

FULL SIZED LEDGIBLE COLOR REPORT IS REQUIRED TO BE PROVIDED BY THE PERMITTEE ON SITE FOR ALL INSPECTIONS

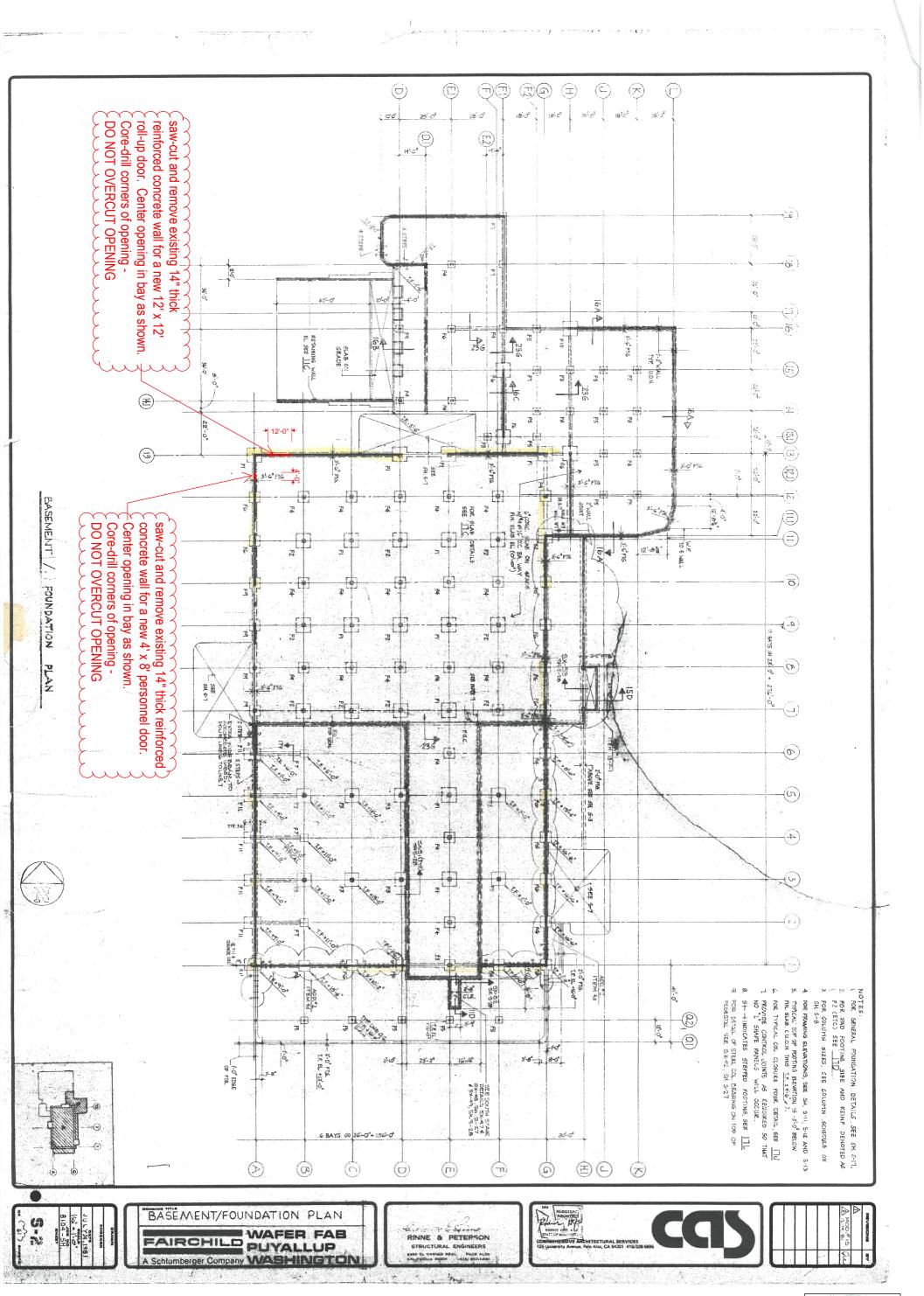
April 9, 2024

STRUCTURAL CALCULATIONS

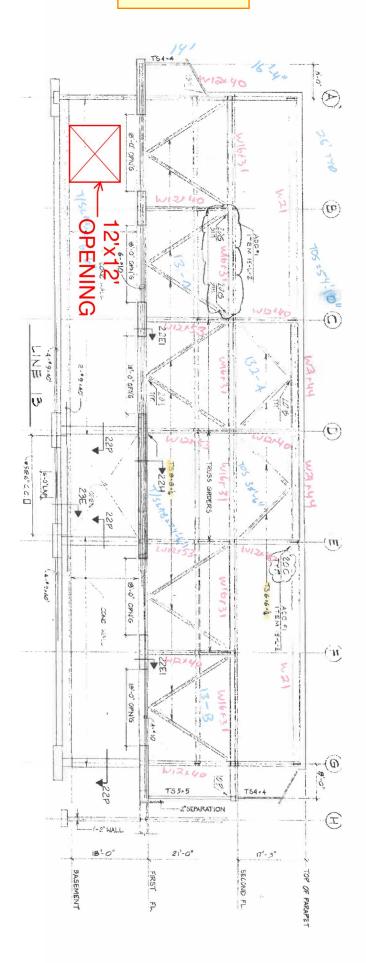
(Permit Submittal)

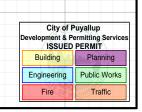
SOUTH HILL WEST BUILDING NEW OPENINGS T+I

1019 39th Avenue SE Puyallup, WA 98374


Quantum Job Number: 23414.01

Prepared for: BENAROYA 9675 SE 36th Street Mercer Island, WA 98040


Prepared by:
QUANTUM CONSULTING ENGINEERS
1511 Third Avenue, Suite 323
Seattle, WA 98101
TEL 206.957.3900
FAX 206.957.3901



STRUCTURAL NARRATIVE

Two new openings will be cut into existing 14" thick basement concrete walls. The first opening is a 4'x8' personnel door on the west exterior wall of suite B30. The second opening is a 12'x12' opening on the north exterior wall of suite B30. The 4'x8' personnel door will have 8' of concrete wall remaining above the opening to support gravity loads and significant concrete wall remains for seismic shear resistance. The small man door opening is ok per engineering judgment based on the calculations completed for the 12'x12' opening. See calculations on the following pages.

The 12'x12' opening occurs at a vent location in the waffle slab, as such no significant gravity load from the waffle slab or levels above will be supported by the concrete wall at the 12'x12' opening location. A v-brace frame exists above the opening and is anchored roughly centered on the opening. The maximum capacity of the braces to apply load to the top of the wall was determined in the following calculation pages. The capacity of base plate connection of the braces limits the amount of load that can be transferred to the wall. The remaining portion of wall above the opening is sufficient to act as a beam to support the unbalanced brace loading. The amount of wall removed removed by the opening is inconsequential from a shear capacity perspective as indicated on the following calculation pages.

1511 THIRD AVENUE SUITE 323 SEATTLE, WA 98101 TEL 206.957.3900

SOUTH H	ILL WE	ST BU	ILDING
project			

BENAROYA

04/09/2024

23414.01

job no.

drawn by:

TVM

design by: sheet no. ▲ This is a beta release of the new ATC Hazards by Location website. Please contact us with feedback.

1 The ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

ATC Hazards by Location

Search Information

Address: 1009 39th Ave SE, Puyallup, WA 98374, USA

Coordinates: 47.155357, -122.28065

501 ft Elevation:

Timestamp: 2024-04-09T14:24:32.077Z

Hazard Type: Seismic ASCE7-16 Reference Document:

Risk Category: П Site Class: D

Basic Parameters

Name	Value	Description
S _S	1.256	MCE _R ground motion (period=0.2s)
S ₁	0.433	MCE _R ground motion (period=1.0s)
S _{MS}	1.256	Site-modified spectral acceleration value
S _{M1}	* null	Site-modified spectral acceleration value
S _{DS}	0.838	Numeric seismic design value at 0.2s SA
S _{D1}	* null	Numeric seismic design value at 1.0s SA

^{*} See Section 11.4.8

▼Additional Information

Name	Value	Description			
SDC	* null	Seismic design category			
F _a	1	Site amplification factor at 0.2s			
F _v	* null	Site amplification factor at 1.0s			
CR _S	0.914	Coefficient of risk (0.2s)			
CR ₁	0.898	Coefficient of risk (1.0s)			
PGA	0.5	MCE _G peak ground acceleration			
F _{PGA}	1.1	Site amplification factor at PGA			
PGA _M	0.55	Site modified peak ground acceleration			
TL	6	Long-period transition period (s)			
SsRT	1.256	Probabilistic risk-targeted ground motion (0.2s)			
SsUH	1.375	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)			
SsD	1.5	Factored deterministic acceleration value (0.2s)			
S1RT	0.433	Probabilistic risk-targeted ground motion (1.0s)			
S1UH	0.483	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)			
S1D	0.6	Factored deterministic acceleration value (1.0s)			
PGAd	0.5	Factored deterministic acceleration value (PGA)			
* C C+:-	* Co. Costion 11 1 0				

^{*} See Section 11.4.8

City of Puyallup Development & Permitting Services ISSUED PERMIT				
Building	Planning			
Engineering	Public Works			
Fire OF W	Traffic			

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Unbalanced Existing Chevron Loading

AISC 15th Ed. / 360-16, AISC 341-16

1.) Brace Info

Size: HSS8x8x1/4 Depth: d: 8 in 58.6° Angle From Horz. θ: **7.1** sqin Area: Ag: Length: lc: 23.58 ft 3.15 in r:

Grade A500 or A501 per existing drawings

Yeild Strength Fy: 50 ksi (A501)

Ry: 1.4 per AISC 341-16 Table A3.1

5 /16" Gusset/Brace Weld dw: 8 in Weld Length lw: No of Weld Lines #: Weld Tensile Strength Fw: 70 ksi **Gusset Plate:** 3 /8" tg: 26 in lg: Gusset Yeild 36 ksi Fyg:

> Ryg: 1.3 Fug: 58 ksi

2.) Brace Capacity

Compression Capacity:

RyFy = 70 ksi lc / r 89.8

Pu = (1/0.877) Fcre Ag 226.7 kips AISC 341-16 F2.3

Post Buckling Str. 0.3Pu 68.0 kips

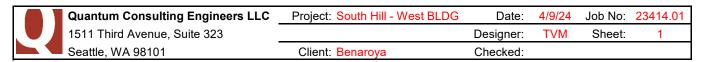
Tension Capacity:

Tu = Ry Fy Ag 497.0 kips

Brace Weld Capacity:

Rn = Fw dw lw $\# \sin(45^\circ)$ 495.0 kips Controls Tension (Tu)

Gusset Weld Capacity:


Rn = (2) Fw dw lg $\sin(45^{\circ})$ (1+0.5 $\sin^{1.5}(\theta)$) Rn = 1121.5 kips

Gusset Block Shear Capacity:

Rn = 0.6 Fug tg lw (2) + Fug tg d

Rn = 1600.8 kips A/SC 15th Ed. EQ J4-5

City of Puyallup Development & Permitting Services ISSUED PERMIT				
Building Planning				
Engineering	Public Works			
Fire				

Unbalanced Existing Chevron Loading

AISC 15th Ed. / 360-16, AISC 341-16

3.) Unbalanced Load

Vert = $(0.3 \text{ Pu - Tu}) * \sin(\theta)$ -364.4 kips

The nominal capacity of the base plate anchorage in tension is 196.8 kips which controls Ecl = 196.8 kips, check beam over 12'-0" opening with point load at the middle.

Company:	Date:	4/9/2024
Engineer:	Page:	1/5
Project:		
Address:		
Phone:		
E-mail:		•

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-14 Units: Imperial units

Anchor Information:

Anchor type: Cast-in-place Material: F1554 Grade 36 Diameter (inch): 1.000

Effective Embedment depth, hef (inch): 13.000

Anchor category: -Anchor ductility: Yes h_{min} (inch): 14.75 Cmin (inch): 1.44 S_{min} (inch): 4.00

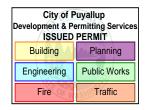
Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 48.00 State: Cracked Compressive strength, f'c (psi): 3000

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No Ignore 6do requirement: Yes

Build-up grout pad: No


Base Plate

Length x Width x Thickness (inch): 10.00 x 32.00 x 0.25

Recommended Anchor

Anchor Name: Heavy Hex Bolt - 1"Ø Heavy Hex Bolt, F1554 Gr. 36

Company:	Date:	4/9/2024
Engineer:	Page:	2/5
Project:		
Address:		
Phone:		
E-mail:		

Load and Geometry Load factor source: ACI 318 Section 5.3

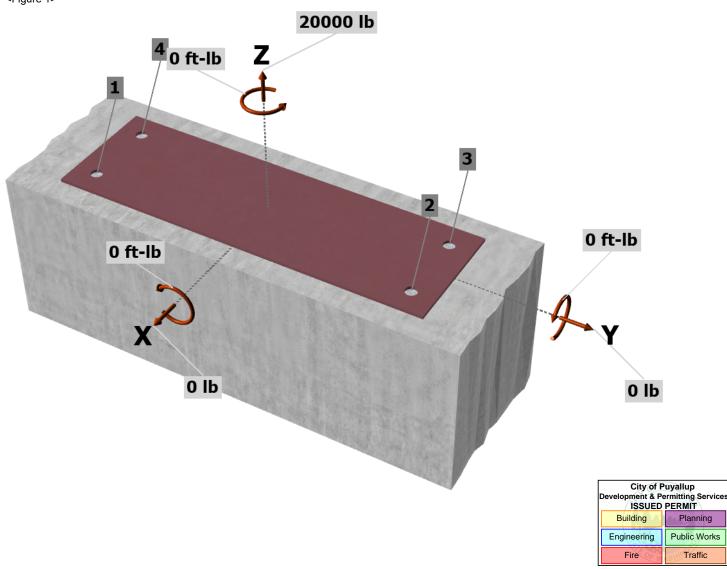
Load combination: not set Seismic design: No

Anchors subjected to sustained tension: Not applicable

Apply entire shear load at front row: No

Anchors only resisting wind and/or seismic loads: No

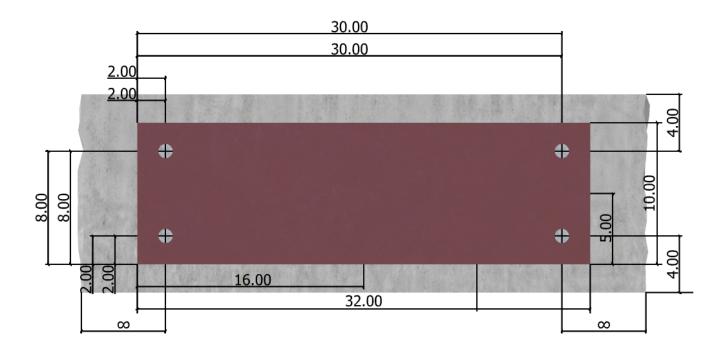
Strength level loads:


Nua [lb]: 20000

V_{uax} [lb]: 0 V_{uay} [lb]: 0

M_{ux} [ft-lb]: 0 M_{uy} [ft-lb]: 0

Muz [ft-lb]: 0


<Figure 1>

Company:	Date: 4/9/2024
Engineer:	Page: 3/5
Project:	
Address:	
Phone:	
E-mail:	

<Figure 2>

Company:	Da	ate:	4/9/2024
Engineer:	Pa	ige:	4/5
Project:			
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	5000.0	0.0	0.0	0.0
2	5000.0	0.0	0.0	0.0
3	5000.0	0.0	0.0	0.0
4	5000.0	0.0	0.0	0.0
Sum	20000.0	0.0	0.0	0.0


<Figure 3>

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 20000 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
35150	0.75	26363	_
Nsa =	(4) 35	6.15 k = 140).6 k

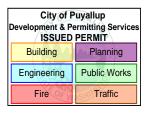
5. Concrete Breakout Strength of Anchor in Tension (Sec. 17.4.2)

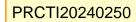
 $N_b = 16 \lambda_a \sqrt{f'_c h_{ef}^{5/3}}$ (Eq. 17.4.2.2b)

λ_a	f_c (psi)	h _{ef} (in)	N_b (lb)	
1.00	3000	13.000	62987	
$\phi N_{cbg} = \phi (A$	$(Nc/ANco)\Psi_{ec,N}\Psi_{e}$	$_{d,N}\Psi_{c,N}\Psi_{cp,N}N_b$ (Se	ec. 17.3.1 & Eq. 17.	.4.2.1b)

A_{Nc} (in ²)	A_{Nco} (in ²)	Ca,min (in)	$arPsi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$
938.00	1521.00	4.00	1.000	0.762	1.00

Nb = 63.0 kips, hef input 1" deeper to account for washer plates. OK per engineering judegment


$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)	
1 000	62987	0.70	20707	


6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

 $\phi N_{P^n} = \phi \Psi_{c,P} N_P = \phi \Psi_{c,P} 8 A_{brg} f_c$ (Sec. 17.3.1, Eq. 17.4.3.1 & 17.4.3.4)

$\Psi_{c,P}$	A _{brg} (in ²)	f'c (psi)	φ	ϕN_{pn} (Ib)
1.0	1.50	3000	0.70	25217

Npn = (4) 25.2 / 0.7 = 144 k

Company:	Date:	4/9/2024
Engineer:	Page:	5/5
Project:		
Address:		
Phone:		
E-mail:		

7. Side-Face Blowout Strength of Anchor in Tension (Sec. 17.4.4)

$\phi N_{sbg} = \phi \{ ($	$1+c_{a2}/c_{a1})/4$ }(1+.	$s/6c_{a1})N_{sb} = \phi\{(1+$	·Ca2/Ca1)/4}(1+s/	6c _{a1})(160 <i>c_{a1}</i> v	$(A_{brg})\lambda \sqrt{f'_c}$ (Sec. 17)	.3.1, Eq. 17.4	.4.1 & 17.4.4.2)	
s (in)	Ca1 (in)	c _{a2} (in)	A_{brg} (in ²)	λ_a	f'_c (psi)	ϕ	ϕN_{sbg} (lb)	
24.00	4.00	99999.00	1.50	1.00	3000	0.70	60126	_

Nsbg = 60.1 k / 0.70 = 85.6 k

11. Results

11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	5000	26363	0.19	Pass
Concrete breakout	20000	20707	0.97	Pass (Governs)
Pullout	5000	25217	0.20	Pass
Side-face blowout	10000	60126	0.17	Pass

1"Ø Heavy Hex Bolt, F1554 Gr. 36 with hef = 13.000 inch meets the selected design criteria.

12. Warnings

- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.
- Designer must exercise own judgement to determine if this design is suitable.

Nominal Breakout Strength Controls the Design Anchorage occurs in heavily reinforced area, it would unconservative to use the breakout strength as Ecl Use the nominal steel strength Ns amplified by 1.4 Ecl = 196.8 k

Project Title: Engineer: Project ID: Project Descr:

Printed: 9 APR 2024, 7:39AM

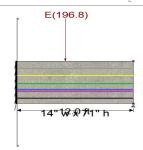
File: Concrete Calcs.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31

Concrete Beam Lic. # : KW-06005835

QUANTUM CONSULTING ENGINEERS

DESCRIPTION: (E) 14" Remaining Wall + Waffle Beam Over 12' Opening

CODE REFERENCES


Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: ASCE 7-16

Material Properties

f'c _{1/2} =	3.0 ksi	Phi Values	Flexure:	0.90
$f'c$ = $f'c^{1/2} * 7.50$	= 410.792 psi	·	Shear:	0.750
ψ Density	= 145.0 pcf	β ₁	=	0.850
λ LtWt Factor	= 1.0	·		
Elastic Modulus =	3,122.0 ksi	Fy - Stirrups		40.0 ksi
fy - Main Rebar =	60.0 ksi	E - Stirrups Stirrup Bar Size	,	00.0 ksi 4
E - Main Rebar =	29,000.0 ksi	·		-
	Number of Res	isting Legs Per Stirru	p =	2

Cross Section & Reinforcing Details

Rectangular Section, Width = 14.0 in, Height = 71.0 in Span #1 Reinforcing....

2-#4 at 24.0 in from Bottom, from 0.0 to 12.0 ft in this span 2-#4 at 21.0 in from Bottom, from 0.0 to 12.0 ft in this span

2-#9 at 6.0 in from Top, from 0.0 to 12.0 ft in this span

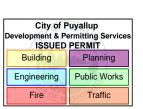
2-#4 at 33.0 in from Bottom, from 0.0 to 12.0 ft in this span 2-#4 at 9.0 in from Bottom, from 0.0 to 12.0 ft in this span 2-#9 at 12.0 in from Top, from 0.0 to 12.0 ft in this span

Beam self weight calculated and added to loads

Point Load: E = 196.80 k @ 5.0 ft, (Max EQ Brace Load)

DESIGN SUMMARY

Maximum Bending Stress Ratio =	0.770 : 1	Maximum Deflection	
Section used for this span	Typical Section	Max Downward Transient Deflection	0.004 in Ratio =
Mu : Applied	318.362 k-ft	Max Upward Transient Deflection	0.000 in Ratio =
Mn * Phi : Allowable	413.390 k-ft	Max Downward Total Deflection	0.004 in Ratio =
Location of maximum on span	5.005 ft	Max Upward Total Deflection	0.000 in Ratio =
Span # where maximum occurs	Span # 1		


Cross Section Strength & Inertia

Top & Bottom references are	e for tension	side of section
-----------------------------	---------------	-----------------

		Phi*Mn (k-ft)			Moment of Inertia (in^4)			
Cross Section	Bar Layout Description	Bottom	Тор	I gr	oss	Icr - Bottom	Icr - Top	
Section 1	2- #4 @ d=47",2- #4 @ d=38",2- #4 @ d=50",2- #4 @ d=62",2- #9 @	413.39	1,154.05	4175	62.83	28,883.55	99,637.31	_

Vertical Reactions	Support notation: Far left is #1
VELLICAL INEACTIONS	Support notation . I di lett is il i

Load Combination	Support 1	Support 2
Overall MAXimum	152.070	44.730
Overall MINimum	4.504	2.703
D Only	7.506	4.504
+0.60D	4.504	2.703
+D+0.70E	114.367	35.404
+D+0.5250E	87.652	27.679
+0.60D+0.70E	111.364	33.602

Design OK

38977 >= 360. **0** < 360.0 38977 >= 180. **0** < 180.0

Project Title: Engineer: Project ID: Project Descr:

Printed: 9 APR 2024, 7:39AM

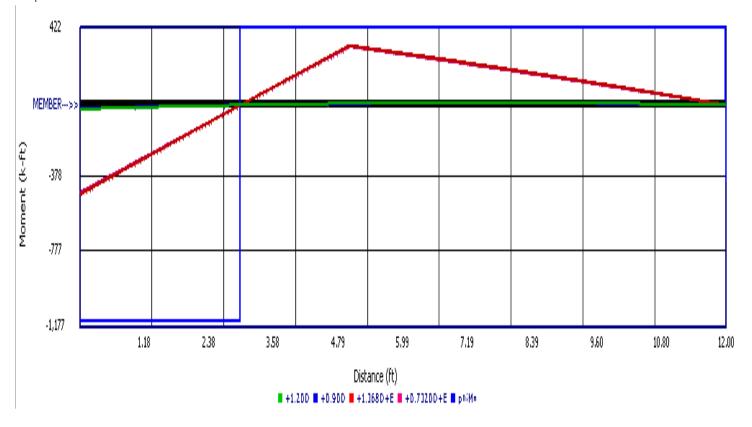
File: Concrete Calcs.ec6

Concrete Beam

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31
QUANTUM CONSULTING ENGINEERS

Lic. #: KW-06005835

DESCRIPTION: (E) 14" Remaining Wall + Waffle Beam Over 12' Opening


Vertical Reactions

Support notation : Far left is #1

Load Combination	Support 1	Support 2
E Only	152.070	44.730

Maximum Forces & Stresses for Load Combinations

Load Combination		Location (ft)	Bending S	Stress Results (k-	-ft)
Segment	Span #	along Beam	Mu : Max	Phi*Mnx	Stress Ratio
MAXimum BENDING Envelope					
Span # 1	1	12.000	318.36	413.39	0.77
+1.20D					
Span # 1	1	12.000	12.16	413.39	0.03
+0.90D					
Span # 1	1	12.000	9.12	413.39	0.02
+1.368D+E					
Span # 1	1	12.000	318.36	413.39	0.77
+0.7320D+E					
Span # 1	1	12.000	313.90	413.39	0.76

City of Puyallup
Development & Permitting Services
ISSUED PERMIT
Building Planning
Engineering Public Works

Project Title: Engineer: Project ID: Project Descr:

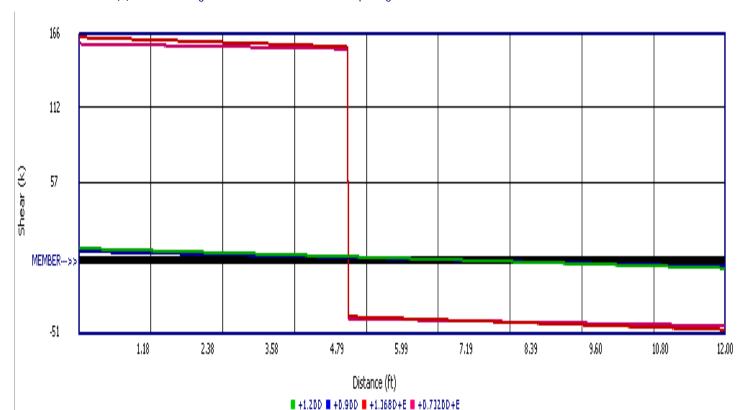
Printed: 9 APR 2024, 7:39AM

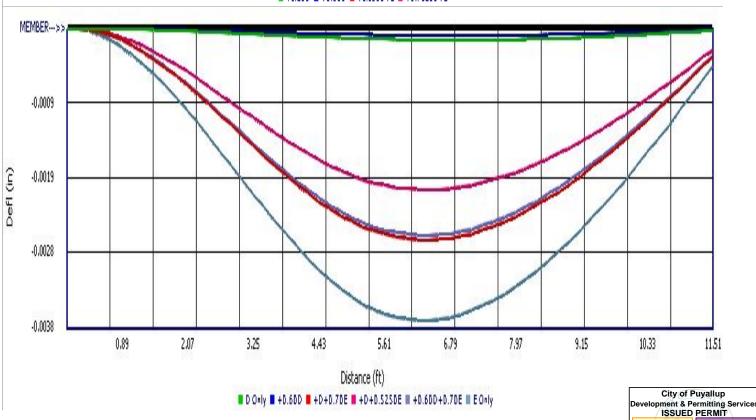
QUANTUM CONSULTING ENGINEERS

File: Concrete Calcs.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31

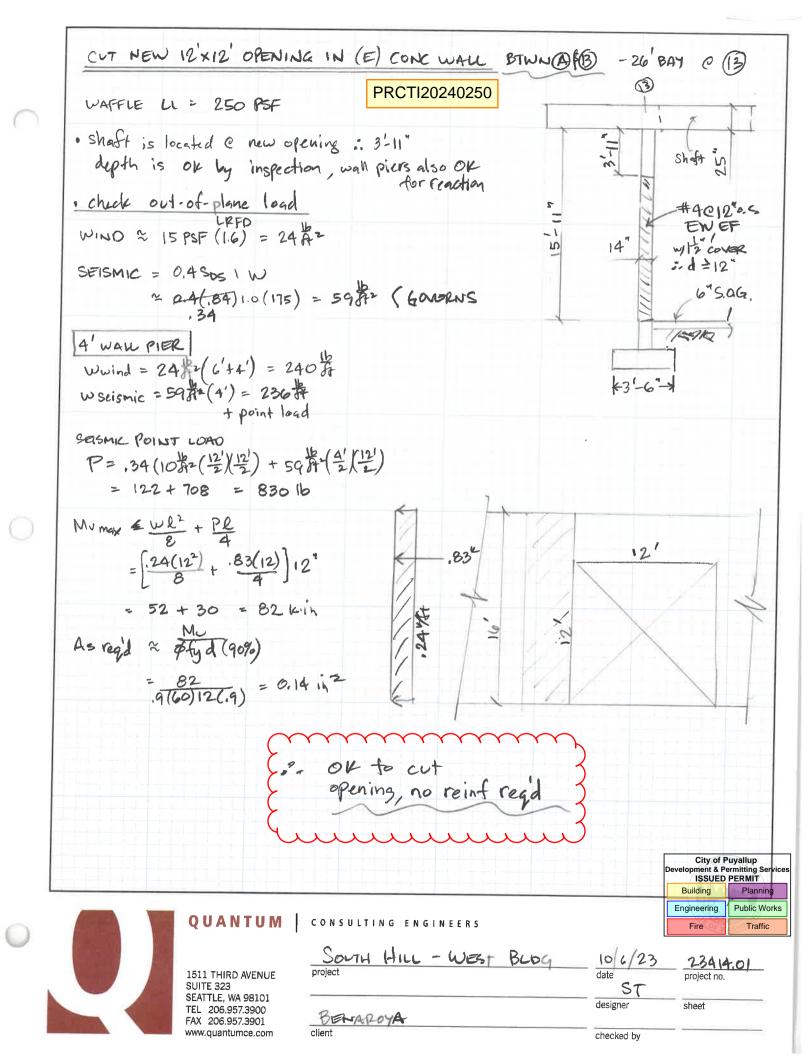
Building

Engineering


Planning


Public Works Traffic

Concrete Beam


Lic. # : KW-06005835

DESCRIPTION: (E) 14" Remaining Wall + Waffle Beam Over 12' Opening

■ D Only ■ +0.600 ■ +0+0.70E ■ +0+0.5250E ■ +0.600+0.70E ■ EOnly

Braced Frame Shear Strength Grid 13

AISC 15th Ed. / 360-16, AISC 341-16, ACI 318-14

Determine the expected shear capacity of the braced frames on grid 13

of Braced Bays = 5 (1 compression and 1 tension brace each bay)

Rn = # (Pu + Tu) $cos(\theta)$ 1885.2 kips

Concrete Wall Check

Acv = 20160 sqin ACI 318-19 18.10.4.1

 $\alpha c = 3$ Rebar #4

Fyt =

A = 0.4 sqins = 12 in o.c. $\rho t = 0.0024$

60000 psi

Vn = $(\alpha c f' c^{1/2} + \rho t Fyt) Acv$ 6193 kips < $(8 f' c^{1/2}) Acv$ = 8834 kips

φ = 0.6

 $\phi Vn = 3716 \text{ kips} > Rn = 1885.2 \text{ kips}$

Note: Grid A has fewer braced frames and significantly more length of wall Grid A shear wall capacity is ok per engineering judgement.

City of Puyallup Development & Permitting Services ISSUED PERMIT				
Building	Planning			
Engineering	Public Works			
Fire OF W	Traffic			