Construction Stormwater General Permit

Preliminary Stormwater Pollution Prevention Plan (SWPPP)

for

BP West Coast Products, LLC

Prepared for:

The Washington State Department of Ecology Southwest Regional Office 300 Desmond Drive S.E. Lacey, Washington 98503 (360) 407-6300

Permittee / Owner	Developer	Operator / Contractor
BP West Coast Products,	BP West Coast Products,	TBD
LLC.	LLC.	

1402 South Meridian Puyallup, Washington

Certified Erosion and Sediment Control Lead (CESCL)

Name	Organization	Contact Phone Number
TBD	TBD	TBD

SWPPP Prepared By

Name	Organization	Contact Phone Number
Alex White	Barghausen Consulting	(425) 251-6222
	Engineers, Inc.	

SWPPP Preparation Date

October 4, 2023

Project Construction Dates

Activity / Phase	Start Date	End Date
TBD	TBD	TBD

Table of Contents

1	Project	Information	4
	1.1 Exi	sting Conditions	4
	1.2 Pro	posed Construction Activities	4
2	Constru	ction Stormwater Best Management Practices (BMPs)	6
	2.1 The	e 13 Elements	6
	2.1.1	Element 1: Preserve Vegetation / Mark Clearing Limits	7
	2.1.2	Element 2: Establish Construction Access	8
	2.1.3	Element 3: Control Flow Rates	9
	2.1.4	Element 4: Install Sediment Controls	10
	2.1.5	Element 5: Stabilize Soils	11
	2.1.6	Element 6: Protect Slopes	12
	2.1.7	Element 7: Protect Drain Inlets	13
	2.1.8	Element 8: Stabilize Channels and Outlets	14
	2.1.9	Element 9: Control Pollutants	15
	2.1.10	Element 10: Control Dewatering	17
	2.1.11	Element 11: Maintain BMPs	18
	2.1.12	Element 12: Manage the Project	19
	2.1.13	Element 13: Protect Low Impact Development (LID) BMPs	20
3		n Prevention Team	
4	Monitor	ing and Sampling Requirements	22
	4.1 Site	e Inspection	22
	4.2 Sto	rmwater Quality Sampling	22
	4.2.1	Turbidity Sampling	
	4.2.2	pH Sampling	
5	Dischar	ges to 303(d) or Total Maximum Daily Load (TMDL) Waterbodies	25
	5.1 303	8(d) Listed Waterbodies	25
6	Reporti	ng and Record Keeping	26
	6.1 Re	cord Keeping	26
	6.1.1	Site Log Book	26
	6.1.2	Records Retention	26
	6.1.3	Updating the SWPPP	
		oorting	
	6.2.1	Discharge Monitoring Reports	
	6.2.2	Notification of Noncompliance	27

List of Tables

Table 1 – pH-Modifying Sources	15
Table 2 – Management	19
Table 3 – Team Information	
Table 4 – Turbidity Sampling Method	22
Table 5 – pH Sampling Method	

List of Appendices

Appendix/GlossaryA. Site Map

- **B.** BMP Detail
- **C.** Site Inspection Form
- **D.** Engineering Calculations

List of Acronyms and Abbreviations

Acronym / Abbreviation	Explanation
	•
303(d)	Section of the Clean Water Act pertaining to Impaired Waterbodies
BFO	Bellingham Field Office of the Department of Ecology
BMP(s)	Best Management Practice(s)
CESCL	Certified Erosion and Sediment Control Lead
CO ₂	Carbon Dioxide
CRO	Central Regional Office of the Department of Ecology
CSWGP	Construction Stormwater General Permit
CWA	Clean Water Act
DMR	Discharge Monitoring Report
DO	Dissolved Oxygen
Ecology	Washington State Department of Ecology
EPA	United States Environmental Protection Agency
ERO	Eastern Regional Office of the Department of Ecology
ERTS	Environmental Report Tracking System
ESC	Erosion and Sediment Control
GULD	General Use Level Designation
NPDES	National Pollutant Discharge Elimination System
NTU	Nephelometric Turbidity Units
NWRO	Northwest Regional Office of the Department of Ecology
рН	Power of Hydrogen
RCW	Revised Code of Washington
SPCC	Spill Prevention, Control, and Countermeasure
su	Standard Units
SWMMEW	Stormwater Management Manual for Eastern Washington
SWMMWW	Stormwater Management Manual for Western Washington
SWPPP	Stormwater Pollution Prevention Plan
TESC	Temporary Erosion and Sediment Control
SWRO	Southwest Regional Office of the Department of Ecology
TMDL	Total Maximum Daily Load
VFO	Vancouver Field Office of the Department of Ecology
WAC	Washington Administrative Code
WSDOT	Washington Department of Transportation
WWHM	Western Washington Hydrology Model
	5 , 5,

Project Information

Project/Site Name: Puyallup ARCO Convenience Store with

Gas

1402 South Meridian Street/Location:

City: Puyallup State: WA Zip code: 98371

Subdivision: NA

Receiving waterbody: Groundwater

1.1 Existing Conditions

Total acreage (including support activities such as off-site equipment staging yards, material storage areas, borrow areas).

1.28 AC Total acreage: Disturbed acreage: 1.28 AC

The project site currently consists of a restaurant, Existing structures:

asphalt pavement with parking, trees, shrubs, and

associated landscaping.

The site topography varies with the north of the site Landscape Topography:

having slopes between 0 to 3% while the south of the

site having slopes between 2 to 14%.

The site has several existing on-site storm drainage Drainage patterns:

systems, collecting and conveying runoff from the roofs and pavement areas into the existing public stormwater infrastructure with S Meridian Street.

The site contains landscaping primarily along the **Existing Vegetation:**

northern and southern boundaries.

Critical Areas (wetlands, streams, high

erosion risk, steep or difficult to stabilize

slopes):

This site appears to be located outside any

critical areas.

List of known impairments for 303(d) listed or Total Maximum Daily Load (TMDL) for the receiving waterbody: NA

Currently no pollutants contaminants exist on-site.

1.2 Proposed Construction Activities

Description of site development (example: subdivision):

This project proposes the construction of an auto-sentry structure.

Description of construction activities (example: site preparation, demolition, excavation): Construction activities will include the demolition of existing structures and asphalt, grading, and excavation for the proposed stormwater and fueling system.

Description of site drainage including flow from and onto adjacent properties. Must be consistent with Site Map in Appendix A:

Drainage currently sheet flows north across the site.

Description of final stabilization (example: extent of revegetation, paving, landscaping): Final site stabilization will include the installation of landscape and hardscapes, such as asphalt and concrete pavement for both the onsite portion of the project and the frontage.

Contaminated Site Information:

Proposed activities regarding contaminated soils or groundwater (example: on-site treatment system, authorized sanitary sewer discharge):

NA

2 Construction Stormwater Best Management Practices (BMPs)

The SWPPP is a living document reflecting current conditions and changes throughout the life of the project. These changes may be informal (i.e., hand-written notes and deletions). Update the SWPPP when the CESCL has noted a deficiency in BMPs or deviation from original design.

2.1 The 13 Elements

2.1.1 Element 1: Preserve Vegetation / Mark Clearing Limits

List and describe BMPs: In order to protect adjacent properties and to reduce the area of soil exposed to construction, the limits of construction will be clearly marked and enclosed within a construction fence prior to any land disturbing activities. This fence will encompass all areas subject to construction, as well as delineate all areas where no construction is to take place. A silt fence will also be placed in certain areas as shown on the accompanying Site Plan, in order to protect the soil and vegetation outside the construction area. Refer to Appendix B: Construction BMPs for detailed drawings of the proposed BMPs. The proposed BMPs relevant to vegetation preservation/clearing limits are:

BMP C103: High Visibility Plastic or Metal Fence

BMP C233: Silt Fence

Installation Schedules: BMPs listed above (Silt Fence and High Visibility Plastic or Metal Fence) will be installed prior to any land disturbing activity.

Inspection and Maintenance plan: TBD

2.1.2 Element 2: Establish Construction Access

List and describe BMPs: In order to protect the adjacent existing asphalt pavement from dirt and debris, the project will construct a Construction Entrance, refer to Appendix A: Site Plan, for the location and Appendix B: Construction BMPs for detailed drawings of the proposed BMP.

BMP C105: Construction Access

Installation Schedules: Construction Entrance shall be installed prior to the commencement of construction activities.

Inspection and Maintenance plan: TBD

2.1.3 Element 3: Control Flow Rates

Will you construct stormwater retention and/or detention facilities? ☑ Yes ☐ No
Will you use permanent infiltration ponds or other low impact development (example: rain gardens, bio-retention, porous pavement) to control flow during construction? ☐ Yes ☒ No
List and describe BMPs: A sediment trap will be installed for the purpose of controlling flow rates during construction. Refer to Appendix A: Site Plan, for the location and Appendix B: Construction BMPs for detailed drawings of the proposed BMP.
The proposed BMP relevant to flow control is:
BMP C240: Sediment Trap
Installation Schedules: The BMP listed above (Sediment Trap) will be installed prior to any land disturbing activity.
Inspection and Maintenance plan: TBD

2.1.4 Element 4: Install Sediment Controls

List and describe BMPs: On-site sediment contamination shall be controlled by the implementation of silt fences and/or straw wattles. Silt fences will be placed in the necessary areas where soil from the areas marked for excavation may interfere and contaminate with soils located either off site or adjacent. Moreover, wattles are suggested in disturbed areas that require immediate erosion protection and on exposed soils during the period of short construction interruptions or over winter months. See Appendix A: Site Plan, for the location and Appendix B: Construction BMPs for detailed drawings of the proposed BMP. The proposed BMP that will be installed for sediment control is:

• BMP C233: Silt Fence

BMP C235: Wattles

Installation Schedules: Sediment Controls will be installed prior to any land disturbance activity.

Inspection and Maintenance plan: TBD

2.1.5 Element 5: Stabilize Soils

West of the Cascade Mountains Crest

Season	Dates	Number of Days Soils Can be Left Exposed
During the Dry Season	May 1 – September 30	7 days
During the Wet Season	October 1 – April 30	2 days

Soils must be stabilized at the end of the shift before a holiday or weekend if needed based on the weather forecast.

Anticipated project dates: Start date: TBD End date: TBD

Will you construct during the wet season? TBD

List and describe BMPs: Soils exposed and unworked for the time period specified above shall be stabilized with the application of effective BMPs to prevent erosion throughout the duration of the project. Soil stockpiles shall be stabilized or covered using plastic sheeting and where possible, located away from storm inlets, waterways, and drainage channels. The practice of Dust Control is also recommended to prevent wind transport of dust onto roadways and drainage ways. Refer to Appendix B for detailed drawings of the BMPs used. The proposed BMPs specific to Soil Stabilization are:

BMP C123: Plastic Covering

• BMP C140: Dust Control

Installation Schedules: BMPs shall be implemented as soon as land disturbing activity begins and installed where applicable for the duration of the project.

Inspection and Maintenance plan: TBD

2.1.6 Element 6: Protect Slopes

Will steep	slopes	be prese	ent at the	site durir	ng construct	ion?
⊠ Yes 🗌	No					

List and describe BMPs: All cut and fill slopes will be designed, constructed, and protected in a manner that minimizes erosion. Temporary and permanent seeding shall be used at all exposed areas pursuant to the prior mentioned schedule (seasonal restrictions). Soil stockpiles shall be stabilized or covered using plastic sheeting and where possible, located away from storm inlets, waterways, and drainage channels.

The proposed BMPs specific to Slope Protection are:

- BMP C120: Temporary and Permanent Seeding
- BMP C123: Plastic Covering

Installation Schedules: BMPs shall be implemented as soon as land disturbing activity begins and installed where applicable for the duration of the project. Implementation of one or more of alternative BMPs may be necessary after the first sign that existing BMPs are ineffective or failing.

Inspection and Maintenance plan: TBD

2.1.7 Element 7: Protect Drain Inlets

List and describe BMPs: All storm drain inlets, both existing and those installed during construction must be protected to prevent unfiltered or untreated water from entering the drainage conveyance system. However, the first priority is to keep all access roads clean of sediment and keep water from washing streets separate from entering storm drains until treatment can be provided. Storm Drain Inlet Protection will be implemented for all drainage inlets and culverts that could potentially be impacted by sediment-laden runoff on or near the project site. This includes inlets and culverts located offsite. Inlet protection devices shall be cleaned and replaced or removed when sediment has filled a third of the available storage (unless a different standard is specified by the product manufacturer). The following inlet protection measures will be proposed for this project:

BMP C220: Storm Drain Inlet Protection

Installation Schedules: Storm Drain Inlet Protection will be provided at the start of the project and will be maintained for the duration of the project.

Inspection and Maintenance plan: TBD

2.1.8 Element 8: Stabilize Channels and Outlets

Provide stabilization, including armoring material, adequate to prevent erosion of outlets, adjacent stream banks, slopes, and downstream reaches, will be installed at the outlets of all conveyance systems.

List and describe BMPs: The project site is located west of the Cascade Mountain Crest. As such, where there are any temporary on-site conveyance channels, they shall be designed, constructed, and stabilized to prevent erosion from the expected peak 10-minute velocity of flow from a Type 1A, 10-year, 24-hour recurrence interval storm for the developed condition. An on-site sediment trap is proposed for this project along with a temporary conveyance channel, therefore an Outlet Control BMP is proposed. The following inlet protection measures will be proposed for this project:

BMP C209: Outlet Protection

Installation Schedules: Outlet Protection will be provided at the start of the project and will be maintained for the duration of the project.

Inspection and Maintenance plan: TBD

2.1.9 Element 9: Control Pollutants

List and describe BMPs: All pollutants, including waste materials and demolition debris, which occur on site will be handled and disposed of in a manner that does not cause contamination of stormwater. Good housekeeping and preventative measures will be taken to ensure that the site will be kept clean, well-organized, and free of debris. The following practices will be implemented:

- All vehicles, equipment, and petroleum product storage/dispensing areas will be inspected regularly to detect any leaks or spills, and to identify maintenance needs to prevent leaks or spills.
- In order to perform emergency repairs on site, temporary plastic will be placed beneath and, if raining, over the vehicle.
- Any chemicals stored in the construction areas will conform to the appropriate source control BMPs listed in Volume IV of the Ecology stormwater manual. All chemicals shall have cover, containment, and protection provided on site, pursuant to BMP C153 for Material Delivery, Storage and Containment.

Proposed BMPs applicable to Pollutant Control:

- BMP C140: Dust Control
- BMP C151: Concrete Handling
- BMP C 152: Sawcutting and Surface Pollution Prevention
- BMP C 153: Material Delivery, Storage, and Containment
- BMP C154: Concrete Washout Area

Installation Schedules: BMPs shall be installed as necessary to control pollutants for the duration of construction.

Inspection and Maintenance plan: TBD
Responsible Staff: TBD
Will maintenance, fueling, and/or repair of heavy equipment and vehicles occur on-site? \square Yes \boxtimes No
Will wheel wash or tire bath system BMPs be used during construction? \square Yes \boxtimes No
Will pH-modifying sources be present on-site? ⊠ Yes No

Table 1 – pH-Modifying Sources

	None	
\boxtimes	Bulk cement	
	Cement kiln dust	
	Fly ash	
	Other cementitious materials	
	New concrete washing or curing waters	
	Waste streams generated from concrete grinding and sawing	
	Exposed aggregate processes	
	Dewatering concrete vaults	
	Concrete pumping and mixer washout waters	
	Recycled concrete	
	Recycled concrete stockpiles	
	Other (i.e., calcium lignosulfate) [please describe:	
stree	crete trucks must not be washed out onto the ground, or into storm drains, open ditches, ts, or streams. Excess concrete must not be dumped on-site, except in designated rete washout areas with appropriate BMPs installed.	
Will uncontaminated water from water-only based shaft drilling for construction of building, road, and bridge foundations be infiltrated provided the wastewater is managed in a way that prohibits discharge to surface waters? \square Yes \boxtimes No		

2.1.10 Element 10: Control Dewatering

List and describe BMPs:

- Discharge clean, non-turbid de-watering water, such as well-point groundwater, to systems tributary to, or directly into surface waters of the state, provided that the dewatering flow does not cause erosion or flooding of receiving waters or interfere with the operation of the system. Do not route clean dewatering water through stormwater sediment ponds. Note that "surface waters of the state" may exist on a construction site as well as off site; for example, a creek running through a site.
- Highly turbid or contaminated dewatering water shall be handled separately from stormwater.
- Clean, non-turbid dewatering water, such as well-point ground water, can be discharged
 to systems tributary to, or directly into surface waters of the state, provided the dewatering
 flow does not cause erosion or flooding of receiving waters. Clean dewatering water
 should not be routed through stormwater sediment ponds.
- Other dewatering disposal options may include:
 - Transport off site in a vehicle, such as a vacuum flush truck, for legal disposal in a manner that does not pollute state waters.
 - Infiltration.
 - Ecology-approved on-site chemical treatment or other suitable treatment technologies.
 - Sanitary sewer discharge with local sewer district approval, if there is no other option.
 - Use of a sedimentation bag with outfall to a ditch or swale for small volumes of localized dewatering.

Dewatering activities are likely to occur during the installation of on-site stormwater conveyance systems and/or excavation activities. Contractor to refer to the Dewatering Plan prepared by Bender .LLC.

Installation Schedules: Dewatering controls will be installed prior to any significant excavation activities.

Inspection and Maintenance plan: TBD

Responsible Staff: TBD

During the next submittal, include the dewatering plan as prepared by Bender, LLC. Be sure to show the conveyance/storage of the dewatering method on the clear, fill and grade plans. [CSWPP, pg 18]

2.1.11 Element 11: Maintain BMPs

All temporary and permanent Erosion and Sediment Control (ESC) BMPs shall be maintained and repaired as needed to ensure continued performance of their intended function.

Maintenance and repair shall be conducted in accordance with each particular BMP specification (see *Volume II of the SWMMWW or Chapter 7 of the SWMMEW*).

Visual monitoring of all BMPs installed at the site will be conducted at least once every calendar week and within 24 hours of any stormwater or non-stormwater discharge from the site. If the site becomes inactive and is temporarily stabilized, the inspection frequency may be reduced to once every calendar month.

All temporary ESC BMPs shall be removed within 30 days after final site stabilization is achieved or after the temporary BMPs are no longer needed.

Trapped sediment shall be stabilized on-site or removed. Disturbed soil resulting from removal of either BMPs or vegetation shall be permanently stabilized.

Additionally, protection must be provided for all BMPs installed for the permanent control of stormwater from sediment and compaction. BMPs that are to remain in place following completion of construction shall be examined and restored to full operating condition. If sediment enters these BMPs during construction, the sediment shall be removed and the facility shall be returned to conditions specified in the construction documents.

2.1.12 Element 12: Manage the Project

The project will be managed based on the following principles:

- Projects will be phased to the maximum extent practicable and seasonal work limitations will be taken into account.
- Inspection and monitoring:
 - Inspection, maintenance and repair of all BMPs will occur as needed to ensure performance of their intended function.
 - Site inspections and monitoring will be conducted in accordance with Special Condition S4 of the CSWGP. Sampling locations are indicated on the <u>Site Map</u>. Sampling station(s) are located in accordance with applicable requirements of the CSWGP.
- Maintain an updated SWPPP.
 - The SWPPP will be updated, maintained, and implemented in accordance with Special Conditions S3, S4, and S9 of the CSWGP.

As site work progresses the SWPPP will be modified routinely to reflect changing site conditions. The SWPPP will be reviewed monthly to ensure the content is current.

Table 2 – Management

Design the project to fit the existing topography, soils, and drainage patterns
Emphasize erosion control rather than sediment control
Minimize the extent and duration of the area exposed
Keep runoff velocities low
Retain sediment on-site
Thoroughly monitor site and maintain all ESC measures
Schedule major earthwork during the dry season
Other (please describe)

2.1.13 Element 13: Protect Low Impact Development (LID) BMPs

The project does not propose any Low Impact Development BMPs to be implemented as part of this proposal.

3 Pollution Prevention Team

Table 3 – Team Information

Title	Name(s)	Phone Number
Certified Erosion and	TBD	TBD
Sediment Control Lead		
(CESCL)		
Resident Engineer	Alex White, P.E.	(425) 251-6222
Emergency Ecology	Staff on Duty	(425) 649-7130
Contact		
Emergency Permittee/	TBD	TBD
Owner Contact		
Non-Emergency Owner	TBD	TBD
Contact		
Monitoring Personnel	TBD	TBD
Ecology Regional Office	Southwest Regional Office	(360) 407-6300

4 Monitoring and Sampling Requirements

Monitoring includes visual inspection, sampling for water quality parameters of concern, and documentation of the inspection and sampling findings in a site log book. A site log book will be maintained for all on-site construction activities and will include:

- A record of the implementation of the SWPPP and other permit requirements
- Site inspections
- Stormwater sampling data.

The site log book must be maintained on-site within reasonable access to the site and be made available upon request to Ecology or the local jurisdiction.

Numeric effluent limits may be required for certain discharges to 303(d) listed waterbodies. See CSWGP Special Condition S8 and Section 5 of this template.

4.1 Site Inspection

Site inspections will be conducted at least once every calendar week and within 24 hours following any discharge from the site. For sites that are temporarily stabilized and inactive, the required frequency is reduced to once per calendar month.

The discharge point(s) are indicated on the <u>Site Map</u> (see Appendix A) and in accordance with the applicable requirements of the CSWGP.

4.2 Stormwater Quality Sampling

4.2.1 Turbidity Sampling

Requirements include calibrated turbidity meter or transparency tube to sample site discharges for compliance with the CSWGP. Sampling will be conducted at all discharge points at least once per calendar week.

Method for sampling turbidity:

Check the analysis method you will use:

Table 4 – Turbidity Sampling Method

	Turbidity Meter/Turbidimeter (required for disturbances 5 acres or greater in size)
\boxtimes	Transparency Tube (option for disturbances less than 1 acre and up to 5 acres in size)

The benchmark for turbidity value is 25 nephelometric turbidity units (NTU) and a transparency less than 33 centimeters.

If the discharge's turbidity is 26 to 249 NTU <u>or</u> the transparency is less than 33 cm but equal to or greater than 6 cm, the following steps will be conducted:

- 1. Review the SWPPP for compliance with Special Condition S9. Make appropriate revisions within 7 days of the date the discharge exceeded the benchmark.
- 2. Immediately begin the process to fully implement and maintain appropriate source control and/or treatment BMPs as soon as possible. Address the problems within 10 days of the date the discharge exceeded the benchmark. If installation of necessary treatment BMPs is not feasible within 10 days, Ecology may approve additional time when the Permittee requests an extension within the initial 10-day response period.
- 3. Document BMP implementation and maintenance in the site log book.

If the turbidity exceeds 250 NTU <u>or</u> the transparency is 6 cm or less at any time, the following steps will be conducted:

- 1. Telephone or submit an electronic report to the applicable Ecology Region's Environmental Report Tracking System (ERTS) within 24 hours.
 - Central Region (Benton, Chelan, Douglas, Kittitas, Klickitat, Okanogan, Yakima): (509) 575-2490 or http://www.ecy.wa.gov/programs/spills/forms/nerts_online/CRO_nerts_online.html
 - Eastern Region (Adams, Asotin, Columbia, Ferry, Franklin, Garfield, Grant, Lincoln, Pend Oreille, Spokane, Stevens, Walla Walla, Whitman): (509) 329-3400 or http://www.ecy.wa.gov/programs/spills/forms/nerts_online/ERO_nerts_online.html
 - Northwest Region (King, Kitsap, Island, San Juan, Skagit, Snohomish, Whatcom): (425) 649-7000 or http://www.ecy.wa.gov/programs/spills/forms/nerts_online/NWRO_nerts_online.html
 - Southwest Region (Clallam, Clark, Cowlitz, Grays Harbor, Jefferson, Lewis, Mason, Pacific, Pierce, Skamania, Thurston, Wahkiakum,): (360) 407-6300 or http://www.ecy.wa.gov/programs/spills/forms/nerts_online/SWRO_nerts_online.html
- 2. Immediately begin the process to fully implement and maintain appropriate source control and/or treatment BMPs as soon as possible. Address the problems within 10 days of the date the discharge exceeded the benchmark. If installation of necessary treatment BMPs is not feasible within 10 days, Ecology may approve additional time when the Permittee requests an extension within the initial 10-day response period
- 3. Document BMP implementation and maintenance in the site log book.
- 4. Continue to sample discharges daily until one of the following is true:
 - Turbidity is 25 NTU (or lower).
 - Transparency is 33 cm (or greater).
 - Compliance with the water quality limit for turbidity is achieved.
 - o 1 5 NTU over background turbidity, if background is less than 50 NTU
 - 1% 10% over background turbidity, if background is 50 NTU or greater
 - The discharge stops or is eliminated.

4.2.2 pH Sampling

pH monitoring is required for "Significant concrete work" (i.e., greater than 1000 cubic yards poured concrete over the life of the project). The use of recycled concrete or engineered soils (soil amendments including but not limited to Portland cement-treated base [CTB], cement kiln dust [CKD] or fly ash) also requires pH monitoring.

For significant concrete work, pH sampling will start the first day concrete is poured and continue until it is cured, typically three (3) weeks after the last pour.

For engineered soils and recycled concrete, pH sampling begins when engineered soils or recycled concrete are first exposed to precipitation and continues until the area is fully stabilized.

If the measured pH is 8.5 or greater, the following measures will be taken:

- 1. Prevent high pH water from entering storm sewer systems or surface water.
- 2. Adjust or neutralize the high pH water to the range of 6.5 to 8.5 su using appropriate technology such as carbon dioxide (CO₂) sparging (liquid or dry ice).
- 3. Written approval will be obtained from Ecology prior to the use of chemical treatment other than CO₂ sparging or dry ice.

Method for sampling pH:

Check the analysis method you will use:

Table 5 – pH Sampling Method

	pH meter
\boxtimes	pH test kit
	Wide range pH indicator paper

5 Discharges to 303(d) or Total Maximum Daily Load (TMDL) Waterbodies

5.1 303(d) Listed Waterbodies Circle the applicable answer, if necessary:
Is the receiving water 303(d) (Category 5) listed for turbidity, fine sediment, phosphorus, or pH?
☐ Yes⊠ No

6 Reporting and Record Keeping

6.1 Record Keeping

This section does not need to be filled out. It is a list of reminders for the permittee.

6.1.1 Site Log Book

A site log book will be maintained for all on-site construction activities and will include:

- A record of the implementation of the SWPPP and other permit requirements
- Site inspections
- Sample logs

6.1.2 Records Retention

Records will be retained during the life of the project and for a minimum of three (3) years following the termination of permit coverage in accordance with Special Condition S5.C of the CSWGP.

Permit documentation to be retained on-site:

- CSWGP
- Permit Coverage Letter
- SWPPP
- Site Log Book

Permit documentation will be provided within 14 days of receipt of a written request from Ecology. A copy of the SWPPP or access to the SWPPP will be provided to the public when requested in writing in accordance with Special Condition S5.G.2.b of the CSWGP.

6.1.3 Updating the SWPPP

The SWPPP will be modified if:

- Found ineffective in eliminating or significantly minimizing pollutants in stormwater discharges from the site.
- There is a change in design, construction, operation, or maintenance at the construction site that has, or could have, a significant effect on the discharge of pollutants to waters of the State.

The SWPPP will be modified within seven (7) days if inspection(s) or investigation(s) determine additional or modified BMPs are necessary for compliance. An updated timeline for BMP implementation will be prepared.

6.2 Reporting

6.2.1 Discharge Monitoring Reports

Cumulative soil disturbance is less than one (1) acre; therefore, Discharge Monitoring Reports (DMRs) will not be submitted to Ecology because water quality sampling is not being conducted at the site.

6.2.2 Notification of Noncompliance

If any of the terms and conditions of the permit is not met, and the resulting noncompliance may cause a threat to human health or the environment, the following actions will be taken:

- 1. Ecology will be notified within 24-hours of the failure to comply by calling the applicable Regional office ERTS phone number (Regional office numbers listed below).
- 2. Immediate action will be taken to prevent the discharge/pollution or otherwise stop or correct the noncompliance. If applicable, sampling and analysis of any noncompliance will be repeated immediately, and the results submitted to Ecology within five (5) days of becoming aware of the violation.
- 3. A detailed written report describing the noncompliance will be submitted to Ecology within five (5) days, unless requested earlier by Ecology.

Anytime turbidity sampling indicates turbidity is 250 NTUs or greater, or water transparency is 6 cm or less, the Ecology Regional office will be notified by phone within 24 hours of analysis as required by Special Condition S5.A of the CSWGP.

- **Central Region** at (509) 575-2490 for Benton, Chelan, Douglas, Kittitas, Klickitat, Okanogan, or Yakima County
- Eastern Region at (509) 329-3400 for Adams, Asotin, Columbia, Ferry, Franklin, Garfield, Grant, Lincoln, Pend Oreille, Spokane, Stevens, Walla Walla, or Whitman County
- **Northwest Region** at (425) 649-7000 for Island, King, Kitsap, San Juan, Skagit, Snohomish, or Whatcom County
- **Southwest Region** at (360) 407-6300 for Clallam, Clark, Cowlitz, Grays Harbor, Jefferson, Lewis, Mason, Pacific, Pierce, Skamania, Thurston, or Wahkiakum

Include the following information:

- 1. Your name and / Phone number
- 2. Permit number
- 3. City / County of project
- 4. Sample results
- 5. Date / Time of call

- 6. Date / Time of sample
- 7. Project name

In accordance with Special Condition S4.D.5.b of the CSWGP, the Ecology Regional office will be notified if chemical treatment other than CO₂ sparging is planned for adjustment of high pH water.

Appendix/Glossary

- A. Site Map
- B. BMP Detail
- **C. Site Inspection Form**
- D. Engineering Calculations

Appendix A Site Map

- TESC CONSTRUCTION NOTES: INSTALL SILTATION FENCE PER CITY OF PUYALLUP STANDARD DETAIL INSPECTOR. SEE DETAIL 5/C2.2.

- 02.03.02 AROUND PERIMETER OF SITE TO PREVENT SILT-LADEN RUNOFF FROM LEAVING SITE. ADJUST LOCATION AS DIRECTED BY THE CITY
- INSTALL CATCH BASIN INSERTS IN ALL CATCH BASINS LOCATED ON-SITE PER BMP C220-INLET PROTECTION OF THE 2019 STORMWATER MANAGEMENT MANUAL FOR WESTERN WASHINGTON (2019 SWMMWW). CONTRACTOR TO ALSO INSTALL CATCH BASIN INSERTS IN ANY CATCH BASIN LOCATED WITH 500' OF THE JOB SITE. SEE DETAIL 3/C2.3.
- APPROXIMATE LOCATION OF CONSTRUCTION STAGING AREA. CONTRACTOR TO USE THIS AREA FOR TEMPORARY STOCKPILE STORAGE AND CONCRETE WASHOUT PER 2019 SWMMWW BMP C154-CONCRETE WASHOUT AREA, SEE DETAIL 4/C2.3. ADJUST SIZE AND LOCATION OF AREA AS NEEDED DURING CONSTRUCTION.
- INSTALL CONSTRUCTION ENTRANCE PER CITY OF PUYALLUP STANDARD DETAIL 05.01.01. ADJUST LOCATION AS NEEDED OR AS DIRECTED BY THE CITY INSPECTOR. SEE DETAIL 2/C2.2.
- INSTALL TEMPORARY CONSTRUCTION FENCE AND SITE ACCESS GATE (6' HIGH-CHAIN LINK WITH LOCKING DEVICE) AT TEMPORARY CONSTRUCTION ENTRANCE. SEE DETAIL 1/C2.2.
- 6. APPROXIMATE LIMITS OF DISTURBANCE.
- APPROXIMATE LOCATION OF TEMPORARY SEDIMENT TRAP PER 2019 SWMMWW BMP C240. MINIMUM REQUIRED SURFACE AREA FOR SEDIMENT TRAP IS 1548 SF. CONTRACTOR TO ENSURE SEDIMENT TRAP LENGTH TO WIDTH RATIO OF 3:1. SEE DETAIL 1/C2.3. TOP ELEVATION: 44.7 BOTTOM ELEVATION: 47.7
- 8. APPROXIMATE LOCATION OF TEMPORARY "V" DITCH. SEE DETAIL 2/C2.2.
- 9. APPROXIMATE LOCATION OF TEMPORARY ROCK CHECK DAM, PER 2019 SWMMWW BMP C207. SEE DETAIL 2/C2.3.

TREE PROTECTION NOTE:

EXISTING TREES TO REMAIN SHALL BE PROTECTED. CONTRACTOR TO ENSURE NO DAMAGE ON TREE ROOT ZONES OCCUR. CONTRACTOR TO INSTALL/IMPLEMENT TREE PROTECTION MEASURES AS NECESSARY.

EROSION CONTROL NOTES:

- ALL NECESSARY EQUIPMENT AND MATERIALS SHALL BE AVAILABLE ON SITE TO FACILITATE RAPID INSTALLATION OF EROSION AND SEDIMENT CONTROL BMPS WHEN RAIN IS IMMINENT.
- 2. THE CONTRACTOR SHALL RESTORE ALL EROSION CONTROL DEVICES TO WORKING ORDER TO THE SATISFACTION OF THE AUTHORITY HAVING JURISDICTION AFTER EACH RUN-OFF PRODUCING RAINFALL.
- THE CONTRACTOR SHALL INSTALL ADDITIONAL EROSION CONTROL MEASURES AS MAY BE REQUIRED BY THE AUTHORITY HAVING JURISDICTION DUE TO UNCOMPLETED GRADING OPERATIONS OR UNFORESEEN CIRCUMSTANCES WHICH MAY ARISE.
- ADEQUATE EROSION AND SEDIMENT CONTROL AND PERIMETER PROTECTION BEST MANAGEMENT PRACTICE MEASURES MUST BE INSTALLED AND MAINTAINED.
- CONTRACTOR TO IMPLEMENT SLOPE STABILIZATION MEASURES AS NECESSARY FOR EXPOSED SLOPES DURING CONSTRUCTION. MEASURES CAN INCLUDE TEMPORARY AND PERMANENT SEEDING PER

TEMPORARY EXCAVATION SLOPE NOTE:

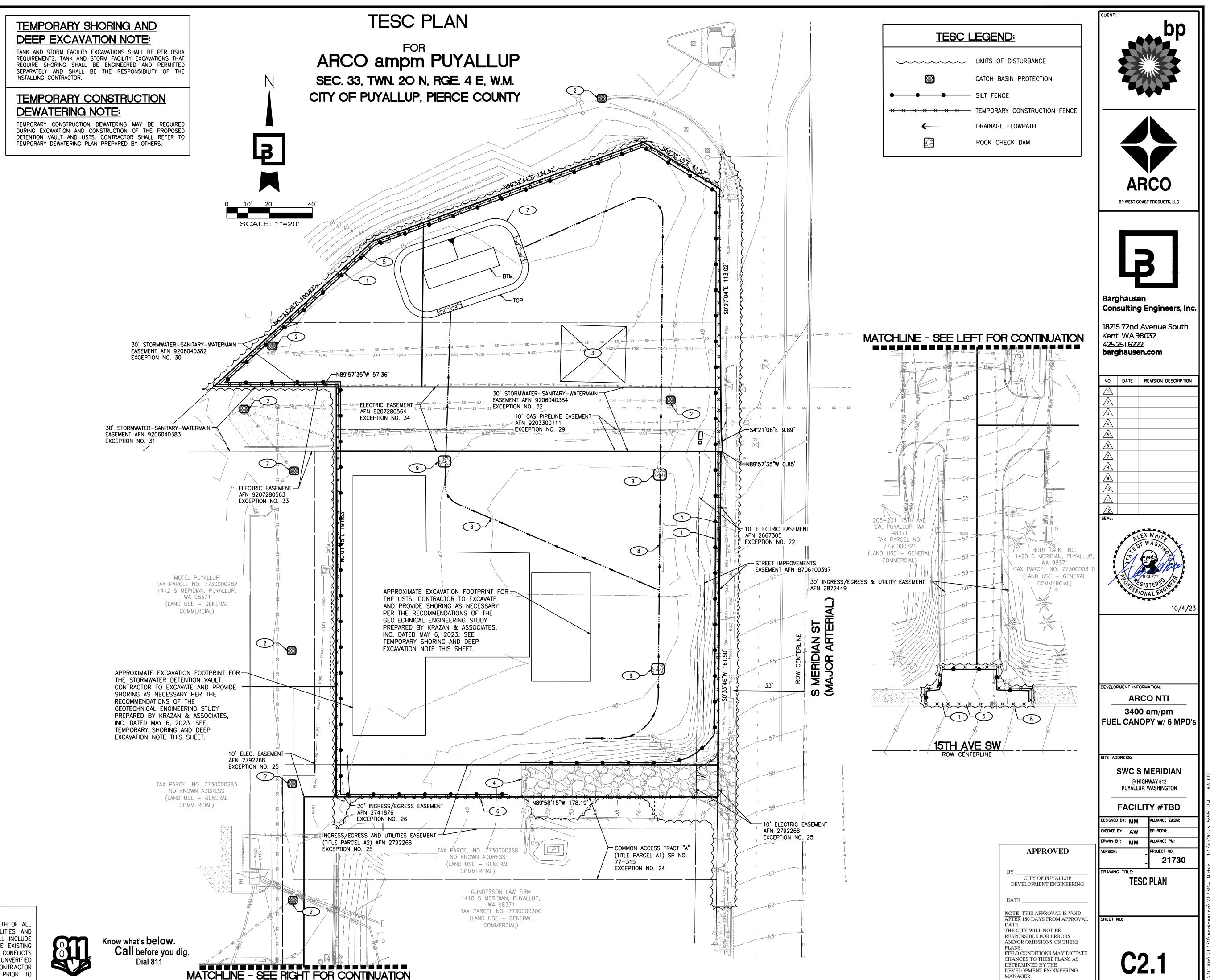
CONTRACTOR TO ENSURE TEMPORARY SLOPES HAVE A MAXIMUM SLOPE INCLINATION OF 1.5H:1V. CONTRACTOR TO REFER TO THE GEOTECHNICAL ENGINEERING STUDY PREPARED BY KRAZEN & ASSOCIATES, INC. DATED MAY 26, 2022 FOR EXCAVATION AND SLOPE REQUIREMENTS.

DUST CONTROL NOTES:

CONTRACTOR SHALL DETERMINE THE APPLICABILITY OF DUST CONTROL AND APPLY APPROPRIATE DUST CONTROL MEASURES AS NEEDED.

- 1. WATER ALL ACTIVE CONSTRUCTION AREAS AT LEAST TWICE DAILY.
- WATER OR COVER STOCKPILES OF DEBRIS, SOIL, SAND OR OTHER MATERIALS THAT CAN
- 3. BE BLOWN BY THE WIND.
- 4. COVER ALL TRUCKS HAULING SOIL, SAND, AND OTHER LOOSE MATERIALS OR REQUIRE ALL TRUCKS TO MAINTAIN AT LEAST TWO FEET OF FREEBOARD.
- 5. SWEEP DAILY (PREFERABLY WITH WATER SWEEPERS) ALL PAVED ACCESS ROADS, PARKING AREAS AND STAGING AREAS AT CONSTRUCTION SITES.
- 6. SWEEP STREETS DAILY (PREFERABLY WITH WATER SWEEPERS) IF VISIBLE SOIL MATERIAL IS CARRIED ONTO ADJACENT PUBLIC STREETS.

___ UTILITY POTHOLING NOTE:

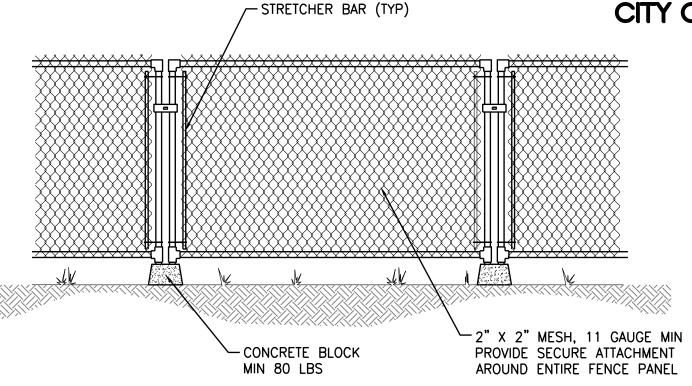

THE CIRCLED LOCATIONS ARE REQUIRED TO BE POTHOLED TO VERIFY VERTICAL AND HORIZONTAL LOCATION OF EXISTING UTILITY AND/OR POTENTIAL CONFLICTS WITH EXISTING UTILITIES. POTHOLING SHALL BE PERFORMED PRIOR TO INSTALLING ANY PROPOSED UTILITIES. CONTRACTOR SHALL NOTIFY BARGHAUSEN CONSULTING ENGINEERS, INC. OF ANY CONFLICTS.

UTILITY PROTECTION NOTE:

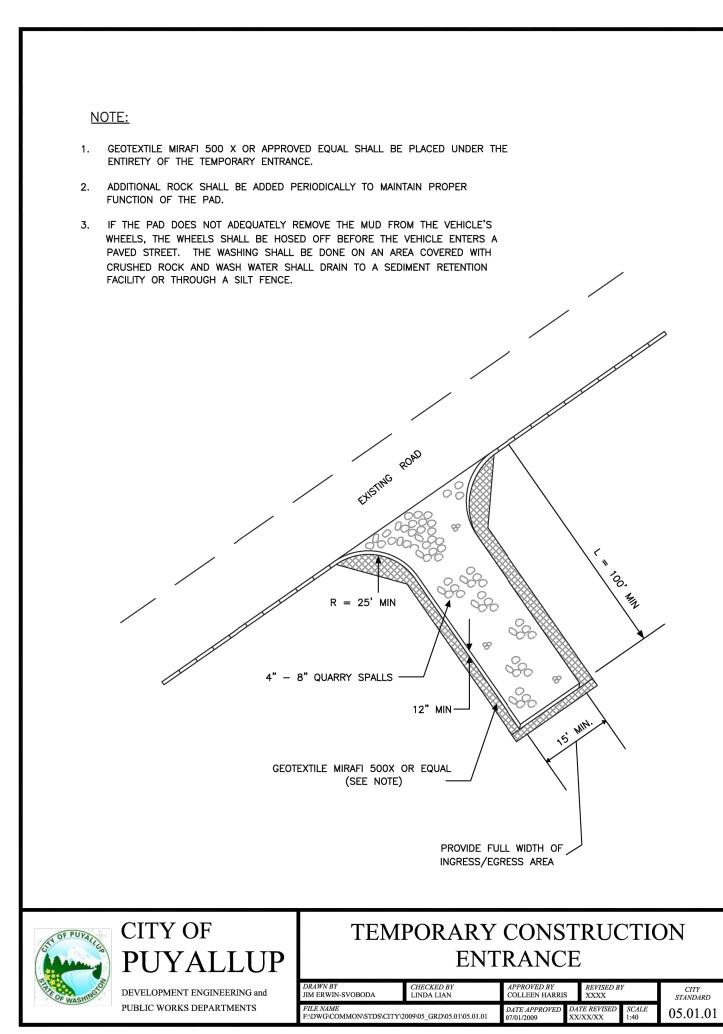
APPROXIMATE LOCATION OF EXISTING GAS SERVICE IS SHOWN ON THESE PLANS. CONTRACTOR TO COORDINATE WITH PURVEYOR AND USE EXTREME CAUTION WHEN EXCAVATING ON-SITE, UNTIL EXISTING GAS AND POWER SERVICE LOCATIONS ARE CONFIRMED. CONTRACTOR TO ORDER INDEPENDENT UTILITY LOCATES (INCLUDING GAS AND POWER) FOR THE FULL SCOPE OF WORK PRIOR TO CONSTRUCTION OR ANY GROUND DISTURBING ACTIVITIES.

UTILITY CONFLICT NOTE:

THE CONTRACTOR SHALL BE RESPONSIBLE FOR VERIFYING THE LOCATION, DIMENSION, AND DEPTH OF ALI EXISTING UTILITIES WHETHER SHOWN ON THESE PLANS OR NOT BY POTHOLING THE UTILITIES AND SURVEYING THE HORIZONTAL AND VERTICAL LOCATION PRIOR TO CONSTRUCTION. THIS SHALL INCLUDE CALLING UTILITY LOCATE AT 811 48 HOURS IN ADVANCE AND THEN POTHOLING ALL OF THE EXISTING UTILITIES AT LOCATIONS OF NEW UTILITY CROSSINGS TO PHYSICALLY VERIFY WHETHER OR NOT CONFLICTS EXIST, LOCATIONS OF SAID UTILITIES AS SHOWN ON THESE PLANS ARE BASED UPON THE UNVERIFIED PUBLIC INFORMATION AND ARE SUBJECT TO VARIATION. IF CONFLICTS SHOULD OCCUR, THE CONTRACTOR SHALL NOTIFY BARGHAUSEN CONSULTING ENGINEERS, INC. TO RESOLVE ALL PROBLEMS PRIOR TO PROCEEDING WITH CONSTRUCTION.


MANAGER.

CITY OF PUYALLUP - GRADING, EROSION AND SEDIMENTATION CONTROL NOTES:


- 1. ALL WORK IN CITY RIGHT-OF-WAY REQUIRES A PERMIT FROM THE CITY OF PUYALLUP, PRIOR TO ANY WORK COMMENCING, THE GENERAL CONTRACTOR SHALL ARRANGE FOR A PRECONSTRUCTION MEETING AT THE DEVELOPMENT SERVICES CENTER TO BE ATTENDED BY ALL CONTRACTORS THAT WILL PERFORM WORK SHOWN ON THE APPROVED ENGINEERING PLANS, REPRESENTATIVES FROM ALL APPLICABLE UTILITY COMPANIES, THE PROJECT OWNER AND APPROPRIATE CITY STAFF. CONTACT ENGINEERING SERVICES AT (253-841-5568) TO SCHEDULE THE MEETING. THE CONTRACTOR IS RESPONSIBLE TO HAVE THEIR OWN SET OF APPROVED PLANS AT THE MEETING.
- 2. AFTER COMPLETION OF ALL ITEMS SHOWN ON THESE PLANS AND BEFORE ACCEPTANCE OF THE PROJECT THE CONTRACTOR SHALL OBTAIN A "PUNCH LIST" PREPARED BY THE CITY'S INSPECTOR DETAILING REMAINING ITEMS OF WORK TO BE COMPLETED. ALL ITEMS OF WORK SHOWN ON THESE PLANS SHALL BE COMPLETED TO THE SATISFACTION OF THE CITY PRIOR TO ACCEPTANCE OF THE WATER SYSTEM AND PROVISION OF SANITARY SEWER SERVICE.
- 3. ALL MATERIALS AND WORKMANSHIP SHALL CONFORM TO THE STANDARD SPECIFICATIONS FOR ROAD, BRIDGE, AND MUNICIPAL CONSTRUCTION (HEREINAFTER REFERRED TO AS THE "STANDARD SPECIFICATIONS") WASHINGTON STATE DEPARTMENT OF TRANSPORTATION AND AMERICAN PUBLIC WORKS ASSOCIATION, WASHINGTON STATE CHAPTER, LATEST EDITION, UNLESS SUPERSEDED OR AMENDED BY THE CITY OF PUYALLUP CITY STANDARDS FOR PUBLIC WORKS ENGINEERING AND CONSTRUCTION (HEREINAFTER REFERRED TO AS THE "CITY STANDARDS").
- 4. A COPY OF THESE APPROVED PLANS AND APPLICABLE CITY DEVELOPER SPECIFICATIONS AND DETAILS SHALL BE ON SITE DURING CONSTRUCTION.
- 5. ANY REVISIONS MADE TO THESE PLANS MUST BE REVIEWED AND APPROVED BY THE DEVELOPER'S ENGINEER AND THE CITY PRIOR TO ANY IMPLEMENTATION IN THE FIELD. THE CITY SHALL NOT BE RESPONSIBLE FOR ANY ERRORS AND/OR OMISSIONS ON THESE PLANS.
- 6. THE CONTRACTOR SHALL HAVE ALL UTILITIES VERIFIED ON THE GROUND PRIOR TO ANY CONSTRUCTION. CALL (811) AT LEAST TWO WORKING DAYS IN ADVANCE. THE OWNER AND HIS/HER ENGINEER SHALL BE CONTACTED IMMEDIATELY IF A CONFLICT EXISTS.
- 7. ALL LIMITS OF CLEARING AND AREAS OF VEGETATION PRESERVATION AS PRESCRIBED ON THE PLANS SHALL BE CLEARLY FLAGGED IN THE FIELD AND OBSERVED DURING CONSTRUCTION.
- 8. ALL REQUIRED SEDIMENTATION AND EROSION CONTROL FACILITIES MUST BE CONSTRUCTED AND IN OPERATION PRIOR TO ANY LAND CLEARING AND/OR OTHER CONSTRUCTION TO ENSURE THAT SEDIMENT LADEN WATER DOES NOT ENTER THE NATURAL DRAINAGE SYSTEM. THE CONTRACTOR SHALL SCHEDULE AN INSPECTION OF THE EROSION CONTROL FACILITIES PRIOR TO ANY LAND CLEARING AND/OR OTHER CONSTRUCTION. ALL EROSION AND SEDIMENT FACILITIES SHALL BE MAINTAINED IN A SATISFACTORY CONDITION AS DETERMINED BY THE CITY, UNTIL SUCH TIME THAT CLEARING AND/OR CONSTRUCTION IS COMPLETED AND THE POTENTIAL FOR ON-SITE EROSION HAS PASSED THE IMPLEMENTATION, MAINTENANCE, REPLACEMENT, AND ADDITIONS TO THE EROSION AND SEDIMENTATION CONTROL SYSTEMS SHALL BE RESPONSIBILITY OF THE PERMITTEE.
- 9. THE EROSION AND SEDIMENTATION CONTROL SYSTEM FACILITIES DEPICTED ON THESE PLANS ARE INTENDED TO BE MINIMUM REQUIREMENTS TO MEET ANTICIPATED SITE CONDITIONS. AS CONSTRUCTION PROGRESSES AND UNEXPECTED OR SEASONAL CONDITIONS DICTATE, FACILITIES WILL BE NECESSARY TO ENSURE COMPLETE SILTATION CONTROL ON THE SITE. DURING THE COURSE OF CONSTRUCTION, IT SHALL BE THE OBLIGATION AND RESPONSIBILITY OF THE PERMITTEE TO ADDRESS ANY NEW CONDITIONS THAT MAY BE CREATED BY HIS ACTIVITIES AND TO PROVIDE ADDITIONAL FACILITIES, OVER AND ABOVE THE MINIMUM REQUIREMENTS, AS MAY BE NEEDED TO PROTECT ADJACENT PROPERTIES, SENSITIVE AREAS, NATURAL WATER COURSES, AND/OR STORM DRAINAGE SYSTEMS.
- 10. APPROVAL OF THESE PLANS IS FOR GRADING, TEMPORARY DRAINAGE, EROSION AND SEDIMENTATION CONTROL ONLY. IT DOES NOT CONSTITUTE AN APPROVAL OF PERMANENT STORM DRAINAGE DESIGN, SIZE OR LOCATION OF PIPES, RESTRICTORS, CHANNELS, OR RETENTION FACILITIES.
- 11. ANY DISTURBED AREA WHICH HAS BEEN STRIPPED OF VEGETATION AND WHERE NO FURTHER WORK IS ANTICIPATED FOR A PERIOD OF 30 DAYS OR MORE, MUST BE IMMEDIATELY STABILIZED WITH MULCHING, GRASS PLANTING, OR OTHER APPROVED EROSION CONTROL TREATMENT APPLICABLE TO THE TIME OF YEAR IN QUESTION. GRASS SEEDING ALONE WILL BE ACCEPTABLE ONLY DURING THE MONTHS OF APRIL THROUGH SEPTEMBER INCLUSIVE. SEEDING MAY PROCEED OUTSIDE THE SPECIFIED TIME PERIOD WHENEVER IT IS IN THE INTEREST OF THE PERMITTEE BUT MUST BE AUGMENTED WITH MULCHING, NETTING, OR OTHER TREATMENT APPROVED BY THE CITY.
- 12. IN CASE EROSION OR SEDIMENTATION OCCURS TO ADJACENT PROPERTIES, ALL CONSTRUCTION WORK WITHIN THE DEVELOPMENT THAT WILL FURTHER AGGRAVATE THE SITUATION MUST CEASE, AND THE OWNER/CONTRACTOR WILL IMMEDIATELY COMMENCE RESTORATION METHODS. RESTORATION ACTIVITY WILL CONTINUE UNTIL SUCH TIME AS THE AFFECTED PROPERTY OWNER IS SATISFIED.
- 13. NO TEMPORARY OR PERMANENT STOCKPILING OF MATERIALS OR EQUIPMENT SHALL OCCUR WITHIN CRITICAL AREAS OR ASSOCIATED BUFFERS, OR THE CRITICAL ROOT ZONE FOR VEGETATION PROPOSED FOR RETENTION.

TESC DETAILS AND NOTES

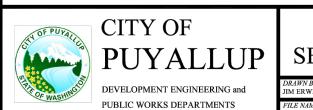
ARCO ampm PUYALLUP SEC. 33, TWN. 20 N, RGE. 4 E, W.M. CITY OF PUYALLUP, PIERCE COUNTY

TEMPORARY CONSTRUCTION FENCE C2.2 SCALE: NTS

2 STABILIZED CONSTRUCTION ACCESS C2.2 / SCALE: NTS

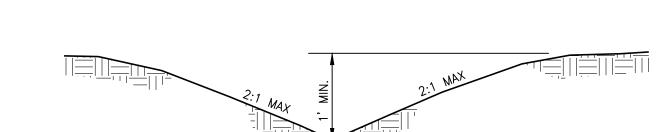
ALL LIMITS OF CLEARING AND AREAS OF VEGETATION PRESERVATION AS PRESCRIBED ON THE PLANS SHALL BE CLEARLY FLAGGED IN THE FIELD AND OBSERVED DURING CONSTRUCTION

2. ALL REQUIRED SEDIMENTATION AND EROSION CONTROL FACILITIES MUST BE CONSTRUCTED AND IN OPERATION PRIOR TO ANY LAND CLEARING AND/OR OTHER CONSTRUCTION TO ENSURE THAT SEDIMENT LADEN WATER DOES NOT ENTER THE NATURAL DRAINAGE SYSTEM. THE CONTRACTOR SHALL SCHEDULE AN INSPECTION OF THE EROSION CONTROL FACILITIES PRIOR TO ANY LAND CLEARING AND/OR CONSTRUCTION. ALL EROSION AND SEDIMENT FACILITIES SHALL BE MAINTAINED IN A SATISFACTORY CONDITION AS DETERMINED BY THE CITY, UNTIL SUCH TIME THAT CLEARING AND/OR CONSTRUCTION IS COMPLETED AND THE POTENTIAL FOR ON-SITE EROSION HAS PASSED. THE IMPLEMENTATION, MAINTENANCE, REPLACEMENT, AND ADDITIONS TO THE EROSION AND SEDIMENTATION CONTROL SYSTEMS SHALL BE THE RESPONSIBILITY OF THE PERMITEE.

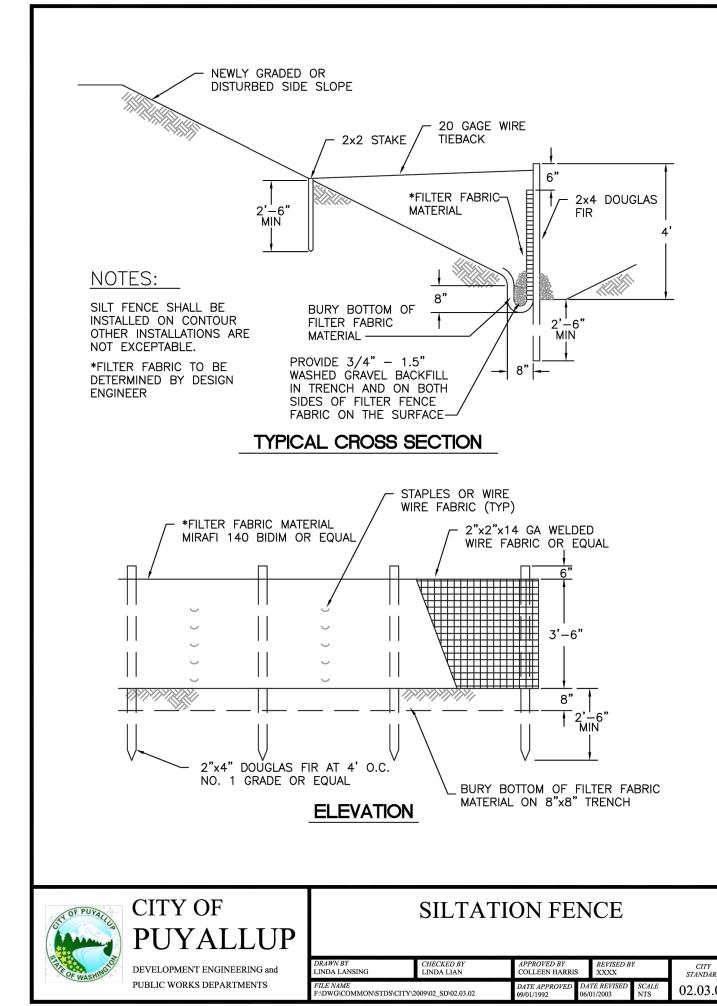

3. THE EROSION AND SEDIMENTATION CONTROL SYSTEM FACILITIES DEPICTED ON THESE PLANS ARE INTENDED TO BE MINIMUM REQUIREMENTS TO MEET ANTICIPATED SITE CONDITIONS. AS CONSTRUCTION PROGRESSES AND UNEXPECTED OR SEASONAL CONDITIONS DICTATE, FACILITIES WILL BE NECESSARY TO ENSURE COMPLETE SILTATION CONTROL ON THE SITE, DURING THE COURSE OF CONSTRUCTION, IT SHALL BE THE OBLIGATION AND RESPONSIBILITY OF THE PERMITEE TO ADDRESS ANY NEW CONDITIONS THAT MAY BE CREATED BY HIS ACTIVITIES AND TO PROVIDE ADDITIONAL FACILITIES, OVER AND ABOVE THE MINIMUM REQUIREMENTS, AS MAY BE NEEDED TO PROTECT ADJACENT PROPERTIES, SENSITIVE AREAS, NATURAL WATER COURSES, AND/OR STORM DRAINAGE SYSTEMS.

4. APPROVAL OF THESE PLANS IS FOR GRADING, TEMPORARY DRAINAGE, EROSION AND SEDIMENTATION CONTROL ONLY. IT DOES NOT CONSTITUTE AN APPROVAL OF PERMANENT STORM DRAINAGE DESIGN, SIZE OR LOCATION OF PIPES, RESTRICTORS, CHANNELS, OR RETENTION FACILITIES

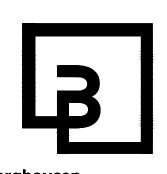
5. ANY DISTURBED AREA WHICH HAS BEEN STRIPPED OF VEGETATION AND WHERE NO FURTHER WORK IS ANTICIPATED FOR A PERIOD OF 30 DAYS OR MORE, MUST BE IMMEDIATELY STABILIZED WITH MULCHING, GRASS PLANTING, OR OTHER APPROVED EROSION CONTROL TREATMENT APPLICABLE TO THE TIME OF YEAR IN QUESTION. GRASS SEEDING ALONE WILL BE ACCEPTABLE ONLY DURING THE MONTHS OF APRIL THROUGH SEPTEMBER INCLUSVE. SEEDING MAY PROCEED OUTSIDE THE SPECIFIED TIME PERIOD WHENEVER IT IS IN THE INTEREST OF THE PERMITEE BUT MUST BE AUGMENTED WITH MULCHING, NETTING, OR OTHER TREATMENT APPROVED BY THE


6. IN CASE EROSION OR SEDIMENTATION OCCURS TO ADJACENT PROPERTIES, ALL CONSTRUCTION WORK WITHIN THE DEVELOPMENT THAT WILL FURTHER AGGRAVATE THE SITUATION MUST CEASE, AND THE OWNER/CONTRACTOR WILL IMMEDIATELY COMMENCE RESTORATION METHODS. RESTORATION ACTIVITY WILL CONTINUE UNTIL SUCH TIME AS THE AFFECTED PROPERTY OWNER IS SATISFIED.

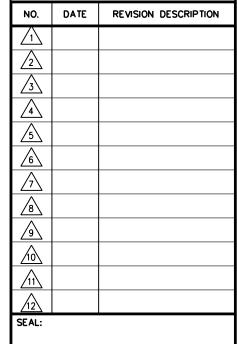
7. NO TEMPORARY OR PERMANENT STOCKPILING OF MATERIALS OR EQUIPMENT SHALL OCCUR WITHIN CRITICAL AREAS OR ASSOCIATED BUFFERS, OR THE CRITICAL ROOT ZONE FOR VEGETATION PROPOSED FOR RETENTION.


C2.2 / SCALE: NTS

GRADING, EROSION, AND PUYALLUP | SEDIMENTATION CONTROL NOTES


3 CITY OF PUYALLUP NOTES

TEMPORARY "V" DITCH C2.2 SCALE: NTS



Consulting Engineers, Inc. 18215 72nd Avenue South

Kent, WA 98032 425.251.6222 barghausen.com

10/4/2

DEVELOPMENT INFORMATION: **ARCO NTI**

3400 am/pm

FUEL CANOPY w/ 6 MPD's

SITE ADDRESS:

SWC S MERIDIAN @ HIGHWAY 512 PUYALLUP, WASHINGTON

FACILITY #TBD LIANCE PM: 21730

TESC DETAILS AND NOTES

NOTE: THIS APPROVAL IS VOID AFTER 180 DAYS FROM APPROVAL

APPROVED

CITY OF PUYALLUP

DEVELOPMENT ENGINEERING

THE CITY WILL NOT BE

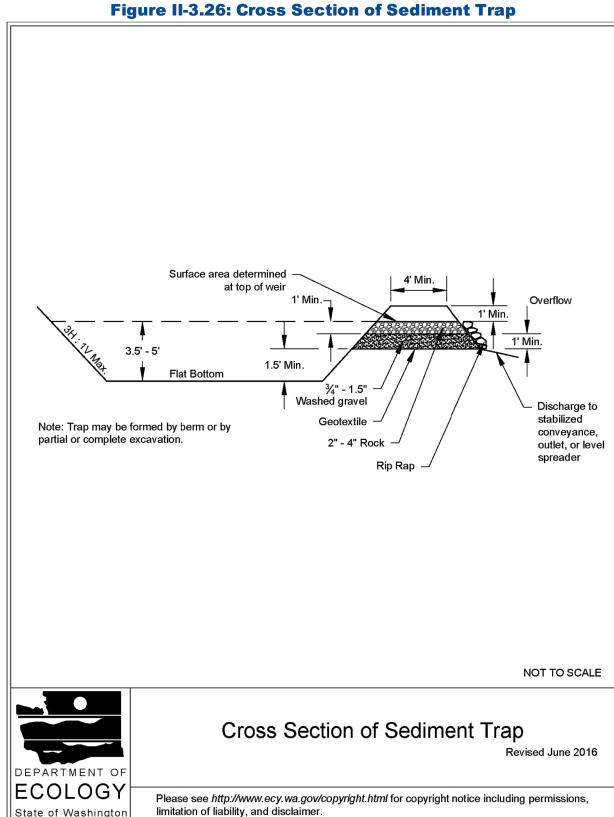
DETERMINED BY THE

MANAGER.

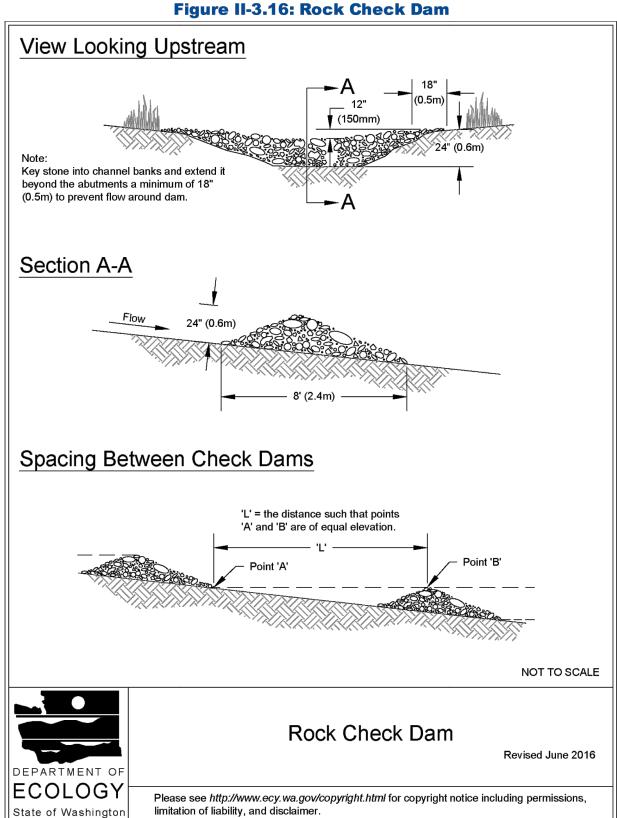
RESPONSIBLE FOR ERRORS

AND/OR OMISSIONS ON THESE

DEVELOPMENT ENGINEERING


FIELD CONDITIONS MAY DICTATE CHANGES TO THESE PLANS AS

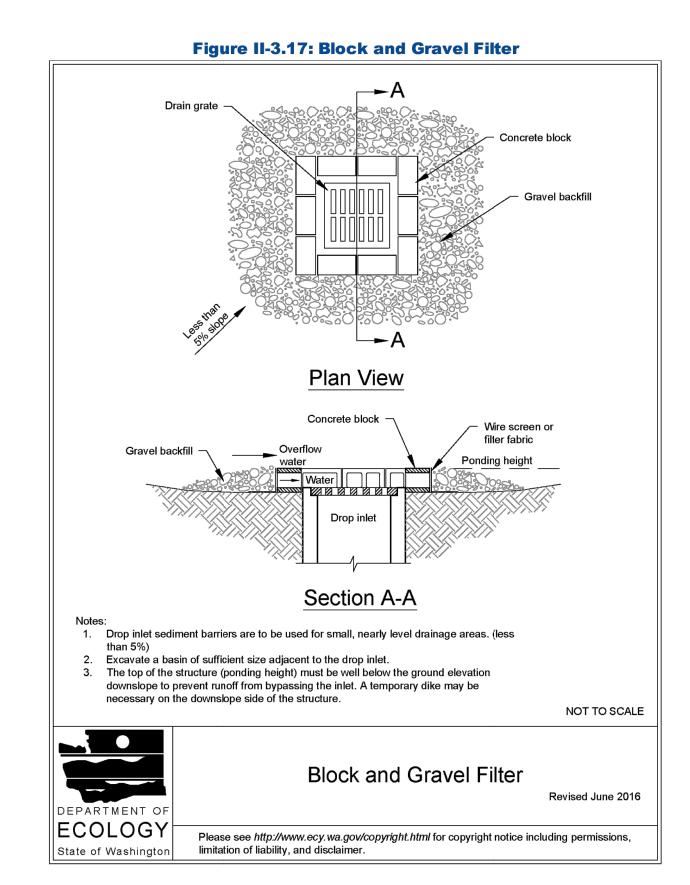
UTILITY CONFLICT NOTE:


THE CONTRACTOR SHALL BE RESPONSIBLE FOR VERIFYING THE LOCATION, DIMENSION, AND DEPTH OF ALL EXISTING UTILITIES WHETHER SHOWN ON THESE PLANS OR NOT BY POTHOLING THE UTILITIES AND SURVEYING THE HORIZONTAL AND VERTICAL LOCATION PRIOR TO CONSTRUCTION. THIS SHALL INCLUDE CALLING UTILITY LOCATE AT 811 48 HOURS IN ADVANCE AND THEN POTHOLING ALL OF THE EXISTING UTILITIES AT LOCATIONS OF NEW UTILITY CROSSINGS TO PHYSICALLY VERIFY WHETHER OR NOT CONFLICTS EXIST. LOCATIONS OF SAID UTILITIES AS SHOWN ON THESE PLANS ARE BASED UPON THE UNVERIFIED PUBLIC INFORMATION AND ARE SUBJECT TO VARIATION. IF CONFLICTS SHOULD OCCUR, THE CONTRACTOR SHALL NOTIFY BARGHAUSEN CONSULTING ENGINEERS, INC. TO RESOLVE ALL PROBLEMS PRIOR TO PROCEEDING WITH CONSTRUCTION.

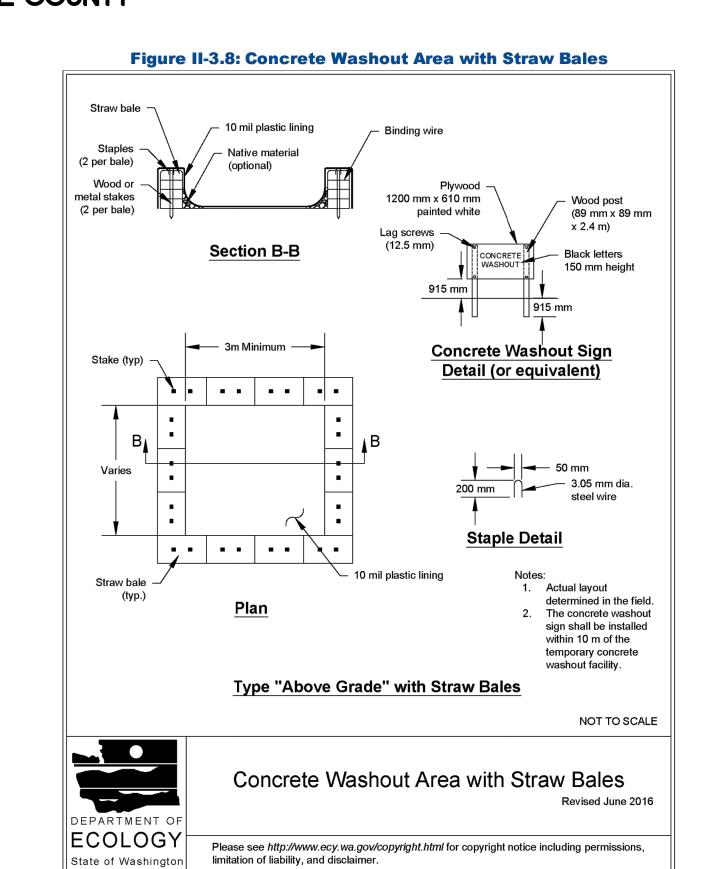
Know what's **below**. Call before you dig. **Dial 811**

1 SEDIMENT TRAP C2.3 SCALE: NTS

ROCK CHECK DAM C2.3 SCALE: NTS


UTILITY CONFLICT NOTE:

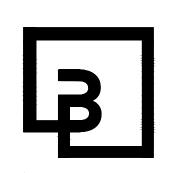
THE CONTRACTOR SHALL BE RESPONSIBLE FOR VERIFYING THE LOCATION, DIMENSION, AND DEPTH OF ALL EXISTING UTILITIES WHETHER SHOWN ON THESE PLANS OR NOT BY POTHOLING THE UTILITIES AND SURVEYING THE HORIZONTAL AND VERTICAL LOCATION PRIOR TO CONSTRUCTION. THIS SHALL INCLUDE CALLING UTILITY LOCATE AT 811 48 HOURS IN ADVANCE AND THEN POTHOLING ALL OF THE EXISTING UTILITIES AT LOCATIONS OF NEW UTILITY CROSSINGS TO PHYSICALLY VERIFY WHETHER OR NOT CONFLICTS EXIST. LOCATIONS OF SAID UTILITIES AS SHOWN ON THESE PLANS ARE BASED UPON THE UNVERIFIED PUBLIC INFORMATION AND ARE SUBJECT TO VARIATION. IF CONFLICTS SHOULD OCCUR, THE CONTRACTOR SHALL NOTIFY BARGHAUSEN CONSULTING ENGINEERS, INC. TO RESOLVE ALL PROBLEMS PRIOR TO PROCEEDING WITH CONSTRUCTION.



TESC DETAILS

ARCO ampm PUYALLUP SEC. 33, TWN. 20 N, RGE. 4 E, W.M. CITY OF PUYALLUP, PIERCE COUNTY




3 INLET PROTECTION

CONCRETE WASHOUT

Consulting Engineers, Inc.

18215 72nd Avenue South Kent, WA 98032 425.251.6222 barghausen.com

NO.	DATE	REVISION DESCRIPTION
2		
3		
4		
5		
6		
<u> </u>		
8		
9		
10		
<u>₹</u>		
12		
SEAL:		
		-

DEVELOPMENT INFORMATION: **ARCO NTI** 3400 am/pm FUEL CANOPY w/ 6 MPD's

> SWC S MERIDIAN @ HIGHWAY 512 PUYALLUP, WASHINGTON

FACILITY #TBD

TESC D	ETAII C
DRAWING TITLE:	
VERSION:	PROJECT NO: 21730
DRAWN BY: MM	ALLIANCE PM:
CHECKED BY: AW	BP REPM:

CITY OF PUYALLUP DEVELOPMENT ENGINEERING

APPROVED

NOTE: THIS APPROVAL IS VOID AFTER 180 DAYS FROM APPROVAL THE CITY WILL NOT BE RESPONSIBLE FOR ERRORS AND/OR OMISSIONS ON THESE

MANAGER.

FIELD CONDITIONS MAY DICTATE CHANGES TO THESE PLANS AS DETERMINED BY THE DEVELOPMENT ENGINEERING

SITE ADDRESS:

1E2C DETAILS

Appendix B BMP Detail

burying and smothering vegetation.

 Vegetative buffer zones for streams, lakes or other waterways shall be established by the local permitting authority or other state or federal permits or approvals.

Maintenance Standards

Inspect the area frequently to make sure flagging remains in place and the area remains undisturbed. Replace all damaged flagging immediately. Remove all materials located in the buffer area that may impede the ability of the vegetation to act as a filter.

BMP C103: High-Visibility Fence

Purpose

High-visibility fencing is intended to:

- Restrict clearing to approved limits.
- Prevent disturbance of sensitive areas, their buffers, and other areas required to be left undisturbed.
- Limit construction traffic to designated construction entrances, exits, or internal roads.
- Protect areas where marking with survey tape may not provide adequate protection.

Conditions of Use

To establish clearing limits plastic, fabric, or metal fence may be used:

- At the boundary of sensitive areas, their buffers, and other areas required to be left uncleared.
- · As necessary to control vehicle access to and on the site.

Design and Installation Specifications

High-visibility plastic fence shall be composed of a high-density polyethylene material and shall be at least four feet in height. Posts for the fencing shall be steel or wood and placed every 6 feet on center (maximum) or as needed to ensure rigidity. The fencing shall be fastened to the post every six inches with a polyethylene tie. On long continuous lengths of fencing, a tension wire or rope shall be used as a top stringer to prevent sagging between posts. The fence color shall be high-visibility orange. The fence tensile strength shall be 360 lbs/ft using the ASTM D4595 testing method.

If appropriate install fabric silt fence in accordance with <u>BMP C233: Silt Fence</u> to act as high-visibility fence. Silt fence shall be at least 3 feet high and must be highly visible to meet the requirements of this BMP.

Metal fences shall be designed and installed according to the manufacturer's specifications.

Metal fences shall be at least 3 feet high and must be highly visible.

Fences shall not be wired or stapled to trees.

Maintenance Standards

If the fence has been damaged or visibility reduced, it shall be repaired or replaced immediately and visibility restored.

BMP C105: Stabilized Construction Access

Purpose

Stabilized construction accesses are established to reduce the amount of sediment transported onto paved roads outside the project site by vehicles or equipment. This is done by constructing a stabilized pad of quarry spalls at entrances and exits for project sites.

Conditions of Use

Construction accesses shall be stabilized wherever traffic will be entering or leaving a construction site if paved roads or other paved areas are within 1,000 feet of the site.

For residential subdivision construction sites, provide a stabilized construction access for each residence, rather than only at the main subdivision entrance. Stabilized surfaces shall be of sufficient length/width to provide vehicle access/parking, based on lot size and configuration.

On large commercial, highway, and road projects, the designer should include enough extra materials in the contract to allow for additional stabilized accesses not shown in the initial Construction SWPPP. It is difficult to determine exactly where access to these projects will take place; additional materials will enable the contractor to install them where needed.

Design and Installation Specifications

See <u>Figure II-3.1: Stabilized Construction Access</u> for details. Note: the 100' minimum length of the access shall be reduced to the maximum practicable size when the size or configuration of the site does not allow the full length (100').

Construct stabilized construction accesses with a 12-inch thick pad of 4-inch to 8-inch quarry spalls, a 4-inch course of asphalt treated base (ATB), or use existing pavement. Do not use crushed concrete, cement, or calcium chloride for construction access stabilization because these products raise pH levels in stormwater and concrete discharge to waters of the State is prohibited.

A separation geotextile shall be placed under the spalls to prevent fine sediment from pumping up into the rock pad. The geotextile shall meet the standards listed in <u>Table II-3.2: Stabilized Construction Access Geotextile Standards</u>.

Table II-3.2: Stabilized Construction Access
Geotextile Standards

Geotextile Property	Required Value	
Grab Tensile Strength (ASTM D4751)	200 psi min.	

Table II-3.2: Stabilized Construction Access Geotextile Standards (continued)

Geotextile Property	Required Value	
Grab Tensile Elongation (ASTM D4632)	30% max.	
Mullen Burst Strength (ASTM D3786-80a)	400 psi min.	
AOS (ASTM D4751)	20-45 (U.S. standard sieve size)	

- Consider early installation of the first lift of asphalt in areas that will be paved; this can be used
 as a stabilized access. Also consider the installation of excess concrete as a stabilized access.
 During large concrete pours, excess concrete is often available for this purpose.
- Fencing (see <u>BMP C103: High-Visibility Fence</u>) shall be installed as necessary to restrict traffic to the construction access.
- Whenever possible, the access shall be constructed on a firm, compacted subgrade. This can substantially increase the effectiveness of the pad and reduce the need for maintenance.
- Construction accesses should avoid crossing existing sidewalks and back of walk drains if at all possible. If a construction access must cross a sidewalk or back of walk drain, the full length of the sidewalk and back of walk drain must be covered and protected from sediment leaving the site.

Alternative Material Specification

WSDOT has raised safety concerns about the Quarry Spall rock specified above. WSDOT observes that the 4-inch to 8-inch rock sizes can become trapped between Dually truck tires, and then released off-site at highway speeds. WSDOT has chosen to use a modified specification for the rock while continuously verifying that the Stabilized Construction Access remains effective. To remain effective, the BMP must prevent sediment from migrating off site. To date, there has been no performance testing to verify operation of this new specification. Jurisdictions may use the alternative specification, but must perform increased off-site inspection if they use, or allow others to use, it.

Stabilized Construction Accesses may use material that meets the requirements of WSDOT's *Standard Specifications for Road, Bridge, and Municipal Construction* Section 9-03.9(1) (WSDOT, 2016) for ballast except for the following special requirements.

The grading and quality requirements are listed in <u>Table II-3.3</u>: <u>Stabilized Construction Access</u> <u>Alternative Material Requirements</u>.

Table II-3.3: Stabilized Construction Access Alternative Material Requirements

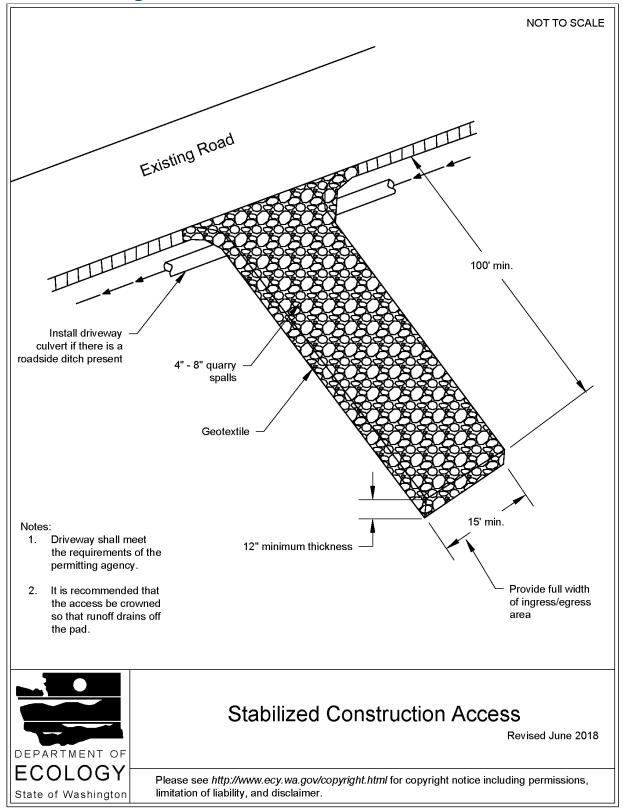
Sieve Size	Percent Passing
21/2"	99-100

Table II-3.3: Stabilized Construction Access Alternative Material Requirements (continued)

Sieve Size	Percent Passing
2"	65-100
3/4"	40-80
No. 4	5 max.
No. 100	0-2
% Fracture	75 min.

- All percentages are by weight.
- The sand equivalent value and dust ratio requirements do not apply.
- The fracture requirement shall be at least one fractured face and will apply the combined aggregate retained on the No. 4 sieve in accordance with FOP for AASHTO T 335.

Maintenance Standards


Quarry spalls shall be added if the pad is no longer in accordance with the specifications.

- If the access is not preventing sediment from being tracked onto pavement, then alternative
 measures to keep the streets free of sediment shall be used. This may include replacement/cleaning of the existing quarry spalls, street sweeping, an increase in the dimensions of
 the access, or the installation of BMP C106: Wheel Wash.
- Any sediment that is tracked onto pavement shall be removed by shoveling or street sweeping. The sediment collected by sweeping shall be removed or stabilized on site. The pavement shall not be cleaned by washing down the street, except when high efficiency sweeping is ineffective and there is a threat to public safety. If it is necessary to wash the streets, the construction of a small sump to contain the wash water shall be considered. The sediment would then be washed into the sump where it can be controlled.
- Perform street sweeping by hand or with a high efficiency sweeper. Do not use a non-high efficiency mechanical sweeper because this creates dust and throws soils into storm systems or conveyance ditches.
- Any quarry spalls that are loosened from the pad, which end up on the roadway shall be removed immediately.
- If vehicles are entering or exiting the site at points other than the construction access(es),
 BMP C103: High-Visibility Fence shall be installed to control traffic.

• Upon project completion and site stabilization, all construction accesses intended as per-

manent access for maintenance shall be permanently stabilized.

Figure II-3.1: Stabilized Construction Access

Approved as Functionally Equivalent

Ecology has approved products as able to meet the requirements of this BMP. The products did not pass through the Technology Assessment Protocol – Ecology (TAPE) process. Local jurisdictions may choose not to accept these products, or may require additional testing prior to consideration for local use. Products that Ecology has approved as functionally equivalent are available for review on Ecology's website at:

https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Stormwater-permittee-guidance-resources/Emerging-stormwater-treatment-technologies

BMP C106: Wheel Wash

Purpose

Wheel washes reduce the amount of sediment transported onto paved roads by washing dirt from the wheels of motor vehicles prior to the motor vehicles leaving the construction site.

Conditions of Use

- Use a wheel wash when <u>BMP C105</u>: <u>Stabilized Construction Access</u> is not preventing sediment from being tracked off site.
- Wheel washing is generally an effective BMP when installed with careful attention to topography. For example, a wheel wash can be detrimental if installed at the top of a slope abutting a right-of-way where the water from the dripping truck can run unimpeded into the street.
- Pressure washing combined with an adequately sized and surfaced pad with direct drainage to a large 10-foot x 10-foot sump can be very effective.
- Wheel wash wastewater is not stormwater. It is commonly called process water, and must be
 discharged to a separate on-site treatment system that prevents discharge to waters of the
 State, or to the sanitary sewer with local sewer district approval.
- Wheel washes may use closed-loop recirculation systems to conserve water use.
- Wheel wash wastewater shall not include wastewater from concrete washout areas.
- When practical, the wheel wash should be placed in sequence with <u>BMP C105</u>: <u>Stabilized Construction Access</u>. Locate the wheel wash such that vehicles exiting the wheel wash will enter directly onto <u>BMP C105</u>: <u>Stabilized Construction Access</u>. In order to achieve this, <u>BMP C105</u>: <u>Stabilized Construction Access</u> may need to be extended beyond the standard installation to meet the exit of the wheel wash.

Design and Installation Specifications

Suggested details are shown in <u>Figure II-3.2</u>: <u>Wheel Wash</u>. The Local Permitting Authority may allow other designs. A minimum of 6 inches of asphalt treated base (ATB) over crushed base material or 8 inches over a good subgrade is recommended to pave the wheel wash.

Use a low clearance truck to test the wheel wash before paving. Either a belly dump or lowboy will work well to test clearance.

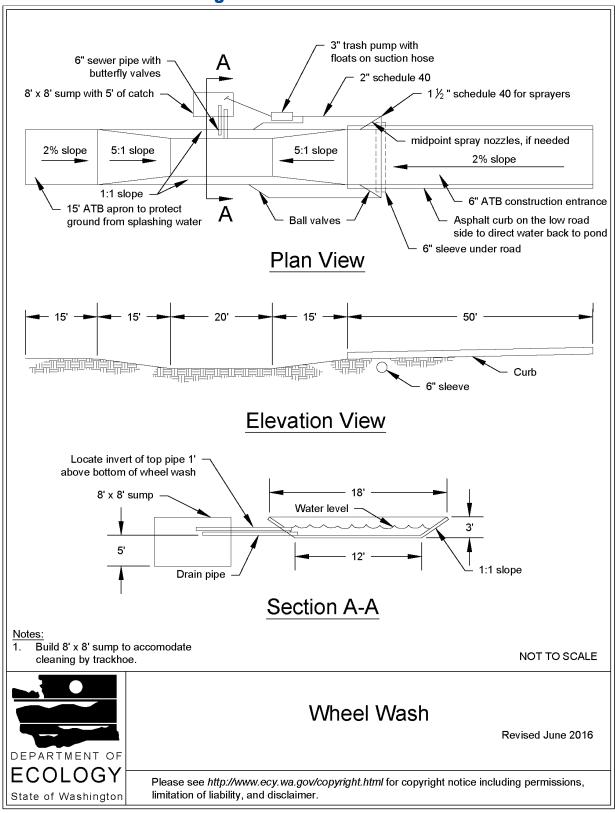
Keep the water level from 12 to 14 inches deep to avoid damage to truck hubs and filling the truck tongues with water.

Midpoint spray nozzles are only needed in extremely muddy conditions.

Wheel wash systems should be designed with a small grade change, 6- to 12-inches for a 10-foot-wide pond, to allow sediment to flow to the low side of pond to help prevent re-suspension of sediment. A drainpipe with a 2- to 3-foot riser should be installed on the low side of the pond to allow for easy cleaning and refilling. Polymers may be used to promote coagulation and flocculation in a closed-loop system. Polyacrylamide (PAM) added to the wheel wash water at a rate of 0.25 - 0.5 pounds per 1,000 gallons of water increases effectiveness and reduces cleanup time. If PAM is already being used for dust or erosion control and is being applied by a water truck, the same truck can be used to change the wash water.

Maintenance Standards

The wheel wash should start out each day with fresh water.


The wheel wash water should be changed a minimum of once per day. On large earthwork jobs where more than 10-20 trucks per hour are expected, the wheel wash water will need to be changed more often.

Approved as Functionally Equivalent

Ecology has approved products as able to meet the requirements of this BMP. The products did not pass through the Technology Assessment Protocol – Ecology (TAPE) process. Local jurisdictions may choose not to accept these products, or may require additional testing prior to consideration for local use. Products that Ecology has approved as functionally equivalent are available for review on Ecology's website at:

https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Stormwater-permittee-guidance-resources/Emerging-stormwater-treatment-technologies

Figure II-3.2: Wheel Wash

BMP C107: Construction Road / Parking Area Stabilization

Purpose

Stabilizing roads, parking areas, and other on-site vehicle transportation routes immediately after grading reduces erosion caused by construction traffic or stormwater runoff.

Conditions of Use

Roads and parking areas shall be stabilized wherever they are constructed, whether permanent or temporary, for use by construction traffic.

<u>BMP C103: High-Visibility Fence</u> shall be installed, if necessary, to limit the access of vehicles to only those roads and parking areas that are stabilized.

Design and Installation Specifications

- On areas that will receive asphalt as part of the project, install the first lift as soon as possible.
- A 6-inch depth of 2- to 4-inch crushed rock, gravel base, or crushed surfacing base course shall be applied immediately after grading or utility installation. A 4-inch course of asphalt treated base (ATB) may also be used, or the road/parking area may be paved. It may also be possible to use cement or calcium chloride for soil stabilization. If cement or cement kiln dust is used for roadbase stabilization, pH monitoring and BMP C252: Treating and Disposing of High pH Water is necessary to evaluate and minimize the effects on stormwater. If the area will not be used for permanent roads, parking areas, or structures, a 6-inch depth of hog fuel may also be used, but this is likely to require more maintenance. Whenever possible, construction roads and parking areas shall be placed on a firm, compacted subgrade.
- Temporary road gradients shall not exceed 15 percent. Roadways shall be carefully graded to drain. Drainage ditches shall be provided on each side of the roadway in the case of a crowned section, or on one side in the case of a super-elevated section. Drainage ditches shall be directed to a sediment control BMP.
- Rather than relying on ditches, it may also be possible to grade the road so that runoff sheet-flows into a heavily vegetated area with a well-developed topsoil. Landscaped areas are not adequate. If this area has at least 50 feet of vegetation that water can flow through, then it is generally preferable to use the vegetation to treat runoff, rather than a sediment pond or trap. The 50 feet shall not include wetlands or their buffers. If runoff is allowed to sheetflow through adjacent vegetated areas, it is vital to design the roadways and parking areas so that no concentrated runoff is created.
- Storm drain inlets shall be protected to prevent sediment-laden water entering the drainage system (see BMP C220: Inlet Protection).

Maintenance Standards

Inspect stabilized areas regularly, especially after large storm events.

Crushed rock, gravel base, etc., shall be added as required to maintain a stable driving surface and to stabilize any areas that have eroded.

Following construction, these areas shall be restored to pre-construction condition or better to prevent future erosion.

Perform street cleaning at the end of each day or more often if necessary.

BMP C120: Temporary and Permanent Seeding

Purpose

Seeding reduces erosion by stabilizing exposed soils. A well-established vegetative cover is one of the most effective methods of reducing erosion.

Conditions of Use

Use seeding throughout the project on disturbed areas that have reached final grade or that will remain unworked for more than 30 days.

The optimum seeding windows for western Washington are April 1 through June 30 and September 1 through October 1.

Between July 1 and August 30 seeding requires irrigation until 75 percent grass cover is established.

Between October 1 and March 30 seeding requires a cover of mulch or an erosion control blanket until 75 percent grass cover is established.

Review all disturbed areas in late August to early September and complete all seeding by the end of September. Otherwise, vegetation will not establish itself enough to provide more than average protection.

Mulch is required at all times for seeding because it protects seeds from heat, moisture loss, and transport due to runoff. Mulch can be applied on top of the seed or simultaneously by hydroseeding. See BMP C121: Mulching for specifications.

Seed and mulch all disturbed areas not otherwise vegetated at final site stabilization. Final stabilization means the completion of all soil disturbing activities at the site and the establishment of a permanent vegetative cover, or equivalent permanent stabilization measures (such as pavement, riprap, gabions, or geotextiles) which will prevent erosion. See BMP T5.13: Post-Construction Soil Quality and Depth.

Design and Installation Specifications

General

Install channels intended for vegetation before starting major earthwork and hydroseed with a
Bonded Fiber Matrix. For vegetated channels that will have high flows, install erosion control
blankets over the top of hydroseed. Before allowing water to flow in vegetated channels,
establish 75 percent vegetation cover. If vegetated channels cannot be established by seed

before water flow; install sod in the channel bottom — over top of hydromulch and erosion control blankets.

- Confirm the installation of all required surface water control measures to prevent seed from washing away.
- Hydroseed applications shall include a minimum of 1,500 pounds per acre of mulch with 3 percent tackifier. See BMP C121: Mulching for specifications.
- Areas that will have seeding only and not landscaping may need compost or meal-based mulch included in the hydroseed in order to establish vegetation. Re-install native topsoil on the disturbed soil surface before application. See <u>BMP T5.13</u>: <u>Post-Construction Soil Quality</u> and <u>Depth</u>.
- When installing seed via hydroseeding operations, only about 1/3 of the seed actually ends up
 in contact with the soil surface. This reduces the ability to establish a good stand of grass
 quickly. To overcome this, consider increasing seed quantities by up to 50 percent.
- Enhance vegetation establishment by dividing the hydromulch operation into two phases:
 - Phase 1- Install all seed and fertilizer with 25-30 percent mulch and tackifier onto soil in the first lift.
 - o Phase 2- Install the rest of the mulch and tackifier over the first lift.

Or, enhance vegetation by:

- Installing the mulch, seed, fertilizer, and tackifier in one lift.
- Spread or blow straw over the top of the hydromulch at a rate of 800-1000 pounds per acre.
- Hold straw in place with a standard tackifier.

Both of these approaches will increase cost moderately but will greatly improve and enhance vegetative establishment. The increased cost may be offset by the reduced need for:

- Irrigation.
- Reapplication of mulch.
- Repair of failed slope surfaces.

This technique works with standard hydromulch (1,500 pounds per acre minimum) and Bonded Fiber Matrix/ Mechanically Bonded Fiber Matrix (BFM/MBFMs) (3,000 pounds per acre minimum).

- · Seed may be installed by hand if:
 - Temporary and covered by straw, mulch, or topsoil.
 - Permanent in small areas (usually less than 1 acre) and covered with mulch, topsoil, or erosion blankets.
- The seed mixes listed in Table II-3.4: Temporary and Permanent Seed Mixes include

recommended mixes for both temporary and permanent seeding.

- Apply these mixes, with the exception of the wet area seed mix, at a rate of 120 pounds per acre. This rate can be reduced if soil amendments or slow-release fertilizers are used. Apply the wet area seed mix at a rate of 60 pounds per acre.
- Consult the local suppliers or the local conservation district for their recommendations. The
 appropriate mix depends on a variety of factors, including location, exposure, soil type, slope,
 and expected foot traffic. Alternative seed mixes approved by the local authority may be used,
 depending on the soil type and hydrology of the area.

Table II-3.4: Temporary and Permanent Seed Mixes

Table II-3.4: Temporary and Permanent Seed Mixes					
Common Name	Latin Name	% Weight	% Purity	% Germination	
	Temporary Erosion Control Seed Mix				
	A standard mix for ar	eas requiring a tempor	rary vegetative cover.		
Chewings or annual blue grass	Festuca rubra var. commutata or Poa anna	40	98	90	
Perennial rye	Lolium perenne	50	98	90	
Redtop or colonial bentgrass	Agrostis alba or Agrostis tenuis	5	92	85	
White dutch clover	Trifolium repens	5	98	90	
	L	andscaping Seed M	ix		
	A recomm	ended mix for landsca	aping seed.		
Perennial rye blend	Lolium perenne	70	98	90	
Chewings and red fescue blend	Festuca rubra var. commutata or Fes- tuca rubra	30	98	90	
	Low	/-Growing Turf Seed	Mix		
A turf seed mix for	r dry situations where	there is no need for wa tenance.	atering. This mix requir	es very little main-	
Dwarf tall fescue (several varieties)	Festuca arundin- acea var.	45	98	90	
Dwarf perennial rye (Barclay)	Lolium perenne var. barclay	30	98	90	
Red fescue	Festuca rubra	20	98	90	
Colonial bentgrass	Agrostis tenuis	5	98	90	
Bioswale Seed Mix					
A seed mix for bioswales and other intermittently wet areas.					
Tall or meadow fes-	Festuca arundin-	75-80	98	90	

Table II-3.4: Temporary and Permanent Seed Mixes (continued)

Common Name	Latin Name	% Weight	% Purity	% Germination
cue	acea or Festuca elatior			
Seaside/Creeping bentgrass	Agrostis palustris	10-15	92	85
Redtop bentgrass	Agrostis alba or Agrostis gigantea	5-10	90	80

Wet Area Seed Mix

A low-growing, relatively non-invasive seed mix appropriate for very wet areas that are not regulated wetlands. Consult Hydraulic Permit Authority (HPA) for seed mixes if applicable.

Tall or meadow fes- cue	Festuca arundin- acea or Festuca elatior	60-70	98	90
Seaside/Creeping bentgrass	Agrostis palustris	10-15	98	85
Meadow foxtail	Alepocurus praten- sis	10-15	90	80
Alsike clover	Trifolium hybridum	1-6	98	90
Redtop bentgrass	Agrostis alba	1-6	92	85

Meadow Seed Mix

A recommended meadow seed mix for infrequently maintained areas or non-maintained areas where colonization by native plants is desirable. Likely applications include rural road and utility right-of-way. Seeding should take place in September or very early October in order to obtain adequate establishment prior to the winter months. Consider the appropriateness of clover, a fairly invasive species, in the mix. Amending the soil can reduce the need for clover.

Redtop or Oregon bentgrass	Agrostis alba or Agrostis ore- gonensis	20	92	85
Red fescue	Festuca rubra	70	98	90
White dutch clover	Trifolium repens	10	98	90

Roughening and Rototilling

- The seedbed should be firm and rough. Roughen all soil no matter what the slope. Track walk slopes before seeding if engineering purposes require compaction. Backblading or smoothing of slopes greater than 4H:1V is not allowed if they are to be seeded.
- Restoration-based landscape practices require deeper incorporation than that provided by a simple single-pass rototilling treatment. Wherever practical, initially rip the subgrade to improve long-term permeability, infiltration, and water inflow qualities. At a minimum,

permanent areas shall use soil amendments to achieve organic matter and permeability performance defined in engineered soil/landscape systems. For systems that are deeper than 8 inches complete the rototilling process in multiple lifts, or prepare the engineered soil system per specifications and place to achieve the specified depth.

Fertilizers

- Conducting soil tests to determine the exact type and quantity of fertilizer is recommended. This will prevent the over-application of fertilizer.
- Organic matter is the most appropriate form of fertilizer because it provides nutrients (including nitrogen, phosphorus, and potassium) in the least water-soluble form.
- In general, use 10-4-6 N-P-K (nitrogen-phosphorus-potassium) fertilizer at a rate of 90 pounds per acre. Always use slow-release fertilizers because they are more efficient and have fewer environmental impacts. Do not add fertilizer to the hydromulch machine, or agitate, more than 20 minutes before use. Too much agitation destroys the slow-release coating.
- There are numerous products available that take the place of chemical fertilizers. These
 include several with seaweed extracts that are beneficial to soil microbes and organisms. If
 100 percent cottonseed meal is used as the mulch in hydroseed, chemical fertilizer may not be
 necessary. Cottonseed meal provides a good source of long-term, slow-release, available
 nitrogen.

Bonded Fiber Matrix and Mechanically Bonded Fiber Matrix

- On steep slopes use Bonded Fiber Matrix (BFM) or Mechanically Bonded Fiber Matrix (MBFM) products. Apply BFM/MBFM products at a minimum rate of 3,000 pounds per acre with approximately 10 percent tackifier. Achieve a minimum of 95 percent soil coverage during application. Numerous products are available commercially. Most products require 24-36 hours to cure before rainfall and cannot be installed on wet or saturated soils. Generally, products come in 40-50 pound bags and include all necessary ingredients except for seed and fertilizer.
- Install products per manufacturer's instructions.
- BFMs and MBFMs provide good alternatives to blankets in most areas requiring vegetation establishment. Advantages over blankets include:
 - BFM and MBFMs do not require surface preparation.
 - Helicopters can assist in installing BFM and MBFMs in remote areas.
 - On slopes steeper than 2.5H:1V, blanket installers may require ropes and harnesses for safety.
 - Installing BFM and MBFMs can save at least \$1,000 per acre compared to blankets.

BMP C123: Plastic Covering

Purpose

Plastic covering provides immediate, short-term erosion protection to slopes and disturbed areas.

Conditions of Use

Plastic covering may be used on disturbed areas that require cover measures for less than 30 days, except as stated below.

- Plastic is particularly useful for protecting cut and fill slopes and stockpiles. However, the relatively rapid breakdown of most polyethylene sheeting makes it unsuitable for applications greater than six months.
- Due to rapid runoff caused by plastic covering, do not use this method upslope of areas that
 might be adversely impacted by concentrated runoff. Such areas include steep and/or
 unstable slopes.
- Plastic sheeting may result in increased runoff volumes and velocities, requiring additional onsite measures to counteract the increases. Creating a trough with wattles or other material can convey clean water away from these areas.
- To prevent undercutting, trench and backfill rolled plastic covering products.
- Although the plastic material is inexpensive to purchase, the cost of installation, maintenance, removal, and disposal add to the total costs of this BMP.
- Whenever plastic is used to protect slopes, install water collection measures at the base of the slope. These measures include plastic-covered berms, channels, and pipes used to convey clean rainwater away from bare soil and disturbed areas. Do not mix clean runoff from a plastic covered slope with dirty runoff from a project.
- · Other uses for plastic include:
 - Temporary ditch liner.
 - Pond liner in temporary sediment pond.
 - Liner for bermed temporary fuel storage area if plastic is not reactive to the type of fuel being stored.
 - Emergency slope protection during heavy rains.
 - Temporary drainpipe ("elephant trunk") used to direct water.

Design and Installation Specifications

- Plastic slope cover must be installed as follows:
 - 1. Run plastic up and down the slope, not across the slope.
 - 2. Plastic may be installed perpendicular to a slope if the slope length is less than 10 feet.

- 3. Provide a minimum of 8-inch overlap at the seams.
- 4. On long or wide slopes, or slopes subject to wind, tape all seams.
- 5. Place plastic into a small (12-inch wide by 6-inch deep) slot trench at the top of the slope and backfill with soil to keep water from flowing underneath.
- 6. Place sand filled burlap or geotextile bags every 3 to 6 feet along seams and tie them together with twine to hold them in place.
- 7. Inspect plastic for rips, tears, and open seams regularly and repair immediately. This prevents high velocity runoff from contacting bare soil, which causes extreme erosion.
- 8. Sandbags may be lowered into place tied to ropes. However, all sandbags must be staked in place.
- Plastic sheeting shall have a minimum thickness of 0.06 millimeters.
- If erosion at the toe of a slope is likely, a gravel berm, riprap, or other suitable protection shall be installed at the toe of the slope in order to reduce the velocity of runoff.

Maintenance Standards

- Torn sheets must be replaced and open seams repaired.
- Completely remove and replace the plastic if it begins to deteriorate due to ultraviolet radiation.
- Completely remove plastic when no longer needed.
- Dispose of old tires used to weight down plastic sheeting appropriately.

Approved as Functionally Equivalent

Ecology has approved products as able to meet the requirements of this BMP. The products did not pass through the Technology Assessment Protocol – Ecology (TAPE) process. Local jurisdictions may choose not to accept these products, or may require additional testing prior to consideration for local use. Products that Ecology has approved as functionally equivalent are available for review on Ecology's website at:

https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Stormwater-permittee-guidance-resources/Emerging-stormwater-treatment-technologies

BMP C124: Sodding

Purpose

The purpose of sodding is to establish turf for immediate erosion protection and to stabilize drainage paths where concentrated overland flow will occur.

Conditions of Use

Sodding may be used in the following areas:

- Disturbed areas that require short-term or long-term cover.
- Disturbed areas that require immediate vegetative cover.
- All waterways that require vegetative lining. Waterways may also be seeded rather than sodded, and protected with a net or blanket.

Design and Installation Specifications

Sod shall be free of weeds, of uniform thickness (approximately 1-inch thick), and shall have a dense root mat for mechanical strength.

The following steps are recommended for sod installation:

- Shape and smooth the surface to final grade in accordance with the approved grading plan.
 Consider any areas (such as swales) that need to be overexcavated below design elevation to allow room for placing soil amendment and sod.
- Amend 4 inches (minimum) of compost into the top 8 inches of the soil if the organic content of
 the soil is less than ten percent or the permeability is less than 0.6 inches per hour. See
 https://ecology.wa.gov/Waste-Toxics/Reducing-recycling-waste/Organic-mater-ials/Managing-organics-compost for further information.
- 3. Fertilize according to the sod supplier's recommendations.
- 4. Work lime and fertilizer 1 to 2 inches into the soil, and smooth the surface.
- 5. Lay strips of sod beginning at the lowest area to be sodded and perpendicular to the direction of water flow. Wedge strips securely into place. Square the ends of each strip to provide for a close, tight fit. Stagger joints at least 12 inches. Staple on slopes steeper than 3H:1V. Staple the upstream edge of each sod strip.
- Roll the sodded area and irrigate.
- 7. When sodding is carried out in alternating strips or other patterns, seed the areas between the sod immediately after sodding.

Maintenance Standards

If the grass is unhealthy, the cause shall be determined and appropriate action taken to reestablish a healthy groundcover. If it is impossible to establish a healthy groundcover due to frequent saturation, instability, or some other cause, the sod shall be removed, the area seeded with an appropriate mix, and protected with a net or blanket.

BMP C140: Dust Control

Purpose

Dust control prevents wind transport of dust from disturbed soil surfaces onto roadways, drainage ways, and surface waters.

Conditions of Use

Use dust control in areas (including roadways) subject to surface and air movement of dust where on-site or off-site impacts to roadways, drainage ways, or surface waters are likely.

Design and Installation Specifications

- Vegetate or mulch areas that will not receive vehicle traffic. In areas where planting, mulching, or paving is impractical, apply gravel or landscaping rock.
- Limit dust generation by clearing only those areas where immediate activity will take place, leaving the remaining area(s) in the original condition. Maintain the original ground cover as long as practical.
- Construct natural or artificial windbreaks or windscreens. These may be designed as enclosures for small dust sources.
- Sprinkle the site with water until the surface is wet. Repeat as needed. To prevent carryout of mud onto the street, refer to <u>BMP C105</u>: <u>Stabilized Construction Access</u> and <u>BMP C106</u>: <u>Wheel Wash</u>.
- Irrigation water can be used for dust control. Irrigation systems should be installed as a first step on sites where dust control is a concern.
- Spray exposed soil areas with a dust palliative, following the manufacturer's instructions and cautions regarding handling and application. Used oil is prohibited from use as a dust suppressant. Local governments may approve other dust palliatives such as calcium chloride or PAM.
- PAM (<u>BMP C126: Polyacrylamide (PAM)</u> for Soil Erosion Protection) added to water at a rate of 0.5 pounds per 1,000 gallons of water per acre and applied from a water truck is more effective than water alone. This is due to increased infiltration of water into the soil and reduced evaporation. In addition, small soil particles are bonded together and are not as easily transported by wind. Adding PAM may reduce the quantity of water needed for dust control. Note that the application rate specified here applies to this BMP, and is not the same application rate that is specified in <u>BMP C126: Polyacrylamide (PAM)</u> for Soil Erosion Protection, but the downstream protections still apply.

Refer to <u>BMP C126: Polyacrylamide (PAM) for Soil Erosion Protection</u> for conditions of use. PAM shall not be directly applied to water or allowed to enter a water body.

 Contact your local Air Pollution Control Authority for guidance and training on other dust control measures. Compliance with the local Air Pollution Control Authority constitutes compliance with this BMP.

- Use vacuum street sweepers.
- Remove mud and other dirt promptly so it does not dry and then turn into dust.
- Techniques that can be used for unpaved roads and lots include:
 - Lower speed limits. High vehicle speed increases the amount of dust stirred up from unpaved roads and lots.
 - Upgrade the road surface strength by improving particle size, shape, and mineral types that make up the surface and base materials.
 - Add surface gravel to reduce the source of dust emission. Limit the amount of fine particles (those smaller than .075 mm) to 10 to 20 percent.
 - Use geotextile fabrics to increase the strength of new roads or roads undergoing reconstruction.
 - Encourage the use of alternate, paved routes, if available.
 - Apply chemical dust suppressants using the admix method, blending the product with the top few inches of surface material. Suppressants may also be applied as surface treatments.
 - Limit dust-causing work on windy days.
 - o Pave unpaved permanent roads and other trafficked areas.

Maintenance Standards

Respray area as necessary to keep dust to a minimum.

BMP C150: Materials on Hand

Purpose

Keep quantities of erosion prevention and sediment control materials on the project site at all times to be used for regular maintenance and emergency situations such as unexpected heavy rains. Having these materials on-site reduces the time needed to replace existing or implement new BMPs when inspections indicate that existing BMPs are not meeting the Construction SWPPP requirements. In addition, contractors can save money by buying some materials in bulk and storing them at their office or yard.

Conditions of Use

Construction projects of any size or type can benefit from having materials on hand. A small
commercial development project could have a roll of plastic and some gravel available for
immediate protection of bare soil and temporary berm construction. A large earthwork project,
such as highway construction, might have several tons of straw, several rolls of plastic, flexible

pipe, sandbags, geotextile fabric and steel "T" posts.

- Materials should be stockpiled and readily available before any site clearing, grubbing, or earthwork begins. A large contractor or project proponent could keep a stockpile of materials that are available for use on several projects.
- If storage space at the project site is at a premium, the contractor could maintain the materials at their office or yard. The office or yard must be less than an hour from the project site.

Design and Installation Specifications

Depending on project type, size, complexity, and length, materials and quantities will vary. A good minimum list of items that will cover numerous situations includes:

- · Clear Plastic, 6 mil
- Drainpipe, 6 or 8 inch diameter
- Sandbags, filled
- Straw Bales for mulching
- Quarry Spalls
- · Washed Gravel
- · Geotextile Fabric
- · Catch Basin Inserts
- · Steel "T" Posts
- · Silt fence material
- Straw Wattles

Maintenance Standards

- All materials with the exception of the quarry spalls, steel "T" posts, and gravel should be kept covered and out of both sun and rain.
- Re-stock materials as needed.

BMP C151: Concrete Handling

Purpose

Concrete work can generate process water and slurry that contain fine particles and high pH, both of which can violate water quality standards in the receiving water. Concrete spillage or concrete discharge to waters of the State is prohibited. Use this BMP to minimize and eliminate concrete, concrete process water, and concrete slurry from entering waters of the State.

Conditions of Use

Any time concrete is used, utilize these management practices. Concrete construction project components include, but are not limited to:

- Curbs
- Sidewalks
- Roads
- Bridges
- Foundations
- Floors
- Runways

Disposal options for concrete, in order of preference are:

- 1. Off-site disposal
- 2. Concrete wash-out areas (see BMP C154: Concrete Washout Area)
- 3. De minimus washout to formed areas awaiting concrete

Design and Installation Specifications

- Wash concrete truck drums at an approved off-site location or in designated concrete
 washout areas only. Do not wash out concrete trucks onto the ground (including formed areas
 awaiting concrete), or into storm drains, open ditches, streets, or streams. Refer to BMP
 C154: Concrete Washout Area for information on concrete washout areas.
 - Return unused concrete remaining in the truck and pump to the originating batch plant for recycling. Do not dump excess concrete on site, except in designated concrete washout areas as allowed in BMP C154: Concrete Washout Area.
- Wash small concrete handling equipment (e.g. hand tools, screeds, shovels, rakes, floats, trowels, and wheelbarrows) into designated concrete washout areas or into formed areas awaiting concrete pour.
- At no time shall concrete be washed off into the footprint of an area where an infiltration feature will be installed.
- Wash equipment difficult to move, such as concrete paving machines, in areas that do not directly drain to natural or constructed stormwater conveyance or potential infiltration areas.
- Do not allow washwater from areas, such as concrete aggregate driveways, to drain directly (without detention or treatment) to natural or constructed stormwater conveyances.
- Contain washwater and leftover product in a lined container when no designated concrete
 washout areas (or formed areas, allowed as described above) are available. Dispose of contained concrete and concrete washwater (process water) properly.

- Always use forms or solid barriers for concrete pours, such as pilings, within 15-feet of surface waters.
- Refer to <u>BMP C252: Treating and Disposing of High pH Water</u> for pH adjustment requirements.
- Refer to the Construction Stormwater General Permit (CSWGP) for pH monitoring requirements if the project involves one of the following activities:
 - Significant concrete work (as defined in the CSWGP).
 - The use of soils amended with (but not limited to) Portland cement-treated base, cement kiln dust or fly ash.
 - Discharging stormwater to segments of water bodies on the 303(d) list (Category 5) for high pH.

Maintenance Standards

Check containers for holes in the liner daily during concrete pours and repair the same day.

BMP C152: Sawcutting and Surfacing Pollution Prevention

Purpose

Sawcutting and surfacing operations generate slurry and process water that contains fine particles and high pH (concrete cutting), both of which can violate the water quality standards in the receiving water. Concrete spillage or concrete discharge to waters of the State is prohibited. Use this BMP to minimize and eliminate process water and slurry created through sawcutting or surfacing from entering waters of the State.

Conditions of Use

Utilize these management practices anytime sawcutting or surfacing operations take place. Sawcutting and surfacing operations include, but are not limited to:

- Sawing
- Coring
- Grinding
- Roughening
- Hydro-demolition
- · Bridge and road surfacing

Design and Installation Specifications

- Vacuum slurry and cuttings during cutting and surfacing operations.
- Slurry and cuttings shall not remain on permanent concrete or asphalt pavement overnight.
- Slurry and cuttings shall not drain to any natural or constructed drainage conveyance including stormwater systems. This may require temporarily blocking catch basins.
- Dispose of collected slurry and cuttings in a manner that does not violate ground water or surface water quality standards.
- Do not allow process water generated during hydro-demolition, surface roughening or similar
 operations to drain to any natural or constructed drainage conveyance including stormwater
 systems. Dispose of process water in a manner that does not violate ground water or surface
 water quality standards.
- Handle and dispose of cleaning waste material and demolition debris in a manner that does
 not cause contamination of water. Dispose of sweeping material from a pick-up sweeper at an
 appropriate disposal site.

Maintenance Standards

Continually monitor operations to determine whether slurry, cuttings, or process water could enter waters of the state. If inspections show that a violation of water quality standards could occur, stop operations and immediately implement preventive measures such as berms, barriers, secondary containment, and/or vacuum trucks.

BMP C153: Material Delivery, Storage, and Containment

Purpose

Prevent, reduce, or eliminate the discharge of pollutants to the stormwater system or watercourses from material delivery and storage. Minimize the storage of hazardous materials on-site, store materials in a designated area, and install secondary containment.

Conditions of Use

Use at construction sites with delivery and storage of the following materials:

- Petroleum products such as fuel, oil and grease
- Soil stabilizers and binders (e.g., Polyacrylamide)
- · Fertilizers, pesticides and herbicides
- Detergents
- Asphalt and concrete compounds

- · Hazardous chemicals such as acids, lime, adhesives, paints, solvents, and curing compounds
- Any other material that may be detrimental if released to the environment

Design and Installation Specifications

- The temporary storage area should be located away from vehicular traffic, near the construction entrance(s), and away from waterways or storm drains.
- Safety Data Sheets (SDS) should be supplied for all materials stored. Chemicals should be kept in their original labeled containers.
- Hazardous material storage on-site should be minimized.
- Hazardous materials should be handled as infrequently as possible.
- During the wet weather season (Oct 1 April 30), consider storing materials in a covered area.
- Materials should be stored in secondary containments, such as an earthen dike, horse trough, or even a children's wading pool for non-reactive materials such as detergents, oil, grease, and paints. Small amounts of material may be secondarily contained in "bus boy" trays or concrete mixing trays.
- Do not store chemicals, drums, or bagged materials directly on the ground. Place these items on a pallet and, when possible, within secondary containment.
- If drums must be kept uncovered, store them at a slight angle to reduce ponding of rainwater on the lids to reduce corrosion. Domed plastic covers are inexpensive and snap to the top of drums, preventing water from collecting.
- Liquids, petroleum products, and substances listed in 40 CFR Parts 110, 117, or 302 shall be stored in approved containers and drums and shall not be overfilled. Containers and drums shall be stored in temporary secondary containment facilities.
- Temporary secondary containment facilities shall provide for a spill containment volume able to contain 10% of the total enclosed container volume of all containers, or 110% of the capacity of the largest container within its boundary, whichever is greater.
- Secondary containment facilities shall be impervious to the materials stored therein for a minimum contact time of 72 hours.
- Sufficient separation should be provided between stored containers to allow for spill cleanup and emergency response access.
- During the wet weather season (Oct 1 April 30), each secondary containment facility shall be covered during non-working days, prior to and during rain events.
- Keep material storage areas clean, organized and equipped with an ample supply of appropriate spill clean-up material (spill kit).
- The spill kit should include, at a minimum:

- 1-Water Resistant Nylon Bag
- 3-Oil Absorbent Socks 3"x 4"
- 2-Oil Absorbent Socks 3"x 10"
- 12-Oil Absorbent Pads 17"x19"
- 1-Pair Splash Resistant Goggles
- 3-Pair Nitrile Gloves
- 10-Disposable Bags with Ties
- Instructions

Maintenance Standards

- Secondary containment facilities shall be maintained free of accumulated rainwater and spills.
 In the event of spills or leaks, accumulated rainwater and spills shall be collected and placed into drums. These liquids shall be handled as hazardous waste unless testing determines them to be non-hazardous.
- Re-stock spill kit materials as needed.

BMP C154: Concrete Washout Area

Purpose

Prevent or reduce the discharge of pollutants from concrete waste to stormwater by conducting washout off-site, or performing on-site washout in a designated area.

Conditions of Use

Concrete washout areas are implemented on construction projects where:

- · Concrete is used as a construction material
- It is not possible to dispose of all concrete wastewater and washout off-site (ready mix plant, etc.).
- Concrete truck drums are washed on-site.

Note that auxiliary concrete truck components (e.g. chutes and hoses) and small concrete handling equipment (e.g. hand tools, screeds, shovels, rakes, floats, trowels, and wheelbarrows) may be washed into formed areas awaiting concrete pour.

At no time shall concrete be washed off into the footprint of an area where an infiltration feature will be installed.

Design and Installation Specifications

Implementation

- Perform washout of concrete truck drums at an approved off-site location or in designated concrete washout areas only.
- Do not wash out concrete onto non-formed areas, or into storm drains, open ditches, streets, or streams.
- Wash equipment difficult to move, such as concrete paving machines, in areas that do not directly drain to natural or constructed stormwater conveyance or potential infiltration areas.
- Do not allow excess concrete to be dumped on-site, except in designated concrete washout areas as allowed above.
- Concrete washout areas may be prefabricated concrete washout containers, or self-installed structures (above-grade or below-grade).
- Prefabricated containers are most resistant to damage and protect against spills and leaks.
 Companies may offer delivery service and provide regular maintenance and disposal of solid and liquid waste.
- If self-installed concrete washout areas are used, below-grade structures are preferred over above-grade structures because they are less prone to spills and leaks.
- Self-installed above-grade structures should only be used if excavation is not practical.
- Concrete washout areas shall be constructed and maintained in sufficient quantity and size to contain all liquid and concrete waste generated by washout operations.

Education

- Discuss the concrete management techniques described in this BMP with the ready-mix concrete supplier before any deliveries are made.
- Educate employees and subcontractors on the concrete waste management techniques described in this BMP.
- Arrange for the contractor's superintendent or Certified Erosion and Sediment Control Lead (CESCL) to oversee and enforce concrete waste management procedures.
- A sign should be installed adjacent to each concrete washout area to inform concrete equipment operators to utilize the proper facilities.

Contracts

Incorporate requirements for concrete waste management into concrete supplier and subcontractor agreements.

Location and Placement

- Locate concrete washout areas at least 50 feet from sensitive areas such as storm drains, open ditches, water bodies, or wetlands.
- Allow convenient access to the concrete washout area for concrete trucks, preferably near the area where the concrete is being poured.
- If trucks need to leave a paved area to access the concrete washout area, prevent track-out
 with a pad of rock or quarry spalls (see <u>BMP C105: Stabilized Construction Access</u>). These
 areas should be far enough away from other construction traffic to reduce the likelihood of accidental damage and spills.
- The number of concrete washout areas you install should depend on the expected demand for storage capacity.
- On large sites with extensive concrete work, concrete washout areas should be placed in multiple locations for ease of use by concrete truck drivers.

Concrete Truck Washout Procedures

- Washout of concrete truck drums shall be performed in designated concrete washout areas only.
- Concrete washout from concrete pumper bins can be washed into concrete pumper trucks and discharged into designated concrete washout areas or properly disposed of off-site.

Concrete Washout Area Installation

- Concrete washout areas should be constructed as shown in the figures below, with a recommended minimum length and minimum width of 10 ft, but with sufficient quantity and volume to contain all liquid and concrete waste generated by washout operations.
- Plastic lining material should be a minimum of 10 mil polyethylene sheeting and should be free
 of holes, tears, or other defects that compromise the impermeability of the material.
- Lath and flagging should be commercial type.
- Liner seams shall be installed in accordance with manufacturers' recommendations.
- Soil base shall be prepared free of rocks or other debris that may cause tears or holes in the plastic lining material.

Maintenance Standards

Inspection and Maintenance

- Inspect and verify that concrete washout areas are in place prior to the commencement of concrete work.
- Once concrete wastes are washed into the designated washout area and allowed to harden.

the concrete should be broken up, removed, and disposed of per applicable solid waste regulations. Dispose of hardened concrete on a regular basis.

- During periods of concrete work, inspect the concrete washout areas daily to verify continued performance.
 - Check overall condition and performance.
 - Check remaining capacity (% full).
 - If using self-installed concrete washout areas, verify plastic liners are intact and sidewalls are not damaged.
 - If using prefabricated containers, check for leaks.
- Maintain the concrete washout areas to provide adequate holding capacity with a minimum freeboard of 12 inches.
- Concrete washout areas must be cleaned, or new concrete washout areas must be constructed and ready for use once the concrete washout area is 75% full.
- If the concrete washout area is nearing capacity, vacuum and dispose of the waste material in an approved manner.
 - Do not discharge liquid or slurry to waterways, storm drains or directly onto ground.
 - Do not discharge to the sanitary sewer without local approval.
 - Place a secure, non-collapsing, non-water collecting cover over the concrete washout area prior to predicted wet weather to prevent accumulation and overflow of precipitation.
 - Remove and dispose of hardened concrete and return the structure to a functional condition. Concrete may be reused on-site or hauled away for disposal or recycling.
- When you remove materials from a self-installed concrete washout area, build a new structure; or, if the previous structure is still intact, inspect for signs of weakening or damage, and make any necessary repairs. Re-line the structure with new plastic after each cleaning.

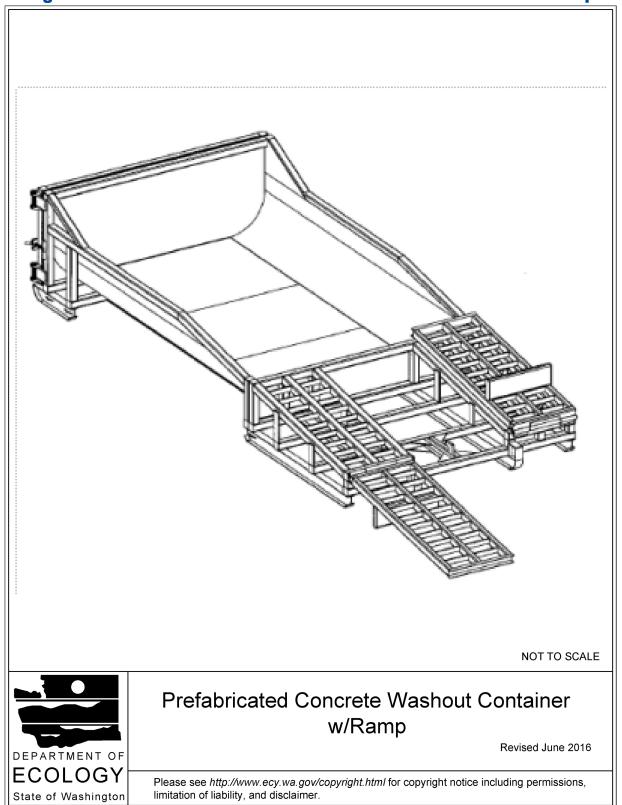
Removal of Concrete Washout Areas

- When concrete washout areas are no longer required for the work, the hardened concrete, slurries and liquids shall be removed and properly disposed of.
- Materials used to construct concrete washout areas shall be removed from the site of the work and disposed of or recycled.
- Holes, depressions or other ground disturbance caused by the removal of the concrete washout areas shall be backfilled, repaired, and stabilized to prevent erosion.

Figure II-3.7: Concrete Washout Area with Wood Planks 3m Minimum Lath and flagging on 3 sides Sandbag Sandbag 10 mil plastic lining Varies 1 m Berm **Section A-A** 10 mil plastic lining Plan Notes: Actual layout determined in the field. Type "Below Grade" A concrete washout sign shall be installed within 10 m of the temporary concrete 3m Minimum washout facility. Wood frame B **₄**B securely fastened around entire perimeter with two stakes Varies 10 mil plastic lining Stake (typ.) **Section B-B** 10 mil plastic lining Two-stacked Plan 2x12 rough wood frame Type "Above Grade" with Wood Planks NOT TO SCALE Concrete Washout Area with Wood Planks Revised June 2016 DEPARTMENT OF **ECOLOGY**

limitation of liability, and disclaimer.

State of Washington


Please see http://www.ecy.wa.gov/copyright.html for copyright notice including permissions,

Straw bale 10 mil plastic lining Binding wire Staples Native material (2 per bale) (optional) Wood or Plywood metal stakes 1200 mm x 610 mm Wood post (2 per bale) painted white (89 mm x 89 mm x 2.4 m) Lag screws -(12.5 mm) **Section B-B** CONCRETE Black letters WASHOUT 150 mm height 915 mm 915 mm 3m Minimum Concrete Washout Sign Stake (typ) Detail (or equivalent) В В 50 mm Varies 3.05 mm dia. 200 mm steel wire Staple Detail 10 mil plastic lining Notes: Straw bale Actual layout 1. (typ.) determined in the field. Plan The concrete washout sign shall be installed within 10 m of the temporary concrete washout facility. Type "Above Grade" with Straw Bales NOT TO SCALE Concrete Washout Area with Straw Bales Revised June 2016 DEPARTMENT OF **ECOLOGY** Please see http://www.ecy.wa.gov/copyright.html for copyright notice including permissions, limitation of liability, and disclaimer.

Figure II-3.8: Concrete Washout Area with Straw Bales

State of Washington

Figure II-3.9: Prefabricated Concrete Washout Container w/Ramp

BMP C160: Certified Erosion and Sediment Control Lead

Purpose

The project proponent designates at least one person as the responsible representative in charge of erosion and sediment control (ESC), and water quality protection. The designated person shall be responsible for ensuring compliance with all local, state, and federal erosion and sediment control and water quality requirements. Construction sites one acre or larger that discharge to waters of the State must designate a Certified Erosion and Sediment Control Lead (CESCL) as the responsible representative.

Conditions of Use

A CESCL shall be made available on projects one acre or larger that discharge stormwater to surface waters of the state. Sites less than one acre may have a person without CESCL certification conduct inspections.

The CESCL shall:

 Have a current certificate proving attendance in an erosion and sediment control training course that meets the minimum ESC training and certification requirements established by Ecology.

Ecology has provided the minimum requirements for CESCL course training, as well as a list of ESC training and certification providers at:

https://ecology.wa.gov/Regulations-Permits/Permits-certifications/Certified-erosion-sed-iment-control

OR

Be a Certified Professional in Erosion and Sediment Control (CPESC). For additional information go to:

http://www.envirocertintl.org/cpesc/

Specifications

- CESCL certification shall remain valid for three years.
- The CESCL shall have authority to act on behalf of the contractor or project proponent and shall be available, or on-call, 24 hours per day throughout the period of construction.
- The Construction SWPPP shall include the name, telephone number, fax number, and address of the designated CESCL. See <u>II-2 Construction Stormwater Pollution Prevention Plans</u> (Construction SWPPPs).
- A CESCL may provide inspection and compliance services for multiple construction projects in the same geographic region, but must be on site whenever earthwork activities are

occurring that could generate release of turbid water.

- Duties and responsibilities of the CESCL shall include, but are not limited to the following:
 - Maintaining a permit file on site at all times which includes the Construction SWPPP and any associated permits and plans.
 - Directing BMP installation, inspection, maintenance, modification, and removal.
 - Updating all project drawings and the Construction SWPPP with changes made.
 - Completing any sampling requirements including reporting results using electronic Discharge Monitoring Reports (WebDMR).
 - Facilitate, participate in, and take corrective actions resulting from inspections performed by outside agencies or the owner.
 - Keeping daily logs, and inspection reports. Inspection reports should include:
 - Inspection date/time.
 - Weather information; general conditions during inspection and approximate amount of precipitation since the last inspection.
 - Visual monitoring results, including a description of discharged stormwater. The presence of suspended sediment, turbid water, discoloration, and oil sheen shall be noted, as applicable.
 - Any water quality monitoring performed during inspection.
 - General comments and notes, including a brief description of any BMP repairs, maintenance or installations made as a result of the inspection.
 - A summary or list of all BMPs implemented, including observations of all erosion/sediment control structures or practices. The following shall be noted:
 - 1. Locations of BMPs inspected.
 - 2. Locations of BMPs that need maintenance.
 - 3. Locations of BMPs that failed to operate as designed or intended.
 - 4. Locations of where additional or different BMPs are required.

BMP C162: Scheduling

Purpose

Sequencing a construction project reduces the amount and duration of soil exposed to erosion by wind, rain, runoff, and vehicle tracking.

Conditions of Use

The construction sequence schedule is an orderly listing of all major land-disturbing activities together with the necessary erosion and sedimentation control measures planned for the project. This type of schedule guides the contractor on work to be done before other work is started so that serious erosion and sedimentation problems can be avoided.

Following a specified work schedule that coordinates the timing of land-disturbing activities and the installation of control measures is perhaps the most cost-effective way of controlling erosion during construction. The removal of ground cover leaves a site vulnerable to erosion. Construction sequencing that limits land clearing, provides timely installation of erosion and sedimentation controls, and restores protective cover quickly can significantly reduce the erosion potential of a site.

Design Considerations

- Minimize construction during rainy periods.
- Schedule projects to disturb only small portions of the site at any one time. Complete grading
 as soon as possible. Immediately stabilize the disturbed portion before grading the next portion. Practice staged seeding in order to revegetate cut and fill slopes as the work progresses.

II-3.3 Construction Runoff BMPs

BMP C200: Interceptor Dike and Swale

Purpose

Provide a dike of compacted soil or a swale at the top or base of a disturbed slope or along the perimeter of a disturbed construction area to convey stormwater. Use the dike and/or swale to intercept the runoff from unprotected areas and direct it to areas where erosion can be controlled. This can prevent storm runoff from entering the work area or sediment-laden runoff from leaving the construction site.

Conditions of Use

Use an interceptor dike or swale where runoff from an exposed site or disturbed slope must be conveyed to an erosion control BMP which can safely convey the stormwater.

- Locate upslope of a construction site to prevent runoff from entering the disturbed area.
- When placed horizontally across a disturbed slope, it reduces the amount and velocity of runoff flowing down the slope.
- Locate downslope to collect runoff from a disturbed area and direct it to a sediment BMP (e.g. BMP C240: Sediment Trap or BMP C241: Sediment Pond (Temporary)).

Design and Installation Specifications

- Dike and/or swale and channel must be stabilized with temporary or permanent vegetation or other channel protection during construction.
- Steep grades require channel protection and check dams.
- Review construction for areas where overtopping may occur.
- Can be used at the top of new fill before vegetation is established.
- May be used as a permanent diversion channel to carry the runoff.
- Contributing area for an individual dike or swale should be one acre or less.
- Design the dike and/or swale to contain flows calculated by one of the following methods:
 - Single Event Hydrograph Method: The peak volumetric flow rate calculated using a 10-minute time step from a Type 1A, 10-year, 24-hour frequency storm for the worst-case land cover condition.

OR

 Continuous Simulation Method: The 10-year peak flow rate, as determined by an approved continuous runoff model with a 15-minute time step for the worst-case land cover condition.

Worst-case land cover conditions (i.e., producing the most runoff) should be used for analysis (in most cases, this would be the land cover conditions just prior to final landscaping).

Interceptor Dikes

Interceptor dikes shall meet the following criteria:

- Top Width: 2 feet minimum.
- Height: 1.5 feet minimum on berm.
- Side Slope: 2H:1V or flatter.
- Grade: Depends on topography, however, dike system minimum is 0.5%, and maximum is 1%.
- Compaction: Minimum of 90 percent ASTM D698 standard proctor.
- Stabilization: Depends on velocity and reach. Inspect regularly to ensure stability.
- Ground Slopes <5%: Seed and mulch applied within 5 days of dike construction (see <u>BMP</u> C121: Mulching).
- Ground Slopes 5 40%: Dependent on runoff velocities and dike materials. Stabilization should be done immediately using either sod or riprap, or other measures to avoid erosion.
- The upslope side of the dike shall provide positive drainage to the dike outlet. No erosion shall

- occur at the outlet. Provide energy dissipation measures as necessary. Sediment-laden runoff must be released through a sediment trapping facility.
- Minimize construction traffic over temporary dikes. Use temporary cross culverts for channel crossing.
- See <u>Table II-3.8</u>: <u>Horizontal Spacing of Interceptor Dikes Along Ground Slope</u> for recommended horizontal spacing between dikes.

Table II-3.8: Horizontal Spacing of Interceptor Dikes Along Ground Slope

Average Slope	Slope Percent	Flowpath Length
20H:1V or less	3-5%	300 feet
(10 to 20)H:1V	5-10%	200 feet
(4 to 10)H:1V	10-25%	100 feet
(2 to 4)H:1V	25-50%	50 feet

Interceptor Swales

Interceptor swales shall meet the following criteria:

- Bottom Width: 2 feet minimum; the cross-section bottom shall be level.
- Depth: 1-foot minimum.
- Side Slope: 2H:1V or flatter.
- Grade: Maximum 5 percent, with positive drainage to a suitable outlet (such as <u>BMP C241</u>: Sediment Pond (Temporary)).
- Stabilization: Seed as per <u>BMP C120</u>: <u>Temporary and Permanent Seeding</u>, or <u>BMP C202</u>: <u>Riprap Channel Lining</u>, 12 inches thick riprap pressed into the bank and extending at least 8 inches vertical from the bottom.

Maintenance Standards

- Inspect diversion dikes and interceptor swales once a week and after every rainfall. Immediately remove sediment from the flow area.
- Damage caused by construction traffic or other activity must be repaired before the end of each working day.
- Check outlets and make timely repairs as needed to avoid gully formation. When the area below the temporary diversion dike is permanently stabilized, remove the dike and fill and stabilize the channel to blend with the natural surface.

BMP C207: Check Dams

Purpose

Construction of check dams across a swale or ditch reduces the velocity of concentrated flow and dissipates energy at the check dam.

Conditions of Use

Use check dams where temporary or permanent channels are not yet vegetated, channel lining is infeasible, and/or velocity checks are required.

- Check dams may not be placed in streams unless approved by the State Department of Fish and Wildlife.
- Check dams may not be placed in wetlands without approval from a permitting agency.
- Do not place check dams below the expected backwater from any salmonid bearing water between October 1 and May 31 to ensure that there is no loss of high flow refuge habitat for overwintering juvenile salmonids and emergent salmonid fry.

Design and Installation Specifications

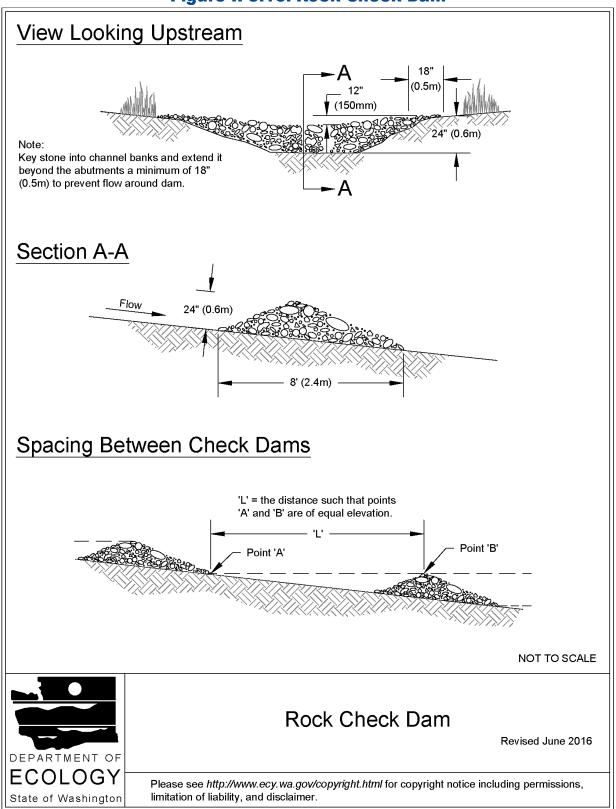
- Construct rock check dams from appropriately sized rock. The rock used must be large
 enough to stay in place given the expected design flow through the channel. The rock must be
 placed by hand or by mechanical means (do not dump the rock to form the dam) to achieve
 complete coverage of the ditch or swale and to ensure that the center of the dam is lower than
 the edges.
- Check dams may also be constructed of either rock or pea-gravel filled bags. Numerous new
 products are also available for this purpose. They tend to be re-usable, quick and easy to
 install, effective, and cost efficient.
- Place check dams perpendicular to the flow of water.
- The check dam should form a triangle when viewed from the side. This prevents undercutting as water flows over the face of the check dam rather than falling directly onto the ditch bottom.
- Before installing check dams, impound and bypass upstream water flow away from the work area. Options for bypassing include pumps, siphons, or temporary channels.
- Check dams combined with sumps work more effectively at slowing flow and retaining sediment than a check dam alone. A deep sump should be provided immediately upstream of the check dam.
- In some cases, if carefully located and designed, check dams can remain as permanent installations with very minor regrading. They may be left as either spillways, in which case accumulated sediment would be graded and seeded, or as check dams to prevent further sediment from leaving the site.
- . The maximum spacing between check dams shall be such that the downstream toe of the

upstream dam is at the same elevation as the top of the downstream dam.

- Keep the maximum height at 2 feet at the center of the check dam.
- Keep the center of the check dam at least 12 inches lower than the outer edges at natural ground elevation.
- Keep the side slopes of the check dam at 2H:1V or flatter.
- Key the stone into the ditch banks and extend it beyond the abutments a minimum of 18 inches to avoid washouts from overflow around the dam.
- Use filter fabric foundation under a rock or sand bag check dam. If a blanket ditch liner is used, filter fabric is not necessary. A piece of organic or synthetic blanket cut to fit will also work for this purpose.
- In the case of grass-lined ditches and swales, all check dams and accumulated sediment shall
 be removed when the grass has matured sufficiently to protect the ditch or swale unless the
 slope of the swale is greater than 4 percent. The area beneath the check dams shall be
 seeded and mulched immediately after dam removal.
- Ensure that channel appurtenances, such as culvert entrances below check dams, are not subject to damage or blockage from displaced stones.
- See Figure II-3.16: Rock Check Dam.

Maintenance Standards

Check dams shall be monitored for performance and sediment accumulation during and after each rainfall that produces runoff. Sediment shall be removed when it reaches one half the sump depth.


- Anticipate submergence and deposition above the check dam and erosion from high flows around the edges of the dam.
- If significant erosion occurs between dams, install a protective riprap liner in that portion of the channel. See BMP C202: Riprap Channel Lining.

Approved as Functionally Equivalent

Ecology has approved products as able to meet the requirements of this BMP. The products did not pass through the Technology Assessment Protocol – Ecology (TAPE) process. Local jurisdictions may choose not to accept these products, or may require additional testing prior to consideration for local use. Products that Ecology has approved as functionally equivalent are available for review on Ecology's website at:

https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Stormwater-permittee-guidance-resources/Emerging-stormwater-treatment-technologies

Figure II-3.16: Rock Check Dam

BMP C208: Triangular Silt Dike (TSD)

Purpose

Triangular silt dikes (TSDs) may be used as check dams, for perimeter protection, for temporary soil stockpile protection, for drop inlet protection, or as a temporary interceptor dike.

Conditions of Use

- TSDs may be used on soil or pavement with adhesive or staples.
- TSDs have been used to build temporary:
 - BMP C241: Sediment Pond (Temporary);
 - BMP C200: Interceptor Dike and Swale;
 - BMP C154: Concrete Washout Area;
 - BMP C203: Water Bars;
 - BMP C206: Level Spreader;
 - BMP C220: Inlet Protection;
 - BMP C207: Check Dams
 - o curbing; and
 - o berms.

Design and Installation Specifications

- TSDs are made of urethane foam sewn into a woven geosynthetic fabric.
- TSDs are triangular, 10 inches to 14 inches high in the center, with a 20-inch to 28-inch base.
 A 2 foot apron extends beyond both sides of the triangle along its standard section of 7 feet. A sleeve at one end allows attachment of additional sections as needed.
- Install with ends curved up to prevent water from flowing around the ends.
- The fabric flaps and check dam units are attached to the ground with wire staples. Wire staples should be No. 11 gauge wire and should be 200 mm to 300 mm in length.
- When multiple units are installed, the sleeve of fabric at the end of the unit shall overlap the abutting unit and be stapled.
- · When used as check dams:
 - TSDs should be located and installed as soon as construction will allow.
 - TSDs should be placed perpendicular to the flow of water.
 - The leading edge of the TSD must be secured with rocks, sandbags, or a small key slot

and staples.

 In the case of grass-lined ditches and swales, check dams and accumulated sediment shall be removed when the grass has matured sufficiently to protect the ditch or swale unless the slope of the swale is greater than 4 percent. The area beneath the check dams shall be seeded and mulched immediately after dam removal.

Maintenance Standards

- Inspect TSDs for performance and sediment accumulation during and after each rainfall that produces runoff. Remove sediment when it reaches one half the height of the TSD.
- Anticipate submergence and deposition above the TSD and erosion from high flows around the edges of the TSD. Immediately repair any damage or any undercutting of the TSD.

BMP C209: Outlet Protection

Purpose

Outlet protection prevents scour at conveyance outlets and minimizes the potential for downstream erosion by reducing the velocity of concentrated stormwater flows.

Conditions of Use

Use outlet protection at the outlets of all ponds, pipes, ditches, or other conveyances that discharge to a natural or manmade drainage feature such as a stream, wetland, lake, or ditch.

Design and Installation Specifications

- The receiving channel at the outlet of a pipe shall be protected from erosion by lining a minimum of 6 feet downstream and extending up the channel sides a minimum of 1–foot above the maximum tailwater elevation, or 1-foot above the crown, whichever is higher. For pipes larger than 18 inches in diameter, the outlet protection lining of the channel shall be four times the diameter of the outlet pipe.
- Standard wingwalls, tapered outlets, and paved channels should also be considered when appropriate for permanent culvert outlet protection (WSDOT, 2015).
- BMP C122: Nets and Blankets or BMP C202: Riprap Channel Lining provide suitable options for lining materials.
- With low flows, <u>BMP C201: Grass-Lined Channels</u> can be an effective alternative for lining material.
- The following guidelines shall be used for outlet protection with riprap:
 - If the discharge velocity at the outlet is less than 5 fps, use 2-inch to 8-inch riprap. Minimum thickness is 1-foot.
 - For 5 to 10 fps discharge velocity at the outlet, use 24-inch to 48-inch riprap. Minimum

thickness is 2 feet.

- For outlets at the base of steep slope pipes (pipe slope greater than 10 percent), use an engineered energy dissipator.
- Filter fabric or erosion control blankets should always be used under riprap to prevent scour and channel erosion. See BMP C122: Nets and Blankets.
- Bank stabilization, bioengineering, and habitat features may be required for disturbed areas.
 This work may require a Hydraulic Project Approval (HPA) from the Washington State Department of Fish and Wildlife. See I-2.11 Hydraulic Project Approvals.

Maintenance Standards

- · Inspect and repair as needed.
- Add rock as needed to maintain the intended function.
- · Clean energy dissipator if sediment builds up.

BMP C220: Inlet Protection

Purpose

Inlet protection prevents coarse sediment from entering drainage systems prior to permanent stabilization of the disturbed area.

Conditions of Use

Use inlet protection at inlets that are operational before permanent stabilization of the disturbed areas that contribute runoff to the inlet. Provide protection for all storm drain inlets downslope and within 500 feet of a disturbed or construction area, unless those inlets are preceded by a sediment trapping BMP.

Also consider inlet protection for lawn and yard drains on new home construction. These small and numerous drains coupled with lack of gutters can add significant amounts of sediment into the roof drain system. If possible, delay installing lawn and yard drains until just before landscaping, or cap these drains to prevent sediment from entering the system until completion of landscaping. Provide 18-inches of sod around each finished lawn and yard drain.

<u>Table II-3.10: Storm Drain Inlet Protection</u> lists several options for inlet protection. All of the methods for inlet protection tend to plug and require a high frequency of maintenance. Limit contributing drainage areas for an individual inlet to one acre or less. If possible, provide emergency overflows with additional end-of-pipe treatment where stormwater ponding would cause a hazard.

Table II-3.10: Storm Drain Inlet Protection

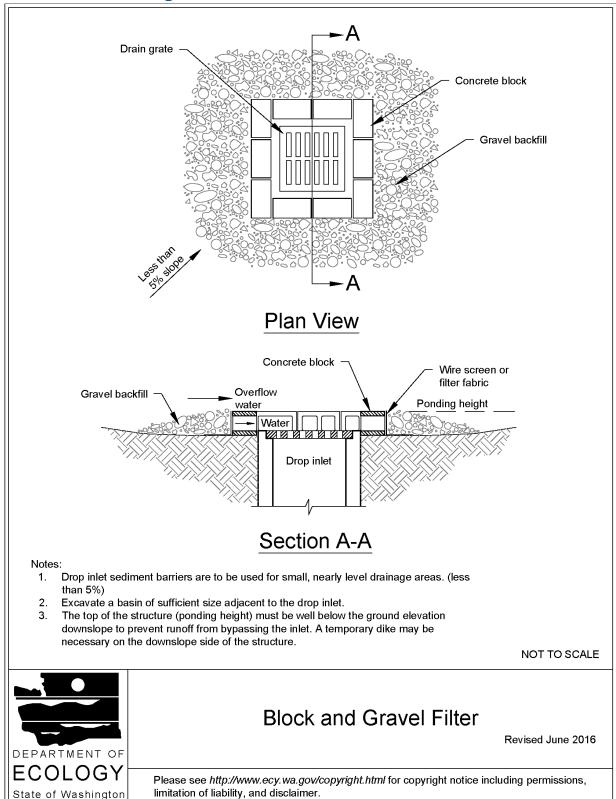
Type of Inlet Pro- tection	Emergency Overflow	Applicable for Paved/ Earthen Sur- faces	Conditions of Use
Drop Inlet Protecti	ion		
Excavated drop inlet protection	Yes, temporary flooding may occur	Earthen	Applicable for heavy flows. Easy to maintain. Large area requirement: 30'x30'/acre
Block and gravel drop inlet pro- tection	Yes	Paved or Earthen	Applicable for heavy concentrated flows. Will not pond.
Gravel and wire drop inlet protection	No	Paved or Earthen	Applicable for heavy concentrated flows. Will pond. Can withstand traffic.
Catch basin filters	Yes	Paved or Earthen	Frequent maintenance required.
Curb Inlet Protecti	ion		
Curb inlet pro- tection with wooden weir	Small capacity overflow	Paved	Used for sturdy, more compact installation.
Block and gravel curb inlet pro- tection	Yes	Paved	Sturdy, but limited filtration.
Culvert Inlet Prote	ction		
Culvert inlet sed- iment trap	N/A	N/A	18 month expected life.

Design and Installation Specifications

Excavated Drop Inlet Protection

Excavated drop inlet protection consists of an excavated impoundment around the storm drain inlet. Sediment settles out of the stormwater prior to entering the storm drain. Design and installation specifications for excavated drop inlet protection include:

- Provide a depth of 1-2 ft as measured from the crest of the inlet structure.
- Slope sides of excavation should be no steeper than 2H:1V.
- Minimum volume of excavation is 35 cubic yards.
- Shape the excavation to fit the site, with the longest dimension oriented toward the longest inflow area.
- Install provisions for draining to prevent standing water.
- · Clear the area of all debris.


- Grade the approach to the inlet uniformly.
- Drill weep holes into the side of the inlet.
- Protect weep holes with screen wire and washed aggregate.
- Seal weep holes when removing structure and stabilizing area.
- Build a temporary dike, if necessary, to the down slope side of the structure to prevent bypass flow.

Block and Gravel Filter

A block and gravel filter is a barrier formed around the inlet with standard concrete blocks and gravel. See <u>Figure II-3.17</u>: <u>Block and Gravel Filter</u>. Design and installation specifications for block gravel filters include:

- Provide a height of 1 to 2 feet above the inlet.
- Recess the first row of blocks 2-inches into the ground for stability.
- Support subsequent courses by placing a pressure treated wood 2x4 through the block opening.
- Do not use mortar.
- Lay some blocks in the bottom row on their side to allow for dewatering the pool.
- Place hardware cloth or comparable wire mesh with ½-inch openings over all block openings.
- Place gravel to just below the top of blocks on slopes of 2H:1V or flatter.
- An alternative design is a gravel berm surrounding the inlet, as follows:
 - Provide a slope of 3H:1V on the upstream side of the berm.
 - Provide a slope of 2H:1V on the downstream side of the berm.
 - Provide a 1-foot wide level stone area between the gravel berm and the inlet.
 - Use stones 3 inches in diameter or larger on the upstream slope of the berm.
 - Use gravel ½- to ¾-inch at a minimum thickness of 1-foot on the downstream slope of the berm.

Figure II-3.17: Block and Gravel Filter

Gravel and Wire Mesh Filter

Gravel and wire mesh filters are gravel barriers placed over the top of the inlet. This method does not provide an overflow. Design and installation specifications for gravel and wire mesh filters include:

- Use a hardware cloth or comparable wire mesh with ½-inch openings.
 - Place wire mesh over the drop inlet so that the wire extends a minimum of 1-foot beyond each side of the inlet structure.
 - Overlap the strips if more than one strip of mesh is necessary.
- Place coarse aggregate over the wire mesh.
 - Provide at least a 12-inch depth of aggregate over the entire inlet opening and extend at least 18-inches on all sides.

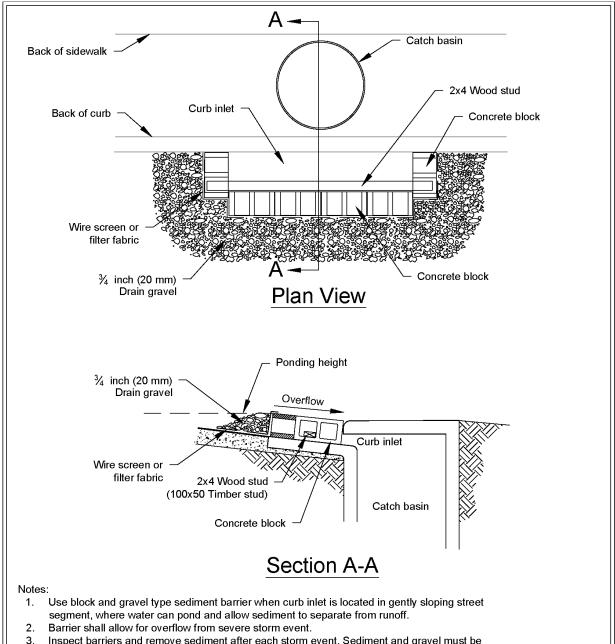
Catch Basin Filters

Catch basin filters are designed by manufacturers for construction sites. The limited sediment storage capacity increases the amount of inspection and maintenance required, which may be daily for heavy sediment loads. To reduce maintenance requirements, combine a catch basin filter with another type of inlet protection. This type of inlet protection provides flow bypass without overflow and therefore may be a better method for inlets located along active rights-of-way. Design and installation specifications for catch basin filters include:

- Provides 5 cubic feet of storage.
- Requires dewatering provisions.
- Provides a high-flow bypass that will not clog under normal use at a construction site.
- Insert the catch basin filter in the catch basin just below the grating.

Curb Inlet Protection with Wooden Weir

Curb inlet protection with wooden weir is an option that consists of a barrier formed around a curb inlet with a wooden frame and gravel. Design and installation specifications for curb inlet protection with wooden weirs include:


- Use wire mesh with ½-inch openings.
- · Use extra strength filter cloth.
- · Construct a frame.
- Attach the wire and filter fabric to the frame.
- Pile coarse washed aggregate against the wire and fabric.
- Place weight on the frame anchors.

Block and Gravel Curb Inlet Protection

Block and gravel curb inlet protection is a barrier formed around a curb inlet with concrete blocks and gravel. See <u>Figure II-3.18</u>: <u>Block and Gravel Curb Inlet Protection</u>. Design and installation specifications for block and gravel curb inlet protection include:

- Use wire mesh with ½-inch openings.
- Place two concrete blocks on their sides abutting the curb at either side of the inlet opening. These are spacer blocks.
- Place a 2x4 stud through the outer holes of each spacer block to align the front blocks.
- Place blocks on their sides across the front of the inlet and abutting the spacer blocks.
- Place wire mesh over the outside vertical face.
- Pile coarse aggregate against the wire to the top of the barrier.

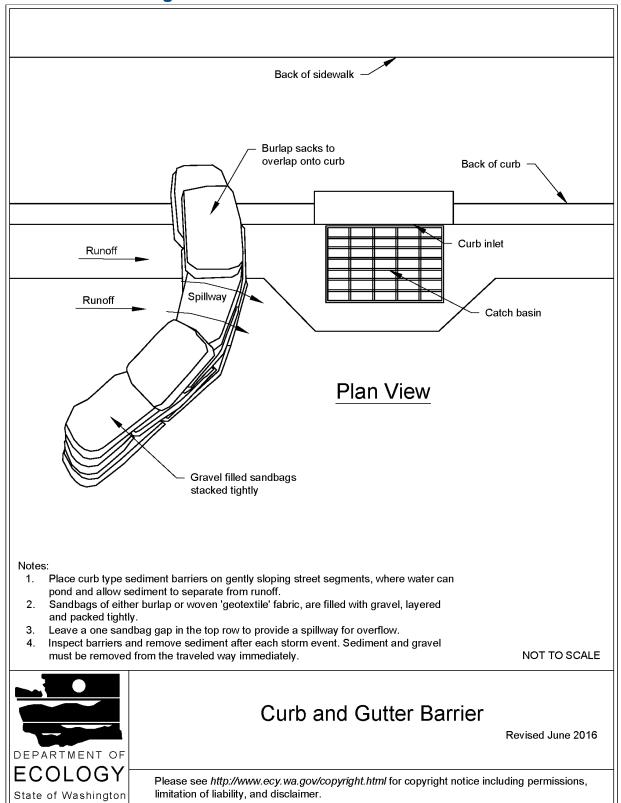
Figure II-3.18: Block and Gravel Curb Inlet Protection

3. Inspect barriers and remove sediment after each storm event. Sediment and gravel must be removed from the traveled way immediately.

NOT TO SCALE

Block and Gravel Curb Inlet Protection

Revised June 2016


Please see http://www.ecy.wa.gov/copyright.html for copyright notice including permissions, limitation of liability, and disclaimer.

Curb and Gutter Sediment Barrier

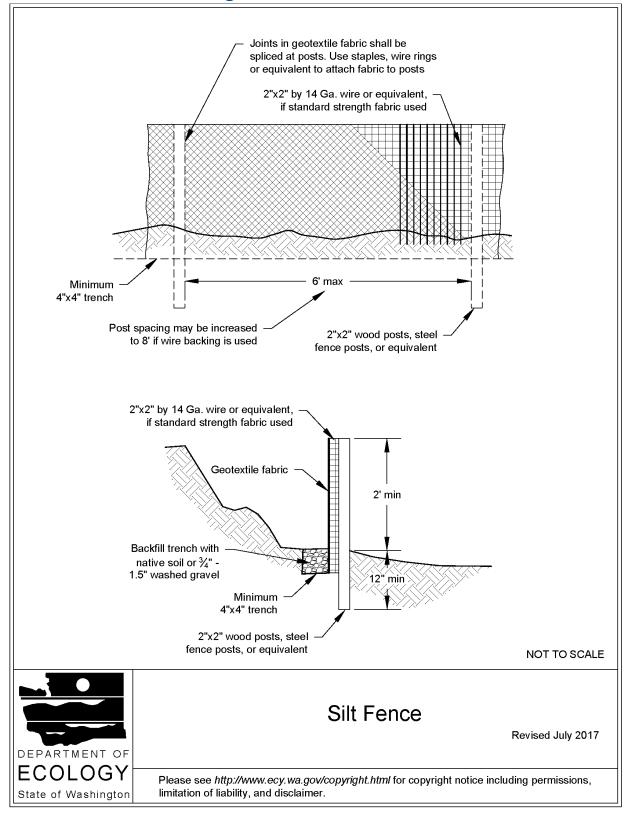
Curb and gutter sediment barrier is a sandbag or rock berm (riprap and aggregate) 3 feet high and 3 feet wide in a horseshoe shape. See <u>Figure II-3.19</u>: <u>Curb and Gutter Barrier</u>. Design and installation specifications for curb and gutter sediment barrier include:

- Construct a horseshoe shaped berm, faced with coarse aggregate if using riprap, 3 feet high and 3 feet wide, at least 2 feet from the inlet.
- Construct a horseshoe shaped sedimentation trap on the upstream side of the berm. Size the trap to sediment trap standards for protecting a culvert inlet.

Figure II-3.19: Curb and Gutter Barrier

BMP C233: Silt Fence

Purpose


Silt fence reduces the transport of coarse sediment from a construction site by providing a temporary physical barrier to sediment and reducing the runoff velocities of overland flow.

Conditions of Use

Silt fence may be used downslope of all disturbed areas.

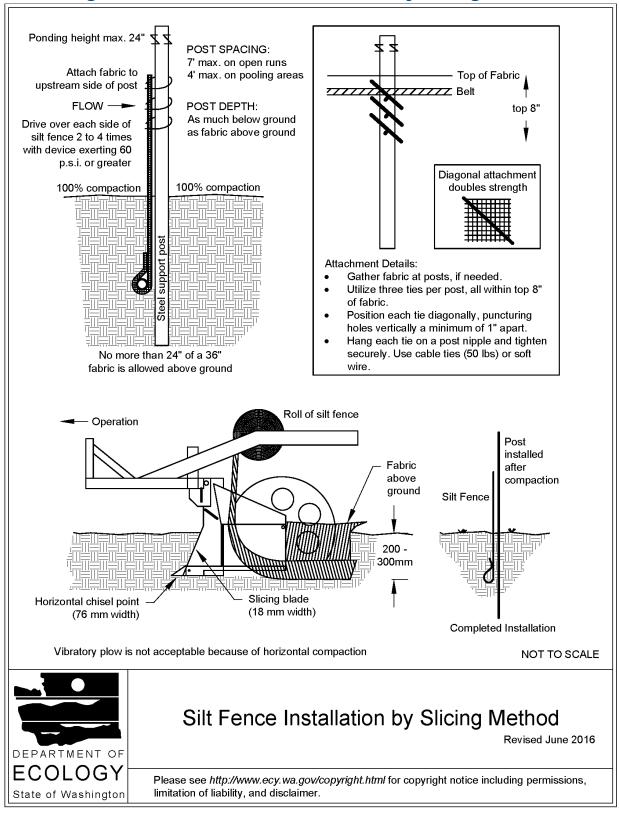
- Silt fence shall prevent sediment carried by runoff from going beneath, through, or over the top of the silt fence, but shall allow the water to pass through the fence.
- Silt fence is not intended to treat concentrated flows, nor is it intended to treat substantial
 amounts of overland flow. Convey any concentrated flows through the drainage system to a
 sediment trapping BMP.
- Do not construct silt fences in streams or use in V-shaped ditches. Silt fences do not provide an adequate method of silt control for anything deeper than sheet or overland flow.

Figure II-3.22: Silt Fence

Design and Installation Specifications

- Use in combination with other construction stormwater BMPs.
- Maximum slope steepness (perpendicular to the silt fence line) 1H:1V.
- Maximum sheet or overland flow path length to the silt fence of 100 feet.
- Do not allow flows greater than 0.5 cfs.
- Use geotextile fabric that meets the following standards. All geotextile properties listed below
 are minimum average roll values (i.e., the test result for any sampled roll in a lot shall meet or
 exceed the values shown in Table II-3.11: Geotextile Fabric Standards for Silt Fence):

Table II-3.11: Geotextile Fabric Standards for Silt Fence


Geotextile Property	Minimum Average Roll Value
Polymeric Mesh AOS (ASTM D4751)	0.60 mm maximum for slit film woven (#30 sieve).0.30 mm maximum for all other geotextile types (#50 sieve).0.15 mm minimum for all fabric types (#100 sieve).
Water Permittivity (ASTM D4491)	0.02 sec ⁻¹ minimum
Grab Tensile Strength (ASTM D4632)	180 lbs. Minimum for extra strength fabric. 100 lbs minimum for standard strength fabric.
Grab Tensile Strength (ASTM D4632)	30% maximum
Ultraviolet Resistance (ASTM D4355)	70% minimum

- Support standard strength geotextiles with wire mesh, chicken wire, 2-inch x 2-inch wire, safety fence, or jute mesh to increase the strength of the geotextile. Silt fence materials are available that have synthetic mesh backing attached.
- Silt fence material shall contain ultraviolet ray inhibitors and stabilizers to provide a minimum of six months of expected usable construction life at a temperature range of 0°F to 120°F.
- One-hundred percent biodegradable silt fence is available that is strong, long lasting, and can be left in place after the project is completed, if permitted by the local jurisdiction.
- Refer to <u>Figure II-3.22</u>: <u>Silt Fence</u> for standard silt fence details. Include the following Standard Notes for silt fence on construction plans and specifications:
 - 1. The Contractor shall install and maintain temporary silt fences at the locations shown in the Plans.
 - 2. Construct silt fences in areas of clearing, grading, or drainage prior to starting those activities.

- 3. The silt fence shall have a 2-feet min. and a 2½-feet max. height above the original ground surface.
- 4. The geotextile fabric shall be sewn together at the point of manufacture to form fabric lengths as required. Locate all sewn seams at support posts. Alternatively, two sections of silt fence can be overlapped, provided that the overlap is long enough and that the adjacent silt fence sections are close enough together to prevent silt laden water from escaping through the fence at the overlap.
- 5. Attach the geotextile fabric on the up-slope side of the posts and secure with staples, wire, or in accordance with the manufacturer's recommendations. Attach the geotextile fabric to the posts in a manner that reduces the potential for tearing.
- 6. Support the geotextile fabric with wire or plastic mesh, dependent on the properties of the geotextile selected for use. If wire or plastic mesh is used, fasten the mesh securely to the up-slope side of the posts with the geotextile fabric up-slope of the mesh.
- 7. Mesh support, if used, shall consist of steel wire with a maximum mesh spacing of 2-inches, or a prefabricated polymeric mesh. The strength of the wire or polymeric mesh shall be equivalent to or greater than 180 lbs. grab tensile strength. The polymeric mesh must be as resistant to the same level of ultraviolet radiation as the geotextile fabric it supports.
- 8. Bury the bottom of the geotextile fabric 4-inches min. below the ground surface. Backfill and tamp soil in place over the buried portion of the geotextile fabric, so that no flow can pass beneath the silt fence and scouring cannot occur. When wire or polymeric back-up support mesh is used, the wire or polymeric mesh shall extend into the ground 3-inches min.
- 9. Drive or place the silt fence posts into the ground 18-inches min. A 12-inch min. depth is allowed if topsoil or other soft subgrade soil is not present and 18-inches cannot be reached. Increase fence post min. depths by 6 inches if the fence is located on slopes of 3H:1V or steeper and the slope is perpendicular to the fence. If required post depths cannot be obtained, the posts shall be adequately secured by bracing or guying to prevent overturning of the fence due to sediment loading.
- 10. Use wood, steel or equivalent posts. The spacing of the support posts shall be a maximum of 6-feet. Posts shall consist of either:
 - Wood with minimum dimensions of 2 inches by 2 inches by 3 feet. Wood shall be free of defects such as knots, splits, or gouges.
 - No. 6 steel rebar or larger.
 - ASTM A 120 steel pipe with a minimum diameter of 1-inch.
 - U, T, L, or C shape steel posts with a minimum weight of 1.35 lbs./ft.
 - Other steel posts having equivalent strength and bending resistance to the post sizes listed above.
- 11. Locate silt fences on contour as much as possible, except at the ends of the fence,

- where the fence shall be turned uphill such that the silt fence captures the runoff water and prevents water from flowing around the end of the fence.
- 12. If the fence must cross contours, with the exception of the ends of the fence, place check dams perpendicular to the back of the fence to minimize concentrated flow and erosion. The slope of the fence line where contours must be crossed shall not be steeper than 3H:1V.
 - Check dams shall be approximately 1-foot deep at the back of the fence. Check dams shall be continued perpendicular to the fence at the same elevation until the top of the check dam intercepts the ground surface behind the fence.
 - Check dams shall consist of crushed surfacing base course, gravel backfill for walls, or shoulder ballast. Check dams shall be located every 10 feet along the fence where the fence must cross contours.
- Refer to <u>Figure II-3.23</u>: <u>Silt Fence Installation by Slicing Method</u> for slicing method details. The following are specifications for silt fence installation using the slicing method:
 - 1. The base of both end posts must be at least 2- to 4-inches above the top of the geotextile fabric on the middle posts for ditch checks to drain properly. Use a hand level or string level, if necessary, to mark base points before installation.
 - 2. Install posts 3- to 4-feet apart in critical retention areas and 6- to 7-feet apart in standard applications.
 - 3. Install posts 24-inches deep on the downstream side of the silt fence, and as close as possible to the geotextile fabric, enabling posts to support the geotextile fabric from upstream water pressure.
 - 4. Install posts with the nipples facing away from the geotextile fabric.
 - 5. Attach the geotextile fabric to each post with three ties, all spaced within the top 8-inches of the fabric. Attach each tie diagonally 45 degrees through the fabric, with each puncture at least 1-inch vertically apart. Each tie should be positioned to hang on a post nipple when tightening to prevent sagging.
 - 6. Wrap approximately 6-inches of the geotextile fabric around the end posts and secure with 3 ties.
 - 7. No more than 24-inches of a 36-inch geotextile fabric is allowed above ground level.
 - 8. Compact the soil immediately next to the geotextile fabric with the front wheel of the tractor, skid steer, or roller exerting at least 60 pounds per square inch. Compact the upstream side first and then each side twice for a total of four trips. Check and correct the silt fence installation for any deviation before compaction. Use a flat-bladed shovel to tuck the fabric deeper into the ground if necessary.

Figure II-3.23: Silt Fence Installation by Slicing Method

Maintenance Standards

- · Repair any damage immediately.
- Intercept and convey all evident concentrated flows uphill of the silt fence to a sediment trapping BMP.
- Check the uphill side of the silt fence for signs of the fence clogging and acting as a barrier to flow and then causing channelization of flows parallel to the fence. If this occurs, replace the fence and remove the trapped sediment.
- Remove sediment deposits when the deposit reaches approximately one-third the height of the silt fence, or install a second silt fence.
- Replace geotextile fabric that has deteriorated due to ultraviolet breakdown.

BMP C234: Vegetated Strip

Purpose

Vegetated strips reduce the transport of coarse sediment from a construction site by providing a physical barrier to sediment and reducing the runoff velocities of overland flow.

Conditions of Use

- Vegetated strips may be used downslope of all disturbed areas.
- Vegetated strips are not intended to treat concentrated flows, nor are they intended to treat
 substantial amounts of overland flow. Any concentrated flows must be conveyed through the
 drainage system to <u>BMP C241: Sediment Pond (Temporary)</u> or other sediment trapping
 BMP. The only circumstance in which overland flow can be treated solely by a vegetated strip,
 rather than by a sediment trapping BMP, is when the following criteria are met (see <u>Table II-</u>
 3.12: Contributing <u>Drainage Area for Vegetated Strips</u>):

Table II-3.12: Contributing Drainage Area for Vegetated Strips

Average Contributing Area Slope	Average Contributing Area Percent Slope	Max Contributing area Flowpath Length
1.5H: 1V or flatter	67% or flatter	100 feet
2H : 1V or flatter	50% or flatter	115 feet
4H: 1V or flatter	25% or flatter	150 feet
6H: 1V or flatter	16.7% or flatter	200 feet
10H : 1V or flatter	10% or flatter	250 feet

Design and Installation Specifications

- The vegetated strip shall consist of a continuous strip of dense vegetation with topsoil for a minimum of a 25-foot length along the flowpath. Grass-covered, landscaped areas are generally not adequate because the volume of sediment overwhelms the grass. Ideally, vegetated strips shall consist of undisturbed native growth with a well-developed soil that allows for infiltration of runoff.
- The slope within the vegetated strip shall not exceed 4H:1V.
- The uphill boundary of the vegetated strip shall be delineated with clearing limits.

Maintenance Standards

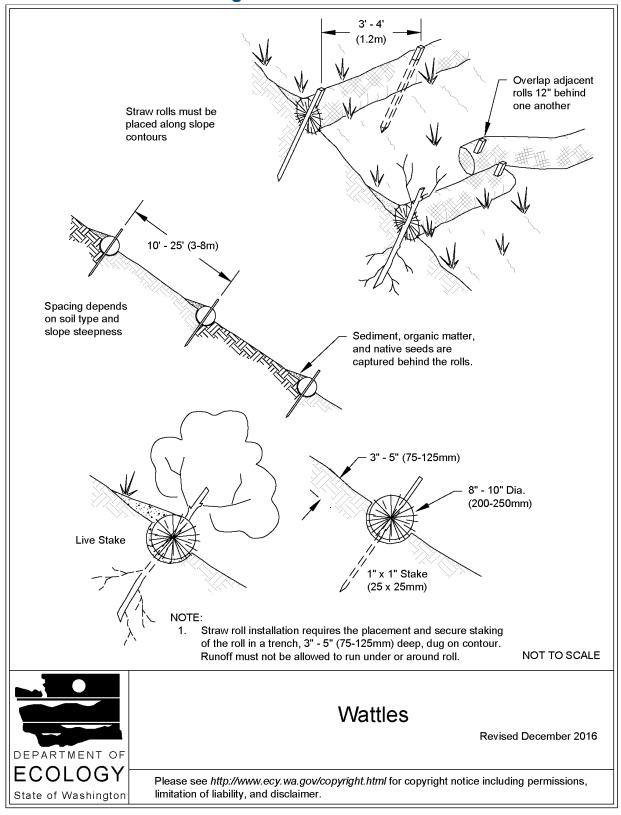
- Any areas damaged by erosion or construction activity shall be seeded immediately and protected by mulch.
- If more than 5 feet of the original vegetated strip width has had vegetation removed or is being eroded, sod must be installed.
- If there are indications that concentrated flows are traveling across the vegetated strip, stormwater runoff controls must be installed to reduce the flows entering the vegetated strip, or additional perimeter protection must be installed.

BMP C235: Wattles

Purpose

Wattles are temporary erosion and sediment control barriers consisting of straw, compost, or other material that is wrapped in netting made of natural plant fiber or similar encasing material. They reduce the velocity and can spread the flow of rill and sheet runoff, and can capture and retain sediment.

Conditions of Use


- Wattles shall consist of cylinders of plant material such as weed-free straw, coir, wood chips, excelsior, or wood fiber or shavings encased within netting made of natural plant fibers unaltered by synthetic materials.
- Use wattles:
 - In disturbed areas that require immediate erosion protection.
 - On exposed soils during the period of short construction delays, or over winter months.
 - On slopes requiring stabilization until permanent vegetation can be established.
- The material used dictates the effectiveness period of the wattle. Generally, wattles are effective for one to two seasons.

• Prevent rilling beneath wattles by entrenching and overlapping wattles to prevent water from passing between them.

Design Criteria

- See Figure II-3.24: Wattles for typical construction details.
- Wattles are typically 8 to 10 inches in diameter and 25 to 30 feet in length.
- Install wattles perpendicular to the flow direction and parallel to the slope contour.
- Place wattles in shallow trenches, staked along the contour of disturbed or newly constructed slopes. Dig narrow trenches across the slope (on contour) to a depth of 3- to 5-inches on clay soils and soils with gradual slopes. On loose soils, steep slopes, and areas with high rainfall, the trenches should be dug to a depth of 5- to 7- inches, or 1/2 to 2/3 of the thickness of the wattle.
- Start building trenches and installing wattles from the base of the slope and work up. Spread
 excavated material evenly along the uphill slope and compact it using hand tamping or other
 methods.
- Construct trenches at intervals of 10- to 25-feet depending on the steepness of the slope, soil type, and rainfall. The steeper the slope the closer together the trenches.
- Install the wattles snugly into the trenches and overlap the ends of adjacent wattles 12 inches behind one another.
- Install stakes at each end of the wattle, and at 4-foot centers along entire length of wattle.
- If required, install pilot holes for the stakes using a straight bar to drive holes through the wattle and into the soil.
- Wooden stakes should be approximately 0.75 x 0.75 x 24 inches min. Willow cuttings or 3/8-inch rebar can also be used for stakes.
- Stakes should be driven through the middle of the wattle, leaving 2 to 3 inches of the stake protruding above the wattle.

Figure II-3.24: Wattles

Maintenance Standards

- Wattles may require maintenance to ensure they are in contact with soil and thoroughly entrenched, especially after significant rainfall on steep sandy soils.
- Inspect the slope after significant storms and repair any areas where wattles are not tightly abutted or water has scoured beneath the wattles.

Approved as Functionally Equivalent

Ecology has approved products as able to meet the requirements of this BMP. The products did not pass through the Technology Assessment Protocol – Ecology (TAPE) process. Local jurisdictions may choose not to accept these products, or may require additional testing prior to consideration for local use. Products that Ecology has approved as functionally equivalent are available for review on Ecology's website at:

https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Stormwater-permittee-guidance-resources/Emerging-stormwater-treatment-technologies

BMP C236: Vegetative Filtration

Purpose

Vegetative filtration as a BMP is used in conjunction with detention storage in the form of portable tanks or <u>BMP C241: Sediment Pond (Temporary)</u>, <u>BMP C206: Level Spreader</u>, and a pumping system with surface intake. Vegetative filtration improves turbidity levels of stormwater discharges by filtering runoff through existing vegetation where undisturbed forest floor duff layer or established lawn with thatch layer are present. Vegetative filtration can also be used to infiltrate dewatering waste from foundations, vaults, and trenches as long as runoff does not occur.

Conditions of Use

- For every five acres of disturbed soil use one acre of grass field, farm pasture, or wooded area. Reduce or increase this area depending on project size, ground water table height, and other site conditions.
- Wetlands shall not be used for vegetative filtration.
- Do not use this BMP in areas with a high ground water table, or in areas that will have a high seasonal ground water table during the use of this BMP.
- This BMP may be less effective on soils that prevent the infiltration of the water, such as hard till.
- Using other effective source control measures throughout a construction site will prevent the generation of additional highly turbid water and may reduce the time period or area need for this BMP.
- Stop distributing water into the vegetated filtration area if standing water or erosion results.

 On large projects that phase the clearing of the site, areas retained with native vegetation may be used as a temporary vegetative filtration area.

Design Criteria

- Find land adjacent to the project site that has a vegetated field, preferably a farm field, or wooded area.
- If the site does not contain enough vegetated field area consider obtaining permission from adjacent landowners (especially for farm fields).
- Install a pump and downstream distribution manifold depending on the project size. Generally, the main distribution line should reach 100 to 200-feet long (large projects, or projects on tight soil, will require systems that reach several thousand feet long with numerous branch lines off of the main distribution line).
- The manifold should have several valves, allowing for control over the distribution area in the field.
- Install several branches of 4-inch diameter schedule 20 polyvinyl chloride (PVC), swaged-fit
 common septic tight-lined sewer line, or 6-inch diameter fire hose, which can convey the turbid water out to various sections of the field. See <u>Figure II-3.25</u>: <u>Manifold and Branches in a</u>
 Wooded, Vegetated Spray Field.
- Determine the branch length based on the field area geography and number of branches. Typically, branches stretch from 200-feet to several thousand feet. Lay the branches on contour with the slope.
- On uneven ground, sprinklers perform well. Space sprinkler heads so that spray patterns do not overlap.
- On relatively even surfaces, a level spreader using 4-inch perforated pipe may be used as an
 alternative option to the sprinkler head setup. Install drain pipe at the highest point on the field
 and at various lower elevations to ensure full coverage of the filtration area. Place the pipe
 with the holes up to allow for gentle weeping evenly out all holes. Leveling the pipe by staking
 and using sandbags may be required.
- To prevent over saturating of the vegetative filtration area, rotate the use of branches or spray heads. Repeat as needed based on monitoring the spray field.

Table II-3.13: Flowpath Guidelines for Vegetative Filtration

Average Slope	Average Area % Slope	Estimated Flowpath Length (ft)
1.5H:1V	67%	250
2H:1V	50%	200
4H:1V	25%	150
6H:1V	16.7%	115
10H:1V	10%	100

Figure II-3.25: Manifold and Branches in a Wooded, Vegetated Spray Field

NOT TO SCALE

Manifold and Branches in a Wooded, Vegetated Spray Field

Revised June 2016

Please see http://www.ecy.wa.gov/copyright.html for copyright notice including permissions, limitation of liability, and disclaimer.

Maintenance Standards

- Monitor the spray field on a daily basis to ensure that over saturation of any portion of the field doesn't occur at any time. The presence of standing puddles of water or creation of concentrated flows visually signify that over saturation of the field has occurred.
- Monitor the vegetated spray field all the way down to the nearest surface water, or farthest spray area, to ensure that the water has not caused overland or concentrated flows, and has not created erosion around the spray nozzle(s).
- Do not exceed water quality standards for turbidity.
- Ecology recommends that a separate inspection log be developed, maintained and kept with
 the existing site logbook to aid the operator conducting inspections. This separate "Field Filtration Logbook" can also aid in demonstrating compliance with permit conditions.
- Inspect the spray nozzles daily, at a minimum, for leaks and plugging from sediment particles.
- If erosion, concentrated flows, or over saturation of the field occurs, rotate the use of branches or spray heads or move the branches to a new field location.
- Check all branches and the manifold for unintended leaks.

BMP C240: Sediment Trap

Purpose

A sediment trap is a small temporary ponding area with a gravel outlet used to collect and store sediment from sites during construction. Sediment traps, along with other perimeter controls, shall be installed before any land disturbance takes place in the drainage area.

Conditions of Use

- Sediment traps are intended for use on sites where the tributary drainage area is less than 3
 acres, with no unusual drainage features, and a projected build-out time of six months or less.
 The sediment trap is a temporary measure (with a design life of approximately 6 months) and
 shall be maintained until the tributary area is permanently protected against erosion by vegetation and/or structures.
- Sediment traps are only effective in removing sediment down to about the medium silt size
 fraction. Runoff with sediment of finer grades (fine silt and clay) will pass through untreated,
 emphasizing the need to control erosion to the maximum extent first.
- Projects that are constructing permanent Flow Control BMPs, or Runoff Treatment BMPs
 that use ponding for treatment, may use the rough-graded or final-graded permanent BMP
 footprint for the temporary sediment trap. When permanent BMP footprints are used as temporary sediment traps, the surface area requirement of the sediment trap must be met. If the
 surface area requirement of the sediment trap is larger than the surface area of the permanent BMP, then the sediment trap shall be enlarged beyond the permanent BMP footprint
 to comply with the surface area requirement.

- A floating pond skimmer may be used for the sediment trap outlet if approved by the Local Permitting Authority.
- Sediment traps may not be feasible on utility projects due to the limited work space or the short-term nature of the work. Portable tanks may be used in place of sediment traps for utility projects.

Design and Installation Specifications

- See <u>Figure II-3.26</u>: <u>Cross Section of Sediment Trap</u> and <u>Figure II-3.27</u>: <u>Sediment Trap Outlet</u> for details.
- To determine the sediment trap geometry, first calculate the design surface area (SA) of the trap, measured at the invert of the weir. Use the following equation:

$$SA = FS(Q_2/V_s)$$

where

 $Q_2 =$

o Option 1 - Single Event Hydrograph Method:

 Q_2 = Peak volumetric flow rate calculated using a 10-minute time step from a Type 1A, 2-year, 24-hour frequency storm for the developed condition. The 10-year peak volumetric flow rate shall be used if the project size, expected timing and duration of construction, or downstream conditions warrant a higher level of protection.

 Option 2 - For construction sites that are less than 1 acre, the Rational Method may be used to determine Q₂.

 V_S = The settling velocity of the soil particle of interest. The 0.02 mm (medium silt) particle with an assumed density of 2.65 g/cm3 has been selected as the particle of interest and has a settling velocity (Vs) of 0.00096 ft/sec.

FS = A safety factor of 2 to account for non-ideal settling.

Therefore, the equation for computing sediment trap surface area becomes:

$$SA = 2 \times Q_2/0.00096$$

or

2080 square feet per cfs of inflow

- Sediment trap depth shall be 3.5 feet minimum from the bottom of the trap to the top of the overflow weir.
- To aid in determining sediment depth, all sediment traps shall have a staff gauge with a prominent mark 1-foot above the bottom of the trap.

• Design the discharge from the sediment trap by using the guidance for discharge from temporary sediment ponds in <u>BMP C241</u>: <u>Sediment Pond (Temporary)</u>.

Maintenance Standards

- Sediment shall be removed from the trap when it reaches 1-foot in depth.
- Any damage to the trap embankments or slopes shall be repaired.

Figure II-3.26: Cross Section of Sediment Trap

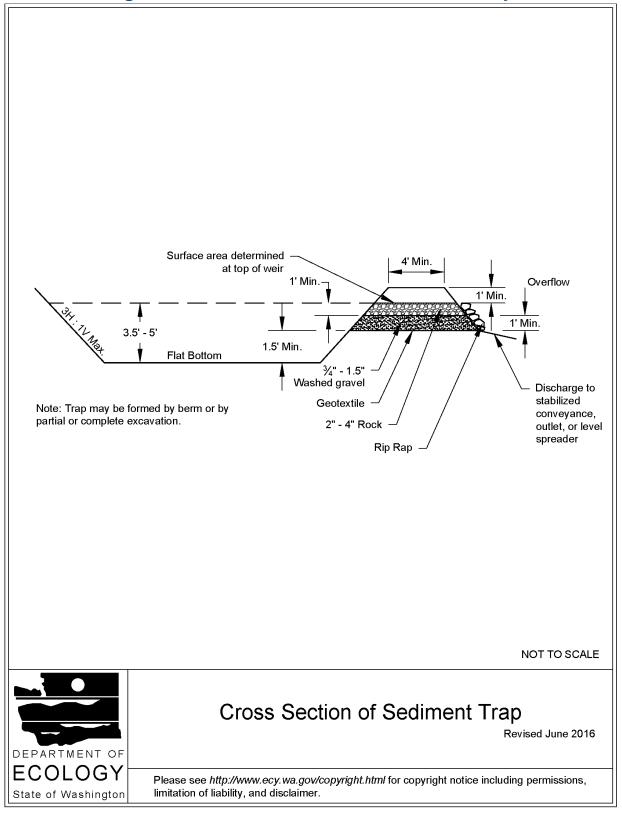
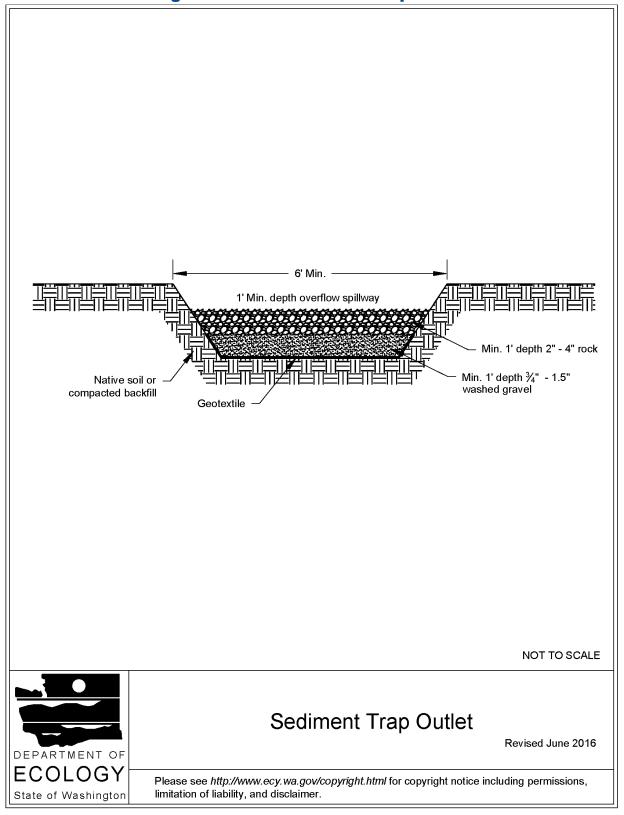



Figure II-3.27: Sediment Trap Outlet

Appendix C Site Inspection Form

Project Nam	e	Permit #	! 		Inspection Date	Time
Name of Certi Print Name:	ified Erosion Sediment Cont	rol Lead (CESCL) o	r qualified	d inspector if <i>less than one</i>	acre
Approximate	rainfall amount since the las	st inspecti	ion (in in	ches):		
Approximate	rainfall amount in the last 2	4 hours (i	n inches)	:		
Current Weat	her Clear Cloudy	Mist	Rain	Wir	nd Fog	
A. Type of ins	pection: Weekly	Post St	orm Evei	nt 🔲 (Other	
B. Phase of A	ctive Construction (check al	I that app	oly):			
Pre Construction Concrete pours Offsite improve		nent contr	□ v	ertical Cor	nstruction/buildings Util	estructure/storm/roads ities I stabilization
C. Questions:						
 Were all areas of construction and discharge points inspected? Did you observe the presence of suspended sediment, turbidity, discoloration, or oil sheen Was a water quality sample taken during inspection? (refer to permit conditions S4 & S5) Was there a turbid discharge 250 NTU or greater, or Transparency 6 cm or less?* If yes to #4 was it reported to Ecology? Is pH sampling required? pH range required is 6.5 to 8.5. Yes No If answering yes to a discharge, describe the event. Include when, where, and why it happened; what action was taken, and when.						
*If answering yes to # 4 record NTU/Transparency with continual sampling daily until turbidity is 25 NTU or less/ transparency is 33 cm or greater.						
Sampling Resu	ults:				Date:	
Parameter	Method (circle one)		Result		Other	/Note
		NTU	cm	рН		
Turbidity	tube, meter, laboratory					

Parameter	Method (circle one)	Result			Other/Note
		NTU	cm	рН	
Turbidity	tube, meter, laboratory				
ρН	Paper, kit, meter				

D. Check the observed status of all items. Provide "Action Required "details and dates.

Element #	Inspection	BMPs Inspected			BMP needs maintenance	BMP failed	Action required
		yes	no	n/a			(describe in section F)
1 Clearing Limits	Before beginning land disturbing activities are all clearing limits, natural resource areas (streams, wetlands, buffers, trees) protected with barriers or similar BMPs? (high visibility recommended)						
2 Construction Access	Construction access is stabilized with quarry spalls or equivalent BMP to prevent sediment from being tracked onto roads? Sediment tracked onto the road way was cleaned thoroughly at the end of the day or more frequent as necessary.						
3 Control Flow Rates	Are flow control measures installed to control stormwater volumes and velocity during construction and do they protect downstream properties and waterways from erosion? If permanent infiltration ponds are used for flow control during construction, are they protected						
4 Sediment Controls	from siltation? All perimeter sediment controls (e.g. silt fence, wattles, compost socks, berms, etc.) installed, and maintained in accordance with the Stormwater Pollution Prevention Plan (SWPPP). Sediment control BMPs (sediment ponds, traps, filters etc.) have been constructed and functional as the first step of grading. Stormwater runoff from disturbed areas is directed to sediment removal BMP.						
5 Stabilize Soils	Have exposed un-worked soils been stabilized with effective BMP to prevent erosion and sediment deposition?						

Element #	Inspection	BMPs Inspected			BMP needs maintenance	BMP failed	Action required
		yes	no	n/a	maintenance	raned	(describe in section F)
5 Stabilize Soils Cont.	Are stockpiles stabilized from erosion, protected with sediment trapping measures and located away from drain inlet, waterways, and drainage channels?						Jeenon 17
	Have soils been stabilized at the end of the shift, before a holiday or weekend if needed based on the weather forecast?						
6 Protect Slopes	Has stormwater and ground water been diverted away from slopes and disturbed areas with interceptor dikes, pipes and or swales?						
	Is off-site storm water managed separately from stormwater generated on the site?						
	Is excavated material placed on uphill side of trenches consistent with safety and space considerations?						
	Have check dams been placed at regular intervals within constructed channels that are cut down a slope?						
7 Drain Inlets	Storm drain inlets made operable during construction are protected. Are existing storm drains within the						
8 Stabilize Channel and Outlets	influence of the project protected? Have all on-site conveyance channels been designed, constructed and stabilized to prevent erosion from expected peak flows?						
	Is stabilization, including armoring material, adequate to prevent erosion of outlets, adjacent stream banks, slopes and downstream conveyance systems?						
9 Control Pollutants	Are waste materials and demolition debris handled and disposed of to prevent contamination of stormwater?						
	Has cover been provided for all chemicals, liquid products, petroleum products, and other material?						
	Has secondary containment been provided capable of containing 110% of the volume? Were contaminated surfaces cleaned						
	immediately after a spill incident? Were BMPs used to prevent contamination of stormwater by a pH modifying sources?						

Element #	Inspection		BMPs spect		BMP needs maintenance	BMP failed	Action required
		yes no n/a				(describe in section F)	
9 Cont.	Wheel wash wastewater is handled and disposed of properly.						
10 Control Dewatering	Concrete washout in designated areas. No washout or excess concrete on the ground.						
20	Dewatering has been done to an approved source and in compliance with the SWPPP.						
	Were there any clean non turbid dewatering discharges?						
11 Maintain BMP	Are all temporary and permanent erosion and sediment control BMPs maintained to perform as intended?						
12 Manage the	Has the project been phased to the maximum degree practicable?						
Project	Has regular inspection, monitoring and maintenance been performed as required by the permit?						
	Has the SWPPP been updated, implemented and records maintained?						
13 Protect LID	Is all Bioretention and Rain Garden Facilities protected from sedimentation with appropriate BMPs?						
	Is the Bioretention and Rain Garden protected against over compaction of construction equipment and foot traffic to retain its infiltration capabilities?						
	Permeable pavements are clean and free of sediment and sediment ladenwater runoff. Muddy construction equipment has not been on the base material or pavement.						
	Have soiled permeable pavements been cleaned of sediments and pass infiltration test as required by stormwater manual methodology?						
	Heavy equipment has been kept off existing soils under LID facilities to retain infiltration rate.						

F. Eleme	nts checked "	Action Requ	uired" (section	D) describe co	rrective action	n to be taken.	List the el	ement nu	mber;
be specifi	ic on location	and work n	eeded. Docui	ment, initial, ar	d date when	the corrective	action has	been con	npleted
and inspe	ected.								
	_						_		

Element #	Description and Location	Action Required	Completion Date	Initials

Attach additional page if needed

Sign the following certification:									
"I certify that this report is true, accurate, and complete, to the best of my knowledge and belief"									
Inspected by: (print)	(Signature)	Date:							
Title/Qualification of Inspector:									

Appendix D Engineering Calculations

SEDIMENT POND SIZING CALCULATIONS

Project Name: Arco Puyallup Date: 10/04/23

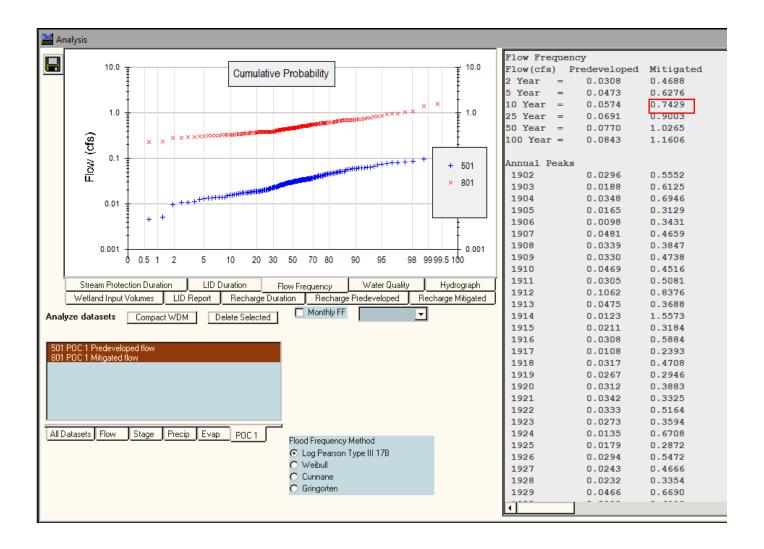
Street Location: 1402 South Meridian Our Job No.: 21730

Municipality: Puyallup

Engineer: Nick Schartman

FS = 2

 $SA = 2 \times Q_2/0.00096$ Q₂ = 0.7429 cfs


OR $V_S = 0.00096 \text{ ft/s}$

2,080 square feet per cubic feet per second of inflow

 $SA = 1547.71 \text{ ft}^2$

WWHM

Minimum Area of Sediment Trap = 1548 ft²

