PRCNC20240061

 Gray \& Osborne, Inc.

CONSULTING ENGINEERS

STRUCTURAL CALCULATIONS

FOR

City of Puyallup
WPCP Secondary Clarifier No. 3

Prepared by
Gray \& Osborne, Inc.
1130 Rainier Avenue South, Suite 300
Seattle, WA 98144

FULL SIZED LEDGIBLE COLOR
PLANS ARE REQUIRED TO BE PROVIDED BY THE PERMITTEE ON SITE FOR ALL INSPECTIONS (MIN. PLAN SIZE 24" X 36")
April 2023

PRCNC20240061

Code Versions Used:

International Building Code (IBC 2021)
Building Code Requirements for Structural Concrete (ACl 318-19)
Code Requirements for Environmental Engineering Concrete Structures ($\mathrm{ACl} 350-20$)
Minimum Design Loads and Associated Criteria for Buildings and other Structures (ASCE/SEI 7-22)

General
Diameter $(\mathrm{D})=$

Radius (R) =
$\mathrm{f}^{\prime} \mathrm{c}=$
fy $=$
Steel modulus $\left(\mathrm{E}_{\mathrm{s}}\right)=$
Conc modulus $\left(\mathrm{E}_{\mathrm{c}}\right)=$
Water weight $\left(\mathrm{P}_{\mathrm{w}}\right)=$
Soil pressure $\left(\mathrm{P}_{\mathrm{s}}\right)=$
Fill weight $\left(\mathrm{W}_{\mathrm{f}}\right)=$
Fill angle $=$
Conc weight $\left(\mathrm{W}_{\mathrm{c}}\right)=$
EQ pressure $(\mathrm{E})=$
Wall Parameters
Height $\left(\mathrm{H}_{\mathrm{w}}\right)=$
Fill height $\left(\mathrm{H}_{\mathrm{f}}\right)=$
Thickness $\left(\mathrm{t}_{\mathrm{w}}\right)=$
$\mathrm{b}_{\mathrm{w}}=$
$\mathrm{d}_{\mathrm{w}}=$
Slab Parameters
Thickness $\left(\mathrm{t}_{\mathrm{s}}\right)=$
$\mathrm{b}_{\mathrm{s}}=$
$\mathrm{d}_{\mathrm{s}}=$
Footing extension $=$
GWT (from b.o.f.) =
110.00 ft
55.00 ft

4000 psi
60000 psi
$2.9 \mathrm{E}+07 \mathrm{psi}$
$3.6 \mathrm{E}+06 \mathrm{psi}$
62.40 pcf
85.00 pcf
60.00 pcf
60.00 deg
150.0 pcf
180.0 psf

From Geotechnical Report
20.00 ft
18.00 ft
16.00 in
12.00 in
13.50 in
18.00 in
12.00 in
14.50 in
1.00 ft
5.50 ft

Assume 2" cover

Assume 3" cover
(PRV 2'-0" above footing)

Owner: City of Puyallup
Project: WPCP 3rd Clarifier

Comp by: AQ
Checked: \qquad

Wall Design Case 1 - Tank Full, No Backfill
Tank Properties

$\mathrm{H}_{\mathrm{w}}=$	20.00 ft
$\mathrm{t}_{\mathrm{w}}=$	16.00 in
$\mathrm{b}_{\mathrm{w}}=$	12.00 in
$\mathrm{d}_{\mathrm{w}}=$	13.50 in
$\mathrm{P}_{\mathrm{w}}=$	62.40 psf
$\mathrm{D}=$	110.00 ft
$\mathrm{R}=$	55.00 ft
$\mathrm{H}^{2} / \mathrm{Dt}_{\mathrm{w}}=$	2.73 ft
Water pressure $(\mathrm{q})=$	1248 psf
$\mathrm{U}_{\mathrm{F}}=$	1.60
$\mathrm{U}_{\mathrm{H}}=$	1.40

$\mathrm{f}^{\prime} \mathrm{c}=$	4000 psi
$\mathrm{fy}=$	60000 psi
$\mathrm{f}_{\mathrm{s}, \text { max }}$, hoop $=$	17000 psi
$\mathrm{f}_{\mathrm{s}, \mathrm{max}}$, ,hear $=$	20000 psi
$\mathrm{f}_{\mathrm{s}, \text { max }}$, $\mathrm{flexure}=$	17000 psi
$\mathrm{E}_{\mathrm{s}}=$	$2.9 \mathrm{E}+07 \mathrm{psi}$
$\mathrm{E}_{\mathrm{c}}=$	3604997 psi
$\mathrm{n}=\mathrm{E}_{\mathrm{s}} / \mathrm{E}_{\mathrm{c}}=$	8.04
Lateral liquid pressure load factor $($ ACI 350 $)$	
Soil pressure load factor $($ ACI 318 $)$	

Tension - Horizontal Steel
$\mathrm{T}=\mathrm{CqR}$
$\mathrm{C}=\quad 0.519$
$\mathrm{T}=$
$\mathrm{T}_{\mathrm{u}}=$
$\gamma=$
$\mathrm{S}_{\mathrm{d}}=$
$\mathrm{S}_{\mathrm{d}} \mathrm{T}_{\mathrm{u}}=$
35.62 kip
57.00 kip
1.60
1.99
113.16 kip

2 layers A_{s}, req'd $=$
$2.096 \mathrm{in}^{2}$
\#7 Bar Area =
A_{s}, provided $=$
$0.600 \mathrm{in}^{2}$ @ $\mathrm{s}=\quad 6.00$ in o.c.
$2.400 \mathrm{in}^{2} \quad$ OK
Max Tensile Stress
$f^{\prime} \mathrm{c}=$
Moment - Vertical Steel
$\mathrm{M}=\mathrm{CqH}^{2}$
$\mathrm{C}=\quad 0.0219$
$\mathrm{M}=$
$\mathrm{M}_{\mathrm{u}}=$
$\gamma=$
$\mathrm{S}_{\mathrm{d}}=$
$10.93 \mathrm{kip} *$ in
17.49 kip*in
1.60
1.99
$\mathrm{S}_{\mathrm{d}} \mathrm{M}_{\mathrm{u}} /\left(\Phi \mathrm{f}^{\prime} \mathrm{cb}_{\mathrm{w}} \mathrm{d}_{\mathrm{w}}{ }^{2}\right)=$
0.0529
$\omega=$
0.0513

267 < 400 Crack Control OK
$\rho=\quad 0.0034<0.0033$
A_{s}, req'd $=\quad 0.554 \mathrm{in}^{2}$
\#7 Bar Area =
$0.600 \mathrm{in}^{2} @ \mathrm{~s}=\quad 10.00$ in
A_{s}, provided $=$
0.720 in $^{2} \quad$ OK

Shear

$\Phi \mathrm{V}_{\mathrm{c}}=\Phi 2 \mathrm{sqrt}\left(\mathrm{f}^{\prime} \mathrm{c}\right) \mathrm{b}_{\mathrm{w}} \mathrm{d}_{\mathrm{w}}=$	15.37 kip		Concrete shear capacity
$\mathrm{C}=$	0.189		"Circular Concrete Tanks" Table Al2
$\mathrm{V}_{\mathrm{u}}=$	7.55 kip	OK	Factored shear force

Owner: City of Puyallup
Project: WPCP 3rd Clarifier

Comp by: AQ
Checked: \qquad

Wall Design Case 2 - Tank Empty, Full Backfill Tank Properties			
$\mathrm{H}_{\mathrm{w}}=$	18.00 ft	$\mathrm{f}^{\prime} \mathrm{c}=$	4000 psi
$\mathrm{t}_{\mathrm{w}}=$	16.00 in	$\mathrm{fy}=$	60000 psi
$\mathrm{b}_{\mathrm{w}}=$	12.00 in	$\mathrm{f}_{\text {s,max }}$, hoop $=$	17000 psi
$\mathrm{d}_{\mathrm{w}}=$	13.50 in	$\mathrm{f}_{\mathrm{s}, \text { max }}$, , ${ }^{\text {chear }}=$	20000 psi
$\mathrm{P}_{\mathrm{s}}=$	85.00 pcf	$\mathrm{f}_{\mathrm{s}, \text { max }}$, flexure $=$	17000 psi
$\mathrm{E}=$	180 psf	$\mathrm{E}_{\mathrm{s}}=$	$2.9 \mathrm{E}+07 \mathrm{psi}$
$\mathrm{D}=$	110.00 ft	$\mathrm{E}_{\mathrm{c}}=$	3604997 psi
$\mathrm{R}=$	55.00 ft	$\mathrm{n}=\mathrm{E}_{\mathrm{s}} / \mathrm{E}_{\mathrm{c}}=$	8.04
$\mathrm{H}^{2} / \mathrm{Dt}_{\mathrm{w}}=$	2.21 ft		
Soil pressure (q) =	1530 psf		
$\mathrm{U}_{\mathrm{F}}=$	1.60	Lateral liquid pressure load factor (ACI 350)	
$\mathrm{U}_{\mathrm{E}}=$	1.40	Soil pressure lo	or (ACI 318)

Compression

$\mathrm{C}_{\mathrm{L}}=$	0.519 (linear)	"Circular Concrete Tanks" Table A5\&A6
$\mathrm{C}_{\mathrm{U}}=$	1.205 (unifrom)	
$\mathrm{P}=\mathrm{C}_{\mathrm{L}} \mathrm{qR}+\mathrm{C}_{\mathrm{U}} \mathrm{ER}$	55.6 kip	Unfactored force
$\mathrm{P}_{\mathrm{u}}=$	77.8 kip	Factored compression force
$\Phi \mathrm{P}_{\mathrm{n}}=$	339.5 kip	Concrete compression capacity
$\mathrm{Pn}>\mathrm{Pu}$	OK	

Moment - Vertical Steel

$\mathrm{C}_{\mathrm{L}}=$	0.0219 (linear)	"Circular Concrete Tanks" Table A7
$\mathrm{C}_{\mathrm{U}}=$	0.0219 (uniform)	
$\mathrm{M}=\mathrm{C}_{\mathrm{L}} q \mathrm{H}^{2}+\mathrm{C}_{\mathrm{U}} \mathrm{EH}^{2}$	$12.13 \mathrm{kip} * \mathrm{ft}$	Unfactored moment
$\mathrm{M}_{\mathrm{u}}=$	16.99 kip *ft	Factored moment
$\gamma=$	1.40	Factored/unfactored load ratio
$\mathrm{S}_{\mathrm{d}}=$	2.27	Environmental durability factor
$\mathrm{S}_{\mathrm{d}} \mathrm{M}_{\mathrm{u}} /\left(\Phi \mathrm{f}^{\prime} \mathrm{cb}_{\mathrm{w}} \mathrm{d}_{\mathrm{w}}{ }^{2}\right)=$	0.05874	$0.050 \quad 0.009$
$\omega=$	0.0569	"Circular Concrete Tanks" Table A20
$\rho=\omega\left(\mathrm{f}^{\prime} \mathrm{c} / \mathrm{fy}\right)$	$0.00379<$	0.0033
A_{s}, req'd $=\rho b_{w} \mathrm{~d}_{\mathrm{w}}$	$0.615 \mathrm{in}^{2}$	
\#7 Bar Area =	$0.600 \mathrm{in}^{2}$ @ $\mathrm{s}=$	10.00 in
A_{s}, provided $=$	$0.720 \mathrm{in}^{2}$	

Shear

$\Phi \mathrm{V}_{\mathrm{c}}=\Phi 2 \mathrm{sqrt}\left(\mathrm{f}^{\prime} \mathrm{c}\right) \mathrm{b}_{\mathrm{w}} \mathrm{d}_{\mathrm{w}}=$	15.4 kip		Concrete shear capacity
$\mathrm{C}=$	0.189		"Circular Concrete Tanks" Table A12
$\mathrm{V}_{\mathrm{u}}=$	8.1 kip	OK	Factored shear force

Minimum Steel (ACI 350 12.13.2.1)

As,min_horiz $=0.01 * \mathrm{~b} * \mathrm{~d}$	$1.9 \mathrm{in} 2 / \mathrm{ft}$	
Provided $=$	$2.4 \mathrm{in} 2 / \mathrm{ft}$	OK
As,min_vert $=0.0025 * \mathrm{~b} * \mathrm{~d}$	$0.5 \mathrm{in} 2 / \mathrm{ft}$	
Provided $=$	$1.4 \mathrm{in} 2 / \mathrm{ft}$	OK

Comp by: AQ
Checked: \qquad

Slab-Minimum reinforcing per ACI 350		
$\mathrm{t}_{\mathrm{s}}=$	18.0 in	
$\mathrm{b}_{\mathrm{s}}=$	12.0 in	
Hoop steel at 6' from wall joints (ACI 350 maximum restraint)		
A_{s}, req'd $=0.01 * \mathrm{t}_{\mathrm{s}}{ }^{*} \mathrm{~b}_{\mathrm{s}}$	$2.2 \mathrm{in}^{2}$	ACI 350 Table 12.13.2.1
\#7 Bar Area =	$0.600 \mathrm{in}^{2}$ @ s $=$	6.00 in
Provided $=$	$2.4 \mathrm{in}^{2}$	OK
Minimum slab steel (ACI 350 normal restraint)		
A_{s}, req'd $=0.005 * \mathrm{t}_{\mathrm{s}} * \mathrm{~b}_{\mathrm{s}}$	$1.08 \mathrm{in}^{2}$	
Hoops		
\#7 Bar Area =	$0.600 \mathrm{in}^{2}$ @ s $=$	12.00 in
$\mathrm{A}_{\text {s }}$, $\mathrm{prov}=$	$1.2 \mathrm{in}^{2}$	OK
Radial		
\#7 Bar Area =	$0.600 \mathrm{in}^{2}$ @ s $=$	12.00 in
A_{s}, $\mathrm{prov}=$	$1.2 \mathrm{in}^{2}$	OK

Owner: City of Puyallup
Project: WPCP 3rd Clarifier

Subject:Clarifier No. 3

Comp by: AQ
Checked: \qquad

Slab design for buoyant pressure			
$\mathrm{H}_{\mathrm{w}}=$	20.00 ft	$\mathrm{f}^{\prime} \mathrm{c}=$	4000 psi
$\mathrm{t}_{\mathrm{s}}=$	18.00 in	$\mathrm{fy}=$	60000 psi
$\mathrm{b}_{\mathrm{s}}=$	12.00 in	$\mathrm{f}_{\mathrm{s}, \text { max }}$, flexure $=$	17000 psi
$\mathrm{d}_{\mathrm{s}}=$	14.50 in	$\mathrm{E}_{\mathrm{s}}=$	$2.9 \mathrm{E}+07 \mathrm{psi}$
$\mathrm{P}_{\mathrm{w}}=$	62.40 pcf	$\mathrm{E}_{\mathrm{c}}=$	3604997 psi
$\mathrm{H}^{2} / \mathrm{Dt}_{\mathrm{s}}=$	2.42 ft	$\mathrm{n}=\mathrm{E}_{\mathrm{s}} / \mathrm{E}_{\mathrm{c}}$	8.04
water pressure (q) =	218.4 psf	GWT =	3.50 ft
$\mathrm{W}_{\mathrm{c}}=$	150 pcf	$\mathrm{D}=$	110.00 ft
$\mathrm{DL}_{\text {slab }}=$	225 psf	$\mathrm{R}($ from flat area) $=$	45.00 ft
$\mathrm{U}_{\mathrm{F}}=$	1.20	Liquid pressure load factor (ACI 350)	
$\mathrm{U}_{\mathrm{D}}=$	0.90	Resisting dead load	ctor (ACI 350)

Design Load $(w)=\quad 60 \mathrm{psf}$
$\mathrm{S}_{\mathrm{d}}=\quad 1$

Environmental durability factor

Radial Reinforcement - At Center

$\mathrm{C}_{\mathrm{r}}=$	0.2	"Circular Concrete Tanks" Table A14	
$\mathrm{M}_{\mathrm{r}}=\mathrm{C}^{*} \mathrm{wR}^{2}$	$24.13 \mathrm{kip} * \mathrm{ft}$		
$\mathrm{M}_{\mathrm{r}} / .9 \mathrm{f}^{\prime} \mathrm{cb}_{\mathrm{s}} \mathrm{d}_{\mathrm{s}}^{2}=$	0.032	0.030	0.002
$\omega_{\mathrm{r}}=$	0.0314		"Circular Concrete Tanks" Table A20
A_{s}, req'd $=\omega_{\mathrm{r}} \mathrm{b}_{\mathrm{s}} \mathrm{d}_{\mathrm{s}}\left(\mathrm{f}^{\prime} \mathrm{c} / \mathrm{fy}\right)$	$0.364 \mathrm{in}^{2}$		
\#7 Bar Area $=$	$0.600 \mathrm{in}^{2}$ @ s =	12.00	
A_{s}, provided $=$	$0.600 \mathrm{in}^{2}$		

Tangential Reinforcement - At Center

$\mathrm{C}_{\mathrm{t}}=$	0.2		"Circular Concrete Tanks" Table A14
$\mathrm{M}_{\mathrm{t}}=\mathrm{C}^{*} \mathrm{wR}{ }^{2}$	$24.13 \mathrm{kip} * \mathrm{ft}$		
$\mathrm{M}_{\mathrm{t}} / .9 \mathrm{f}^{\prime} \mathrm{cb}_{\mathrm{s}} \mathrm{d}_{\mathrm{s}}^{2}=$	0.032	0.030	0.002
$\omega_{\mathrm{t}}=$	0.0314		"Circular Concrete Tanks" Table A20
A_{s}, req'd $=$	$0.364 \mathrm{in}^{2}$		
Bar Area =	$0.600 \mathrm{in}^{2}$ @ s =	12.00	
A_{s}, provided $=$	$0.600 \mathrm{in}^{2}$		

Shear
$\Phi \mathrm{V}_{\mathrm{c}}=\Phi 2 \mathrm{sqrt}\left(\mathrm{f}^{\prime} \mathrm{c}\right) \mathrm{b}_{\mathrm{s}} \mathrm{d}_{\mathrm{s}}=$
16.5 kip
Concrete shear capacity
$\mathrm{V}_{\mathrm{u}}=\mathrm{Rw} / 2$
1.34 kip Shear Reinf Not Req'd

Owner: City of Puyallup
Project: WPCP 3rd Clarifier

Comp by: AQ Checked: \qquad

Radial Reinforcement - At 0.2R
$\mathrm{C}_{\mathrm{r}}=\quad 0.192$
$\mathrm{M}_{\mathrm{r}}=\mathrm{C} * \mathrm{wR}^{2}$
$M_{\mathrm{r}} / .9 \mathrm{f}^{\prime} \mathrm{cb}_{\mathrm{s}} \mathrm{d}_{\mathrm{s}}{ }^{2}=$
$\omega_{\mathrm{r}}=$
A_{s}, req'd $=\omega_{\mathrm{r}} \mathrm{b}_{\mathrm{s}} \mathrm{d}_{\mathrm{s}}\left(\mathrm{f}^{\prime} \mathrm{c} / \mathrm{fy}\right)$
\#7 Bar Area =
A_{s}, provided $=$
Radial Reinforcement - At 0.3R
$\mathrm{C}_{\mathrm{r}}=$
$\mathrm{M}_{\mathrm{r}}=\mathrm{C}^{*} \mathrm{wR} \mathrm{R}^{2}$
$\mathrm{M}_{\mathrm{r}} / .9 \mathrm{f}^{\prime} \mathrm{cb}_{\mathrm{s}} \mathrm{d}_{\mathrm{s}}^{2}=$
$\omega_{\mathrm{r}}=$
A_{s}, req'd $=\omega_{\mathrm{r}} \mathrm{b}_{\mathrm{s}} \mathrm{d}_{\mathrm{s}}\left(\mathrm{f}^{\prime} \mathrm{c} / \mathrm{fy}\right)$
\#7 Bar Area =
A_{s}, provided $=$
Radial Reinforcement - At 0.6R

$\mathrm{C}_{\mathrm{r}}=$	0.128	"Circular Concrete Tanks" Table A14	
$\mathrm{M}_{\mathrm{r}}=\mathrm{C}^{*} \mathrm{wR}^{2}$	$15.44 \mathrm{kip} * \mathrm{ft}$		
$\mathrm{M}_{\mathrm{r}} / .9 \mathrm{f}^{\prime} \mathrm{cbd}^{2}=$	0.020	0.020	0.000
$\omega \mathrm{r}=$	0.0197		"Circular Concrete Tanks" Table A20
Asreq'd $=\omega_{\mathrm{r}} \mathrm{bd}\left(\mathrm{f}^{\prime} \mathrm{c} / \mathrm{fy}\right)$	$0.229 \mathrm{in}^{2}$		
\#7 Bar Area =	$0.600 \mathrm{in}^{2}$ @ $\mathrm{s}=$	12.00	
As, provided =	$0.600 \mathrm{in}^{2}$		

Radial Reinforcement - At 0.8R

$\mathrm{C}_{\mathrm{r}}=$	0.072	"Circular Concrete Tanks" Table A14	
$\mathrm{M}_{\mathrm{r}}=\mathrm{C}^{*} \mathrm{wR}{ }^{2}$	8.69 kip*ft		
$\mathrm{M}_{\mathrm{r}} / .9 \mathrm{f}^{\prime} \mathrm{cbd}^{2}=$	0.011	0.010	0.001
$\omega \mathrm{r}=$	0.0109		"Circular Concrete Tanks" Table A20
Asreq'd $=\omega_{\mathrm{r}} \mathrm{bd}\left(\mathrm{f}^{\prime} \mathrm{c} / \mathrm{fy}\right)$	0.126 in 2		
\#7 Bar Area =	$0.600 \mathrm{in}^{2}$ @ s =	12.00	
As, provided =	$0.600 \mathrm{in}^{2}$		

Owner: City of Puyallup
Project: WPCP 3rd Clarifier

Subject:Clarifier No. 3

Comp by: \qquad Checked: \qquad

Tangential Reinforcement - At 0.2R		
$\mathrm{C}_{\mathrm{t}}=$	0.196	"Circular Concrete Tanks" Table A14
$\mathrm{M}_{\mathrm{t}}=\mathrm{C}^{*} \mathrm{wR}^{2}$	23.65 kip*ft	
$\mathrm{M}_{\mathrm{l}} / .9 \mathrm{f}^{\prime} \mathrm{cbd}^{2}=$	0.031	$0.030 \quad 0.001$
$\omega \mathrm{t}=$	0.0304	"Circular Concrete Tanks" Table A20
Asreq'd =	$0.353 \mathrm{in}^{2}$	
\#7 Bar Area =	$0.600 \mathrm{in}^{2}$ @ s =	12.00 in
As, provided =	0.600 in 2	OK
Tangential Reinforcement - At 0.4R		
$\mathrm{C}_{\mathrm{t}}=$	0.184	"Circular Concrete Tanks" Table A14
$\mathrm{M}_{\mathrm{t}}=\mathrm{C}^{*} \mathrm{wR}^{2}$	22.20 kip*ft	
$\mathrm{M}_{\mathrm{t}} / .9 \mathrm{f}^{\prime} \mathrm{cbd}^{2}=$	0.029	$0.020 \quad 0.009$
$\omega \mathrm{t}=$	0.0285	"Circular Concrete Tanks" Table A20
Asreq'd =	$0.331 \mathrm{in}^{2}$	
\#7 Bar Area =	$0.600 \mathrm{in}^{2}$ @ s $=$	12.00 in
As, provided =	$0.600 \mathrm{in}^{2}$	OK

Tangential Reinforcement - At 0.6R

$\mathrm{C}_{\mathrm{t}}=$	0.164	"Circular Concrete Tanks" Table A14	
$\mathrm{Mt}=\mathrm{C}^{*} \mathrm{wR}{ }^{2}$	19.79 kip*ft		
$\mathrm{M}_{\mathrm{l}} / .9 \mathrm{f}^{\prime} \mathrm{cbd}^{2}=$	0.026	0.020	0.006
$\omega \mathrm{t}=$	0.0256		'Circular Concrete Tanks" Table A20
Asreq'd =	$0.297 \mathrm{in}^{2}$		
7 Bar Area =	$0.600 \mathrm{in}^{2}$ @ $\mathrm{s}=$	12.00	
As, provided =	$0.600 \mathrm{in}^{2}$		

Tangential Reinforcement - At 0.8R

$\mathrm{C}_{\mathrm{t}}=$	0.136	"Circular Concrete Tanks" Table A14	
$\mathrm{M}_{\mathrm{t}}=\mathrm{C}^{*} \mathrm{wR}^{2}$	16.41 kip*ft		
$\mathrm{M}_{\mathrm{l}} / .9 \mathrm{f}^{\prime} \mathrm{cbd}^{2}=$	0.022	0.020	0.002
$\omega \mathrm{t}=$	0.0217		"Circular Concrete Tanks" Table A20
Asreq'd =	$0.252 \mathrm{in}^{2}$		
\#7 Bar Area =	$0.600 \mathrm{in}^{2}$ @ $\mathrm{s}=$	12.00	
As,provided =	$0.600 \mathrm{in}^{2}$		

Owner: City of Puyallup
Project: WPCP 3rd Clarifier

Subject:Clarifier No. 3

Comp by: \qquad Checked: \qquad
Page:_ 8/9

Radial Reinforcement			M_{r} (kip*ft)	$\mathrm{M}_{\mathrm{r}} / .9 \mathrm{f}^{\prime} \mathrm{cb}_{\mathrm{s}} \mathrm{d}_{\mathrm{s}}{ }^{2}$	ω_{r}	A_{s},req'd (in ${ }^{2}$)	A_{s} provided (in^{2})	
Point	Radius (ft)	C_{r}						
0.00R	0.00	0.200	24.13	0.032	0.0314	0.364	\#7 @ 12.0	0.600
0.10R	4.50	0.198	23.89	0.032	0.0314	0.364	\#7 @ 12.0	0.600
0.20R	9.00	0.192	23.16	0.031	0.0304	0.353	\#7 @ 12.0	0.600
0.30R	13.50	0.182	21.96	0.029	0.0285	0.331	\#7 @ 12.0	0.600
0.40R	18.00	0.168	20.27	0.027	0.0266	0.309	\#7 @ 12.0	0.600
0.50R	22.50	0.150	18.10	0.024	0.0236	0.274	\#7 @ 12.0	0.600
0.60R	27.00	0.128	15.44	0.020	0.0197	0.229	\#7 @ 12.0	0.600
0.70R	31.50	0.102	12.31	0.016	0.0159	0.184	\#7 @ 12.0	0.600
0.80R	36.00	0.072	8.69	0.011	0.0109	0.126	\#7 @ 12.0	0.600
0.90R	40.50	0.038	4.58	0.006	0.0060	0.070	\#7 @ 12.0	0.600
1.00R	45.00	0.000	0.00	0.000	0.0000	0.000	\#7 @ 12.0	0.600

Tangential Reinforcement			$\mathrm{M}_{\mathrm{t}}(\mathrm{kip} * \mathrm{ft})$	$\mathrm{M}_{\mathrm{t}} / .9 \mathrm{f}^{\prime} \mathrm{cb}_{\mathrm{s}} \mathrm{d}_{\mathrm{s}}{ }^{2}$	$\omega_{\text {t }}$	$\mathrm{A}_{\text {s }}$,req'd (in ${ }^{2}$)	A_{s} provided (in^{2})	
Point	Radius (ft)	C_{t}						
0.00R	0.00	0.200	24.13	0.032	0.0314	0.364	\#7 @ 12.0	0.600
0.10R	4.50	0.199	24.01	0.032	0.0314	0.364	\#7 @ 12.0	0.600
0.20R	9.00	0.196	23.65	0.031	0.0304	0.353	\#7 @ 12.0	0.600
0.30R	13.50	0.191	23.04	0.03	0.0295	0.342	\#7 @ 12.0	0.600
0.40R	18.00	0.184	22.20	0.029	0.0285	0.331	\#7 @ 12.0	0.600
0.50R	22.50	0.175	21.11	0.028	0.0275	0.319	\#7 @ 12.0	0.600
0.60R	27.00	0.164	19.79	0.026	0.0256	0.297	\#7 @ 12.0	0.600
0.70R	31.50	0.151	18.22	0.024	0.0236	0.274	\#7 @ 12.0	0.600
0.80R	36.00	0.136	16.41	0.022	0.0217	0.252	\#7 @ 12.0	0.600
0.90R	40.50	0.119	14.36	0.019	0.0188	0.218	\#7 @ 12.0	0.600
1.00R	45.00	0.100	12.06	0.016	0.0159	0.184	\#7 @ 12.0	0.600

Owner: City of Puyallup
Project: WPCP 3rd Clarifier

Subject:Clarifier No. 3

Comp by:
AQ Checked:

MJB	
Page. $\quad 9 / 9$	

Buoyancy	
$\mathrm{H}_{\mathrm{w}}=$	20.00 ft
$\mathrm{H}_{\mathrm{f}}=$	18.00 ft
$\mathrm{GWT}=$	5.50 ft
$\mathrm{R}=$	55.00 ft
$\mathrm{t}_{\mathrm{w}}=$	1.33 ft
$\mathrm{t}_{\mathrm{f}}=$	1.00 ft
Fill angle $=$	60.00 deg
$\mathrm{t}_{\mathrm{s}}=$	1.50 ft
Length of wall $=$	349.8 ft
$\mathrm{W}_{\mathrm{w}}=$	62.40 pcf
$\mathrm{W}_{\mathrm{c}}=$	150 pcf
$\mathrm{W}_{\mathrm{f}}=$	60.00 pcf
Aw/oFooting $=$	9970 ft 2
Atotal $=$	10327 ft 2
Wwalls $=$	1399.1 kips
Wslab $=$	2323.5 kips
Wfill $=$	2529.8 kips
Wwater $($ up $)=$	3544.1 kips
FS $=$	1.76

