

STRUCTURAL CALCULATIONS

WALMART EXPANSION, STORE #2403-278 PUYALLUP, WA

WD PROJECT NO: WALGP0402

MARCH 16, 2022

PREPARED BY WD PARTNERS 7007 DISCOVERY BLVD DUBLIN OH 43017

614.634.7000 T 614.634.7777 F

The structural calculations contained in this report relate only to the structure and site for which they were prepared. Referenced building codes, site-specific parameters for wind and seismic design, and any cited material/component design standards are current only for the governmental agency with jurisdiction over the design and construction of the proposed structure at the time the report was published. Some information utilized in the structural calculations may have been received from outside sources such as third party site development coordinators, geotechnical engineering reports, pre-engineered component manufacturers, or engineering/trade organizations. WD Partners is not responsible for the accuracy and/or changes to any information utilized herein as provided by outside sources.

PRCA20231436

Adopted Codes

New Building and Fire Code Effective Date Extended

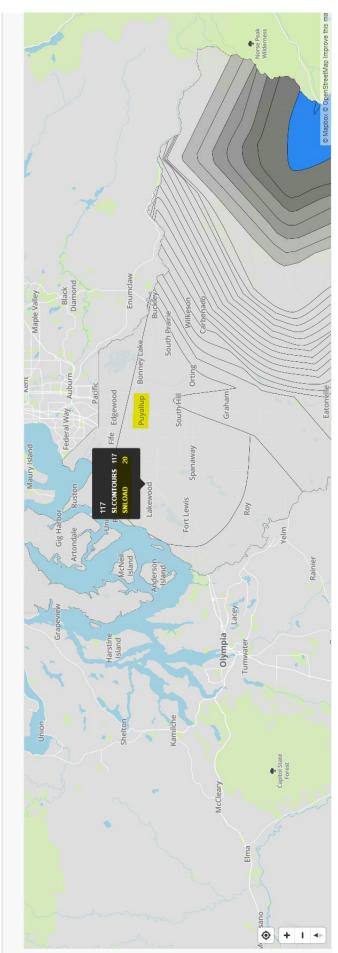
The State of Washington has extended the date for adoption of the 2018 International Building and Fire Codes from July 1, 2020 to February 1, 2021. Customers who submit complete permit applications prior to February 1, 2021, will be reviewed to the current 2015 code requirements. Permit applications submitted after that date will need to comply with the new 2018 updated codes.

Building Department Codes

The State of Washington has adopted and amended the following building construction codes, effective February 1, 2021:

- 2018 International Building Code
- 2018 International Residential Code
- 2018 International Mechanical Code
- 2018 Uniform Plumbing Code
- 2018 International Fire Code
- 2018 Washington State Energy Code
- 2016 NFPA Standard 72
- 2016 NFPA Standard 13, 13-D, and 13-R

Online Link to <u>International Codes with Washington State Amendments</u> See Puyallup Municipal Code for local amendments.


The City of Puyallup is in the process of implementing these codes locally, which includes the creation of an adopting and amending ordinance, updating department forms and brochures, and staff training.

This site will be providing information regarding these implementation processes and identifying some of the more significant differences between the new codes and our current building construction codes. Look for more Language vinformation in the near future as it becomes available.

Snow Load ^{More Info} ~

85 mph

Search Information

Address:	310 31st Ave SE, Puyallup, WA 98374, USA
Coordinates:	47.1610458, -122.2888112
Elevation:	442 ft
Timestamp:	2021-08-30T16:11:56.723Z
Hazard Type:	Wind

Hazards by Location

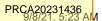
ASCE 7-05

ASCE 7-05 Wind Speed

ASCE 7-16

MRI 10-Year	67 mph	MRI 10-Year	72 mph
MRI 25-Year	73 mph	MRI 25-Year	79 mph
MRI 50-Year	78 mph	MRI 50-Year	85 mph
MRI 100-Year	82 mph	MRI 100-Year	91 mph
Risk Category I	92 mph	Risk Category I 1	00 mph
Risk Category II	97 mph	Risk Category II 1	10 mph
Risk Category III	104 mph	Risk Category III-IV 1	15 mph
Risk Category IV	108 mph		

ASCE 7-10


The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Disclaimer

Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer. Per ASCE 7, islands and coastal areas outside the last contour should use the last wind speed contour of the coastal area - in some cases, this website will extrapolate past the last wind speed contour and therefore, provide a wind speed that is slightly higher. NOTE: For queries near wind-borne debris region boundaries, the resulting determination is sensitive to rounding which may affect whether or not it is considered to be within a wind-borne debris region.

Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind conditions.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

ΔΤ

Search Information

Address:	310 31st Ave SE, Puyallup, WA 98374, USA
Coordinates:	47.1610458, -122.2888112
Elevation:	442 ft
Timestamp:	2021-09-08T09:21:10.416Z
Hazard Type:	Seismic
Reference Document:	ASCE7-16
Risk Category:	II
Site Class:	D-default

Hazards by Location

Basic Parameters

Name	Value	Description
SS	1.261	MCE _R ground motion (period=0.2s)
S ₁	0.435	MCE _R ground motion (period=1.0s)
S _{MS}	1.513	Site-modified spectral acceleration value
S _{M1}	* null	Site-modified spectral acceleration value
S _{DS}	1.009	Numeric seismic design value at 0.2s SA
S _{D1}	* null	Numeric seismic design value at 1.0s SA

* See Section 11.4.8

Additional Information

Name	Value	Description
SDC	* null	Seismic design category
Fa	1.2	Site amplification factor at 0.2s
Fv	* null	Site amplification factor at 1.0s
CR _S	0.914	Coefficient of risk (0.2s)
CR ₁	0.898	Coefficient of risk (1.0s)
PGA	0.5	MCE _G peak ground acceleration
F _{PGA}	1.2	Site amplification factor at PGA
PGA _M	0.6	Site modified peak ground acceleration

PRC	A20231436 9/8/21, 5:23 AM		ATC Hazards by Location
	ΤL	6	Long-period transition period (s)
	SsRT	1.261	Probabilistic risk-targeted ground motion (0.2s)
	SsUH	1.38	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
	SsD	1.5	Factored deterministic acceleration value (0.2s)
	S1RT	0.435	Probabilistic risk-targeted ground motion (1.0s)
	S1UH	0.484	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
	S1D	0.6	Factored deterministic acceleration value (1.0s)
	PGAd	0.5	Factored deterministic acceleration value (PGA)

* See Section 11.4.8

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

DESIGN LOAD)S
1. BUILDING CODE	
A. BUILDING CODE	2018 WASHINGTON STATE BUILDING CODE (ASCE 7-16)
2. GRAVITY LOADS	
A. ROOF DEAD LOAD	17.8 PSF (PER EXISTING DRAWINGS)
B. ROOF LIVE LOADS	
1. ROOF	20 PSF (MIN OR SNOW LOAD)
C. ROOF SNOW LOADS	
 GROUND SNOW LOAD (Pg) 	20 P SF
2. IMPORTANCE FACTOR (I)	1.0
3. SNOW EXPOSURE FACTOR (Ce)	1.0
4. ROOF THERMAL FACTOR (Ct)	1.0
5. FLAT ROOF SNOW LOAD (Pf) (PER CODE)	14.0
3. LATERAL LOADS	
A. WIND LOADS	
 BASIC WIND SPEED (3-SECOND GUST) 	
- ULTIMATE DESIGN WIND SPEED	97 MPH
- BASIC DESIGN WIND SPEED (SERVICE)	75.14 MPH
2. WIND EXPOSURE CATEGORY	С
3. RISK CATEGORY	Ш
B. SEISMIC LOADS (SERVICE)	\cdots
1. 5% DAMPED MAPPED ACCELERATION PARAMETER	(Ss) 1.261
2. 1-SEC PERIOD MAPPED ACCELERATION PARAMETE	R (S1) 0.435
, S. 5% DAMPED SPECTRAL RESPONSE COEFF. (Sds)	0.841
4. 1-SEC PERIOD SPECTRAL RESPONSE COEFF. (Sd1)	0.541 (REFER TO EXCEPTION 2 OF ASCE 7-16 SECTION 11.4.8 FOR MINIMUM PERIOD T USED FOR Cs EQUATIONS IN SECTION 12.8)
5. SITE CLASS	D (SOILS REPORT)
UBABISKEALE&DRXUUMUM	minun
7. IMPORTANCE FACTOR (Ie)	1.0
8. SEISMIC DESIGN CATEGORY	D
9. SEISMIC RESISTING SYSTEM	SPECIAL REINFORCED MASONRY SHEAR WALLS

WD Partners 7007 Dsicovery Blvd Dublin, OH wdpartners.com

JOB TITLE Walmart Renovation			
	Store 2403-278		
JOB NO.	WALGP0402	SHEET NO.	
CALCULATED BY		DATE	
CHECKED BY		DATE	

ASCE 7- 16		
97 mph 75.1 mph II C Enclosed Building +/-0.18 0.85 0.879 0.879 0.879 Monoslope		
<u>(zt)</u> Flat 0.0 ft 0.00 ft 0.00 0.00 0.0 ft 0.0 ft	H< 15ft;exp C ∴ Kzt=1.0	z) x(upwind) H/2 H/2 H/2 H
downwind		ESCARPMENT
$K_1 = 0.000$ $K_2 = 0.000$ $K_3 = 1.000$ $(1+K_1K_2K_3)^2 = 1.00$		V(z) V(z) V(z) x(upwind) H/2 H/2 H
	97 mph 75.1 mph II C Enclosed Building +/-0.18 0.85 0.879 0.879 Monoslope (21) Flat 0.0 ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K_2 = 0.000 K_3 = 1.000	97 mph 75.1 mph II C Enclosed Building +/-0.18 0.85 0.879 0.879 Monoslope (21) Flat 0.0 ft 0.0 ft 0.0 ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K_2 = 0.000 K_3 = 1.000 (1+K_1K_2K_3)^2 = 1.00

2D DIDGE	or 3D AXISYMMETRICAL	нш т
	OF SU AXIS FIVIIVIE I RICAL	

Gust Effect	Factor
h =	17.7 ft
B =	45.7 ft
/z (0.6h) =	15.0 ft

Rigid Structure							
ē =	0.20						
$\ell = z_{min} =$	500 ft 15 ft						
c = g _Q , g _v =	0.20 3.4						
$L_z =$	427.1 ft						
Q =	0.92						
I _z =	0.23						
G =	0.88 use	G = 0.85					

 $\label{eq:Flexible structure if natural frequency < 1 Hz (T > 1 second).$ If building h/B>4 then may be flexible and should be investigated. h/B = 0.39 Rigid structure (low rise bldg)

G = 0

0.85 Using rigid structure default

Flexible or Dyna	amically Se	nsitive St	<u>ructure</u>		
34 ncy (η ₁) =	0.0 Hz				
Damping ratio (β) = /b =	0 0.65				
/α = Vz =	0.15 81.9				
N ₁ =	0.00				
R _n =	0.000				
R _h =	28.282	η =	0.000	h =	17.7 ft
R _B =	28.282	η =	0.000		
R _L =	28.282	η =	0.000		
g _R =	0.000				
R =	0.000				
Gf =	0.000				

lup	WD Partners JOB TITLE Walmart		Walmart Renova		
ing Services MIT Planning	7007 Dsicovery Blvd			Store 2403-278	
olic Works	Dublin, OH		JOB NO.	WALGP0402	SHEET NO.
Traffic	wdpartners.com		CALCULATED BY		DATE
			CHECKED BY		DATE
	Test for Enclosed Building:	Ao < 0.01Ag or 4 s	f, whichever is smaller		
	Test for Open Building:	All walls are at leas Ao ≥ 0.8Ag	t 80% open.		
	Test for Partially Enclosed Build	l ing: Predominately op	en on one side only		
		Input Ao 500.0 sf Ag 600.0 sf Aoi 1000.0 sf Agi 10000.0 sf	Ao ≥ 1.1Aoi Ao > 4' or 0.01Ag Aoi / Agi ≤ 0.20		ng is NOT Ily Enclosed
	Conditions to qualify as I Ao ≥ 1.1Aoi	°	g. Must satisfy all of the fo		.,
	Ao > smaller of ∠ Aoi / Agi ≤ 0.20 Where:	l' or 0.01 Ag			
	Ao = the total area of op Ag = the gross area of tl	hat wall in which Ao is ide	ives positive external pres ntified. ding envelope (walls and r		Ao.
	Agi = the sum of the gro				

Test for Partially Open Building:

City of Puyallup Development & Permitting Services (ISSUED PERMIT

> A building that does not qualify as open, enclosed or partially enclosed. (This type building will have same wind pressures as an enclosed building.

Reduction Factor for large volume partially enclosed buildings (Ri) :

If the partially enclosed building contains a single room that is unpartitioned , the internal pressure coefficient may be multiplied by the reduction factor Ri.

Total area of all wall & roof openings (Aog):		0 sf
Unpartitioned internal volume (Vi):		0 cf
	Ri =	1.00

Ground Elevation Factor (Ke)

Grd level above sea level =	0.0 ft		Ke =	1.0000
Constant =	0.00256	Adj Constant = 0.00256		

PRCA20231436							
City of F Development & P ISSUED	Puyallup ermitting Services PERMIT						
Building							
Engineering	Public Works						
Fire	Traffic						

WD Partners	JOB TITLE Walmart Reno	ovation
7007 Dsicovery Blvd	Store 2403-27	8
Dublin, OH	JOB NO. WALGP0402	SHEET NO.
wdpartners.com	CALCULATED BY	DATE
	CHECKED BY	DATE

Wind Loads - MWFRS h≤60' (Low-rise Buildings) except for open buildings

Kz = Kh (case 1) =	0.88	Edge Strip (a) =	4.6 ft
Base pressure (qh) =	18.0 psf	End Zone (2a) =	9.1 ft
GCpi =	+/-0.18	Zone 2 length =	22.8 ft

Wind Pressure Coefficients

	C	ASE A			CASE B	
		θ = 1.2 deg				
Surface	GCpf	w/-GCpi	w/+GCpi	GCpf	w/-GCpi	w/+GCpi
1	0.40	0.58	0.22	-0.45	-0.27	-0.63
2	-0.69	-0.51	-0.87	-0.69	-0.51	-0.87
3	-0.37	-0.19	-0.55	-0.37	-0.19	-0.55
4	-0.29	-0.11	-0.47	-0.45	-0.27	-0.63
5				0.40	0.58	0.22
6				-0.29	-0.11	-0.47
1E	0.61	0.79	0.43	-0.48	-0.30	-0.66
2E	-1.07	-0.89	-1.25	-1.07	-0.89	-1.25
3E	-0.53	-0.35	-0.71	-0.53	-0.35	-0.71
4E	-0.43	-0.25	-0.61	-0.48	-0.30	-0.66
5E				0.61	0.79	0.43
6E				-0.43	-0.25	-0.61

Ultimate Wind Surface Pressures (psf)

1	10.4 4.0	-4.9	-11.3
2	-9.2 -15.7	-9.2	-15.7
3	-3.4 -9.9	-3.4	-9.9
4	-2.0 -8.5	-4.9	-11.3
5		10.4	4.0
6		-2.0	-8.5
1E	14.2 7.7	-5.4	-11.9
2E	-16.0 -22.5	-16.0	-22.5
3E	-6.3 -12.8	-6.3	-12.8
4E	-4.5 -11.0	-5.4	-11.9
1E 2E 3E 4E 5E 6E		14.2	7.7
6E		-4.5	-11.0

Parapet

Windward parapet = 28.9 psf (GCpn = +1.5) Leeward parapet = -19.3 psf (GCpn = -1.0)

Windward roof overhangs =

12.6 psf (upward) add to

Horizontal MWFRS Simple Diaphragm Pressures (psf)

Transverse direction (normal to L)				
Interior Zone:	Wall	12.4 psf		
	Roof	-5.8 psf **		
End Zone:	Wall	18.7 psf		
	Roof	-9.7 psf **		

Longitudinal direction (parallel to L)

Interior Zone: Wall 12.4 psf

End Zone: Wall 18.7 psf

** NOTE: Total horiz force shall not be less than that determined by neglecting roof forces (except for MWFRS moment frames).

The code requires the MWFRS be designed for a min ultimate force of 16 psf multiplied by the wall area plus an 8 psf force applied to the vertical projection of the roof.

windward roof pressure WINDWARD OVERHANG WINDWARD ROOM EEWARD ROOF VERTICAL B/2 or ZONE 2 _____ TRANSVERSE ELEVATION LEEWARD ROOF t VERTICAL L/2 or ZONE 2 WALL _____ LONGITUDINAL ELEVATION

City of Puyallup Development & Permitting Services ISSUED PERMIT				
Building	Planning			
Engineering	Public Works			
Fire	Traffic			

WD Partners 7007 Dsicovery Blvd Dublin, OH wdpartners.com

JOB TITLE Walmart Renovation							
	Store 2403-278						
JOB NO.	WALGP0402	SHEET NO.					
CALCULATED BY		DATE					
CHECKED BY		DATE					

Wind Loads - h≤60' Longitudinal Direction MWFRS On Open or Partially

Enclosed Buildings with Transverse Frames and Pitched Roofs

Base pressure (qh) = 18.0 psf

 $\begin{array}{rcl} \text{GCpi} = & +/-0.18 \text{ Enclosed bldg, procdure doesn't apply} \\ \text{Roof Angle } (\theta) = & 1.2 \text{ deg} \end{array}$

n = 5 SHOWN

B=	45.7 ft	
# of frames (n) =	5	

ASCE 7-16 procedure

- Solid are of end wall including fascia (As) = 1,500.0 sf
 - Roof ridge height = 18.1 ft
 - Roof eave height = 17.7 ft
 - Total end wall area if soild (Ae) = 817.9 sf

Longidinal Directional Force (F) = pAe p= qh [(GCpf)windward -(GCpf)leeward] K _B K _S							
Solidarity ratio (Φ) =	1.834						
n =	5						
KB =	0.8						
KS =	4.470						
Zones 5 & 6 area =	736.6 sf						
5E & 6E area =	81.2 sf						
(GCpf) windward - (GCpf) leeward] =	0.725						
p =	46.6 psf						

Total force to be resisted by MWFRS (F) = **38.1 kips** applied at the centroid of the end wall area Ae

Note: The longidudinal force acts in combination with roof loads calculated elsewhere for an open or partially enclosed building.

City of Puyallup

ISSUED PERMIT

WD Partners 7007 Dsicovery Blvd

Dublin, OH

JOB TITLE	Walmart Renovation		
	Store 2403-278		
JOB NO.	WALGP0402	SHEET NO.	
CALCULATED BY		DATE	
CHECKED BY		DATE	

Ultimate Wind Pressures

Wind Loads - Components & Cladding : $h \le 60'$

r

Kh (case 1) =	0.88	h =	17.7 ft	0.2h = 3.5 ft
Base pressure (qh) =	18.0 psf	0.6h =	10.6 ft	
Minimum parapet ht =	6.0 ft	GCpi =	+/-0.18	
Roof Angle (θ) =	1.2 deg	qi = qh =	18.0 psf	
Type of roof = 1	Monoslope			

Poof

RUUI					Surface Pr	essure (psi))	
Area	10 sf	20 sf	50 sf	100 sf	200 sf	350 sf	500 sf	1000 sf
Negative Zone 1	-33.8	-31.6	-28.6	-26.4	-24.2	-22.4	-21.2	-21.2
Negative Zone 1'	-19.4	-19.4	-19.4	-19.4	-16.7	-16.0	-16.0	-16.0
Negative Zone 2	-44.6	-41.7	-38	-35.1	-32.2	-29.9	-28.4	-28.4
Negative Zone 3	-44.6	-41.7	-38	-35.1	-32.2	-29.9	-28.4	-28.4
Positive Zone 1 & 1'	16	16	16	16	16.0	16.0	16.0	16.0
Positive Zones 2 & 3	19.4	18.6	17.4	16.6	16.0	16.0	16.0	16.0
Overhang Zone 1&1'	-30.6	-30	-29.3	-28.8	-24.1	-20.4	-18.0	-18.0
Overhang Zone 2	-41.4	-37.6	-32.5	-28.7	-24.8	-21.8	-19.8	-19.8
Overhang Zone 3	-41.4	-37.6	-32.5	-28.7	-24.8	-21.8	-19.8	-19.8

User	User input						
260 sf	300 sf						
-23.3	-22.9						
-16.0	-16.0						
-31.1	-30.5						
-31.1	-30.5						
16.0	16.0						
16.0	16.0						
-22.4	-21.4						
-23.4	-22.6						
-23.4	-22.6						

Negative zone 3 = zone 2, since parapet >= 3ft.

Overhang pressures in the table above assume an internal pressure coefficient (Gcpi) of 0.0 Overhang soffit pressure equals adj wall pressure (which includes internal pressure of 3.2 psf)

Surface Breesure

Parapet qp = 19.3

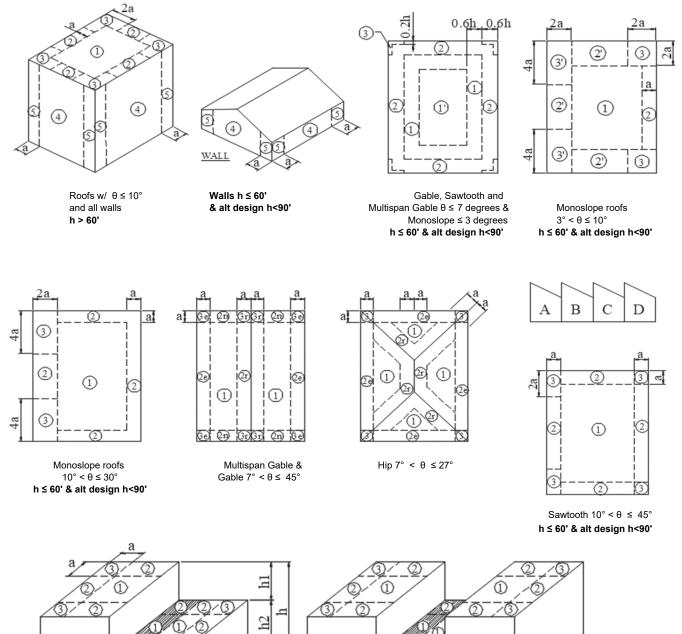
.3 psf		Surface Pressure (psf)					
Solid Parapet Pressure		10 sf	20 sf	50 sf	100 sf	200 sf	500 sf
CASE A:	Zone 2 :	61.8	57.8	52.5	48.5	44.5	39.2
	Zone 3 :	61.8	57.8	52.5	48.5	44.5	39.2
CASE B: Int Co	terior zone : orner zone :	-36.5 -41.7		-32.2 -35.3	-30.3 -32.5		-26.1 -26.1

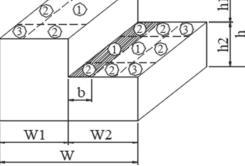
ľ	User input
	40 sf
Ē	53.8
	53.8
F	-32.8
	-36.1

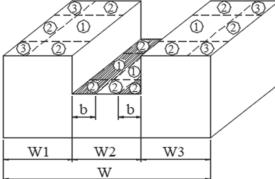
V

Walls	(GCp +/- GCp	Dİ		Surfa	ce Pressure	e at h	
Area	10 sf	100 sf	200 sf	500 sf	10 sf	100 sf	200 sf	500 sf
Negative Zone 4	-1.17	-1.01	-0.96	-0.90	-19.4	-18.2	-17.3	-16.2
Negative Zone 5	-1.44	-1.12	-1.03	-0.90	-35.6	-20.2	-18.5	-16.2
Positive Zone 4 & 5	1.08	0.92	0.87	0.81	19.4	16.6	16.0	16.0

Note: GCp reduced by 10% due to roof angle <= 10 deg.


User input 20 sf -20.2 -17.3 -24.2 -18.5 18.6 16.0


City of Puyallup Development & Permitting Services ISSUED PERMIT					
Building Planning					
Engineering	Public Works				
Fire Or	Traffic				


WD Partners 7007 Dsicovery Blvd Dublin, OH wdpartners.com

JOB TITLE	Walmart Renovation		
	Store 2403-278		
JOB NO.	WALGP0402	SHEET NO.	
CALCULATED BY		DATE	
CHECKED BY		DATE	
		_	

Location of C&C Wind Pressure Zones - ASCE 7-16

Stepped roofs $\theta \le 3^{\circ}$ h $\le 60'$ & alt design h<90'

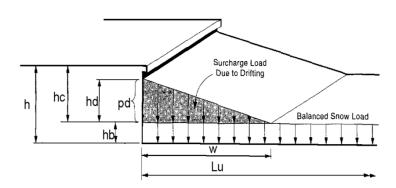
Snow Loads :

WD Partners

7007 Dsicovery Blvd Dublin, OH wdpartners.com

ASCE 7-16

JOB TITLE Walmart Renovation					
	Store 2403-278				
JOB NO.	WALGP0402	SHEET NO.			
CALCULATED BY		DATE			
CHECKED BY		DATE			


Nominal Snow Forces

Roof s Horiz. eave to ridge Roof length parallel to	e dist (W) =	1.2 deg 45.7 ft 70.7 ft
Type of Roof Ground Snow Load Risk Category Importance Factor Thermal Factor Exposure Factor	Pg = = I = Ct = Ce =	1.0
Pf = 0.7*Ce*Ct*I*Pg Unobstructed Slippery Sur	14.0 psf yes	
Sloped-roof Factor Balanced Snow Load	Cs = =	1.00 14.0 psf
Rain on Snow Surcharge / Code Maximum Rain Surc Rain on Snow Surcharge Ps plus rain surcharge Minimum Snow Load	•	0.91 deg 5.0 psf 0.0 psf 14.0 psf 20.0 psf
Uniform Roof Design Sno	ow Load =	20.0 psf

Near ground level surface balanced snow load = 20.0 psf

NOTE: Alternate spans of continuous beams shall be loaded with half the design roof snow load so as to produce the greatest possible effect - see code for loading diagrams and exceptions for gable roofs..

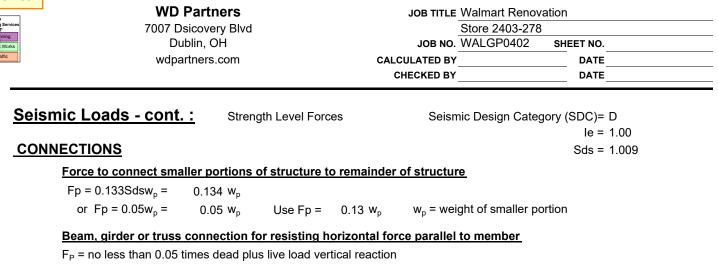
Windward Snow Drifts 1 - Aga	Windward Snow Drifts 1 - Against walls, parapets, etc.						
Upwind fetch	lu =	603.3 ft					
Projection height	h =	6.0 ft					
Snow density	g =	16.6 pcf					
Balanced snow height	hb =	0.84 ft					
-	hd =	5.25 ft					
	hc =	5.16 ft					
hc/hb >0.2 = 6.1	Therefore, d	esign for drift					
Drift height (hc)	=	5.16 ft					
Drift width	w =	21.40 ft					
Surcharge load:	pd = γ*hd =	85.6 psf					
Balanced Snow load:	=	14.0 psf					
		99.6 psf					
Windward Snow Drifts 2 - Aga	<u>inst walls, par</u>	apets, etc					
Upwind fetch	lu =	78.0 ft					
Projection height	h =	6.0 ft					
Snow density	g =	16.6 pcf					
Balanced snow height	hb =	0.84 ft					
	hd =	2.10 ft					
	hc =	5.16 ft					
hc/hb >0.2 = 6.1	Therefore, d	esign for drift					
Drift height (hd)	=	2.10 ft					
Drift width	w =	8.40 ft					
Surcharge load:	pd = γ*hd =	34.9 psf					
Balanced Snow load:	=	14.0 psf					
		48.9 psf					

Note: If bottom of projection is at least 2 feet above hb then snow drift is not required.

WD Partners 7007 Dsicovery Blvd Dublin, OH wdpartners.com

JOB TITLE	JOB TITLE Walmart Renovation			
	Store 2403-278			
JOB NO.	WALGP0402 SHEET NO.			
CALCULATED BY	-	DATE		
CHECKED BY		DATE		

Nominal Snow Forces


ASCE 7-16

Snow Loads - from adjacent building or roof:

Roof slo		<u>Higher Roof</u> 1.2 deg	<u>Lower Roof</u> 0.25 / 12 = 1.2	deg
Horiz. eave to ridge	dist (W) =	346.8 ft	45.7 ft	Ū
Roof length parallel to r		603.3 ft	70.7 ft	
Projection height (roof s			6.0 ft	
Building separa			0.0 ft	
Turne of Reef		Manaalana	Monoslope	
Type of Roof	_	Monoslope	•	
Ground Snow Load	Pg =	20.0 psf	20.0 psf	
Risk Category	=	II	II	
Importance Factor	=	1.0	1.0	
Thermal Factor	Ct =	1.00	1.00	
Exposure Factor	Ce =	1.0	1.0	
Pf = 0.7*Ce*Ct*I*Pg	=	14.0 psf	14.0 psf	
Unobstructed Slippery Surface	ce	yes	yes	
Slanad roof Easter	Co	1.00	1.00	
Sloped-roof Factor Balanced Snow Load	Cs = Ps =	14.0 psf	1.00 14.0 psf	
Dalanced Show Edad	F3 -	14.0 psi	14.0 psi	
Rain on Snow Surcharge An	gle	6.94 deg	0.91 deg	
Code Maximum Rain Surcha	irge	5.0 psf	5.0 psf	
Rain on Snow Surcharge	=	5.0 psf	0.0 psf	NOTE: Alternate spans of continuous beams and
Ps plus rain surcharge	=	19.0 psf	14.0 psf	other areas shall be loaded with half the design
Minimum Snow Load	Pm =	20.0 psf	20.0 psf	roof snow load so as to produce the greatest possible effect - see code.
Uniform Roof Design Snov Building Official Minir		20.0 psf	20.0 psf	
ç				
Leeward Snow Drifts - from adjac				
Upper roof length	lu =	603.3 ft	, Lu	
Snow density	γ =	16.6 pcf	-	\rightarrow / $>$
Balanced snow height	hb = hc =	0.84 ft 5.16 ft		Surcharge Load
hc/hb >0.2 = 6.1 T I		design for drift	<u>א</u> ל ד	Due to Drifting
Adj structure factor	=	1.00	hc hc	
Drift height (hc)	=	5.16 ft	h h h	
Drift width		27.93 ft	<u>+</u>	Balanced Snow Load
	= w = d = y*hd = b	85.6 psf		hbų li i i i i i i i i i i i i i i i i i i
Balanced Snow load:	= 210 - 1	14.0 psf	<u>.</u>	
Balanood Chow load.			eward drift controls	W
Windward Snow Drifts - from low	roof agai			
Lower roof length	lu =	45.7 ft		
Adj structure factor	=	1.00		
Drift height	hd =	1.57 ft		
Drift width	w =	6.29 ft		
Surcharge load: po	d = γ*hd =	26.1 psf		
Balanced Snow load:	=	14.0 psf		W
		40.1 psf		
Sliding Snow - onto lower roof			Upper Roof	
Sliding snow = 0	4 Pf W =	1942.2 plf	11	
Distributed over		129.5 psf		
	d + hb =	8.64 ft	Sliding	
hd + hb > h therefore slidir		85.6 psf	Snow Lo	pad
Balanced sn		14.0 psf	Balanced	╧
Uniform snow load within 15' of hig				
	ner roor =	99.6 pst	Snow Lo	ad l
	w =	99.6 psf 15.00 ft	Snow Lo	ad S W Lower Roof

PRCA20231 City of Payallup Development & Permitting Studies (ISSUED PERMIT Building Plenning Engineering Public Wor Fire Traffic	WD Partner 7007 Dsicovery B	Blvd						
	Seismic Loads:	ASCE 7- 16	5				Strength Leve	el Forces
	Risk Category : Importance Factor (I) : Site Class :	II 1.00 D						
	Ss (0.2 sec) = S1 (1.0 sec) =	126.10 %g 43.50 %g						
	Fa = 1.000 Fv = 1.865		Sms = Sm1 =	1.261 0.811	S _{DS} = S _{D1} =		Design Category = Design Category =	D D
	Seismic Design Category =	D						
	Redundancy Coefficient ρ = Number of Stories: Structure Type: Horizontal Struct Irregularities: Vertical Structural Irregularities:	No plan Irregu	larity					
	Flexible Diaphragms: Building System: Seismic resisting system: System Structural Height Limit: Actual Structural Height (hn) =	Building Fran Special reinfo 160 ft 18.1 ft See ASCE7 S	ection 12.2.5 fo		d other sys	stem limitations		
	Response Modification Co		5.5					
	Over-Strength Deflection Amplification	= actor (Ωo) =	2 4 0.841 0.541					
	Seismic Loa Special Seismic Load PERMITTED ANALYTICAL	Effect (Em) = E				= 1.3Qe +/- 0.1 = 2Qe +/- 0.1	-	seismic force
	Simplified Analysis	- Use Equival	ent Lateral Forc	e Analysis				
		coef. $(C_T) =$ period $(Ta) =$ al period $(T) =$ Period $(TL) =$	- Permittec 0.020 C _T h _n [^] = ASCE7 map = S _{DS} I/R = Sd1 I /RT = 0.044SdsI =	0.176 sec 6 0.153 0.560 0.037 0.153 Design Base			Cu = 1.40 CuTa = 0.246 Use T = 0.176	
	Model & Seismic Respo	onse Analvsis	S .	- Permitted (see	e code for	procedure)		
	ALLOWABLE STORY DRIF	_				,,		

Allowable story drift $\Delta a = 0.020$ hsx where hsx is the story height below level x

Anchorage of Structural Walls to elements providing lateral support

Fp = not less than 0.2KaleWpFlexible diaphragm span Lf =Enter Lf to calculate Fp for flexible diaphragmFp =0.4SdskaleWp = 0.404 Wp, but not less than 0.2Wp (rigid diaphragm)ka= 1 Fp = 0.404 Wpbut Fp shall not be less than 5 psf

MEMBER DESIGN

Bearing Walls and Shear Walls (out of plane force)

Diaphragms

Fp = (Sum Fi / Sum Wi)Wpx + Vpx =(Sum Fi / Sum Wi)Wpx + Vpxneed not exceed 0.4 SdsleWpx + Vpx =0.404 Wpx + Vpxbut not less than 0.2 SdsleWpx + Vpx =0.202 Wpx + Vpx

ARCHITECTURAL COMPONENTS SEISMIC COEFFICIENTS

Architectural Component : Cantilever Elements (Unbraced or Braced to Structural Frame Below Its Center of Mass): Parapets and cantilever interior nonstructural walls

Importance Factor (Ip): 1.0				
Component Amplification Factor (a _p) =	2.5	h= 18.1 f	eet	
Comp Response Modification Factor (R _p) =	2.5	z= 22.1 f	eet z/h =	1.00
Over-Strength Factor (Ωo) =	2			
Fp = 0.4a _p SdsIpWp(1+2z/h)/Rp =	1.211 Wp			
not greater than Fp = 1.6SdslpWp =	1.614 Wp			
but not less than Fp = 0.3SdslpWp =	0.303 Wp	use Fp =	1.211 Wp	

MECH AND ELEC COMPONENTS SEISMIC COEFFICIENTS

Seismic Design Category D & Ip=1.0, therefore see ASCE7 Section 13.1.4 for exceptions

Mech or Electrical Component : Air-side HVAC, fans, air handlers, ac units, cabinet heaters, air distribution boxes, and other mechanical components constructed of sheet metal framing.

Importance Factor (Ip) : 1.0				-	
Component Amplification Factor (a _p) =	2.5	h=	18.1 feet		
Comp Response Modification Factor (R_p) =	6	z=	22.1 feet	z/h =	1.00
Over-Strength Factor (Ωo) =	2				
Fp = 0.4a _p SdsIpWp(1+2z/h)/Rp =	0.504 Wp				
not greater than Fp = 1.6SdslpWp =	1.614 Wp				
but not less than Fp = 0.3SdslpWp =	0.303 Wp	use	e Fp =	0.504 Wp	

WD Partners 7007 Discovery Blvd Dublin, OH 43017 wdpartners.com

Lic. # : KW-06003498

Printed: 18 MAR 2022, 2:27PM File: WALGP0402 - Calculations.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24 WDA&E

Seismic Demands on Nonstructura	al Components per ASCE 7-16 Sect	ion 13.3.1 and 13.4.1
h = 17.50 ft	S _{DS} = 0.8410	
Description : RTU		
a _P = 2.50 W _P = 1,000.0 Fp Upper Limit = 1,345.60 Fp Lower Limit = 252.30	z = 17.50 ft R _P = 6.0 Fp Calc'd : Components = Connections =	0 I _P = 1.00 z/h : Actual = 1.00 z/h Design = 1.00 420.50 Fp DESIGN : Components = 420.50 420.50 Connections = 420.50
Description : Air-Curtain		
$a_{P} = 2.50$ W $_{P} = 169.00$ Fp Upper Limit = 227.41 Fp Lower Limit = 42.64	z = 9.00 ft R _P = 6.0 Fp Calc'd : Components = Connections =	10 I _P = 1.00 z/h : Actual = 0.51 z/h Design = 0.51 48.05 Fp DESIGN : Components = 48.05 48.05 Connections = 48.05
Description : RCU1		
a _P = 2.50 W _P = 230.00 Fp Upper Limit = 309.49 Fp Lower Limit = 58.03	z = 17.50 ft R _P = 3.0 Fp Calc'd : Components = Connections =	0 I _P = 1.00 z/h : Actual = 1.00 z/h Design = 1.00 193.43 Fp DESIGN : Components = 193.43 193.43 Connections = 193.43
Description : RCU2		
a _P = 2.50 W _P = 1,250.0 Fp Upper Limit = 1,682.00 Fp Lower Limit = 315.38	z = 17.50 ft R _P = 3.0 Fp Calc'd : Components = Connections =	0 I _P = 1.00 z/h : Actual = 1.00 z/h Design = 1.00 1,051.25 Fp DESIGN : Components = 1,051.25 1,051.25 1,051.25 1,051.25 Connections = 1,051.25
W P : Component operating weight Z : Height of point of attachment	cation factor (Table 13.5-1 or Table 13.6-1)	Fp - Calc'd:Calculated Fp, Eq (13.3-1), Same units as WpFp - Upper:Upper Limit on Fp, Eq (13.3-2) ,(Same units as WpFp - Lower:Lower Limit on Fp, Eq (13.3-3), Same units as WpFp - Design:Fp for design purposes, Same units as Wp

City of Puyallup Development & Permitting Services /ISSUED PERMIT Building Planning Engineering Public Works Fire Traffic

Project Title: Engineer: Project ID: Project Descr:

1 PROJECT INFORMATION

1.1 PROJECT AUTHORIZATION

The following report presents the results of PSI's geotechnical investigation performed for the proposed Walmart Store #2403 expansion located at 310 31st Avenue Southeast in Puyallup, Washington. A Site Vicinity Map is presented in Figure 1. This investigation was performed for Galloway and Company, Inc, (Galloway) in general accordance with PSI proposal number 0704-353378, dated September 5, 2021. Project authorization was provided by Mr. Ryan James of Galloway in an email September 10, 2021.

1.2 PROJECT DESCRIPTION

Project information was provided by Mr. Ryan James, in an email dated September 3, 2021. The provided information included the following:

- A Utility Plan Titled "Walmart, Puyallup, WA", dated June 30, 2005 by Pacland

Based on the provided information, PSI understands the improvements at the existing Walmart store will include a 3,500 square foot addition on shallow foundations located at the southwest corner of the existing Walmart Superstore. Structural loads planned were not provided, however, based on similar projects, PSI estimates column and wall loads will be on the order of a maximum of 100 kips and 2 kips per linear foot, respectively. The ground floor will remain at grade and consist of a reinforced concrete slab with floor loads less than 150 psf.

Should any of the above information or design basis made by PSI be inconsistent with the planned construction, it is requested that you contact us immediately to allow us to make any necessary modifications to this report. PSI will not be held responsible for changes to the project if not provided the opportunity to review the information and provide modifications to our recommendations.

1.3 PURPOSE AND SCOPE OF SERVICES

Based on correspondence with Mr. Ryan James and PSI proposal number 0704-353378, the purpose of this exploration was to evaluate the subsurface at the site and to develop geotechnical foundation design criteria for support of the proposed addition.

The scope of the exploration included a reconnaissance of the project site and completion of two test borings using hollow stem auger drilling methods. The project analysis included laboratory testing of samples collected from the borings, an engineering analysis and evaluation of the subsurface materials encountered, and preparation of this report.

2 SITE AND SUBSURFACE CONDITIONS

2.1 SITE DESCRIPTION

The site is located at 310 31st Avenue Southeast in Puyallup, Washington. It consists of a single parcel that contains Walmart Store #2403 and its associated parking and drive lanes. The site is bound on all sides by commercial and residential properties. Highway 512 is located to the west and Bradley Lake is located to the east.

2.2 TOPOGRAPHY

Based on The National Map developed by the United States Geological Survey, the property for the existing Walmart is relatively flat, at an elevation of about 440 to 443 feet (NAVD88). In the location of the proposed addition, the elevation is approximately 443 feet.

2.3 GEOLOGY

Based on a review of soils on the United States National Geologic Map Database, the site is mapped as Pleistocene glacial recessional outwash consisting of silt, clay, sand, and gravel.

2.4 GROUNDWATER

Groundwater was observed during drilling processes in boring B1 and B2 at a depth of approximately 18 feet bgs. Based on a review of public well log information from the Washington Department of Natural Resources, groundwater was anticipated to be 20 to 25 feet below grade

2.4.1 LOCAL FAULTING AND SEISMIC DESIGN PARAMETERS

PSI has reviewed the USGS Quaternary Fault and Fold Database of the United States and the following have been mapped within about 15 miles of the project site.

Fault	Distance (Miles)			
Tacoma Fault Zone	6.3, North			

Table	1 –	Local	Faulting
-------	-----	-------	----------

Based on site explorations and geologic mapping, we recommend using Site Class D to evaluate the seismic design of the structure. Site coefficients and spectral acceleration parameters for structural design are provided in Table 1.

Table 2 - Seismic Design Parameters (47.16012° N, 122.28943° W) – SITE CLASS D

(1)120012 1()1221203 (1				
ASCE 7-16 CODE BASED RESPONSE SPECTRUM MCER GROUND MOTION - 5% DAMPING 1% IN 50 YEARS PROBABILITY OF COLLAPSE					
S _s 1.126					
S ₁ 0.435					
MAPPED MAXIMUM CONSIDERED EARTHQUAKE SPECTRAL RESPONSE ACCELERATION PARAMETER (SITE CLASS D)					
F _A	1.2				
Fv	Null – See Section 11.4.8				
S _{MS} 1.513					
S _{M1} Null – See Section 11.4.8					
DESIGN SPECTRAL RESPONSE ACCELERATION PARAMETER					
S _{DS}	1.009				
S _{D1}	Null – See Section 11.4.8				

Notes: S_s = Short period (0.2 second) Mapped Spectral Acceleration

S₁ = 1.0 second period Mapped Spectral Acceleration

 S_{MS} = Spectral Response adjusted for site class effects for short period = $F_A \bullet S_S$

 S_{M1} = Spectral Response adjusted for site class effects for 1-second period = $F_v \bullet S_1$

 S_{DS} = Design Spectral Response Acceleration for short period = 2/3 • S_{MS}

 S_{D1} = Design Spectral Response Acceleration for 1-second period =2/3 • S_{M1}

F_A = Short Period Site Coefficients

F_V = Long Period Site Coefficients

2.4.2 GEOLOGIC HAZARDS

The following table presents a qualitative assessment of geologic hazards considering the site class, the subsurface soil properties, the groundwater elevation, and probabilistic ground motions:

Liquefaction	Low	Based on the subsurface conditions encountered in the soil borings drilled on site, the area has a low risk of liquefaction.
Earthquake Shaking	Strong	The area is mapped as being in a zone of Strong Earthquake Shaking, based on the Seismic Response of the Washington Geologic Information Portal.
Slope Stability	Low	The site and surrounding areas are relatively flat and thus are at low risk of landslide.
Surface Rupture	Low	No known active faults underlie the site, based on the USGS Quaternary Faults Map

PSI Project Number: 07041419 Walmart #2403 – Puyallup, WA October 20, 2021 Page 5

2.5 SUBSURFACE CONDITIONS

A detailed description of the Field Exploration Program can be found in Appendix A. Laboratory test results are presented on the exploration logs and in detail in Appendix B.

In borings B1 and B2, three inches of asphalt was observed overlying three inches of aggregate base rock. Subsurface conditions at the site generally consist of poorly graded gravelly sand with trace silt. Based on SPT blow counts, the sand had a relative density of medium dense to vary dense and moisture percentages of 7 to 29%. The sand extended to the termination depth of 26½ feet in boring B1. Underlying the sand at a depth of 20 feet bgs in boring B2 is poorly grade sandy gravel with trace silt. The gravel had a relative density of very dense and extended to the termination depth of 26½ in boring B2.

3 GEOTECHNICAL RECOMMENDATIONS

In our opinion, the proposed Walmart addition can be supported on shallow foundations, provided the geotechnical engineering recommendations in this report are followed.

3.1 SITE PREPARATION

PSI recommends that organics, loose, and otherwise unsuitable soils at the project site be stripped and removed from the building areas. Buried piping, where encountered, must be completely removed and rerouted from below proposed building foundations. Concrete structures and remnants of previous structures encountered during site excavation and site construction operations should be completely removed beneath the planned foundations and replaced with an engineered fill.

After the surficial materials have been stripped and completely removed from proposed development areas, PSI should observe the subgrade to identify any loose or unsuitable areas. Where organic, loose, or otherwise unsuitable soils are identified, within structural areas of the project, these soils should be completely removed and replaced with structural fill.

3.2 WET WEATHER CONSTRUCTION

It has been PSI's experience that during warm, dry weather, the moisture content of the upper few feet of soil will decrease; however, below the upper few feet, the moisture content of the soil tends to remain relatively unchanged and often well above the optimum moisture content for compaction.

As a result, the subcontractor must use care to protect exposed subgrade from disturbance by construction traffic, particularly during wet weather. The Contractor must employ construction equipment and procedures that prevent disturbance and softening of the subgrade soils. The use of excavation equipment equipped with smooth-edged buckets for excavation with the concurrent placement of granular work pads tends to minimize the potential for subgrade disturbance.

PSI Project Number: 07041419 Walmart #2403 – Puyallup, WA October 20, 2021 Page 6

3.3 EXCAVATION CONSIDERATIONS

Open excavations exceeding four feet are not anticipated; however, if they do occur, excavations should be performed in accordance with OSHA regulations as stated in 29 CFR Part 1926. The contractor is solely responsible for designing and constructing stable, temporary excavations and should shore, slope, or bench the sides of the excavations as required to maintain stability of both the excavation sides and bottom. The contractor should evaluate the soil exposed in the excavations as part of the required safety procedures. In no case should slope height, slope inclination, or excavation depth, including utility trench excavation depth, exceed those specified by local, state, and federal safety regulations. PSI is providing this information solely as a service to our client. PSI does not assume responsibility for construction site safety or the contractor's or other parties' compliance with local, state, and federal safety or other regulations. Temporary excavations above the water table can be sloped at 1H:1V.

3.4 STRUCTURAL FILL MATERIALS

3.4.1 GENERAL

PRCA20231436

Intertek

Structural fill materials should be compacted to at least 95% of the maximum dry density, at a moisture content within about 3% of optimum, as determined by ASTM D1557. Coarse granular fill should be compacted until well keyed. No brush, roots, construction debris, or other deleterious material should be placed within the structural fills. The earthwork contractor's compactive effort should be evaluated based on field observations, and lift thicknesses should be adjusted accordingly to meet compaction requirements. Additional information regarding specific types of fill is provided below.

3.4.2 IMPORTED GRANULAR FILL

Imported granular fill materials should consist of sand, gravel, or fragmental rock with a maximum size on the order of 4 inches and with not more than 8% passing the No. 200 sieve (washed analysis). Material satisfying these requirements can usually be placed during periods of wet weather. The first lift of granular fill placed over a fine-grained subgrade should be about 18 inches thick and subsequent lifts about 12 inches thick when using medium to heavy weight vibratory rollers. Granular structural fill should be limited to a maximum size of about 1½ inches when compacted with hand-operated equipment. We also recommend that lift thicknesses be limited to less than 8 inches when using hand-operated vibratory plate compactors.

3.4.3 UTILITY TRENCH BACKFILL

Utility trench backfill should consist of granular fill limited to a maximum size of about 1½ inches. The granular trench backfill should be compacted to at least 95% of the maximum dry density as determined by ASTM D1557 in the upper 4 feet of the trench and to at least 90% of this density below this depth. Lift thicknesses should be evaluated based on field density tests; however, particular care should be taken when operating hoe-mounted compactors to prevent damage to the newly placed conduits. Flooding or jetting to compact the trench backfill should not be permitted.

3.5 FOUNDATION RECOMMENDATIONS

3.5.1 SPREAD FOOTINGS

Based on the loads discussed earlier in this report, the proposed structure can be supported on conventional spread footing foundations constructed in accordance with the following design criteria. Footings should be established at a minimum depth of 1½ feet below the lowest adjacent finished grade. In addition, isolated column and continuous footings should have a minimum width of at least 3 and 1½ feet, respectively.

We recommend the use of a smooth-edged excavator to make the footing excavations. A geotechnical engineer should observe the footing subgrade at the time of excavation and prior to placing the reinforcing steel and concrete. Footings established in accordance with these criteria can be designed on the basis of an allowable soil bearing pressure of 3,000 psf. This value applies to the total of dead load plus frequently and/or permanently applied live loads and can be increased by one third for the total of all loads; dead, live, and wind or seismic.

If fill and/or other unsuitable soils are encountered at footing depth, the unsuitable material should be over excavated to firm subgrade material and replaced with granular structural fill. The total width of the over excavation area beneath the design footing elevation should be increased one foot in plan area for every foot of depth of over excavation. The over excavated areas should be backfilled with clean crushed rock and compacted to at least 95% of the maximum dry density as determined by ASTM D1557.

Horizontal shear forces can be resisted partially or completely by frictional forces developed between the base of spread footings and the underlying soil. The total shearing resistance between the foundation footprint and the soil can be computed as the normal force, i.e., the sum of all vertical forces (dead load plus real live load), times the coefficient of friction equal to 0.40 (ultimate value). If additional lateral resistance is required, passive earth resistance against embedded footings or walls can be computed using a pressure based on an equivalent fluid with a unit weight of 300 pcf. This design passive earth pressure assumes granular structural fill is used to backfill the footing excavation or the footings will be neat formed in situ.

3.5.2 SHALLOW FOUNDATION CONSTRUCTION CONSIDERATIONS

The foundation excavations should be observed by a representative of PSI prior to steel or concrete placement to assess that the foundation materials are consistent with the materials discussed in this report. Soft or loose soil zones encountered at the bottom of the footing excavations should be recompacted or removed and replaced with properly compacted structural fill as directed by the geotechnical engineer. Cavities formed as a result of excavation of soft or loose soil zones should be backfilled with dense graded compacted crushed stone.

After opening, footing excavations should be observed and concrete placed as quickly as possible to avoid exposure of the footing bottoms to wetting and drying. Surface runoff water should be drained away from the excavations and not be allowed to pond. If possible, the foundation concrete should be placed during the same day the excavation is made. If it is required that footing excavations be left open for more than one day, the soils in the excavation should be protected to reduce evaporation or entry of moisture.

3.5.3 FLOOR SLAB SUPPORT

PSI recommends the slab-on-grade be underlain by at least 8 inches of angular, free-draining rock with less than 5% fines. The drain rock should be compacted until it is well keyed. In addition, it may be appropriate to install a durable vapor-retarding membrane to limit the risk of damp floors in areas that will have moisture-sensitive materials placed directly on the floor. The vapor-retarding membrane should be installed in accordance with the manufacturer's recommendations.

PSI Project Number: 07041419 Walmart #2403 – Puyallup, WA October 20, 2021 Page 8

In our opinion, a coefficient of subgrade reaction, k, of 100 pci can be used to characterize the support with a minimum thickness of 8 inches of "drain rock" (based on a 1x1-foot plate load). However, depending on how the slab load is applied, the value will have to be geometrically modified. The value should be adjusted for larger areas using the following expression for cohesionless soil:

Modulus of Subgrade Reaction, for $k_s = k \left(\frac{B+1}{2B}\right)^2$ for cohesionless soil,

where: ks = coefficient of vertical subgrade reaction for loaded area;

k = coefficient of vertical subgrade reaction for 1x1 square foot area; and,

B = width of area loaded, in feet.

3.6 PAVEMENT

Prior to pavement construction, the pavement subgrade should be prepared as indicated previously in this report. PSI has provided the following pavement subgrade parameters based on the California Bearing Ratio (CBR) associated with the soils found at the site:

- Native Gravelly Sand Subgrade California Bearing Ratio (CBR) 10
- Native Gravelly Sand Subgrade Resilient Modulus (MR) 9,388 psi

PSI has provided the following estimated pavement design parameters based on experience in the general area of the project site with similar subgrade soils. Table 3 below contains our pavement section recommendations.

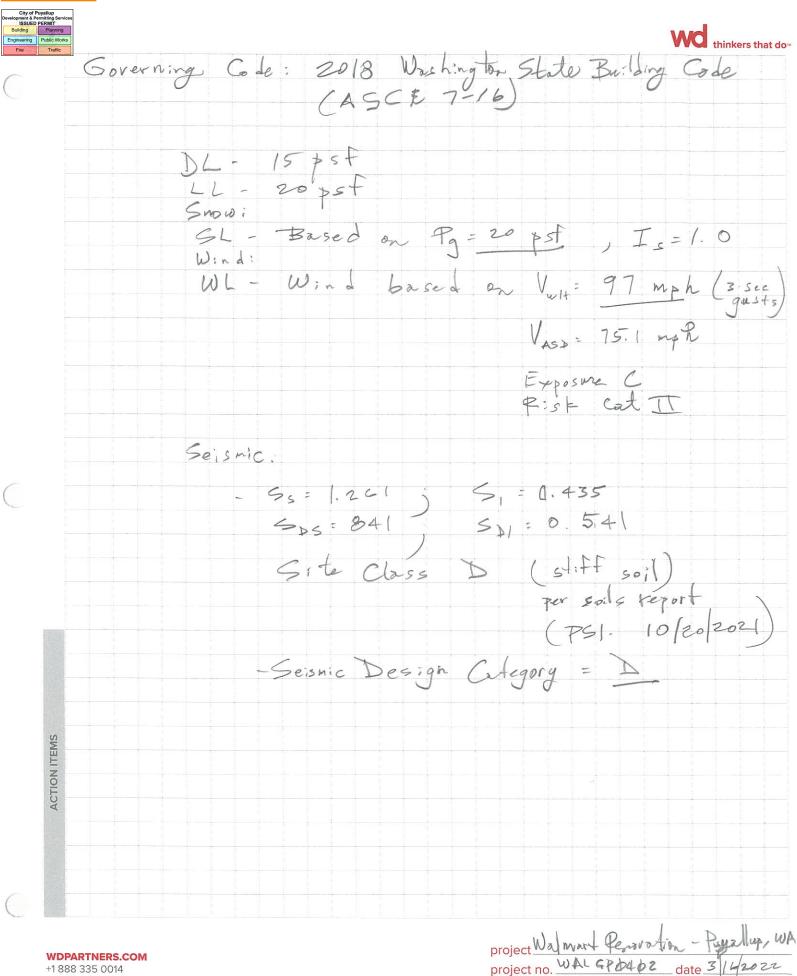
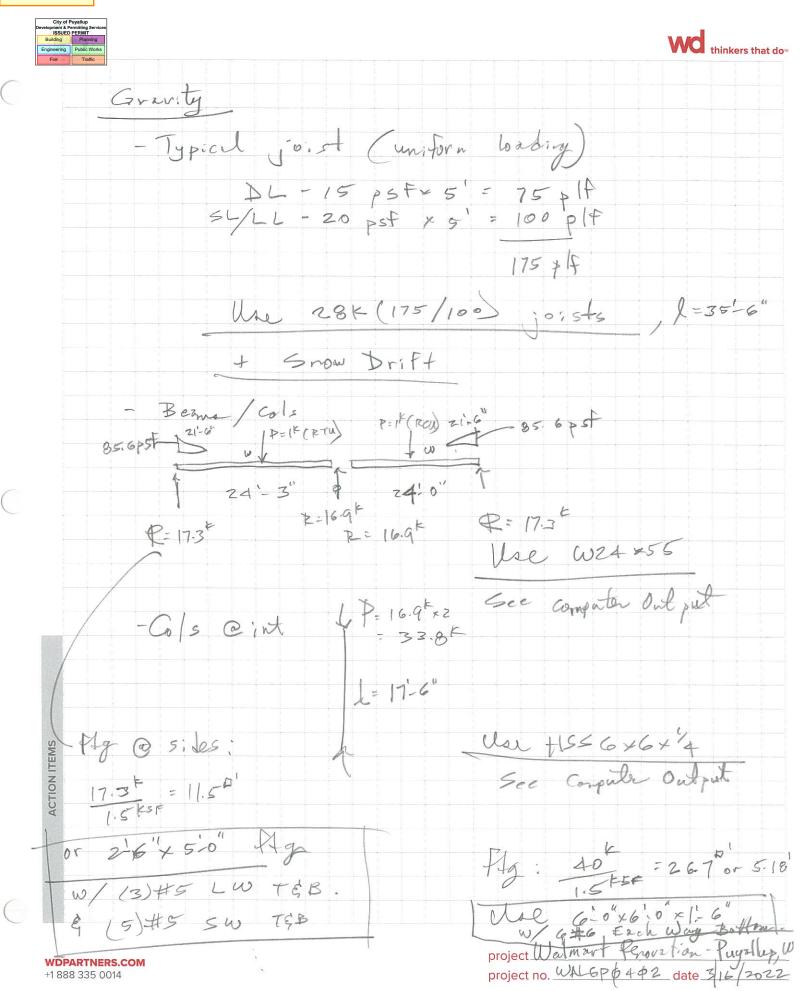
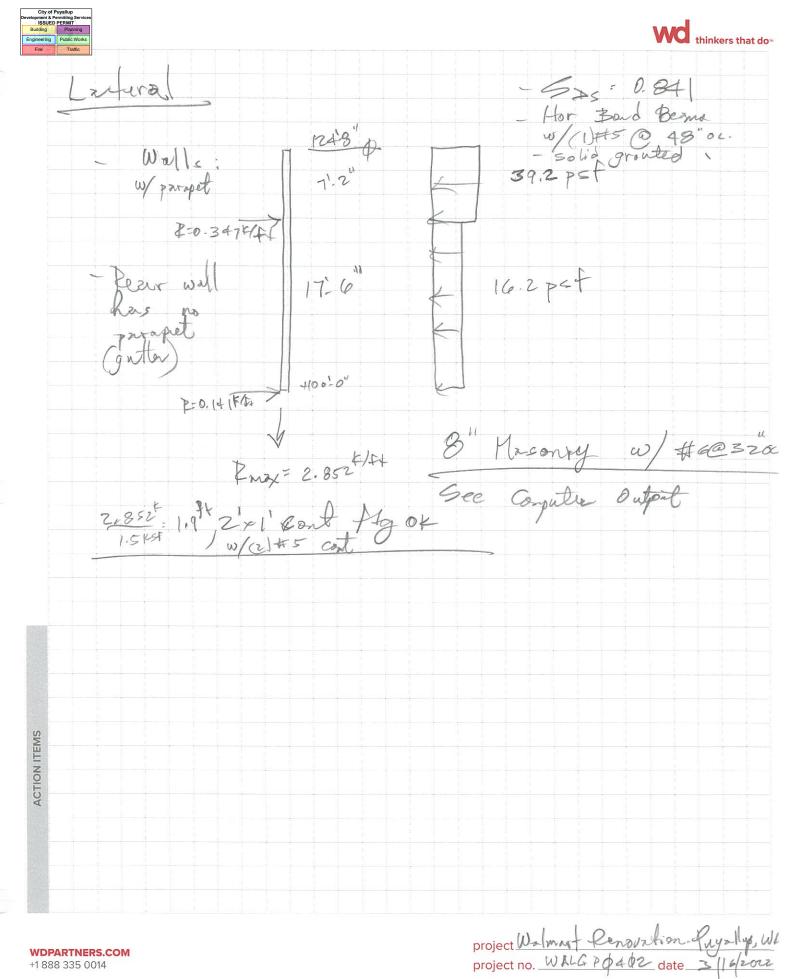

- Design Life = 20 years
- Reliability = 95%
- Initial Serviceability Index = 4.2 for asphalt, 4.5 for concrete
- Terminal Serviceability Index = 2.5
- Estimated Traffic Volumes
 - Light-Duty 30,000 ESALs
 - Heavy-Duty 80,000 ESALs

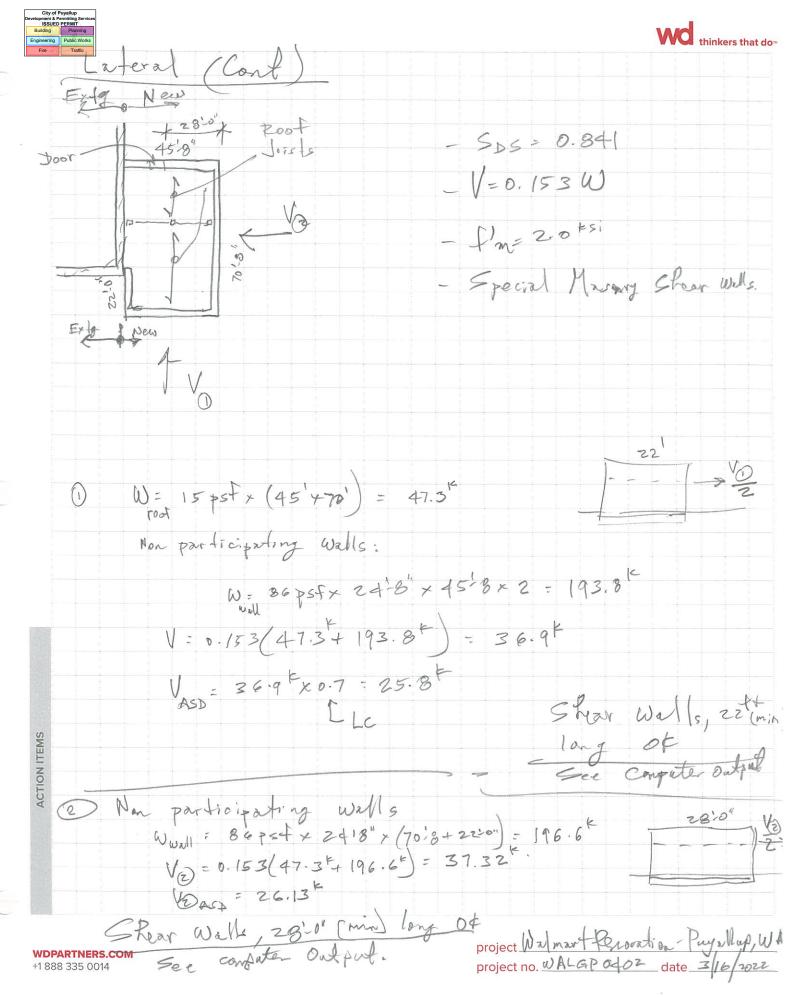
Table 4 - Recommended Pavement Sections

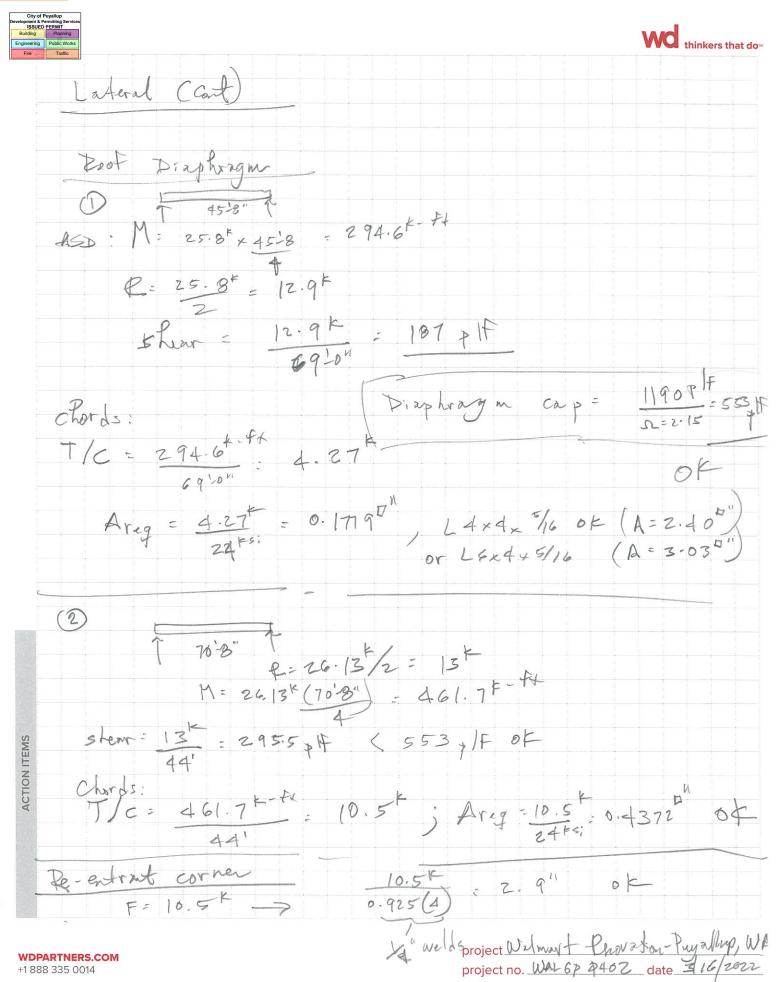
	FLEXIBLE Light-Duty	FLEXIBLE Heavy-Duty	RIGID			
Asphalt / Concrete Course	3 inches Asphalt	4 inches Asphalt	4 inches Concrete			
Gravel Base Course	8 inches	8 inches	6 inches			

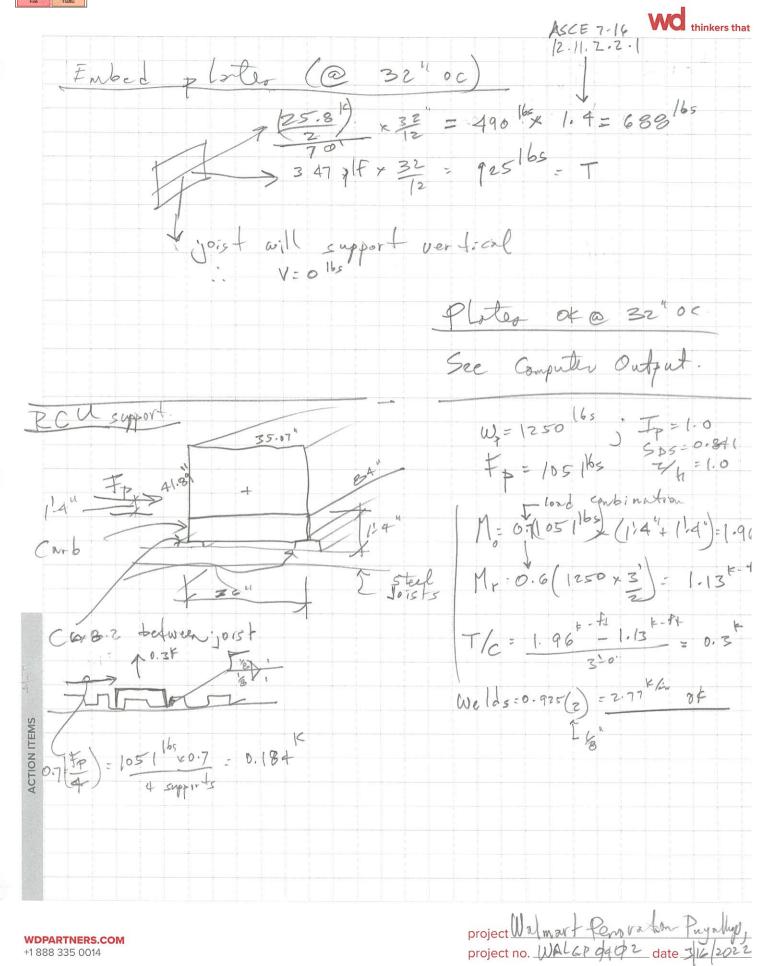

The recommended pavement sections in Table 4 are based on the AASHTO design methods for flexible and rigid pavement design, and a design life of 20 years. In addition, the ranges also represent typical light-duty and heavy-duty type pavement sections for use in preliminary design.



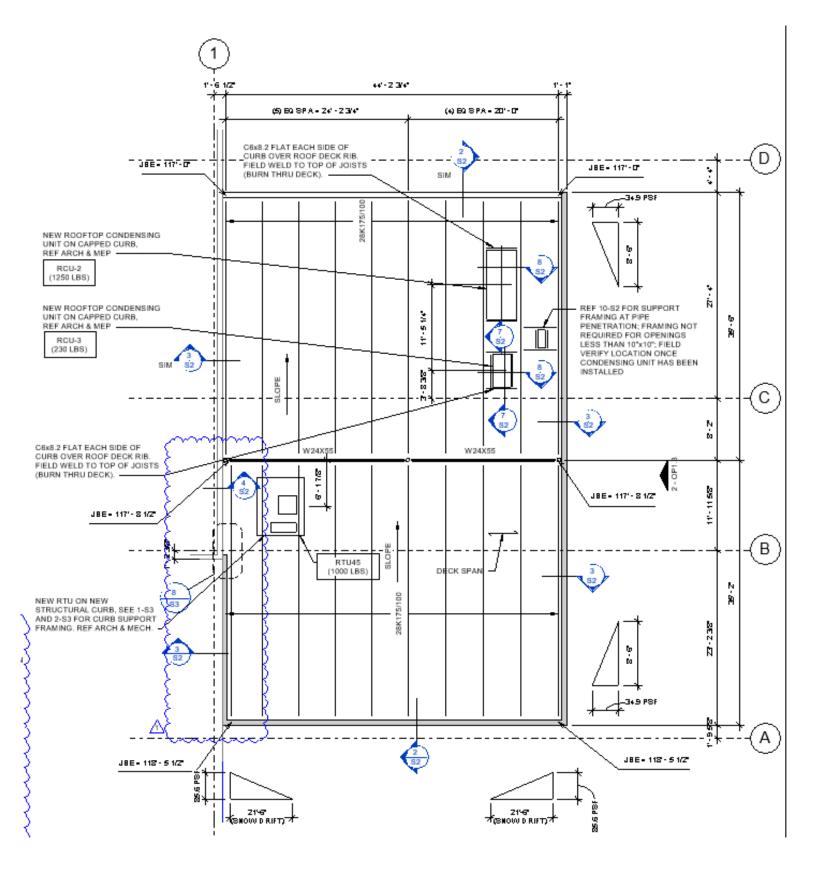
+1 888 335 0014

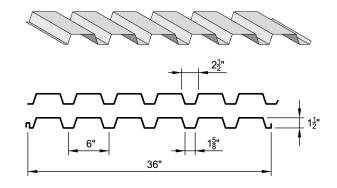






+1 888 335 0014




WDPARTNERS.COM +1 888 335 0014

User Defined Criteria									
Deck Application:	Roof								
Design Method:	ASD								
Deck Type:	B, BI, BV, BIV								
Gage:	Standard								
Yield Stress (ksi):	80								

Roof Decks - Types B, BI, BV, BIV

- Type B (Wide Rib) provides the best balance of strength and economy of all the 1 1/2" deep roof decks. Where rigid roofing insulation is used with B deck, a minimum 1" thickness is required.
- Available with nested side laps, types B and BV or with interlocking side laps, types BI and BIV.
- Available as a vented deck, types BV and BIV are manufactured with slot vents in the bottom flutes. The openings can be specified from 0.5% up to 1.5% of total surface. Types BV and BIV are to be specified when venting is required for cementitious insulation fill.
- Also available with rolled-in hanger tabs (non-vented types only).

See load tables on page 2

The data published in this document has been developed using recognized engineering standards and is intended for general information only. Although the data shown is believed to be accurate, New Millennium Building Systems does not assume any liability or obligation of any kind or nature arising from or related to the data provided herein and/or its use. Applicability of the products and the accuracy of the data should be assessed by a licensed professional engineer or architect to determine the suitability for the intended application.

© 2022 New Millennium Building Systems, LLC. All Rights Reserved. New Millennium Building Systems is a wholly owned subsidiary of Steel Dynamics, Inc.

Roof Decks - Types B, BI, BV, BIV

Section Properties

Properties

Gage	Thickness (in)	Coverage (in)	Weight (psf)
22	0.0295		1.63
20	0.0358	36	1.98
18	0.0474	30	2.62
16	0.0598		3.30

Design Strengths

Gage	F _y (ksi)	l _□ 1 Span (in⁴/ft)	I _D 2+ Span (in⁴/ft)	l _p (in⁴/ft)	ا (in⁴/ft)	S _p (in³/ft)	S _n (in³/ft)	Mn,p/Ω (in-lb/ft)	Mn,n/Ω (in-lb/ft)	Vn/Ω (lb/ft)	*Rbe/Ω (lb/ft)	*Rbi/Ω (lb/ft)
22	60	0.157	0.173	0.147	0.172	0.160	0.171	5756	6160	3013	981	1771
20	60	0.198	0.212	0.190	0.211	0.212	0.220	7623	7909	3642	1398	2544
18	60	0.274	0.281	0.271	0.281	0.298	0.310	10690	11127	4788	2336	4288
16	40	0.355	0.355	0.355	0.355	0.390	0.395	9332	9454	3996	2381	4396

Notes:

ASD

1. Section properties are calculated in accordance with the AISI S100-16.

2. Web crippling design strengths* are based on minimum bearing lengths of 1 1/2" for end bearing and 3" for interior bearing.

Allowable Uniform Loads and Maximum Construction Spans

		Allowable Uniform Total Load (psf) / Load that Produces L/240 Deflection (psf)													
Span Condition	Gage					Center to Cent	er Span (ft - in)					Max. Constr. Span			
		5 - 0	5 - 6	<mark>6 - 0</mark>	6 - 6	7 - 0	8 - 0	9 - 0	10 - 0	11 - 0	12 - 0	(ctr / ctr)			
	22	153 / 82	127 / 62	107 / 48	91 / 37	78 / 30	60 / 20	47 / 14	38 / 10	- / -	- / -	9 - 7			
Single	20	203 / 104	168 / 78	141 / 60	120 / 47	104 / 38	79 / 25	63 / 18	51 / 13	42 / 10	35 / 8	12 - 8			
Single	18	285 / 144	236 / 108	198 / 83	169 / 66	145 / 52	111 / 35	88 / 25	71 / 18	59 / 14	49 / 10	17 - 9			
	16	249 / 186	206 / 140	173 / 108	147 / 85	127 / 68	97 / 45	77 / 32	62 / 23	51 / 17	43 / 13	15 - 6			
	22	162 / <mark>219</mark>	134 / <mark>164</mark>	113 / <mark>127</mark>	96 / <mark>100</mark>	83 / 80	64 / 53	50 / 38	41 / 27	34 / 21	28 / 16	11 - 9			
Double	20	208 / <mark>268</mark>	172 / <mark>201</mark>	145 / <mark>155</mark>	124 / 122	107 / 98	82 / 65	65 / 46	53 / 33	43 / 25	37 / 19	15 - 7			
Double	18	291 / <mark>356</mark>	242 / <mark>267</mark>	203 / <mark>206</mark>	174 / 162	150 / 130	115 / 87	91 / 61	74 / 44	61 / 33	51/26	21 - 11			
	16	247 / <mark>448</mark>	205 / <mark>337</mark>	173 / <mark>260</mark>	147 / <mark>204</mark>	127 / <mark>163</mark>	98 / <mark>109</mark>	77 / 77	63 / 56	52 / 42	44 / 32	19 - 1			
	22	201 / 171	167 / 129	141 / 99	120 / 78	104 / 62	80 / 42	63 / 29	51 / 21	42 / 16	36 / 12	11 - 11			
Triple	20	258 / 210	214 / 158	<mark>180 / 121</mark>	154 / 95	133 / 76	102 / 51	81 / 36	66 / 26	54 / 20	46 / 15	15 - 10			
Thple	18	361 / 278	300 / 209	253 / 161	216 / 127	187 / 101	143 / 68	114 / 48	92 / 35	76 / 26	64 / 20	22 - 3			
	16	307 / <mark>351</mark>	255 / <mark>264</mark>	215 / 203	183 / 160	159 / 128	122 / 86	96 / 60	78 / 44	65 / 33	54 / 25	19 - 5			

Notes:

4.

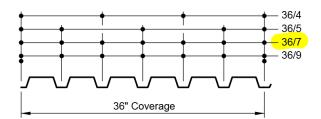
3. Allowable Uniform Loads and maximum construction spans shown are based on the following criteria: ANSI/SDI RD-2017 Standard for Steel Roof Deck

Minimum bearing lengths of 1 1/2" for end bearing and 3" for interior bearing. Check web crippling if minimums are not met.

Maximum construction spans shown include a check for a nominal 200 lbs. concentrated load supported by a one foot section of deck per SDI criteria, which exceeds the IBC requirement of a 300 lbs. roof maintenance load distributed over an area of 2 1/2 feet by 2 1/2 feet per Section 1607.4 and Table 1607.1.

- Values in RED are shown for use in determining deck capacity under deflection limits more stringent than Span/240. The total loads shown are not to be exceeded.
- 6. See website at www.newmill.com for Factory Mutual approved deck types and maximum FM construction spans.

Maximum Cantilever Spans


Gage	Fv	Back-Span Condition								
Gage	(ksi)	Single	Double	Triple						
22	60	1 - 8	1 - 7	1 - 7						
20	60	1 - 11	1 - 10	1 - 10						
18	60	2 - 5	2 - 3	2 - 3						
16	40	3 - 1	2 - 7	2 - 7						

Notes:

- 7. Maximum cantilever spans shown are based on the following criteria: ANSI/SDI RD-2017 Standard for Steel Roof Deck
 - 0 Adjacent span assumed to be at least 3 times longer than the cantilever and no greater than
 - the maximum design or construction spans shown in table above O Bearing width at perimeter support assumed to be 3" minimum
 - Design total uniform load of 45 psf in conjunction with a 100 lb. concentrated load.

User Defined Criteria								
Deck Application:	Roof							
Deck Type:	В							
Gage:	20							
Yield Stress (ksi):	80							
Net Uplift (psf):	25							
Support Fasteners:	Arc Spot Welds Visible Diameter: 0.625							
Side Lap Fasteners:	Screws #10							

B, BV 20 GA. Diaphragm Design

The values shown in the tables are nominal strengths and are not to be used without applying the proper safety or resistance factor as shown above the top-right-hand corner of table. The factors are to be applied as follows:

• LRFD - The table values must be multiplied by the Φ resistance factor when comparing to forces calculated using Load and Resistance Factor Design.

• ASD - The table values must be divided by the Ω safety factor when comparing to forces calculated using Allowable Strength Design.

When diaphragm design includes net uplift only ASD Wind and Buckling safety factors are provided.

The shear strength values indicated are calculated based on the number of side lap connections being equally spaced per span. When maximum spacing of side lap connections is preferred in lieu of number equally spaced per span, due to the fasteners being placed at one-half space from each support with whole spaces between, divide span by required fastener spacing and round up to nearest integer. Use values in the table row corresponding to calculated number of fasteners per span.

Average spacing of support connections parallel to deck flutes is assumed equal to the side lap connection spacing. It may be possible to achieve greater diaphragm shear strengths by decreasing the spacing of support connections parallel to deck flutes. Please contact New Millennium for details.

The shear strength fields shown as blank (-) are conditions that do not meet minimum Steel Deck Institute side lap connection requirements. The values shown in RED indicate conditions with 0 side lap fasteners not in compliance with minimum Steel Deck Institute requirements. These values can be used to determine diaphragm shear strengths when properly spaced side lap connections are ignored for conservatism as part of the diaphragm shear design.

Designs for bare deck (no concrete fill) show nominal diaphragm shear values due to buckling in table below the shear strength table, for use in determining when conditions may be limited by panel buckling. An asterisk (*) is shown following the value in the shear strength table indicating conditions where panel buckling could potentially govern over connector strength. Nominal shear strength values flagged in this manner denote that a factored shear strength value exceeds the factored buckling shear strength value. The Designer should compare the factored values to determine which design requirement is governing.

See Diaphragm table on page 2

The data published in this document has been developed using recognized engineering standards and is intended for general information only. Although the data shown is believed to be accurate, New Millennium Building Systems does not assume any liability or obligation of any kind or nature arising from or related to the data provided herein and/or its use. Applicability of the products and the accuracy of the data should be assessed by a licensed professional engineer or architect to determine the suitability for the intended application.

© 2022 New Millennium Building Systems, LLC. All Rights Reserved. New Millennium Building Systems is a wholly owned subsidiary of Steel Dynamics, Inc.

B, BV 20 GA. Diaphragm Design

Fy = 60 ksi, Fu = 62 ksi, Fxx = 60 ksi, Design Thickness = 0.0358 in. Support Fasteners: 5/8'' Arc Spot Welds Side Lap Fasteners: #10 Screws

Ω	(Wind): 2.15	
Ω	(Buckling): 2.00	

Support Fastener	Side Lap Conn./			Bar	e Deck Nominal Shear Strength (plf) in Presence of 25 psf Net Uplift											
Pattern	Span														K1 (ft-1)	
		3 - 0	3 - 6	4 - 0	4 - 6	5 - 0	5 - 6	<mark>6 - 0</mark>	6 - 6	7 - 0	7 - 6	8 - 0	8 - 6	9 - 0	9 - 6	
	0	2938	2585	2302	2056	1839	1660	1512	1386	1278	1185	1103	1031	967	911	0.357
	1	3120	2755	2459	2218	1992	1800	1640	-	-	-	-	-	-	-	0.299
	2	3294	2918	2612	2359	2146	1940	1768	1623	1498	1390	1296	1212	1138	-	0.258
	3	3459	3076	2760	2498	2278	2080	1896	1741	1608	1493	1392	1303	1223	1154	0.226
36/9	4	3617	3227	2903	2633	2405	2211	2024	1859	1718	1595	1488	1393	1309	1235	0.202
$D_{D} = 69$	5	3766	3372	3042	2764	2529	2328	2153	1978	1828	1698	1584	1484	1394	1315	0.182
Dn = 68	6	3908	3511	3175	2891	2649	2442	2262	2096	1937	1800	1680	1574	1480	1396	0.166
	7	4042	3644	3305	3015	2767	2553	2368	2206	2047	1903	1776	1664	1565	1477	0.152
	8	4169	3771	3429	3135	2882	2663	2472	2305	2157	2005	1872	1755	1651	1558	0.141
	9	4289	3893	3549	3251	2994	2770	2574	2402	2251	2108	1968	1845	1736	1639	0.131
	10	4402	4009	3664	3364	3102	2874	2674	2498	2342	2203	2064	1936	1821	1720	0.122
	0	1880	1635	1431	1265	1132	1024	934	857	791	735	685	641	537	501	0.535
	1	2092	1825	1616	1436	1286	1164	1062	-	-	-	-	-	-	-	0.415
	2	2294	2009	1784	1602	1440	1304	<mark>1190</mark>	1094	1011	940	877	822	708	-	0.340
	3	2487	2187	1947	1751	1590	1443	1318	1212	1121	1042	973	912	793	744	0.287
36/7	4	2670	2357	2104	1897	1725	1581	1446	1330	1231	1145	1069	1003	879	825	0.249
	5	2843	2520	2256	2039	1857	1704	1573	1448	1341	1247	1165	1093	964	906	0.219
Dn = 68	6	3007	2676	2403	2177	1986	1824	1686	1566	1450	1350	1262	1184	1050	987	0.196
	7	3161	2825	2545	2310	2112	1942	1797	1671	1560	1452	1358	1274	1135	1068	0.178
	8	3306	2967	2681	2439	2234	2058	1906	1774	1658	1555	1454	1365	1220	1148	0.162
	9	3442	3101	2811	2564	2352	2170	2012	1874	1753	1646	1550	1455	1306	1229	0.149
	10	3570	3229	2936	2684	2467	2280	2116	1973	1848	1736	1637	1546	1391	1310	0.138
	0	1664	1463	1303	1170	1047	946	766	691	626	570	520	476	437	402	0.642
	1	1844	1632	1459	1317	1199	1086	894	-	-	-	-	-	-	-	0.477
	2	2010	1789	1607	1455	1328	1220	1022	927	846	775	713	657	608	-	0.380
	3	2161	1936	1747	1588	1453	1337	1135	1044	956	877	809	748	693	644	0.315
2015	4	2299	2072	1878	1713	1572	1450	1241	1144	1058	980	905	838	779	725	0.270
36/5	5	2424	2198	2002	1832	1686	1559	1342	1240	1150	1070	997	929	864	806	0.236
Dn = 428	6	2538	2314	2117	1945	1795	1664	1440	1333	1239	1154	1078	1010	947	887	0.209
	7	2641	2421	2225	2051	1898	1764	1533	1423	1325	1237	1157	1085	1019	959	0.188
	8	2734	2519	2325	2151	1997	1859	1622	1509	1407	1316	1233	1158	1010	1027	0.171
	9	2818	2610	2418	2245	2090	1951	1707	1591	1487	1393	1307	1229	1158	1027	0.171
	10	2894	2692	2505	2333	2178	2038	1788	1670	1563	1466	1378	1225	1224	1157	0.130
	0	1274	1122	999	782	682	599	530	471	419	374	334	298	266	237	0.802
	1	1449	1286	1152	936	836	739	658				-				0.561
	2	1605	1436	1295	1068	961	868	786	707	639	579	526	479	437	-	0.431
	3	1742	1430	1426	1191	1077	978	892	816	748	681	622	569	522	480	0.451
	1	1864	1694	1420	1304	1186	1082	990	909	837	772	713	660	608	560	0.294
36/4	5	1970	1804	1657	1407	1286	1082	1083	909	922	853	713	733	681	633	0.294
Dn = 608	6	2063	1902	1757	1501	1378	1268	1169	1081	1001	929	864	804	748	697	0.234
	7	2003	1902	1848	1501	1463	1351	1250	1159	1001	1002	933	870	812	758	0.224
	7 8	2144	2068	1848			1351	1250			1002			812		
					1664	1540			1232	1147		999	933		816	0.180
	9	2278	2138	2005	1734	1611	1498	1394	1300	1213	1134	1060	992	929	870	0.164
	10	2332	2200	2072	1798	1675 Chaor Di	1562	1459	1363	1275	1194	1118	1048	983	922	0.151
	l (in4/ft)	2.0	2.6					1		olf) / Dec		· · · ·		0.0		
	0.0107	3 - 0	3 - 6	4 - 0	4 - 6	5 - 0	5 - 6	6 - 0	6 - 6	7 - 0	7 - 6	8 - 0	8 - 6	9 - 0	9 - 6	
	0.2127	20959	15399	11790	9315	7545	6236	5240	4465	3850	3353	2947	2611	2329	2090	

Notes:

- Diaphragm shear and stiffness values are based on the Steel Deck Institute Diaphragm Design Manual, Fourth Edition (DDM04) and AISI S310-2016 (S310-16).
 Diaphragm shear and stiffness values are based on minimum 3 span condition.
 An asterisk (*) denotes span may be limited by shear buckling. See bottom table.
 Shear strength values shown in RED do not comply with minimum SDI side lap connection requirements and shall not be used except with properly spaced side lap connections.

- Diaphragm Stiffness, G' (k/in.)

$K_2 = 1056 \text{ kip/in.} G' = -$	K ₂
K ₄ = 3.518	, 0.30Dn , ak i
$L_v = Span (ft)$	$K_4 + \frac{0.30DH}{L_v} + 3K_1L_v$

Project: Proj #

3/18/2022

Anchor Rods Design in Solid-grouted Masonry (ACI 530-13) (Section 8.1.3 - ASD Approach) (Reference: NCMA TEK 12-3)

(Reference: NCMA TEK 12-3)
Actual Tensile load, lbs =
Number of bolts (n) =
Spacing (if more than one rod)
Diameter of the bolt =
Area of the bolt (A_b) =
Embedment length (<i>lb</i>)=
Compressive strength of masonry, fm =
Yield strength of anchor bolt, fy =
Masonry wall width or spacing for in-plane shear =
Anchor bolt edge distance, lbe =

0.196 in^2

Sol

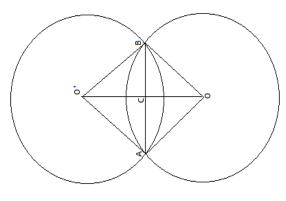
ã o

925.

Allowable load in Tenson:

78.54 in^2 5026.548 in^2	71.009 in∿2 142.019 in∿2	7939.10 lbs 5890.49 lbs	5890.49 lbs ba/Ba= .16	(masonry breakout) (masonry crushing) (anchor pryout) (steel yielding)
Ap= or Ap=	Ap (overlapped areas)= Ap (min of above) x n=	Ba (masonry breakout)= or Ba (steel yielding)=	Allowable load in tension, Ba =	Allowable load in Shear: Bv (min of)= (masonr (masonr (anc (ste

Allowable load in Shear: Bv (min of)=	(masonry breakout)	(masonry crushing) (anchor pryout)	(steel yielding)	Allowable load in shear, Bv =	bv/Bv= .44
Allowa Bv (mj				Allowa	


7939.10 lbs 1558.06 lbs 15878.20 lbs 3534.29 lbs

.60

Combined shear and tension (CSI):

1558.06 lbs

3.813 in

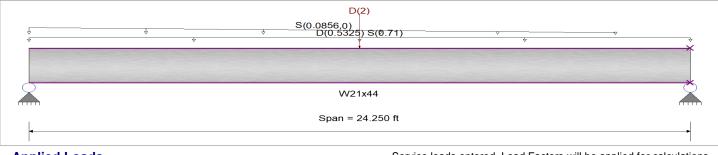
40.

No shear reduction required

1.590798 15.061 in^2 Angle between OA and OB t = 15 area of overlap = 15

Steel Beam

Lic. # : KW-06003498


DESCRIPTION: Girders

CODE REFERENCES

Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set : ASCE 7-16

Material Properties

materiariter				
Analysis Method	: Allowable Strength Design	Fy : Steel Yield :	50.0 ksi	
Beam Bracing :	Beam is Fully Braced against lateral-torsional buckling	E: Modulus :	29,000.0 ksi	
Bending Axis :	Major Axis Bending			

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Beam self weight calculated and added to loading Uniform Load : D = 0.0150, S = 0.020 ksf, Tributary Width = 35.50 ft

Varying Uniform Load : S= 0.08560->0.0 k/ft, Extent = 0.0 -->> 21.50 ft, Trib Width = 1.0 ft, (Snow Drift)

Point Load : D = 2.0 k @ 12.125 ft, (RTU)

DESIGN SUMMARY

DESIGN SUMMARY			Design OK
Maximum Bending Stress Ratio =	0.460 : 1 M	laximum Shear Stress Ratio =	0.119 : 1
Section used for this span	W21x44	Section used for this span	W21x44
Ma : Applied	109.462 k-ft	Va : Applied	17.250 k
Mn / Omega : Allowable	238.024 k-ft	Vn/Omega : Allowable	144.90 k
Load Combination	+D+S	Load Combination	+D+S
Location of maximum on span	12.125ft	Location of maximum on span	0.000 ft
Span # where maximum occurs	Span # 1	Span # where maximum occurs	Span # 1
Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection	0.239 in Ratio = 0.000 in Ratio = 0.466 in Ratio = 0.000 in Ratio =	= 0 <240.0 = 625 >=240.	

Maximum Forces & Stresses for Load Combinations

Load Combination		Max Stres	s Ratios		0	Summary of M	oment Valu	les			Summ	hary of Sh	ear Values
Segment Length	Span #	М	V	Mmax +	Mmax -	Ma Max	Mnx	Mnx/Omega	Cb	Rm	Va Max	Vnx	Vnx/Omega
D Only													
Dsgn. L = 24.25 ft	1	0.229	0.055	54.52		54.52	397.50	238.02	1.00	1.00	7.99	217.35	144.90
+D+S													
Dsgn. L = 24.25 ft	1	0.460	0.119	109.46		109.46	397.50	238.02	1.00	1.00	17.25	217.35	144.90
+D+0.750S													
Dsgn. L = 24.25 ft	1	0.402	0.103	95.73		95.73	397.50	238.02	1.00	1.00	14.94	217.35	144.90
+0.60D													
Dsgn. L = 24.25 ft	1	0.137	0.033	32.71		32.71	397.50	238.02	1.00	1.00	4.80	217.35	144.90
Overall Maximu	m Defleo	ctions											
Load Combination		Span	Max. "-" Defl	Location in	n Span	Load Com	bination			Max	<. "+" Defl	Locatior	n in Span
+D+S		1	0.4656	12.	125						0.0000		0.000
Vertical Reactio	ns				Support	notation : Far	left is #1			Values i	n KIPS		
Load Combination		Support 1	Support 2										
Overall MAXimum		17.250	16.874										
Overall MINimum		4.796	4.796										
D Only		7.993	7.993										

WDA&E

Printed: 18 MAR 2022, 1:33PM File: WALGP0402 - Calculations.ec6

Project Title: Engineer: Project ID: Project Descr:

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24

Printed: 18 MAR 2022, 1:33PM File: WALGP0402 - Calculations.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24 WDA&E

Steel Beam Lic. # : KW-06003498

DESCRIPTION: Girders

Vertical Read	tions			S	upport notation : Far left is #1	Values in KIPS		PS
Load Combination		Support 1	Support 2					
+D+S		17.250	16.874					
+D+0.750S		14.936	14.654					
+0.60D		4.796	4.796					
S Only		9.257	8.881					
Steel Section	Proper	ties : W21	x44					
Depth	=	20.700 in	l xx	≣	843.00 in^4	J	=	0.770 in^4
Web Thick	=	0.350 in	S xx		81.60 in^3	Cw	=	2,110.00 in^6
Flange Width	=	6.500 in	R xx	=	8.060 in			
Flange Thick	=	0.450 in	Zx	=	95.400 in^3			
Area	=	13.000 in^2	Гуу	=	20.700 in^4			
Weight	=	44.252 plf	S yy	=	6.370 in^3	Wno	=	32.900 in^2
Kdesign	=	0.950 in	R yy	=	1.260 in	Sw	=	24.100 in^4
K1	=	0.813 in	Zy	=	10.200 in^3	Qf	=	14.000 in^3
rts	=	1.600 in				Qw	=	46.800 in^3
Ycg	=	10.350 in						

Steel Column

Lic. # : KW-06003498

DESCRIPTION: Int column

Code References

Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16 Load Combinations Used : ASCE 7-16

General Information

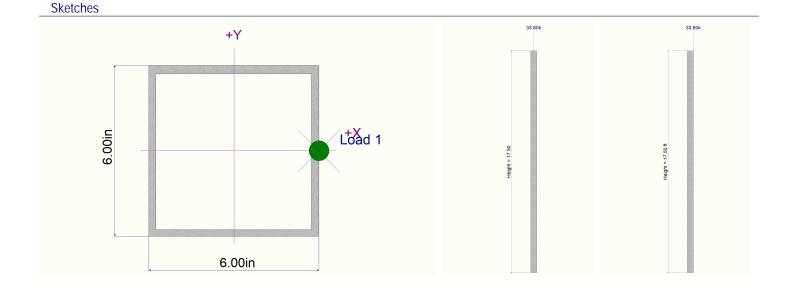
Steel Section Name : Analysis Method : Steel Stress Grade Fy : Steel Yield E : Elastic Bending Modulus	HSS6x6x1/4 Allowable Strength 46 ksi 29,000.0 ksi		X-X U Y-Y	Overall Column Height Top & Bottom Fixity condition for deflection (bucklir (width) axis : nbraced Length for buckling ABO (depth) axis : nbraced Length for buckling ABO	ng) along coli JT Y-Y Axis =	17.5 ft, K = 1.0	
Applied Loads				Service loads entered. Load	Factors wil	l be applied for	calculations.
AXIAL LOADS	ed : 332.261 lbs * Dead Load Factor Xecc = 3.0 in, D = 33.80 k						
Bending & Shear Che	ck Results						
PASS Max. Axial+Bendin Load Combinatio Location of max. At maximum loca Pa : Axial Pn / Omeg Ma-x : App	g Stress Ratio = on above base ation values are ga : Allowable plied		ft k k k-ft	Maximum Load Reactions Top along X-X Bottom along X-X Top along Y-Y Bottom along Y-Y Maximum Load Deflections Along Y-Y		0.4829 k 0.4829 k 0.0 k 0.0 k 0.0 ft	above base
Mn-x / Om Ma-y : App	nega : Allowable	25.709 -8.393		for load combination :		0.011	
, , , , , , , , , , , , , , , , , , , ,	nega : Allowable	-8.393 25.709		Along X-X -0.34 for load combination :	89 in at D Only	10.218ft	above base
Va : Appl	above base ation values are	0.01183 D Only 0.0 0.4829 40.826	ft k		-		

Project Title: Engineer: Project ID: Project Descr:

Load Combination Results

		(ial + Bending S		Cb>	c Cby	Kyly/Dy	KyLy/Ry		n Shear Ra	
Load Combination	Stress I	Ratio Status	Location	CD/	CDy		Кушу/Ку	Stress Ratio	Status	Location
D Only	0.6	697 PASS	17.38 f	t 1.00	1.66	89.74	89.74	0.012	PASS	0.00 ft
+0.60D	0.4	18 PASS	17.38 f	t 1.00	1.66	89.74	89.74	0.007	PASS	0.00 ft
Maximum Reactions							Note	: Only non-ze	ro reactio	ns are listed.
		Axial Reaction	X-X Axis R	eaction k	Y-Y Axis	s Reaction	Mx - En	d Moments k-	-ft My-	End Moments
Load Combination		@ Base	@ Base	@ Top	@ Base	@ Top	@ Base	e @ Top	@ Ba	se @ Top
D Only		34.132	0.483	0.483						
+0.60D		20.479	0.290	0.290						
Extreme Reactions										
	I	Axial Reaction	X-X Axis R	eaction k	Y-Y Axi	s Reaction	Mx - End	d Moments k-	-ft My-	End Moments
Item	Extreme Value	@ Base	@ Base	@ Top	@ Base	@ Top	@ Base	e @ Top	@ Ba	se @ Top
Axial @ Base	Maximum	34.132	0.483	0.483						
н	Minimum	20.479	0.290	0.290						
Reaction, X-X Axis Base	Maximum	34.132	0.483	0.483						
	Minimum	20.479	0.290	0.290						
Reaction, Y-Y Axis Base	Maximum	34.132	0.483	0.483						
	Minimum	34.132	0.483	0.483						
Reaction, X-X Axis Top	Maximum	34.132	0.483	0.483						

Steel Column


Lic. # : KW-06003498

DESCRIPTION: Int column

Extreme Reactions

		Axial Reaction	X-X Axis Re	eaction	k Y-Y Axis R	eaction	Mx - End	Moments	k-ft	My - End	
Item	Extreme Value	@ Base	@ Base	@ Top	@ Base	@ Top	@ Base	@ To	р	@ Base	@ Top
н	Minimum	20.479	0.290	0.290							
Reaction, Y-Y Axis Top	Maximum	20.479	0.290	0.290							
	Minimum	34.132	0.483	0.483							
Moment, X-X Axis Base	Maximum	34.132		0.483							
н	Minimum	34.132		0.483							
Moment, Y-Y Axis Base	Maximum	34.132	0.483	0.483							
u	Minimum	34.132	0.483	0.483							
Moment, X-X Axis Top	Maximum	34.132	0.483	0.483							
	Minimum	34.132	0.483	0.483							
Moment, Y-Y Axis Top	Maximum	34.132	0.483	0.483							
"	Minimum	34.132	0.483	0.483							
Maximum Deflection	ns for Load Com	nbinations									
Load Combination		Max. X-X Deflectio	n Distar	nce	Max. Y-Y De	flection	Distance				
D Only		-0.3489 in	10.21	18 ft	0.000	in	0.000	ft			
+0.60D		-0.2093 in	10.21	18 ft	0.000	in	0.000	ft			
Steel Section Prope	rties : F	ISS6x6x1/4									
Depth	= 6.000	in I xx	=	2	8.60 in^4		J	=		45.600 in^4	4
Design Thick	= 0.233	in S xx	=		9.54 in^3						
Width	= 6.000	in R xx	=	2	2.340 in						
Wall Thick	= 0.250	in Zx	=	11	.200 in^3						
Area	= 5.240	in^2 I yy	=	28	8.600 in^4		С	=		15.400 in^3	3
Weight	= 18.986	plf S yy	=	9	0.540 in^3						

0.000 in Ycg =

Project Title: Engineer: Project ID: Project Descr:

Printed: 18 MAR 2022, 1:39PM File: WALGP0402 - Calculations.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24 WDA&E

Masonry Slender Wall Lic. # : KW-06003498

DESCRIPTION: Walls

Code References

Calculations per TMS 402-16, IBC 2018, CBC 2019, ASCE 7-16

General Information			Calculatio	ons per TMS 402-16, IBC 20	18, CBC	2019, ASCE 7-1
F'm Fy - Yield Fr - Rupture Em = fm * Max % of ρ bal. Grout Density Block Weight Wall Weight	uted Hollow Concrete Ma = 1.50 ksi = 60.0 ksi = 900.0 = 0.008678 = 140 pcf Normal Weight = 84.0 psf Il is Solid Grouted	Asonry Nom. Wall Thickness Actual Thickness Rebar "d" distance Lower Level Rebar Bar Size # Bar Spacing	8 in 7.625 in 3.8125 in 6 32 in	Temp Diff across thickness Min Allow Out-of-plane Defl I Minimum Vertical Steel %	= Ratio = =	deg F 0.0 0.0020
Dne-Story Wall Dimer A Clear Height B Parapet height	= 17.5 ft = 7.17 ft	B		Roof Attachment		
Wall Support Condition	Top & Bottom Pinned	A				_
				Floor Attachment		

Project Title: Engineer: Project ID: Project Descr:

-			
A Clear Height =	17.5 ft		
B Parapet height =	7.17 ft	В	
Wall Support Condition Top & Botto	m Pinned		Roof Attachment
The support conductor Top & Dotto			

NA 11 11 1							
Vertical Loads							
Vertical Uniform Loads .	(Applied per foo	t of Strip Width)	DL : Dead	Lr : Roof L	ive <u>Lf : Floor Live</u>	<u>S : Snow</u>	<u>W : Wind</u>
Ledger Load Concentric Load	Eccentricity	3.81 in	.27			.36	k/ft k/ft
Vertical Concentrated Lo	oads (Applied to	o full "Strip Width")	DL : Dead	<u>Lr : Roof Li</u>	ve <u>Lf : Floor Live</u>	S: Snow	W: Wind
Beam Load #1	Eccentricity Dist. from Base	3.81 in 17.5 ft				.15	k
Lateral Loads							
Wind Loads :			Seismic Loads :				
Full area WIND load	16	5.2 psf	Wall Weight Seisn	nic Load Input Meth	od : ASCE se	ismic factors e	entered
Full area WIND load	16	5.2 psf	Wall Weight Seisn SDS Value per AS	·	od : ASCE se S _{DS} *1 =	ismic factors e .841	entered
Full area WIND load	16	5.2 psf	0	·			entered
Full area WIND load	16 D	5.2 psf Lr L	SDS Value per AS	SCE 12.11.1	S _{DS} *1 =	.841 (Appl	entered

WDA&E

Masonry Slender Wall

Lic. # : KW-06003498

DESCRIPTION: Walls

Printed: 18 MAR 2022, 2:13PM File: WALGP0402 - Calculations.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24

WDA&E

2.852 k

DESIGN SUMMARY Results reported for "Strip Width" of 12.0 in Governing Load Combination . . . Actual Values . . . Allowable Values . . . Maximum Bending Stress Ratio = 0.4389 PASS Moment Capacity Check +1.20D+0.50S-W Max Mu 1.168 k-ft Phi * Mn 2.661 k-ft Actual Defl. Ratio L/ PASS Service Deflection Check 1,059 Allowable Defl. Ratio 150.0 E Only Max. Deflection 0.1983 in PASS Axial Load Check Max Pu / Ag 14.103 psi Max. Allow. Defl. 1.40 in Location +1.20D+0.50S-W 17.208 ft 0.2 * f'm 300.0 psi PASS Reinforcing Limit Check 0.003607 Max Allow As/bd 0.008678 Actual As/bd Maximum Reactions . . . for Load Combination **Top Horizontal** E Only 0.4914 k Base Horizontal 0.2057 k E Only

Vertical Reaction

Results reported for "Strip Width" = 12 in.

+D+S

	Axi	al Load			М	oment Value	es		0.6 *
Load Combination	Pu k	0.2*f'm*b*t k	Mcr k-ft	Mu k-ft	Phi	Phi Mn k-ft	As in^2	As Ratio	rho bal
+1.40D at 16.92 to 17.50	1.290	27.360	0.59	0.12	0.90	2.66	0.165	0.0036	0.0085
+1.20D at 16.92 to 17.50	1.106	27.360	0.59	0.10	0.90	2.62	0.165	0.0036	0.0085
+1.20D+0.50S at 15.75 to 16.33	1.478	27.360	0.59	0.17	0.90	2.71	0.165	0.0036	0.0084
1.20D+0.50W at 16.92 to 17.50	1.106	27.360	0.59	0.40	0.90	2.62	0.165	0.0036	0.0085
1.20D-0.50W at 16.92 to 17.50	1.106	27.360	0.59	0.61	0.90	2.62	0.165	0.0036	0.0085
1.20D+1.60S at 15.75 to 16.33	2.039	27.360	0.59	0.33	0.90	2.84	0.165	0.0036	0.0082
1.20D+1.60S+0.50W at 7.58 to 8.17	2.862	27.360	0.59	0.25	0.90	3.03	0.165	0.0036	0.0079
1.20D+1.60S-0.50W at 16.92 to 17.50	1.682	27.360	0.59	0.79	0.90	2.75	0.165	0.0036	0.0083
1.20D+W at 16.92 to 17.50	1.106	27.360	0.59	0.90	0.90	2.62	0.165	0.0036	0.0085
1.20D-W at 16.92 to 17.50	1.106	27.360	0.59	1.11	0.90	2.62	0.165	0.0036	0.0085
1.20D+0.50S+W at 16.92 to 17.50	1.286	27.360	0.59	0.85	0.90	2.66	0.165	0.0036	0.0085
1.20D+0.50S-W at 16.92 to 17.50	1.286	27.360	0.59	1.17	0.90	2.66	0.165	0.0036	0.0085
0.90D+W at 16.92 to 17.50	0.829	27.360	0.59	0.93	0.90	2.55	0.165	0.0036	0.0086
0.90D-W at 16.92 to 17.50	0.830	27.360	0.59	1.08	0.90	2.55	0.165	0.0036	0.0086
-1.368D+0.20S+E at 7.00 to 7.58	2.502	27.360	0.59	0.87	0.90	2.94	0.165	0.0036	0.0080
1.368D+0.20S-E at 16.92 to 17.50	1.332	27.360	0.59	0.87	0.90	2.67	0.165	0.0036	0.0084
0.7318D+E at 7.00 to 7.58	1.284	27.360	0.59	0.80	0.90	2.66	0.165	0.0036	0.0085
0.7318D-E at 16.92 to 17.50	0.674	27.360	0.59	0.79	0.90	2.52	0.165	0.0036	0.0087
Decian Maximum Combinations	Deflectio					Decult		d for "Chrin V	Vidth # 10 in

Design Maximum Combinations - Deflections

Design Maximum Combinations - Moments

Results	reported	for "St	trip Wid	lth"	= 12 i	n.
			_			

	Axial Load	Axial Load Moment Values			Stiffness		Deflections		
Load Combination	Pu k	Mcr k-ft	Mactual k-ft	I gross in^4	I cracked in ⁴	I effective in [^] 4	Deflection in	Defl. Ratio	
D Only at 9.92 to 10.50	1.509	0.59	0.05	443.30	34.57	443.300	0.005	42,769.5	
+D+S at 9.92 to 10.50	2.019	0.59	0.15	443.30	35.71	443.300	0.014	14,764.9	
+D+0.750S at 9.92 to 10.50	1.892	0.59	0.12	443.30	35.43	443.300	0.012	17,664.4	
+D+0.60W at 5.83 to 6.42	1.852	0.59	0.16	443.30	35.34	443.300	0.007	29,100.3	
+D-0.60W at 13.42 to 14.00	1.215	0.59	0.29	443.30	33.91	443.300	0.010	21,776.2	
+D+0.450W at 5.83 to 6.42	1.852	0.59	0.13	443.30	35.34	443.300	0.006	32,843.7	
+D-0.450W at 12.83 to 13.42	1.264	0.59	0.20	443.30	34.02	443.300	0.008	27,053.9	
+D+0.750S+0.450W at 7.58 to 8.17	2.088	0.59	0.17	443.30	35.86	443.300	0.013	16,742.8	
+D+0.750S-0.450W at 12.25 to 12.83	1.696	0.59	0.25	443.30	34.99	443.300	0.014	14,870.6	

Project Title: Engineer: Project ID: Project Descr:

Printed: 18 MAR 2022, 2:13PM File: WALGP0402 - Calculations.ec6 **Masonry Slender Wall** Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24 Lic. # : KW-06003498 WDA&E **DESCRIPTION: Walls** +0.60D+0.60W at 5.25 to 5.83 1.141 0.59 0.15 443.30 33.74 443.300 0.006 37,027.0 +0.60D-0.60W at 13.42 to 14.00 0.729 0.59 0.26 443.30 32.79 443.300 0.008 26,616.4 +D+0.70E at 8.17 to 8.75 1.656 0.59 0.56 443.30 34.90 443.300 0.047 4,457.2 +D-0.70E at 7.58 to 8.17 1.705 0.59 0.49 443.30 35.01 443.300 0.038 5,539.6

Masonry Slender Wall

Lic. # : KW-06003498

DESCRIPTION: Walls

Design Maximum Combinations - Deflections

Design Maximum Combinations	Results reported for "Strip Width" = 12 in.								
Load Combination	Axial Load Pu k	Moment Values Mcr Mactual k-ft k-ft		l gross in^4	Stiffness I cracked in^4	I effective in^4	Deflec Deflection in	tions Defl. Ratio	
+D+0.750S+0.5250E at 8.17 to 8.75	2.039	0.59	0.49	443.30	35.75	443.300	0.043	4,846.0	
+D+0.750S-0.5250E at 7.00 to 7.58	2.137	0.59	0.31	443.30	35.97	443.300	0.021	9,995.0	
+0.60D+0.70E at 7.58 to 8.17	1.023	0.59	0.55	443.30	33.47	443.300	0.045	4,663.2	
+0.60D-0.70E at 7.58 to 8.17	1.023	0.59	0.50	443.30	33.47	443.300	0.040	5,308.5	
S Only at 9.92 to 10.50	0.510	0.59	0.09	443.30	32.28	443.300	0.009	22,846.0	
W Only at 14.58 to 15.17	0.000	0.59	0.54	443.30	31.08	443.300	0.025	8,291.6	
-W at 14.58 to 15.17	0.000	0.59	0.54	443.30	31.08	443.300	0.025	8,291.6	
E Only at 7.58 to 8.17	0.000	0.59	0.74	443.30	31.08	38.587	0.198	1,058.9	
E Only * -1.0 at 7.58 to 8.17	0.000	0.59	0.74	443.30	31.08	38.587	0.198	1,058.9	
Peactions - Vertical & Horizonta	al								

Project Title: Engineer: Project ID: Project Descr:

Reactions - Vertical & Horizontal

HP-S 0.0 k 0	Load Combination	Base Horizontal	Top Horizontal	Vertical @ Wall Base		
Ph0.750S0.0k2.725kPh0.60W0.1k2.342kPh0.60W0.0k0.29k2.342kPh0.450W0.0k0.21k2.342kPh0.450W0.0k0.22k2.342kPh0.450W0.0k0.20k2.725kPh0.750S+0.450W0.0k0.23k2.725kPh0.750S-0.450W0.0k0.23k2.725kPh0.750S-0.450W0.1k0.29k1.405kPh0.750S-0.450W0.1k0.29k1.405kPh0.750S-0.450W0.1k0.01k2.342kPh0.750S-0.450W0.1k0.01k2.342kPh0.750S-0.450W0.1k2.342kkPh0.750S-0.5250E0.1k0.01k2.342kPh0.750S-0.5250E0.1k0.01k1.405kPh0.750S-0.5250E0.1k0.01k1.405kPh0.750S-0.5250E0.1k0.01k1.405kPh0.750S-0.5250E0.1k0.01k0.01kPh0.750S-0.5250E0.1k0.01k0.00kPh0.750S-0.5250E0.1k0.01k0.00kPh0.750S-0.5250E0.1k0.00k0.00k	D Only	0.0 k	0.00 k	2.342 k		
+P+0.60W0.1k0.28k2.342k+D-0.60W0.0k0.29k2.342k+D-0.450W0.0k0.21k2.342k+D-0.450W0.0k0.22k2.342k+D-0.750S+0.450W0.0k0.23k2.725k+D-0.750S+0.450W0.0k0.23k2.725k+0.60D+0.60W0.0k0.29k1.405k+0.750S+0.450W0.0k0.29k1.405k+0.70E0.1k0.34k2.342k+0.70E0.1k0.35k2.342k+0.750S+0.5250E0.1k0.275k1.405k+0.40D+0.70E0.1k0.272k1.405k+0.40D+0.70E0.1k0.35k1.405k+0.40D+0.70E0.1k0.35k1.405k+0.40D+0.70E0.1k0.35k1.405k+0.40D+0.70E0.1k0.41k0.40k+0.40D+0.70E0.1k0.41k0.40k+0.40D+0.70E0.1k0.41k0.40k+0.40D+0.70E0.1k0.41k0.40k+0.40D+0.70E0.1k0.41k0.40k+0.40D+0.400.1k0.40k0	+D+S	0.0 k	0.01 k	2.852 k		
PD.60W0.0k0.29k2.342k+D.045W0.0k0.21k2.342k+D.045W0.0k0.22k2.342k+D.050S+0.45W0.0k0.20k2.725k+D.050S-0.45W0.0k0.23k2.725k+0.60D-0.60W0.1k0.29k1.405k+0.60D-0.60W0.0k0.29k1.405k+0.70E0.1k0.34k2.342k+0.70E0.1k0.35k2.342k+0.70S-0.5250E0.1k0.275k2.725k+0.60D-0.70E0.1k0.34k1.405k+0.60D-0.70E0.1k0.34k1.405k+0.60D-0.70E0.1k0.41k1.405k+0.60D-0.70E0.1k0.41k1.405k+0.60D-0.70E0.1k0.41k1.405kVOnly0.1k0.41k0.41k1.405VOnly0.1k0.41k0.40k1.405VOnly0.1k0.41k0.40k1.405VOnly0.1k0.41k0.40k1.405V0.1k0.41k0.40k1.405V0.1k0.41k<	+D+0.750S	0.0 k	0.01 k	2.725 k		
+P-0.450W0.0k0.21k2.342k+D-0.450W0.0k0.22k2.342k+D-0.750S+0.450W0.0k0.20k2.725k+D-0.750S-0.450W0.0k0.23k2.725k+0.60D+0.60W0.1k0.29k1.405k+0.60D+0.60W0.0k0.34k2.342k+0.7020.1k0.35k2.342k+0.7020.1k0.35k2.342k+0.705S+0.5250E0.1k0.2725k2.725k+0.60D+0.70E0.1k0.35k1.405k+0.60D+0.70E0.1k0.35k1.405k+0.60D+0.70E0.1k0.35k1.405k+0.60D+0.70E0.1k0.35k1.405k+0.60D+0.70E0.1k0.35k1.405k+0.60D+0.70E0.1k0.001k0.510kVOnly0.1k0.600k0.600k1.405VOnly0.1k0.6000.600k0.600k-V0.1k0.6000.600k0.600k-V0.1k0.6000.600k0.600k-V0.1k0.6000.600k0.600k-V0.1	+D+0.60W	0.1 k	0.28 k	2.342 k		
+D-0.450W0.0k0.22k2.342k+D+0.750S+0.450W0.0k0.0k0.20k2.725k+D+0.750S-0.450W0.0k0.23k2.725kk+0.60D+0.60W0.1k0.29k1.405k+0.60D-0.60W0.0k0.29k1.405k+0.40D-0.60W0.0k0.29k1.405k+0.40D-0.60W0.1k0.34k2.342k+0.40D-0.60W0.1k0.35k2.342k+0.40D-0.60W0.1k0.35k2.342k+0.40D-0.60W0.1k0.2725k2.342k+0.40D-0.70E0.1k0.2725k2.725k+0.60D-0.70E0.1k0.35k1.405k+0.60D-0.70E0.1k0.35k1.405k+0.60D-0.70E0.1k0.01k0.000k+0.60D-0.70E0.1k0.01k0.000k+0.60D-0.70E0.1k0.01k0.000k+0.60D-0.70E0.1k0.01k0.000k+0.60D-0.70E0.1k0.01k0.000k+0.60D-0.70E0.1k0.01k0.000k+0.60D-0.70E0.1k0.01k0.000k+0.70E <td>+D-0.60W</td> <td>0.0 k</td> <td>0.29 k</td> <td>2.342 k</td>	+D-0.60W	0.0 k	0.29 k	2.342 k		
+P+0.750S+0.450W0.0k0.0k2.725k+D+0.750S-0.450W0.0k0.23k2.725k+0.60D+0.60W0.1k0.29k1.405k+0.60D-0.60W0.0k0.29k1.405k+D+0.70E0.1k0.34k2.342k+D-0.70E0.1k0.35k2.725k+D+0.750S+0.5250E0.1k0.275k2.725k+0.60D+0.70E0.1k0.275k2.725k+0.60D+0.70E0.1k0.35k1.405k+0.60D+0.70E0.1k0.35k1.405k+0.60D+0.70E0.1k0.35k1.405k+0.60D+0.70E0.1k0.35k0.510k+0.60D+0.70E0.1k0.400.510k1.405+0.60D+0.70E0.1k0.35k0.000k+0.60D+0.70E0.1k0.000k1.405k+0.60D+0.70E0.1k0.000k1.405k+0.60D+0.70E0.1k0.000k1.405k+0.60D+0.70E0.1k0.000k1.405k+0.60D+0.70E0.1k0.000k1.405k+0.60D+0.70E0.1k0.000k1.405k+0.60D+0.70E0.1k	+D+0.450W	0.0 k	0.21 k	2.342 k		
+D+0.750S-0.450W0.0k0.23k2.725k+0.60D+0.60W0.1k0.29k1.405k+0.60D-0.60W0.0k0.29k1.405k+D-0.70E0.1k0.34k2.342k+D-0.70E0.1k0.35k2.725k+D+0.750S+0.5250E0.1k0.25k2.725k+0.60D+0.70E0.1k0.27k2.725k+0.60D+0.70E0.1k0.35k1.405k+0.60D-0.70E0.1k0.35k1.405k*0.60D-0.70E0.1k0.35k1.405k*0.60D-0.70E0.1k0.35k0.510k*0.60D0.1k0.00k0.000k*0.60D0.1k0.000k0.000k*0.60D0.1k0.000k0.000k*0.60D0.1k0.000k0.000k*0.60D0.1k0.60k0.000k*0.60D0.1k0.60k0.000k*0.60D0.1k0.60k0.000k*0.60D0.1k0.000k0.000k*0.60D0.1k0.000k0.000k*0.75D0.75D0.75Dk0.75Dk0.75D <t< td=""><td>+D-0.450W</td><td>0.0 k</td><td>0.22 k</td><td>2.342 k</td></t<>	+D-0.450W	0.0 k	0.22 k	2.342 k		
+0.60D+0.60W0.1k0.29k1.405k+0.60D-0.60W0.0k0.29k1.405k+D-0.70E0.1k0.34k2.342k+D-0.70E0.1k0.35k2.342k+D-0.70E0.1k0.25k2.725k+D-0.70S+0.5250E0.1k0.27k2.725k+0.60D+0.70E0.1k0.34k1.405k+0.60D-0.70E0.1k0.35k1.405k*0.60D-0.70E0.1k0.35k0.510k*0.60D-0.70E0.1k0.35k0.510k*0.60D-0.70E0.1k0.00k0.00k*0.60D0.1k0.00k0.00k*0.60D0.1k0.00k0.00k*0.60D0.1k0.00k0.00k*0.60D0.1k0.00k0.00k*0.60D0.1k0.00k0.00k*0.60D0.1k0.00k0.00k*0.60D0.1k0.00k0.00k*0.60D0.1k0.00k0.00k*0.60D0.1k0.00k0.00k*0.75D0.75D0.75D0.75Dk0.75Dk*0.75D0.75D </td <td>+D+0.750S+0.450W</td> <td>0.0 k</td> <td>0.20 k</td> <td>2.725 k</td>	+D+0.750S+0.450W	0.0 k	0.20 k	2.725 k		
+0.60D-0.60W0.0k0.29k1.405k+D-0.70E0.1k0.34k2.342k+D-0.750S+0.5250E0.1k0.25k2.725k+D+0.750S-0.5250E0.1k0.27k2.725k+0.60D+0.70E0.1k0.27k2.725k+0.60D+0.70E0.1k0.35k1.405k+0.60D-0.70E0.1k0.35k1.405kS Only0.0k0.00k0.000kW Only0.1k0.000k0.000k-W0.1k0.000k0.000kE Only0.2k0.000k0.000k	+D+0.750S-0.450W	0.0 k	0.23 k	2.725 k		
+D+0.70E0.1k0.34k2.342k+D-0.70E0.1k0.35k2.342k+D+0.750S+0.5250E0.1k0.25k2.725k+D+0.750S-0.5250E0.1k0.27k2.725k+0.60D+0.70E0.1k0.34k1.405k+0.60D-0.70E0.1k0.35k1.405kS Only0.0k0.01k0.510kV Only0.1k0.48k0.000k-W0.1k0.48k0.000k	+0.60D+0.60W	0.1 k	0.29 k	1.405 k		
+D-0.70E0.1k0.35k2.342k+D+0.750S+0.5250E0.1k0.25k2.725k+D+0.750S-0.5250E0.1k0.27k2.725k+0.60D+0.70E0.1k0.34k1.405k+0.60D-0.70E0.1k0.35k1.405kS Only0.0k0.01k0.510kVOnly0.1k0.48k0.000k-W0.1k0.000k0.000kE Only0.2k0.000k0.000k	+0.60D-0.60W	0.0 k	0.29 k	1.405 k		
+ D+0.750S+0.5250E0.1k0.25k2.725k+ D+0.750S-0.5250E0.1k0.27k2.725k+ 0.60D+0.70E0.1k0.34k1.405k+ 0.60D-0.70E0.1k0.35k1.405kS Only0.0k0.01k0.510kW Only0.1k0.48k0.000k-W0.1k0.48k0.000kE Only0.2k0.49k0.000k	+D+0.70E	0.1 k	0.34 k	2.342 k		
+D+0.750S-0.5250E0.1k0.27k2.725k+0.60D+0.70E0.1k0.34k1.405k+0.60D-0.70E0.1k0.35k1.405kS Only0.0k0.01k0.510kW Only0.1k0.48k0.000k-W0.1k0.48k0.000kE Only0.2k0.49k0.000k	+D-0.70E	0.1 k	0.35 k	2.342 k		
+0.60D+0.70E0.1k0.34k1.405k+0.60D-0.70E0.1k0.35k1.405kS Only0.0k0.01k0.510kW Only0.1k0.48k0.000k-W0.1k0.48k0.000kE Only0.2k0.49k0.000k	+D+0.750S+0.5250E	0.1 k	0.25 k	2.725 k		
+0.60D-0.70E0.1k1.405kS Only0.0k0.01k0.510kW Only0.1k0.48k0.000k-W0.1k0.48k0.000kE Only0.2k0.49k0.000k	+D+0.750S-0.5250E	0.1 k	0.27 k	2.725 k		
S Only 0.0 k 0.01 k 0.510 k W Only 0.1 k 0.48 k 0.000 k -W 0.1 k 0.48 k 0.000 k E Only 0.2 k 0.49 k 0.000 k	+0.60D+0.70E	0.1 k	0.34 k	1.405 k		
W Only 0.1 k 0.48 k 0.00 k -W 0.1 k 0.48 k 0.00 k E Only 0.2 k 0.49 k 0.00 k	+0.60D-0.70E	0.1 k	0.35 k	1.405 k		
W 0.1 k 0.48 k 0.000 k E Only 0.2 k 0.49 k 0.000 k	S Only	0.0 k	0.01 k	0.510 k		
E Only 0.2 k 0.49 k 0.000 k	W Only	0.1 k	0.48 k	0.000 k		
	-W	0.1 k	0.48 k	0.000 k		
E Only* -1.0 0.2 k 0.49 k 0.000 k	E Only	0.2 k	0.49 k	0.000 k		
	E Only * -1.0	0.2 k	0.49 k	0.000 k		

Printed: 18 MAR 2022, 2:13PM File: WALGP0402 - Calculations.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24

WDA&E

Masonry Slender Wall

Lic. # : KW-06003498

DESCRIPTION: Walls, no parapet

Code References

Calculations per TMS 402-16, IBC 2018, CBC 2019, ASCE 7-16 Load Combinations Used : ASCE 7-16

Load Combinations l	Used : ASCE 7-16				
General Information			Calculatio	ons per TMS 402-16, IBC 2018, CBC	C 2019, ASCE 7-1
Construction Type : Gro	outed Hollow Concrete Ma	asonry			
F'm	= 1.50 ksi	Nom. Wall Thickness	8 in	Temp Diff across thickness =	deg F
Fy - Yield	= 60.0 ksi	Actual Thickness	7.625 in	Min Allow Out-of-plane Defl Ratio =	0.0
Fr - Rupture	= 61.0 psi	Rebar "d" distance	3.8125 in		
Em = f'm *	= 900.0	Lower Level Rebar		Minimum Vertical Steel % =	0.0020
Max % of $ ho$ bal.	= 0.008839	Bar Size #	6		
Grout Density	= 140 pcf	Bar Spacing	32 in		
Block Weight	Normal Weight				
Wall Weight	= 84.0 psf				
W	all is Solid Grouted				
One-Story Wall Dime	ensions				
A Clear Height	= 17.50 ft				
B Parapet height	= 0 ft	B			
1 5				Roof Attachment	
waii Support Condition	Top & Bottom Pinned				

А

Vertical Loads Vertical Uniform Loads (Applied per foot of Strip Width) Lf : Floor Live DL : Dead Lr : Roof Live S: Snow W:Wind Eccentricity Ledger Load 3.810 in 0.270 0.360 k/ft Concentric Load k/ft Vertical Concentrated Loads . . . (Applied to full "Strip Width") DL : Dead Lr : Roof Live Lf : Floor Live <u>S : Snow</u> W:Wind Eccentricity Beam Load #1 0.150 k 3.810 in Dist. from Base 17.50 ft Lateral Loads Wind Loads : Seismic Loads : Full area WIND load 16.20 psf Wall Weight Seismic Load Input Method : ASCE seismic factors entered 0.8410 SDS Value per ASCE 12.11.1 $S_{DS} * I =$ Fp = Wall Wt. * 0.3364 = 28.258 psf (Applied to full "STRIP Width") Endpoints from Base D Lr L Е W bottom top Distributed Lateral Load 0.0230 k/ft 24.670 17.50 ft

Project Title: Engineer: Project ID: Project Descr:

Floor Attachment

Printed: 18 MAR 2022, 2:15PM File: WALGP0402 - Calculations.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24

, Build:12.20.8.24 WD<u>A&E</u>

Masonry Slender Wall

Lic. # : KW-06003498

DESCRIPTION: Walls, no parapet

Printed: 18 MAR 2022, 2:15PM File: WALGP0402 - Calculations.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24

WDA&E

2.250 k

DESIGN SUMMARY Results reported for "Strip Width" of 12.0 in Governing Load Combination . . . Actual Values . . . Allowable Values . . . PASS Maximum Bending Stress Ratio = 0.4663 Moment Capacity Check +1.368D+0.20S+E Max Mu 1.262 k-ft Phi * Mn 2.706 k-ft PASS Service Deflection Check Actual Defl. Ratio L/ 283 Allowable Defl. Ratio 150.0 E Only Max. Deflection 0.7408 in PASS Axial Load Check Max Pu / Aq 16.196 psi Max. Allow. Defl. 1.40 in Location +1.368D+0.20S+E 9.042 ft 0.2 * f'm 300.0 psi PASS Reinforcing Limit Check 0.003607 Max Allow As/bd 0.008839 Actual As/bd Maximum Reactions . . . for Load Combination Top Horizontal E Only 0.2473 k 0.2473 k Base Horizontal E Only

Vertical Reaction

Design Maximum Combinations - Moments

Results reported for "Strip Width" = 12 in.

+D+S

	Axial Load				М	loment Value	es		0.6 *
Load Combination	Pu k	0.2*f'm*b*t k	Mcr k-ft	Mu k-ft	Phi	Phi Mn k-ft	As in^2	As Ratio	rho bal
+1.40D at 16.92 to 17.50	0.447	27.360	0.59	0.12	0.90	2.46	0.165	0.0036	0.0088
+1.20D at 16.92 to 17.50	0.383	27.360	0.59	0.10	0.90	2.45	0.165	0.0036	0.0088
+1.20D+0.50S at 15.75 to 16.33	0.755	27.360	0.59	0.17	0.90	2.53	0.165	0.0036	0.0086
+1.20D+0.50W at 9.33 to 9.92	1.147	27.360	0.59	0.37	0.90	2.63	0.165	0.0036	0.0085
+1.20D-0.50W at 7.58 to 8.17	1.324	27.360	0.59	0.26	0.90	2.67	0.165	0.0036	0.0084
+1.20D+1.60S at 15.75 to 16.33	1.316	27.360	0.59	0.33	0.90	2.67	0.165	0.0036	0.0084
+1.20D+1.60S+0.50W at 11.08 to 11.67	1.787	27.360	0.59	0.52	0.90	2.78	0.165	0.0036	0.0083
+1.20D+1.60S-0.50W at 16.92 to 17.50	0.959	27.360	0.59	0.29	0.90	2.58	0.165	0.0036	0.0086
+1.20D+W at 8.75 to 9.33	1.206	27.360	0.59	0.69	0.90	2.64	0.165	0.0036	0.0085
+1.20D-W at 8.17 to 8.75	1.265	27.360	0.59	0.57	0.90	2.66	0.165	0.0036	0.0085
+1.20D+0.50S+W at 8.75 to 9.33	1.461	27.360	0.59	0.74	0.90	2.70	0.165	0.0036	0.0084
+1.20D+0.50S-W at 7.58 to 8.17	1.579	27.360	0.59	0.54	0.90	2.73	0.165	0.0036	0.0083
+0.90D+W at 8.75 to 9.33	0.905	27.360	0.59	0.67	0.90	2.57	0.165	0.0036	0.0086
+0.90D-W at 8.17 to 8.75	0.949	27.360	0.59	0.59	0.90	2.58	0.165	0.0036	0.0086
+1.368D+0.20S+E at 8.75 to 9.33	1.477	27.360	0.59	1.26	0.90	2.71	0.165	0.0036	0.0084
+1.368D+0.20S-E at 8.17 to 8.75	1.544	27.360	0.59	1.08	0.90	2.72	0.165	0.0036	0.0084
+0.7318D+E at 8.75 to 9.33	0.735	27.360	0.59	1.16	0.90	2.53	0.165	0.0036	0.0087
+0.7318D-E at 8.17 to 8.75	0.771	27.360	0.59	1.09	0.90	2.54	0.165	0.0036	0.0086
Design Maximum Combinations -	Deflectio	ns				Result	s reporte	d for "Strip V	Vidth" = 12 in.

	Axial Load Moment Values			Stiffness		Deflec	tions		
Load Combination	Pu k	Mcr k-ft	Mactual k-ft	I gross in^4	I cracked in ⁴	I effective in [^] 4	Deflection in	Defl. Ratio	
D Only at 9.92 to 10.50	0.907	0.59	0.05	443.30	33.20	443.300	0.005	42,960.4	
+D+S at 9.92 to 10.50	1.417	0.59	0.15	443.30	34.37	443.300	0.014	14,831.1	
+D+0.750S at 9.92 to 10.50	1.290	0.59	0.12	443.30	34.08	443.300	0.012	17,743.5	
+D+0.60W at 8.75 to 9.33	1.005	0.59	0.42	443.30	33.43	443.300	0.039	5,347.7	
D-0.60W at 8.17 to 8.75	1.054	0.59	0.33	443.30	33.54	443.300	0.030	7,058.9	
D+0.450W at 8.75 to 9.33	1.005	0.59	0.33	443.30	33.43	443.300	0.031	6,850.4	
D-0.450W at 8.17 to 8.75	1.054	0.59	0.24	443.30	33.54	443.300	0.021	9,936.0	
D+0.750S+0.450W at 8.75 to 9.33	1.387	0.59	0.39	443.30	34.30	443.300	0.038	5,589.4	
D+0.750S-0.450W at 7.58 to 8.17	1.486	0.59	0.18	443.30	34.52	443.300	0.015	14,392.3	

PRCA20231436 WD Partners

7007 Discovery Blvd Dublin, OH 43017 wdpartners.com

Masonry Slender Wall Lic. # : KW-06003498 DESCRIPTION: Walls, no parape

Printed: 18 MAR 2022, 2:15PM
File: WALGP0402 - Calculations.ec6
Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24
WDA&E

Project Title: Engineer: Project ID: Project Descr:

DESCRIPTION: Walls, no parapet									
+0.60D+0.60W at 8.75 to 9.33	0.603	0.59	0.40	443.30	32.50	443.300	0.037	5,640.3	
+0.60D-0.60W at 8.17 to 8.75	0.632	0.59	0.35	443.30	32.57	443.300	0.032	6,658.9	
+D+0.70E at 8.75 to 9.33	1.005	0.59	0.83	443.30	33.43	38.127	0.336	625.8	
+D-0.70E at 8.17 to 8.75	1.054	0.59	0.73	443.30	33.54	42.349	0.195	1,079.5	

Masonry Slender Wall

Lic. # : KW-06003498

DESCRIPTION: Walls, no parapet

Design Maximum Combinations - Deflections

Design Maximum Combinations	s - Deflections			Results	reported for	"Strip Width'	" = 12 in.	
Load Combination	Axial Load Pu k	Mom Mcr k-ft	ent Values Mactual k-ft	I gross in^4	Stiffness I cracked in^4	I effective in^4	Deflection in	ctions Defl. Ratio
+D+0.750S+0.5250E at 8.75 to 9.33	1.387	0.59	0.69	443.30	34.30	46.954	0.155	1,355.6
+D+0.750S-0.5250E at 8.17 to 8.75	1.436	0.59	0.47	443.30	34.41	443.300	0.041	5,080.1
+0.60D+0.70E at 8.75 to 9.33	0.603	0.59	0.80	443.30	32.50	37.963	0.298	704.7
+0.60D-0.70E at 8.17 to 8.75	0.632	0.59	0.74	443.30	32.57	40.465	0.215	975.4
S Only at 9.92 to 10.50	0.510	0.59	0.09	443.30	32.28	443.300	0.009	22,846.0
N Only at 8.75 to 9.33	0.000	0.59	0.62	443.30	31.08	63.890	0.073	2,870.1
W at 8.75 to 9.33	0.000	0.59	0.62	443.30	31.08	63.890	0.073	2,870.1
E Only at 8.75 to 9.33	0.000	0.59	1.08	443.30	31.08	32.574	0.741	283.5
E Only * -1.0 at 8.75 to 9.33	0.000	0.59	1.08	443.30	31.08	32.574	0.741	283.5

Project Title: Engineer: Project ID: Project Descr:

Reactions - Vertical & Horizontal

Load Combination	Base Horizontal	Top Horizontal	Vertical @ Wall Base
D Only	0.0 k	0.00 k	1.740 k
+D+S	0.0 k	0.01 k	2.250 k
+D+0.750S	0.0 k	0.01 k	2.122 k
+D+0.60W	0.1 k	0.08 k	1.740 k
+D-0.60W	0.1 k	0.09 k	1.740 k
+D+0.450W	0.1 k	0.06 k	1.740 k
+D-0.450W	0.1 k	0.07 k	1.740 k
+D+0.750S+0.450W	0.1 k	0.05 k	2.123 k
+D+0.750S-0.450W	0.1 k	0.08 k	2.122 k
+0.60D+0.60W	0.1 k	0.08 k	1.044 k
+0.60D-0.60W	0.1 k	0.09 k	1.044 k
+D+0.70E	0.2 k	0.17 k	1.740 k
+D-0.70E	0.2 k	0.18 k	1.740 k
+D+0.750S+0.5250E	0.1 k	0.12 k	2.123 k
+D+0.750S-0.5250E	0.1 k	0.14 k	2.123 k
+0.60D+0.70E	0.2 k	0.17 k	1.044 k
+0.60D-0.70E	0.2 k	0.18 k	1.044 k
S Only	0.0 k	0.01 k	0.510 k
W Only	0.1 k	0.14 k	0.000 k
-W	0.1 k	0.14 k	0.000 k
E Only	0.2 k	0.25 k	0.000 k
E Only * -1.0	0.2 k	0.25 k	0.000 k

City

Printed: 18 MAR 2022, 2:15PM File: WALGP0402 - Calculations.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24

WDA&E

Masonry Shear Wall

Lic. # : KW-06003498

DESCRIPTION: V1

Code References

Calculations per TMS 402-16, IBC 2018, CBC 2019, ASCE 7-16 Load Combinations Used : ASCE 7-16

General Information

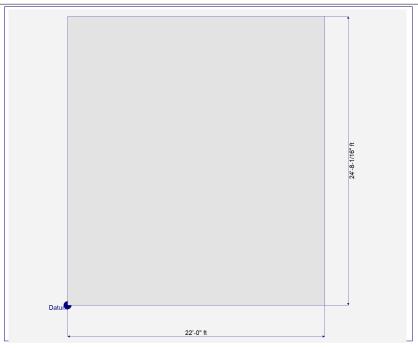
Wall Material MASONRY		f'm	2.0 ksi	Block Class	
Total Wall Height	24.670 ft	Fy - Rebar	60.0 ksi	Concrete Density	150.0 pcf
Base Wall Length	22.0 ft	Fy - HJR	70.0 ksi	Min. Bending As %	0.00180
R: Resp. Mod Factor	5.0	Em	3,120.0 ksi		
le: Seismic Import. Factor	1.0	Phi - Shear	0.80	Phi : Axial & Flexure	0.90
Wall Data					

Wall Data

	Bottom
Analysis Height	0.00 ft
Wall Offset	(datum) ft
Wall Length	22.0 ft
Effective Length 'd'	256.0 in
Nominal Block Thickne	ss 8 in
Solid Grout?	Solid Grouted

Reinforcing in Field of Wall

Vertical Bar Size #	6
Vertical Bar Spacing	32 in
Horiz. joint reinf. area (HJR)	0 in
HJR Spacing	24 in
Bond beam reinf. area	.31 in
Spacing of bond beams	48 in
In each chord cell:	
Vertical rehar size #	5


Printed: 18 MAR 2022, 2:46PM File: WALGP0402 - Calculations.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24 WDA&E

Masonry Shear Wall Lic. # : KW-06003498

DESCRIPTION: V1

Wall Sketch

Applied Concentrated Lateral Loads

			Load Magnitu	de (kips)			
Load "Y" Location	(ft)	Dead Load	Roof Live Load	Floor Live Load	Wind Load	Seismic Load	Earth Load
17.50		0.0	0.0	0.0	0.0	18.50	0.0
SHEAR ANALYSIS							
Special Boundary	<u>B</u>	ottom Level					
Elements Req'd?	Ν	lot Req'd					
Vu : Story Shear		43.987 k					
for Load Combination	+1.36	68D+1.30E					
Controlling Mu/(Vud)		0.69					
Vn Masonry		266.675 k					
Vn Steel		51.150 k					
Vn Masonry + Vn Steel		317.825 k					
Vn Max		433.321 k					
Phi Vn		254.260 k					
Ratio: Vu/PhiVn (controlling)		0.1730					
Vertical As >= Av/3		ОК					
Vertical Bar Spacing <= 96"		OK					

Project Title: Engineer: Project ID: Project Descr:

Printed: 18 MAR 2022, 2:46PM File: WALGP0402 - Calculations.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24 WDA&E

Masonry Shear Wall Lic. # : KW-06003498

DESCRIPTION: V1

AXIAL ANALYSIS	AXI	AL	A٨	IAL	YS	S
----------------	-----	----	----	-----	----	---

	Bottom Level
H / d Ratio	1.16
Pu	63.826 k
for Load Combination	+1.40D
Phi Pn	+1.40D k
Ratio: Pu/PhiPn (controlling)	0.02214
BENDING ANALYSIS	
	Bottom Level
"a" : Flexural compression	3.05 in
Length of defined chord zone is >= the "a" dimension of the masonry (the compression zone)	ОК
"d" : Eff depth to tension reinf	256.0
As-flex < As-max ?	0.620 <= 23.064
Mu	666.80 k
for Load Combination	+1.368D+1.30E
Phi Mn	709.99 k
Ratio: Mu/PhiMn (controlling)	0.9392

Force Summary

Va	lues for Wall section	on	Resultant	Overturning	Up	lift (k)
Vu (k)	Mu (k)	Pu (k)	Ecc (ft)	Ratio	Left	Right
		63.826				
		54.708				
		41.031				
43.987	666.804	62.376	6.747	1.192		
43.987	666.804	62.376	6.747	1.192		
43.987	666.804	33.363	12.615	1.192		
43.987	666.804	33.363	12.615	1.192		
	Vu (k) 43.987 43.987 43.987	Vu (k) Mu (k) 43.987 666.804 43.987 666.804 43.987 666.804 43.987 666.804	63.826 54.708 41.031 43.987 666.804 62.376 43.987 666.804 62.376 43.987 666.804 33.363	Vu (k) Mu (k) Pu (k) Ecc (ft) 63.826 54.708 41.031 43.987 666.804 62.376 6.747 43.987 666.804 62.376 6.747 43.987 666.804 33.363 12.615	Vu (k) Mu (k) Pu (k) Ecc (ft) Ratio 63.826 54.708 41.031 1 1 43.987 666.804 62.376 6.747 1.192 43.987 666.804 62.376 6.747 1.192 43.987 666.804 33.363 12.615 1.192	Vu (k) Mu (k) Pu (k) Ecc (ft) Ratio Left 63.826 54.708 41.031 43.987 666.804 62.376 6.747 1.192 43.987 666.804 62.376 6.747 1.192 43.987 666.804 33.363 12.615 1.192

Project Title: Engineer: Project ID: Project Descr:

Masonry Shear Wall

Lic. # : KW-06003498

DESCRIPTION: V1

Footing Information

r ooting information					
Footing Dimensions					
Dist. Left	0.0 ft	fс	3.0 ksi	Rebar Cover	3.0 in
Wall Length	22.0 ft	Fy	60.0 ksi	Footing Thickn	
Dist. Right	0.0 ft			Width	2.0 ft
Total Ftg Length	22.0 ft				
Max Factored Soil Pressures			Max UNfact	ored Soil Pressures	
@ Left Side of Footing	22,635.5 psf		@ Left :	Side of Footing 4,741.6	58 psf
governing load comb	+1.368D-1.30E			. governing load comb +D-0.70)E
@ Right Side of Footing	22,635.5 psf		@ Righ	t Side of Footing 4,741.6	58 psf
governing load comb	+1.368D+1.30E			. governing load comb +D+0.7	0E
Footing One-Way Shear Check vu @ Left End of Footing vu @ Right End of Footing vn * phi : Allowable	0.0 psi 0.0 psi 93.113 psi		Overturning Stability Overturning Moment Resisting Moment Stability Ratio governing load comb	<u>@ Left End of Ftg</u> 382.734 k-ft 335.743 k-ft 0.8772 : 1 +0.60D+0.70E	<u>@ Right End of Ftg</u> 382.734 k-ft 335.743 k-ft 0.8772 : 1 +0.60D+0.70E
Footing Bending Design Mu Ru As % Req'd As Req'd in Footing Width	<u>@ Left End</u> 0.0 k-ft 0.0 psi 0.00180 in^2 0.5184 in^2		<u>@ Right End</u> 0.0 k-ft 0.0 psi 0.00180 in^2 0.5184 in^2		

Printed: 18 MAR 2022, 2:46PM

File: WALGP0402 - Calculations.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24 WDA&E

Masonry Shear Wall

Lic. # : KW-06003498

DESCRIPTION: V2

Code References

Calculations per TMS 402-16, IBC 2018, CBC 2019, ASCE 7-16 Load Combinations Used : ASCE 7-16

General Information

Wall Material MASONRY		f'm	2.0 ksi	Block Class	
Total Wall Height	24.670 ft	Fy - Rebar	60.0 ksi	Concrete Density	150.0 pcf
Base Wall Length	28.0 ft	Fy - HJR	70.0 ksi	Min. Bending As %	0.00180
R: Resp. Mod Factor	5.0	Em	3,120.0 ksi		
le: Seismic Import. Factor	1.0	Phi - Shear	0.80	Phi : Axial & Flexure	0.90
Wall Data					

Bottom 0.00 ft Analysis Height Wall Offset (datum) ft Wall Length 28.0 ft Effective Length 'd' 328.0 in Nominal Block Thickness 8 in Solid Grout? Solid Grouted Reinforcing in Field of Wall Vertical Bar Size # 6 Vertical Bar Spacing 32 in Horiz, joint reinf, area (HJR) in

HJR Spacing	24 in
Bond beam reinf. area	.31 in
Spacing of bond beams	48 in
In each chord cell:	
Vertical rebar size #	5

Chord Cells @ Each End 2

Masonry Shear Wall Lic. # : KW-06003498

DESCRIPTION: V2

Wall Sketch

Project Title: Engineer: Project ID: Project Descr:

Applied Concentrated Lateral Loads

Load Magnitude (kips)									
Load "Y" Location	(ft)	Dead Load	Roof Live Load	Floor Live Load	Wind Load	Seismic Load	Earth Load		
17.50		0.0	0.0	0.0	0.0	18.70	0.0		
SHEAR ANALYSIS									
Special Boundary	Botto	om Level							
Elements Req'd?	Not	Req'd							
Vu : Story Shear		49.685 k							
for Load Combination	+1.368D	+1.30E							
Controlling Mu/(Vud)		0.53							
Vn Masonry	3	371.031 k							
Vn Steel		57.358 k							
Vn Masonry + Vn Steel	L	128.389 k							
Vn Max		599.69 k							
Phi Vn	3	342.711 k							
Ratio: Vu/PhiVn (controlling)		0.1450							
Vertical As >= Av/3		ОК							
Vertical Bar Spacing <= 96"		ОК							

City of Puyallu ISSU

Masonry Shear Wall Lic. # : KW-06003498

DESCRIPTION: V2

	Bottom Level
H / d Ratio	0.90
Pu	81.233 k
for Load Combination	+1.40D
Phi Pn	+1.40D k
Ratio: Pu/PhiPn (controlling)	0.02214
BENDING ANALYSIS	
	Bottom Level
"a" : Flexural compression	3.05 in
Length of defined chord zone IS >= the "a" dimension of the masonry (the compression zone)	ОК
"d" : Eff depth to tension reinf	328.0
As-flex < As-max ?	0.620 <= 29.550
Mu	738.43 k
for Load Combination	+1.368D+1.30E
Phi Mn	910.87 k
Ratio: Mu/PhiMn (controlling)	0.8107

Force Summary

Va	lues for Wall section	on	Resultant	Overturning	Uplift (k)	
Vu (k)	Mu (k)	Pu (k)	Ecc (ft)	Ratio	Left	Right
		81.233				
		69.629				
		52.221				
49.685	738.425	79.388	5.359	1.909		
49.685	738.425	79.388	5.359	1.909		
49.685	738.425	42.462	10.019	1.909		
49.685	738.425	42.462	10.019	1.909		
	Vu (k) 49.685 49.685 49.685	Vu (k) Mu (k) 49.685 738.425 49.685 738.425 49.685 738.425 49.685 738.425	81.233 69.629 52.221 49.685 738.425 79.388 49.685 738.425 79.388 49.685 738.425 42.462	Vu (k) Mu (k) Pu (k) Ecc (ft) 81.233 69.629 52.221 49.685 738.425 79.388 5.359 49.685 738.425 79.388 5.359 49.685 738.425 42.462 10.019	Vu (k) Mu (k) Pu (k) Ecc (ft) Ratio 81.233 69.629 52.221 52.221 52.221 49.685 738.425 79.388 5.359 1.909 49.685 738.425 79.388 5.359 1.909 49.685 738.425 42.462 10.019 1.909	Vu (k) Mu (k) Pu (k) Ecc (ft) Ratio Left 81.233 69.629 52.221 1009 1.909

Project Title: Engineer: Project ID: Project Descr:

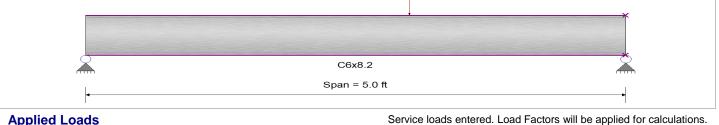
Masonry Shear Wall Lic. # : KW-06003498

DESCRIPTION: V2

Footing Information

Project Title:	
Engineer:	
Project ID:	
Project Descr:	

Fooling information					
Footing Dimensions					
Dist. Left	ft	f'c	3.0 ksi	Rebar Cover	3.0 in
Wall Length	28.0 ft	Fy	60.0 ksi	Footing Thickn	
Dist. Right	ft			Width	2.0 ft
Total Ftg Length	28.0 ft				
Max Factored Soil Pressures			Max UNfact	ored Soil Pressures	
@ Left Side of Footing	5,683.36 psf			Side of Footing 3,957.	
governing load comb	+1.368D-1.30E			. governing load comb +0.60D	0-0.70E
@ Right Side of Footing	5,683.36 psf		@ Righ	t Side of Footing 3,957.	70 psf
governing load comb	+1.368D+1.30E			. governing load comb +0.60D	0+0.70E
Footing One-Way Shear Check			Overturning Stability	@ Left End of Ftg	@ Right End of Ftg
vu @ Left End of Footing	0.0 psi		Overturning Moment	424.367 k-ft	424.367 k-ft
vu @ Right End of Footing	0.0 psi		Resisting Moment	543.85 k-ft	543.85 k-ft
vn * phi : Allowable	93.113 psi		Stability Ratio	1.282 : 1	1.282 : 1
			governing load comb	+0.60D+0.70E	+0.60D+0.70E
			···· 99	+0.00D+0.70L	+0.00D+0.70E
Footing Bending Design	@ Left End		@ Right End		
Mu	0.0 k-ft		0.0 k-ft		
Ru	0.0 psi		0.0 psi		
As % Reg'd	0.00180 in^2		0.00180 in^2		
As Reg'd in Footing Width	0.5184 in^2		0.5184 in^2		
. 0					


WDA&E

Printed: 18 MAR 2022, 4:01PM File: WALGP0402 - Calculations.ec6 **Steel Beam** Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24 Lic. # : KW-06003498 DESCRIPTION: Equipment support channel (spans between joists). **CODE REFERENCES**

Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set : ASCE 7-16

Material Properties

Analysis Method : Allowable Strength Design	Fy : Steel Yield :	36.0 ksi	
Beam Bracing : Beam is Fully Braced against lateral-torsional buckling	E: Modulus :	29,000.0 ksi	
Bending Axis : Minor Axis Bending	D(1)		

Applied Loads

Beam self weight calculated and added to loading Load(s) for Span Number 1 Point Load : D = 1.0 k @ 3.0 ft

DESIGN SUMMARY			Design OK
Maximum Bending Stress Ratio =	0.976 : 1 Ma	ximum Shear Stress Ratio =	0.081 : 1
Section used for this span	C6x8.2	Section used for this span	C6x8.2
Ma : Applied	1.369 k-ft	Va : Applied	0.6936 k
Mn / Omega : Allowable	1.403 k-ft	Vn/Omega : Allowable	8.518 k
Load Combination	+1.118D	Load Combination	+1.118D
Location of maximum on span	3.000ft	Location of maximum on span	5.000 ft
Span # where maximum occurs	Span # 1	Span # where maximum occurs	Span # 1
Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection	0.000 in Ratio = 0.000 in Ratio = 0.221 in Ratio = 0.000 in Ratio =	0 <360 0 <360 272 >=240. 0 <240.0	

Maximum Forces & Stresses for Load Combinations

Load Combination		Max Stres	ss Ratios		0	Summary of Mo	ment Valu	es			Summ	nary of Sh	ear Values
Segment Length	Span #	М	V	Mmax +	Mmax -	Ma Max	Mny	Mny/Omega	Cb	Rm	Va Max	Vny	Vny/Omega
D Only													
Dsgn. L = 5.00 ft	1	0.873	0.073	1.22		1.22	2.34	1.40	1.00	1.00	0.62	14.22	8.52
+0.60D													
Dsgn. L = 5.00 ft	1	0.524	0.044	0.73		0.73	2.34	1.40	1.00	1.00	0.37	14.22	8.52
+1.118D		a a 7 /				4.07							
Dsgn. L = 5.00 ft	1	0.976	0.081	1.37		1.37	2.34	1.40	1.00	1.00	0.69	14.22	8.52
+1.088D	1	0.050	0.070	1 22		1 22	2.24	1.40	1 00	1 00	0.40	11 22	0.50
Dsgn. L = 5.00 ft +0.4823D	I	0.950	0.079	1.33		1.33	2.34	1.40	1.00	1.00	0.68	14.22	8.52
Dsgn. L = 5.00 ft	1	0.421	0.035	0.59		0.59	2.34	1.40	1 00	1.00	0.30	14.22	8.52
Overall Maximum	Deflec		0.000	0.07		0.07	2.01	1.10	1.00	1.00	0.00	11.22	0.02
Load Combination		Span	Max. "-" Defl	Location i	n Span	Load Comb	ination			Мах	"+" Defl	Locatio	n in Span
D Only		1	0.2208	2	.643						0.0000		0.000
Vertical Reaction	S				Support	notation : Far le	eft is #1			Values i	n KIPS		
Load Combination		Support 1	Support 2										
Overall MAXimum		0.421	0.621										
Overall MINimum		0.252	0.372										
D Only		0.421	0.621										
+0.60D		0.252	0.372										

WDA&E

Printed: 18 MAR 2022, 4:01PM File: WALGP0402 - Calculations.ec6

File: WALGP0402 - Calculations.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24

Steel Beam Lic. # : KW-06003498

DESCRIPTION: Equipment support channel (spans between joists).

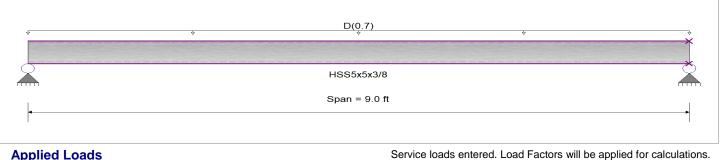
Steel Section Properties : C6x8.2

Depth	=	6.000 in	l xx	≣	13.10 in^4	J	=	0.074 in^4
Web Thick	=	0.200 in	S xx		4.35 in^3	Cw	=	4.70 in^6
Flange Width	=	1.920 in	R xx	=	2.340 in	Ro	=	2.650 in
Flange Thick	=	0.343 in	Zx	=	5.160 in^3	Н	=	0.824 in
Area	=	2.390 in^2	l yy	=	0.687 in^4			
Weight	=	8.200 plf	S yy	=	0.488 in^3	Wno	=	3.170 in^2
Kdesign	=	0.813 in	R yy	=	0.536 in	Sw	=	0.610 in^4
			Zy	=	0.987 in^3	Qf	=	1.720 in^3
rts	=	0.643 in				Qw	=	2.620 in^3
Ycg	=	3.000 in				Wn2	=	1.980
Хсд	=	0.512 in				Sw2	=	0.370
Хр	=	0.199 in				Sw3	=	0.190

Eo = 0.599 in

Steel Beam

Lic. # : KW-06003498


DESCRIPTION: lintel (gravity loads)

CODE REFERENCES

Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set : ASCE 7-16

Material Properties

Analysis Method	: Allowable Strength Design	Fy : Steel Yield :	46.0 ksi
Beam Bracing :	Beam is Fully Braced against lateral-torsional buckling	E: Modulus :	29,000.0 ksi
Bending Axis :	Major Axis Bending		

Applied Loads

Beam self weight calculated and added to loading Uniform Load : D = 0.70 k/ft, Tributary Width = 1.0 ft

DESIGN SUMMARY			Design OK
Maximum Bending Stress Ratio =	0.301 : 1	Maximum Shear Stress Ratio =	0.071 : 1
Section used for this span	HSS5x5x3/8	Section used for this span	HSS5x5x3/8
Ma : Applied	7.313 k-ft	Va : Applied	3.250 k
Mn / Omega : Allowable	24.331 k-ft	Vn/Omega : Allowable	45.601 k
Load Combination Location of maximum on span Span # where maximum occurs	D Only 4.500ft Span # 1	Load Combination Location of maximum on span Span # where maximum occurs	D Only 0.000 ft Span # 1
Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection	0.000 in Ratio 0.000 in Ratio 0.170 in Ratio 0.000 in Ratio	e = 0 <360 = 634 >=240.	

Maximum Forces & Stresses for Load Combinations

Load Combination		Max Stres	s Ratios		S	Summary of Mo	oment Valu	les			Summ	hary of Sh	ear Values
Segment Length	Span #	М	V	Mmax +	Mmax -	Ma Max	Mnx	Mnx/Omega	Cb	Rm	Va Max	Vnx	Vnx/Omega
D Only													
Dsgn. L = 9.00 ft	1	0.301	0.071	7.31		7.31	40.63	24.33	1.00	1.00	3.25	76.15	45.60
+0.60D													
Dsgn. L = 9.00 ft	1	0.180	0.043	4.39		4.39	40.63	24.33	1.00	1.00	1.95	76.15	45.60
Overall Maximu	m Defleo	ctions											
Load Combination		Span	Max. "-" Defl	Locatior	n in Span	Load Comb	pination			Мах	. "+" Defl	Location	n in Span
D Only		1	0.1702		4.526						0.0000		0.000
Vertical Reactio	ns				Support	notation : Far I	left is #1			Values in	n KIPS		
Load Combination		Support 1	Support 2										
Overall MAXimum		3.250	3.250										
Overall MINimum		1.950	1.950										
D Only		3.250	3.250										
+0.60D		1.950	1.950										

WDA&E

Printed: 18 MAR 2022, 4:27PM File: WALGP0402 - Calculations.ec6

Project Title: Engineer: Project ID: Project Descr:

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24

Printed: 18 MAR 2022, 4:27PM File: WALGP0402 - Calculations.ec6

Steel Beam Lic. # : KW-06003498

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24 WDA&E

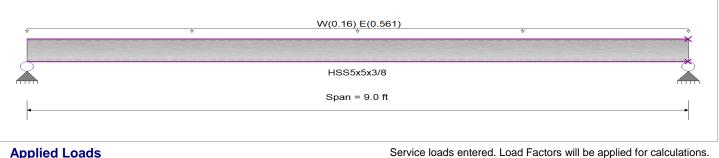
DESCRIPTION: lintel (gravity loads)

Depth	=	5.000 in	l xx	≣	21.70 in^4	J	=	36.100 in^4
			S xx		8.68 in^3			
Width	=	5.000 in	R xx	=	1.870 in			
Wall Thick	=	0.349 in	Zx	=	10.600 in^3			
Area	=	6.180 in^2	Туу	=	21.700 in^4	С	=	0.000 in^3
Weight	=	22.302 plf	S yy	=	8.680 in^3			
			R yy	=	1.870 in			

Ycg = 2.500 in

Steel Beam

Lic. # : KW-06003498


DESCRIPTION: lintel (lateral loads)

CODE REFERENCES

Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set : ASCE 7-16

Material Properties

Analysis Method :	Allowable Strength Design
Beam Bracing :	Beam is Fully Braced against lateral-torsional buckling
Bending Axis :	Minor Axis Bending

Project Title: Engineer:

Project ID: Project Descr:

Fy : Steel Yield :

E: Modulus :

Applied Loads

Beam self weight calculated and added to loading Uniform Load: W = 0.0160, E = 0.05610 ksf, Tributary Width = 10.0 ft

DESIGN SUMMARY			Design OK
Maximum Bending Stress Ratio =	0.173 : 1	Maximum Shear Stress Ratio =	0.041:1
Section used for this span		Section used for this span	HSS5x5x3/8
Ma : Applied	4.202 k-ft	Va : Applied	1.868 k
Mn / Omega : Allowable	24.331 k-ft	Vn/Omega : Allowable	45.601 k
Load Combination	+D+0.70E	Load Combination	+D+0.70E
Location of maximum on span	4.500ft	Location of maximum on span	0.000 ft
Span # where maximum occurs	Span # 1	Span # where maximum occurs	Span # 1
Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection	0.132 in Ratio -0.132 in Ratio 0.098 in Ratio -0.089 in Ratio	= 816 >=360 = 1104 >=240.	

Maximum Forces & Stresses for Load Combinations

Load Combination		Max Stress	Ratios		S	ummary of Mo	oment Valu	les			Summa	ry of Sh	ear Values
Segment Length	Span #	М	V	Mmax +	Mmax -	Ma Max	Mny	Mny/Omega	Cb	Rm	Va Max	Vny	Vny/Omega
D Only Dsgn. L = 9.00 ft	1	0.009	0.002	0.23		0.23	40.63	24.33	1.00	1.00	0.10	76.15	45.60
+D+0.60W Dsgn. L = 9.00 ft	1	0.049	0.012	1.20		1.20	40.63	24.33	1.00	1.00	0.53	76.15	45.60
+D-0.60W Dsgn. L = 9.00 ft +D+0.450W	1	0.031	0.007		-0.75	0.75	40.63	24.33	1.00	1.00	0.33	76.15	45.60
Dsgn. L = 9.00 ft +D-0.450W	1	0.039	0.009	0.95		0.95	40.63	24.33	1.00	1.00	0.42	76.15	45.60
Dsgn. L = 9.00 ft +0.60D+0.60W	1	0.021	0.005		-0.50	0.50	40.63	24.33	1.00	1.00	0.22	76.15	45.60
Dsgn. L = 9.00 ft +0.60D-0.60W	1	0.046	0.011	1.11		1.11	40.63	24.33	1.00	1.00	0.49	76.15	45.60
Dsgn. L = 9.00 ft +D+0.70E	1	0.034	0.008		-0.84	0.84	40.63	24.33	1.00	1.00	0.37	76.15	45.60
Dsgn. L = 9.00 ft +D-0.70E	1	0.173	0.041	4.20		4.20	40.63	24.33		1.00	1.87	76.15	45.60
Dsgn. L = 9.00 ft +D+0.5250E	1	0.154	0.037		-3.75	3.75	40.63	24.33		1.00	1.67	76.15	45.60
Dsgn. L = 9.00 ft +D-0.5250E	1	0.132	0.031	3.21		3.21	40.63	24.33		1.00	1.43	76.15	45.60
Dsgn. L = 9.00 ft +0.60D+0.70E	1	0.113	0.027		-2.76	2.76	40.63	24.33		1.00	1.23	76.15	45.60
Dsgn. L = 9.00 ft	1	0.169	0.040	4.11		4.11	40.63	24.33	1.00	1.00	1.83	76.15	45.60

Printed: 18 MAR 2022, 4:28PM

File: WALGP0402 - Calculations.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24 WDA&E

46.0 ksi

29,000.0 ksi

Steel Beam								Software co	pyright		NALGP0402 .C, INC. 1983-2		
Lic. # : KW-06003498													WDA&I
DESCRIPTION: li	ntel (latera	l loads)											
oad Combination		Max Stre			Summary of Moment Values							,	near Values
Segment Length	Span #	М	V	Mmax +	Mmax -	Ma Max	Mnx	Mnx/Omega	a Cb	Rm	Va Max	Vnx	Vnx/Omeg
0.60D-0.70E Dsgn. L = 9.00 ft	1	0.158	0.037		-3.84	3.84	40.63	24.33	1.00	1.00	1.71	76.15	5 45.6
Overall Maximu	um Defle	ctions											
Load Combination		Span	Max. "-" Defl	Locatio	n in Span	Load Comb	pination			Мах	(. "+" Defl	Locatio	n in Span
		1	0.0000		0.000	E Only *	-1.0				-0.1322		4.526
Vertical Reaction	ons				Support	notation : Far I	left is #1			Values i	n KIPS		
Load Combination		Support 1	Support 2										
Overall MAXimum		-2.525	-2.525										
Overall MINimum		0.100	0.100										
D Only		0.100	0.100										
+D+0.60W		0.532	0.532										
+D-0.60W		-0.332	-0.332										
+D+0.450W		0.424	0.424										
+D-0.450W		-0.224	-0.224										
+0.60D+0.60W		0.492	0.492										
+0.60D-0.60W		-0.372	-0.372										
+D+0.70E		1.868	1.868										
+D-0.70E		-1.667	-1.667										
+D+0.5250E		1.426	1.426										
+D-0.5250E		-1.225	-1.225										
+0.60D+0.70E		1.827	1.827										
+0.60D-0.70E		-1.707	-1.707										
W Only		0.720	0.720										
-W		-0.720	-0.720										
E Only		2.525	2.525										
E Only * -1.0		-2.525	-2.525										
Steel Section P	Propertie	s:HSS	5x5x3/8										
Depth	=	5.000 in	l xx		≡	21.70 in^4		J		=	30	5.100 in^4	4
			S xx			8.68 in^3							
Width	=	5.000 in	R xx		=	1.870 in							
Wall Thick	=	0.349 in	Zx		=	10.600 in^3							
Area	=	6.180 in^2	Гуу		=	21.700 in^4		С		=	(0.000 in^3	3
Weight	=	22.302 plf	S yy		=	8.680 in^3							
-		•	Ryy		=	1.870 in							

Project Title: Engineer: Project ID: Project Descr:

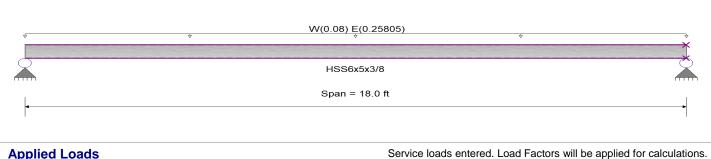
Ycg

2.500 in

=

Steel Beam

Lic. # : KW-06003498


DESCRIPTION: Jamb (lateral loads)

CODE REFERENCES

Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set : ASCE 7-16

Material Properties

Analysis Method :	Allowable Strength Design
Beam Bracing :	Beam is Fully Braced against lateral-torsional buckling
Bending Axis :	Major Axis Bending

Applied Loads

Beam self weight calculated and added to loading Uniform Load : W = 0.0160, E = 0.05161 ksf, Tributary Width = 5.0 ft

DESIGN SUMMARY			Design OK
Maximum Bending Stress Ratio =	0.270 : 1	Maximum Shear Stress Ratio =	0.033 : 1
Section used for this span	HSS6x5x3/8	Section used for this span	HSS6x5x3/8
Ma : Applied	8.539 k-ft	Va : Applied	1.898 k
Mn / Omega : Allowable	31.677 k-ft	Vn/Omega : Allowable	57.137 k
Load Combination	+1.215D+0.70E	Load Combination	+1.215D+0.70E
Location of maximum on span	9.000ft	Location of maximum on span	0.000 ft
Span # where maximum occurs	Span # 1	Span # where maximum occurs	Span # 1
Maximum Deflection			
Max Downward Transient Deflection	0.000 in Rati	io = 0 < 360	
Max Upward Transient Deflection	0.000 in Rati	io = 0 < 360	
Max Downward Total Deflection	0.496 in Rati		
Max Upward Total Deflection	-0.400 in Rati	io = 540 >= 240.	

Maximum Forces & Stresses for Load Combinations

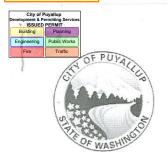
Load Combination		Max Stress	Ratios		S	Summary of Mo	oment Valu	les			Summa	ry of Sh	ear Values
Segment Length	Span #	М	V	Mmax +	Mmax -	Ma Max	Mnx	Mnx/Omega	Cb	Rm	Va Max	Vnx	Vnx/Omega
D Only							50.00						
Dsgn. L = 18.00 ft +D+0.60W	1	0.032	0.004	1.01		1.01	52.90	31.68	1.00	1.00	0.22	95.42	57.14
Dsgn. L = 18.00 ft	1	0.093	0.011	2.95		2.95	52.90	31.68	1.00	1.00	0.66	95.42	57.14
+D-0.60W													
Dsgn. L = 18.00 ft +D+0.450W	1	0.030	0.004		-0.94	0.94	52.90	31.68	1.00	1.00	0.21	95.42	57.14
Dsgn. L = 18.00 ft	1	0.078	0.010	2.46		2.46	52.90	31.68	1.00	1.00	0.55	95.42	57.14
+D-0.450W	4	0.014	0.000		0.45	0.45	F2 00	21 (0	1 00	1.00	0.10	05.40	F7 14
Dsgn. L = 18.00 ft +0.60D+0.60W	I	0.014	0.002		-0.45	0.45	52.90	31.68	1.00	1.00	0.10	95.42	57.14
Dsgn. L = 18.00 ft	1	0.080	0.010	2.55		2.55	52.90	31.68	1.00	1.00	0.57	95.42	57.14
+0.60D-0.60W													
Dsgn. L = 18.00 ft	1	0.042	0.005		-1.34	1.34	52.90	31.68	1.00	1.00	0.30	95.42	57.14
+1.215D+0.70E	1	0.070	0 022	0.54		0.54	F2 00	21 / 0	1 00	1.00	1.00	05 40	F7 14
Dsgn. L = 18.00 ft +1.215D-0.70E	1	0.270	0.033	8.54		8.54	52.90	31.68	1.00	1.00	1.90	95.42	57.14
Dsgn. L = 18.00 ft	1	0.192	0.024		-6.09	6.09	52.90	31.68	1.00	1.00	1.35	95.42	57.14
+1.161D+0.5250E													
Dsgn. L = 18.00 ft +1.161D-0.5250E	1	0.210	0.026	6.66		6.66	52.90	31.68	1.00	1.00	1.48	95.42	57.14
+1.101D-0.3230E Dsgn. L = 18.00 ft +0.3850D+0.70E	1	0.136	0.017		-4.32	4.32	52.90	31.68	1.00	1.00	0.96	95.42	57.14
Dsgn. L = 18.00 ft	1	0.243	0.030	7.70		7.70	52.90	31.68	1.00	1.00	1.71	95.42	57.14

Printed: 18 MAR 2022, 4:25PM File: WALGP0402 - Calculations.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24 WDA&E

Project Title: Engineer: Project ID: Project Descr:

> 46.0 ksi 29,000.0 ksi


Fy : Steel Yield :

E: Modulus :

Steel Beam								Software co	nvriaht		VALGP0402 C, INC. 1983-		
Lic. # : KW-06003498								Soliware co	pyngn	ENERGAE	o, into. 1705	2020, Duila.	WDA&I
DESCRIPTION:	Jamb (latera	al loads)											
Load Combination		Max Stres	ss Ratios			Summary of Mo	ment Valu	Jes			Sumr	nary of She	ear Values
Segment Length	Span #	М	V	Mmax +	Mmax -	Ma Max	Mnx	Mnx/Omega	a Cb	Rm	Va Max	Vnx	Vnx/Omeg
0.3850D-0.70E Dsgn. L = 18.00 ft	1	0.219	0.027		-6.93	6.93	52.90	31.68	1.00	1.00	1.54	95.42	57.1
Overall Maxim	um Defle	ctions											
Load Combination		Span	Max. "-" Defl	Location	n in Span	Load Comb	ination			Мах	. "+" Defl	Location	in Span
+D+0.70E		1	0.4960		9.051						0.0000		0.000
Vertical Reacti	ons				Sunnor	t notation : Far I	oft is #1			Values ir			
Load Combination	0115	Support 1	Support 2		Suppor					Values II			
Overall MAXimum		-2.322	-2.322										
Overall MINimum		-2.322	-2.322										
		0.224	-0.100										
D Only													
+D+0.60W		0.656 -0.208	0.656 -0.208										
+D-0.60W													
+D+0.450W		0.548	0.548										
+D-0.450W		-0.100	-0.100										
+0.60D+0.60W		0.566	0.566										
+0.60D-0.60W		-0.298	-0.298										
+D+0.70E		1.849	1.849										
+D-0.70E		-1.402	-1.402										
+D+0.5250E		1.443	1.443										
+D-0.5250E		-0.996	-0.996										
+0.60D+0.70E		1.760	1.760										
+0.60D-0.70E		-1.492	-1.492										
W Only		0.720	0.720										
-W		-0.720	-0.720										
E Only		2.322	2.322										
E Only * -1.0		-2.322	-2.322										
Steel Section F	Propertie	s : HSS	6x5x3/8										
Depth	=	6.000 in	l xx		E	33.90 in^4		J		=	4	8.100 in^4	
			S xx			11.30 in^3		Cv	v	=		18.20 in^6	
Width	=	5.000 in	R xx		=	2.220 in							
Wall Thick	=	0.349 in	Zx			13.800 in^3							
Area	=	6.880 in^2	L yy			25.500 in^4		С		=		0.000 in^3	
Weight	=	24.854 plf	S yy			10.200 in 4		U		-		0.000 III J	
weigin	-	24.004 pii				1.920 in 3							
			R yy Zy		=	1.920 in 12.200 in^3							
			-										
Ycq	=	3.000 in											

PRCA20231436

City of Puyallup **Building Division** 333 S. Meridian, Puyallup, WA 98371 (253) 864-4165 www.cityofpuyallup.org

Comment Notice

Permit Application # B-21-0905

The City has completed the review of the above-mentioned permit submittal. Below please find the permit submittal review comments from your review team. Should you have any questions regarding the review comments, please contact the plan reviewer associated with the comment listed below.

Engineering Review (Reviewed By: Linda Lian, (253)841-5577, LindaL@PuyallupWA.gov)

• B-21-0905Fruitland Mutual Water Company. Please provide a Certificate of Water Availability. Plumbing Fixture Plan Review, WATER

 This permit application will be placed on hold by engineering until civil plans have been submitted, reviewed. and then approved by the Engineering Division as outline in the email sent to the applicant on January 27,2022. Cover Sheet C-1

Building Review (Reviewed By: David Leahy, (253)435-3618, DavidL@PuvallupWA.gov)

Letter below sent to applicant 11/23/2021

Permit: B-21-0905 Addition to Walmart #02403

Some items that need to be addressed on these plans before this application can be completely reviewed:

1. Will need to provide allowable area calculations since you are adding another 3,232 sg.ft. to this building.

2. The COMcheck information shown on the plans is not compatible with the requirements of the 2018 WSEC codes so not acceptable for this permit.

3.Need to show how ALL new requirements of the 2018 WSEC code is being met in the changes and most certainly in the additional new area, including all required commissioning items.

4. Provide an Engineering packet for the proposed racks per 2018 IBC section 2209 and related standards.

5. Provide an Engineering packet for the proposed new area and all changes in the existing building for this seismic zone.

6 Need to provide engineering for the new roof top units being proposed and make sure to include all seismic attachments for the curbs and units. None other than Air cu (169165

7. Provide seismic details for all the hanging units inside the building.

8. Provide calculations for the roof drainage per the 2018 Uniform Plumbing Code on the plans.

<u>City of Puyallup</u> Building Division 333 S. Meridian, Puyallup, WA 98371 (253) 864-4165 www.cityofpuyallup.org

9.Show the R value for the ridged insulation shown on the plans and how it meets all the requirements of the 2018 WSEC codes on the plans not just reference the specs. AND show how this meets the 2018 WSEC requirements for cooler and freezer areas, as well as other heated space if being installed under the floor area.

10. There is a note on page MP1, 28 that indicates trap primers if required by local codes. Per 2018 UPC section 1007 it would appear to be needed in this application. Please amend note and plans.

11. Provide the specs for the roof framing being proposed and make sure engineer of record also approves the framing being used for this project. Deferred Submitted

12. Special inspection statement on page SO indicates the CBC. That would not be applicable in Washington State. Please amend.

13.Show how this new area and area being remodeled meets the required ventilation requirements on the 2018 International Mechanical Code along with all the Washington State amendments on the plans.

14.Show all requirements for the roof ladder on page OP1.2 per the 2018 IMC section 306.5 and the Washington State amendments in detail on the plans.

15.All new doors being installed must have all information added to page A8 as this is what we review too and the inspectors use in the field, so must be complete and detailed.

16. If new suspended ceilings are being installed then plans must have details on the installation for this seismic zone for all ceilings.

To resubmit, you must address all comments and complete the <u>resubmittal form</u>. When you are ready to resubmit, you may do so by uploading a "new version" of the submittal requirement in the customer portal. In addition, you will need to pay the resubmittal fee at the time of your resubmittal. Your permit resubmittal will not be processed for review until this fee is paid. Please note, partial resubmittals will be deemed incomplete and returned.

If you need assistance with resubmitting your corrections, please contact the Permit Center.

Sincerely, City of Puyallup Permit Center (253) 864-4165 option 1 permitcenter@puyallupwa.gov