

Brienen **S**tructural **E**ngineers, P.S.

City of Puyallup Building ACCEPTED JMontgomery 03/20/2024 1:52:07 PM FULL SIZED LEDGIBLE COLOR REPORTS IS REQUIRED TO BE PROVIDED BY THE PERMITTEE ON SITE FOR ALL INSPECTIONS

CENTERIS VOLTAGE PARK 1023 39th Avenue South East Puyallup, WA 98374

UPS and Battery Room Build-Out Structural Calculations

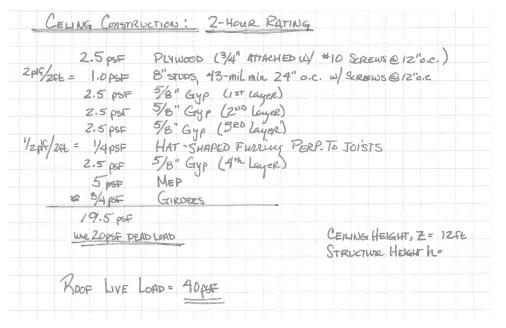
Project Number 24201 March 01, 2024

Index

INFILL STUD WALLS DESIGN CRITERIA	Page 03
ANCHOR AND CONNECTOR DESIGN	Page 10
INFILL CFS WALL DESIGNS	Page 29
INFILL CFS OPENING DESIGNS	Page 36
CFS JOIST FRAMING DESIGN	Page 41
HSS GIRDER FRAMING DESIGN	Page 47
LATERAL DESIGN	Page 63
UPS ROOM CEILING DESIGN	Page 76

INFILL STUD WALLS Design Criteria

Design Codes


Design Codes: International Building Code, 2018 ASCE 7-16 AISI Standards AISI S100-16 AISI S200-12 AISI S210-12 AISI S211-12 AISI S212-12 AISI S240-12

Vertical Loads on Ceiling Framing

Dead Load = 20 psf total

(includes weight of (4) layers of Gyp for 2-hour fire rating, CFS joist weight, plywood wearing surface, and 5psf for MEP) Live Load = 40 psf

(Access similar to Catwalks or Maintenance spaces)

BSE Brienen Structural Engineers, P.S.

Seismic Parameters

Site Class = D (Assumed) $S_{DS} = 1.006$ Values per ASCE Hazards Report (See following pages)

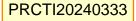
Seismic Coefficients from Table 13.5-1 (ASCE 7-16)

Table 13.5-1 Coefficients for Architectural Components

Architectural Component	a_p^a	R_p	Ω
Interior nonstructural walls and partitions ^c			
Plain (unreinforced) masonry walls	1	11/2	11/
All other walls and partitions	1	21⁄2	1
Cantilever elements (unbraced or braced to structural			
frame below its center of mass)			
Parapets and cantilever interior nonstructural walls	21/2	21/2	2
Chimneys where laterally braced or supported by	21/2	21/2	2
the structural frame			
Cantilever elements (braced to structural frame above			
its center of mass)			
Parapets	1	21/2	ź
Chimneys	1	21/2	ź
Exterior nonstructural walls ^c	1^b	21/2	2
Exterior nonstructural wall elements and connections ^b			
Wall element	1	21/2	NA
Body of wall panel connections	1	21/2	NA
Fasteners of the connecting system	11⁄4	1	1
Veneer			
Limited deformability elements and attachments	1	21/2	2
Low-deformability elements and attachments	1	11/2	2
Penthouses (except where framed by an extension of	21/2	31⁄2	2
the building frame)			
Ceilings			
All	1	$2^{1/2}$	1

^{*a*}A lower value for a_p shall not be used unless justified by detailed dynamic analysis. The value for a_p shall not be less than 1. The value of $a_p = 1$ is for rigid components and rigidly attached components. The value of $a_p = 2\frac{1}{2}$ is for flexible components and flexibly attached components. ^{*b*}Overstrength where required for nonductile anchorage to concrete and masonry. See Section 12.4.3 for seismic load effects including overstrength. ^{*c*}Where flexible diaphragms provide lateral support for concrete or masonry walls and partitions the design forces for anchorage to the diaphraem chall be

walls and partitions, the design forces for anchorage to the diaphragm shall be as specified in Section 12.11.2.

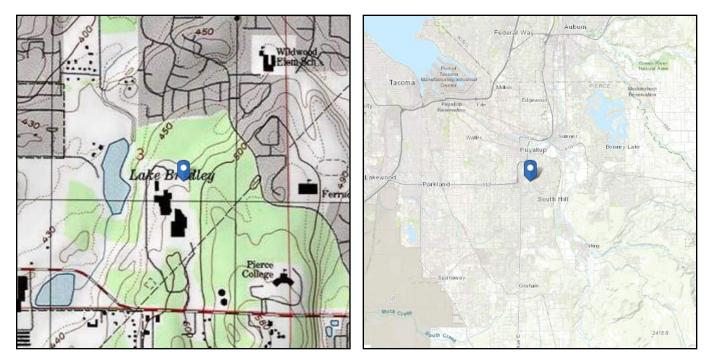

Wall Design Criteria

Ceiling height ≤ 12'-0" Internal Pressure = 5 psf (ASD) Maximum Deflection = L/240 (Flexible Finishes)

Bearing Walls have Flexural and Axial Bracing at 72" oc (mid-ht) max

Joist and Girder Design Criteria

See earlier page of Design Criteria for Loading Maximum Live Load Deflection = L/360Maximum Total Deflection = L/240


Address: 1023 39th Ave SE Puyallup, Washington 98374

ASCE Hazards Report

ASCE/SEI 7-16 Standard: Risk Category: II Soil Class:

D - Default (see Section 11.4.3)

47.160853 Latitude: Longitude: -122.279318 Elevation: 482.88472036372787 ft (NAVD 88)

Wind

Results:

Wind Speed	98 Vmph
10-year MRI	67 Vmph
25-year MRI	73 Vmph
50-year MRI	78 Vmph
100-year MRI	83 Vmph

Data Source:	ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2
Date Accessed:	Mon Feb 05 2024

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

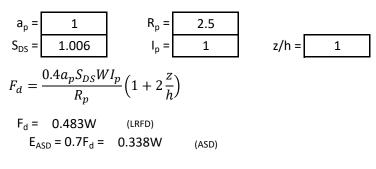
Site is not in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2.

Site Soil Class: Results:	D - Default (s	see Section 11.4.3)			
S _s :	1.257	S _{D1} :	N/A		
S ₁ :	0.434	T _L :	6		
F _a :	1.2	PGA :	0.5		
F_v :	N/A	PGA M :	0.6		
S _{MS} :	1.509	F _{PGA} :	1.2		
S _{M1} :	N/A	l _e :	1		
	1.006	C _v :	1.351		
Ground motion hazard ar	nalysis may be required.	See ASCE/SEI 7-16 Se	ection 11.4.8.		
Data Accessed:	Mon Feb 05 2	2024			

Data Accessed: Mon Feb 05 2024

Date Source: USGS Seismic Design Maps

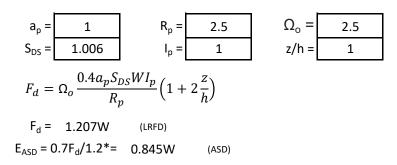
The ASCE Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.


ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE Hazard Tool.

<u>Seismic Forces</u>	Wall Type Infill Walls		
Wall Seismic Weight, W	<u>PSF</u>		
Metal Stud Framing	1.5		
• (4) Layers 5/8" Gypsum Wall Board (Multiply weight by actual layers of GWB.)	10		
Acoustic Insulation	2		
•			

Wall & Fastener Seismic Force



ASD	
Force =	4.6 PSF

Total =

14 PSF

Fastener - Anchorage to Concrete

ASD	
Force =	11.4 PSF

Track Connection Distances - Based on Connector Capacities

 PRESSURE
 MAX HEIGHT

 For 5.0 psf (GWB finishes)
 Max Considered Height

13.50	Track Demand =	(Ht)/2*5psf =	33.8 plf				
	Connection to Concrete**	MIN SHOTPIN CA	PACITY v =	120lbs/anchor	spacing ≤	18.7 in	@ (11.4psf)
	Connection to Steel	MIN SCREW CAP	ACITY v =	230lbs/anchor	spacing ≤	30.0 in	

** Where seismic forces control anchorage, Fastener spacing calculated includes Overstrength Reduction

Project: CENTERIS

Brienen Structural **E**ngineers, P.S.

CHECK TRACK FOR MAX FASTENEE SPACING Smax must meet MA 4007125-33 = 3.97 K·in VA 4007125-33 = 940# Uniform LOND (DEMAND) = 5psF *(12'0")/2 = 30plf Sor 36" o.c. SpaciNG, MDEMAND $\leq w_1^2 - (30plf)(36)^2 - 4.86Kin)$ 8 8 7 1415 is too laye! if SpaciNG 1S 30" o.c. $\rightarrow MDEMAND = 3.375 Kin$ Check Shear = Voemano = 30plf * 3000. * 14. = 37.5 - = 940= OK

CHANK

PRCTI20240333

Γ

TABLE 2—ALLOWABLE LOADS FOR FASTENERS DRIVEN INTO STEEL^{1,2,3,4}

FASTENER	SHANK DIAMETER (INCH)	ALLOWABLE LOADS (lbf)											
Steel Thick	ness (inch):	1	¹ / ₈ ³ / ₁₆ ¹ / ₄ ³ / ₈ ¹ / ₂ ³ / ₄					4					
Load Di	irection:	Tension	Shear	Tension	Shear	Tension	Shear	Tension	Shear	Tension	Shear	Tension	Shear
X-S13 THP	0.145	140 ¹⁰	300	300 ¹⁰	450	300 ¹⁰	450	300 ¹⁰	450				
X-S16P8TH	0.145			225 ¹⁰	420	225 ¹⁰	430	225 ¹⁰	430	225 ¹⁰	430		
X-EGN14 X-S 14 B3 X-S 14 G3	0.118	140	230	220	245	225	290	280 ⁶	330 ⁶	280 ⁶	330 ⁶	280 ⁶	330 ⁶
X-EGN14⁵ X-S 14 B3⁵ X-S 14 G3⁵	0.118			220	295	260	355	280 ⁶	385 ⁶	280 ⁶	385 ⁶	280 ⁶	385 ⁶
X-GHP## X-P ## G3 X-P ## B3	0.118	125 ¹⁰	230	170 ¹⁰	245	200 ¹⁰	230	250 ¹⁰	255				
X-P 17 G2 ⁷ X-P 20 G2 ⁷	0.118			140 ¹⁰	220	180 ⁸	200 ⁸	225 ⁶	220 ⁶				
X-P 14 G2 ⁷	0.118					2158	290 ⁸	150 ⁹	195 ⁹	130 ⁹	150 ⁹	130 ⁹	150 ⁹
or SI : 1 inch = 2	5.4 mm, 1 ksi = 6	89 MPa. 1	lbf = 4.4 N	N.		•	$\overline{\xi}$						3

For SI: 1 inch = 25.4 mm, 1 ksi = 6.89 MPa, 1 lbf = 4.4 N.

X-GHP/X-P B3 EMBED CAPACITY TO STEEL

¹Unless otherwise noted, fasteners must be driven to where the full length of the point of the fastener penetrates through the steel base material must have minimum yield and tensile strengths (F_y and F_u) equal to 36 ksi and 58 ksi, respectively.

³Unless otherwise noted, allowable loads are applicable to static loads and seismic loads in accordance with Section 4.1.

⁴Fastener spacing must be a minimum of 1.0 inch and edge distance must be a minimum of 0.50 inch.

⁶Steel base material must have minimum yield and tensile strengths (F_{y} and F_{y}) equal to 50 ksi and 65 ksi, respectively. ⁶Fastener point penetration through the steel is not necessary, provided a minimum embedment of 0.320 inch is achieved.

⁷Tabulated loads for this fastener apply to static load conditions only. For seismic loading, allowable loads must be limited in accordance with Section 4.1.5, Item 3. ⁸Full fastener point penetration through the steel is not necessary, provided a minimum point penetration of 0.08 inch is achieved.

⁹Fastener point penetration through the steel is not necessary, provided a minimum embedment of 0.25 inch is achieved.

¹⁰For steel-to-steel connections designed in accordance with Section 4.1.4, the tabulated allowable load may be increased by a factor of 1.25, and the design strength may be taken as the tabulated allowable load multiplied by a factor of 2.0.

TABLE 3—ALLOWABLE LOADS FOR FASTENERS DRIVEN INTO NORMALWEIGHT CONCRETE^{1,2,3}

FASTENER	SHANK DIAMETER (inch)	MINIMUM EMBEDMENT DEPTH (inches)			LOADS (Ibf)		
Concrete Cor	Concrete Compressive Strength:			0 psi	4,000) psi	6,00	0 psi
Load	Load Direction:			Shear	Tension	Shear	Tension	Shear
		³ / ₄	45	75	65	105	95	195
X-C ## (Black Collated Strip or	0.138	1	85	150	160	200	105	270
Guidance Washer)	0.150	1 ¹ / ₄	130	210	270	290	165	325
		1 ¹ / ₂	175	260	270	360		
X-C ##		3/4	45	75	60	105		
(White Collated Strip or	0.138	1	85	150	90	200		
Guidance Washer)		1 ¹ / ₄	130	210	130	290		
X-C22 P8TH (Black Collated Strip or Guidance Washer)	0.138	3/4	55	130	90	170	100	200
X-C22 P8TH (White Collated Strip or Guidance Washer)	0.138	3/4	55	130	90	170		
X-GN	39) 0.118	3/4	95	120	95	120		
(except for X-GN 39)		1	115	220	115	220		
X-GN39 X-C 39 G2	0.101	⁵ / ₈	50	80	50	80		
X-C 39 G2 X-C 39 G3	0.101	1	60	100	60	100		
X-GHP## X-P 17 G2, X-P 20 G2	0.118	⁵ /8			50	120	50	90
X-P ## G3 X-P ## B3	0.118	3/4	80	120				
X-C ## G2 (except for X-C 39 G2) X-C 36 B3	0.108	3/4	110	190	110	190	110	190
X-C ## G3 (except for X-C 39 G3) X-C ## B3 (except for X-C 36 B3)	0.118	3/4	110	190	110	190	110	190

For SI: 1 inch = 25.4 mm, 1 psi = 6.89 kPa, 1 lbf = 4.4 N.

¹Fasteners must not be driven until the concrete has reached the designated minimum compressive strength, or the minimum compressive strength specified in

the applicable code, whichever is greater. Concrete thickness must be a minimum of 3 times the embedment depth of the fastener. Fastener spacing must be a minimum of 4 inches and edge distance must be a minimum of 3 inches.

³The fasteners listed in the table above may be used for static load conditions and for the seismic load conditions described in Section 4.1.5, as applicable. The tabulated allowable loads apply to static load conditions. For seismic load conditions, the allowable loads must be limited in accordance with Section 4.1.5, Items 2 and 4, as applicable.

Annun	
3(5/8") = 1 7/8" < 2 1/2" OK	
Luummunnen	

X-GHP/X-P B3 EMBED CAPACITY TO CONCRETE

SHOTPINS - HILTI X-U

X-U EMBED CAPACITY

TO STEEL

PRCTI20240333

TABLE 1—FASTENER DESCRIPTION AND APPLICATIONS

	FASTENER ¹	FASTENER DESCRIPTION			HEAD DIAMETER [inch (mm)]	MAXIMUM POINT LENGTH [inch (mm)]	MINIMUM EFFECTIVE SHANK LENGTH [inch (mm)]	FASTENER COATING	APPLICABLE BASE MATERIAL	APPLICABLE LOAD TABLES
	X-U ##			0.157 (4.0)	0.323 (8.2)				Steel	2, 7
		Universal Powder Actuated Fastener	Knurled, straight			0.433	See	ASTM B633,	Concrete	3, 4
						(11.0)	Footnote 2	SC1, Type III	Concfilled deck	5
									CMU	6
	X-U 15	Powder Actuated Fastener	Knurled, stepped	0.145 (3.7)	0.323 (8.2)	0.413 (10.5)	0.61 (15.5)	ASTM B633, SC1, Type III	Steel	2
									Concrete	3
	X-P ##	Powder Actuated Fastener	Smooth straight	0.157 (4.0)	0.323 (8.2)	0.524 (13.3)	See Footnote 3	ASTM B633, SC1, Type III	Concfilled deck	5
									CMU	6

For SI: 1 inch = 25.4 mm.

¹## denotes numbers used in fastener designation to represent nominal fastener length in mm, e.g. X-U 27 has a nominal shank length of 27 mm. ²For fastener length of 16 mm, the minimum effective shank length is 14.8 mm (0.58 inch). For longer fasteners, the minimum effective shank length can be

calculated in terms of the designated length as (##-0.5) in mm and (##-0.5)/25.4 in inches.

³The minimum effective shank length can be calculated in terms of the designated length as (##-1) in mm and (##-1)/25.4 in inches.

TABLE 2—ALLOWABLE LOADS FOR FASTENERS DRIVEN INTO STEEL^{1,2,6}

FASTENER DESCRIPTION	FASTENER	SHANK DIAMETER (inch)		ALLOWABLE LOADS (Ibf)											
Steel T	hickness (in	ich):	³ / ₁₆		1/	4	3/	8	1	2	<u>></u> ³ / ₄				
Loa	ad Direction:		Tension	Shear	Tension	Shear	Tension	Shear	Tension	Shear	Tension	She	ar		
Universal	X-U	0.157	500 ⁷	720	775 ⁷	720) 935 720 900 720 <u>350⁴</u>					375			
Knurled Shank	× 0	0.107	000	720	110	120	000	120	000	720	275 ³	350	3		
Universal Knurled Shank	X-U 15	0.145	155									400			
For SI: 1 inch = 25.4 mm, 1 lbf = 4.4 N; 1 ksi = 6.9 MPa.															
	Allowable load capacities are based on base steel with a minimum yield strength (F_y) of 36 ksi and a minimum tensile strength (F_y) of 58 ksi. The fasteners must be driven to where the point of the fastener penetrates through the steel base material, unless otherwise noted.														

³Based upon a minimum point penetration of ³/₈ inch.

⁴Based upon a minimum point penetration of ¹/₂ inch.

⁵Based upon a minimum point penetration of ¹⁵/₃₂ inch.

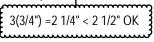
⁶Allowable loads are applicable to static and seismic loads in accordance with Section 4.1.

For steel-to-steel connections designed in accordance with Section 4.1.6 for static loads only, the tabulated allowable to the increased by a factor of 1.25, and the design strength maybe taken as the tabulated allowable load multiplied by a factor of 2.0.

TABLE 3—ALLOWABLE LOADS FOR FASTENERS DRIVEN INTO NORMAL-WEIGHT CONCRETE^{1,2,4}

FASTENER DESCRIPTION	FASTENER	SHANK DIAMETER (inch)	MINIMUM EMBEDMENT DEPTH (inches)	NT ALLOWABLE LOADS (lbf)								
Cond	crete Compre	essive Stren	gth:	2500) psi	40	00 psi	6000) psi	8000 psi		
	Load Dir	oad Direction:			Shear of	Tension	Shear	Tension	Shear	Tension	Shear	
	X-U		³ / ₄	100	125	100	125	105	205	-	_	
Universal		0.457	1	165	190	170	225	110 ³	280 ³	-	_	
Knurled Shank		0.157	1 ¹ / ₄	240	310	280	310	180	425	-	_	
			1 ¹ / ₂	275	420	325	420	_	_	-	_	
			³ /4 ⁵	100	155	100	175	105	205	135	205	
Creasth Charle	Y D	0 457	1 ⁵	165	220	180	225	150	300	150	215	
Smooth Shank	X-P	0.157	1 ¹ / ₄ ⁵	240	310	280	310	180	425	-	_	
			1 ¹ / ₂ ⁵	310	420	-	-	-	-	-	_	

For SI: 1 inch = 25.4 mm, 1 lbf = 4.4 N, 1 psi = 6895 Pa.


¹Unless otherwise noted, values apply to normal weight cast-in-place concrete. Fasteners must not be driven until the concrete has reached the designated minimum compressive strength. ²Unless otherwise noted, concrete thickness must be a minimum of 3 times the embedment depth ³This allowable load value for the X-U fastener also applies to normal weight hollow core concrete

fastene

abs with r c of 6600 psi and minimum dimensions shown in Figure 7, when installed in accordance with Section 4.2.4.

⁴The fasteners listed in the table above may be used for static load conditions and for the seismic load conditions described in Section 4.1.6, as applicable. The tabulated allowable loads apply to static load conditions. For seismic load conditions, the allowable loads must be limited in accordance with Section 4.1.6, Items 2 and 3, as applicable.

⁵Applies to fastening of cold-formed steel up to 54 mil thick using the X-P 22, X-P 27, X-P 34 and X-P 40 fasteners, respectively, for the ³/₄, 1, 1¹/₄ and 1¹/₂ inch embedment depths.

X-U/X-P EMBED CAPACITY TO CONCRETE

......

TABLE 4—ALLOWABLE LOADS FOR FASTENERS DRIVEN INTO NORMAL-WEIGHT CONCRETE USING DX-KWIK^{1,2,3,4}

FASTENER DESCRIPTION	FASTENER	SHANK DIAMETER (inch)	MINIMUM EMBEDMENT (inches)		ALLOWABLE LOADS (lbf) 4,000 psi 6,000 psi Tension Shear Tension Shea						
	Concrete Com	pressive Stren	igth:	4,00	000 psi						
	Load	Direction:		Tension	Shear	Tension	Shear				
Universal Knurled Shank	X-U 47 P8 w/ DX-KWIK	0.157	1 ¹ / ₂	395 405		360	570				

For SI: 1 inch = 25.4 mm, 1 lbf = 4.4 N, 1 psi = 6895 Pa.

¹X-U Fastener is installed using the DX-KWIK drilled pilot hole installation procedure described in Section 4.2.5.

²Pilot holes must not be drilled until the concrete has reached the designated minimum compressive strength.

³Concrete thickness must be a minimum of 3 times the embedment depth of the fastener.

⁴The fasteners listed in the table above may be used for static load conditions and for the seismic load conditions described in Section 4.1.6, as applicable. The tabulated allowable loads apply to static load conditions. For seismic load conditions, the allowable loads must be limited in accordance with Section 4.1.6, Items 2 and 3, as applicable.

Screw Capacities

Table Notes

- 1. Capacities based on AISI S100 Section E4.
- 2. When connecting materials of different steel thicknesses or tensile strengths, use the lowest values. Tabulated values assume two sheets of equal thickness are connected.
- 3. Capacities are based on Allowable Strength Design (ASD) and include safety factor of 3.0.
- 4. Where multiple fasteners are used, screws are assumed to have a center-to-center spacing of at least 3 times the nominal diameter (d).
- Screws are assumed to have a center-of-screw to edge-of-steel dimension of at least 1.5 times the nominal diameter (d) of the screw.

- 6. Pull-out capacity is based on the lesser of pull-out capacity in sheet closest to screw tip or tension strength of screw.
- 7. Pull-over capacity is based on the lesser of pull-over capacity for sheet closest to screw header or tension strength of screw.
- 8. Values are for pure shear or tension loads. See AISI Section E4.5 for combined shear and pull-over.
- 9. Screw Shear (Pss), tension (Pts), diameter, and head diameter are from CFSEI Tech Note (F701-12).
- 10. Screw shear strength is the average value, and tension strength is the lowest value listed in CFSEI Tech Note (F701-12).
- 11. Higher values for screw strength (Pss, Pts), may be obtained by specifying screws from a specific manufacturer.

rew		
Pts = 3201 lbs)		
0.250" dia, 0.409" Head		
Out Pull-Over		
127		
191		
211		
318		
415		
521		
656		
936		
1,067		
752		
948		
1,067		
}		

SCREW ALLOWABLE LOADS & UL ASSEMBLIES

SCREW ALLOWABLE LOADS (LBS.)

MODEL	DESIGN THICKNESS	MIN. THICKNESS	FY YIELD (ksi)	FU TENSILE (ksi)	#6 SC (0.138 0.25"	" dia;	#8 SC (0.164 0.3125'	" Dia;	(0.190	#10 SCREW (0.190" Dia; 0.340" Head)		CREW 5" Dia; Head)
MODEL NO.	(in)	(in)			SHEAR	TENSION	SHEAR	TENSION	SHEAR	TENSION	SHEAR	TENSION
VIPER-X-18	0.0188	0.0179	57	65	142 ¹	48	150 ¹	57	164 ¹	66	109	75
VIPER-X-22	0.0235	0.0223	57	65	174 ¹	60	184 ¹	71	236 ¹	82	152	93

Notes:

1 Shear values are tested per AISI S100-12 and S905 procedure.

2. Capacities are based on section E4 of the AISI S100-12 Specification.

3. Capacities are based on Allowable Strength Design (ASD).

4. Screw pull-out capacities are based on listed head diameter.

5. Two sheets of equal thickness and tensile strength are assumed in tabulated values.

6. When materials of different steel thickness and tensile strength are connected, use the lowest value for shear capacity (tilting and bearing), for pull-out capacity use sheet closest to screw tip and for pull-over capacity use sheet closest to screw head.

- 7. Where multiple fasteners are used, screws are assumed to have a center-to-center spacing of at least 3 times the nominal diameter.
- 8. Screws are assumed to have a center-of-screw to edge-of-steel dimension of at least 1.5 times the nominal diameter of the screw.
- 9. When screws are subjected to combination of shear and tension forces, interaction equation of AISI S100-12 Specification section E4.5 shall be used.

UL ASSEMBLIES – VIPER-X FIRE TESTING DATA (ASTM E119)

UL DESIGN NO.	VIPER-X (DESIGN THICKNESS)	WALL RATING
U411	18 MIL	2 HR
U412	18 MIL	2 HR
U419	18 MIL	1, 2, 3 or 4 HR
U435	18 MIL	3 or 4 HR
U465	18 MIL	1 HR Chase
V417	18 MIL	1 HR
V435	18 MIL	1 HR
V448	18 MIL	1 HR
V469	18 MIL	1 or 2 HR Chase
V486	18 MIL	1, 2, or 2-1/2 HR
V489	18 MIL	1, 2, 3 or 4 HR
V496	18 MIL	1 or 2 HR Chase
V498	18 MIL	1, 2, 3 or 4 HR
W411	18 MIL	1/2 or 1 HR
W424	18 MIL	1/2 or 1 HR
W433	18 MIL	1/2 HR
W440	18 MIL	1, 2, 3 or 4 HR

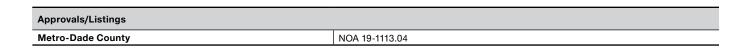
3.3.20 KWIK-CON+ CONCRETE AND MASONRY SCREW

PRODUCT DESCRIPTION

KWIK-CON+ concrete and masonry screw anchors

Anchor System		Features and Benefits
	KWIK-CON+ fastener	 Zinc coating with proprietary finish that exceeds 1000 hours of protection from red rust per ASTM B117 Salt spray testing per ASTM G85 Coating is more durable than zinc plating alone Base material specific carbide tipped bits optimize performance in concrete or masonry Torx Hex washer head for fast secure installations into base material Torx or Phillips flat head for countersunk applications Load data available for installations in concrete, grout-filled and hollow concrete masonry units (CMU) and brick
	KWIK-CON+ drive tool and installation accessories	Available in AISI Type 410 Stainless Steel

Uncracked concrete


Grout-filled concrete masonry

Ungrouted concrete masonry

Brick

Anchor Fastening Technical Guide, Edition 21

Table 1 — Material Properties

Table 1 — Material Prop	3/16 1/4 3/16 1/4 inimum Tensile Strength (ksi) 150 130							
	Carbor	n Steel	Stainles	ss Steel				
Property	Fastener Dian	neter (inches)	Fastener Dian	neter (inches)				
	3/16	1/4	3/16	1/4				
Minimum Tensile Strength (ksi)	15	0	13	30				
Minimum Yield Strength (ksi)	12	0	10)5				
Coating	Zinc with orga	anic top coat	N/	/A				

Figure 1 — Flathead KWIK CON+ Head Angle

Table 2 — Physical Dimensions

Ohanaataalatia		Nominal anchor diameter (inches)										
Characteristic		3/16		1/4								
Head Style	Tapered Flat Head	Tapered Flat Head	5/16-in. Hex Washer	Tapered Flat Head	Tapered Flat Head	5/16-in. Hex Washer						
Internal recess	#3 Phillips	T-25 TORX	T-25 TORX	#3 Phillips	T-27 TORX	T-25 TORX						
Maximum Head Diameter (inches)	0.507	0.385	0.433	0.507 0.507 0.433								
Major Thread Diameter (inches)		0.217			0.283							
Minor Diameter (inches)		0.145			0.190							
Shank Diameter (inches)		0.170			0.224							

INSTALLATION

Table 3 - KWIK CON+ Installation Specifications

			Nominal anchor	diameter (inches)		
Setting information	Symbol	3	8/16	-	1/4	
Embedment (inches)	h _{nom}	1	1-3/4	1	1-3/4	
Nominal drill bit diameter (inches)1	d _{bit}	3	3/16	-	1/4	
Minimum fixture hole diameter (inches)	d _h	-	1/4	5/16		
Minimum hole depth (inches)	h _o	1-1/4	2	1-1/4	2	
Minimum member thickness (inches)	h _{min}	2-1/2	3-1/4	2-1/2	3-1/4	
Minimum anchor spacing (inches)	S _{min}	2-	1/4	2-	1/2	
Critical anchor spacing (inches)	S _{cr}	3	4	3	4	
Minimum edge distance (inches)	C _{min}	1-	1/8	1-	1/2	
Critical edge distance (inches)	C _{cr}	2-1/2	3-1/2	2-1/2	3-1/2	

1 Requires matched tolerance drill bit from Hilti, TKC drill bits for concrete, TKB drill bits for other materials.

Table 4 — Load adjustment factors for Hilti KWIK CON+ screw anchors in concrete

Load	adjustment fa	actors for	r anchor :	spacing	f _A		l	_oad adju	ustment f	actors fo	r edge di	stance f	R					
	Tensio	on/Shear	loads				Tension							Shear				
Embedme	nt (inches)	1	1-3/4	1	1-3/4	Embedment (inches)		1	1-3/4	1	1-3/4	1	1-3/4	1	1-3/4			
Spac	ing (s)	Anchor diameter		Edge Distance			Anchor Diameter				Anchor Diameter							
in. (mm)		3,	/16	1	I/4	in. (mm)		3/16		1/4		3/16		1/4				
2-1/4	(57)	0.80	0.80			1-1/8	(29)	0.80	0.80			0.30	0.30					
2-1/2	(64)	0.87	0.83	0.80	0.80	1-1/4	(32)	0.82	0.81			0.36	0.34					
2-3/4	(70)	0.93	0.86	0.90	0.86	1-1/2	(38)	0.85	0.83	0.80	0.80	0.49	0.41	0.30	0.30			
3	(76)	1.00	0.89	1.00	0.89	1-3/4	(44)	0.89	0.85	0.85	0.83	0.62	0.48	0.48	0.39			
3-1/4	(83)		0.91		0.91	2	(51)	0.93	0.87	0.90	0.85	0.75	0.56	0.65	0.48			
3-1/2	(89)		0.94		0.94	2-1/4	(57)	0.96	0.89	0.95	0.88	0.87	0.63	0.83	0.56			
3-3/4	(95)		0.97		0.97	2-1/2	(64)	1.00	0.92	1.00	0.90	1.00	0.71	1.00	0.65			
4	(102)		1.00		1.00	3	(76)		0.96		0.95		0.85		0.83			
						3-1/2	(89)		1.00		1.00		1.00		1.00			

3.3.20

1 Reduction factors are multiplicative and linear interpolation between s_{cr} and s_{min} , c_{cr} and c_{min} is permitted.

Anchor Fastening Technical Guide Edition 21 | 3.0 ANCHORING SYSTEMS | 3.3.20 KWIK-CON+ CONCRETE AND MASONRY SCREW Hilti, Inc. 1-800-879-8000 | en español 1-800-879-5000 | www.hilti.com | Hilti (Canada) Corporation | www.hilti.ca | 1-800-363-4458

DESIGN INFORMATION IN CONCRETE PER ALLOWALBLE STRESS DESIGN

Nominal	Neursianal	f' _c = 2	,000 psi	f' _c = 4	,000 psi	<i>f</i> ' _c = 6,000 psi		
anchor diameter (in.)	Nominal embedment in. (mm)	Tension Ib (kN)	Shear Ib (kN)	Tension Ib (kN)	Shear Ib (kN)	Tension Ib (kN)	Shear Ib (kN)	
0./10	1	100	260	125	260	185	280	
3/16	(25)	(0.4)	(1.2)	(0.6)	(1.2)	(0.8)	(1.3)	
0./10	1-3/4	275	260	295	265	325	300	
3/16	(44)	(1.2)	(1.2)	(1.3)	(1.2)	(1.5)	(1.3)	
1 /4	1	190	325	240	390	275	540	
1/4	(25)	(0.9)	(1.4)	(1.1)	(1,7)	(1.2)	(2.4)	
	1-3/4	425	560	475	600	525	600	
1/4	(44)	(1.9)	(2.5)	(2.1)	(2.8)	(2.3)	(2.7)	

Table 5 — Tension and shear allowable loads in concrete ^{1, 2,3}

Screws installed in holes drilled with Hilti TKC carbide bits.
 Allowable loads are based on a factor of safety of 4.

3 Apply spacing and edge distance reduction factors in Table 4 as needed.

Table 6 — Tension and shear ultimate loads in concrete¹

Nominal embedment in. (mm)	Tension Ib (kN) 400	Shear Ib (kN) 1,050	Tension Ib (kN)	Shear Ib (kN)	Tension Ib (kN)	Shear Ib (kN)
1	400	1 050	500			
		.,000	500	1,050	750	1,150
(25)	(1.8)	(4.7)	(2.2)	(4.7)	(3.3)	(5.1)
1-3/4	1,100	1,050	1,180	1,070	1,300	1,200
(44)	(4.9)	(4.7)	(5.3)	(4.8)	(5.8)	(5.3)
1	760	1,300	970	1,575	1,100	2,175
(25)	(3.4)	(5.8)	(4.3)	······(7.0)·····	(4.9)	(9.7)
1-3/4	1,700	2,250	1,900	2,400	2,100	2,400
(44)	(7.6)	(10.0)	(8.5)	(11.3)	(9.34)	(10.7)
	(44) 1 (25) 1-3/4	(44) (4.9) 1 760 (25) (3.4) 1-3/4 1,700 (44) (7.6)	(44) (4.9) (4.7) 1 760 1,300 (25) (3.4) (5.8) 1-3/4 1,700 2,250 (44) (7.6) (10.0)	(44) (4.9) (4.7) (5.3) 1 760 1,300 970 (25) (3.4) (5.8) (4.3) 1-3/4 1,700 2,250 1,900 (44) (7.6) (10.0) (8.5)	(44) (4.9) (4.7) (5.3) (4.8) 1 760 1,300 970 1,575 (25) (3.4) (5.8) (4.3) (7.0) 1-3/4 1,700 2,250 1,900 2,400 (44) (7.6) (10.0) (8.5) (11.3)	(44) (4.9) (4.7) (5.3) (4.8) (5.8) 1 760 1,300 970 1,575 1,100 (25) (3.4) (5.8) (4.3) (7.0) (4.9) 1-3/4 1,700 2,250 1,900 2,400 2,100 (44) (7.6) (10.0) (8.5) (11.3) (9.34)

Toclews installed in holes drilled with the bits.

Table 7 — Tension and shear allowable loads in grout-filled and hollow concrete masonry units (CMU)^{1,2,3,4,5}

Nominal anchor diameter (in.)	Nominal embedment in. (mm)	Tension Ib (kN)	Shear Ib (kN)		
3/16	1	150	225		
3/10	(25)	(0.7)	(1.0)		
3/16	1-3/4	290	300		
	(44)	(1.3)	(1.3)		
1/4	1	165	275		
1/4	(25)	(0.7)	(1.2)		
1 / 4	1-3/4	310	400		
1/4	(44)	(1.4)	(1.8)		

1 All values for anchors installed in grout-filled or hollow concrete masonry (CMU) with a minimum prism strength of 1,500 psi. CMU may be lightweight, medium-weight or normal-weight conforming to ASTM C90.

2 Screws installed in holes drilled with TKB bits.

3 Allowable loads calculated using a factor of safety of 4.

4 Installation in the mortar joints is outside the scope of the published data.

5 C_{min}, S_{min} equals 4 inches

Table 8 — Tension and shear allowable loads in brick^{1,2,3,4,5}

Nominal anchor diameter (in.)	Nominal embedment in. (mm)	Tension Ib (kN)	Shear Ib (kN)
3/16	1	125	235
	(25)	(0.6)	(1.0)
3/16	1-3/4 (44)	350 (1.6)	300 (1.3)
1/4	1	205	415
	(25)	(0.9)	(1.8)
1/4	1-3/4	350	500
	(44)	(1.6)	(2.2)

1 This test was performed on individual specimens of ASTM C62 common brick. Due to the wide variations encountered in the compressive strength of brick, these values should be considered guide values.

Allowable loads are based on a factor of safety of 4.

Installation in the mortar joints is outside the scope of the published data.

4 KWIK CON+ installed with TKB bits.

5 C_{min} , S_{min} equals 4 inches

Load values are for anchors installed a minimum of sixteen diameters on center and a minimum edge distance of sixteen diameters. Anchor spacing may be reduced to twelve diameters provided loads are reduced by 20 percent. Edge distance may be reduced to six diameters provided loads are reduced by 20 percent in tension and 70 percent in shear.

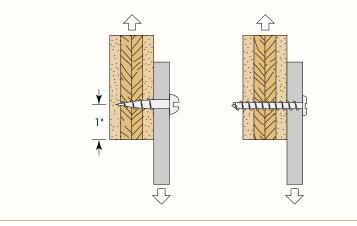
Combined shear and tension loading

 $\left(\frac{N_{d}}{N_{rec}}\right)$ + $\left(\frac{V_{d}}{V_{rec}}\right)$ ≤ 1.0

INSTALLATION INSTRUCTIONS

Installation Instructions For Use (IFU) / Operating Instructions (OI) throughout the document are included with each product package. They can also be viewed or downloaded online at www.hilti.com. Because of the possibility of changes, always verify that downloaded IFU are current when used. Proper installation is critical to achieve full performance. Training is available on request. Contact Hilti Technical Services for applications and conditions not addressed in the (IFU)/Operating Instructions (OI).

Fastener Loads for Plywood – Screws


c) The metal-critical joint may fail in one of two ways. Failure occurs when the resistance of the screw head to embedment is greater than the resistance of the metal to lateral and/or withdrawal load, and the screw tears away from the metal framing. Failure also occurs when thin metal in a metal-to-plywood joint crushes or tears away from the screw.

Tables 1 and 2 present ultimate lateral loads for wood- and sheetmetal-screw connections in plywood-and-metal joints. Loaded end distance in these tests was one inch. Plywood face grain was parallel to the load since this direction yields the lowest lateral loads when the joint is plywoodcritical. All wood-screw specimens were tested with a 3/16-in.-thick steel side plate, and values should be modified if thinner steel is used.

		SAFETY R ALLOW	ABLE							
TABLE 1										
SCREWS: META	L-TO-PLY		ONNECTI	ONS ^(a)						
Depth of	Ultimate Lateral Load (lbf) ^{(b}									
Threaded Penetration	N	lood Screv	vs	Sheet Metal Screws						
(in.)	#8	#10	#12	#8	#10	#12				
1/2	415	(500)	590	465	(565)	670				
5/8	-	-	-	~ <u>500</u> ~~		wy05				
3/4	-	_	-	590	(655)	715				

(a) Plywood was C-D grade with exterior glue (all plies Group 1), face grain parallel to load. Side plate was 3/16"-thick steel.

(b) Values in parentheses are estimates based on other tests.

TABLE 2


SHEET METAL SCREWS: PLYWOOD-TO-METAL CONNECTIONS(a)

	Diamand		Ultimate Lateral Load (lbf) ^(b)								
	Plywood Thickness		Screv	1/4"-20 Self							
Framing	(in.)	#8	#10	#12	#14	Tapping Screw					
0.000 :	1/4	330	360	390	410	590					
0.080-in.	1/2	630	850*	860	920	970					
Aluminum	3/4	910*	930*	1250	1330	1440					
0.078-in.	1/4	360	380	400	410	650					
Galvanized	1/2	700*	890*	900	920	970					
Steel (14 gage)	3/4	700*	950*	1300*	1390*	1500					

(a) Plywood was A-C EXT (all plies Group 1), face grain parallel to load.

(b) Loads denoted by an asterisk(*) were limited by screw-to-framing strength; others were limited by plywood strength.

IF ALLOWABLE IS A FOS = 5, THEN #8 #10 #12 190 260 LBS 140

2

SCW Head-of-Wall Slide-Clip Connector

SIMPSON Strong-Tie

The SCW connectors offer 1" of upward and 1" of downward movement. They are primarily used in head-of-wall applications that require vertical movement relative to the structure. SCW connectors are often used to strengthen window and door jambs for projects that utilize slip or slotted track.

Material: 54 mil (16 ga.)

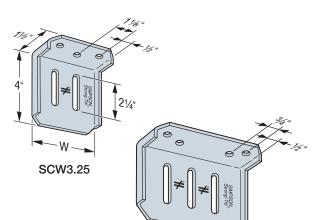
Finish: Galvanized (G90)

Installation:

Deflection Connectors

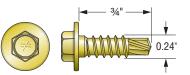
- Use the specified type and number of anchors.
- Use the specified number of #14 shouldered screws (included). Install shouldered screws in the slots adjacent to the No-Equal[®] stamp.
- Use a maximum of one screw per slot.
- For installations to wood framing, see Simpson Strong-Tie[®] engineering letter L-CF-DEFCLIPW at strongtie.com.

Codes: See p. 13 for Code Reference Key Chart


Ordering Information:

- SCW3.25-KT contains:
- Box of 25 connectors
- 55 XLSH34B1414 #14 shouldered screws

SCW5.5-KT contains:


- Box of 25 connectors
- 83 XLSH34B1414 #14 shouldered screws

Note: Replacement #14 shouldered screws for SCW connectors are XLSH34B1414-RP83.

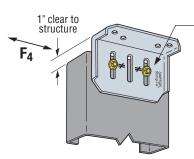
PRCTI20240333

SCW5.5

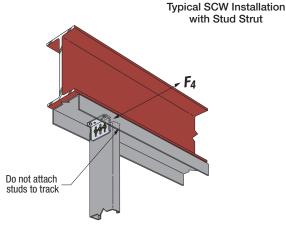
XLSH34B1414 #14 Shouldered Screw for Attachment to Stud Framing (included)

SCW Allowable Connector Loads (lb.)

Connector					Stud Thickness				
Model No.	Material Thickness mil (ga.)	W (in.)	No. of #14 Shouldered Screws	33 mil (20 ga.)	43 mil (18 ga.)	54 mil (16 ga.)	Code Ref.		
	nin (ga.)			F4	F4	F4			
SCW3.25	54 (16)	3¼	2	455	630	755			
SCW5.5	54 (16)	5½	2 ¹	455	630	995	IBC, FL, LA		
E			3	455	630	1,220 ³	,		


 When the SCW5.5 connector is used with two shouldered screws, install screws in the outermost slots.
 Allowable loads are based on clips installed with all holes in the anchor leg filled with #12–14 screws. For other anchorage installations, the capacity of the connection system will be the minimum of the

tabulated value and the allowable load from the SCW Allowable Anchorage Loads table on p. 49. 3. Tabulated loads are applicable for the following framing widths:


Install shouldered

screws adjacent to No-Equal[®] stamp (typ.)

SCW3.25 - 31/2", 35/8", 4" and 51/2" SCW5.5 - 6", 8" (18 ga. min.), 10" and 12" (16 ga. min.)

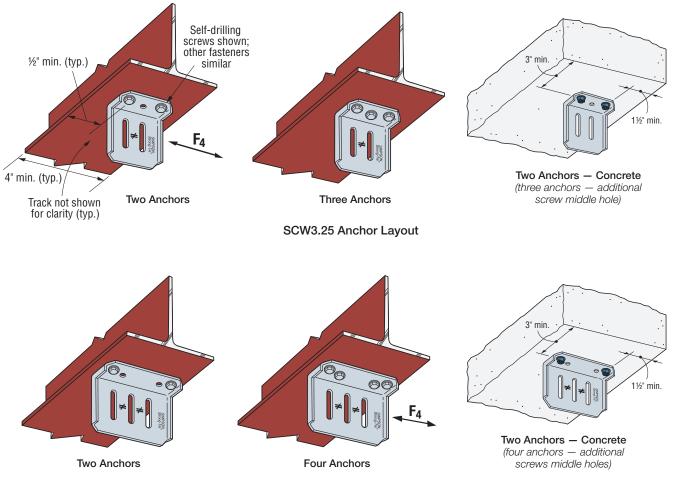
SCW5.5 Installation with Two Shouldered Screws (three shouldered screws and SCW3.25 similar)

Typical SCW Installation at Stud

SCW Head-of-Wall Slide-Clip Connector

SCW Allowable Anchorage Loads (lb.)

Model No.	Anchorage Type	Minimum Base Material	No. of Anchors	Allowable Load F4
	#10. 04 celf drilling corour	A36 steel	2	715
	#12-24 self-drilling screws	⅔ı6" thick	3	1,075
SCW3.25	Simpson Strong-Tie® 0.157" x %" powder-actuated fasteners	A36 steel	2	715
	PDPAT-62KP	3⁄16" thick	3	1,075
	Simpson Strong-Tie	Concrete	2	285
	1⁄4" x 1 3⁄4" Titen Turbo™3	f' _C = 2,500 psi	3	350
	#12-24 self-drilling screws	A36 steel	2	775
	#12-24 Self-utiling Screws	⅔ı6" thick	4	1,550
SCW5.5	Simpson Strong-Tie 0.157" x %" powder-actuated fasteners	A36 steel	2	745
E	PDPAT-62KP	3⁄16" thick	4	1,490
	Simpson Strong-Tie	Concrete	2	285
	1⁄4" x 13⁄4" Titen Turbo3	f' _c = 2,500 psi	4	775


1. For additional important information, see General Information and Notes on p. 26.

2. Allowable loads are for clip anchorage only. The capacity of the connection system will be the minimum of the

tabulated value and the allowable load from the SCW Allowable Connector Loads table on p. 48.

3. Tabulated values require a minimum 1 1/2" edge distance for masonry screws in concrete.

4. See the current Fastening Systems catalog at strongtie.com for more information on Simpson Strong-Tie fasteners.

SCW5.5 Anchor Layout

Multi-Use Secure Clip

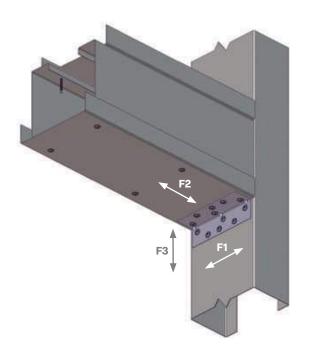
Product Application

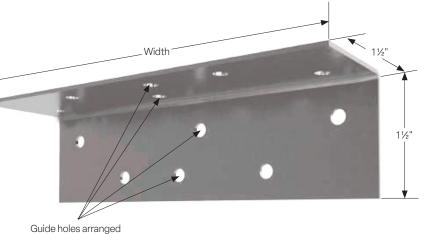
The MA multi-use secure clip is used in a variety of different applications, including head-of-wall, joist connections, rafter and truss connections, reinforcing header connections, and bridging.

The MA secure clip is designed to resist vertical and lateral loads. Pre-punched guide holes are provided in each leg to allow for efficient installation. Clips come packaged in durable buckets for easy handling on the jobsite.

Features and Benefits

- Variety of lengths available
- Loads based on #10 screws
- Pre-punched guide holes
- · No labor used cutting scrap or angle


Material Composition


- Mill certified steel
- ASTM A653/A653M
- 54 mil
- 57 ksi yield strength
- 65 ksi tensile strength 0
- G60/G90 galvanized coating
- 68 mil

for bridging attachment

- 57 ksi yield strength
- 65 ksi tensile strength
- G60/90 galvanized coating

Part No.	Length	Qty / Bucket	Lbs / Bucket
MA350-54	3 1⁄2"	200	34
MA350-68	3 ½"	200	42
MA550-54	5 1⁄2"	100	26
MA550-68	5 ½"	100	32
MA750-54	7 ½"	100	35
MA750-68	7 ½"	100	44
MA950-54	9 1⁄2"	100	44
MA950-68	9 1⁄2"	100	55

Quantity / Order Information

Secure Clips

MA Multi-Use Secure Clip Allowable Loads

	Part No.	Stud	Stud Properties			e Loads (lbs)	F2 Allowable	e Loads (lbs)	F3 Allowable	e Loads (lbs)	
		Mil	Gauge	Fy (ksi)	2 #10 Screws	3 #10 Screws	2 #10 Screws	3 #10 Screws	2 #10 Screws	3 #10 Screws	
	- F	33EQS	20	57	402	603	206	310	206	310	
		33	20	33	353	530	168	251	168	251	
	კ ლილი	43EQS	mgm	~~~~~~~~	635	952	280	420	280	420	
	MA350	43	18	33	526	789	219	328	219	328	
r e		54	16	50	1068	1602	396	594	396	594	
		68	14	50	1510	2266	499	749	499	749	
		97	12	50	2261	2420	712	965	712	965	
	Maximum Allowable Clip Capacity				Max F1 =	2420 lbs	Max F2 :	= 965 lbs	Max F3 = 965 lbs		

Devt No	Stud Properties			F1 Allowable Loads (lbs)			F2 Allowable Loads (lbs)			F3 Allowable Loads (lbs)			
Part No.	Mil	Gauge	Fy (ksi)	2 #10 Screws	4 #10 Screws	5 #10 Screws	2 #10 Screws	4 #10 Screws	5 #10 Screws	2 #10 Screws	4 #10 Screws	5 #10 Screws	
	33EQS	20	57	402	804	1005	206	413	516	206	413	516	
	33	20	33	353	707	884	168	335	419	168	335	419	
	43EQS	18	57	635	1269	1587	280	560	700	280	560	700	
MA550	43	18	33	526	1052	1315	219	437	547	219	437	547	
	54	16	50	1068	2136	2671	396	792	855	396	792	855	
	68	14	50	1510	2980	2980	499	855	855	499	855	855	
	97	12	50	2261	2980	2980	712	855	855	712	855	855	
Maximum	Maximum Allowable Clip Capacity				Max F1 = 2980 lbs			Max F2 = 855 lbs			Max F3 = 855 lbs		

Dout No	Stud	Stud Properties			F1 Allowable Loads (lbs)			F2 Allowable Loads (lbs)			F3 Allowable Loads (lbs)		
Part No.	Mil	Gauge	Fy (ksi)	2 #10 Screws	4 #10 Screws	7 #10 Screws	2 #10 Screws	4 #10 Screws	7 #10 Screws	2 #10 Screws	4 #10 Screws	7 #10 Screws	
	33EQS	20	57	402	804	1407	206	413	722	206	413	722	
	33	20	33	353	707	1237	168	335	597	168	335	597	
	43EQS	18	57	635	1269	2221	280	560	980	280	560	980	
MA750	43	18	33	526	1052	1841	219	437	765	219	437	765	
	54	16	50	1068	2136	3739	396	792	1387	396	792	1387	
	68	14	50	1510	3021	5286	499	998	1740	499	998	1740	
	97	12	50	2261	4521	6100	712	1424	1740	712	1424	1740	
Maximun	Maximum Allowable Clip Capacity				Max F1 = 6100 lbs			Max F2 = 1740 lbs			Max F3 = 1740 lbs		

Deutha	Stud	Propert	ties	F1 Allowable Loads (lbs)			F2 Allo	wable Loa	ds (lbs)	F3 Allowable Loads (lbs)		
Part No.	Mil	Gauge	Fy (ksi)	2 #10 Screws	5 #10 Screws	9 #10 Screws	2 #10 Screws	5 #10 Screws	9 #10 Screws	2 #10 Screws	5 #10 Screws	9 #10 Screws
	33EQS	20	57	402	1005	1809	206	516	929	206	516	929
	33	20	33	353	884	1590	168	419	754	168	419	754
	43EQS	18	57	635	1587	2856	280	700	1260	280	700	1260
MA950	43	18	33	526	1315	2367	219	547	984	219	547	984
	54	16	50	1068	2671	4807	396	991	1740	396	991	1740
	68	14	50	1510	3776	6100	499	1248	1740	499	1248	1740
	97	12	50	2261	5652	6100	712	1740	1740	712	1740	1740
Maximum	Maximum Allowable Clip Capacity		Max F1 = 6100 lbs			Max F2 = 1740 lbs			Max F3 = 1740 lbs			

Table Notes

- 1. Allowable loads have not been increased for wind, seismic activity, or other factors.
- 2. The allowable loads are based on the steel properties of the members being connected, per AISI S100.
- 3. The nominal strength of the screw must be at least 3.75 times the allowable load.
- 4. Screw shear capacities are based on allowable strength design (ASD) and include a safety factor of 3.0.
- Penetration of screws through joined materials should not be less than three exposed threads. Install and tighten screws in accordance with the screw manufacturer's recommendations.
- Allowable loads indicated on the table(s) are for force in single direction only. The designer shall use the combined forces check as required by AISI S100 if more than one force is applied to the connection.

S/JCT and S/HJCT Steel-Joist Connectors

This product is preferable to similar connectors because of a) easier installation, b) higher loads, c) lower installed cost, or a combination of these features.

The S/JCT and S/HJCT are unique, skewable steel-joist framing connectors that combine strength, versatility and low installed cost. The connectors can be used with CFS headers, wood headers, steel I-beams (with welds or PAF fasteners) and masonry walls.

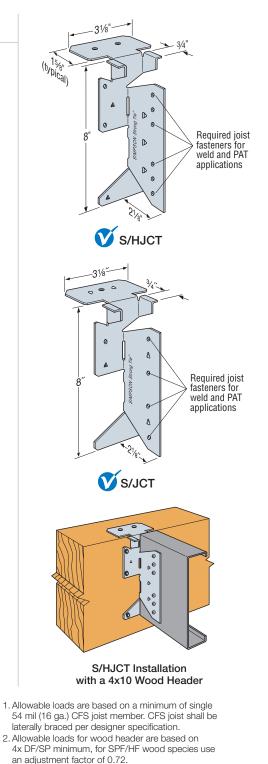
and masonry walls. **(Installed cost is minimized since these products are shear rather than**) **(bearing connectors, eliminating the need for web stiffeners.)** The connectors also feature horizontal tabs that facilitate top flange alignment and joist support during screw installation. **Material:** S/JCT — 68 mil (14 ga.); S/HJCT — 97 mil (12 ga.)

Finish: Galvanized

Features:

- Uni-directional: Joist can be attached from left or right
- One size fits joists 8" through 14" deep
- Optional holes for additional load capacity
- Simplicity of design
- Quick and easy installation
- Field skewable up to 45° left or right

Installation:


- Attach hanger with specified fasteners. Use round holes for minimum load, use round and triangle holes for maximum load.
- May be used for weld-on applications. The minimum required weld to the top flange is 1/8" x 21/2" fillet weld to each side of top flange. Consult the code for special considerations when welding galvanized steel.
- May be installed using PDPAT-62KP (0.157" x 5%") powder-actuated fasteners. Steel headers with thicknesses between 1/4" and 3/4" having a minimum F_y = 36 ksi. A Red (level 5) or Purple (level 6) powder load may be required to achieve specified penetration (p). See illustration on p. 203.

Codes: See p. 13 for Code Reference Key Chart

Ordering Information: The S/JCT is sold in cartons of 50. The S/HJCT is sold in kits as the S/HJCT-KT and contains five (5) connectors and (95) #14 screws.

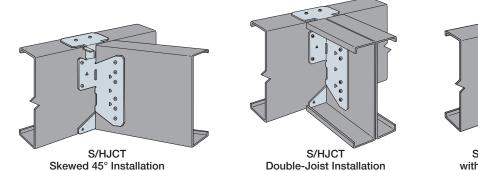
Model No.		Fasteners ⁷		Allowable	Load ¹ (lb.)	Code
Mouch No.	Тор	Face	Joist	Uplift	Down	Ref.
Atta	ached to CFS Heade	er: 54 mil (16 ga.) ³ –	– Straight	Hanger		
S/JCT (min.)	(1) #10	(2) #10	(4) #10	940	1,195	
S/JCT (max.)	(1) #10	(4) #10	(6) #10	1,435	2,105	
S/HJCT (min.)	(2) #10	(4) #14	(6) #14	1,510	2,920	
S/HJCT (max.)	(2) #10	(8) #14	(9) #14	1,670	3,855	
Att	ached to CFS Heade	er: 54 mil (16 ga.) ³ –	– Skewed	Hanger		IBC.
S/JCT (min.)	(1) #10	(2) #10	(4) #10	940	1,135	FL,
S/JCT (max.)	(1) #10	(4) #10	(6) #10	940	1,185	LA
S/HJCT (min.)	(2) #10	(4) #14	(6) #14	1,510	2,305	1
Att	tached to Steel Hea	der⁴ — Straight and	d Skewed	Hanger		
S/JCT (min.)			(4) #10	145	940	
S/HJCT (min.)		fillet weld of top flange	(4) #14	195	1,450	
S/HJCT (min.) Skew		or top nange	(4) #14	195	1,235	
S/JCT (min.)	(2) 0.15	7" x 5%"	(4) #10	145	750	
S/HJCT (min.)	powder-actua	ated fastener ⁸	(4) #14	195	1,185	
	Attached to Masonr	y — Straight and S	kewed Ha	nger		-
S/HJCT (min.)	(2) 1⁄4" x 21⁄4"	(4) 1⁄4" x 21⁄4"	(C) #14	710	1,785	
S/HJCT (min.) Skew	Titen Turbo™	Titen Turbo	(6) #14	710	1,410	

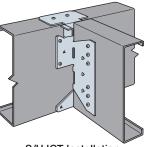
		Fasteners ⁷		Allowable	Load ^{1,2} (lb.)	
Model No.		rastellers		Allowable	Loau ^{.,} - (ID.)	Code
WOUCH NO.	Тор	Face	Joist	Uplift (160)	Down (100)	Ref.
ł	Attached to 4x DF/S	P Wood Header — S	Straight Ha	anger		
S/JCT (min.)	(1) 10d	(2) 10d	(4) #10	555	945	
S/JCT (max.)	(1) 10d	(4) 10d	(6) #10	945	1,465	
S/HJCT (min.)	(2) 10d	(4) 1⁄4"x3" SDS	(6) #14	1,210	2,625	IBC,
S/HJCT (max.)	(2) 10d	(8) ¼"x3" SDS	(9) #14	1,475	2,980	FL,
1	Attached to 4x DF/S	P Wood Header — S	Skewed Ha	anger		LA
S/JCT (min.)	(1) 10d	(2) 10d	(4) #10	390	845	
S/JCT (max.)	(1) 10d	(4) 10d	(6) #10	775	1,300	
S/HJCT (min.)	(2) 10d	(4) ¼" x 3" SDS	(6) #14	1,210	1,935	

SIMPSO

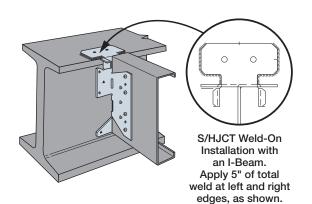
Strong-Tie

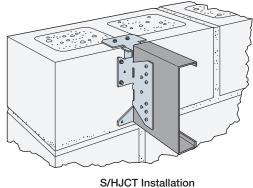
- 3. CFS header must be braced to prevent web buckling per designer specification and header must have full bearing of 1%" flange-depth.
- 4. Backing in the steel beam cavity is not required behind the hanger for load listed.
- 5. Screws shall be installed using joist hanger holes screwing through the hanger into the joist.
- 6. CFS joists with up to a 0.50" gap (short cut), use an adjustment factor of 0.87 and joists with a 0.50" to 0.90" gap (short cut), use an adjustment factor of 0.75.
- See the current Fastening Systems catalog at strongtie.com for more information on Simpson Strong-Tie fasteners.
- 8. See p. 203 for more information.

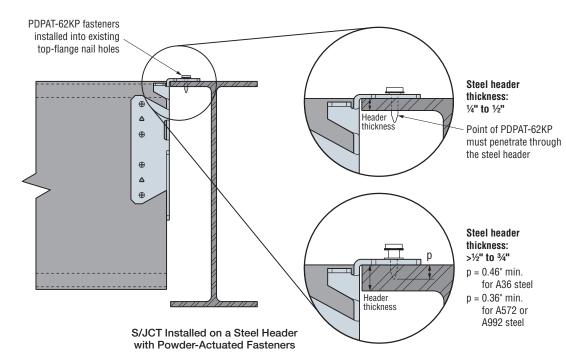

Joist Framing Connectors


C-CF-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

Connectors for Cold-Formed Steel Construction


S/JCT and S/HJCT Steel-Joist Connectors





S/HJCT Installation with a CFS Steel Header

S/HJCT Installation on Masonry Header

Joist Framing Connectors

Project Name: Centeris Model: 6" STUD 13'-6" Code: 2012 NASPEC [AISI S100-2012]

TYPICAL INFILL WALL 6" STUDS

Page 1 of 1 Date: 02/28/2024

Simpson Strong-Tie® CFS Designer™ 5.0.1.0

		Section :	600S125-33	8 (33 ks	si) @ 24" o	.c. Single (C Stud (pund	ched)				
		Maxo =	608.4 ft-lb		Va = 638.1	lb	I = 1.36	6 in^4				
Ļ			Loads have not been modified for strength checks Loads have not been modified for deflection calculations									
		Bridging	Connector Axia		sign Metho Flexual,	od =AISI S	<u> 5100</u>	Stress				
		Span	KyLy, I	KtLt	Distortio	nal 🚺	Connector	Ratio				
		Span	48.0", 4	48.0"	48.0", 16	2.0"	N/A	-				
		<u>Web Crip</u>	pling	Bear	ing Pa	³ M						
		Support	Load (Ib)	(in)	(lb)	(ft-lbs)	Max Int.	Stiffener?				
		R2	67.5	Slip	Track Desi	gn, Ref Co	onnectors	NO				
3.50	10.00 lb/ft	R1	67.5	Stuo	d/Track Des	sign, Ref C	onnectors	NO				
		Gravity L	oad									
		Туре	Load (Ib)									
		Uniform	24.00plf									

		Co	de Check	Required	Allowed	Interaction	Notes	i		
Span		Max	. Axial, lbs	324.0(c)	1282.2(c)	25%	КΦ=0	.00 lb-in/in Max	KL/r = 128	
		Max.	Shear, lbs	67.5	638.1	11%	Shear	(Punched)		
I	Max. Momen	nt (MaFy, Ma-	dist), ft-lbs	227.8	526.3	43%	Ma-di	st (control),KΦ=	0.00 lb-in/in	
		Moment Sta	bility, ft-lbs	227.8	518.4	44%				
		She	ar/Moment	0.37	1.00	37%	Shear	Shear 0.0, Moment 227.8		
		Axi	al/Moment	0.58	1.00	58%	Axial '	Axial 192.5(c), Moment 219.8		
		Deflectio	on Span, in	0.186	meets L/870	E	3			
_								Connector	Anchor	
Support	Rx(lb)	Ry(lb)		Simpso	on Strong-Tie Cor	inector		Interaction	Interaction	
R2	67.5	0.0	600SLT2	600SLT250-33 (33) & (1) .157" SST PDPA/PDPAT-62KP to steel (3/16" to 1/2" thickness)					41.25 %	
R1	67.5	324.0	600T125-).157", 3/4" embe o 4000 nw concret	DPAT	27.78 %	50.00 %		

* Reference catalog for connector and anchor requirement notes as well as screw placement requirements

PHYSICAL PROPERTIES

Viper-X Stud®

	MODEL NO.	DESIGN THICKNESS (in)	MINIMUM THICKNESS (in)	YIELD (ksi)	WEB SIZES (in)	COATING 1,2	FLANGE (in)	RETURN LIP (in)
	VIPER-X-18	0.0188	0.0179	57	1-5/8, 2-1/2, 3-1/2, 3-5/8, 4, 6		1-7/16	3/8
- music	VIPER-X-22	0.0235	0.0223	57	1-5/8, 2-1/2, 3-1/2, 3-5/8, 4, 6		1-7/16	3/8

Viper-X Track®

MODEL NO.	DESIGN THICKNESS (in)	MINIMUM THICKNESS (in)	YIELD (ksi)	WEB SIZES (in)	COATING 1,2	FLANGE (in)
VIPER-X-18 TRACK	0.0188	0.0179	57	1-5/8, 2-1/2, 3-1/2, 3-5/8, 4, 6	G40	1-1/4, 1-1/2, 2
VIPER-X-22 TRACK	0.0235	0.0223	57	1-5/8, 2-1/2, 3-1/2, 3-5/8, 4, 6	G40	1-1/4, 1-1/2, 2

Notes:

- 1. Web height to thickness ratio (h/t) exceeds 200. Web stiffeners required at all support points and concentrated loads.
- Members having a web height to thickness ratio (h/t) value exceeding 260 will not have effective properties listed, only gross properties will be listed.
- 3. Web height value (h) used for h/t calculation is the flat width of the web. For (S) members, this is the out to out member size, minus twice the thickness, minus twice the inside bend radius.
- 4. Members having a flange width to thickness ratio (b/t) value exceeding 60 must be considered for use with the limitations described in AISI S100-12 section B1.
- 5. Flange width value (b) used for b/t calculation is the flat width of the flange. For (S) members, this is the out to out member size, minus twice the thickness, minus twice the inside bend radius.

6. Per ASTM C645 & ASTM A1003 Table 1. 7. G60 and G90 available upon request.

Viper-X High Performance Studs and Tracks are in compliance with ASTM C645. ASTM C645 Section 5.1 allows for permissible dimensional thickness variations, Section 8.2 allows for thickness variations and exemptions from minimum section property values, if specified performance requirements are not met. The Viper-X Framing product meets and exceeds these requirements.

GENERAL TABLE NOTES

- 1. The yield strength for all Viper-X Products is 57 ksi.
- 2. Tabulated gross properties are based on full, unreduced section away from punchouts.
- 3. Punch-out sizes are 0.75" x 2.00" for stud depths 1.625" and 2.50", and 1.50" x 2.75" for stud depths 3.50" and deeper.
- 4. Factory punchouts are in accordance with section C5 of AISI S201-12. The distance from the center of the last punchout to the end of the stud is 12 inches.
- 5. For Allowable Stress Design (ASD) method, factors of safety of 1.67 and 1.6 respectively, are used for moment and shear capacities as per AISI S100-12.
- 6. Design stiffening lip is 3/8" for all studs.

Notations

Moment of Inertia about the X axis of Gross Section
Moment of Inertia about the Y axis of Gross Section
Radius of Gyration about the X and Y axes, respectively
of Gross Section
St. Venant Torsion Constant
Torsional Warping Constant
Distance from Shear Center to Centroid Along the X axis
Polar Radius of Gyration about the Shear Center
Torsional-Flexural Constant
Effective Moment of Inertia at Punch-out about the X axis (for deflection calculation)
Effective Section Modulus about the X axis at Punch-out
Allowable Moment based on Local Buckling
Allowable Moment based on Distortional Buckling
Allowable Shear at Gross Section

NON-COMPOSITE LIMITING WALL HEIGHTS – FULLY BRACED

	VIELD	DESIGN	SPACING		5 PSF			7.5 PSF			10 PSF	
VIPER-X MEMBER	YIELD (ksi)	THICKNESS (in)	0.C. (in)	L/120	L/240	L/360	L/120	L/240	L/360	L/120	L/240	L/360
	57	0.0188	12	10' 3"	8' 2"	7' 2"	9' 0"	7' 2"	6' 3"	8' 2"	6' 6"	5' 8"
162VXS144-18	57	0.0188	16	9' 5"	7' 6"	6' 6"	8' 3"	6' 6"	5' 9"	7' 6"	5' 11"	5' 2"
	57	0.0188	24	8' 2"	6' 6"	5' 8"	7' 2"	5' 8"	4' 11"	6' 3" f	5' 2"	4' 6"
	57	0.0188	12	14' 2"	11' 4"	9' 10"	12' 5"	9' 10"	8' 8"	11' 4"	9' 0"	7' 10"
250VXS144-18	57	0.0188	16	13' 1"	10' 4"	9' 1"	11' 5"	9' 1"	7' 11"	10' 1" f	8' 3"	7' 2"
	57	0.0188	24	11' 4"	9' 0"	7' 10"	9' 6" f	7' 10"	6' 10"	8' 3" f	7' 1"	6' 3"
	57	0.0188	12	18' 6"	14' 8"	12' 10"	16' 0" f	12' 10"	11' 2"	13' 11"	11' 8"	10' 2"
350VXS144-18	57	0.0188	16	16' 11"	13' 5"	11' 9"	13' 11" f	11' 9"	10' 3"	12' 0" f	10' 8"	9' 4"
	57	0.0188	24	13' 11" f	11' 8"	10' 2"	11' 4" f	10' 2"	8' 11"	9' 10" f	9' 3"	8' 1"
	57	0.0188	12	19' 0"	15' 2"	13' 2"	16' 4" f	13' 2"	11' 6"	14' 2" f	12' 0"	10' 6"
362VXS144-18	57	0.0188	16	17' 4" f	13' 10"	12' 1"	14' 2" f	12' 1"	10' 7"	12' 3" f	11' 0"	9' 7"
	57	0.0188	24	14' 2" f	12' 0"	10' 6"	11' 7" f	10' 6"	9' 2"	10' 0"	9' 6"	8' 4"
	57	0.0188	12	20' 6"	16' 3"	14' 3"	17' 3" f	14' 3"	12' 5"	14' 11" f	13' 0"	11' 4"
400VXS144-181	57	0.0188	16	18' 4" f	14' 11"	13' 0"	14' 11" f	13' 0"	11' 5"	12' 11" f	11' 10"	10' 4"
	57	0.0188	24	14' 11" f	12' 11"	11' 4"	12' 2" f	11' 4"	9' 10"	10' 6" f	10' 3"	9' 0"
	57	0.0188	12	25' 9" f	22' 4"	19' 6"	21' 0" f	19' 6"	17' 0"	17' 7" w	17' 7" w	15' 6"
600VXS144-181	57	0.0188	16	22' 3" f	20' 6"	17' 11"	17' 8" w	17' 8" w	15' 7"	13' 3" w	13' 3" w	13' 3" w
	57	0.0188	24	17' 7" w	17' 7" w	15' 6"	11' 9" w	11' 9" w	11' 9" w	8' 10" w	8' 10" w	8' 10" w
	57	0.0235	12	10' 7"	8' 5"	7' 4"	9' 3"	7' 4"	6' 5"	8' 5"	6' 8"	5' 10"
162VXS144-22	57	0.0235	16	9' 8"	7' 8"	6' 9"	8' 6"	6' 9"	5' 10"	7' 8"	6' 1"	5' 4"
	57	0.0235	24	8' 5"	6' 8"	5' 10"	7' 4"	5' 10"	5' 1"	6' 8"	5' 3"	4' 7"
	57	0.0235	12	15' 6"	12' 4"	10' 9''	13' 6"	10' 9"	9' 5"	12' 4"	9' 9"	8' 6"
250VXS144-22	57	0.0235	16	14' 2"	11' 3''	9' 10"	12' 5"	9' 10"	8' 7"	11' 3"	8' 11"	7' 10"
	57	0.0235	24	12' 4"	9' 9''	8' 6"	10' 9"	8' 6"	7' 5"	9' 8" f	7' 9"	6' 9"
	57	0.0235	12	20' 1"	15' 11"	13' 11"	17' 7"	13' 11"	12' 2"	15' 11"	12' 8"	11' 1"
350VXS144-22	57	0.0235	16	18' 5"	14' 7"	12' 9"	16' 1"	12' 9"	11' 2"	14' 1" f	11' 7"	10' 2"
	57	0.0235	24	15' 11"	12' 8"	11' 1"	13' 3" f	11' 1"	9' 8"	11' 6" f	10' 1"	8' 9"
	57	0.0235	12	20' 8"	16' 5"	14' 4"	18' 0"	14' 4"	12' 6"	16' 5"	13' 0"	11' 4"
362VXS144-22	57	0.0235	16	18' 11"	15' 0"	13' 1"	16' 6"	13' 1"	11' 6"	14' 4" f	11' 11"	10' 5"
	57	0.0235	24	16' 5"	13' 0"	11' 4"	13' 6" f	11' 4"	9' 11"	11' 8" f	10' 4"	9' 0"
	57	0.0235	12	22' 4"	17' 8"	15' 6"	19' 6"	15' 6"	13' 6"	17' 6" f	14' 1"	12' 3"
400VXS144-221	57	0.0235	16	20' 5"	16'3"	14' 2"	17' 6" f	14' 2"	12' 5"	15' 2" f	12' 11"	11' 3"
	57	0.0235	24	17' 6" f	14' 1"	12' 3"	14' 3" f	12' 3"	10' 9"	12' 4" f	11' 2"	9' 9"
	57	0.0235	12	30' 3" f	24' 4"	21' 3"	24' 8" f	21' 3"	18' 7"	21' 5" f	19' 4"	16' 10"
600VXS144-221	57	0.0235	16	26' 3" f	<u>22' 4"</u>	19' 6"	21					`} 15' 5"
്ഡ്ഡ്പു	57	0.0235	24	21' 5" f	[19' 4"]	16' 10"				UT WEB ST ON LOAD =		13' 5"

Notes:

1. Web height to thickness ratio (h/t) exceeds 200. Web stiffeners required at all support points and concentrated loads.

 Lateral loads of 5 psf, 7.5 psf, and 10 psf have NOT been reduced for strength or deflection checks. Full lateral load is applied.

3. Limiting heights are in accordance with AISI S100-12 using all steel non-composite design.

4. Limiting heights are established by considering flexure (f), web crippling (w) and deflection.

5. Allowable moment is the lesser of Mal and Mad. Stud distortional buckling based on an assumed $K\Phi = 0$.

6. For bending, studs are assumed to be adequately braced to develop full allowable moment.

7. Studs are fully braced when unbraced length is less than Lu. See section properties table for Lu values.

- 8. Web crippling check is based on AISI S100-12 section C3.4.2 Condition 1: End One-Flange Loading with 1" end bearing.
- 9. See page 4 for additional table notes.

ALLOWABLE COMPOSITE HEIGHTS – NON-LOAD BEARING WALLS

	VIELD	DESIGN	SPACING		5 PSF			7.5 PSF			10 PSF	
VIPER-X MEMBER	YIELD (ksi)	THICKNESS (in)	0.C. (in)	L/120	L/240	L/360	L/120	L/240	L/360	L/120	L/240	L/360
	57	0.0188	12	14'-6"	11'-6"	10'-0"	12'-8"	10'-0"	8'-6"	11'-6"	8'-11"	7'-7"
162VXS144-18	57	0.0188	16	13'-2"	10'-5"	8'-10"	11'-6"	8'-11"	7'-7"	10'-5"	7'-11"	-
	57	0.0188	24	11'-6"	8'-11"	7'-7"	10'-0"	7'-7"	-	8'-11"	-	-
	57	0.0188	12	18'-5"	14'-7"	12'-9"	16'-1"	12'-9"	11'-2"	14'-7"	11'-7"	10'-2"
250VXS144-18	57	0.0188	16	16'-9"	13'-4"	11'-7"	14'-8"	11'-7"	10'-2"	13'-4"	10'-7"	8'-10"
	57	0.0188	24	14'-7"	11'-7"	10'-2"	12'-9"	10'-2"	8'-6"	11'-6"	8'-11"	7'-6"
	57	0.0188	12	22'-3"	17'-8"	15'-4"	19'-5"	15'-5"	13'-6"	17'-8"	14'-0"	12'-3"
350VXS144-18	57	0.0188	16	20'-3"	16'-1"	14'-0"	17'-8"	14'-0"	12'-3"	15'-10"	12'-9"	11'-2"
	57	0.0188	24	17'-8"	13'-12"	12'-3"	14'-11"	12'-3"	10'-9"	12'-11"	11'-2"	9'-8"
	57	0.0188	12	22'-6"	17'-11"	15'-8"	19'-8"	15'-8"	13'-8"	17'-11"	14'-3"	12'-5"
362VXS144-18	57	0.0188	16	20'-5"	16'-3"	14'-3"	17'-11"	14'-3"	12'-5"	16'-0"	12'-11"	11'-4"
	57	0.0188	24	17'-10"	14'-3"	12'-5"	15'-2"	12'-5"	10'-9"	13'-1"	11'-3"	9'-10"
	57	0.0188	12	23'-7"	18'-8"	16'-4"	20'-7"	12'-11"	14'-3"	18'-8"	14'-10"	13'-0"
400VXS144-18	57	0.0188	16	21'-5"	17'-0"	14'-10"	18'-9"	14'-10"	13'-0"	16'-9"	13'-6"	11'-10"
	57	0.0188	24	18'-8"	14'-10"	13'-0"	15'-10"	13'-0"	11'-4"	13'-9"	11'-10"	10'-0"
	57	0.0188	12	31'-5"	24'-11"	21'-9"	27'-0"	21'-9"	19'-0"	23'-5"	19'-10"	17'-4"
600VXS144-18	57	0.0188	16	28'-7"	22'-8"	19'-10"	22'-6"	19'-10"	17'-4"	20'-3"	18'-0"	15'-9"
	57	0.0188	24	23'-5"	19'-10"	17'-4"	19'-1"	17'-4"	15'-1"	16'-7"	15'-9"	13'-7"
	57	0.0235	12	14'-8"	11'-8"	10'-2"	12'-10"	10'-2"	8'-8"	11'-8"	9'-1"	7'-8"
162VXS144-22	57	0.0235	16	13'-4"	10'-7"	10'-0"	11'-8"	9'-1"	7'-9"	10'-7"	8'-1"	-
	57	0.0235	24	11'-8"	9'-1"	-	10'-2"	-	-	9'-1"	-	-
	57	0.0235	12	18'-11"	15'-0"	13'-1"	16'-6"	13'-1"	11'-5"	15'-0"	11'-11"	10'-5"
250VXS144-22	57	0.0235	16	17'-2"	13'-8"	11'-11"	15'-0"	11'-11"	10'-6"	13'-8"	10'-10"	10'-0"
	57	0.0235	24	15'-0"	11'-11"	10'-5"	13'-1"	10'-5"	8'-10"	11'-10"	9'-3"	7'-9"
	57	0.0235	12	23'-4"	18'-6"	16'-2"	20'-5"	16'-2"	14'-2"	18'-6"	14'-8"	12'-10"
350VXS144-22	57	0.0235	16	21'-3"	16'-10"	14'-9"	18'-6"	14'-9"	12'-10"	16'-8"	13'-4"	11'-8"
	57	0.0235	24	18'-6"	14'-8"	12'-10"	15'-11"	12'-10"	11'-3"	14'-1"	11'-8"	10'-1"
	57	0.0235	12	25'-0"	18'-9"	16'-5"	20'-8"	16'-5"	14'-4"	18'-9"	14'-11"	13'-0"
362VXS144-22	57	0.0235	16	23'-8"	17'-1"	14'-11"	18'-10"	14'-11"	13'-1"	17'-0"	13'-7"	11'-10"
	57	0.0235	24	18'-9"	14'-11"	13'-0"	16'-2"	13'-0"	11'-5"	14'-4"	11'-10"	10'-3"
	57	0.0235	12	24'-9"	19'-8"	17'-2"	21'-8"	19'-0"	15'-0"	19'-8"	15'-7"	13'-8"
400VXS144-22	57	0.0235	16	22'-6"	17'-11"	15'-8"	19'-8"	15'-8"	13'-8"	17'-9"	14'-2"	12'-5"
	57	0.0235	24	19'-8"	15'-7"	13'-8"	16'-11"	13'-8"	11'-11"	15'-0"	12'-5"	10'-8"
	57	0.0235	12	33'-1"	26'-3"	22'-11"	28'-8"	22'-11"	20'-1"	25'-5"	20'-10"	18'-3"
600VXS144-22	57	0.0235	16	30'-1"	23'-11"	20'-10"	31'-0"	20'-10"	18'-3"	22'-6"	18'-12"	16'-7"
'uuuuu '	57	0.0235	24	25'-5"	20'-10"	18'-3"	21'-5"	18'-3"	15'-11"	19'-0"	16'-7"	14'-5"

Notes:

1. Viper composite limiting heights are based on testing in accordance with ICC-ES acceptance criteria AC86-2012.

2. Limiting heights are established by considering flexure, shear, web crippling, and deflection.

3. No screws are required between stud and track, except as required by ASTM C754. Composite heights are based on using standard top track. Mechanically fastening of gypsum panel to the stud and track is required. 4. Viper-X composite limiting heights based on a single layer of 5/8" type X gypsum board applied vertically to both sides of the wall over full height. 5/8" Type X wallboard from the following manufacturers are acceptable: USG, National, Georgia- Pacific, Temple Inland, CertainTeed, American, & LaFarge.

5. See page 4 for additional table notes.

Interior Wall Limiting Heights - Non-Composite - Fully Braced

PRCTI20240333

Table Notes

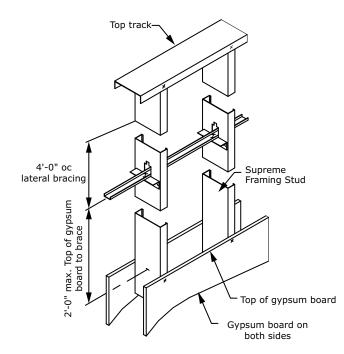
- 1. 5 pounds per square foot (psf), 7.5 psf, and 10 psf loads have **not** been reduced for strength or deflection checks; full lateral load is applied.
- 2. Web crippling check is based on 1" end bearing.
- 3. Allowable moment is the lesser of M_{al} and $M_{ad}.$ Stud distortional buckling based on an assumed $K\phi$ = 0.
- 4. Limiting heights are based on steel properties only (noncomposite) without the contribution of sheathing to strengthen and stiffen the assembly. Properly fastened sheathing is still required for members to be considered fully braced.
- 5. See page 5 for additional table notes.

				SUPREME	Interior W	all Heights/	- Non-Con	n <mark>posite - F</mark> i	ully Braced			
	Fv		Spacing		5 psf			7.5 psf			10 psf	
Section	Fy (ksi)	Lu	Spacing (in) oc	L/120	L/240	L/360	L/120	L/240	L/360	L/120	L/240	L/360
			12	9' 4"	-	-	-	-	-	-	-	-
162SFS125-D25	57	24.4	16	8' 1"	-	-	-	-	-	-	-	-
			24	-	-	-	-	-	-	-	-	-
			12	10' 5"	8' 3"	-	9' 1"	-	-	-	-	-
162SFS-D20	57	29.1	16	9' 5"	-	-	-	-	-	-	-	-
			24	-	-	-	-	-	-	-	-	-
			12	11' 0"	8' 9"	-	9' 8"	-	-	8' 9"	-	-
162SFS-30EQD	57	29.0	16	10' 0"	-	-	8' 9"	-	-	-	-	-
			24	8' 9"	-	-	-	-	-	-	-	-
			12	11' 0"	8' 9"	-	9' 8"	-	-	8' 9"	-	-
162SFS-33EQD	57	29.0	16	10' 0"	-	-	8' 9"	-	-	-	-	-
			24	8' 9"	-	-	-	-	-	-	-	-
			12	12' 10"	10' 2"	8' 11"	10' 6"	8' 11"	-	9' 1"	8' 1"	-
250SFS125-D25	57	24.0	16	11' 2"	9' 3"	8' 1"	9' 1"	8' 1"	-	-	-	-
			24	9' 1"	8' 1"	-	-	-	-	-	-	-
			12	14' 4"	11' 4"	9' 11"	12' 4"	9' 11"	8' 8"	10' 8"	9' 0"	-
250SFS-D20	57	28.1	16	13' 0"	10' 4"	9' 0"	10' 8"	9' 0"	-	9' 3"	8' 2"	-
			24	10' 8"	9' 0"	-	8' 9"	-	-	-	-	-
			12	15' 4"	12' 2"	10' 7"	13' 5"	10' 7"	9' 3"	12' 2"	9' 8"	8' 5"
250SFS-30EQD	57	28.0	16	13' 11"	11' 1"	9' 8"	12' 2"	9' 8"	8' 5"	11' 1"	8' 9"	-
			24	12' 2"	9' 8"	8' 5"	10' 7"	8' 5"	-	9' 5"	-	-
			12	15' 4"	12' 2"	10' 7"	13' 5"	10' 7"	9' 3"	12' 2"	9' 8"	8' 5"
250SFS-33EQD	57	28.0	16	13' 11"	11' 1"	9' 8"	12' 2"	9' 8"	8' 5"	11' 1"	8' 9"	-
			24	12' 2"	9' 8"	8' 5"	10' 7"	8' 5"	-	9' 5"	-	-
			12	14' 4"	12' 11"	11' 3"	11' 8"	11' 3"	9' 10"	10' 1"	10' 1"	8' 11"
350SFS125-D25 1	57	23.6	16	12' 5"	11' 9"	10' 3"	10' 1"	10' 1"	8' 11"	8' 9"	8' 9"	8' 1"
			24	10' 1"	10' 1"	8' 11"	8' 3"	8' 3"	-	-	-	-
			12	17' 11"	14' 7"	12' 8"	14' 7"	12' 8"	11' 1"	12' 8"	11' 7"	10' 1"
350SFS-D20	57	27.6	16	15' 6"	13' 3"	11' 7"	12' 8"	11' 7"	10' 1"	10' 11"	10' 6"	9' 2"
			24	12' 8"	11' 7"	10' 1"	10' 4"	10' 1"	8' 10"	8' 11"e	8' 11"e	8' 0"
			12	19' 11"	15' 10"	13' 10"	17' 5"	13' 10"	12' 1"	15' 10"	12' 7"	10' 11"
350SFS-30EQD	57	27.6	16	18' 1"	14' 4"	12' 7"	15' 10"	12' 7"	10' 11"	13' 9"	11' 5"	9' 11"
			24	15' 10"	12' 7"	10' 11"	13' 0"	10' 11"	9'7"	11' 3"	9' 11"	8' 8"
			12	19' 11"	15' 10"	13' 10"	17' 5"	13' 10"	12' 1"	15' 10"	12' 7"	10' 11"
350SFS-33EQD	57	27.6	16	18' 1"	14' 4"	12' 7"	15' 10"	12' 7"	10' 11"	13' 9"	11' 5"	9' 11"
			24	15' 10"	12' 7"	10' 11"	13' 0"	10' 11"	9' 7"	11' 3"	9' 11"	8' 8"
			12	14' 6"	13' 5"	11' 9"	11' 10"	11' 8"	10' 3"	10' 3"	10' 3"	9' 4"
362SFS125-D25 1	57	23.6	16	12' 7"	12' 2"	10' 8"	10' 3"	10' 3"	9' 4"	8' 11"	8' 11"	8' 5"
			24	10' 3"	10' 3"	9' 4"	8' 5"	8' 5"	8' 1"	-	-	-
			12	18' 4"	15' 2"	13' 3"	14' 11"	13' 2"	11' 7"	12' 11"	11' 11"	10' 6"
362SFS-D20	57	27.6	16	15' 10"	13' 9"	12' 0"	12' 11"	11' 11"	10' 6"	11' 3"	10' 9"	9' 7"
			24	12' 11"	11' 11"	10' 6"	10' 7"	10' 4"	9' 2"	9' 2" e	9' 2" e	8' 3"
			12	20' 6"	16' 3"	14' 2"	17' 11"	14' 2"	12' 5"	16' 3"	12' 11"	11' 3"
362SFS-30EQD	57	27.5	16	18' 7"	14' 9"	12' 11"	16' 3"	12' 11"	11' 3"	14' 1"	11' 9"	10' 3"
			24	16' 3"	12' 11"	11' 3"	13' 3"	11' 3"	9' 10"	11' 6"	10' 3"	8' 11"
			12	20' 6"	16' 3"	14' 2"	17' 11"	14' 2"	12' 5"	16' 3"	12' 11"	11' 3"
362SFS-33EQD	57	27.5	16	18' 7"	14' 9"	12' 11"	16' 3"	12' 11"	11' 3"	14' 1"	11' 9"	10' 3"
			24	16' 3"	12' 11"	11' 3"	13' 3"	11' 3"	9' 10"	11' 6"	10' 3"	8' 11"

¹Web height-to-thickness ratio exceeds 200. Web stiffeners are required at all support points and concentrated loads. "e" Web stiffeners required at ends.

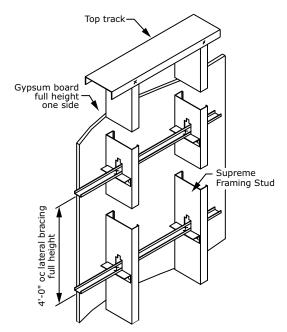
Interior Wall Limiting Heights - Non-Composite - Fully Braced

PRCTI20240333


				SUPREME	Interior W	all Heights	- Non-Con	nposite - Fi	illy Braced			
Section	Fy	Lu	Spacing		5 psf			7.5 psf			10 psf	
Section	Fy (ksi)	Lu	(in) oc	L/120	L/240	L/360	L/120	L/240	L/360	L/120	L/240	L/360
·			12	15' 0"	14' 1"	12' 4"	12' 3"	12' 3"	10' 9"	10' 7"	10' 7"	9' 9"
400SFS125-D25 1	57	23.4	16	13' 0"	12' 10"	11' 2"	10' 7"	10' 7"	9' 9"	9' 2"	9' 2"	8' 10"
			24	10' 7"	10' 7"	9' 9"	8' 8"	8' 8"	8' 6"	-	-	-
			12	19' 5"	16' 0"	14' 0"	15' 11"	14' 0"	12' 3"	13' 9"	12' 9"	11' 1"
400SFS-D20 1	57	27.5	16	16' 10"	14' 7"	12' 9"	13' 9"	12' 9"	11' 1"	11' 11"	11' 7"	10' 1"
			24	13' 9"	12' 9"	11' 1"	11' 3"	11' 1"	9' 8"	9' 8"	9' 9"	8' 10"
			12	22' 2"	17' 7"	15' 4"	19' 4"	15' 4"	13' 5"	17' 1"	13' 11"	12' 2"
400SFS-30EQD	57	27.4	16	20' 2"	16' 0"	13' 11"	17' 1"	13' 11"	12' 2"	14' 10"	12' 8"	11' 1"
			24	17' 1"	13' 11"	12' 2"	13' 11"	12' 2"	10' 8"	12' 1"	11' 1"	9' 8"
			12	22' 2"	17' 7"	15' 4"	19' 4"	15' 4"	13' 5"	17' 1"	13' 11"	12' 2"
400SFS-33EQD	57	27.4	16	20' 2"	16' 0"	13' 11"	17' 1"	13' 11"	12' 2"	14' 10"	12' 8"	11' 1"
			24	17' 1"	13' 11"	12' 2"	13' 11"	12' 2"	10' 8"	12' 1"	11' 1"	9' 8"
			12	28' 5"	22' 8"	19' 10"	23' 3"	19' 10"	17' 4"	20' 1"	18' 0"	15' 9"
550SFS-30EQD 1	57	26.9	16	24' 8"	20' 7"	18' 0"	20' 1"	18' 0"	15' 9"	17' 5"	16' 4"	14' 3"
			24	20' 1"	18' 0"	15' 9"	16' 5"	15' 9"	13' 9"	14' 2"	14' 2"	12' 6"
			12	28' 5"	22' 8"	19' 10"	23' 3"	19' 10"	17' 4"	20' 1"	18' 0"	15' 9"
550SFS-33EQD 1	57	26.9	16	24' 8"	20' 7"	18' 0"	20' 1"	18' 0"	15' 9"	17' 5"	16' 4"	14' 3"
			24	20' 1"	18' 0"	15' 9"	16' 5"	15' 9"	13' 9"	14' 2"	14' 2"	12' 6"
			12	29' 8"	23' 7"	20' 8"	24' 2"	20' 8"	18' 0"	20' 11"	18' 9"	16' 4"
600SFS-30EQD 1	57	26.7	16	25' 8"	21' 5"	18' 9"	20' 11"	18' 9"	16' 4"	18' 2"	17' 0"	14' 10"
			24	20' 11"	18' 9"	16' 4"	17' 1"	16' 4"	14' 3"	14' 10"	14' 10"	13' 0"
······	·····		12	29' 8"	23' 7"	20' 8"	24' 2"	20' 8"	18' 0"	20' 11"	18' 9"	16' 4"
600SFS-33EQD 1	57	26.7	Criffing.	25' 8"	ᡔ᠇ᢨᡰᡃ᠋᠊᠋ᢐᡃᠯ	18' 9"	20' 11"	18' 9"	16' 4"	18' 2"	17' 0"	14' 10"
	·····	······	²⁴	20' 11"	£ 18' 9" 3	16' 4"	17' 1"	16' 4"	14' 3"	14' 10"	14' 10"	13' 0"

¹Web height-to-thickness ratio exceeds 200. Web stiffeners are required at all support points and concentrated loads. "e" Web stiffeners required at ends.

See Table Notes on page 24.


Lateral Bracing

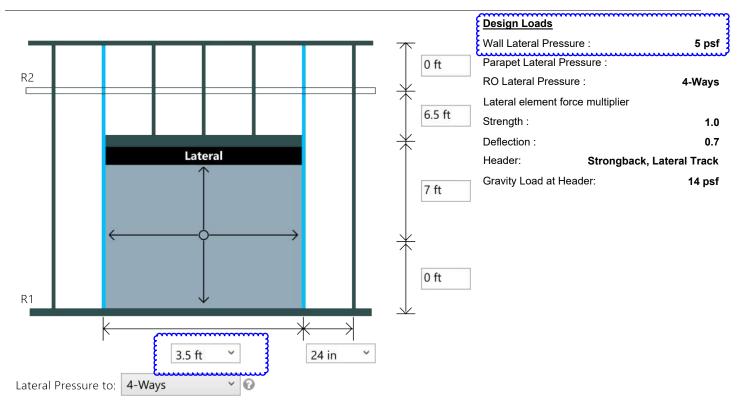
Example of lateral bracing at wall not sheathed at full height.

Lateral Bracing

Example of lateral bracing at wall sheathed at full height on one side.

SSMA

INFILL CFS OPENING DESIGNS


PRCTI20240333

Project Name: Centeris - Copy Model: FINAL - 6" INFILL HDR @ SGL DRWY Code: 2012 NASPEC [AISI S100-2012]

SINGLE DOOR OPN'G NY INFILL WALL 6" STUDS

Date: 02/29/2024

Simpson Strong-Tie® CFS Designer™ 5.0.1.0

Brace Settings

Component(s)	Members(s)	Flexural Bracing	Axial KyLy	Axial KtLt	Distortional K-Phi(lb-in/in)	Distortional Lm	Interconnection Spacing
Wall Studs	600S125-33(33), Single@24 in o/c	48 in	48 in	48 in	0	None	N/A
Jamb Studs	600S125-33(33), Single	48 in	48 in	48 in	0	None	N/A
Lateral Header	600T125-33(33), Single	Full	N/A	N/A	0	None	N/A
Analysis Resu	<u>Its</u>				3		

Component(s)	Members(s)	Axial Load (lb)	Max KL/r	Max. Moment (ft-lb)	Max. Shear (Ib)	Bottom Reaction (Ib)	Top or End Reaction (lb)
Wall Studs	600S125-33(33), Single@24 in o/c	0.0	N/A	227.8	67.5	67.5	67.5
Jamb Studs	600S125-33(33), Single	159.3	128	312.8	85.2	92.8	64.4
Lateral Header	600T125-33(33), Single	N/A	N/A	33.8	36.1	N/A	36.1
Denige Denutie							

· · · · · · · · · · · · · · · · · · ·		Deflection		A + M	V + M	V + M		
Component(s)	Members(s)	Span	Parapet	Interaction	Interaction	Web Stiffners	Design OK	
Wall Studs	600S125-33(33), Single@24 in o/c	L/1243	L/0	0.439	0.11	NA	Yes	
Jamb Studs	600S125-33(33), Single	L/964	L/0	0.724	0.52	NA	Yes	
Lateral Header	600T125-33(33), Single	L/30173	NA	0.07	0.07	No	Yes	

Simpson Strong-Tie® Connectors @ Studs

Support	Rx(lb)	Ry(lb)	Simpson Strong-Tie® Connector	Connector Interaction	Anchor Interaction
R2	67.50	0.00	SCB45.5(2) & (2) #12-24 SST X or XL to A36 Steel	13.78 %	6.05 %
R1	67.50	378.00	600T125-33 (33) & (1) .157" SST PDPA/PDPAT-62KP to steel (3/16" to 1/2" thickness)	27.78 %	30.65 %
* Reference ca	atalog for conr	ector and anch	or requirement notes as well as screw placements requirement		

Project Name: Centeris - Copy Model: FINAL - 6" INFILL HDR @ SGL DRWY Code: 2012 NASPEC [AISI S100-2012]

Date: 02/29/2024

Simpson Strong-Tie® CFS Designer™ 5.0.1.0

Support	Rx(lb)	Ry(lb)	Simpson Strong-Tie® Connector	Connector Interaction	Anchor Interaction
R2	64.38	0.00	600T250-33 (33) & (1) .157" SST PDPA/PDPAT-62KP to steel (3/16" to 1/2" thickness)	67.42 %	39.34 %
R1	92.81	446.25	600T125-33 (33) & (1) .157", 3/4" embed SST PDPA/PDPAT to 4000 nw concrete	76.40 %	68.75 %

* Reference catalog for connector and another requirement notes as well as screw placements requirement

Simpson Strong-Tie® Wall Stud Bridging Connectors @ Studs

Span/Parapet	Bracing Length(in.)	Design Number of Braces	Pn(lb.)	LSUBH (Min)¹	LSUBH (Max) ¹	SUBH (Min)¹	SUBH (Max)¹	MSUBH (Min)¹	MSUBH (Max)¹
Span	48	N/A	0.0	No Soln	No Soln	No Soln	No Soln	No Soln	No Soln

Simpson Strong-Tie® Wall Stud Bridging Connectors @ Jambs

Span/Parapet	Bracing Length(in.)	Design Number of Braces	Pn(lb.)	LSUBH (Min)¹	LSUBH (Max) ¹	SUBH (Min)¹	SUBH (Max)¹	MSUBH (Min)¹	MSUBH (Max)¹
Span	48	4	0.0	No Soln	No Soln	No Soln	No Soln	No Soln	No Soln

Notes:

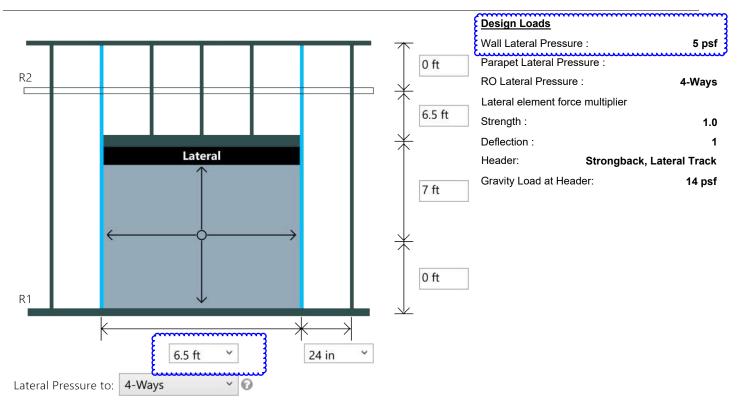
1) Values in parentheses are stress ratios.

2) Bridging connectors are not designed for back-back, box, or built-up sections.

3) Reference <u>www.strongtie.com</u> for latest load data, important information, and general notes.

4) CFS Designer will not select bridging connectors unless all flexural and axial bracing settings are the same.

5) If the bracing length is larger than the span length, bridging connectors are not designed.


PRCTI20240333

Project Name: Centeris - Copy Model: FINAL - 6" INFILL HDR @ DBL DRWY Code: 2012 NASPEC [AISI S100-2012]

DOUBLE DOOR OPN'G INFILL WALL 6" STUDS

Date: 02/29/2024

Simpson Strong-Tie® CFS Designer™ 5.0.1.0

Brace Settings

Component(s)	Members(s)	Flexural Bracing	Axial KyLy	Axial KtLt	Distortional K-Phi(lb-in/in)	Distortional Lm	Interconnection Spacing
Wall Studs	600S125-33(33), Single@24 in o/c	48 in	48 in	48 in	0	None	N/A
Jamb Studs	600S125-43(33), Single	48 in	48 in	48 in	0	None	N/A
Lateral Header	600T125-33(33), Single	Full	N/A	N/A	0	None	N/A
Analysis Resu	lts				3		

Component(s)	Members(s)	Axial Load (Ib)	Max KL/r	Max. Moment (ft-lb)	Max. Shear (Ib)	Bottom Reaction (Ib)	Top or End Reaction (lb)
Wall Studs	600S125-33(33), Single@24 in o/c	0.0	N/A	227.8	67.5	67.5	67.5
Jamb Studs	600S125-43(33), Single	295.8	130	483.4	117.0	143.4	90.6
Lateral Header	600T125-33(33), Single	N/A	N/A	143.0	79.2	N/A	79.2
Design Results							

		Deflection		A + M	V + M		
Component(s)	Members(s)	Span	Parapet	Interaction	Interaction	Web Stiffners	Design OK
Wall Studs	600S125-33(33), Single@24 in o/c	L/870	L/0	0.439	0.11	NA	Yes
Jamb Studs	600S125-43(33), Single	L/601	L/0	0.829	0.53	NA	Yes
Lateral Header	600T125-33(33), Single	L/2704	NA	0.29	0.29	No	Yes

Simpson Strong-Tie® Connectors @ Studs

Support	Rx(lb)	Ry(lb)	Simpson Strong-Tie® Connector	Connector Interaction	Anchor Interaction
R2	67.50	0.00	SCB45.5(2) & (2) #12-24 SST X or XL to A36 Steel	13.78 %	6.05 %
R1	67.50	378.00	600T125-33 (33) & (1) .157" SST PDPA/PDPAT-62KP to steel (3/16" to 1/2" thickness)	27.78 %	30.65 %
* Reference ca	atalog for conr	ector and anch	or requirement notes as well as screw placements requirement		

Project Name: Centeris - Copy Model: FINAL - 6" INFILL HDR @ DBL DRWY Code: 2012 NASPEC [AISI S100-2012]

Date: 02/29/2024

Simpson Strong-Tie® CFS Designer™ 5.0.1.0

·				Connector	Anchor
Support	Rx(lb)	Ry(lb)	Simpson Strong-Tie® Connector	Interaction	Interaction
R2	90.63	0.00	600T250-33 (33) & (1) .157" SST PDPA/PDPAT-62KP to steel (3/16" to 1/2" thickness)	94.91 %	55.38 %
R1	143.44	582.75	600T125-33 (33) & (1) .157" SST PDPA/PDPAT-62KP to steel (3/16" to 1/2" thickness)	69.96 %	65.14 %

* Reference catalog for connector and another requirement notes as well as screw placements requirement

Simpson Strong-Tie® Wall Stud Bridging Connectors @ Studs

Span/Parapet	Bracing Length(in.)	Design Number of Braces	Pn(lb.)	LSUBH (Min)¹	LSUBH (Max) ¹	SUBH (Min)¹	SUBH (Max)¹	MSUBH (Min)¹	MSUBH (Max)¹
Span	48	N/A	0.0	No Soln	No Soln	No Soln	No Soln	No Soln	No Soln

Simpson Strong-Tie® Wall Stud Bridging Connectors @ Jambs

Span/Parapet	Bracing Length(in.)	Design Number of Braces	Pn(lb.)	LSUBH (Min)¹	LSUBH (Max) ¹	SUBH (Min)¹	SUBH (Max)¹	MSUBH (Min)¹	MSUBH (Max)¹
Span	48	4	0.0	No Soln	No Soln	No Soln	No Soln	No Soln	No Soln

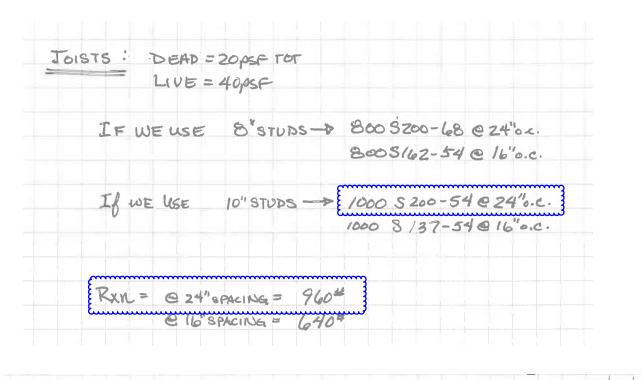
Notes:

1) Values in parentheses are stress ratios.

2) Bridging connectors are not designed for back-back, box, or built-up sections.

3) Reference www.strongtie.com for latest load data, important information, and general notes.

4) CFS Designer will not select bridging connectors unless all flexural and axial bracing settings are the same.


5) If the bracing length is larger than the span length, bridging connectors are not designed.

PRCTI20240333

TO GREER: USE S/HJC W/ (6) #14 SMS TO JO AND 0.157" PDPAT-62KP TO ST
FOR 54 mil JOISTS, VALLOND = 1190"
DEMAND (450) = 960*
DCR= 0.81 /
(FOR MORE INFO, SEE SIMPSON (FS DESIGNER OUTPL

JOIST BRACING REQUIREMENTS, CONTINUED

B2.6 Bracing Design

Bracing members shall be designed either on the basis of discretely braced design or on the basis of continuously braced design, in accordance with the following:

- (a) Discretely Braced Design. For discretely braced design, *bracing* members shall be designed in accordance with Section C2.2 of AISI S100 [CSA S136].
- (b) Continuously Braced Design. For continuously braced design, *bracing* members shall be designed in accordance with Section C2.2 of AISI S100 [CSA S136], unless the following requirements, as applicable, are met:
 - (1) Members are spaced no greater than 24 inches (610 mm) on center.
 - (2) The sheathing or deck shall consist of a minimum of 3/8 inch (9.5 mm) wood structural sheathing that complies with DOC PS 1, DOC PS 2, CSA O437 or CSA O325, or steel deck with a minimum profile depth of 9/16 in. (14.3 mm) and a minimum thickness of 0.0269 in. (0.683 mm). The sheathing or deck shall be attached with minimum No. 8 screws at a maximum 12 inches (305 mm) on center.
 - (3) Floor joists and ceiling joists with simple or continuous spans that exceed 8 feet (2.44 m) shall have the tension *flanges* laterally braced. Each intermediate brace shall be spaced at 8 feet (2.44 m) maximum and shall be designed to resist a required lateral force, P_L, determined in accordance with the following:

For uniform *loads*:

 $P_L = 1.5(m/d) F$

(Eq. B2.6-1)

where

- m = Distance from shear center to mid-plane of web
- d = Depth of *C-shape* section
- F = wa
- w = Uniform design load [factored load]
- a = Distance between center line of braces

FOR OUR 10" DEEP JOISTS PL = 1.5*(1.14"/10")*(1.2*20psf + 1.6*40psf)*(2ft oc) * (8ft) PL = 240 lbs

YIELD STRENGTH OF 33MIL x 1 1/2" STRAP φ Tn = (0.9)*(1.5")*(0.035")*(33ksi) = 1560 lbs

JOIST BRACING REQUIREMENTS

B1.2 Design Basis

The proportioning, designing and detailing of *cold-formed steel light-frame lateral forceresisting systems, trusses, structural members, connections* and *connectors* shall be in accordance with AISI S100 [CSA S136], and the reference documents except as modified or supplemented by the requirements of this Standard.

B1.2.1 Floor Joists, Ceiling Joists and Roof Rafters

B1.2.1.1 *Floor joists, ceiling joists* and *roof rafters* shall be designed either on the basis of discretely braced design or on the basis of continuously braced design, in accordance with the following:

(a) Discretely Braced Design. Floor and roof assemblies using discretely braced design shall be designed neglecting the structural *bracing* and composite-action contribution of attached sheathing or deck. The discretely braced design requirements of the Standard shall be applied to assemblies where the

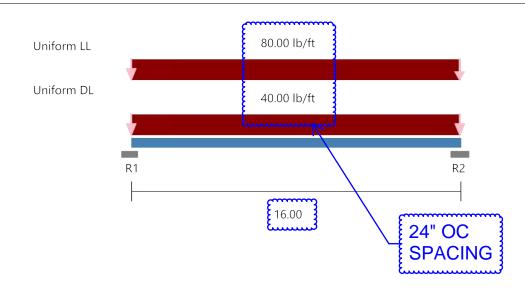
This document is copyrighted by AISI. Any redistribution is prohibited.

20

AISI S240-20

sheathing or deck is not attached directly to structural members.

(b) Continuously Braced Design. Unless noted otherwise in Section B2 or B4, the continuously braced design requirements of this Standard shall be limited to assemblies where *structural sheathing* or *steel deck* is attached directly to *floor joists, ceiling joists* and *roof rafters* that comply with all of the following conditions:


- (1) Maximum web depth = 14 inches (356 mm)
- (2) Maximum design thickness = 0.1242 inches (3.155 mm)
- (3) Minimum design yield strength, F_y = 33 ksi (230 MPa)
- (4) Maximum design yield strength, $F_y = 50$ ksi (345 MPa)

APPLICABLE SECTION FOR BRACING USING PW WEAR SURFACE TOP AND GYP BOT Project Name: Centeris Model: 16ft Floor Joist @ 10" @ 24" OC Code: 2012 NASPEC [AISI S100-2012]

TYP CFS CEILING JOISTS 10" STUDS, 24" OC.

Date: 02/08/2024

Simpson Strong-Tie® CFS Designer™ 5.0.1.0

								-			
1000S20	0-54 (50 ksi	i) @ 24 i	in" o.c. Sir	ngle C St	ud (punche	d)					
4254.2 ft-	lb	Va =	1660.8 lb	= 1	10.769 in^4						
Limits:	Total Load	I - 240		Live L	oad - 360						
):	2. DL + LL	. Even s	oans	5. LL	Even spans	5				c c	NGER NNECTION IFFENS JOIS
ral and Def	lection									E Lun	
				Ma-dist (ft-lb)	Mmax/ Ma min	Load Comb.					Load Comb
38	340 0	.0	192.0	3884.7	0.988	1	L/3	45 1		L/517	4
ling and We	eb Cripplin	g					£				
Load (Ib)		· · · ·)	Beari (in)			Pn (lb)	· · · · ·	- 2	Load Comb).	Stiffeners Required
960.0		1	1.00		553.2	968.1	0.9	0	1		YES
960.0		1	1.00		553.2	968.1	0.9	10	1		YES
ing and Sh	ear						uuu				
Vmax (Ib)	Load Comb.	Va Fac	tor V	V/Va	M/Ma	Intr. Unstiffe			Intr. Stiffe		Load Comb.
960.0	1	1.00	0	0.58	0.00	0.58		1	N/A		N/A
960.0	1	1.00	0	0.58	0.00	0.58		1	N/A		N/A
tion and Co	onnections					uuuuu					
		£							Connec Interact		Anchor Interaction
Rx(lb)	Ry(lb)	ł.	S	impson :	Strong-Tie	Connecto	И		Interact		
	4254.2 ft- Limits: b: ral and Def M (ff 38 ing and Wa Load (Ib) 960.0 960.0 ing and Sh Vmax (Ib) 960.0 960.0	4254.2 ft-lb Limits: Total Load 2: 1. DL + LL 2: DL + LL 3: DL + LL 3: DL + LL 3: DL + LL ral and Deflection Mmax K (ft-lb) (I 3840 0 ing and Web Cripplin Load Load (Ib) C 960.0 960.0 ing and Shear Comb. 960.0 1 960.0 1	4254.2 ft-lb Va = Limits: Total Load - 240 b: 1. DL + LL All spar 2. DL + LL Even sj 3. DL + LL Odd sp ral and Deflection Mmax K-phi (Ib-in/in) 3840 0.0 ing and Web Crippling Load Load (Ib) Comb. 960.0 1 ing and Shear Ymax Load Comb. Ya = Vmax Load Comb. Total Load Comb. Ya = 1 960.0 1 1.00	4254.2 ft-lb Va = 1660.8 lb Limits: Total Load - 240 x: 1. DL + LL All spans 2. DL + LL Even spans 3. DL + LL Odd spans ral and Deflection Mmax K-phi (ft-lb) (lb-in/in) 3840 0.0 192.0 ing and Web Crippling Load Load (lb) Comb. 960.0 1 1.00 960.0 1 1.00 960.0 1 1.000 960.0 1 1.000 960.0 1 1.000	4254.2 ft-lb Va = 1660.8 lb I = 7 Limits: Total Load - 240 Live L i: 1. DL + LL All spans 4. LL All spans 2. DL + LL Even spans 5. LL I 3. DL + LL Odd spans 6. LL O ral and Deflection Mmax K-phi Lm Ma-dist (ft-lb) (lb-in/in) (in) (ft-lb) 3840 0.0 192.0 3884.7 ing and Web Crippling Bearing (in) (in) 960.0 1 1.00 1.00 960.0 1 1.00 960.0 1 yebo.0 1 1.00 0.58 960.0 1 1.000 0.58 960.0 1 1.000 0.58	4254.2 ft-lb Va = 1660.8 lb I = 10.769 in^4 Limits: Total Load - 240 Live Load - 360 x: 1. DL + LL All spans 4. LL All spans 2. DL + LL Even spans 5. LL Even spans 3. DL + LL Odd spans 6. LL Odd spans ral and Deflection Maax K-phi Lm Ma-dist Mmax/ (ft-lb) (lb-in/in) (in) (ft-lb) Ma min 3840 0.0 192.0 3884.7 0.988 ing and Web Crippling Load Bearing Pa (lb) Comb. (in) (lb) 960.0 1 1.00 553.2 960.0 1 1.00 553.2 ing and Shear Va V/Va M/Ma 960.0 1 1.000 0.58 0.00 960.0 1 1.000 0.58 0.00 960.0 1 1.000 0.58 0.00	Limits: Total Load - 240 Live Load - 360 b: 1. DL + LL All spans 4. LL All spans 2. DL + LL Even spans 5. LL Even spans 3. DL + LL Odd spans 6. LL Odd spans ral and Deflection Mmax K-phi Lm Ma-dist Mmax/ Load 3840 0.0 192.0 3884.7 0.988 1 ing and Web Crippling K-phi Lm Ma-dist Mmax/ Load 6.10 Comb. (in) (ib) 0.988 1 960.0 1 1.00 553.2 968.1 960.0 1 1.00 553.2 968.1 960.0 1 1.00 553.2 968.1 960.0 1 1.00 553.2 968.1 960.0 1 1.00 553.2 968.1 960.0 1 1.000 0.58 0.00 0.58 960.0 1 1.000 0.58 0.00 0.58 960.0	4254.2 ft-lb Va = 1660.8 lb I = 10.769 in^4 Limits: Total Load - 240 Live Load - 360 x: 1. DL + LL All spans 4. LL All spans 2. DL + LL Even spans 5. LL Even spans 3. DL + LL Odd spans 6. LL Odd spans ral and Deflection Mmax K-phi Lm Ma-dist Mmax/ Load TL Mmax K-phi Lm Ma-dist Mmax/ Load TL (ft-lb) (lb-in/in) (in) (ft-lb) Ma min Comb. De 3840 0.0 192.0 3884.7 0.988 1 L/3 ing and Web Crippling Load Bearing Pa Pn Ma 1.00 553.2 968.1 0.9 0.9 0.9 0.9 960.0 1 1.00 553.2 968.1 0.9 0.9 ing and Shear Va Intr. Unstiffened C 0 0 960.0 1 1.000 0.58	4254.2 ft-lb Va = 1660.8 lb I = 10.769 in^4 Limits: Total Load - 240 Live Load - 360 D: 1. DL + LL All spans 4. LL All spans 2. DL + LL Even spans 5. LL Even spans 3. DL + LL Odd spans 6. LL Odd spans ral and Deflection Mmax K-phi (lb-in/in) (in) Ma dist (ft-lb) Mmax/ Load Load Defl Defl Comb. ing and Web Crippling Ing and Web Crippling Intr. Max Intr. 0.90 <td>4254.2 ft-lb Va = 1660.8 lb I = 10.769 in^4 Limits: Total Load - 240 Live Load - 360 v: 1. DL + LL All spans 4. LL All spans 2. DL + LL Even spans 5. LL Even spans 3. DL + LL Odd spans 6. LL Odd spans max K-phi (lb-in/in) (in) Ma-dist (ft-lb) Mmax/ Load Load Comb. 3840 0.0 192.0 3884.7 0.988 1 L/345 1 ing and Web Crippling Bearing (in) Pa Pa Max Load Comb. Load Comb. 960.0 1 1.00 553.2 968.1 0.90 1 ing and Shear Vmax Load Va M/Ma Intr. Load Comb. Intr. 960.0 1 1.000 0.58 0.00 0.58 1 N/A 960.0 1 1.000 0.58 0.00 0.58 1 N/A 960.0 1 1.000 0.58 0.00 0.58 1 N/A 960.0 1 1.000 0.58 0.00 0.58 1 N/A<!--</td--><td>4254.2 ft-lb Va = 1660.8 lb I = 10.769 in^4 Limits: Total Load - 240 Live Load - 360 x: 1. DL + LL All spans 4. LL All spans 5. LL Even spans 6. LL Odd spans 3. DL + LL Odd spans 6. LL Odd spans 6. LL Odd spans Load TL Load LL Mmax K-phi Lm Ma-dist Mmax/ Ma min Load TL Load LL Mmax K-phi Lm Ma-dist Mmax/ Ma min Load TL Load LL gado 0.0 192.0 3884.7 0.988 1 L/345 1 L/517 ing and Web Crippling Load Bearing Pa Pn Max Load Load Load 960.0 1 1.00 553.2 968.1 0.90 1 1 Open Intr. Comb. Intr. Load Intr. Intr. Intr. Intr.</td></td>	4254.2 ft-lb Va = 1660.8 lb I = 10.769 in^4 Limits: Total Load - 240 Live Load - 360 v: 1. DL + LL All spans 4. LL All spans 2. DL + LL Even spans 5. LL Even spans 3. DL + LL Odd spans 6. LL Odd spans max K-phi (lb-in/in) (in) Ma-dist (ft-lb) Mmax/ Load Load Comb. 3840 0.0 192.0 3884.7 0.988 1 L/345 1 ing and Web Crippling Bearing (in) Pa Pa Max Load Comb. Load Comb. 960.0 1 1.00 553.2 968.1 0.90 1 ing and Shear Vmax Load Va M/Ma Intr. Load Comb. Intr. 960.0 1 1.000 0.58 0.00 0.58 1 N/A 960.0 1 1.000 0.58 0.00 0.58 1 N/A 960.0 1 1.000 0.58 0.00 0.58 1 N/A 960.0 1 1.000 0.58 0.00 0.58 1 N/A </td <td>4254.2 ft-lb Va = 1660.8 lb I = 10.769 in^4 Limits: Total Load - 240 Live Load - 360 x: 1. DL + LL All spans 4. LL All spans 5. LL Even spans 6. LL Odd spans 3. DL + LL Odd spans 6. LL Odd spans 6. LL Odd spans Load TL Load LL Mmax K-phi Lm Ma-dist Mmax/ Ma min Load TL Load LL Mmax K-phi Lm Ma-dist Mmax/ Ma min Load TL Load LL gado 0.0 192.0 3884.7 0.988 1 L/345 1 L/517 ing and Web Crippling Load Bearing Pa Pn Max Load Load Load 960.0 1 1.00 553.2 968.1 0.90 1 1 Open Intr. Comb. Intr. Load Intr. Intr. Intr. Intr.</td>	4254.2 ft-lb Va = 1660.8 lb I = 10.769 in^4 Limits: Total Load - 240 Live Load - 360 x: 1. DL + LL All spans 4. LL All spans 5. LL Even spans 6. LL Odd spans 3. DL + LL Odd spans 6. LL Odd spans 6. LL Odd spans Load TL Load LL Mmax K-phi Lm Ma-dist Mmax/ Ma min Load TL Load LL Mmax K-phi Lm Ma-dist Mmax/ Ma min Load TL Load LL gado 0.0 192.0 3884.7 0.988 1 L/345 1 L/517 ing and Web Crippling Load Bearing Pa Pn Max Load Load Load 960.0 1 1.00 553.2 968.1 0.90 1 1 Open Intr. Comb. Intr. Load Intr. Intr. Intr. Intr.

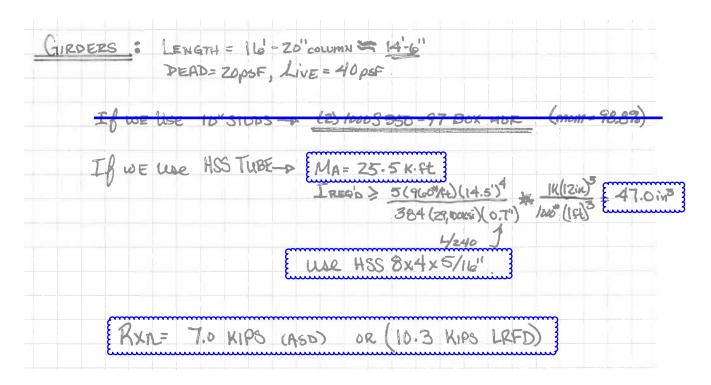
Project Name: Centeris

Model: 16ft Floor Joist @ 10" @ 24" OC - 40 psf LL - Duplicate

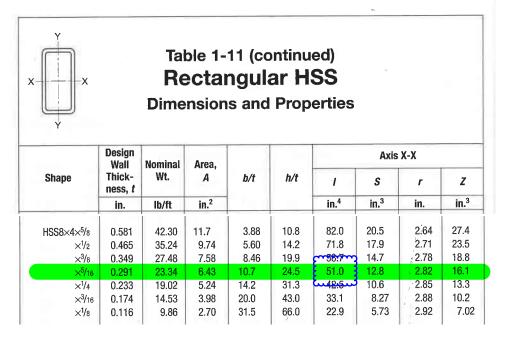
Date: 02/08/2024

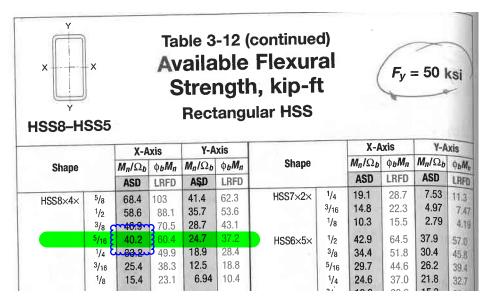
Code: 2012 NASPEC [AISI S100-2012] Simpson Strong-Tie® CFS Designer™ 5.0.1.0

R2	0.0	960.0	S/HJCT (min) (6)#14 joist & (2) SST 0.157" PDPAT-62KP to	32.88 %	81.01 %
			A36 Steel		
			Commence and the second s		an a


* Reference catalog for connector and anchor requirement notes as well as screw placement requirements

PRCTI20240333





CHECK STIFFNESS OF HSS

CHECK STRENGTH OF HSS

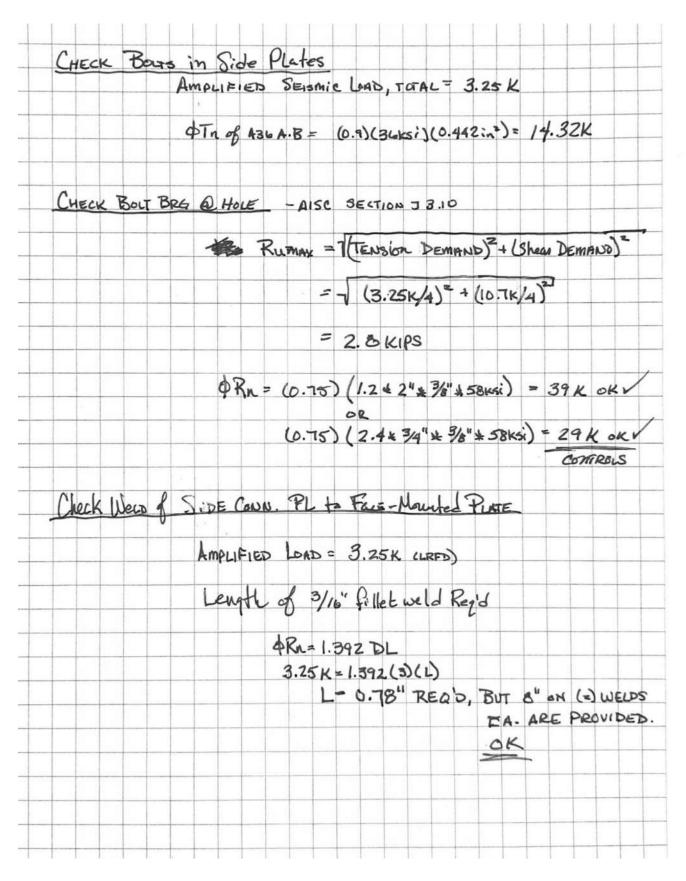
CHECK AVAILABILITY OF HSS

AISC MEMBERS

HSS Rectangular	Grade	<u>Atlas Tube</u> <u>Inc.</u>	<u>Nucor</u> <u>Tubular</u> <u>Products</u>
8 x 4 x 5/16	A500	×	~

NON-MEMBERS

HSS Rectangular	Grade	<u>Buli</u> Moose Tube Company	EXLTUBE	Hanna Steel Corp.	Longhorn Tube LP	<u>Maruichi</u> American Corp.	<u>Maruichi</u> <u>Leavitt</u> <u>Pipe and</u> <u>Tube</u>	<u>Vest Inc.</u>	<u>Welded</u> Tube Of Canada
8 x 4 x 5/16	A500	*		*	×	~	*	*	~



Brienen **S**tructural **E**ngineers, P.S.

CHECK COMMECTION OF HSS GIRDERS TO (E) Conc. Columns USE THIS IN VERTICAL RXNS = 7.0 KIPS (ASD) DEMANDS : HILTI PROFIS OR 10.3 K (LRFD) PER LATERAL SECTION AXIAL DEMANDS = FR= 0.7FP FPASD = (0.7)(1.3K) = 910 # (ASD) AMPLIFIED CONN LOAD = (2.5) (910") Fa SLo = 2275#(ASD) FPLIEFD = Fp = 1.3K Amplified GUN LOAD = (2.5)(1.3K) Fp. = 3.25 K (LEFD) USE THIS IN KILTI PROFIS BASEPLATE CHECKS OUT - PER HILTI PROFIS ANCHORAGE MAX PLATE STRESS USING FEM Ovonmises = 14.5 KSi -> DCR = 14.5 KSi (36)(1.67) 0.67 OK ANCHORAGE TO CONCRETE COMBINED FORCES ON ANCHORS OK PER HILT PROFIS CALCULATIONS ON FOLLOWING PAGES 1.20+0.5L+E) Tension & 62% utilization (SEISmic GA Shear = 90% WILLIEATION (Non-Seismic Case) 1.20+1.66 COMBINATION = 90% (NON-SEISMIC CASE

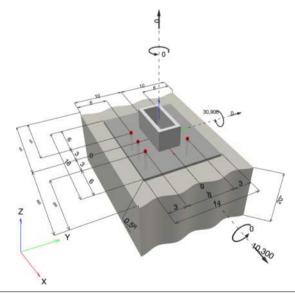
Brienen **S**tructural **E**ngineers, P.S.

Company:		Page:	
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	REVISED ONBED PLATE DESIGN - 2024-02-22	Date:	
astening point:			

2/23/2024

1

Specifier's comments:


1 Input data

1 Input data		
Anchor type and diameter:	KWIK HUS-EZ (KH-EZ) 1/2 (4 1/4)	
Item number:	418076 KH-EZ 1/2"x5"	· · · · · · · · · · · · · · · · · · ·
Effective embedment depth:	$h_{ef,act}$ = 3.220 in., h_{nom} = 4.250 in.	
Material:	Carbon Steel	
Evaluation Service Report:	ESR-3027	
Issued I Valid:	4/1/2022 12/1/2023	
Proof:	Design Method ACI 318-19 / Mech	
Stand-off installation:	$e_{b} = 0.000$ in. (no stand-off); t = 0.500 in.	
Anchor plate ^R :	l _x x l _y x t = 18.000 in. x 14.000 in. x 0.500 in.; (Re	commended plate thickness: not calculated)
Profile:	Rectangular HSS (AISC), HSS8X4X.625; (L x W	x T) = 8.000 in. x 4.000 in. x 0.625 in.
Base material:	cracked concrete, 4000, f_c ' = 4,000 psi; h = 20.00	00 in.
Installation:	hammer drilled hole, Installation condition: D	ry
Reinforcement:	tension: not present, shear: not present; no supp	lemental splitting reinforcement present
	edge reinforcement: none or < No. 4 bar	

Application also possible with KWIK-X 1/2 (4 1/4) hnom2 under the selected boundary conditions. More information in section Alternative fastening data of this report.

^R - The anchor calculation is based on a rigid anchor plate assumption.

Geometry [in.] & Loading [lb, in.lb]

Company:		Page:	2
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	REVISED ONBED PLATE DESIGN - 2024-02-22	Date:	2/23/2024
Fastening point:			

1.1 Load combine	ation and design results			
Case	Description	Forces [lb] / Moments [in.lb]	Seismic	Max. Util. Anchor [%]
1	Combination 1	N = 3,250; V _x = 5,800; V _y = 0; M _x = 0; M _y = 17,400; M _z = 0;	yes	75
<u>2</u>	Combination 2	$\frac{N = 0; V_x = 10,300; V_y = 0;}{M_x = 0; M_y = 30,900; M_z = 0;}$	<u>no</u>	<u>90</u>

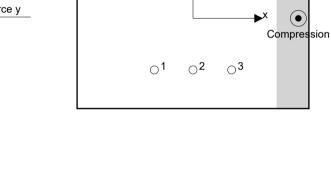
2 Load case/Resulting anchor forces

Controlling load case: 2 Combination 2

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

`	, - 1	,		
Anchor	Tension force	Shear force	Shear force x	Shear force y
1	825	1,717	1,717	0
2	566	1,717	1,717	0
3	307	1,717	1,717	0
4	825	1,717	1,717	0
5	566	1,717	1,717	0
6	307	1,717	1,717	0


max. concrete compressive strain:0.05 [%]max. concrete compressive stress:198 [psi]resulting tension force in (x/y)=(0.000/0.000):0 [lb]resulting compression force in (x/y)=(17.182/7.000):3,396 [lb]

Anchor forces are calculated based on the assumption of a rigid anchor plate.

3 Tension load

	Load N _{ua} [lb]	Capacity ଦ N _n [lb]	Utilization $\beta_N = N_{ua} / \Phi N_n$	Status
Steel Strength*	825	11,778	8	OK
Pullout Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Failure**	3,396	10,059	34	OK

* highest loaded anchor **anchor group (anchors in tension)

O⁴

≜y

₫2

 $^{\circ}$

www.hilti.com

Company:		Page:	3
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design: Fastening point:	REVISED ONBED PLATE DESIGN - 2024-02-22	Date:	2/23/2024

3.1 Steel Strength

N_{sa} = ESR value $\phi N_{sa} \ge N_{ua}$	refer to ICC- ACI 318-19	ES ESR-3027 Fable 17.5.2	
Variables			
A _{se,N} [in. ²]	f _{uta} [psi]		
0.16	112,540	_	
Calculations			
N _{sa} [lb]			
18,120			
Results			
N _{sa} [lb]	ϕ_{steel}	φ N _{sa} [lb]	N _{ua} [lb]
18,120	0.650	11,778	825

www.hilti.com

Company:		Page:	4
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	REVISED ONBED PLATE DESIGN - 2024-02-22	Date:	2/23/2024
Fastening point:			

3.2 Concrete Breakout Failure

$N_{cbg} = \left(\frac{A_{Nc}}{A_{Nc}}\right) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b}$	ACI 318-19 Eq. (17.6.2.1b)
$\phi \ N_{cbg} \ge N_{ua}$	ACI 318-19 Table 17.5.2
A _{Nc} see ACI 318-19, Section 17.6.2.1, Fig. R 17.6.2.1(b)	
$A_{\rm Nc0} = 9 h_{\rm ef}^2$	ACI 318-19 Eq. (17.6.2.1.4)
$\psi_{ec,N} = \left(\frac{1}{1 + \frac{2 e_N}{3 h_{ef}}}\right) \le 1.0$	ACI 318-19 Eq. (17.6.2.3.1)
$\Psi_{ed,N} = 0.7 + 0.3 \left(\frac{c_{a,min}}{1.5h_{ef}} \right) \le 1.0$	ACI 318-19 Eq. (17.6.2.4.1b)
$\Psi_{cp,N} = MAX\left(\frac{c_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}}\right) \le 1.0$	ACI 318-19 Eq. (17.6.2.6.1b)
$N_{\rm b} = k_{\rm c} \lambda_{\rm a} \sqrt{f_{\rm c}} h_{\rm ef}^{1.5}$	ACI 318-19 Eq. (17.6.2.2.1)

Variables

h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]	$\Psi_{\text{c,N}}$
3.220	0.917	0.000	6.000	1.000
c _{ac} [in.]	k _c	λ _a	f _c [psi]	
5.250	17	1.000	4,000	

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	$\Psi_{\text{ec1,N}}$	$\psi_{ec2,N}$	$\psi_{\text{ed},\text{N}}$	$\psi_{\text{cp},\text{N}}$	N _b [lb]
276.56	93.32	0.840	1.000	1.000	1.000	6,212
Results						
N _{cbg} [lb]	ϕ_{concrete}	φ N _{cbg} [lb]	N _{ua} [lb]			
15,475	0.650	10,059	3,396	-		

www.hilti.com

Company: Address:		Page: Specifier:	5
Phone I Fax: Design: Fastening point:	 REVISED ONBED PLATE DESIGN - 2024-02-22	e-Mail: Date:	2/23/2024

4 Shear load

	Load V _{ua} [lb]	Capacity ¢ V _n [lb]	Utilization $\beta_v = V_{ua} / \Phi V_n$	Status
Steel Strength*	1,717	5,547	31	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength**	10,300	25,776	40	OK
Concrete edge failure in direction y-**	10,300	12,465	83	OK

* highest loaded anchor **anchor group (relevant anchors)

4.1 Steel Strength

V_{sa}	= ESR value	refer to ICC-ES ESR-3027
φ V _{stee}	$_{\rm el} \ge V_{\rm ua}$	ACI 318-19 Table 17.5.2

Variables

A _{se,V} [in. ²]	f _{uta} [psi]
0.16	112,540

Calculations

V _{sa} [lb]	
9,245	

Results

V _{sa} [lb]	∲ _{steel}	φ V _{sa} [lb]	V _{ua} [lb]
9,245	0.600	5,547	1,717

www.hilti.com

Company: Address:		Page: Specifier:	6
Phone I Fax:	I	E-Mail:	
Design: Fastening point:	REVISED ONBED PLATE DESIGN - 2024-02-22	Date:	2/23/2024

4.2 Pryout Strength

$V_{cpg} = K_{cp} \left[\left(\frac{A_{Nc}}{A_{Nc0}} \right) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b} \right]$	ACI 318-19 Eq. (17.7.3.1b)
$\phi V_{cpg} \ge V_{ua}$	ACI 318-19 Table 17.5.2
A _{Nc} see ACI 318-19, Section 17.6.2.1, Fig. R 17.6.2.1(b)	
$A_{\rm Nc0} = 9 h_{\rm ef}^2$	ACI 318-19 Eq. (17.6.2.1.4)
$\psi_{ec,N} = \left(\frac{1}{1 + \frac{2 e_N}{3 h_{ef}}}\right) \le 1.0$	ACI 318-19 Eq. (17.6.2.3.1)
$\Psi_{ed,N} = 0.7 + 0.3 \left(\frac{c_{a,min}}{1.5h_{ef}} \right) \le 1.0$	ACI 318-19 Eq. (17.6.2.4.1b)
$\Psi_{cp,N} = MAX\left(\frac{c_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}}\right) \le 1.0$	ACI 318-19 Eq. (17.6.2.6.1b)
$N_{\rm b} = k_{\rm c} \lambda_{\rm a} \sqrt{f_{\rm c}} h_{\rm ef}^{1.5}$	ACI 318-19 Eq. (17.6.2.2.1)

Variables

k _{cp}	h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]
2	3.220	0.000	0.000	6.000
$\Psi_{c,N}$	c _{ac} [in.]	k _c	λ	ŕ _c [psi]
1.000	5.250	17	1.000	4,000

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	$\Psi_{\text{ec1,N}}$	$\Psi_{ec2,N}$	$\psi_{\text{ed},\text{N}}$	$\psi_{\text{cp},\text{N}}$	N _b [lb]
276.56	93.32	1.000	1.000	1.000	1.000	6,212
Results						
V _{cpg} [lb]	ϕ_{concrete}	φ V _{cpg} [lb]	V _{ua} [lb]			
36,823	0.700	25,776	10,300	-		

www.hilti.com

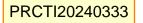
Company:		Page:	7
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	REVISED ONBED PLATE DESIGN - 2024-02-22	Date:	2/23/2024
Fastening point:			

4.3 Concrete edge failure in direction y-

$V_{cbg} = \left(\frac{A_{Vc}}{A_{Vc0}}\right) \psi_{ec,V} \psi_{ed,V} \psi_{c,V} \psi_{h,V} \psi_{parallel,V} V_{b}$	ACI 318-19 Eq. (17.7.2.1b)
$\phi V_{cbg} \ge V_{ua}$	ACI 318-19 Table 17.5.2
A _{vc} see ACI 318-19, Section 17.7.2.1, Fig. R 17.7.2.1(b)	
$A_{Vc0} = 4.5 c_{a1}^2$	ACI 318-19 Eq. (17.7.2.1.3)
$ \Psi_{ec,V} = \left(\frac{1}{1 + \frac{e_v}{1.5c_{a1}}}\right) \leq 1.0 $	ACI 318-19 Eq. (17.7.2.3.1)
$\Psi_{\text{ed},V} = 0.7 + 0.3 \left(\frac{c_{a2}}{1.5 c_{a1}} \right) \le 1.0$	ACI 318-19 Eq. (17.7.2.4.1b)
$\psi_{h,V} = \sqrt{\frac{1.5c_{a1}}{h_a}} \ge 1.0$	ACI 318-19 Eq. (17.7.2.6.1)
$V_{b} = \left(7 \left(\frac{l_{e}}{d_{a}}\right)^{0.2} \sqrt{d_{a}}\right) \lambda_{a} \sqrt{f_{c}} c_{a1}^{1.5}$	ACI 318-19 Eq. (17.7.2.2.1a)

Variables

c _{a1} [in.]	c _{a2} [in.]	e _{cV} [in.]	$\Psi_{c,V}$	h _a [in.]
6.000	-	0.000	1.000	20.000
l _e [in.]	λ _a	d _a [in.]	f _c [psi]	$\Psi_{\text{ parallel},V}$
3.220	1.000	0.500	4,000	2.000


Calculations

A _{vc} [in. ²]	A _{Vc0} [in. ²]	$\psi_{\text{ ec,V}}$	$\psi_{\text{ed},\text{V}}$	$\psi_{h,V}$	V _b [lb]
216.00	162.00	1.000	1.000	1.000	6,678
Results					
V _{cbg} [lb]	ϕ_{concrete}	φ V _{cbg} [lb]	V _{ua} [lb]		
17,807	0.700	12,465	10,300	-	

5 Combined tension and shear loads, per ACI 318-19 section 17.8

β _N	β_V	ζ	Utilization $\beta_{N,V}$ [%]	Status	
0.338	0.826	5/3	90	OK	

 $\beta_{\mathsf{NV}} = \beta_{\mathsf{N}}^{\zeta} + \beta_{\mathsf{V}}^{\zeta} <= 1$

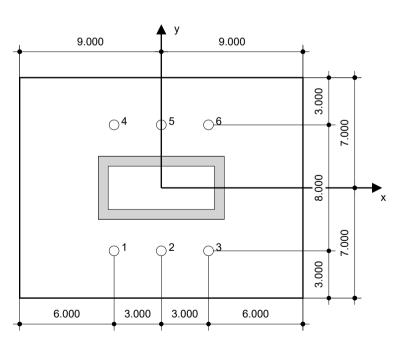
www.hilti.com			
Company:		Page:	8
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	REVISED ONBED PLATE DESIGN - 2024-02-22	Date:	2/23/2024
Fastening point:			

6 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout or pryout strength governs.
- · Refer to the manufacturer's product literature for cleaning and installation instructions.
- For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- Hilti post-installed anchors shall be installed in accordance with the Hilti Manufacturer's Printed Installation Instructions (MPII). Reference ACI 318-19, Section 26.7.

Fastening meets the design criteria!

www.hilti.com				
Company: Address: Phone I Fax:		Page: Specifier: E-Mail:	9	
Design: Fastening point:	REVISED ONBED PLATE DESIGN - 2024-02-22	Date:	2/23/2024	
7 Installation da	ita			
		Anchor type and diameter: KWIK HUS-EZ 1/4)	: (KH-EZ) 1/2 (4	
Profile: Rectangular H 4.000 in. x 0.625 in.	SS (AISC), HSS8X4X.625; (L x W x T) = 8.000 in. x	Item number: 418076 KH-EZ 1/2"x5"		
Hole diameter in the fi	xture: d _f = 0.625 in.	Maximum installation torque: 540 in.lb		
Plate thickness (input)	: 0.500 in.	Hole diameter in the base material: 0.500 in.		
Recommended plate t	hickness: not calculated	Hole depth in the base material: 4.625 in.		
Drilling method: Hamn Cleaning: Manual clea	ner drilled ning of the drilled hole according to instructions for use is	Minimum thickness of the base material: 6.750 in.		


required.

Hilti KH-EZ screw anchor with 4.25 in embedment, 1/2 (4 1/4), Carbon steel, installation per ESR-3027

7.1 Recommended accessories

Drilling	Cleaning	Setting	
Suitable Rotary Hammer	 Manual blow-out pump 	Torque wrench	
 Droporty pized drill bit 			

Properly sized drill bit

Coordinates Anchor [in.]

Anchor	x	У	Cx	c _{+x}	C_y	c _{+y}	Anchor	x	У	с _{-х}	c _{+x}	c_y	c _{+y}
1	-3.000	-4.000	-	-	6.000	14.000	4	-3.000	4.000	-	-	14.000	6.000
2	0.000	-4.000	-	-	6.000	14.000	5	0.000	4.000	-	-	14.000	6.000
3	3.000	-4.000	-	-	6.000	14.000	6	3.000	4.000	-	-	14.000	6.000

Company:		Page:	10
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design: Fastening point:	REVISED ONBED PLATE DESIGN - 2024-02-22	Date:	2/23/2024

8 Alternative fastening

8.1 Alternative fastening data	
Anchor type and diameter:	KWIK-X 1/2 (4 1/4) hnom2
Item number:	418076 KH-EZ 1/2"x5" (element) / 2362252 KHC 1/2"
Effective embedment depth:	h _{ef,opti} = 4.250 in. (h _{ef,limit} = 5.500 in.), h _{nom} = 4.250 in.
Material:	Carbon Steel
Evaluation Service Report:	ESR-5065
Issued I Valid:	1/1/2023 12/1/2023
Proof:	Design Method ACI 318-19 / Chem
Stand-off installation:	e _b = 0.000 in. (no stand-off); t = 0.500 in.
Anchor plate ^R :	$l_x \ge l_y \ge 18.000$ in. x 14.000 in. x 0.500 in.; (Recommended plate thickness: not calculated)
Profile:	Rectangular HSS (AISC), HSS8X4X.625; (L x W x T) = 8.000 in. x 4.000 in. x 0.625 in.
Base material:	cracked concrete, 4000, f_c ' = 4,000 psi; h = 20.000 in., Temp. short/long: 32/32 °F
Installation:	hammer drilled hole, Installation condition: Dry
Reinforcement:	tension: not present, shear: not present; no supplemental splitting reinforcement present
	edge reinforcement: none or < No. 4 bar

Max. Utilization with KWIK-X 1/2 (4 1/4) hnom2: 80 % Fastening meets the design criteria!

8.2 Installation data

Profile: Rectangular HSS (AISC), HSS8X4X.625; (L x W x T) = 8.000 in. x 4.000 in. x 0.625 in. Hole diameter in the fixture: $d_f = 0.625$ in. Plate thickness (input): 0.500 in. Recommended plate thickness: not calculated Drilling method: Hammer drilled Cleaning: No cleaning of the drilled hole is required

Anchor type and diameter: KWIK-X 1/2 (4 1/4) hnom2 Item number: 418076 KH-EZ 1/2"x5" (element) / 2362252 KHC 1/2" LARGE (capsule) Maximum installation torque: -Hole diameter in the base material: 0.500 in. Hole depth in the base material: 5.250 in. Minimum thickness of the base material: 6.500 in.

1/2 (4 1/4) hnom2 Hilti KH-EZ Carbon steel screw anchor with Hilti KHC

8.2.1 Recommended accessories

Drilling	Cleaning	Setting
Suitable Rotary HammerProperly sized drill bit	 No accessory required 	SIW 6-A22 Impact Screw Driver

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2024 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.com			
Company:		Page:	11
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	REVISED ONBED PLATE DESIGN - 2024-02-22	Date:	2/23/2024
Fastening point:			

9 Remarks; Your Cooperation Duties

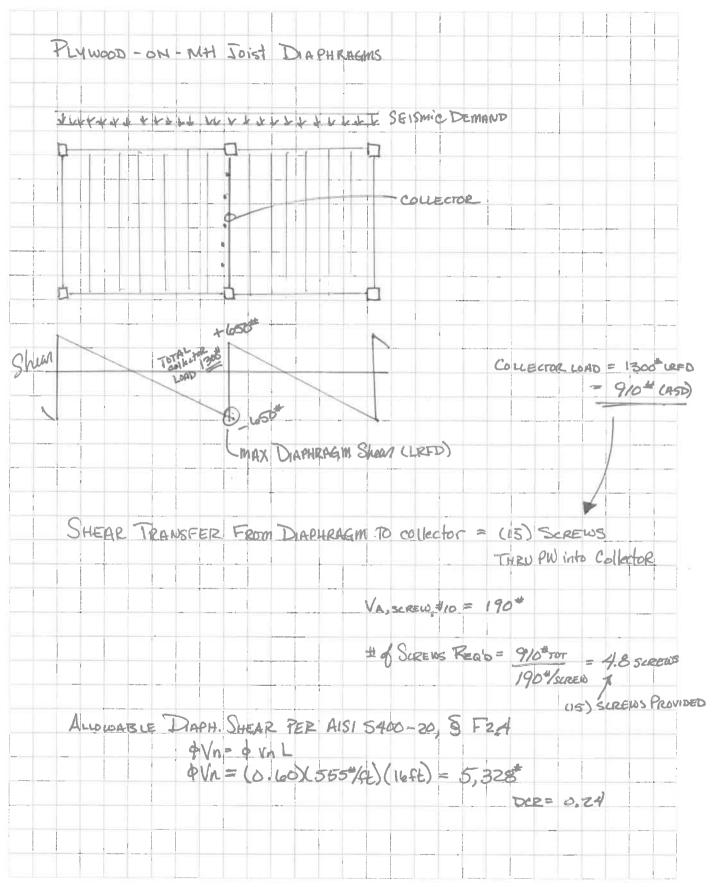
- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each
 case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data
 or programs, arising from a culpable breach of duty by you.

PRCTI20240333

Project: CENTERS

Brienen Structural Engineers, P.S.

WALL CONSTRUCTION : (4) layers Gyp (4)(2.505F) = 10,05F MTL STUDS 1.505F = 1.505F 1.5psp = 1.5psp ACOUSTIC INS. = Zpst 13.505 We 14 psF BATTERY Room ? UPS COMBINED TOTAL CEILING SEISMICWEIGHT = (20PSF) (1540 ft² F) = 30.8 K TOP HALF OF WALLS = (1/2) (13 ft) (160ft) (14psF) = 14.6 K TOTWALLENGTH = (32 ft x 2) + (48 ft x 2) = 160 ft TOTAL SEISMIC MASS = 45.4 K FIND FO PER ASCE 7-16, EQN 13.3-1 $F_{p} = (0.4)(ap)S_{DS}W_{p} (1+2\frac{z}{h}) = (0.4)(1.0)(1.006)(45.4 \text{ K})(1+2(\frac{12}{478}))$ $F_{p} = (0.2932 \text{ W}) = (1+2\frac{z}{h}) = (0.4)(1.0)(1.006)(45.4 \text{ K})(1+2(\frac{12}{478}))$ $F_{p} = (0.2932 \text{ W}) = (1+2\frac{z}{h}) = (0.4)(1.0)(1.006)(45.4 \text{ K})(1+2(\frac{12}{478}))$ Fp = 0.2932 W 💻 11.0 K TOTAL FIND SEISMIC LOAD TO EACH COLUMN # of COLLUMNS = (12) COIS SEISMIC LOAD PER COLUMN = $\frac{11.0 \text{ K}}{(12) \text{ Cols}} = 0.92 \text{ K/Column}$ AT INTERIOR COLUMNS = 16×16×2005F = 5.12K MASS Fp= (0.2432) (5.12K) = 1245K/col. Controls 9


www.bse-ps.com

Date: <u>-2/9/24</u>

Brienen Structural Engineers, P.S.

BSE Brienen Structural Engineers, P.S.

Diaphragm Shear Provisions from AISI 400-20, Section F2.4

F2.4 Shear Strength

F2.4.1 Nominal Strengt

The nominal strength of diaphragms sheathed with wood structural panels is permitted to be etermined in accordance with Eq. F2.4.1-1 subject to the requirements in Section F2.4.1.1. $V_n = v_n L$ (Ea. F2.4.1-1)

where

- $v_n = Diaphragm$ resistance length, in ft (m) $v_n = Nominal shear strength$ per unit length as specified in Table F2.4-1, lb/ft (kN/m)

F2.4.1.1 Requirements for Tabulated Systems

The following requirements shall apply to diaphragms sheathed with wood structural vanels:

- (a) The aspect ratio (length:width) of the diaphragm does not exceed 4:1 for blocked diaphragms and 3:1 for unblocked diaphragms.
- (b) Joists and tracks are ASTM A1003 Structural Grade 33 (Grade 230) Type H steel for members with a designation thickness of 33 and 43 mils, and ASTM A1003 Structural Grade 50 (Grade 340) Type H steel for members with a designation thickness equal to or greater than 54 mils.
- (c) The minimum designation thickness of structural members is 33 mils.
- (d) Joists are C-shape members with a minimum flange width of 1-5/8 in. (41.3 mm), minimum web depth of 3-1/2 in. (89 mm) and minimum edge stiffener of 3/8 in. (9.5 mm).
- (e) Track has a minimum flange width of 1-1/4 in. (31.8 mm) and a minimum web depth of 3-1/2 in. (89 mm).
- (f) Screws for structural members are a minimum No. 8 and are in accordance with ASTM C1513.
- (g) Wood structural panel sheathing is manufactured using exterior glue and complies with DOC PS-1 and DOC PS-2.
- (h) Screws used to attach wood structural panels are minimum No. 8 where structural members have a designation thickness of 54 mils or less and No. 10 where structural members have a designation thickness greater than 54 mils and comply with ASTM C1513.
- (i) Screws in the field of the panel are attached to intermediate supports at a maximum 12-in. (305 mm) spacing along the structural members.
- (j) Panels less than 12-in. (305-mm) wide are not used.
- (k) Maximum joist spacing is 24 in. (610 mm) on center.
- (1) Where diaphragms are designed as blocked, all panel edges are attached to structural members or panel blocking.
- (m)Where used as blocking, flat strap is a minimum thickness of 33 mils with a minimum width of 1-1/2 in. (38.1 mm) and is installed below the sheathing.
- (n) Where diaphragms are designed as blocked, the screws are installed through the sheathing to the blocking.
- (o) Fasteners along the edges in shear panels are placed from panel edges not less than

F2.4.2 Available Strength

The available strength ($\phi_v V_n$ or V_n/Ω_v) shall be determined from the nominal strength using the applicable safety factors and resistance factors given in this section in accordance with the applicable design method - ASD or LRFD as follows:

 $\Omega_v = 2.50$ (ASD)

 $\phi_v = 0.60$ (LRFD)

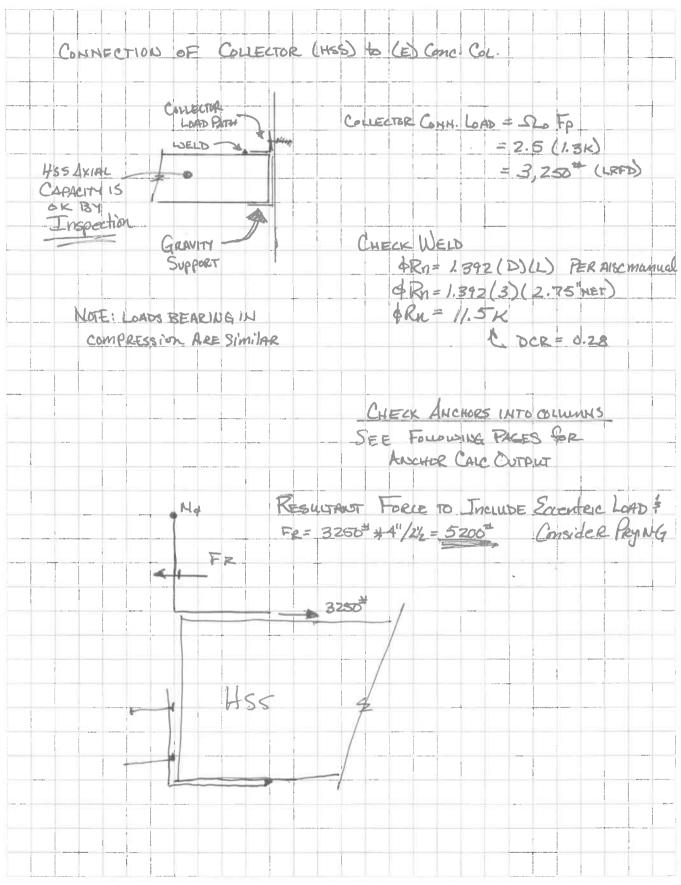
F2.4.3 Design Deflection

The deflection of a diaphragm with wood structural panel sheathing shown in Table F2.4-1 shall be determined by principles of mechanics considering the deformation of the sheathing and its attachment, chords and collectors.

Table F2.4-1								
Nominal Shear Strength (vn) per Unit Length for Diaphragms Sheathed								
With Wood Structural Panel Sheathing 1, 2								
United States and Mexico (lb/ft)								

United States and Mexico (Ib/ ft)									
			Bloc	ked:		Unblo	ocked		
	Thick- ness (in.)	Screw spacing at diaphragm boundary edges and at all continuous panel edges (in.)			it all	Screws spaced maximum of 6 in. on all supported edges			
Sheathing		6	4	2.5	2	Load			
		Screw spacing at all other panel edges (in.)				perpendicular to unblocked edges and continuous	All other configurations		
		6	6	4	з	panel joints			
Structural I	3/8	768	1022	1660	2045	685	510		
	7/16	768	1127	1800	2255	755	565		
	15/32	925	1232	1970	2465	825	615		
C-D, C-C and other graded wood structural panels	3/8	690	920	1470	1840	615	460		
	7/16	760	1015	1620	2030	680	505		
	15/32	832	1110	1770	2215	740	555		

For SI: 1" = 25.4 mm, 1 ft = 0.305 m, 1 lb = 4.45 N

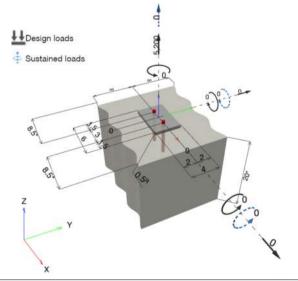

For diaphragms sheathed with wood structural panels, tabulated Rn values are applicable for short-term load 2. duration (seismic loads).

Project: CENTERS

Date: 2/9/24

Brienen Structural **E**ngineers, P.S.

www.hilti.com Company:		Page:	1
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Feb 9, 2024	Date:	2/9/2024
Fastening point:			
Specifier's commen	ts:		

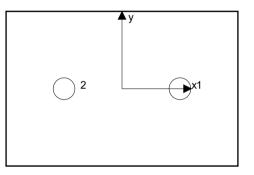

A REAL PROPERTY AND ADDRESS AND

1 Input data

Anchor type and diameter:	HIT-HY 200 V3 + HAS-V-36 (ASTM F1554 Gr.36) 1/2
Item number:	2198022 HAS-V-36 1/2"x6-1/2" (element) / 2334276 HIT-HY 200-R V3 (adhesive)
Effective embedment depth:	h _{ef,opti} = 4.797 in. (h _{ef,limit} = 10.000 in.)
Material:	ASTM F1554 Grade 36
Evaluation Service Report:	ESR-4868
Issued I Valid:	11/1/2022 11/1/2024
Proof:	Design Method ACI 318-19 / Chem
Stand-off installation:	e _b = 0.000 in. (no stand-off); t = 0.500 in.
Anchor plate ^R :	$l_x x l_y x t = 6.000$ in. x 4.000 in. x 0.500 in.; (Recommended plate thickness: not calculated)
Profile:	no profile
Base material:	cracked concrete, 4000, f_c ' = 4,000 psi; h = 20.000 in., Temp. short/long: 32/32 °F
Installation:	hammer drilled hole, Installation condition: Dry
Reinforcement:	tension: not present, shear: not present; no supplemental splitting reinforcement present
Seismic loads (cat. C, D, E, or F)	edge reinforcement: none or < No. 4 bar Tension load: yes (17.10.5.3 (d))
	Shear load: yes (17.10.6.3 (c))

 $^{\rm R}$ - The anchor calculation is based on a rigid anchor plate assumption.

Geometry [in.] & Loading [lb, in.lb]



www.hilti.com				
Company:		Page:		2
Address:		Specifier:		
Phone I Fax:		E-Mail:		
Design:	Concrete - Feb 9, 2024	Date:		2/9/2024
Fastening point:				
1.1 Design result	s			
Case	Description	Forces [lb] / Moments [in.lb]	Seismic	Max. Util. Anchor [%]
1	Combination 1	N = 5,200; $V_x = 0$; $V_y = 0$;	yes	100
		$M_x = 0; M_y = 0; M_z = 0;$		

2 Load case/Resulting anchor forces

Anchor reactions [lb] Tension force: (+Tension, -Compression)								
Anchor	Tension force	Shear force	Shear force x	Shear force y				
1	2,600	0	0	0				
2	2,600	0	0	0				
max. concrete concret	ompressive strain: ompressive stress: force in (x/y)=(0.00 ssion force in (x/y)=	- 0/0.000): 0	[‰] [psi] [lb] [lb]					

Anchor forces are calculated based on the assumption of a rigid anchor plate.

3 Tension load

	Load N _{ua} [lb]	Capacity ଦ N _n [lb]	Utilization $\beta_N = N_{ua} / \Phi N_n$	Status
Steel Strength*	2,600	6,172	43	OK
Bond Strength**	5,200	5,223	100	OK
Sustained Tension Load Bond Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Failure**	5,200	6,655	79	OK

* highest loaded anchor **anchor group (anchors in tension)

www.hilti.com

www.mitt.com					
Company: Address:				Page: Specifier:	3
Phone I Fax:	1			E-Mail:	
Design: Fastening point:	Concrete	e - Feb 9, 2024		Date:	2/9/2024
3.1 Steel Strength					
N _{sa} = ESR value	refer to ICC-	ES ESR-4868			
$\phi N_{sa} \ge N_{ua}$	ACI 318-19	Table 17.5.2			
Variables					
A _{se,N} [in. ²]	f _{uta} [psi]				
0.14	58,000	_			
Calculations					
N _{sa} [lb]					
8,230					
Results					
N _{sa} [lb]	ϕ_{steel}	φ N _{sa} [lb]	N _{ua} [lb]	_	
8,230	0.750	6,172	2,600		

www.hilti.com

Company:		Page:	4
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Feb 9, 2024	Date:	2/9/2024
Fastening point:			

3.2 Bond Strength

$N_{ag} = \begin{pmatrix} A_{Na} \\ A_{Na0} \end{pmatrix} \psi_{ec1,Na} \psi_{ec2,Na} \psi_{ed,Na} \psi_{cp,Na} N_{ba}$	ACI 318-19 Eq. (17.6.5.1b)
$ \ensuremath{ \ensuremath{\$	ACI 318-19 Table 17.5.2
$A_{Na0} = (2 c_{Na})^{2}$ $c_{Na} = 10 d_{a} \sqrt{\frac{\tau uncr}{1100}}$	ACI 318-19 Eq. (17.6.5.1.2a)
$c_{Na} = 10 d_a \sqrt{\frac{\tau_{uncr}}{1100}}$	ACI 318-19 Eq. (17.6.5.1.2b)
$ \psi_{ec,Na} = \left(\frac{1}{1 + \frac{e_N}{c_{Na}}}\right) \le 1.0 $	ACI 318-19 Eq. (17.6.5.3.1)
$\Psi_{\text{ed,Na}} = 0.7 + 0.3 \left(\frac{c_{a,\text{min}}}{c_{\text{Na}}} \right) \le 1.0$	ACI 318-19 Eq. (17.6.5.4.1b)
$\Psi_{\text{cp,Na}} = \text{MAX}\left(\frac{c_{a,\min}}{c_{ac}}, \frac{c_{Na}}{c_{ac}}\right) \le 1.0$	ACI 318-19 Eq. (17.6.5.5.1b)
$N_{ba} = \lambda_{a} \cdot \tau_{k,c} \cdot \alpha_{N,seis} \cdot \pi \cdot d_{a} \cdot h_{ef}$	ACI 318-19 Eq. (17.6.5.2.1)

Variables

τ _{k,c,uncr} [psi]	d _a [in.]	h _{ef} [in.]	c _{a,min} [in.]	$\alpha_{overhead}$	τ _{k,c} [psi]
2,327	0.500	4.797	8.500	1.000	1,190
e _{c1,N} [in.]	e _{c2,N} [in.]	c _{ac} [in.]	λ_{a}	$\alpha_{\rm N,seis}$	
0.000	0.000	8.542	1.000	0.990	
Calculations					
c _{Na} [in.]	A _{Na} [in. ²]	A _{Na0} [in. ²]	$\psi_{\text{ ed,Na}}$		
7.239	253.06	209.62	1.000	-	
Ψ _{ec1,Na}	$\Psi_{ec2,Na}$	$\Psi_{cp,Na}$	N _{ba} [lb]	-	
1.000	1.000	1.000	8,875		
Results					
N _{ag} [lb]	ϕ_{bond}	$\phi_{seismic}$	$\phi_{nonductile}$	φ N _{ag} [lb]	N _{ua} [lb]
10,714	0.650	0.750	1.000	5,223	5,200

www.hilti.com

Company:		Page:	5
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Feb 9, 2024	Date:	2/9/2024
Fastening point:			

3.3 Concrete Breakout Failure

$N_{cbg} = \left(\frac{A_{Nc}}{A_{Nc0}}\right) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b}$	ACI 318-19 Eq. (17.6.2.1b)
$\phi \ N_{cbg} \ge N_{ua}$	ACI 318-19 Table 17.5.2
A_{Nc} see ACI 318-19, Section 17.6.2.1, Fig. R 17.6.2.1(b) A_{Nc0} = 9 h_{ef}^2	ACI 318-19 Eq. (17.6.2.1.4)
$\Psi_{\text{ec,N}} = \left(\frac{1}{1 + \frac{2 e_N}{3 h_{\text{ef}}}}\right) \le 1.0$	ACI 318-19 Eq. (17.6.2.3.1)
$\Psi_{\text{ed,N}} = 0.7 + 0.3 \left(\frac{c_{a,\text{min}}}{1.5h_{\text{ef}}} \right) \le 1.0$	ACI 318-19 Eq. (17.6.2.4.1b)
$\Psi_{\text{cp,N}} = \text{MAX}\left(\frac{c_{a,\text{min}}}{c_{ac}}, \frac{1.5h_{\text{ef}}}{c_{ac}}\right) \le 1.0$	ACI 318-19 Eq. (17.6.2.6.1b)
$N_{\rm b} = K_{\rm c} \lambda_{\rm a} \sqrt{f_{\rm c}^{\rm a}} h_{\rm ef}^{1.5}$	ACI 318-19 Eq. (17.6.2.2.1)

Variables

h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]	$\Psi_{\text{c,N}}$
4.797	0.000	0.000	8.500	1.000
c _{ac} [in.]	k _c	λ _a	f _c [psi]	
8.542	17	1.000	4,000	

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	$\Psi_{\text{ec1,N}}$	$\psi_{ec2,N}$	$\psi_{\text{ed},\text{N}}$	$\psi_{\text{cp},\text{N}}$	N _b [lb]
250.30	207.12	1.000	1.000	1.000	1.000	11,297
Results						
N _{cbg} [lb]	ϕ_{concrete}	$\phi_{seismic}$	$\phi_{nonductile}$	φ N _{cbg} [lb]	N _{ua} [lb]	
13,652	0.650	0.750	1.000	6,655	5,200	-

Hilti PROFIS Engineering 3.0.91

www.hilti.com

Company: Address:		Page: Specifier:	6
Phone I Fax: Design:	 Concrete - Feb 9, 2024	E-Mail: Date:	2/9/2024
Design: Fastening point:	Concrete - Feb 9, 2024	Date:	

4 Shear load

	Load V _{ua} [lb]	Capacity ଦ V _n [lb]	Utilization $\beta_{\rm V} = V_{\rm ua} / \Phi V_{\rm n}$	Status
Steel Strength*	N/A	N/A	N/A	N/A
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength (Bond Strength controls)*	N/A	N/A	N/A	N/A
Concrete edge failure in direction **	N/A	N/A	N/A	N/A

* highest loaded anchor **anchor group (relevant anchors)

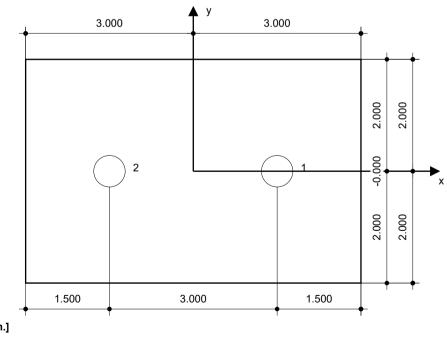
5 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered - the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout or pryout strength governs.
- Design Strengths of adhesive anchor systems are influenced by the cleaning method. Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions.
- For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- "An anchor design approach for structures assigned to Seismic Design Category C, D, E or F is given in ACI 318-19, Chapter 17, Section 17.10.5.3 (a) that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure. If this is NOT the case, the connection design (tension) shall satisfy the provisions of Section 17.10.5.3 (b), Section 17.10.5.3 (c), or Section 17.10.5.3 (d). The connection design (shear) shall satisfy the provisions of Section 17.10.6.3 (a), Section 17.10.6.3 (b), or Section 17.10.6.3 (c)."
- Section 17.10.5.3 (b) / Section 17.10.6.3 (a) require the attachment the anchors are connecting to the structure be designed to undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength. Section 17.10.5.3 (c) / Section 17.10.6.3 (b) waive the ductility requirements and require the anchors to be designed for the maximum tension / shear that can be transmitted to the anchors by a non-yielding attachment. Section 17.10.5.3 (d) / Section 17.10.6.3 (c) waive the ductility requirements and require the maximum tension / shear that can be transmitted to the strength of the anchors to equal or exceed the maximum tension / shear obtained from design load combinations that include E, with E increased by ω₀.
- Installation of Hilti adhesive anchor systems shall be performed by personnel trained to install Hilti adhesive anchors. Reference ACI 318-19, Section 26.7.

Fastening meets the design criteria!

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2024 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

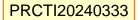
Hilti PROFIS Engineering 3.0.91


www.hilti.com			
Company:		Page:	7
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Feb 9, 2024	Date:	2/9/2024
Fastening point:			
6 Installation da	ata		

Anchor type and diameter: HIT-HY 200 V3 + HAS-V-36
(ASTM F1554 Gr.36) 1/2
Item number: 2198022 HAS-V-36 1/2"x6-1/2" (element) /
2334276 HIT-HY 200-R V3 (adhesive)Profile: no profileMaximum installation torque: 360 in.lbHole diameter in the fixture: df = 0.562 in.Maximum installation torque: 360 in.lbPlate thickness (input): 0.500 in.Hole diameter in the base material: 0.562 in.Recommended plate thickness: not calculatedHole depth in the base material: 4.797 in.Drilling method: Hammer drilled
Cleaning: Compressed air cleaning of the drilled hole according to instructionsMinimum thickness of the base material: 6.047 in.for use is requiredHole diameter in the base material: 6.047 in.

1/2 Hilti HAS Carbon steel threaded rod with Hilti HIT-HY 200 V3 Safe Set System

6.1 Recommended accessories


Drilling	Cleaning	Setting
Suitable Rotary HammerProperly sized drill bit	 Compressed air with required accessories to blow from the bottom of the hole 	 Dispenser including cassette and mixer Torque wrench
	 Proper diameter wire brush 	

Coordinates Anchor [in.]

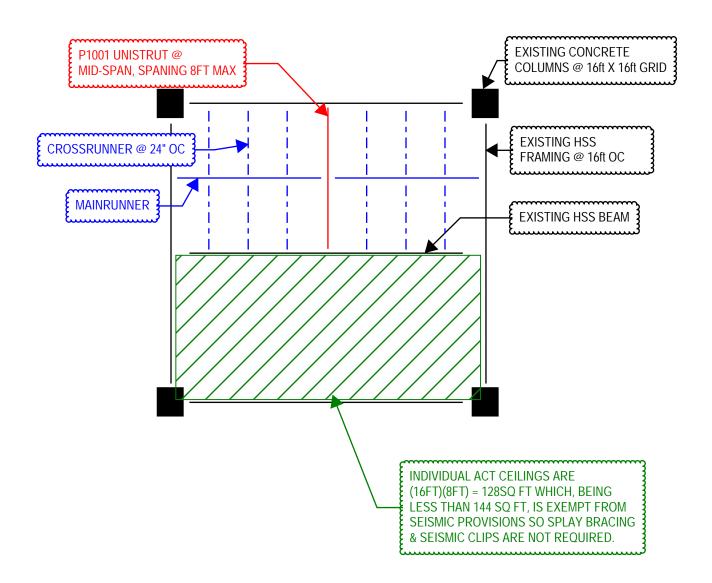
Anchor	х	У	C _{-x}	c+x	с _{-у}	c _{+y}
1	1.500	-0.000	11.500	8.500	-	-
2	-1.500	-0.000	8.500	11.500	-	-

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2024 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

Hilti PROFIS Engineering 3.0.91

www.hilti.com			
Company:		Page:	8
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Feb 9, 2024	Date:	2/9/2024
Fastening point:			

7 Remarks; Your Cooperation Duties


- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each
 case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data
 or programs, arising from a culpable breach of duty by you.

FRAMING INTENT:

BEAM LOADING FROM UNISTRUT WEBSITE

(https://www.atkore.com/Products/Strut-and-Fittings/Unistrut/1-58-Strut-and-Fittings/Strut-Channel/P1000-Series/P1001)

Beam Loading

			Beam Loadir	ng – P1001					
	Max Allow.	Deflection at	Unifo	Uniform Loading at Deflection					
Span (in)	Uniform Load (lbs)	Uniform load (in)	Span/180 (lbs)	Span/240 (lbs)	Span/360 (lbs)	Lateral Bracing Reduction Factor			
24	* 3,500	0.02	* 3,500	* 3,500	* 3,500	1.00			
36	3,190	0.07	3,190	3,190	3,190	1.00			
48	2,390	0.13	2,390	2,390	2,390	1.00			
60	1,910	0.20	1,910	1,910	1,620	0.97			
72	1,600	0.28	1,600	1,600	1,130	0.93			
	1,370	0.39	1,370	1,240	830	0.89			
96	1,200	0.51	1,200	950	630	0.85			
~~ 108 ~~		0.84							
120	960	0.79	810	610	410	0.78			
144	800	1.14	560	420	280	0.70			
168	680	1.53	410	310	210	0.63			
192	600	2.02	320	240	160	0.56			
216	530	2.54	250	190	130	0.49			
240	480	3.16	200	150	100	0.44			
Note	*Load limited by weld shear								

1200LBS(0.85) = 1020LBS CEILING TRIBUTARY LOAD IS (3PSF)(4FT)(8FT) = 96LBS WHICH LEAVES 924LBS OF LOAD FOR THE CABLE TRAY. ASSUMING CABLE TRAY COULD BE A POINT LOAD IN THE CENTER OF THE SPAN, ALLOWABLE LOAD IS REDUCED BY 50% = 462LBS

UNISTRUT® BEAM LOAD CALCULATION GUIDE

GUIDE FOR CALCULATING BEAM LOADS FOR UNISTRUT CHANNEL

Loads in the Beam Load Tables for UNISTRUT metal framing channel are given as a total uniform load (W) in pounds. For the more familiar uniform load (w) in pounds per foot or pounds per inch, divide the table load by the span.

Loads under the column headings of "Span/180", "Span/240" and "Span/360" are provided for installations in which deflection (sag) of the loaded UNISTRUT channel must be limited. These ratios are standard engineering practice and, when applicable, are usually given by the Professional Engineer of Record or the Project Specifications. Actual deflection from these preset ratios equals the span (inches or feet) divided by the number 180, 240 or 360. When designing to one of these deflection limits, the allowed uniform load is generally less than the values under the column heading "Maximum Allowed Uniform Load". For further information or assistance on this issue, please contact us.

All 5 notes below the beam load tables must be followed to obtain the final usable load on the channel. Failure to do so produces the wrong working load. These notes require adjustments to the Maximum Allowed Uniform Load for:

- Pierced Channel (if applicable)
- Unbraced Length
- Channel Weight
- Midspan Point Loads (if applicable)

Use the following 5 steps to accurately determine the allowed working load of UNISTRUT channel:

- 1. STEP #1: Determine Maximum Allowed Uniform Load from Load Table
- 2. STEP #2: Multiply the Applicable Pierced Hole Factor (only if using a Beam Load Table for the solid channel)
 - 0.95 for "KO
 - 0.90 for "HS" & "H3"
 - 0.85 for "T", "SL" & "WT"
 - 0.70 for "DS"
- 3. STEP #3: Multiply by the Unbraced Length Factor
- 4. STEP #4: Subtract the Channel Weight
- 5. STEP #5: Multiply by 50% for Midspan Loading (if applicable)

The result after step #4 is the net allowed total uniform load in pounds. The result after step #5 is the allowed midspan point load.

For more info visit atkore.com/unistrut 🌐

Connectors for Cold-Formed Steel Construction

RCA Rigid Connector Angles

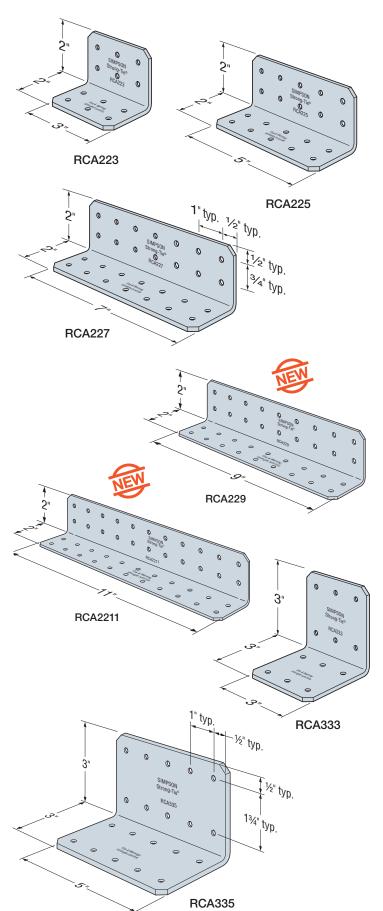
PRCTI20240333

The Simpson Strong-Tie® rigid connector angle is a general purpose clip angle designed for a wide range of cold-formed steel construction applications. With prepunched holes for fastener attachment, these L-shaped clips save time and labor on the job.

Features:

- Use with miscellaneous header/sill connections to jamb studs, jamb stud reinforcement at track, u-channel bridging, stud-blocking, bypass curtain-wall framing, joist connections and other versatile options
- Easy to install, with prepunched holes for quick and accurate fastener attachment

Material: RCAXXX/54 — 54 mil (16 ga.), 50 ksi RCAXXX/68 — 68 mil (14 ga.), 50 ksi RCAXXX/97 — 97 mil (12 ga.), 50 ksi (Note: "XXX" is model number shown below.)

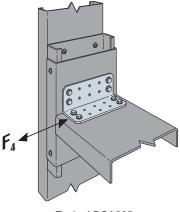

Finish: Galvanized (G90)

Installation:

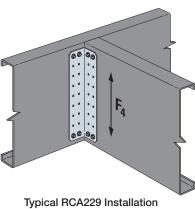
• Use all specified anchors/fasteners

Ordering Information

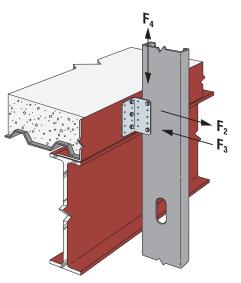
Model No.	Ordering SKU	Bucket Quantity
RCA223/54	RCA223/54-R150	150
RCA223/68	RCA223/68-R125	125
RCA223/97	RCA223/97-R90	90
RCA225/54	RCA225/54-R90	90
RCA225/68	RCA225/68-R75	75
RCA225/97	RCA225/97-R55	55
RCA227/54	RCA227/54-R65	65
RCA227/68	RCA227/68-R55	55
RCA227/97	RCA227/97-R40	40
RCA229/54	RCA229/54-R50	50
RCA229/68	RCA229/68-R50	50
RCA229/97	RCA229/97-R35	35
RCA2211/54	RCA2211/54-R45	45
RCA2211/68	RCA2211/68-R40	40
RCA2211/97	RCA2211/97-R30	30
RCA333/54	RCA333/54-R100	100
RCA333/68	RCA333/68-R85	85
RCA333/97	RCA333/97-R60	60
RCA335/54	RCA335/54-R60	60
RCA335/68	RCA335/68-R50	50
RCA335/97	RCA335/97-R35	35



Connectors for Cold-Formed Steel Construction


RCA Rigid Connector Angles

PRCTI20240333


SIMPSON Strong-Tie

Typical RCA225 Installation at Sill/Jamb

at Joist Connection

Typical BCA335 Installation

Screw Patterns for Rigid Connector Angles

Models	Pattern 3A	Pattern 3B	Pattern 3C	Typical RCA at Bypas	Typical RCA335 Installation at Bypass Framing		
RCA223/54 RCA223/68 RCA223/97 RCA333/54 RCA333/68 RCA333/97							
Models	Pattern 5A	Pattern 5B	Pattern 5C	Pattern 5D	Pattern 5E		
RCA225/54 RCA225/68 RCA225/97 RCA335/54 RCA335/68 RCA335/97							
Models	Pattern 7A	Pattern 7B	Pattern 7C	Pattern 7D	Pattern 7E		
RCA227/54 RCA227/68 RCA227/97							
Models	Pattern 9A	Pattern 9B	Pattern 9C	Pattern 9D	Pattern 9E		
RCA229/54 RCA229/68 RCA229/97							
Models	Pattern 11A	Pattern 11B	Pattern 11C	Pattern 11D	Pattern 11E		
RCA2211/54 RCA2211/68 RCA2211/97							

RCA Rigid Connector Angles

PRCTI20240333

SIMPSON

Strong-Tie

RCA Rigid Connector Angles Allowable Loads (lb.)

	No. of	0				Stud F	raming Thick	iness ¹¹			
Model	No. of #10 Screws ^{5,6}	Screw Pattern	;	33 mil (20 ga	.)		43 mil (18 ga.)		54 mil (16 ga.)
			F ₂	F3	F4	F ₂	F3	F4	F ₂	F3	F4
	3	3A	205	495	200	205	590	310	205	590	620
RCA223/54	4	3B	205	580	390	205	580	605	205	580	1,095
	6	3C	205	865	480	205	865	740	205	865	1,095
D01000/00	3	3A	310	495	200	310	765	310	310	815	620
RCA223/68	4	3B	310	660	390	310	805	605	310	805	1,210
	6	30	310	990	480	310				1,205	1,350
D01000/07	3	3A	495	495	200	<u> </u>	A SIDE O		<u> </u>	1,415	620
RCA223/97	4	3B	630	660	390	630 č u	1.500		<u>, , , , , , , , , , , , , , , , , , , </u>	1,265	1,210
	6	30	630	990	480	630	1,530	740	630	1,895	1485
	4	5A	330	330	265	340	390	410	340	390 č	815 ,660-
		5B	340	580	535	340	580	830	340	580	
RCA225/54	5	5C 5D	340 340	825 1,155	460 915	340 340	980 1,155	705 1,420	340 340	980 1,155	1,310 1,825
	10	5D 5E	340	1,135	1,035	340	1,135	1,420	340	1,135	1,825
	2	5A	330	330	265	540	510	410	520	545	815
	4	5R	520	660	535	520	805	830	520	805	1,660
RCA225/68	5	5D 5C	520	825	460	520	1,275	705	520	1,360	1,415
104220/00	8	50 5D	520	1,320	915	520	1,605	1,420	520	1,605	2,255
	10	5E	520	1,650	1,035	520	2,010	1,600	520	2,010	2,255
	2	5A	330	330	265	510	510	410	1,020	945	815
	4	5B	660	660	535	1,020	1,020	830	1,050	1,265	1,660
RCA225/97	5	50	825	825	460	1,050	1,275	705	1,050	2,360	1,415
	8	5D	1,050	1,320	915	1,050	2,040	1,420	1,050	2,525	2,835
	10	5E	1,050	1,650	1,035	1,050	2,550	1,600	1,050	3,155	3,200
	4	7A	475	660	545	475	785	840	475	785	1,675
	4	7B	475	580	595	475	580	920	475	580	1,840
RCA227/54	7	7C	475	1,155	765	475	1,280	1,185	475	1,280	1,685
	8	7D	475	1,155	1,120	475	1,155	1,730	475	1,155	2,555
	14	7E	475	2,025	1,685	475	2,025	2,555	475	2,025	2,555
	4	7A	660	660	545	725	1,020	840	725	1,090	1,675
	4	7B	660	660	595	725	805	920	725	805	1,840
RCA227/68	7	7C	725	1,155	765	725	1,780	1,185	725	1,780	2,370
	8	7D	725	1,320	1,120	725	1,605	1,730	725	1,605	3,155
	14	7E	725	2,310	1,685	725	2,810	2,605	725	2,810	3,155
	4	7A	660	660	545	1,020	1,020	840	1,470	1,890	1,675
	4	7B	660	660	595	1,020	1,020	920	1,470	1,265	1,840
RCA227/97	7	7C	1,155	1,155	765	1,470	1,785	1,185	1,470	3,080	2,370
	8	7D	1,320	1,320	1,120	1,470	2,040	1,730	1,470	2,525	3,460
	14	7E	1,470	2,310	1,685	1,470	3,570	2,605	1,470	4,420	4,490
	4	9A	615	660	595	615	1,020	920	615	1,100	1,840
	4	9B	615	660	620	615	815	960	615	815	1,920
RCA229/54	9	90	615	1,485	1,105	615	2,295	1,705	615	2,475	3,410
	8	9D	615	1,320	1,210	615	1,630	1,865	615	1,630	3,735
	18	9E	615	2,970	2,375	615	3,665	3,670	615	3,665	4,715
	4	9A	660	660	595	935	1,020	920	935	1,525	1,840
DOA000/00	4	9B	660	660	620	935	1,020	960	935	1,130	1,920
RCA229/68	9	90	935	1,485	1,105	935	2,295	1,705	935	3,435	3,410
	8	9D	935	1,320	1,210	935	2,040	1,865	935	2,260	3,735
	18	9E	935	2,970	2,375	935	4,590	3,670	935	5,090	5,750
	4	9A	660	660	595	1,020	1,020	920	1,890	2,040	1,840
DCA000/07	4	9B	660	660	620	1,020	1,020	960	1,890	1,610	1,920
RCA229/97	9	90	1,485	1,485	1,105	1,890	2,295	1,705	1,890	4,590	3,410
	8	9D	1,320	1,320	1,210	1,890	2,040	1,865	1,890	3,220	3,735
	18	9E	1,890	2,970	2,375	1,890	4,590	3,670	1,890	7,240	7,340

See footnotes on p. 106.

3.2.5.2 MATERIAL SPECIFICATIONS

Fastener designation	Fastener material Fastener plating		Steel washer or clip plating ^{1,2}	Washer or clip plating ^{1,2}		
X-P*	Carbon Steel	5 µm Zinc	N/A	N/A		
X-U*	Carbon Steel	5 µm Zinc	Carbon Steel	5 µm Zinc		
DS/EDS	Carbon Steel	5 µm Zinc	N/A	N/A		
X-C	Carbon Steel	5 µm Zinc	Carbon Steel	5 µm Zinc		
X-R, X-CR ³	SAE 316	N/A	SAE 316	N/A		
X-C/ X-P/ X-PN/ X-S: G2/G3/B3			N/A	N/A		
X-CT Forming Nail	Carbon Steel	5 µm Zinc	N/A	N/A		
BC X-C	Carbon Steel	5 µm Zinc	Carbon Steel	5 µm Zinc		

1 The 5 µm zinc coating is in accordance with ASTM B 633, SC 1, Type III. Refer to Section 2.3.3.1 for more information.

2 Most fasteners have a plastic washer for guidance when installing. Not all fastener lengths have a pre-mounted steel washer. Refer to Section 3.2.2.4 for more information on available fasteners.

3. The X-CR and X-R fastener material is a proprietary material, which provides a corrosion resistance equivalent to SAE 316 stainless steel. The steel washer material is SAE 316 stainless steel.

* More details about the innovative X-P and X-U fasteners can be found in Section 3.2.6.

3.2.5.3 TECHNICAL DATA

Allowable loads in normal weight concrete 1,2

	3.2.5.3 TECHNICAL DATA Allowable loads in normal weight concrete ^{1,2}										(2) HILTI X-U ANCHORS EMBEDED 1" MIN EA SIDE & END OF UNISTRUT		
						Concrete compressive strength							
Fastener	Fastener	Shank diameter	Minir		2000) psi	4000		600) psi	8000) psi	
description		in. (mm)	in. (I		Tension Ib (kN)	Shear Ib (kN)	Tension Ib (kN)	Shear Ib (kN)	Tension Ib (kN)	Shear Ib (kN)	Tension Ib (kN)	Shear Ib (kN)	
			3/4	(19)	100 (0.44)	155 (0.69	100 (0.44)	175 (0.78)	105 (0.47)	205 (0.91)	135 (0.60)	205 (0.91)	
Premium Concrete	X-P	0 157 (4 0)	1	(25)	165 (0.73)	220 (0.98)	180 (0.80)	225 (1.00)	150 (0.67)	300 (1.33)	150 (0.67)	215 (0.96)	
Fastener	A-F	0.157 (4.0)	1-1/4	(32)	240 (1.07)	310 (1.38)	280 (1.25)	310 (1.38)	180 (0.80)	425 (1.89)	-	-	
			1-1/2	(38)	310 (1.38)	420 (1.87)	-	-	-	-	-	-	
Universal			3/4	(19)	100 (0.44)	125 (0.57)	100 (0.44)	125 (0.57)	105 (0.47)	205 (0.91)	-	-	
Knurled	X-U	0.157 (4.0)	1	(25)	165 (0.73)	190 (0.85)	170 (0.76)	225 (1.00)	110 (0.49)	280 (1.25)	-	-	
Shank	X-0	0.157 (4.0)	1-1/4	(32)	240 (1.07)	310 (1.38)	280 (1.25)	310 (1.38)	180 (0.80)	425 (1.89)	-	-	
Fasteners			1-1/2	(38)	275 (1.22)	420 (1.87)	325 (1.45)	420 (1.87)	-	-	-	-	
	X-C		3/4	(19)	45 (0.20)	75 (0.33)	65 (0.29)	105 (0.47)	95 (0.42)	195 (0.87)	-	_	
Standard	(Black collated	0.138 (3.5)	1	(25)	85 (0.38)	150 (0.67)	160 (0.71)	200 (0.89)	105 (0.47)	270 (1.20)	-	_	
Fastener	strip or guidance		1-1/4	(32)	130 (0.58)	210 (0.93)	270 (1.20)	290 (1.29)	165 (0.73)	325 (1.45)	-	-	
	washer)		1-1/2	(38)	175 (0.78)	260 (1.16)	270 (1.20)	360 (1.60)	_	-	-	-	
			3/4	(19)	50 (0.22)	120 (0.53)	125 (0.56)	135 (0.60)	-	-	-	-	
Heavy Duty	50		1	(25)	130 (0.58)	195 (0.87)	155 (0.69)	240 (1.07)	_	-	-	_	
Fastener	DS	0.177 (4.5)	1-1/4	(32)	220 (0.98)	385 (1.71)	270 (1.20)	425 (1.89)	-	-	-	_	
			1-1/2	(38)	300 (1.33)	405 (1.80)	355 (1.58)	450 (2.00)	-	-	-	-	
			3/4	(19)	30 (0.13)	40 (0.18)	65 (0.29)	40 (0.18)	-	-	-	_	
Stainless	N OF		1	(25)	55 (0.24)	185 (0.82)	120 (0.53)	190 (0.85)	100 (0.44)	170 (0.76)	_	_	
Steel Fastener	X-CR	0.145 (3.7)	1-1/4	(32)	110 (0.49)	290 (1.29)	125 (0.56) 3	300 (1.33)	120 (0.53)	440 (1.96)	_	_	
Fastener			1-1/2	(38)	265 (1.18)	405 (1.80)	350 (1.56)	450 (2.00)	-	-	-	_	
Gas Fastener	X-C B3, X-C G3	0.118 (3.0)	3/4	(19)	110 (0.5)	190 (0.9)	110 (0.5)	190 (0.9)	110 (0.5)	190 (0.9)	-	_	
Premium Gas	X-GHP, X-P 17 G2, X-P 20 G2,	0.118 (3.0)	5/8	(16)	-	_	50 (0.2)	120 (0.5)	50 (0.2)	90 (0.4)	-	_	
Fastener	X-P G3, X-P B3		3/4	(19)	80 (0.4)	120 (0.5)	-	-	-	-	-	-	
Forming	X-CT 47 ³	0.145 (3.7)	1	(25)	60 (0.27)	65 (0.29)	-	-	_	-	-	_	
Fastener	X-CT 62 ³	0.145 (3.7)	1	(25)	75 (0.33)	75 (0.33)	_	-	-	-	-	-	

1 The tabulated allowable load values are for the low-velocity fasteners only, using a safety factor that is greater than or equal to 5.0, calculated in accordance with ICC-ES AC70. Wood or steel members connected to the substrate must be investigated in accordance with accepted design criteria.

2 Multiple fasteners are recommended for any attachment.

3 For temporary fastening of formwork only.

Allowable loads in minimum ASTM A36 ($F_v \ge 36$ ksi, $F_u \ge 58$ ksi) steel^{1,2,4,5}

		Shank	Steel thickness (in.)											
Fastener description	Fastener	diameter	1/8		3/16		1/4		3/8		1/2		} ≥3/4	
		in. (mm)	Tension Ib (kN)	Shear Ib (kN)	Tension Ib (kN)	Shear Ib (kN)	Tension Ib (kN)	Shear Ib (kN)	Tension Ib (kN)	Shear Ib (kN)	Tension Ib (kN)	Shear Ib (kN)	ension b (kN)	Shear Ib (kN)
Universal knurled shank*	X-U ⁶	0.157			535	720	775	720	935	720 ද	900	720	350	375
	X-0*	(4.0)			(2.38)	(3.20)	(3.45)	(3.20)	(4.16)	(3.20)	(4.00)	(3.20)	1.56)	(1.67)
Stepped-shank	X-U 157	0.145	_	_	155	395	230	395	420	450	365	500	365	400
knurling-lengthwise	X 0 10	(3.7)			1 V - C		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		3	(2.0 Ø)	(1.62)	(2.22)	(1.62)	(1.78)
Standard knurled shank	X-S13	0.145	140	300			X-U AN			45/0	_	_	_	_
	7-010	(3.7)	(0.62)	(1.33)	(1 6 SI	DE & E	ND OF	UNIST	RUT	(2.00)		_	_	-
Drywall smooth shank	X-S16	0.145		_	225	420	225	430	225	430	225	430	_	_
w/metal top hat washer	X-510	(3.7)			(1.00)	(1.87)	(1.00)	(1.91)	(1.00)	(1.91)	(1.00)	(1.91)	_	
Heavy duty	EDS ³	0.177		_	305	615	625	870	715	870	890	960	400	655
knurled shank		(4.5)			(1.36)	(2.67)	(2.78)	(3.87)	(3.18)	(3.87)	(3.96)	(4.27)	(1.78)	(2.91)
Heavy duty	DS	0.177		_	365	725	580	725	695	725	735	860	_	_
smooth shank		(4.5)			(1.62)	(3.22)	(2.58)	(3.22)	(3.09)	(3.22)	(3.27)	(3.83)		
	X-R ¹⁰	0.145		_	460	460	615	500		_	_	_	_	_
Stainless steel	7-11	(3.7)			(2.05)	(2.05)	(2.74)	(2.22)					_	
smooth shank	X-R ^{8,10}	0.145	300	190	615	495	760	500	220	325	225	335	_	_
	X-11 *	(3.7)	(1.33)	(0.85)	(2.74)	(2.20)	(3.38)	(2.22)	(0.98)	(1.45)	(1.00)	(1.49)		
Standard gas fastener	X-EGN 149,	0.118	140	230	220	245	225	290	280	330	280	330	280	330
for steel	X-S 14 B3	(3.0)	(0.6)	(1.0)	(1.0)	(1.1)	(1.0)	(1.3)	(1.2)	(1.5)	(1.2)	(1.5)	(1.2)	(1.5)
Standard gas fastener	X-EGN 14 ^{8,9}	0.118		_	220	295	260	355	280	385	280	385	280	385
for steel	X-S 14 B38	(3.0)			(1.0)	(1.3)	(1.2)	(1.6)	(1.2)	(1.7)	(1.2)	(1.7)	(1.2)	(1.7)
Dramium and factoriar	X-GHP, X-P	0.118	125	230	170	245	200	230	250	255				
Premium gas fastener	G3, X-P B3	(3.0)	(0.6)	(1.0)	(0.8)	(1.1)	(0.9)	(1.0)	(1.1)	(1.1)	_	-	-	-

1 The tabulated allowable load values are for the low-velocity fasteners only, using a safety factor that is greater than or equal to 5.0, calculated in accordance with ICC-ES AC70. Wood or steel members connected to the substrate must be investigated in accordance with accepted design criteria.

2 Low-velocity fasteners shall be driven to where the point of the fastener penetrates through the steel base material in accordance with Section 3.2.2.3, except as noted in this table.

3 EDS fasteners installed into greater than 1/2" thick steel require 1/2" minimum penetration.

4 Multiple fasteners are recommended for any attachment.

5 Refer to guidelines for fastening to steel, Section 3.2.2, for application limits.

6 Tabulated allowable load values provided for 3/4" steel are based upon minimum point penetration of 1/2" into the steel. If 1/2" point penetration into the steel is not achieved, but a point penetration of at least 3/8" is obtained, the tabulated tension value should be reduced by 20 percent and the tabulated shear load should be reduced by 8 percent.

7 X-U 15 fasteners installed into greater than 3/8" thick steel require 15/32" minimum penetration into the steel.

8 Based on testing with $F_v = 50$ ksi base material.

9 Fasteners installed into 3/8" or thicker base steel require 0.320" minimum penetration depth into the steel.

10 Fasteners installed into 3/8" or thicker base require 0.38" minimum penetration depth into the steel.

Allowable tensile pullover and shear bearing load capacities for steel framing with power driven fasteners^{1,2,3,4}

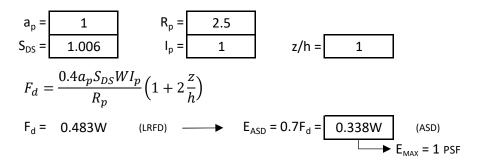
		Head	Sheet steel thickness													
Fastener description	Fastener	dia.	14	ga.	16 ga.		18 ga.		20 ga.		22 ga.		24 ga.		25/26 ga.	
		(mm)	Tension Ib (kN)		Tension Ib (kN)	Shear Ib (kN)	Tension Ib (kN)	Shear Ib (kN)	Tension Ib (kN)	Shear Ib (kN)	Tension Ib (kN)		Tension Ib (kN)	Shear Ib (kN)	Tension Ib (kN)	Shear Ib (kN)
0.157" shank with or w/o	X-U, X-P	0.322	825	1,085	685	720	490	525	360	445	300	330	205	255	120	145
plastic washers or MX collation	х-0, х-Р	(8.2)	(3.67)	(4.83)	(3.05)	(3.20)	(2.18)	(2.34)	(1.60)	(1.98)	(1.33)	(1.47)	(0.91)	(1.13)	(0.53)	(0.64)
0.145" shank with or w/o	X O X D	0.322		985	685	720	490	515	360	440	300	310	205	235	120	145
plastic washers or MX collation	X-C, X-R	(8.2)	-	(4.38)	(3.05)	(3.20)	(2.18)	(2.29)	(1.60)	(1.96)	(1.33)	(1.38)	(0.91)	(1.05)	(0.53)	(0.64)
0.177" shank without washer	DS, EDS (8.2)	965	1,085	810	815	625	535	460	465	360	350	300	260	240	180	
0.177 Sharik without washer		(8.2)	(4.29)	(4.83)	(3.60)	(3.63)	(2.78)	(2.38)	(2.05)	(2.07)	(1.60)	(1.56)	(1.33)	(1.16)	(1.07)	(0.80)
0.145" shank with plastic top		0.322		985	685	720	490	515	360	440	300	310	205	235	120	145
hat washers		(8.2)	-	(4.38)	(3.05)	(3.20)	(2.18)	(2.29)	(1.60)	(1.96)	(1.33)	(1.38)	(0.91)	(1.05)	(0.53)	(0.64)
0.119 chark with MY colletion	X-EGN, X-GN,	0.276					325	390	265	335	250	235	170	185	100	125
0.118" shank with MX collation	X-GHP	(6.8)	-	-	-	-	(1.45)	(1.73)	(1.18)	(1.49)	(1.11)	(1.05)	(0.76)	(0.82)	(0.44)	(0.56)


1 Allowable load values are based on a safety factor of 3.0.

2 Allowable pullover capacities of sheet steel should be compared to the allowable fastener tensile load capacities in concrete, steel, and masonry to determine controlling resistance load.

3 Allowable shear bearing capacities of sheet steel should be compared to allowable fastener shear capacities in concrete, steel and masonry to determine controlling resistance load.

4 Data is based on the following minimum sheet steel properties, F_v = 33 ksi, F_u = 45 ksi (ASTM A653 material).


* More details about the innovative X-U fastener can be found in Section 3.2.6.

Ceiling Design

Seismic Force per ASCE

Brienen **S**tructural **E**ngineers, P.S.

ACT:

Grid System = USG Donn Brand Advancespan Panel = USG 2ft x 4ft 3/4in Mars 88189CR

System Weight = 3.0 PSF Total Ceiling Area per grid is <144sq ft so Seismic Provisions are not required.

Main Runner Spacing = 4' oc Main Runner Distributed Loads wmax = 3.0 PSF x 4' = 12 PLFUse <u>Main Runner DXAS</u>, Allowable Load = $12\text{PLF} \ge \text{wmax} \longrightarrow \text{OK}$

Cross Runner Span = 4' max between main runners @ 2' oc Use <u>Cross Runner DXL424</u>

Main Runner and Cross Runner Info Attached.

USG Ceiling Solutions

USG MARS[™] HEALTHCARE ACOUSTICAL PANELS CLIMAPLUS[™] PERFORMANCE

WITH CLEAN ROOM, HIGH-NRC AND AIRCARE™ COATING OPTIONS

FEATURES AND BENEFITS

- Water-repellent membrane designed to be durable and safe with common disinfectants.**
- Washable and soil-resistant fi nish. Impact and scratch resistant.
- Acoustics and cleanability exceed FGI guidelines for healthcare.
- Meets USDA/FSIS guidelines for use in food-processing areas.
- Achieves FDA standards for smoothness, durability and cleanability.
- Clean Room tested to ISO 5 (Class 100) (Items 86169CR, 88189CR, 86684CR, 88683CR).
- ClimaPlus[™] 30-year limited system warranty against visible sag, mold and mildew.
- AirCare[™] coating applied to face and back reduces 75% of formaldehyde over a 10-year period.⁴
- GREENGUARD Gold certified for low emitting performance.
- Balanced Acoustics. High-NRC and High-CAC provide excellent sound control that assist in addressing HIPAA standards.
- USG Mars[™] Healthcare Acoustical Panels is part of the Ecoblueprint[™] portfolio — meeting today's sustainability standards. For sustainability documentation go to USG.com or CGCInc.com.

APPLICATIONS

- Kitchen and food-prep areas
- Lavatories and restrooms
- Laboratories and Clean Rooms
- SUBSTRATE
 - Wet-formed mineral fiber

Fine-Textured Panel

IT'S YOUR WORLD BUILD IT

waiting rooms Treatment/patient rooms

Nurses' stations/

CLIMAPLUS[™] PERFORMANCE - NEW CLEAN ROOM, HIGH-NRC AND AIRCARE[™] COATING OPTIONS

FOR MOST UP-TO-DATE TECHNICAL INFORMATION AND LEED REPORT TOOL usgdesignstudio.com cgcdesignstudio.com

		US™ PERFORI GOPTIONS			AN RUUI	M, HIGH	-NRC A	ND AIRC	ARE	TECHNICA 800 USG.4YOU	AL SERVICES J (874-4968)		istudio.com istudio.com
PRODUCT CERTIFIED FOR LOW CHEMICAL EMISSIONS: ULCOW/GG UL2818	30 . _{No}	R LIMITED SYSTEM RRANTY Visible Sag Id/Mildew Protection	BA	LANCED		I RECYCLED TENT	AIR	AIRCARE™	Plant-Based Binder	ECOBLUE		Declar	eľ.
					UL 🕕	Classified	I						
	Edge	Panel Size	Fire Rating	ltem No.	NRC	CAC Min.	LR ²	Color	Grid Options	VOC Emissions	Anti-Mold & Mildew/Sag Resistance	Recycled Content ¹	Panel Cost
			Ø		NRC	CAC	Ø		ø		٥	HRC	5
USG MARS™ HEALTHCARE HIGH-NRC PANELS	SQ	2'x2'x7/8"	Class A	86256	0.85	35	0.90	White	A,B,C,D,E,F	Low		70%	\$\$
85/35 Plant-Based Binder ⁶		2'x4'x7/8"	Class A	88256	0.85	35	0.90	White	A,B,D,E,F	Low		70%	\$\$
	SLT	2'x2'x7/8"	Class A	86257	0.85	35	0.90	White	G,H,I,J	Low		70%	\$\$
	FLB	2'x2'x7/8"	Class A	86258	0.85	35	0.90	White	K,L,M,N	Low		70%	\$\$
USG MARS™ HEALTHCARE HIGH-NRC/	SQ	2'x2'x1″	Class A	86115	0.80	40	0.90	White	A,B,C,D,E,F	Low		71%	\$\$
HIGH-CAC PANELS 80/40		2'x4'x1"	Class A	88115	0.80	40	0.90	White	A,B,D,E,F	Low		71%	\$\$
Plant-Based Binder ⁶	SLT	2'x2'x1″	Class A	86343	0.80	40	0.90	White	G,H,I,J	Low		71%	\$\$
		2'x4'x1"	Class A	88343	0.80	40	0.90	White	G,H,I,J	Low		71%	\$\$
	FLB	2'x2'x1"	Class A	86344	0.80	40	0.90	White	K,L,M,N	Low		71%	\$\$
		2'x4'x1"	Class A	88344	0.80	40	0.90	White	K,L,M,N	Low		71%	\$\$
USG MARS™ HEALTHCARE HIGH-NRC PANELS	SQ	2'x2'x7/8"	Class A	86152	0.80	35	0.90	White	A,B,C,D,E,F	Low		70%	\$\$
80/35 Plant-Based Binder ⁶		2'x4'x7/8"	Class A	86340	0.80	35	0.90	White	A,B,D,E,F	Low		70%	\$\$
	SLT	2'x2'x7/8"	Class A	86470	0.80	35	0.90	White	G,H,I,J	Low		70%	\$\$
	FLB	2'x2'x7/8″	Class A	86750	0.80	35	0.90	White	K,L,M,N	Low		70%	\$\$
USG MARS™ HEALTHCARE PANELS	SQ	2'x2'x3/4"	Class A	86169	0.75	35	0.90	White	A,B,C,D,E,F	Low		69%	\$\$
75/35		2'x4'x3/4"	Class A	88189	0.75	35	0.90	White	A,B,D,E,F	Low		69%	\$\$
	SLT	2'x2'x3/4"	Class A	86684	0.75	35	0.90	White	G,H,I,J	Low		69%	\$\$
		2'x4'x3/4"	Class A	88683	0.75	35	0.90	White	G,H,I,J	Low		69%	\$\$
F	FLB	2'x2'x3/4"	Class A	86984	0.75	35	0.90	White	K,L,M,N	Low		69%	\$\$
		2'x4'x3/4"	Class A	88983	0.75	35	0.90	White	K,L,M,N	Low		69%	\$\$
JSG MARS™ HEALTHCARE HIGH-CAC PANELS 60/40	SQ	2'x2'x3/4"	Class A	86270	0.60	40	0.90	White	A,B,C,D,E,F	Low		71%	\$\$
		2'x4'x3/4"	Class A	88271	0.60	40	0.90	White	A,B,D,E,F	Low		71%	\$\$
	SLT	2'x2'x3/4"	Class A	86272	0.60	40	0.90	White	G,H,I,J	Low		71%	\$\$
	FLB	2'x2'x3/4"	Class A	86273	0.60	40	0.90	White	K,L,M,N	Low		71%	\$\$
		2'x4'x3/4"	Class A	88273	0.60	40	0.90	White	K,L,M,N	Low		71%	\$\$
	🕨 Third I	missions (VOC party (GREENGL erformance, me	JARD Gold)			Perfo	APlus™W ormance ³	-	ntimicrobial		L cled Content fies High Recyc		

emitting performance, meets California Department of Public Health's (CDPH) Standard Method v1.2 - 2017 (CA Section 01350). 'Certificates of Compliance' for Low VOC Emissions are available on usg.com and at spot.ul.com.

Contains a broad-spectrum antimicrobial additive on the face and back of the panel that provides resistance against the growth of mold and mildew. Includes sag-resistance performance.

greater than 50%. Total recycled content is based on product composition of postconsumer and preconsumer (postindustrial) recycled content per FTC guidelines.

		IARS [™] HE JS [™] PERFORM OPTIONS							USG: usg CGC: con	R SAMPLES/LITE .com or samplit@ tact Sales Repres TECHNICAL SE 0 USG.4YOU (87	entative ANE	R MOST UP-TC NICAL INFORM LEED REPOR usgdesignstuc cgcdesignstuc	IATION TTOOL dio.com
PRODUCT CERTIFIED FOR LOW CHEMICAL EMISSIONS: ULCOW/GG UL 2818	30 . No V	LIMITED SYSTEM RANTY /isible Sag d/Mildew Protection	BA	LANCED	HIGH CON	I RECYCLED TENT	AIR	AIRCARE™		COBLUE		ecla r	e .
					UL 🕕	Classified	I						
	Edge	Panel Size	Fire Rating	ltem No.	NRC	CAC Min.	LR ²	Color	Grid Options	VOC Emissions	Anti-Mold & Mildew/Sag Resistance	Recycled Content ¹	Panel Cost
			Ø		NRC	CAC	Ø		Ħ		٥	HRC	\$
USG MARS™ HEALTHCARE WITH AIRCARE™ COATING ⁴ 75/25	SQ	2'x2'x3/4"	Class A	86169AIR	0.75	35	0.90	White	A,B,C,D,E,F	Low		69%	\$\$
75/35		2'x4'x3/4"	Class A	88189AIR	0.75	35	0.90	White	A,B,D,E,F	Low		69%	\$\$
	SLT	2'x2'x3/4"	Class A	86684AIR	0.75	35	0.90	White	G,H,I,J	Low		69%	\$\$
		2'x4'x3/4"	Class A	88683AIR	0.75	35	0.90	White	G,H,I,J	Low		69%	\$\$
	FLB	2'x2'x3/4"	Class A	86984AIR	0.75	35	0.90	White	K,L,M,N	Low		69%	\$\$
		2'x4'x3/4"	Class A	88983AIR	0.75	35	0.90	White	K,L,M,N	Low		69%	\$\$
USG MARS™ HEALTHCARE CLEAN ROOM PANELS 75/35	SQ	2'x2'x3/4"	Class A	86169CR	0.75	35	0.90	White	0	Low		68%	\$\$
		2'x4'x3/4"	Class A	88189CR	0.75	35	0.90	White	0	Low		68%	\$\$
	SLT	2'x2'x3/4"	Class A	86684CR	0.75	35	0.90	White	P	Low		68%	
		2'x4'x3/4"	Class A	88683CR	0.75	35	0.90	White	P	Low		68%	\$\$
		2" x4" x5/4"	Class A	00003CR	0.75	35	0.90	white	۲	LOW		08%	\$

Low Emissions (VOC) Third party (GREENGUARD Gold) certified for lowemitting performance, meets California Department of Public Health's (CDPH) Standard Method v1.2 - 2017 (CA Section 01350). 'Certificates of Compliance' for Low VOC Emissions are available on usg.com and at spot.ul.com.

ClimaPlus[™] Warranty Performance³

Contains a broad-spectrum antimicrobial additive on the face and back of the panel that provides resistance against the growth of mold and mildew. Includes sag-resistance performance.

High Recycled Content

USG classifies High Recycled Content as greater than 50%. Total recycled content is based on product composition of postconsumer and preconsumer (postindustrial) recycled content per FTC guidelines.

USG MARS[®] HEALTHCARE ACOUSTICAL PANELS

CLIMAPLUS[™] PERFORMANCE - NEW CLEAN ROOM, HIGH-NRC AND AIRCARE[™] COATING OPTIONS

FOR MOST UP-TO-DATE ORDER SAMPLES/LITERATURE USG: usg.com or samplit@usg.com CGC: contact Sales Representative

TECHNICAL INFORMATION AND LEED REPORT TOOL usgdesignstudio.com cgcdesignstudio.com

TECHNICAL SERVICES 800 USG.4YOU (874-4968)

ECOBLUEPRINT Declare.

GRID PROFILE OPTIONS

A	B	C⁵	D
USG DX*	USG DXW™	USG Centricitee™ DXT™	USG DXLA™
E	F	G	H
USG ZXLA™	USG AX™	USG DX*	USG DXLA™
I	J	K	L
USG ZXLA™	USG AX™	USG Centricitee™ DXT™	USG Fineline® DXF™
M	N	O	P
USG Fineline [®] 1/8 DXFF™	USG Identitee* DXI™	USG CE™	USG DXCE™

PHYSICAL DATA/ FOOTNOTES

Product literature Data sheet: SC2585

ASTM E1264 classification

YEAR LIMITED SYSTEM WARRANTY

Mold/Mildew Protection

No Visible Sag

30

ASTM E1264-22 Type IV, Form 1 & 2, Pattern E & G ASTM E1264-23 Type A, Form A2.1, Pattern E & G ASTM E84 and CAN/ULC S102 surface-burning characteristics Class Flame spread: 25 or less Smoke developed: 50 or less Weight 1.03-1.24 lb./sq. ft.

Thermal resistance R-2.2

Maximum backloading See USG 30-Year Limited S n Warranty Commercial Applications (SC2102).

io.com

Online tools usgdesignstudio.com or cgcdesig ASTM D2486 scrubbability test (standard test)

ASTM D4828 washability test (modified test)

Water repellency

Cobb method (Tappi T441 om-84) Water Drop Test

**Maintenance

To clean panel, use a clean, white cloth with water or a mild detergent and wipe surface. To disinfect panel, lightly spray surface and wipe clean with a clean, white - Hydrogen peroxide - Isopropyl alcohol

Quaternary ammonium

recommendations.

- Sodium hypochlorite

Do not mix cleaners. Follow cleaner manufacturer's

USG Mars™ Healthcare Clean Room

Field-cut edges of USG Marsth Healthcare Clean Room panels may be sealed with white latex paint. Use square edge panels for all lay-in field-cut perimeter panels.

- Clean Room-rated applications require a suspension system with gasketed tee flanges such as USG Donn* Brand CE™.

- Tested to ISO Class 5 particle emissions, per ISO 14644, by UL Environment. Rating may decrease to ISO Class 7 or greater with airflow above 1 ACH, pressure fluctuations, or vibrations in the ceiling system

For more information, please reference test report from UI Environment

WEIGHT FOR 88189CR IS THE LOWER END SINCE IT'S 3/4" THICK AS OPPOSED TO THE UPPER END BEING 7/8".

Metric sizes available

Contact sales for minimum quantities and lead times. Footnotes

- 1. For details, see USG Sustainability tool at usgdesignstudio.com or cgcdesignstudio.com
- 2. LR values are shown as averages
- 3. Panel face and back surfaces treated with a proprietary broad-spectrum antimicrobial standard formulation that inhibits and retards the growth of mold and mildew. For details, see USG 30-Year Limited System Warranty Commercial Applications (SC2102).
- AirCare[™] coating removes formaldehyde by an average of 75% over 10 years at an average indoor concentration of 13 .daa
- 5. Maximum 2'x2' with SQ edge panels.
- 6. All USG Mars™ High NRC Acoustical Panels with a "plantbased binder" label contain up to 65% plant-based material in the binder. For more information please refer to the USG Mars™ Acoustical Panels Health Product Declaration, available at www.usg.com

Notice The information in this document is subject to change without notice. CGC Inc. or USG Corp. assumes no responsibility for any errors that may inadvertently appear in this document.

SC2585/rev.10-23

©2023 USG Corporation and/ or its affiliates. All rights reserved. Printed in USA

Manufactured by USG Interiors, LLC 550 West Adams Street Chicago, IL 60661

The trademarks USG, CGC, AIRCARE, AX, CENTRICITEE, CLIMAPLUS, DONN DX, DXF, DXFF, DXI, DXL, DXLA, DXT, DXW, ECOBLUEPRINT, FINELINE, IDENTITEE, MARS, ZXLA, IT'S YOUR WORLD. BUILD IT., the USG/CGC logo, the design elements and colors, and related marks are trademarks of USG Corporation or its affiliates.

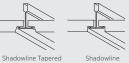
Safety First! Follow good safety/industrial hygiene practices during installation. Wear appropriate persona protective equipment. Read SDS and literature before specification and installation

USG Ceiling Solutions

PRCTI20240333 **USG DONN[®] BRAND ADVANCESPAN[™]**

USG DONN[®] BRAND DXAS[™] AND DXTAS[™] PROFILES

FEATURES AND BENEFITS


- Spans up to 8' with no hanger wires.
- Ideal for healthcare, hospitality and multifamily applications with crowded plenum spaces.
- Seismic installation designs validated in ICC-ES Evaluation Report ESR-5136.
- Approved by OSHPD/HCAi for seismic applications.
- USG Donn[®] Brand DX[®]-15/16" and USG Donn[®] Brand Centricitee[™] DXT[™]-9/16" face profiles available.
- Reversible structural wall channel works with both USG DX® and . DXT[™] profiles.
- Compatible with all standard USG DX[®] and DXT[™] cross tees.
- Available with End Splice detail to speed up installation.
- USG Donn[®] Brand AdvanceSpan[™] Suspension System is part of the Ecoblueprint™ portfolio — meeting today's sustainability standards. For sustainability documentation go to USG.com or CGCInc.com.

APPLICATIONS

- Hospitals
- Multifamily dwellings
- Hotels
- Schools
- General interior use applications

PROFILE 23/4

USG DONN[®] BRAND DXTAS[™] EDGE PROFILES

USG DONN® BRAND DXAS™ EDGE PROFILES

Fineline

USG DONN[®] BRAND ADVANCESPAN[™]

USG DONN[®] BRAND DXAS[™] AND DXTAS[™] PROFILES

ORDER SAMPLES/LITERATURE USG: usg.com or samplit@usg.com CGC: contact Sales Representative TECHNICAL SERVICES 800 USG.4YOU (874-4968) TECHNICAL SERVICES 800 USG.4YOU (874-4968)

	VEAD LINE	TED SYSTEM	HIGH RECYCLED				800 US	G.4YOU (874-4968)	cgcdesignstudio.com
	30 . No Visible	FED SYSTEM Y e Sag dew Protection		ECOBLU	EPRINT	Declare .	Declare [®] Labels on finishes, see usg.cc details and docum	om for more	
								Max Unsupported	Span at Rated Load
	ltem No	Length	Height	Face Profile	Fire Rating	Recycled Content	Color	Intermediate Duty (12 lb./LF)	Heavy Duty (16 lb./LF)
						E.			
15/16" TEE SYSTEM Main Tee	DXAS	8'-6" 10'-6" 12'-6"	2-3/4"	15/16"	Class A	HRC	Flat White 050	8'-0"	7'-0"
	DXAS-ES	10'-0" 12'-0"	2-3/4"	15/16"	Class A	HRC	Flat White 050	8'-0"	7'-0"
Cross Tee 1"	DX216	2' 600 mm	1″ (25 mm)	15/16″	Class A		Flat White 050		<u> </u>
Cross Tee 1-1/2"	DXL424	4' 1200 mm	1-1/2 " (38 mm)	15/16″	Ø		Flat White 050		
27	DXL424HRC			15/16″	Ø	HRC	Flat White 050		
e//	DX422			15/16″	Class A	3	Flat White 050		
	DX422HRC			15/16″	Class A	HRC	Flat White 050		
	DX426HD			15/16″	Class A	1	Flat White 050		
9/16" TEE SYSTEM Main Tee	DXTAS	8'-6" 10'-6" 12'-6"	2-3/4"	9/16"	Class A	HRC	Flat White 050	8'-0"	7'-0"
	DXTAS-ES	10'-0" 12'-0"	2-3/4"	9/16″	Class A	HRC	Flat White 050	8'-0"	7'-0"
Cross Tee 1 -1/2"	DXT222	2'	1-1/2"	9/16″	Class A		Flat White 050		
lova -	DXT222HRC	600 mm	(38 mm)	9/16"	Class A	HRC	Flat White 050		••••••
e la	DXLT222			9/16″	Ø		Flat White 050		
	DXT422	4' 1200 mm	1-1/2" (38 mm)	9/16"	Class A		Flat White 050	••••	
	DXT424 DXT424HRC			9/16" 9/16"	Class A Class A		Flat White 050 Flat White 050		
	DXLT424			9/16″		HRC	Flat White 050	<u></u>	
	DXT426			9/16"	Class A	~	Flat White 050		
MOLDING	Channel	Length	Height	Face Profile	Item No	Recycled	Color		
						Solitein			
Ý		10'	2-7/8"	Reversible for 15/16" or 9/16"	US44HRC	HRC	Flat White 050		
	2 ⁷ /s"								

Low Emissions (VOC) CDPH 01350 v1.2-2017 compliance

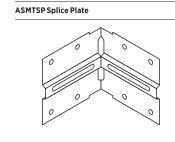
on select finishes, see usg.com for more details and documentation.

High Recycled Content USG classifies High Recycled Content as greater than 50%. Total recycled content is based on product composition of postconsumer and preconsumer (postindustrial) recycled content per FTC guidelines.

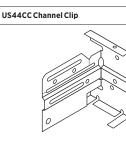
ORDER SAMPLES/LITERATURE USG: usg.com or samplit@usg.com CGC: contact Sales Representative

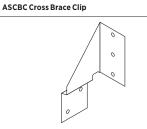
TECHNICAL SERVICES 800 USG.4YOU (874-4968)

FOR MOST UP-TO-DATE TECHNICAL INFORMATION AND LEED REPORT TOOL usgdesignstudio.com cgcdesignstudio.com

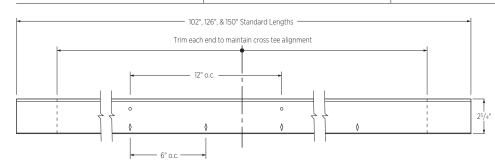


Declare[®] Labels on select finishes, see usg.com for more details and documentation.





Product literature and samples


Data sheet: AC3324 Installation guide: AC3325 USG DXAS[™] sample: 259499 USG DXTAS[™] sample: 259500

Material Min. G30 hot-dipped galvanized steel body and cap. Baked-on polyester paint.

USG DONN[®] BRAND **ADVANCESPAN™** MAIN TEE DETAILS

PHYSICAL DATA/ FOOTNOTES

Online tools

usgdesignstudio.com or cgcdesignstudio.com

Compliance

Third-party tested by Progressive Engineering Inc. in accordance with ASTM C635 (modified). Full-scale seismic testing conducted by University of California, Berkeley, Pacific Earthquake Engineering Research Center. Local building codes may vary; check with code official for compliance prior to installing. Limitations

Interior applications only.

Seismic Compliance AdvanceSpan™ is OSHPD/HCAi pre-approved per OPM-0462.

ICC Evaluation Service, LLC Report Compliance For areas under ICC jurisdiction, see ICC-ES Evaluation Report ESR-5136 for allowable values and conditions of use. Reports are subject to reexamination, revision and possible cancellation. Refer to usg.com for most current version.

Notice

Notice The information in this document is subject to change without notice. CGC Inc. or USG Corp. assumes no responsibility for any errors that may inadvertently appear in this document.

AC3324/rev. 10-23

© 2023 USG Corporation and/or its affiliates. All rights reserved. Printed in U.S.A.

Manufactured by USG Interiors, LLC 550 West Adams Street Chicago, IL 60661

The trademarks USG, CGC, ADVANCESPAN, CENTRICITEE, DONN, DX, DXAS, DXT, DXTAS, ECOBLUEPRINT, MARS, IT'S YOUR WORLD. BUILD IT., the USG/CGC logo, the design elements and colors, and related marks are trademarks of USG Corporation or its affiliates.

Safety First! Follow good safety/industrial hygiene practices during installation. Wear appropriate personal protective equipment. Read SDS and literature before specification and installation.

