

PROJECT:

SHEET NO.

BY:

DATE:

JOB NO.

11 | 4 | 23 | 23 | 11 |

12181 C Street S. • TACOMA, WA 98444 • (253) 537-8128 • FAX 531-1285

STRUCTURAL CALCULATIONS

FORTHE

PUYALUP GOLDGAPE

COLUTH & FOOTHES

(MASHINGTON STATE FAIRGROUND)

OFFE BROWN ARCHITECT

DESIGH PARAMETERS! 2018 FAC SEE HOTES OH "51.1"

PROJECT:

SHEET NO.

2

BY:

DATE:

JOB NO.

23(1)

12181 C Street S. • TACOMA, WA 98444 • (253) 537-8128 • FAX 531-1285

V=1,06/156,4) H=	=,5011/(A5D) 81,11c (TUTAL LUMO)
= 14.9 K USE BIRDAIR		2019 (SEISMIC)
		NOTACLUMO) 20.9 (SEISMIC) $M = 209(17) = 355 \times 1$
	21 X 12' A WF16 =	12(n) 2 (115) = 43,21
	F50T = (81.1 + 43.7)	1)6 = 2,1 > 1,5
	2	$\frac{-432)}{20.7}$ = $\frac{20.7}{00}$
	e = M/p = 33	(43,2+81,1) 124
	Z 7,4 +	124 = 0(12) = 14 $= 2.2 KSF < 2.5 KSF$
	124	_

PROJECT:

BY: DATE: JOB NO.

2311

12181 C Street S. • TACOMA, WA 98444 • (253) 537-8128 • FAX 531-1285

$$A_{g} = TT(21)^{2} = 13854^{2}$$

$$A_{g} = 101(1385) = 13.84^{2}$$

$$US_{g} (16) # 10$$

$$9_{g} = 1127(16) = 1.596$$

Per P _a at 90 Comment Per P _a at 90 Co	Bars		ž	KOOKO IED	3	7	3)	3										3			Ľ	
Part	9e 60				S _O	rt col	Jmus;	no sid	eswa	3					For	مة	8			Ç	le 60			
### ### #### #########################	A,000			4 3	(kips	1 1	Himat	e Usa		apacit	>			OT (3)	Balar	e g	407 k (3)	(£) O		CO Con	rete 5,000			
The control of the					Mu/Pu	1 11	ji.		9	0.70)						"		₹ :						
13.177 (1994) (1994) (1994) (1994) (1997) (1994) (1997) (1994) (1		0	0.14	2"	້ຳຕ	*4	*9	è	12"	16"	20″	24"		• <u>;</u>	• (j.	₹	e (j.	ş ±		Bars	o 86	0	0.14	7,
120 (2304) 2400 (2402) 2402 (2402) 1519 (2402) 1619 (2	1.87	3177	2434	2434	2434	2360	2011	1710	1272	978	767	619	ł		13.39	1160	33.88			4-#3	1.09	385	289	229
131 (270 start) start(astal start) (270 st	2.29	3349	2557	2557	2557	2480	2119	1808	1357	1063	848	693			14.55	1159	37.93			7-#9	1.55	405	301	239
### Sub-decolograph State Stat	3.31	3760	2854	2854			2378	2043	1558	244	1022				17.15	1174	47.63			4-#7	2.12	430	316	251
1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2	5.89	4800	3602	3602	3602	3497		2611	2025		1374				23.40	1207	70.36	_		4- #8	2.79	460	334	264
Large and garden	66.	3227	2470	2470	2470	2395		1742	1301	1006	793	642			13.61	1172	35.74			4-#6	3.53	492	353	279
2.25 3599 2599 2599 2599 2490 2490 2490 2490 2490 2490 2490 24	2.45	3411	2602	2602	2602	2523	2157	1846	1389	1095	877	718			14.82	177	30.05			4- #10	4.49	535	378	297
2.7. 2.372 2.200 2.200 2.244 2.000 1.773 1.277 1.237 1.235 8.20	5.03 2.03	40.58	2919	3717	3717	2602 3608	3110	2701	2001	707		227			73.94	1230	73.70			7-#- 7	7.05	280	\$ 4 \$ 5	35.0
2.05 372.05 280 0 250 0 210 0 200 0	3	}	: :	 ;	:	}) -			;		ì			r	}					?	3	}	3
2.53 5326 5266 5266 5269 5270 5170 1151 505 5170 1454 5170 5170 1454 5170 5269 5260 5260 5260 5260 5260 5260 5260 5260	2.12	3278	2509	2509	2509	2434	2078	1773	1327	1035	820	299			4.02	1168	36.43		ij.	5-#5	1.37	397	298	236
2.25 3528 2545 2545 2454 2454 2177 (1448) 3199 1003 919 7345 349 18.20 1187 51903 2446 2479 2479 2479 2479 2479 2449 2445 2479 2445 2459 2459	2.60	3473	2649	2649	2649	2570	2198	1883	1420	1125	906	745				1169	41.02			2-#6	1.94	422	314	249
2.2.5 3539 3649 2649 2649 2619 128 1055 1329 0.61 844 869 578 3.50 44.51 159 3773 1325 5.49 4.70 5.49 347 381 300 2.2.7 3539 3649 2649 2649 2649 2649 172 1869 1325 125 2773 641 377 641 377 641 377 641 377 641 377 641 377 642 378 2.2.7 3539 3649 2649 3649 2649 2649 2649 2649 2649 2649 2649 2	3.75	3938	2986	2986	2986	2899	2490	2147	1643		1093	919			18.20	1187	51.90			2-#1	2.65	453	334	264
2.73 53.53 2669 2669 2669 12640 1291 1451 1153 922 773 651 3.77 15.29 1158 42.64 1572 55.55 2699 2669 2699 2669 12640 1265 1355 1125 949 814 4.07 19.06 1175 93.94 1224 5.97 344 124 3 233 25.97 2597 345 1265 2144 1884 1881 1087 869 712 597 345 1465 1175 3179 2179 1656 1144 1884 1881 1087 869 712 597 345 1465 1175 3179 2179 1656 1144 1884 1881 1087 869 712 597 345 1465 1175 3179 2179 1656 1444 1881 1885 4.03 1924 1445 1445 1445 1445 1445 1445 1445 14	2.24	3328	2545	2545	2545	2469	2112	1805	1353	1061	844	689			14.53	1159	37.73			2-#8	3.49	490	357	281
3.37 4027 3049 3049 3049 2960 2248 2202 [665] 355 [125] 949 814 4.07 [9.06] 1175 53.94 2124 54.95 54.9 54.9 443 323 229 5284 2284 2284 2284 2284 2284 2284 2284	2.75	3535	2693	2693	2693	2613	2240	1921	1451	1153	932	773			15.92	1158	42.64			2-#6	4.42	531	381	300
2.9 3537 2.526 2.564 2.564 2.560 2.144 1834 1381 1087 869 712 597 3.45 14.65 1175 38.97 1390 6.45 1.64 409 306 244 4116 3117 3117 3117 3017 3025 2650 22424 1730 1391 1155 116 269 2.44 1181 961 796 674 3.66 16.06 1177 44.03 1645 6.45 1.64 409 306 244 4.19 17 3117 3017 3017 3025 260 2542 1279 1865 1404 1180 980 843 4.03 1924 1188 45.57 14.22 4.19 173 17 3017 3017 3017 3017 3017 3017 30	#14 3.97	4027	3049	3049	3049	2960	2548	2202	1685	1355	1125	949				1175	53.94			2-#10	5.61	584	413	323
2.37 3779 3249 2244 2244 2244 2244 2244 1181 954 1184 1181 954 1181 954 1181 954 1181 954 1181 954 1181 954 1181 955 954 954 1184 955 954 954 958 954 954 958 954 954 958 958 958 958 958 958 958 958 958 958	ļ		(1						-	i	į	:	1	į				5-#11	6.89	641	442	340
2.67 3207, 2202 220	2.37	3378	2584	2584	2584	2506	2144	1834	1381	1087	800	712			14.65	9/1	38.97			*		5	,	:
2.62 34.79 26.26 26.250 25.250 25.24 1770 1805 14.05 1105 1105 190 25.2 1724 6.47 13.18 47.2 1724 25.05 25.250 25.250 25.25 14.10 20.9 988 20.0 697 3.69 18.47 14.88 1185 45.52 1724 6.47 13.18 47.9 1193 10.12 871 4.06 19.6.0 1214 57.98 23.4 6.45 13.18 47.9 21.0 1805 12.0 1770 14.29 1192 10.12 871 4.06 19.6.0 1214 57.98 23.4 6.45 13.18 47.9 23.2 15.2 1724 6.47 13.18 47.9 1193 10.12 871 4.06 19.6.0 1214 57.98 23.4 6.45 13.18 47.9 23.2 15.2 17.0 12.0 1805 14.41 13.0 17.7 25.5 63.6 3.52 15.2 1186 4.5.9 1791 7.45 13.1 15.5 17.9 2.20 25.2 15.2 17.0 12.2 10.1 12.0 17.2 11.1 15.2 17.2 2.2 12.0 1805 14.2 14.0 11.2 17.1 15.1 15.1 15.1 15.1 15.2 17.2 2.2 12.0 1805 14.2 14.0 11.2 17.1 18.0 4.2 17.2 17.2 17.2 17.2 17.2 17.2 17.2 17	2.91) } }	2/40	27.40	27.40	4008	2407	1730	1730		107	0 0			0.00	//:	44.UJ			C#-0		\$ 5 5 5 6 5	900	244
2.62 3479 2658 2658 2658 2658 2659 2210 1895 1341 1992 1012 871 4.06 19.66 1214 57.98 2324 6-49 5.30 570 406 321 6-40 5.30 570 1429 1193 1012 871 4.06 19.66 1214 57.98 2324 6-49 5.30 570 1409 1193 1012 871 4.06 19.66 1214 57.98 2324 6-49 5.30 570 1409 1314 1409 1193 1012 871 4.06 19.66 1214 57.98 2324 6-49 5.30 570 1409 1314 1409 1318 1012 871 4.06 19.66 1214 57.98 2324 6-49 5.30 570 1409 1409 1409 1409 1409 170 3.74 1818 6-46 9 177 180 140 140 170 3.74 1818 6-46 9 177 180 140 140 170 3.74 1818 6-40 9 177 180 140 140 170 3.74 1818 6-40 9 177 180 140 140 170 3.74 1818 6-40 9 177 180 140 140 170 3.74 1818 6-40 170 170 140 140 170 170 140 140 170 170 170 170 170 170 170 170 170 17	7 1 7	2730	76.76	2420	2420	25.43	2120	1065	1404		200	735			47.7	1105	70.7			0#-0		454	240	707
2.62 3180 3180 3180 3108 2664 2300 1770 1429 1193 1012 871 4.06 19.06 1214 57.98 224 6±99 3204 6±99 320 280 280 280 280 280 280 280 280 280 2	74.7	1450	77.84	0707	2784	2703	2331	1000	1514	1200	1 0	200			14.00	100	45.52			/#-O		521	246	9/7
2.02 3479 2658 2658 2658 2658 2579 2210 1895 1434 1136 917 755 636 3.52 15.27 1184 41.51 1515 7.45 150 16.73 634 445 348 348 348 320 2330 2330 23479 2658 2658 2658 2658 2658 2658 2658 2658	4 42	4205	3180	3180	3180	3088	2664	2300	1770	420	1193	1012			19.60	1214	57.98			\$-#Q		27.5	404	121
2.82 3479 2658 2658 2658 2559 2570 1361 1365 147 136 147 157 15.7 1184 14.51 1515 1515 1515 1515 1525 1526 1526 1256 1256 1256 1257 1184 14.51 1515 15		}	}		}	}	}	}) } }		:	!				:	}			\ \\ \#\\	7 6	72.7	3 4	970
4.64 4294 3247 3249 2830 2747 2359 2029 1546 1223 1014 844 717 3.74 16.81 1186 46.99 1791 7-45 1.91 421 314 249 424 3247 3247 3247 31539 2029 1546 1224 1040 897 4.11 20.25 1211 60.12 2426 7-46 2.72 457 336 267 244 3294 3247 3247 3247 3247 3247 3247 3247 324	2.62	3479	2658	2658	2658	2579	2210	1895	1434	-	917	755			5.27	1184	41.51	1515		<u>-</u>	3	t 2	}	9
4.64 4294 3247 3247 3247 3153 2717 2350 1814 1464 1224 1040 897 4.11 20.25 1211 60.12 2426 2.74 3529 2695 2695 2695 2695 2695 2617 2243 1925 1460 1161 939 775 657 3.61 15.71 1180 42.78 1577 2.74 3529 2695 2695 2695 2697 2243 1925 1460 1161 939 775 657 3.61 15.71 1180 42.78 1577 2.86 4384 3312 3312 3312 3312 3312 3277 2299 1856 1503 1256 1070 923 4.22 11.01 1205 62.16 2521 2.86 4384 3312 3312 3312 3277 2774 2399 1856 1503 1256 1070 923 4.22 11.01 1205 62.16 2521 2.86 4384 2921 2921 2921 2922 2276 1956 1486 1184 962 797 674 3.60 15.88 1191 44.03 1638 2.97 3563 2773 2771 2771 2771 2771 2771 2790 2308 1986 1512 1206 983 817 693 3.62 16.11 1199 45.21 1702 2.97 3563 2771 2771 2771 2771 2771 2771 2790 2308 1986 1512 1206 983 817 693 3.62 16.11 1199 45.21 1702 2.97 3563 2771 2771 2771 2771 2771 2771 2790 2308 1986 1512 1206 983 817 693 3.62 16.11 1199 45.71 1701 2.97 3563 2967 2967 2967 2967 2967 2967 2725 272 136 1638 1314 1087 912 781 3.84 17.82 1203 51.41 2006 3.11 3680 2867 2867 2867 2725 2342 2015 1537 1229 1006 837 711 3.67 16.48 1199 45.47 1761 3.83 3968 3013 3013 2025 2518 2172 1668 1340 1111 935 801 3.90 18.27 1203 54.39 14.7 3.54 3731 2845 2845 2845 2845 2845 2845 2845 2847 2158 1314 1087 912 44.3 18.90 4.13 4091 3103 3103 3013 2596 2247 1728 1391 1159 979 841 3.98 18.99 1211 55.83 2218 4.13 566 "Slender Columns, Capacity Reduction for", page 2-11. 4.13 566 "Slender Columns, Capacity Reduction for", Page 2-11.	3.21	3720	2830	2830	2830	2747	2359	2029	1546	1235	1014	844			16.81	1186	46.99			7-#5		421	314	249
2.74 3529 2695 2695 2695 2617 2243 1925 1460 1161 939 775 657 3.61 15.71 1180 42.78 15.77 1865 7.48 4.88 552 396 312 7.48 4.88 5312 3312 3312 3312 3312 3312 3312 3312	4.64	4294	3247	3247	3247	3153	2717	2350	1814		1224	1040			20.25	1211	60.12			2-#6				797
3580 2733 2733 2733 2652 2276 1956 1486 1184 962 797 674 3.60 15.88 1191 44.03 1638 7.49 6.118 4.84	2.74	3529	2695	2695	2695	2617	2243	1925	1460			77.5	·		15.71	1180	42.78			1#-2		200		887
1384 2312 3312 3312 3317 2774 2399 1856 1503 1256 1070 923 4.22 21.01 1205 62.16 2521 7-#9 6.18 13812 3312 3312 3312 3312 3312 3317 2774 2399 1856 1503 1256 1070 923 4.22 21.01 1205 62.16 2521 88-#8 5.58 1384 2921 2921 2921 2921 2921 2921 2921 292	3.37	3782	2876	2876	2876	2793	2398	2064	1577		1038	898			17.35	1181	48.47			7-#8		552	396	312
3580 2733 2733 2733 2652 2276 1956 1486 1184 962 797 674 3.60 15.88 1191 44.03 1638 8#8 5.56 3844 2921 2921 2921 2922 2837 2438 2101 1608 1288 1063 891 760 3.83 17.54 1194 50.00 1935 75.2 2921 2921 2921 2922 2922 2922 2922 29	4.86	4384	3312	3312	3312	3217	2774	2399	1856			1070				1205	62.16			6#-2	8	609	431	338
3844 2921 2921 2921 2837 2438 2101 1608 1288 1063 891 760 3.83 17.54 1194 50.00 1935 3650 2771 2771 2771 2690 2308 1986 1512 1206 983 817 693 3.62 16.11 1199 45.21 1702 3906 2969 2969 2862 2477 2136 1638 1314 1087 912 781 3.84 17.82 1203 51.41 2006 3680 2807 2807 2807 2807 2807 2807 2807 28	#10 2.86	3580	2733	2733	2733	2652	2276	1956	1486	1184	962	797	674		15.88	1191	44.03			8-#8				326
3630 2771 2771 2771 2690 2308 1986 1512 1206 983 817 693 3.62 16.11 1199 45.21 1702 890 2969 2969 2969 2882 2477 2136 1638 1314 1087 912 781 3.84 17.82 1203 51.41 2006 3680 2867 2867 2867 2867 2867 2247 2136 1638 1314 1087 912 781 3.84 17.82 1203 51.41 2006 368 2477 2136 1638 1314 1087 912 711 3.67 16.48 1199 46.47 1761 368 1340 1111 935 801 3.90 18.27 1203 52.91 2077 3781 28845 2845 2845 2845 2761 2374 2046 1562 1250 1026 856 729 3.76 16.91 1195 47.64 1823 4029 3059 3059 3059 2970 2556 2209 1697 1365 1135 959 821 4.00 18.78 1199 54.39 2147 3781 2881 2881 2881 2798 2407 2075 1588 1272 1048 876 746 3.75 17.08 1206 48.94 1880 4091 3103 3103 3013 2596 2244 1728 1391 1159 979 841 3.98 18.99 1211 55.83 2218 4.00 18.78 12.84 12.	#11 3.52	3844	2921	2921	2921	2837	2438	2101	1608			168	760		17.54	1194	50.00					1		
3906 2969 2969 2969 2882 2477 2136 1638 1314 1087 912 781 3.84 17.82 1203 51.41 2006 3680 2880 28807 2807 2807 2725 2342 2015 1537 1229 1006 837 711 3.67 16.48 1199 46.47 1761 3968 3013 3013 2925 2518 2172 1668 1340 1111 935 801 3.90 18.27 1203 52.91 2077 3731 2845 2845 2761 2374 2046 1562 1250 1026 856 729 3.76 16.91 1195 47.64 1823 4029 3059 3059 3059 2970 2556 2209 1697 1365 1135 959 821 4.00 18.78 1199 54.39 2147 3781 2881 2881 2881 2798 2407 2075 1588 1272 1048 876 746 3.75 17.08 1206 48.94 1880 4091 3103 3103 3013 2596 2244 1728 1391 1159 979 841 3.98 18.99 1211 55.83 2218 ee "Slender Columns, Capacity Reduction for", page 2-11.	#10 2.99	3630	2771	2771	2771	2690	2308	1986	1512	1206	983	817	693		16.11	1199	45.21							
3680 2807 2807 2807 2205 23142 2015 1537 1229 1006 837 711 3.67 16.48 1199 46.47 1761 3.69 3013 3013 2925 2518 2172 16.68 1340 1111 935 801 3.90 18.27 1203 52.91 2077 3059 3013 2925 2518 2172 16.68 1340 1111 935 801 3.90 18.27 1203 52.91 2077 3059 2059 2761 2374 2046 15.62 1250 1026 856 729 3.76 16.91 1195 47.64 1823 4029 3059 3059 2970 2556 2209 1697 1365 1135 959 821 4.00 18.78 1199 54.39 2147 3781 2881 2798 2407 2075 1588 1272 1048 876 746 3.75 17.08 1206 48.94 1880 4091 3103 3103 3103 2596 2244 1728 1391 1159 979 841 3.98 18.99 1211 55.83 2218 66 "Slender Columns, Capacity Reduction for", page 2-11.	#11 3.67	3906	2969	2969	2969	2882	2477	2136	1638		1087	912	781		17.82	1203	51.41			<u> Baya</u>				
3968 3013 3013 2925 2518 2172 1668 1340 1111 935 801 3.90 18.27 1203 52.91 2077 3731 2845 2845 2761 2374 2046 1562 1250 1026 856 729 3.76 16.91 1195 47.64 1823 4029 3059 3059 3059 2970 2556 2209 1697 1365 1135 959 821 4.00 18.78 1199 54.39 2147 3781 2881 2881 2798 2407 2075 1588 1272 1048 876 746 3.75 17.08 1206 48.94 1880 4091 3103 3103 3103 3013 2596 2244 1728 1391 1159 979 841 3.98 18.99 1211 55.83 2218 ee "Sender Columns, Capacity Reduction for", page 2-11.	#10 3.11	3680	2807	2807	2807	2725	2342	2015	1537	229	1006	837	Ξ		16.48	1199	46.47							
3.24 3731 2845 2845 2761 2374 2046 1562 1250 1026 856 729 3.76 16.91 1195 47.64 1823 3.98 4029 3059 3059 2970 2555 2209 1697 1365 1135 959 821 4.00 18.78 1199 54.39 2147 3.36 3781 2881 2881 2881 2281 2798 2407 2075 1588 1272 1048 876 746 3.75 17.08 1206 48.94 1880 4.13 4091 3103 3103 3013 2596 2244 1728 1391 1159 979 841 3.98 18.99 1211 55.83 2218 11) See "Slender Columns, Capacity Reduction for", page 2-11.	#11 3.83	3968	3013	3013	3013	2925	2518	2172	1668	340	=	935	801			1203	52.91							
3.24 3731 2845 2845 2845 2761 2374 2046 1562 1250 1026 856 729 3.76 16.91 1195 47.64 1823 3.98 4029 3059 3059 2970 2556 2209 1697 1365 1135 959 821 4.00 18.78 1199 54.39 2147 3.36 3781 2881 2881 2881 2798 2407 2075 1588 1272 1048 876 746 3.75 17.08 1206 48.94 1880 4.13 4091 3103 3103 3103 2596 2244 1728 1391 1159 979 841 3.98 18.99 1211 55.83 2218 11					_									•						ين يُدُ				
3.98 4029 3059 3059 2970 2556 2209 1697 1365 1135 959 821 4.00 18.78 1199 54.39 2147 3.36 3781 2881 2881 2798 2407 2075 1588 1272 1048 876 746 3.75 17.08 1206 48.94 1880 4.13 4091 3103 3103 3013 2596 2244 1728 1391 1159 979 841 3.98 18.99 1211 55.83 2218 [1] See "Slender Columns, Capacity Reduction for", page 2-11. [2] See "Control Points for Interaction Curves"; "Typical Interaction Curve", Fig. 4-1, page 4-4.	#10 3.24	3731	2845	2845	2845	2761	2374	2046	1562	250	1026	856				1195	47.64							
3.36 3781 2881 2881 2881 2881 2281 2078 1262 1048 876 746 3.75 17.08 1206 48.94 1880 41.13 4091 3103 3103 3013 2596 2244 1728 1391 1159 979 841 3.98 18.99 1211 55.83 2218 11.13 See "Slender Columns, Capacity Reduction for", page 2-11.	#11 3.98	4029	3059	3059	3059	2970	2556	2209	1697	1365	1135	959			18.78	1199	54.39							
4.13 4091 3103 3103 3013 2596 2244 1728 1391 1159 979 841 3.98 18.99 1211 55.83 2218 (1) See "Slender Columns, Capacity Reduction for", page 2-11. (2) See "Control Points for Interaction Curves"; "Typical Interaction Curve", Fig. 4-1, page 4-4.	410 3.36	3781	2881	2881	2881	2798	2407	2075	1588	1272	1048	876	746		17.08	1206	48.94			ilias e				
See "Slender Columns, Capacity Reduction for", page 2-11. See "Control Points for Interaction Curves"; "Typical Interaction Curve", Fig. 4-1, page 4-4.	4.13	4091	3103	3103	3103	3013	2596	2244	1728	391	1159	626	841			1211	55.83							
See "Slender Columns, Capacity Reduction for", page 2-11. See "Control Points for Interaction Curves"; "Typical Interaction Curve", Fig. 4-1, page 4-4.	-			-				_			-	-			-					20 FA				
See Control rouns for interaction Curves ; lypical interaction Curve ; rig. 4**, puge 4**.		See "	Slende	Col	umns,	Cap	acity	Reduc		y"', p.	age 2	Ξ:										ie ''S	ender	ত্র ;
		See S		֓֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֡֡				Ļ			-	•	(=	•		1	_				:	•	

4.59 5.19 6.02 7.13 8.64 11.18

0 62 72 81 89 97

78 88 99 109 118 133

128 138 149 161 173 187

172 183 195 209 222 239 250

5.27 6.24 7.65 9.79 13.16 20.78

57 67 79 89 97 107 107

1.67 5.01 1 1.70 5.86 1 1.73 7.04 1.75 8.73 1.1.17 11.17 11.16 1.69 9.09

For Pu at

ج ج (ج

4.14 4.57 5.19 5.78 6.62 7.88 10.22

122 131 141 151 161 172 178

166 176 186 197 208 221 231 259

Balance

O1 ®

Capadity

Usable

(kips)—Ultimate

0.70

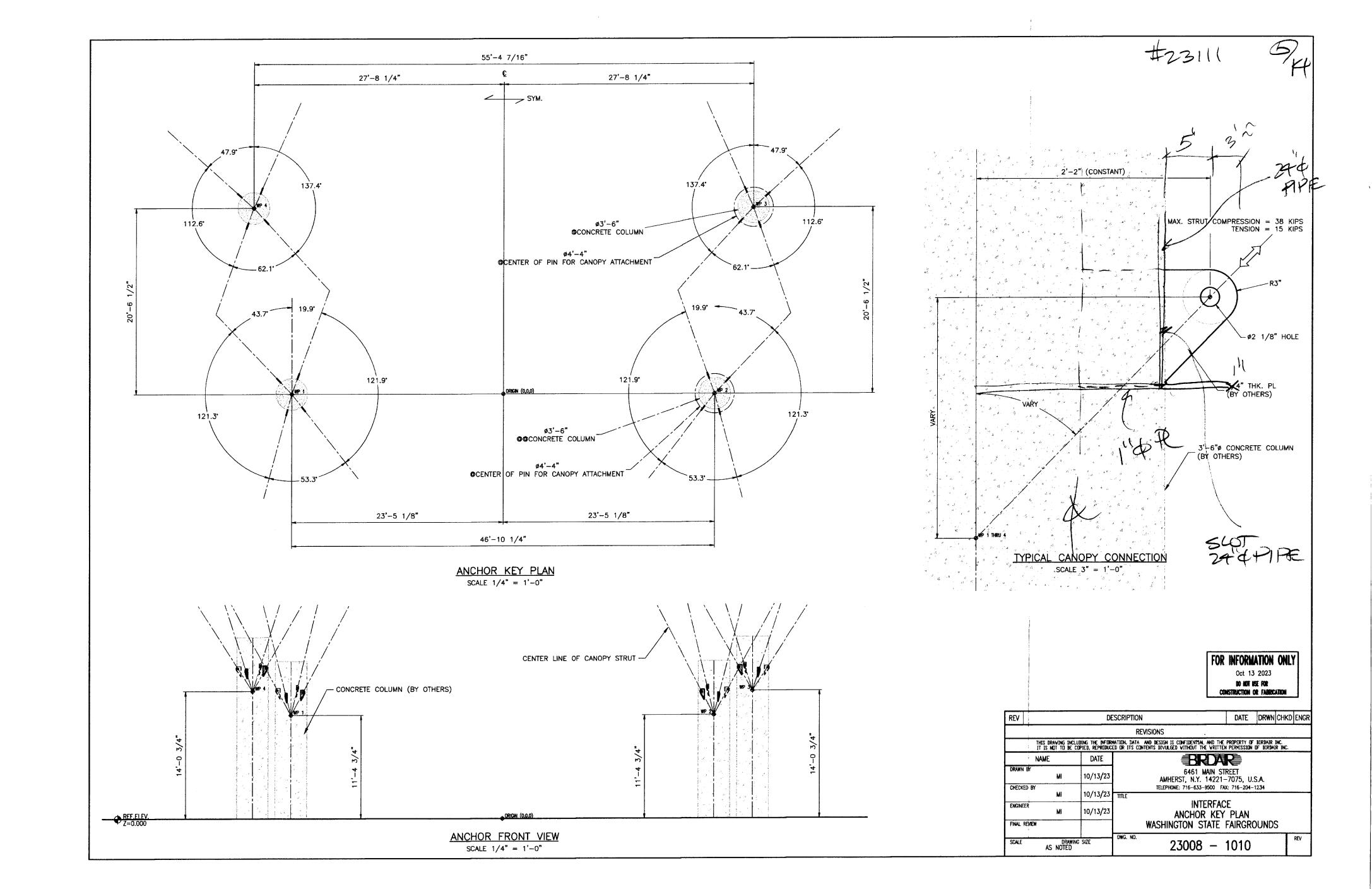
⊕

e (in.)

II

 M_u/P_u

16,


12,

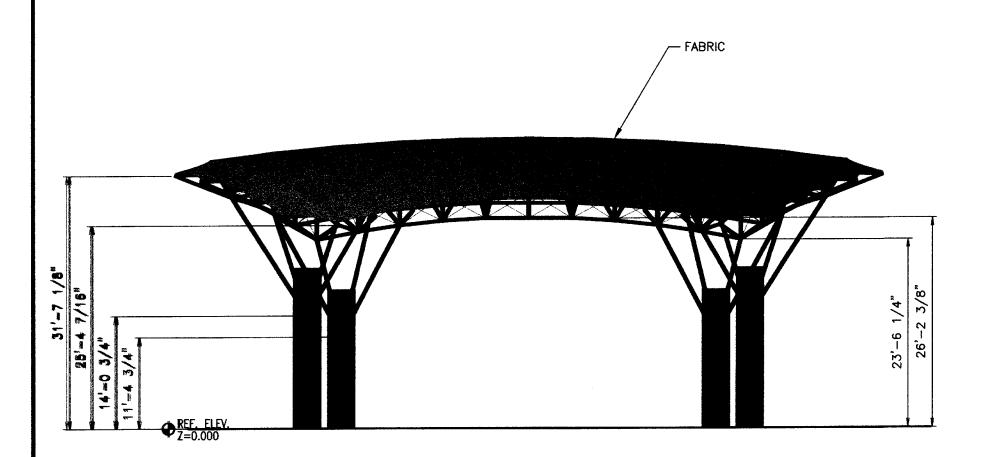
 $0.10f'_c A_g =$

ROUND TIED COLUMNS 12" DIA.
Short columns; no sidesway (1)

(1) See "Slender Columns, Capacity Reduction for", page 2-11.
(2) See "Control Points for Interaction Curves"; "Typical Interaction Curve", Fig. 4-1, pag (3) "OT" is zero tension in bars on tension side. Splices carry design compression only.

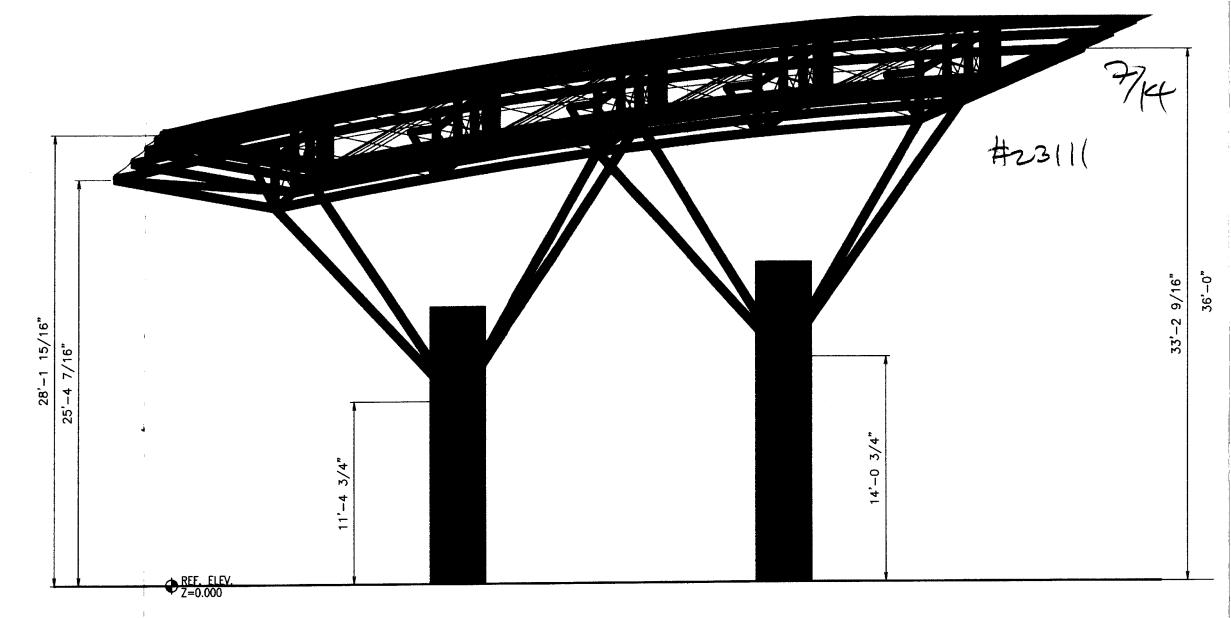
CONCRETE REINFORCING STEEL INSTITUTE

1 PRESTRESS No. R 1 2 3 4 Total	Fx(K1p) RF -2.5 2.5 4.7 -4.7 0.0	y(KIp) 2. 4 2. 4 -2. 4 -2. 4 0. 0	RFz(KIP) -11, 2 -11, 2 -19, 2 -19, 2 -60, 7	0. 0 0. 0 0. 0	RMy(Kip*ft) 0.1 -0.1 -0.1 0.1	RMz(Kip*ft) 0. 1 -0. 1 -0. 1 0. 1
2 SNOW LOAD No. R 1 2 3 4 Total			RFz(KIp) -27. 6 -27. 6 -47. 2 -47. 2 -149. 6	-0, 1 -0, 1 -0, 1	RMy(Kip*ft) 0. 2 -0. 2 -0. 4 0. 4	RMz(Kip*ft) 0. 1 -0. 1 -0. 2 0. 2
3 SNOW LOAD No. R 1 2 3 4 Total	(X UNBALAN F×(KIP) RF -3.6 4.5 5.9 -6.8 0.0	CED LOA y(KIP) 2.3 6.1 -6.1 -2.2 0.0	D) RFz(K p) -12, 8 -31, 9 -49, 2 -19, 7 -113, 6	Ö. O -O. 1 -O. 1	RMy(Kip*ft) 0.1 -0.2 -0.3 0.2	RMz(Kip*ft) 0.1 0.0 -0.2 0.1
4 SNOW LOAD No. R 1 2 3 4 Total				-0. 1 -0. 1 0. 0	RMy(Kip*ft) 0.2 -0.2 -0.1 0.1	RMz(Kip*ft) 0.0 0.0 -0.1 0.1
5 UNIFORM UP No. R 1 2 3 4 Total			RFz(K1p) -6. 8 -6. 8 3. 4 3. 4 -6. 8	RM×(Kip*ft) 0.0 0.0 0.0 0.0 0.0	RMy(Kip*ft) 0.0 0.0 0.0 0.0	RMz(K:p*ft) 0. 0 0. 0 0. 0 0. 0 0. 0
6 +X WIND LD No. R 1 2 3 4 Total			RFz(KIP) -5. 9 -10. 1 -11. 2 -22. 3 -49. 5	RMx(KIp*ft) 0.0 0.0 0.0 -0.1	RMy(Kip*ft) 0.0 0.0 -0.1 0.1	RMz(Kip*ft) 0.0 -0.1 -0.1 0.0
7 +Y WIND LD No. R 1 2 3 4 Total	AD AT CASE Fx(Kip) RF -4.5 4.5 9.8 -9.8 0.0	A y(Kip) 4. 4 4. 4 -1. 3 -1. 3 6. 2	RFz(K1p) -22, 7 -22, 7 -26, 3 -26, 3 -98, 0	RMx(Kip*ft) -0.1 -0.1 0.0 0.0	RMy(Kip*ft) 0, 2 -0, 2 -0, 3 0, 3	RMz(Kip*ft) 0.1 -0.1 -0.2 0.2
8 -Y WIND LD No. R 1 2 3 4 Total	AD AT CASE Fx(Kip) RF -2.2 2.2 2.6 -2.6 0.0	A y(Kip) I 0. 7 0. 7 -1. 7 -1. 7 -2. 1	RFz(Kip) -10.3 -10.3 -10.6 -10.6 -41.9	RM×(Kip*ft) 0.0 0.0 0.0 0.0	RMy(Kip*ft) O. O O. O -O. 1 O. 1	RMz(Kip*ft) 0. 0 0. 0 -0. 1 0. 1
9 +X+Y WIND No. R 1 2 3 4 Total	LDAD AT CA Fx(Kip) RF -3.3 3.7 7.5 -5.0 3.0	SE A y(Kip) I 5. 2 1. 7 -2. 0 -2. 3 2. 7	RFz(KIp) -17. 4 -11. 1 -16. 2 -32. 9 -77. 6	RM×(K:p*ft) -0.1 0.0 0.0 -0.1	RMy(Kip*ft) 0.2 0.0 -0.1 0.3	RMz(Kip*ft) 0. 1 -0. 1 -0. 1 0. 1
10 +X WIND LI No. RI 1 2 3 4 Total	DAD AT CAS Fx(KIp) RF -1. 1 0. 6 -0. 6 1. 9 0. 8	E B y(Kip) I -1.0 -2.8 -1.4 -2.3 -7.5	RFz(Kip) -1, 5 -5, 8 7, 0 -4, 3 -4, 5	RMx(Kip*ft) 0.0 0.0 0.0 0.0	RMy(Kip*ft) O. 0 O. 0 O. 0 O. 0	RMz(Kip*ft) 0.0 0.0 0.0 0.0 0.0
11 +Y WIND LI No. RI 1 2 3 4 Total	DAD AT CAS Fx(Kip) RF -3.0 3.0 5.0 -5.0 -5.0	E B y(Kip) F 0.8 0.8 -0.7 -0.7 0.1	RFz(Kip) -17.6 -17.6 -17.6 -8.5 -8.5 -52.1	RM×(Kip*ft) 0.0 0.0 0.0 0.0	RMy(Kip*ft) 0.1 -0.1 -0.2 0.2	RMz(Kip*ft) 0.0 0.0 -0.1 0.1
12 -Y WIND LI No. RI 1 2 3 4 Total	DAD AT CAS Fx(Kip) RF -0.8 0.8 -1.3 1.3 0.0	E B y(Kip) F -2.9 -2.9 -1.2 -1.2 -8.1	RFz(Kip) -5. 9 -5. 9 -7. 5 7. 5 3. 1	RMx(Kip*ft) 0.0 0.0 0.0 0.0 0.0	RMy(Kip*ft) 0. 0 0. 0 0. 0 0. 0	RMz(Kip*ft) 0.0 0.0 0.0 0.0 0.0

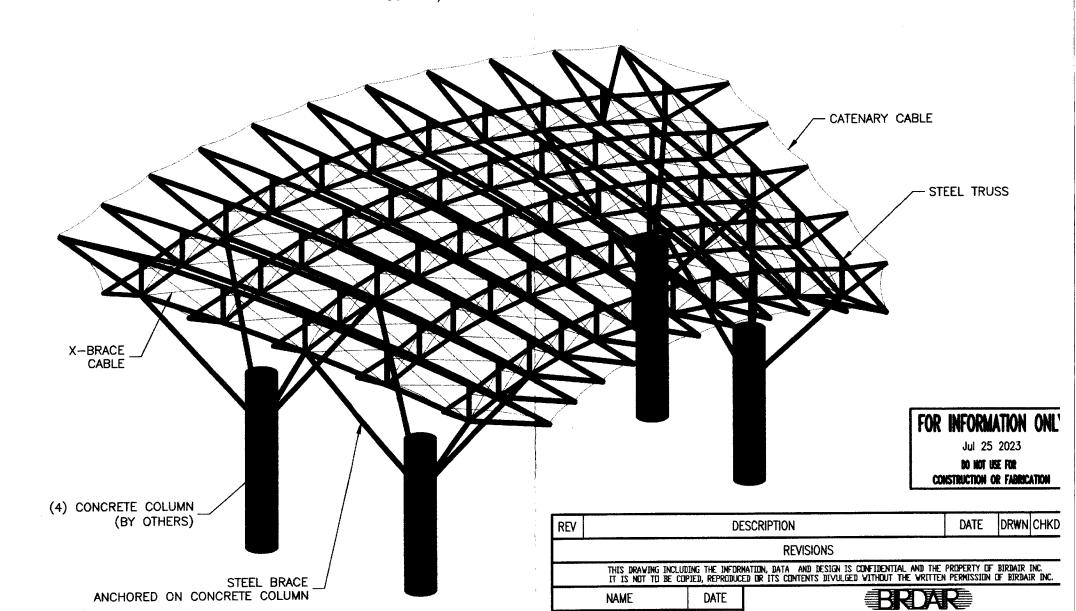

13 +X+Y WI No. 1 2 3 4 Total	ND LOAD AT C/ RFx(Kip) RFy -1.7 2.2 3.0 -0.8 2.8	ASE B (Kip) R 1.6 -1.8 -1.5 -1.7 -3.4	RFz(Kip) -12. 2 -6. 7 2. 0 -15. 2 -32. 1	0. 0 0. 0 0. 0	RMy(Kip*ft) 0.1 0.0 0.0 0.1	RMz(Kip*ft) 0.0 0.0 -0.1 0.0
14 BALANCE No. 1 2 3 4 Total	D SNOW + WINI RFx(Kip) RFy -6.9 6.9 14.2 -14.2 0.0	(Kip) R 6.6 6.6 -4.3 -4.3 4.5	RFz(Kip) -31. 7 -31. 7 -46. 8 -46. 8 -157. 0	-0. 1 -0. 1 -0. 1	RMy(Kip*ft) 0.3 -0.3 -0.4 0.4	RMz(Kip*ft) 0.1 -0.1 -0.3 0.3
15 X UNBAL No. 1 2 3 4 Total	ANCED SNOW + RFx(Kip) RFy -4.8 5.4 9.8 -10.3 0.0	WIND (Kip) R 4.0 6.9 -4.6 -1.7 4.6	2Fz(Kip) -20. 6 -34. 9 -48. 3 -26. 2 -130. 0	RMx(KIP*ft) -0.1 -0.1 -0.1 -0.1 0.0	RMy(Kip*ft) 0.2 -0.2 -0.3 0.3	RMz(Kip*ft) 0. 1 -0. 1 -0. 2 0. 2
16 Y UNBAL No. 1 2 3 4 Total	ANCED SNOW + RF×(Kip) RFy -8.6 8.6 7.2 -7.2 0.0	WIND (KIP) R 6.2 6.2 -3.9 -3.9 4.7	Fz(Kip) -43, 6 -43, 6 -18, 5 -18, 5 -124, 2	RMx(Kip*ft) -0.1 -0.1 0.0 0.0	RMy(Kip*ft) 0.2 -0.2 -0.2 -0.2 0.2	RMz(Kip*ft) 0.1 -0.1 -0.2 0.2
17 +X SEIS No. 1 2 3 4 Total	MIC LOAD RF×(Kip) RFy 4.0 9.7 17.0 5.6 36.2	(KIP) R 3, 3 6, 8 -0, 4 1, 1 10, 9	Fz(Kip) -5. 9 -13. 0 -30. 9 -15. 7 -65. 5	RM×(Kip*ft) -0.1 0.0 0.1 -0.1	RMy(Kip*ft) 0. 4 0. 2 0. 2 0. 5	RMz(Kip*ft) 0.0 -0.2 -0.3 0.0
18 +Y SEIS No. 1 2 3 4 Total	MIC LOAD RFx(KIp) RFy -0.6 4.7 12.0 -5.3 10.9	(KIP) R 11. 2 12. 2 6. 2 6. 6 36. 2	Fz(Kip) 1. 8 -0. 3 -35. 8 -31. 2 -65. 5	RM×(Kip*ft) -0.1 0.0 0.0 -0.1	RMy(Kip*ft) 0.2 0.0 -0.1 0.3	RMz(Kip*ft) 0.2 -0.2 -0.2 -0.2 0.2
19 -Y SEIS No. 1 2 3 4 Total	RFx(Kip) RFy -5.3 1.2 -3.0 -3.8	(K1p) R -6. 7 -7. 7 10. 7 11. 1 36. 2	Fz(K+p) -29, 5 -27, 4 -2, 0 -6, 6 -65, 5	RM×(Klp*ft) 0.0 -0.1 0.0 0.0	RMy(Kip*ft) 0.0 -0.2 -0.2 0.0	RMz(Kip*ft) -0.1 0.1 0.1 0.0
20 +XY SEI: No. 1 2 3 4 Total	SMIC LOAD RF×(KIP) RFy 2. 4 7. 4 18. 4 -2. 4 25. 9	(Kip) R 14. 5 17. 0 9. 6 10. 6 51. 7	Fz(KIp) 9.6 4.5 -45.2 -34.3 -65.5	RM×(Kip*ft) -0. 1 0. 0 0. 0 -0. 1	RMy(Kip*ft) 0.3 0.2 0.1 0.4	RMz(Kip*ft) 0.2 -0.3 -0.3 0.1
21 +X SEISI No. 1 2 3 4 Total	MIC LOAD + SN RF×(Kip) RFy -0.6 10.9 19.7 -2.8 27.2	OW LOAD (KIP) R 5.8 8.5 -3.6 -2.5 8.2	Fz(Kip) -19.0 -24.4 -50.3 -38.9 -132.6	-0. 1 0. 0 0. 0	RMy(K:p*ft) 0. 4 0. 0 -0. 1 0. 6	RMz(Kip*ft) 0. 1 -0. 2 -0. 3 0. 1
22 +Y SEISI No. 1 2 3 4 Total	MIC LOAD + SN RF×(Kip) RFy -4.0 7.1 16.0 -10.9 8.2	DW LOAD (Kip) R 11.7 12.5 1.3 1.6 27.2	Fz(Kip) -13.2 -14.8 -54.0 -50.6 -132.6	RMx(Kip*ft) -0.1 -0.1 0.0 -0.1	RMy(Kip*ft) 0.3 -0.1 -0.3 0.4	RMz(Kip*ft) 0.2 -0.2 -0.3 0.3
23 -Y SEISI No. 1 2 3 4 Total	4. 5 4. 7 -9. 8	OW LOAD (Kip) Ri -1. 7 -2. 5 11. 3 11. 7 27. 2	Fz(K1p) -36, 8 -35, 2 -28, 6 -32, 1 -132, 6	RMx(K p*ft) -0.1 -0.1 -0.1 0.0	RMy(Kip*ft) 0.1 -0.3 -0.4 0.2	RMz(Kip*ft) 0.0 0.0 -0.1 0.2
24 +XY SEIS No. 1 2 3 4 Total	SMIC LOAD + S RF×(Kip) RFy -1.8 9.1 20.6 -8.8 19.2	NOW LOA: (Kip) RI 14. 1 16. 0 3. 7 4. 5 38. 4	D Fz(Kip) -7. 6 -11. 4 -60. 9 -52. 8 -132. 6	RMx(Kip*ft) -0.1 0.0 0.0 -0.1	RMy(Kip*ft) 0.3 0.0 -0,2 0.5	RMz(Kip*ft) 0.2 -0.3 -0.4 0.2
	2015					

FOR INFORMATION ONLY
Oct 13 2023
BO NOT USE FOR
CONSTRUCTION OR FAMILICATION

rev		DE	SCRIPTION		DATE	DRWN	CHKD	ENGR
			REVI	SIONS				
	THIS DRAVING INCI IT IS NOT TO BE	LUDING THE INFOR COPIED, REPRODUC	(ATION, DATA A ED OR ITS CONTE	ND DESIGN IS CONFIDENTIAL AND T ENTS DIVULGED WITHOUT THE WRIT	HE PROPERTY OF TEN PERMISSION	BIRDAIR I DF BIRDAI	INC. R INC.	
	NAME	DATE		BRD	412			-
DRAWN E	ĐΥ MI	10/13/23		6461 MAIN AMHERST, N.Y. 1422		S.A.		
CHECKED	MI BY	10/13/23	MLE	TELEPHONE: 716-633-9500		1234		
ENGINEER	RI MI	10/13/23		INTERFA REACTION				
FINAL RE	VIEW		1	WASHINGTON STATE	FAIRGR	DUNDS	<u> </u>	
SCALE	DRAWII AS NOTED	NG SIZE	DWG. NO.	23008 -	1001			REV



OVERALL PLAN SCALE 1/8" = 1'-0"



FRONT VIEW

SCALE 1/8" = 1'-0"

SIDE VIEW
SCALE 3/16" = 1'-0"

Drawn by

CHECKED BY

ENGINEER

FINAL REVIEW

7/25/23

7/25/23

7/25/23 TITLE

6461 MAIN STREET AMHERST, N.Y. 14221–7075, U.S.A. TELEPHONE: 716–633–9500 FAX: 716–204–1234

INFORMATION OVERALL VIEW

WASHINGTON STATE FAIRGROUNDS

(NOTE) FABRIC NOT SHOWN FOR CLARITY

PERSPECTIVE VIEW

NTS

Washington State Fair July 18, 2023

ES-9092 Page 9

H23111

2/

Settlement Estimates & Discussion

From a geotechnical standpoint, the proposed structures could utilize any of the preceding subgrade preparation and foundation support recommendations. Based on our evaluations, the following settlement estimates could be experienced with the various foundation preparation and improvement strategies:

Foundation	Static Settle	ement (in)	Seismically Inc	luced Settlement
Preparation Strategy	Total	Differential	Total	Differential
Surcharge Program	1.0	0.5	2.0	1.0
Subgrade Improvement	2.0 to 3.0	1.0 to 1.5	3.0 to 5.0	1.5 to 2.5
Alternative Pile Support	1.0	0.5	1.0	0.5

Please note that the above static and seismically induced settlement estimates are independent. As such, the building designer should account for both static and seismically induced settlements in their designs. Based on our experience, targeted subgrade improvements would likely be the most cost- and time-efficient mitigation strategy. However, there is a higher risk of both static and seismically induced settlements with this approach. If the anticipated settlements associated with these targeted subgrade improvements are not tolerable, the project should consider implementing a surcharge program or utilizing alternative foundation designs.

Provided the foundations will be supported using one of the strategies outlined herein, the following parameters may be used for design:

• Allowable soil bearing capacity 2,500 psf

• Passive earth pressure 300 pcf (equivalent fluid)

• Coefficient of friction 0.35

A one-third increase in the allowable soil bearing capacity may be assumed for short-term wind and seismic loading conditions. The above passive pressure and friction values include a factor-of-safety of 1.5.

The recommendations and evaluations provided in this report regarding foundation support should be considered preliminary. ESNW should be afforded the opportunity to review the site layout and building load plans to confirm the recommendations provided in this report are applicable and appropriate for the project. Additional foundation preparation and design considerations may be provided at that time, as necessary.

Earth Solutions NW, LLC

Washington State Fair July 18, 2023

ES-9092 Page 10

#2311

9/14

Seismic Design

The 2018 International Building Code recognizes the most recent edition of the Minimum Design Loads for Buildings and Other Structures manual (ASCE 7-16) for seismic design, specifically with respect to earthquake loads. ESNW recognizes that the presence of potentially liquefiable soils typically warrants a Site Class F designation; however, as presented in section 20.3.1.1, projects with structures that possess a fundamental period of vibration equal to or less than 0.5 seconds (which is assumed to apply to the proposed structures) do not require a site response analysis. As such, a site class determination in accordance with Section 20.3 and the corresponding values of F_a and F_v is permitted.

Based on the data collected at the SCPT location, in accordance with the designation criteria provided in Table 20.1-1 of ASCE 7-16, Site Class E should be used for the subject site and project. This determination is based on the calculated averaged shear wave velocity of 552 ft/sec for the upper 100 feet.

Further discussion between the project structural engineer and ESNW may be prudent to determine appropriate earthquake design parameters for the project. ESNW can provide additional consulting services to aid with design efforts, including supplementary geotechnical and geophysical investigation, upon request. ESNW can assist in determining appropriate seismic design coefficients during the appropriate phase of the project. Additionally, more stringent seismic design criteria may be necessary for the proposed fire station, which is presumably comprised of a Risk Category IV structure(s).

Slab-on-Grade Floors

Slab-on-grade floors for the proposed structures should be supported by competent, firm, and unyielding subgrades. Unstable or yielding subgrade areas should be recompacted or overexcavated and replaced with suitable structural fill before slab construction. A capillary break consisting of at least four inches of free-draining crushed rock or gravel should be placed below each slab. The free-draining material should have a fines content of 5 percent or less (where the fines content is defined as the percent passing the Number 200 sieve, based on the minus three-quarter-inch fraction). In areas where slab moisture is undesirable, the installation of a vapor barrier below the slab should be considered. Vapor barriers should be made from material specifically designed for use as a vapor barrier and should be installed in accordance with the manufacturer's recommendations.

Earth Solutions NW, LLC

Washington State Fair July 18, 2023

ES-9092 Page 11

#23/11

74

Retaining Walls

Retaining walls must be designed to resist earth pressures and applicable surcharge loads. The following parameters may be used for the design:

Active earth pressure (unrestrained condition)
 40 pcf (equivalent fluid)

At-rest earth pressure (restrained condition) 60 pcf

Traffic surcharge* (passenger vehicles)
 70 psf (rectangular distribution)

Passive earth pressure
 225 pcf (equivalent fluid)

• Coefficient of friction 0.35

• Seismic surcharge 8H psf[†]

* Where applicable.

† Where H equals the retained height (in feet).

The above passive pressure and friction values include a factor-of-safety of 1.5 and are based on a level backfill condition and level grade at the wall toe. The design parameters provided above assume native soil will be retained behind the wall. If a sufficient thick zone of structural fill is retained by the wall (with respect to vertical and lateral extent), less stringent design parameters can be provided. Revised design values will be necessary if sloping grades are to be used above or below retaining walls. Additional surcharge loading from adjacent foundations, sloped backfill, or other relevant loads should be included in the retaining wall design.

Retaining walls should be backfilled with free-draining material that extends along with the height of the wall and to a distance of at least 18 inches behind the wall. The upper 12 inches of the wall backfill may consist of less permeable soil, if desired. A sheet drain may be considered instead of free-draining backfill. A perforated drainpipe should be placed along the base of the wall and connected to an approved discharge location. A typical retaining wall drainage detail is provided on Plate 3. Hydrostatic pressures should be included in the wall design if drainage is not provided.

<u>Drainage</u>

Zones of perched groundwater seepage could develop in site excavations depending on the time of year grading operations take place, particularly within deeper excavations for utilities and/or the stormwater facility. Temporary measures to control surface water runoff and groundwater during construction would likely involve interceptor trenches, interceptor swales, and sumps. ESNW should be consulted during preliminary grading to both identify areas of seepage and provide recommendations to reduce the potential for seepage-related instability.

Finish grades must be designed to direct surface drain water away from structures and slopes. Water must not be allowed to pond adjacent to structures or slopes. In our opinion, foundation drains should be installed along building perimeter footings. A typical foundation drain detail is provided on Plate 4.

Earth Solutions NW, LLC

Name: Overexcavation Dicetch

Date: 10/24/73

Project Number: 5 9092.01

Project Name: WSF Golden Golde

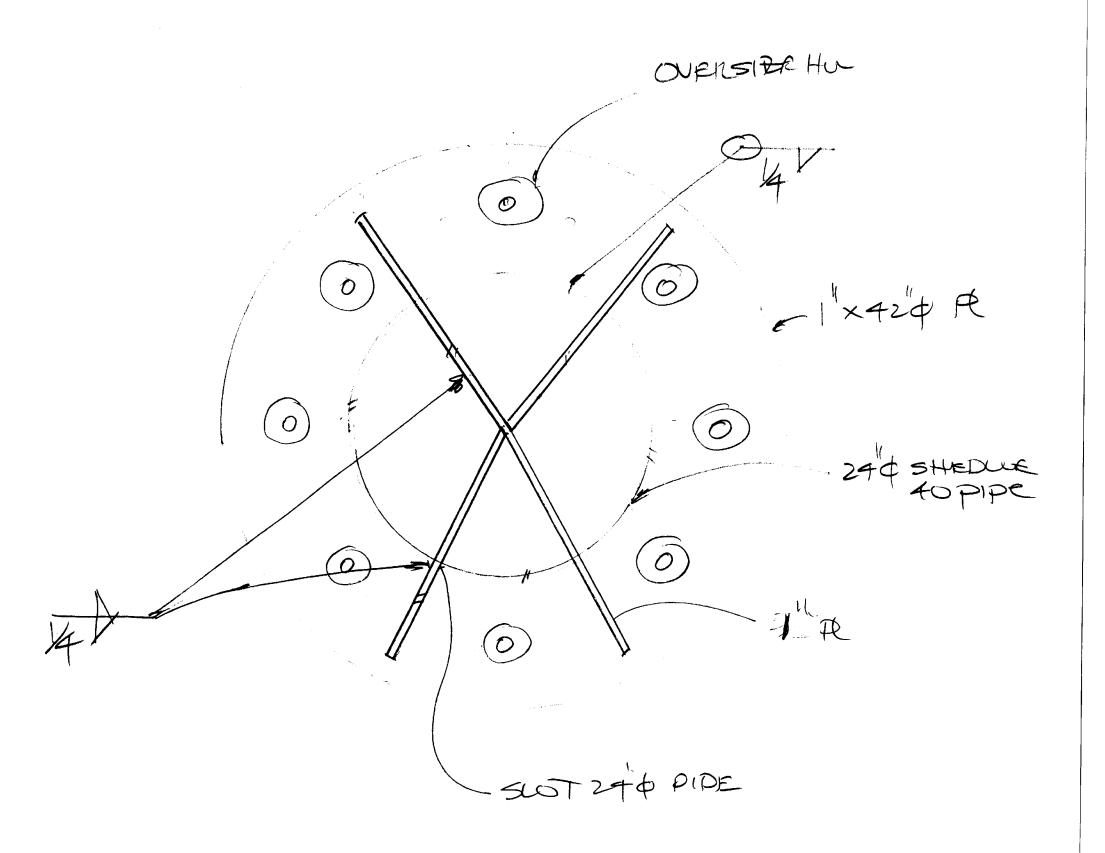
#23111 Reference Es-9092 Draft Report for Recommendations, Sethement Estimation, etc. Ground Surface Footing Dimensions and Depths Per Structural -, wrapped Mirafi Luon Or Similar 三豐 WE E Compacted Native Soil

PROJECT:

BY: DATE: JOB NO.

23 | ()

12181 C Street S. • TACOMA, WA 98444 • (253) 537-8128 • FAX 531-1285


7	125th
	26
	(3) 1'DXUDHASHA

 $\begin{array}{l}
\text{Ld $\#10 = 40(1,2) = 50'} \\
\text{TEHSON} = 16(20)^{24} 5(4,9) = 72(1) \\
\text{Au} \\
\text{IN $\#10$}
\end{array}$ $\begin{array}{l}
\text{TEHSON} = 16(20)^{24} 5(4,9) = 72(1) \\
\text{Ed } 1^{11} \phi = 10, 6(8) \\
\text{Ed } 1^{1$

PROJECT:			SHEET NO.
BY:	DATE:	JOB NO. 2311	19

12181 C Street S. • TACOMA, WA 98444 • (253) 537-8128 • FAX 531-1285

DESIGN CONSIDERATIONS FOR BO

Available Shear Strength of Bolts, kips

Z	Nominal Bott Diameter, d, in.	Diamete	x, d, in.		<u>ر</u> ما	2/8	w _	3/4		2/8	-
	Nominal Bolt Area, in. ²	oft Area	, in. ²		0.9	0.307	à	0.442	6	0.601	0.785
ASTM	Thread	F _{ra} /Ω ((csi)	фF _{nv} (kssi)	Load-	۵/″ع	φι	™	φ. φ.	C/"J	5 \$	ري/ن
Desig.			LRFD	mg		LRFD	3	C#3		LRFD	
Group	2		40.5	S		12.4 24.9		17.9 35.8		24.3 48.7	
⋖	×		51.0	O S		15.7 31.3		22.5 45.1		30.7 61.3	
Group	Z		51.0	S		15.7 31.3		22.5 45.1		30.7	
മ	×		63.0	S D		19.3 38.7		27.8 55.7		37.9 75.7	
A307	1		20.3	s D		6.23 12.5		8.97 17.9		12.2(
ž	Nominal Boft Diameter, d, in.	Diamete	r, d, in.		-	11/8	-	11/4	*	13/8	41
	Nominal B	inal Bott Area, in. ²	in.2		0.994	29		ន	-	1.48	1.7
ASTIM	Thread	F _{for} /Ω (test)	ф <i>F_m</i> (ksi)	Load	ر <i>ا</i> "	υφ	Ω/"J	фги	Ω/W	φι	ניינט
resig.			LRFD	2	G	LRFD	3	LRFD	i	LRFD	
Group	Z		40.5	S		40.3 80.5		49.8 99.6		59.9 120	
¥	×		51.0	O S		50.7 101		62.7 125		75.5 151	
Group	Z		51.0	s O		50.7 101		62.7 125	i i e	75.5 151	War.
В	×		63.0	s O		62.6 125		77.5 155		93.2 186	
A307	1		20.3	S		20.2		25.0			
	LRFD	For end	oaded co	For end loaded connections greater than 38 in., see AISC Specification Table J3.2 footnote by	greater th	an 38 in.,	, see AISC	Specifica	ntion Table	J3.2 foo	trotte ti,
$\Omega = 2.00$	Φ = 0.75	-									

42311

Strength of Bolts, kips Table 7-2 Available Tensile

LRFD119
150
59.6 Ω/**"**J ت*ال* 7/8 **r,/**Ω AMD LRFD 82.8 82.8 104 27.6 41.4 φ*ζ*" **6**29 3/4 U/"J ϕ_{I_B} LRFD **"** 5/8 0.307 Ω/**"**J Mminal Bolt Diameter, d, in. Nominal Bolt Area, in.² Dminal Bolt Diameter, d, in. Nominal Bolt Area, in.² WTM Desig. TM Desig. Group A Group B A307 2.00