress distribution factor per LRFD 5.6.2.2
a =	0.647 in	$a = B_1c$ per LRFD 5.6.2.2
C =	26.4 kip	Concrete Compression Force: C = 0.85f'c*a*bf
$\varepsilon_{\rm s}$ =	0.05858	Reinforcment Strain: $\varepsilon_s = \varepsilon_c (d/c - 1)$
fs =	60.0 ksi	Reinforcement Tension Stress: fs = $min(\epsilon_s*Es,Fy)$
T =	26.4 kip	Reinforcement Tension Force: T = fs*As
T - C =	0.000 kip	Sum of Forces
Mn =	33.7 k-ft	Nominal Moment Strength: Mn = T(d - a/2)
φ =	0.9	$\phi = 0.75 + 0.15(\epsilon t - \epsilon cl) = <0.9 \text{ per LRFD } 5.5.4.2-2$
φMn =	30.3 k-ft	Factored Moment Strength
30.3 > 20	OK	

Flexural Crack Control

$\gamma_{\rm e}$ =	0.75		Exposure factor per LRFD 5.6.7
dc =	2.38	in	Distance from extreme tension fiber to CG of closest bar
s =	12.00	in	Spacing of steel reinforcment
n =	6.80		Modular Ratio: n = Es/Ec
ρ =	0.00235		Reinforcment Ratio: $\rho = As/(b*d)$

City of Physilips
Development & Premiting Services
ISSUED PERMIT

Date: 05/16/2

Character of Physilips
Date: 05/23/2

Date: 05/23/2

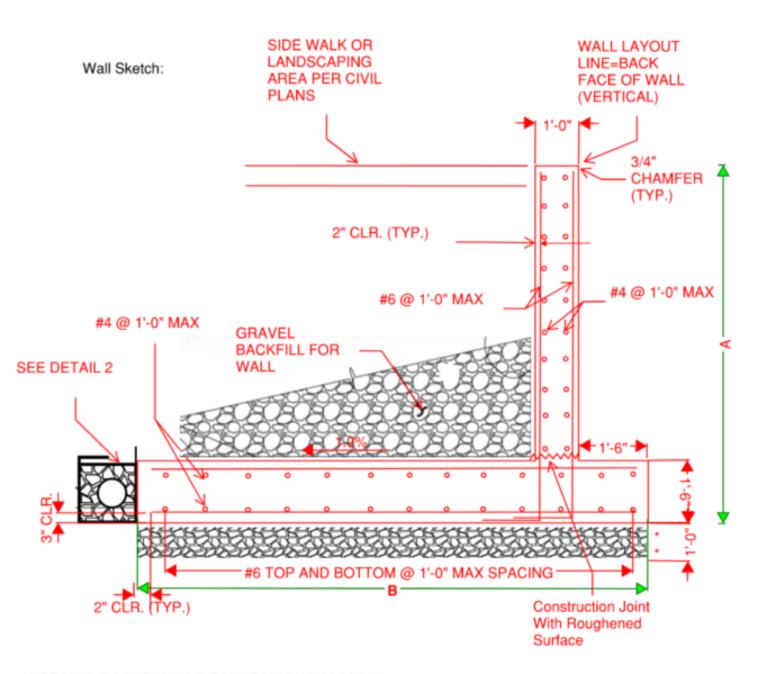
Traffic

k =	0.163	$k = SQRT[(\rho n)^2 + 2\rho n] - \rho n$
j =	0.946	j = 1 - k/3
fs _{service} =	5.5 ksi	$fs_{service} = M_{service} / (As*j*d)$
βs =	1.22	β s = 1 + dc/[0.7*(h-dc)]
smax =	74.34 in	

12 < 74.3 OK

Minimum Reinforcement Check

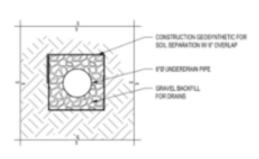
I =	5832	in^4	Moment of Inertia
St =	648	in^3	Section Modulus for Extreme Tensile Fiber
Υ1	1.6		flexural cracking variability factor LRFD 5.6.3.3
Υ3	0.67		ratio of specified minimum yield strength to
			ultimate tensile of the nonprestressed reinforcement
fr =	0.480	ksi	Modulus of Rupture per LRFD 5.4.2.6
Mcr =	27.8	k-ft	Cracking Moment: Mcr = Y3*[(Y1*fr)Sc]
Mcr =	27.8	k-ft	
1.33Mu =	3.9	k-ft	1.33Mu Controls
20 4 20 2	OV		


3.9 < 30.3 OK

Shrinkage and temperature reinforcement (AASHTO 5.10.6)

As	0.11 in^2/ft	1.3bh/(2*(b+h)*fy)	area of reinforcement in each direction and each face
		0.11= <as=<0.6< td=""><td></td></as=<0.6<>	
b	12 in		
h	18 in		

#4 @ 12" reinforcement should be used for bars that are parallel to barrier


** GRAVEL BACKFILL FOR FOUNDATIONS CLASS A

A= 6.75' => B=9'

A= 5.75' => B=8'

A=4.75' => B=7'

A= 3.75' => B=6'

