PIERUCCIONI E&C, LLC CHON PIERUCCIONI, PE 3128 N. BENNETT ST. TACOMA, WA 98407 THE OPCIMENT OF DOCUMENTS

<section-header><section-header>

ROOF DEAD LOAD: RESIDENTIAL FLOOR LIVE LOAD: STAIRWAY LANDING AREAS: FLOOR DEAD LOAD: SNOW DESIGN DATA (ASCE 7-16) FLAT SNOW LOAD: N/A SNOW EXPOSURE FACTOR, Is=1.0, SNOW IMPORTANCE FACTOR, Is=1.0, THERMAL FACTOR, Ct=1.1

25 P5F (SNOW) 25 PSF 40 PSF (REDUCIBLE) : 60 PSF (FOR DECKS) 150 PSF (INCLUDING Ip=1.5) 30 PSF (INCLUDES 1¹/₂" GYP TOPPING) <u>WIND DESIGN DATA (ASCE 7-16)</u> BASIC WIND SPEED (ASD) V= 85MPH ULTIMATE WIND SPEED V= 110MPH ULTIMATE WIND SPEED V= 110MPH INFORTANCE FACTOR, Iw= 1.0 TOPOGRAPHIC FACTOR, Kzt= 1.0

SEISMIC DESIGN DATA (ASCE7-16) SEISMIC RESPONSE SYSTEM: WOOD SHEARWALLS EQUIVALENT LATERAL FORCE PROCEDURE (ASCE 7-16) RISK CATEGORY: II DESIGN SPECTRAL RESPONSE ACCELERATION: SS=1.24, S1=0.476 DESIGN SPECTRAL RESPONSE ACCELERATION: SS=1.24, S1=0.476 SITE CLASS: D SEISMIC DESIGN CATEGORY: D SEISMIC RESPONSE COEFFICIENT: CS= 0.091 DESIGN BASE SHEAR: 82,321# SOIL PROPERTIES: BEARING CAPACITY: 250 PSF/ET

EAST TOWN CROSSING WA BUILDING "A" & SHAW PUYALLUP PIONEER REVISIONS 61 City of Puyallup Building REVIEWED FOR COMPLIANCE REVISIONS BSnowden 05/13/2024 ENGINEER CP 3:07:49 PM CHECKED BY CP OFPUYAL 2024.02.28 STRUCTURAL ANALYSIS TITLE: PROJECT # :

Calculations required to be provided by the Permittee on site for all Inspections

FORTEWEB[®] JOB SUMMARY REPORT East Town Crossing Build

East Town Crossing Building A

2nd Floor Framing			
Member Name	Results (Max UTIL %)	Current Solution	Comments
Floor Joist 16' and Under	Passed (96% M)	1 piece(s) 11 7/8" TJI® 110 @ 16" OC	
8'-5" Landing Joists	Passed (90% R)	1 piece(s) 2 x 12 HF No.2 @ 12" OC	
Short Stair Stringers	Passed (72% R)	1 piece(s) 4 x 12 HF No.2	
Long Short Stair Stringers	Passed (98% R)	1 piece(s) 3 1/2" x 12" 24F-V4 DF Glulam	
Top Landing Beam	Passed (100% R)	1 piece(s) 5 1/2" x 13 1/2" 24F-V4 DF Glulam	
8'-10" Deck Joist	Passed (55% R)	1 piece(s) 2 x 12 HF No.2 @ 16" OC	
6' Window Header	Passed (79% M)	1 piece(s) 4 x 10 DF No.2	
Grid 2 (B.6-B.8) Flush Beam	Passed (57% R)	1 piece(s) 3 1/2" x 11 7/8" 24F-V4 DF Glulam	
Grid 12 (B.6-B.8) Flush Beam	Passed (57% R)	1 piece(s) 3 1/2" x 11 7/8" 24F-V4 DF Glulam	
Grid 3.1 (B.6-B.8) Flush Beam	Passed (56% R)	1 piece(s) 3 1/2" x 11 7/8" 24F-V4 DF Glulam	
Grid 10.9 (B.6-B.8) Flush Beam	Passed (56% R)	1 piece(s) 3 1/2" x 11 7/8" 24F-V4 DF Glulam	
Grid 5.2 (B.5-B.7) Flush Beam	Passed (74% R)	1 piece(s) 3 1/2" x 11 7/8" 24F-V4 DF Glulam	
Grid 8.8 (B.5-B.7) Flush Beam	Passed (74% R)	1 piece(s) 3 1/2" x 11 7/8" 24F-V4 DF Glulam	
Grid 5.2 (B.9-C) Bathroom Door Header	Passed (83% M)	1 piece(s) 4 x 8 DF No.2	
Grid 8.8 (B.9-C) Bathroom Door Header	Passed (83% M)	1 piece(s) 4 x 8 DF No.2	
Grid 6.2 (B.4-B.5) Bedroom Door Header	Passed (74% R)	1 piece(s) 4 x 8 DF No.2	
Grid 7.8 (B.4-B.5) Bedroom Door Header	Passed (74% R)	1 piece(s) 4 x 8 DF No.2	
Grid 6.2 (B.7-C) Flush Beam	Passed (63% R)	1 piece(s) 3 1/2" x 11 7/8" 24F-V4 DF Glulam	Squash Blocks Required
Grid 7.8 (B.7-C) Flush Beam	Passed (63% R)	1 piece(s) 3 1/2" x 11 7/8" 24F-V4 DF Glulam	Squash Blocks Required
Grid 2.3 (D-D.1) Bedroom Door Header	Passed (60% R)	1 piece(s) 4 x 8 DF No.2	
Grid 11.7 (D-D.1) Bedroom Door Header	Passed (60% R)	1 piece(s) 4 x 8 DF No.2	
Grid 2.7 (D.2-D.4) Flush Beam	Passed (70% R)	1 piece(s) 3 1/2" x 11 7/8" 24F-V4 DF Glulam	
Grid 11.3 (D.2-D.4) Flush Beam	Passed (70% R)	1 piece(s) 3 1/2" x 11 7/8" 24F-V4 DF Glulam	
Grid 5.6 (D-D.3) Flush Beam	Passed (90% R)	1 piece(s) 3 1/2" x 11 7/8" 24F-V4 DF Glulam	
Grid 8.4 (D-D.3) Flush Beam	Passed (90% R)	1 piece(s) 3 1/2" x 11 7/8" 24F-V4 DF Glulam	
Grid 6 (D.5-D.6) Bedroom Door Header	Passed (83% R)	1 piece(s) 4 x 8 DF No.2	
Main Landing Post	Passed (97% B/C)	1 piece(s) 6 x 10 DF No.2	
Grid 6.2B.6 Post	Passed (80% f _{ep})	1 piece(s) 4 x 6 DF No.2	
Grid 7.8B.6 Post	Passed (80% f _{cp})	1 piece(s) 4 x 6 DF No.2	

Job Notes

3/7/2024 3:47:32 PM UTC ForteWEB v3.7 File Name: East Town Crossing Building A

3rd Floor Framing			
Member Name	Results (Max UTIL %)	Current Solution	Comments
Floor Joist 16' and Under	Passed (96% M)	1 piece(s) 11 7/8" TJI® 110 @ 16" OC	
8'-5" Landing Joists	Passed (90% R)	1 piece(s) 2 x 12 HF No.2 @ 12" OC	
Short Stair Stringers	Passed (72% R)	1 piece(s) 4 x 12 HF No.2	
Top Landing Beam	Passed (84% ΔL)	1 piece(s) 5 1/2" x 12" 24F-V4 DF Glulam	
4' Mid Landing Joists	Passed (63% R)	1 piece(s) 2 x 8 HF No.2 @ 16" OC	
Mid Landing Inner Beam	Passed (72% ΔL)	1 piece(s) 5 1/2" x 12" 24F-V4 DF Glulam	
Mid Landing Outer Beam	Passed (83% ΔL)	1 piece(s) 3 1/2" x 10 1/2" 24F-V4 DF Glulam	
8'-10" Deck Joist	Passed (55% R)	1 piece(s) 2 x 12 HF No.2 @ 16" OC	
6' Window Header	Passed (79% M)	1 piece(s) 4 x 10 DF No.2	
Grid 2 (B.6-B.8) Flush Beam	Passed (28% R)	1 piece(s) 3 1/2" x 11 7/8" 24F-V4 DF Glulam	
Grid 12 (B.6-B.8) Flush Beam	Passed (28% R)	1 piece(s) 3 1/2" x 11 7/8" 24F-V4 DF Glulam	
Grid 3.1 (B.6-B.8) Flush Beam	Passed (28% R)	1 piece(s) 3 1/2" x 11 7/8" 24F-V4 DF Glulam	
Grid 10.9 (B.6-B.8) Flush Beam	Passed (28% R)	1 piece(s) 3 1/2" x 11 7/8" 24F-V4 DF Glulam	
Grid 5.2 (B.6-B.8) Flush Beam	Passed (34% R)	1 piece(s) 3 1/2" x 11 7/8" 24F-V4 DF Glulam	
Grid 8.8 (B.6-B.8) Flush Beam	Passed (34% R)	1 piece(s) 3 1/2" x 11 7/8" 24F-V4 DF Glulam	
Grid 5.2 (B.8-B.9) Bathroom Door Header	Passed (33% R)	1 piece(s) 4 x 8 DF No.2	
Grid 8.8 (B.8-B.9) Bathroom Door Header	Passed (33% R)	1 piece(s) 4 x 8 DF No.2	
Grid 6.2 (B.4-B.5) Bedroom Door Header	Passed (37% R)	1 piece(s) 4 x 8 DF No.2	
Grid 7.8 (B.4-B.5) Bedroom Door Header	Passed (37% R)	1 piece(s) 4 x 8 DF No.2	
Grid 6.2 (B.7-C) Flush Beam	Passed (63% R)	1 piece(s) 3 1/2" x 11 7/8" 24F-V4 DF Glulam	
Grid 7.8 (B.7-C) Flush Beam	Passed (63% R)	1 piece(s) 3 1/2" x 11 7/8" 24F-V4 DF Glulam	
Grid 2.3 (D-D.1) Bedroom Door Header	Passed (30% R)	1 piece(s) 4 x 8 DF No.2	
Grid 11.7 (D-D.1) Bedroom Door Header	Passed (30% R)	1 piece(s) 4 x 8 DF No.2	
Grid 2.7 (D.2-D.4) Flush Beam	Passed (35% R)	1 piece(s) 3 1/2" x 11 7/8" 24F-V4 DF Glulam	
Grid 11.3 (D.2-D.4) Flush Beam	Passed (35% R)	1 piece(s) 3 1/2" x 11 7/8" 24F-V4 DF Glulam	
Grid 5.6 (D-D.3) Flush Beam	Passed (62% R)	1 piece(s) 3 1/2" x 11 7/8" 24F-V4 DF Glulam	
Grid 8.4 (D-D.3) Flush Beam	Passed (62% R)	1 piece(s) 3 1/2" x 11 7/8" 24F-V4 DF Glulam	
Grid 6 (D.5-D.6) Bedroom Door Header	Passed (42% R)	1 piece(s) 4 x 8 DF No.2	
Grid 8 (D.5-D.6) Bedroom Door Header	Passed (42% R)	1 piece(s) 4 x 8 DF No.2	
Roof Framing			
Member Name	Results (Max UTIL %)	Current Solution	Comments
Grid D.7 Entry Roof Beam	Passed (102% R)	1 piece(s) 3 1/2" x 10 1/2" 24F-V4 DF Glulam	
Grid A 7'-3" Deck Roof Beam	Passed (77% M+)	1 piece(s) 3 1/2" x 7 1/2" 24F-V4 DF Glulam	
Grid G 9' Deck Roof Beam	Passed (91% M+)	1 piece(s) 3 1/2" x 9" 24F-V4 DF Glulam	
6' Window Header	Passed (90% R)	1 piece(s) 4 x 10 DF No.2	

Job Notes

3/7/2024 3:47:32 PM UTC ForteWEB v3.7 File Name: East Town Crossing Building A

2nd Floor Framing, Floor Joist 16' and Under 1 piece(s) 11 7/8" TJI ® 110 @ 16" OC

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	774 @ 2 1/2"	1375 (3.50")	Passed (56%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	747 @ 3 1/2"	1560	Passed (48%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	3049 @ 8' 3 1/2"	3160	Passed (96%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.275 @ 8' 3 1/2"	0.539	Passed (L/704)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.482 @ 8' 3 1/2"	0.808	Passed (L/403)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	48	40	Passed		

Member Length : 16' 7" System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: 5/8" Gypsum ceiling.

	Bearing Length			Load	ds to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	3.50"	3.50"	1.75"	332	442	774	Blocking
2 - Stud wall - HF	3.50"	3.50"	1.75"	332	442	774	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	3' 1" o/c				
Bottom Edge (Lu)	16' 7" o/c				
TTT is internet when and using Maximum Allowable for size and time.					

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

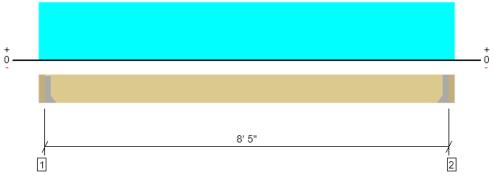
			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 16' 7"	16"	30.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Chon Pieruccioni Pieruccioni Engineering (206) 949-7866 coleru@hotmail.com


Job Notes

2nd Floor Framing, 8'-5" Landing Joists 1 piece(s) 2 x 12 HF No.2 @ 12" OC

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	821 @ 3"	911 (1.50")	Passed (90%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	638 @ 1' 2 1/4"	1688	Passed (38%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1727 @ 4' 5 1/2"	2577	Passed (67%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.073 @ 4' 5 1/2"	0.281	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.095 @ 4' 5 1/2"	0.421	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Applicable calculations are based on NDS.

· No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Hanger on 11 1/4" LSL beam	3.00"	Hanger ¹	1.50"	201	669	869	See note 1
2 - Hanger on 11 1/4" LSL beam	3.00"	Hanger ¹	1.50"	201	669	869	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	6' 4" o/c				
Bottom Edge (Lu)	8' 5" o/c				

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-1	Гіе					
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	LUS28	1.75"	N/A	6-10dx1.5	3-10d	
2 - Face Mount Hanger	LUS28	1.75"	N/A	6-10dx1.5	3-10d	

· Refer to manufacturer notes and instructions for proper installation and use of all connectors.

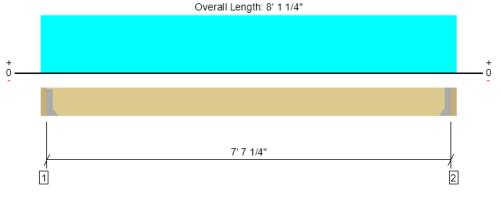
			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 8' 11"	12"	45.0	150.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Chon Pieruccioni Pieruccioni Engineering (206) 949-7866 cpieru@hotmail.com	



3/7/2024 3:47:32 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: East Town Crossing Building A Page 4 / 68

Member Length : 8' 5" System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

2nd Floor Framing, Short Stair Stringers 1 piece(s) 4 x 12 HF No.2

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1521 @ 3"	2126 (1.50")	Passed (72%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1146 @ 1' 2 1/4"	3938	Passed (29%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2891 @ 4' 5/8"	5752	Passed (50%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.042 @ 4' 5/8"	0.190	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.056 @ 4' 5/8"	0.380	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 7' 7 1/4" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Load	ls to Supports			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories	
1 - Hanger on 11 1/4" GLB beam	3.00"	Hanger ¹	1.50"	403	1216	1618	See note 1	
2 - Hanger on 11 1/4" GLB beam	3.00"	Hanger ¹	1.50"	403	1216	1618	See note 1	
At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger								

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	7' 7" o/c				
Bottom Edge (Lu)	7' 7" o/c				
•Maximum allowable bracing intervals based on applied load.					

Connector: Simpson Strong-Tie							
Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories		
LUS410	2.00"	N/A	8-16d	6-16d			
LUS410	2.00"	N/A	8-16d	6-16d			
	Model LUS410	Model Seat Length LUS410 2.00"	Model Seat Length Top Fasteners LUS410 2.00" N/A	Model Seat Length Top Fasteners Face Fasteners LUS410 2.00" N/A 8-16d	Model Seat Length Top Fasteners Face Fasteners Member Fasteners LUS410 2.00" N/A 8-16d 6-16d		

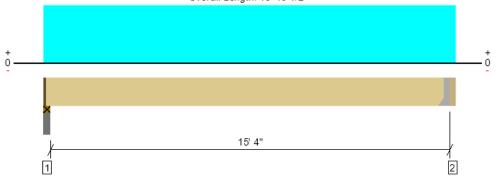
• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	3" to 7' 10 1/4"	N/A	10.0		
1 - Uniform (PSF)	0 to 8' 1 1/4" (Front)	2'	45.0	150.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator Job Notes Chon Pieruccioni Pieruccioni Engineering (206) 949-7866 cpieru@hotmail.com

3/7/2024 3:47:32 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: East Town Crossing Building A Page 5 / 68

2nd Floor Framing, Long Short Stair Stringers 1 piece(s) 3 1/2" x 12" 24F-V4 DF Glulam

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3118 @ 2"	3189 (2.25")	Passed (98%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2693 @ 14' 7 1/2"	7420	Passed (36%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	11954 @ 7' 10 3/4"	16800	Passed (71%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.425 @ 7' 10 3/4"	0.515	Passed (L/437)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.567 @ 7' 10 3/4"	0.773	Passed (L/327)		1.0 D + 1.0 L (All Spans)

Member Length : 15' 6 1/4" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 15' 5 1/2''.

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Plate on concrete - HF	3.50"	2.25"	2.20"	790	2369	3159	1 1/4" Rim Board
2 - Hanger on 12" GLB beam	3.00"	Hanger ¹	1.50"	797	2394	3191	See note 1

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	15' 6" o/c				
Bottom Edge (Lu)	15' 6" o/c				
Maximum alloughle breeing interrule based on applied land					

Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie								
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories		
2 - Face Mount Hanger	HHUS410	3.00"	N/A	30-10d	10-10d			

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

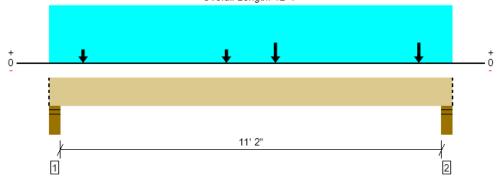
			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	1 1/4" to 15' 7 1/2"	N/A	10.2		
1 - Uniform (PSF)	0 to 15' 10 1/2" (Front)	2'	45.0	150.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Chon Pieruccioni Pieruccioni Engineering (206) 949-7866 cpieru@hotmail.com	



3/7/2024 3:47:32 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: East Town Crossing Building A Page 6 / 68

2nd Floor Framing, Top Landing Beam 1 piece(s) 5 1/2" x 13 1/2" 24F-V4 DF Glulam

Overall Length: 12' 1"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

					-
Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	12196 @ 11' 9"	12251 (5.50")	Passed (100%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	8941 @ 10' 6"	13118	Passed (68%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	31638 @ 6' 9"	33413	Passed (95%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.265 @ 6' 1"	0.285	Passed (L/516)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.352 @ 6' 1 1/16"	0.571	Passed (L/389)		1.0 D + 1.0 L (All Spans)

Member Length : 12' 1" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 11' 5".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

• Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	5.50"	5.50"	4.76"	2604	7997	10601	Blocking
2 - Stud wall - HF	5.50"	5.50"	5.48"	3004	9192	12196	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	12' 1" o/c				
Bottom Edge (Lu)	12' 1" o/c				
•Maximum allowable bracing intervals based on applied load.					

ium allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 12' 1"	N/A	18.0		
1 - Uniform (PSF)	0 to 12' 1" (Front)	5' 6"	45.0	150.0	Default Load
2 - Point (lb)	5' 3 3/4" (Front)	N/A	403	1216	Linked from: Short Stair Stringers, Support 1
3 - Point (lb)	1' 1/4" (Front)	N/A	403	1216	Linked from: Short Stair Stringers, Support 1
4 - Point (lb)	6' 9 3/8" (Front)	N/A	797	2394	Linked from: Long Short Stair Stringers, Support 2
5 - Point (lb)	11' 7/8" (Front)	N/A	797	2394	Linked from: Long Short Stair Stringers, Support 2

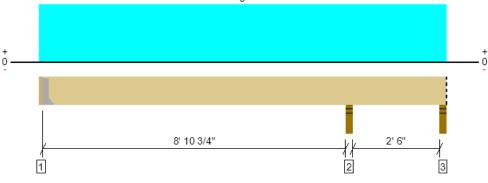
ForteWEB Software Operator	Job Notes
Chon Pieruccioni	505 10103
Pieruccioni Engineering	
(206) 949-7866	
cpieru@hotmail.com	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Chon Pieruccioni Pieruccioni Engineering (206) 949-7866 cpieru@hotmail.com Job Notes



3/7/2024 3:47:32 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: East Town Crossing Building A Page 8 / 68

2nd Floor Framing, 8'-10" Deck Joist 1 piece(s) 2 x 12 HF No.2 @ 16" OC

Overall Length: 12' 1 3/4"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1168 @ 9' 2 1/2"	2126 (3.50")	Passed (55%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	520 @ 8' 1 1/2"	1688	Passed (31%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	-968 @ 9' 2 1/2"	2577	Passed (38%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.028 @ 4' 2 7/8"	0.301	Passed (L/999+)		1.0 D + 1.0 L (Alt Spans)
Total Load Defl. (in)	0.042 @ 4' 2 3/4"	0.452	Passed (L/999+)		1.0 D + 1.0 L (Alt Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

• -285 lbs uplift at support located at 11' 11 1/4". Strapping or other restraint may be required.

Applicable calculations are based on NDS.

• No composite action between deck and joist was considered in analysis.

	Bearing Length			Load	ls to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Hanger on 11 1/4" HF beam	2.00"	Hanger ¹	1.50"	152	306	457	See note 1
2 - Stud wall - HF	3.50"	3.50"	1.92"	389	779	1168	None
3 - Stud wall - HF	3.50"	3.50"	1.50"	-55	120/-230	64/-285	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	12' o/c				
Bottom Edge (Lu)	12' o/c				
-Maximum alloughte brasing intervals based on applied land					

Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories	
1 - Face Mount Hanger	LUS28	1.75"	N/A	6-10dx1.5	3-10d		
Defer to manufacturer notes and instructions for proper installation and use of all connectors							

Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 12' 1 3/4"	16"	30.0	60.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

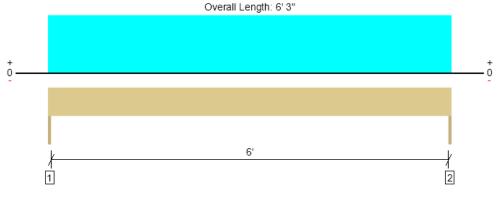
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

 ForteWEB Software Operator
 Job Notes

 Chon Pieruccioni
 Pieruccioni Engineering

 (206) 949-7866
 cpieru@hotmail.com




3/7/2024 3:47:32 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: East Town Crossing Building A Page 9 / 68

Member Length : 11' 11 3/4" System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

2nd Floor Framing, 6' Window Header 1 piece(s) 4 x 10 DF No.2

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2272 @ 0	3281 (1.50")	Passed (69%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1621 @ 10 3/4"	3885	Passed (42%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	3550 @ 3' 1 1/2"	4492	Passed (79%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.031 @ 3' 1 1/2"	0.208	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.068 @ 3' 1 1/2"	0.313	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 6' 3" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Load	ds to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	1215	1057	2272	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	1215	1057	2272	None

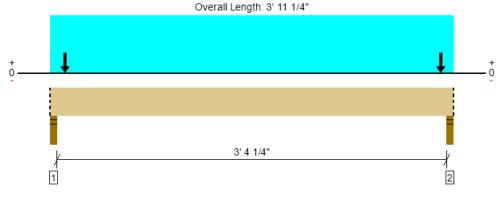
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6' 3" o/c	
Bottom Edge (Lu)	6' 3" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 6' 3"	N/A	8.2		
1 - Uniform (PSF)	0 to 6' 3"	6' 7"	30.0	40.0	Floor
2 - Uniform (PLF)	0 to 6' 3"	N/A	108.0	-	Wall
3 - Uniform (PSF)	0 to 6' 3"	3'	25.0	25.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job
Chon Pieruccioni Pieruccioni Engineering	
(206) 949-7866	
cpieru@hotmail.com	

Job Notes

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2818 @ 2"	4961 (3.50")	Passed (57%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	492 @ 1' 3 3/8"	7343	Passed (7%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	1163 @ 1' 11 5/8"	16452	Passed (7%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.002 @ 1' 11 5/8"	0.090	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.003 @ 1' 11 5/8"	0.180	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 3' 11 1/4" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

· Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 3' 7 1/4".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	3.50"	3.50"	1.99"	1230	1588	2818	Blocking
2 - Stud wall - HF	3.50"	3.50"	1.99"	1230	1588	2818	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments		
Top Edge (Lu)	3' 11" o/c			
Bottom Edge (Lu)	3' 11" o/c			
•Maximum allowable bracing intervals based on applied load				

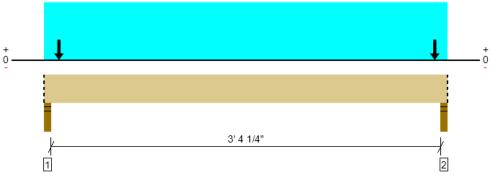
um allowable bracing intervals based on applied load

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 3' 11 1/4"	N/A	10.1		
1 - Uniform (PSF)	0 to 3' 11 1/4" (Front)	10' 1"	30.0	40.0	Default Load
2 - Point (lb)	1 3/4" (Top)	N/A	615	794	Linked from: Grid 2 (B.6-B.8) Flush Beam, Support 1
3 - Point (lb)	3' 9 3/4" (Top)	N/A	615	794	Linked from: Grid 2 (B.6-B.8) Flush Beam, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator	Job Notes
Chon Pieruccioni Pieruccioni Engineering (206) 949-7866 cpieru@hotmail.com	

3/7/2024 3:47:32 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: East Town Crossing Building A Page 11 / 68

Overall Length: 3' 11 1/4"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2818 @ 2"	4961 (3.50")	Passed (57%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	492 @ 1' 3 3/8"	7343	Passed (7%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-lbs)	1163 @ 1' 11 5/8"	16452	Passed (7%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.002 @ 1' 11 5/8"	0.090	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.003 @ 1' 11 5/8"	0.180	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 3' 11 1/4" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

· Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 3' 7 1/4".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	3.50"	3.50"	1.99"	1230	1588	2818	Blocking
2 - Stud wall - HF	3.50"	3.50"	1.99"	1230	1588	2818	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

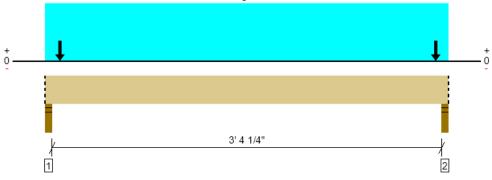
Lateral Bracing	Bracing Intervals	Comments		
Top Edge (Lu)	3' 11" o/c			
Bottom Edge (Lu)	3' 11" o/c			
•Maximum allowable bracing intervals based on applied load.				

um allowable bracing intervals based on applied load

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 3' 11 1/4"	N/A	10.1		
1 - Uniform (PSF)	0 to 3' 11 1/4" (Front)	10' 1"	30.0	40.0	Default Load
2 - Point (lb)	1 3/4" (Top)	N/A	615	794	Linked from: Grid 2 (B.6-B.8) Flush Beam, Support 1
3 - Point (lb)	3' 9 3/4" (Top)	N/A	615	794	Linked from: Grid 2 (B.6-B.8) Flush Beam, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Chon Pieruccioni Pieruccioni Engineering (206) 949-7866 cpieru@hotmail.com	

3/7/2024 3:47:32 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: East Town Crossing Building A Page 12 / 68

Overall Length: 3' 11 1/4"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2797 @ 2"	4961 (3.50")	Passed (56%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	488 @ 1' 3 3/8"	7343	Passed (7%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	1153 @ 1' 11 5/8"	16452	Passed (7%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.002 @ 1' 11 5/8"	0.090	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.003 @ 1' 11 5/8"	0.180	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 3' 11 1/4" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

· Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 3' 7 1/4".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	3.50"	3.50"	1.97"	1222	1576	2797	Blocking
2 - Stud wall - HF	3.50"	3.50"	1.97"	1222	1576	2797	Blocking

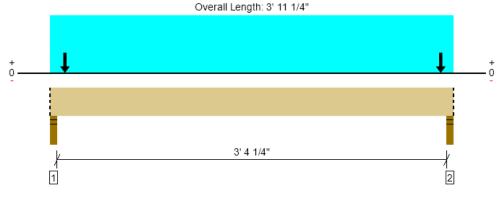
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	3' 11" o/c					
Bottom Edge (Lu)	3' 11" o/c					
•Maximum allowable bracing intervals based on applied load						

um allowable bracing intervals based on applied load

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 3' 11 1/4"	N/A	10.1		
1 - Uniform (PSF)	0 to 3' 11 1/4" (Front)	10'	30.0	40.0	Default Load
2 - Point (lb)	1 3/4" (Top)	N/A	611	788	Linked from: Grid 3.1 (B.6-B.8) Flush Beam, Support 1
3 - Point (lb)	3' 9 3/4" (Top)	N/A	611	788	Linked from: Grid 3.1 (B.6-B.8) Flush Beam, Support 2

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Chon Pieruccioni Pieruccioni Engineering (206) 949-7866 cpieru@hotmail.com	

PASSED

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2797 @ 2"	4961 (3.50")	Passed (56%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	488 @ 1' 3 3/8"	7343	Passed (7%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	1153 @ 1' 11 5/8"	16452	Passed (7%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.002 @ 1' 11 5/8"	0.090	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.003 @ 1' 11 5/8"	0.180	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 3' 11 1/4" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

· Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 3' 7 1/4".

The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Load	ds to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	3.50"	3.50"	1.97"	1222	1576	2797	Blocking
2 - Stud wall - HF	3.50"	3.50"	1.97"	1222	1576	2797	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	3' 11" o/c					
Bottom Edge (Lu)	3' 11" o/c					
•Maximum allowable bracing intervals based on applied load						

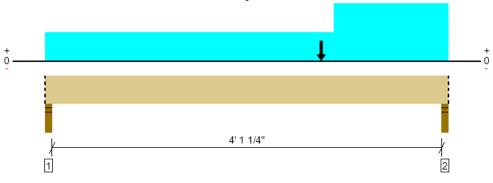
ium allowable bracing intervals based on applied load

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 3' 11 1/4"	N/A	10.1		
1 - Uniform (PSF)	0 to 3' 11 1/4" (Front)	10'	30.0	40.0	Default Load
2 - Point (lb)	1 3/4" (Top)	N/A	611	788	Linked from: Grid 3.1 (B.6-B.8) Flush Beam, Support 1
3 - Point (lb)	3' 9 3/4" (Top)	N/A	611	788	Linked from: Grid 3.1 (B.6-B.8) Flush Beam, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator	Job Notes
Chon Pieruccioni Pieruccioni Engineering (206) 949-7866 cpieru@hotmail.com	

3/7/2024 3:47:32 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: East Town Crossing Building A Page 14 / 68

Overall Length: 4' 8 1/4"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3651 @ 4' 6 1/4"	4961 (3.50")	Passed (74%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1845 @ 3' 4 7/8"	7343	Passed (25%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	3277 @ 3' 2 7/16"	16452	Passed (20%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.007 @ 2' 5 1/4"	0.109	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.012 @ 2' 5 1/4"	0.218	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 4' 8 1/4" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

· Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 4' 4 1/4".

The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Load	ds to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	3.50"	3.50"	1.61"	993	1283	2276	Blocking
2 - Stud wall - HF	3.50"	3.50"	2.58"	1588	2064	3651	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	4' 8" o/c				
Bottom Edge (Lu)	4' 8" o/c				
•Maximum allowable bracing intervals based on applied load.					

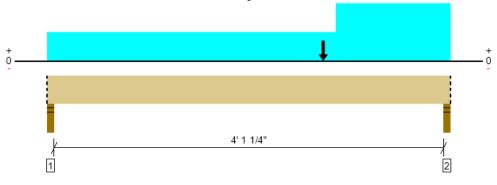
um allowable bracing intervals based on applied load

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 4' 8 1/4"	N/A	10.1		
1 - Uniform (PSF)	0 to 4' 8 1/4" (Front)	10'	30.0	40.0	2nd Floor
2 - Uniform (PSF)	3' 4 1/4" to 4' 8 1/4" (Front)	10'	30.0	40.0	3rd Floor
3 - Point (Ib)	3' 2 1/2" (Top)	N/A	727	938	Linked from: Grid 5.2 (B.6-B.8) Flush Beam, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator Job Notes Chon Pieruccioni Pieruccioni Engineering (206) 949-7866 cpieru@hotmail.com

3/7/2024 3:47:32 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: East Town Crossing Building A Page 15 / 68

Overall Length: 4' 8 1/4"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3651 @ 4' 6 1/4"	4961 (3.50")	Passed (74%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1845 @ 3' 4 7/8"	7343	Passed (25%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	3277 @ 3' 2 7/16"	16452	Passed (20%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.007 @ 2' 5 1/4"	0.109	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.012 @ 2' 5 1/4"	0.218	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 4' 8 1/4" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

· Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 4' 4 1/4".

The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	3.50"	3.50"	1.61"	993	1283	2276	Blocking
2 - Stud wall - HF	3.50"	3.50"	2.58"	1588	2064	3651	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	4' 8" o/c				
Bottom Edge (Lu)	4' 8" o/c				
•Maximum allowable bracing intervals based on applied load.					

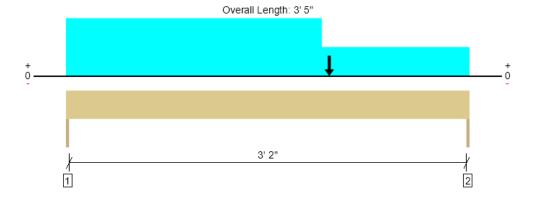
um allowable bracing intervals based on applied load

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 4' 8 1/4"	N/A	10.1		
1 - Uniform (PSF)	0 to 4' 8 1/4" (Front)	10'	30.0	40.0	2nd Floor
2 - Uniform (PSF)	3' 4 1/4" to 4' 8 1/4" (Front)	10'	30.0	40.0	3rd Floor
3 - Point (lb)	3' 2 1/2" (Top)	N/A	727	938	Linked from: Grid 5.2 (B.6-B.8) Flush Beam, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator Job Notes Chon Pieruccioni Pieruccioni Engineering (206) 949-7866 cpieru@hotmail.com

3/7/2024 3:47:32 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: East Town Crossing Building A Page 16 / 68

2nd Floor Framing, Grid 5.2 (B.9-C) Bathroom Door Header 1 piece(s) 4 x 8 DF No.2

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2637 @ 0	3281 (1.50")	Passed (80%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1911 @ 2' 8 1/4"	3045	Passed (63%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2472 @ 1' 10 1/2"	2989	Passed (83%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.016 @ 1' 8 1/2"	0.114	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.029 @ 1' 8 1/2"	0.171	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 3' 5" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

PASSED

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Load	ls to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	1138	1499	2637	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	1050	1377	2426	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 5" o/c	
Bottom Edge (Lu)	3' 5" o/c	

•Maximum allowable bracing intervals based on applied load.

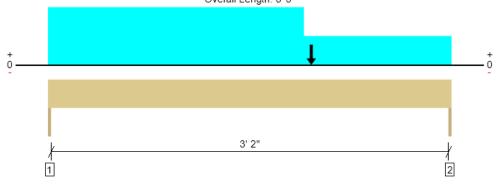
			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 3' 5"	N/A	6.4		
1 - Uniform (PSF)	0 to 3' 5"	10'	30.0	40.0	Default Load
2 - Uniform (PSF)	0 to 2' 2"	10'	30.0	40.0	Default Load
3 - Point (Ib)	2' 2 3/4"	N/A	472	617	Linked from: Grid 5.2 (B.8-B.9) Bathroom Door Header, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Note	5
Chon Pieruccioni Pieruccioni Engineering (206) 949-7866 coieru@hotmail.com	



2nd Floor Framing, Grid 8.8 (B.9-C) Bathroom Door Header 1 piece(s) 4 x 8 DF No.2

PASSED

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2637 @ 0	3281 (1.50")	Passed (80%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1911 @ 2' 8 1/4"	3045	Passed (63%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2472 @ 1' 10 1/2"	2989	Passed (83%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.016 @ 1' 8 1/2"	0.114	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.029 @ 1' 8 1/2"	0.171	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 3' 5" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	1138	1499	2637	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	1050	1377	2426	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 5" o/c	
Bottom Edge (Lu)	3' 5" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 3' 5"	N/A	6.4		
1 - Uniform (PSF)	0 to 3' 5"	10'	30.0	40.0	Default Load
2 - Uniform (PSF)	0 to 2' 2"	10'	30.0	40.0	Default Load
3 - Point (Ib)	2' 2 3/4"	N/A	472	617	Linked from: Grid 5.2 (B.8-B.9) Bathroom Door Header, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Chon Pieruccioni	
Pieruccioni Engineering	
(206) 949-7866	
cpieru@hotmail.com	

2nd Floor Framing, Grid 6.2 (B.4-B.5) Bedroom Door Header 1 piece(s) 4 x 8 DF No.2

Overall Length: 3' 5" t t t 3' 2" t 1 2

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

	-				
Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2413 @ 0	3281 (1.50")	Passed (74%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	692 @ 8 3/4"	3045	Passed (23%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1031 @ 1' 8 1/2"	2989	Passed (34%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.007 @ 1' 8 1/2"	0.114	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.012 @ 1' 8 1/2"	0.171	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 3' 5" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	1046	1366	2413	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	1046	1366	2413	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 5" o/c	
Bottom Edge (Lu)	3' 5" o/c	

•Maximum allowable bracing intervals based on applied load.

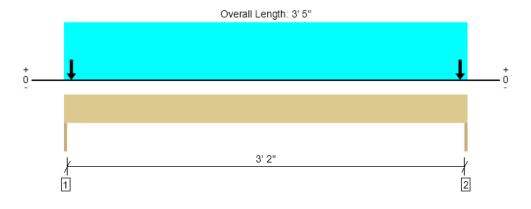
			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 3' 5"	N/A	6.4		
1 - Uniform (PSF)	0 to 3' 5"	10'	30.0	40.0	Default Load
2 - Point (lb)	3/4"	N/A	523	683	Linked from: Grid 6.2 (B.4-B.5) Bedroom Door Header, Support 1
3 - Point (lb)	3' 4 1/4"	N/A	523	683	Linked from: Grid 6.2 (B.4-B.5) Bedroom Door Header, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Chon Pieruccioni Pieruccioni Engineering (206) 949-7866 cpieru@hotmail.com Job Notes



3/7/2024 3:47:32 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: East Town Crossing Building A Page 19 / 68

2nd Floor Framing, Grid 7.8 (B.4-B.5) Bedroom Door Header 1 piece(s) 4 x 8 DF No.2

 $ece(s) 4 \times 8 DF NO.2$

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2413 @ 0	3281 (1.50")	Passed (74%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	692 @ 8 3/4"	3045	Passed (23%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	1031 @ 1' 8 1/2"	2989	Passed (34%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.007 @ 1' 8 1/2"	0.114	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.012 @ 1' 8 1/2"	0.171	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 3' 5" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

PASSED

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	1046	1366	2413	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	1046	1366	2413	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 5" o/c	
Bottom Edge (Lu)	3' 5" o/c	

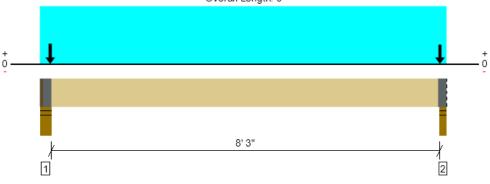
•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 3' 5"	N/A	6.4		
1 - Uniform (PSF)	0 to 3' 5"	10'	30.0	40.0	Default Load
2 - Point (Ib)	3/4"	N/A	523	683	Linked from: Grid 6.2 (B.4-B.5) Bedroom Door Header, Support 1
3 - Point (Ib)	3' 4 1/4"	N/A	523	683	Linked from: Grid 6.2 (B.4-B.5) Bedroom Door Header, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator Chon Pieruccioni Pieruccioni Engineering (206) 949-7866 cpieru@hotmail.com Job Notes

2nd Floor Framing, Grid 6.2 (B.7-C) Flush Beam 1 piece(s) 3 1/2" x 11 7/8" 24F-V4 DF Glulam

Overall Length: 9'

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3136 @ 8' 10"	4961 (3.50")	Passed (63%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2226 @ 1' 5 3/8"	7343	Passed (30%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-lbs)	6413 @ 4' 7"	16452	Passed (39%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.053 @ 4' 7"	0.213	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.095 @ 4' 7"	0.425	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 8' 10 1/2" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 8' 6".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	5.50"	4.00"	2.23"	2840	3666	6506	1 1/2" Rim Board, Squash Blocks
2 - Stud wall - HF	3.50"	3.50"	2.21"	2740	3534	6273	Blocking, Squash Blocks

Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• Squash Blocks must match bearing length and are assumed to carry all loads applied directly above them, bypassing the member being designed.

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	8' 11" o/c	
Bottom Edge (Lu)	8' 11" o/c	

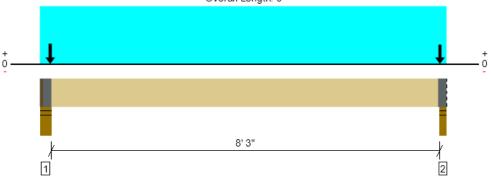
•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	1 1/2" to 9'	N/A	10.1		
1 - Uniform (PSF)	0 to 9' (Front)	10'	30.0	40.0	Default Load
2 - Point (lb)	8' 10 1/4" (Top)	N/A	1370	1767	Linked from: Grid 6.2 (B.7-C) Flush Beam, Support 2
3 - Point (lb)	2 3/4" (Top)	N/A	1420	1833	Linked from: Grid 6.2 (B.7-C) Flush Beam, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator	Job Notes
Chon Pieruccioni Pieruccioni Engineering (206) 949-7866 cpieru@hotmail.com	

2nd Floor Framing, Grid 7.8 (B.7-C) Flush Beam 1 piece(s) 3 1/2" x 11 7/8" 24F-V4 DF Glulam

Overall Length: 9'

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3136 @ 8' 10"	4961 (3.50")	Passed (63%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2226 @ 1' 5 3/8"	7343	Passed (30%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	6413 @ 4' 7"	16452	Passed (39%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.053 @ 4' 7"	0.213	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.095 @ 4' 7"	0.425	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 8' 10 1/2" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 8' 6".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	5.50"	4.00"	2.23"	2840	3666	6506	1 1/2" Rim Board, Squash Blocks
2 - Stud wall - HF	3.50"	3.50"	2.21"	2740	3534	6273	Blocking, Squash Blocks

Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• Squash Blocks must match bearing length and are assumed to carry all loads applied directly above them, bypassing the member being designed.

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	8' 11" o/c	
Bottom Edge (Lu)	8' 11" o/c	

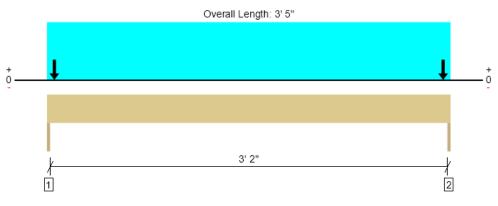
•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	1 1/2" to 9'	N/A	10.1		
1 - Uniform (PSF)	0 to 9' (Front)	10'	30.0	40.0	Default Load
2 - Point (Ib)	8' 10 1/4" (Top)	N/A	1370	1767	Linked from: Grid 6.2 (B.7-C) Flush Beam, Support 2
3 - Point (lb)	2 3/4" (Top)	N/A	1420	1833	Linked from: Grid 6.2 (B.7-C) Flush Beam, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator	Job Notes
Chon Pieruccioni Pieruccioni Engineering (206) 949-7866 cpieru@hotmail.com	

3/7/2024 3:47:32 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: East Town Crossing Building A Page 22 / 68

2nd Floor Framing, Grid 2.3 (D-D.1) Bedroom Door Header 1 piece(s) 4 x 8 DF No.2

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1976 @ 0	3281 (1.50")	Passed (60%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	566 @ 8 3/4"	3045	Passed (19%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	844 @ 1' 8 1/2"	2989	Passed (28%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.006 @ 1' 8 1/2"	0.114	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.010 @ 1' 8 1/2"	0.171	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Member Length : 3' 5" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Load	ls to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	860	1116	1976	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	860	1116	1976	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 5" o/c	
Bottom Edge (Lu)	3' 5" o/c	

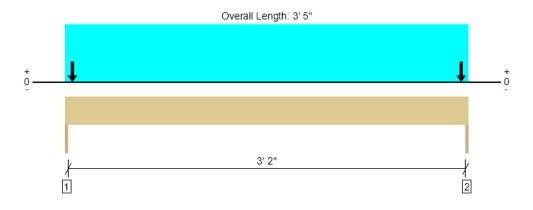
•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 3' 5"	N/A	6.4		
1 - Uniform (PSF)	0 to 3' 5"	8' 2"	30.0	40.0	Default Load
2 - Point (Ib)	3/4"	N/A	430	558	Linked from: Grid 2.3 (D-D.1) Bedroom Door Header, Support 1
3 - Point (Ib)	3' 4 1/4"	N/A	430	558	Linked from: Grid 2.3 (D-D.1) Bedroom Door Header, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator	Jo
Chon Pieruccioni Pieruccioni Engineering (206) 949-7866 cpieru@hotmail.com	

Job Notes

2nd Floor Framing, Grid 11.7 (D-D.1) Bedroom Door Header 1 piece(s) 4 x 8 DF No.2

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1976 @ 0	3281 (1.50")	Passed (60%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	566 @ 8 3/4"	3045	Passed (19%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	844 @ 1' 8 1/2"	2989	Passed (28%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.006 @ 1' 8 1/2"	0.114	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.010 @ 1' 8 1/2"	0.171	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 3' 5" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	860	1116	1976	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	860	1116	1976	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 5" o/c	
Bottom Edge (Lu)	3' 5" o/c	

•Maximum allowable bracing intervals based on applied load.

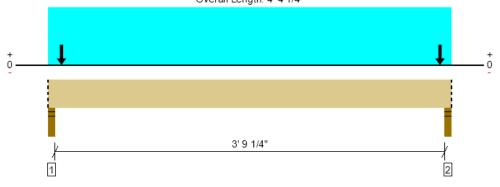
			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 3' 5"	N/A	6.4		
1 - Uniform (PSF)	0 to 3' 5"	8' 2"	30.0	40.0	Default Load
2 - Point (Ib)	3/4"	N/A	430	558	Linked from: Grid 2.3 (D-D.1) Bedroom Door Header, Support 1
3 - Point (Ib)	3' 4 1/4"	N/A	430	558	Linked from: Grid 2.3 (D-D.1) Bedroom Door Header, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Chon Pieruccioni Pieruccioni Engineering (206) 949-7866 cpieru@hotmail.com


Job Notes

PASSED

Overall Length: 4' 4 1/4"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

				1	
Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3473 @ 2"	4961 (3.50")	Passed (70%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	715 @ 1' 3 3/8"	7343	Passed (10%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	1612 @ 2' 2 1/8"	16452	Passed (10%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.003 @ 2' 2 1/8"	0.101	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.005 @ 2' 2 1/8"	0.201	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 4' 4 1/4" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

· Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 4' 1/4".

The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	3.50"	3.50"	2.45"	1514	1960	3473	Blocking
2 - Stud wall - HF	3.50"	3.50"	2.45"	1514	1960		Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	4' 4" o/c				
Bottom Edge (Lu)	4' 4" o/c				
Maximum allowable bracing intervals based on applied load					

ium allowable bracing intervals based on applied load.

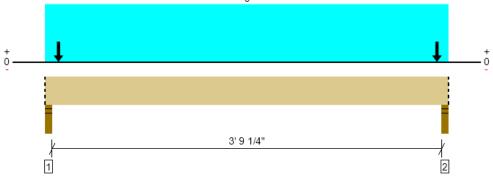
			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 4' 4 1/4"	N/A	10.1		
1 - Uniform (PSF)	0 to 4' 4 1/4" (Front)	11' 3"	30.0	40.0	Default Load
2 - Point (lb)	1 3/4" (Top)	N/A	757	980	Linked from: Grid 2.7 (D.2-D.4) Flush Beam, Support 1
3 - Point (lb)	4' 2 3/4" (Top)	N/A	757	980	Linked from: Grid 2.7 (D.2-D.4) Flush Beam, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes Chon Pieruccioni Pieruccioni Engineering (206) 949-7866 cpieru@hotmail.com



3/7/2024 3:47:32 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: East Town Crossing Building A Page 25 / 68

2nd Floor Framing, Grid 11.3 (D.2-D.4) Flush Beam 1 piece(s) 3 1/2" x 11 7/8" 24F-V4 DF Glulam

Overall Length: 4' 4 1/4"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3473 @ 2"	4961 (3.50")	Passed (70%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	715 @ 1' 3 3/8"	7343	Passed (10%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	1612 @ 2' 2 1/8"	16452	Passed (10%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.003 @ 2' 2 1/8"	0.101	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.005 @ 2' 2 1/8"	0.201	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 4' 4 1/4" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

· Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 4' 1/4".

The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	3.50"	3.50"	2.45"	1514	1960	3473	Blocking
2 - Stud wall - HF	3.50"	3.50"	2.45"	1514	1960	3473	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	4' 4" o/c				
Bottom Edge (Lu)	4' 4" o/c				
•Maximum allowable bracing intervals based on applied load					

ium allowable bracing intervals based on applied load

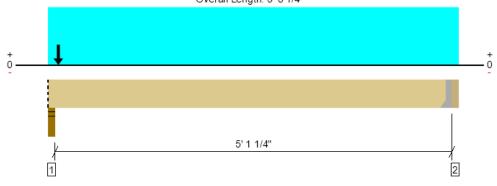
			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 4' 4 1/4"	N/A	10.1		
1 - Uniform (PSF)	0 to 4' 4 1/4" (Front)	11' 3"	30.0	40.0	Default Load
2 - Point (lb)	1 3/4" (Top)	N/A	757	980	Linked from: Grid 2.7 (D.2-D.4) Flush Beam, Support 1
3 - Point (lb)	4' 2 3/4" (Top)	N/A	757	980	Linked from: Grid 2.7 (D.2-D.4) Flush Beam, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes Chon Pieruccioni Pieruccioni Engineering (206) 949-7866 cpieru@hotmail.com



3/7/2024 3:47:32 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: East Town Crossing Building A Page 26 / 68

2nd Floor Framing, Grid 5.6 (D-D.3) Flush Beam 1 piece(s) 3 1/2" x 11 7/8" 24F-V4 DF Glulam

Overall Length: 5' 8 1/4"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4470 @ 2"	4961 (3.50")	Passed (90%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1306 @ 4' 4 7/8"	7343	Passed (18%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	2746 @ 2' 9 3/8"	16452	Passed (17%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.009 @ 2' 9 3/8"	0.131	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.015 @ 2' 9 3/8"	0.261	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 5' 4 3/4" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 5' 2 3/4".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	3.50"	3.50"	3.15"	1948	2522	4470	Blocking
2 - Hanger on 11 7/8" LSL beam	3.50"	Hanger ¹	1.50"	1015	1318	2332	See note 1

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	5' 5" o/c					
Bottom Edge (Lu)	5' 5" o/c					
-Maximum alloughle brasing intervals based on applied load						

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie								
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories		
2 - Face Mount Hanger	LUS414	2.00"	N/A	10-16d	6-16d			

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 5' 4 3/4"	N/A	10.1		
1 - Uniform (PSF)	0 to 5' 8 1/4" (Front)	11' 4"	30.0	40.0	Default Load
2 - Point (Ib)	1 3/4" (Top)	N/A	974	1261	Linked from: Grid 5.6 (D-D.3) Flush Beam, Support 1

ForteWEB Software Operator	Job Notes
Chon Pieruccioni Pieruccioni Engineering (206) 949-7866 cpieru@hotmail.com	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

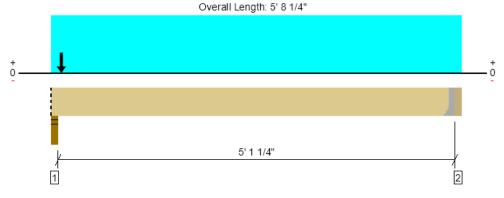
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Chon Pieruccioni Pieruccioni Engineering (206) 949-7866 cpieru@hotmail.com Job Notes

3/7/2024 3:47:32 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: East Town Crossing Building A Page 28 / 68

2nd Floor Framing, Grid 8.4 (D-D.3) Flush Beam 1 piece(s) 3 1/2" x 11 7/8" 24F-V4 DF Glulam

LDF


1.00

1.00

--

Load: Combination (Pattern)

1.0 D + 1.0 L (All Spans)

Member Length : 5' 4 3/4" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Total Load Defl. (in) 0.015
 Oeflection criteria: LL (L/480) and TL (L/240)

Design Results

Pos Moment (Ft-lbs)

Live Load Defl. (in)

Shear (lbs)

Member Reaction (lbs)

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 5' 2 3/4".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

Actual @ Location

4470 @ 2"

1306 @ 4' 4 7/8"

2746 @ 2' 9 3/8"

0.009 @ 2' 9 3/8"

0.015 @ 2' 9 3/8"

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Result

Passed (90%)

Passed (18%)

Passed (17%)

Passed (L/999+)

Passed (L/999+)

Allowed

4961 (3.50")

7343

16452

0.131

0.261

Applicable calculations are based on NDS.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	3.50"	3.50"	3.15"	1948	2522	4470	Blocking
2 - Hanger on 11 7/8" LSL beam	3.50"	Hanger ¹	1.50"	1015	1318	2332	See note 1

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	5' 5" o/c					
Bottom Edge (Lu)	5' 5" o/c					
Maximum allowable burging intervals beard on anylind land						

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie								
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories		
2 - Face Mount Hanger	LUS414	2.00"	N/A	10-16d	6-16d			

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

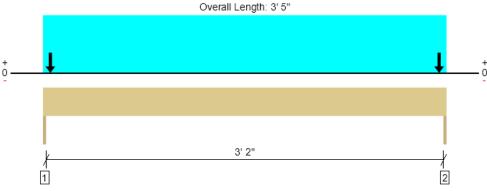
			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 5' 4 3/4"	N/A	10.1		
1 - Uniform (PSF)	0 to 5' 8 1/4" (Front)	11' 4"	30.0	40.0	Default Load
2 - Point (Ib)	1 3/4" (Top)	N/A	974	1261	Linked from: Grid 5.6 (D-D.3) Flush Beam, Support 1

ForteWEB Software Operator	Job Notes
Chon Pieruccioni Pieruccioni Engineering (206) 949-7866 cpieru@hotmail.com	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator Chon Pieruccioni Pieruccioni Engineering (206) 949-7866 cpieru@hotmail.com Job Notes

3/7/2024 3:47:32 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: East Town Crossing Building A Page 30 / 68

2nd Floor Framing, Grid 6 (D.5-D.6) Bedroom Door Header 1 piece(s) 4 x 8 DF No.2

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2732 @ 0	3281 (1.50")	Passed (83%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	783 @ 8 3/4"	3045	Passed (26%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1167 @ 1' 8 1/2"	2989	Passed (39%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.008 @ 1' 8 1/2"	0.114	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.014 @ 1' 8 1/2"	0.171	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 3' 5" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

PASSED

• Deflection criteria: LL (L/360) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	1184	1548	2732	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	1184	1548	2732	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 5" o/c	
Bottom Edge (Lu)	3' 5" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 3' 5"	N/A	6.4		
1 - Uniform (PSF)	0 to 3' 5"	11' 4"	30.0	40.0	Default Load
2 - Point (lb)	3/4"	N/A	592	774	Linked from: Grid 6 (D.5-D.6) Bedroom Door Header, Support 1
3 - Point (lb)	3' 4 1/4"	N/A	592	774	Linked from: Grid 6 (D.5-D.6) Bedroom Door Header, Support 2

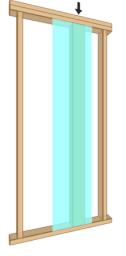
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Chon Pieruccioni Pieruccioni Engineering (206) 949-7866 cpieru@hotmail.com

Job Notes



2nd Floor Framing, Main Landing Post 1 piece(s) 6 x 10 DF No.2

Wall Height: 9'

Member Height: 8' 7 1/2"

Tributary Width: 1' 4"

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	11	50	Passed (22%)		
Compression (lbs)	20238	30059	Passed (67%)	1.00	1.0 D + 1.0 L
Plate Bearing (lbs)	20238	21161	Passed (96%)		1.0 D + 1.0 L
Lateral Reaction (lbs)	79			1.60	1.0 D + 0.6 W
Lateral Shear (lbs)	65	9475	Passed (1%)	1.60	1.0 D + 0.6 W
Lateral Moment (ft-lbs)	171 @ mid-span	9642	Passed (2%)	1.60	1.0 D + 0.6 W
Total Deflection (in)	0.04 @ mid-span	0.86	Passed (L/2401)		1.0 D + 1.0 L
Bending/Compression	0.97	1	Passed (97%)	1.00	1.0 D + 1.0 L

Lateral deflection criteria: Wind (L/120)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

Applicable calculations are based on NDS.

· Bearing shall be on a metal plate or strap, or on other equivalently durable, rigid, homogeneous material with sufficient stiffness to distribute applied load.

· Special detailing and installation procedures are necessary for large wall construction.

• Lumber grading provisions must be extended over the length of the member per NDS 4.2.5.5.

Supports	Туре	Material	System : Wall
Тор	Dbl 2X	Hem Fir	Member Type : Column
Base	2X	Hem Fir	Building Code : IBC 2018 Design Methodology : ASD

Drawing is Conceptual

Max Unbraced Length	Comments
1'	

Lateral Connections							
Supports	Connector	Type/Model	Quantity	Connector Nailing			
Тор	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A			
Base	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A			

Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

		Dead	Floor Live	
Vertical Loads	Tributary Width	(0.90)	(1.00)	Comments
1 - Point (lb)	N/A	3004	9192	Linked from: Top Landing Beam, Support 2
2 - Point (Ib)	N/A	1975	6067	Linked from: Top Landing Beam, Support 1

			Wind	
Lateral Load	Location	Tributary Width	(1.60)	Comments
1 - Uniform (PSF)	Full Length	1' 4"	22.9	

 ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (110), Risk Category(II), Effective Wind Area determined using full member span and trib. width. • IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

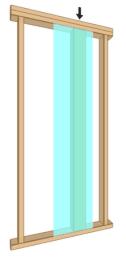
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Chon Pieruccioni Pieruccioni Engineering (206) 949-7866 cpieru@hotmail.com	

3/7/2024 3:47:32 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: East Town Crossing Building A Page 32 / 68


PASSED

2nd Floor Framing, Grid 6.2B.6 Post 1 piece(s) 4 x 6 DF No.2

Wall Height: 9'

Member Height: 8' 7 1/2"

Tributary Width: 0

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	19	50	Passed (38%)		
Compression (lbs)	6274	18757	Passed (33%)	1.00	1.0 D + 1.0 L
Plate Bearing (lbs)	6274	7796	Passed (80%)		1.0 D + 1.0 L
Lateral Reaction (lbs)	0				N/A
Lateral Shear (lbs)	0	N/A	Passed (N/A)		N/A
Lateral Moment (ft-lbs)	0 @ mid-span	N/A	Passed (N/A)		N/A
Total Deflection (in)	0.00 @ mid-span	N/A	Passed (N/A)		N/A
Bending/Compression	N/A	1	Passed (N/A)		N/A

Lateral deflection criteria: Wind (L/180)

· Input axial load eccentricity for the design is zero

Applicable calculations are based on NDS.

• Bearing shall be on a metal plate or strap, or on other equivalently durable, rigid, homogeneous material with sufficient stiffness to distribute applied load.

Comments

Supports	Туре	Material	System : Wall
Тор	Dbl 2X	Hem Fir	Member Type : Column
Base	2X	Hem Fir	Building Code : IBC 2018 Design Methodology : ASD

Drawing is Conceptual

Lateral Connectio	ons			
Supports	Connector	Type/Model	Quantity	Connector Nailing
Тор	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A
Base	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A

• Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly

Vertical Load	Tributary Width	Dead (0.90)	Floor Live (1.00)	Comments
1 - Point (lb)	N/A	2740	3534	Linked from: Grid 6.2 (B.7-C) Flush Beam, Support 2

Max Unbraced Length

			Wind	
Lateral Load	Location	Tributary Width	(1.60)	Comments
1 - Uniform (PSF)	Full Length	N/A	22.9	

• ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33"), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (110), Risk Category(II), Effective Wind Area determined using full member span and trib. width.

• IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

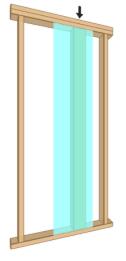
1'

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Chon Pieruccioni Pieruccioni Engineering (206) 949-7866 cpieru@hotmail.com	


PASSED

2nd Floor Framing, Grid 7.8B.6 Post 1 piece(s) 4 x 6 DF No.2

Wall Height: 9'

Member Height: 8' 7 1/2"

Tributary Width: 0

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	19	50	Passed (38%)		
Compression (lbs)	6274	18757	Passed (33%)	1.00	1.0 D + 1.0 L
Plate Bearing (lbs)	6274	7796	Passed (80%)		1.0 D + 1.0 L
Lateral Reaction (lbs)	0				N/A
Lateral Shear (lbs)	0	N/A	Passed (N/A)		N/A
Lateral Moment (ft-lbs)	0 @ mid-span	N/A	Passed (N/A)		N/A
Total Deflection (in)	0.00 @ mid-span	N/A	Passed (N/A)		N/A
Bending/Compression	N/A	1	Passed (N/A)		N/A

· Lateral deflection criteria: Wind (L/180)

· Input axial load eccentricity for the design is zero

Applicable calculations are based on NDS.

· Bearing shall be on a metal plate or strap, or on other equivalently durable, rigid, homogeneous material with sufficient stiffness to distribute applied load.

Comments

N/A

Supports	Туре	Material	System : Wall
Тор	Dbl 2X	Hem Fir	Member Type : Column
Base	2X	Hem Fir	Building Code : IBC 2018 Design Methodology : ASD

2

Drawing is Conceptual

Lateral Connectio	ns			
Supports	Connector	Type/Model	Quantity	Connector Nailing
Тор	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A

8d (0.113" x 2 1/2") (Toe) Base Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

Vertical Load	Tributary Width	Dead (0.90)	Floor Live (1.00)	Comments
1 - Point (lb)	N/A	2740	3534	Linked from: Grid 6.2 (B.7-C) Flush Beam, Support 2

Max Unbraced Length

			Wind	
Lateral Load	Location	Tributary Width	(1.60)	Comments
1 - Uniform (PSF)	Full Length	N/A	22.9	

• ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (110), Risk Category(II), Effective Wind Area determined using full member span and trib. width.

• IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

1'

Nails

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Chon Pieruccioni Pieruccioni Engineering (206) 949-7866 cpieru@hotmail.com	

3rd Floor Framing, Floor Joist 16' and Under 1 piece(s) 11 7/8" TJI ® 110 @ 16" OC

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	774 @ 2 1/2"	1375 (3.50")	Passed (56%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	747 @ 3 1/2"	1560	Passed (48%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	3049 @ 8' 3 1/2"	3160	Passed (96%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.275 @ 8' 3 1/2"	0.539	Passed (L/704)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.482 @ 8' 3 1/2"	0.808	Passed (L/403)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	48	40	Passed		

Member Length : 16' 7" System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser EdgeTM Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: 5/8" Gypsum ceiling.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	3.50"	3.50"	1.75"	332	442	774	Blocking
2 - Stud wall - HF	3.50"	3.50"	1.75"	332	442	774	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments		
Top Edge (Lu)	3' 1" o/c			
Bottom Edge (Lu)	16' 7" o/c			
Til isish and and and an Antiman Allowable burging addition				

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

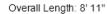
•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 16' 7"	16"	30.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator Job Chon Pieruccioni Pieruccioni Engineering (206) 949-7866 coieru@hotmail.com


Job Notes

3rd Floor Framing, 8'-5" Landing Joists 1 piece(s) 2 x 12 HF No.2 @ 12" OC

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	821 @ 3"	911 (1.50")	Passed (90%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	638 @ 1' 2 1/4"	1688	Passed (38%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1727 @ 4' 5 1/2"	2577	Passed (67%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.073 @ 4' 5 1/2"	0.281	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.095 @ 4' 5 1/2"	0.421	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Applicable calculations are based on NDS.

· No composite action between deck and joist was considered in analysis.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Hanger on 11 1/4" LSL beam	3.00"	Hanger ¹	1.50"	201	669	869	See note 1
2 - Hanger on 11 1/4" LSL beam	3.00"	Hanger ¹	1.50"	201	669	869	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	6' 4" o/c					
Bottom Edge (Lu)	8' 5" o/c					

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie							
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories	
1 - Face Mount Hanger	LUS28	1.75"	N/A	6-10dx1.5	3-10d		
2 - Face Mount Hanger	LUS28	1.75"	N/A	6-10dx1.5	3-10d		

· Refer to manufacturer notes and instructions for proper installation and use of all connectors.

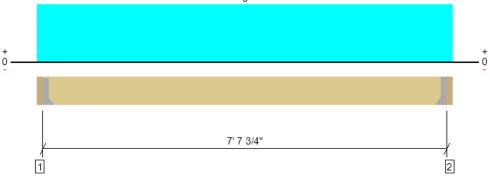
			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 8' 11"	12"	45.0	150.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Chon Pieruccioni Pieruccioni Engineering (206) 949-7866 cpieru@hotmail.com	


3/7/2024 3:47:32 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: East Town Crossing Building A Page 36 / 68

Member Length : 8' 5" System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

3rd Floor Framing, Short Stair Stringers 1 piece(s) 4 x 12 HF No.2

Overall Length: 8' 1 3/4"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1529 @ 3"	2126 (1.50")	Passed (72%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1154 @ 1' 2 1/4"	3938	Passed (29%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2923 @ 4' 7/8"	5752	Passed (51%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.043 @ 4' 7/8"	0.191	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.057 @ 4' 7/8"	0.382	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 7' 7 3/4" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Hanger on 11 1/4" GLB beam	3.00"	Hanger ¹	1.50"	405	1222	1627	See note 1
2 - Hanger on 11 1/4" GLB beam	3.00"	Hanger ¹	1.50"	405	1222	1627	See note 1
2 hanger einnerte die Teste Baaring dimension is aqual to the width of the material that is supporting the banger							

At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	7' 8" o/c				
Bottom Edge (Lu)	7' 8" o/c				
•Maximum allowable bracing intervals based on applied load.					

Connector: Simpson Strong-Tie							
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories	
1 - Face Mount Hanger	LUS410	2.00"	N/A	8-16d	6-16d		
2 - Face Mount Hanger	LUS410	2.00"	N/A	8-16d	6-16d		

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

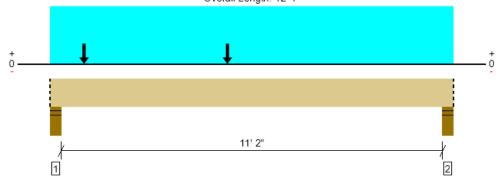
			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	3" to 7' 10 3/4"	N/A	10.0		
1 - Uniform (PSF)	0 to 8' 1 3/4" (Front)	2'	45.0	150.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes Chon Pieruccioni Pieruccioni Engineering (206) 949-7866 cpieru@hotmail.com



3/7/2024 3:47:32 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: East Town Crossing Building A Page 37 / 68

PASSED

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	8041 @ 4"	12251 (5.50")	Passed (66%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	6022 @ 1' 5 1/2"	11660	Passed (52%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	20040 @ 5' 3 3/4"	26400	Passed (76%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.241 @ 5' 11 13/16"	0.285	Passed (L/569)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.319 @ 5' 11 3/4"	0.571	Passed (L/429)		1.0 D + 1.0 L (All Spans)

Member Length : 12' 1" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 11' 5".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

· Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	5.50"	5.50"	3.61"	1975	6067	8041	Blocking
2 - Stud wall - HF	5.50"	5.50"	2.87"	1567	4836	6402	Blocking

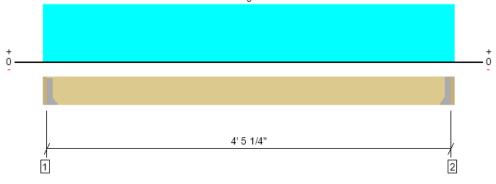
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	12' 1" o/c					
Bottom Edge (Lu)	12' 1" o/c					
•Maximum allowable bracing intervals based on applied load						

ium allowable bracing intervals based on applied load

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 12' 1"	N/A	16.0		
1 - Uniform (PSF)	0 to 12' 1" (Front)	4' 8"	45.0	150.0	Default Load
2 - Point (lb)	1' 1/4" (Front)	N/A	405	1222	Linked from: Short Stair Stringers, Support 1
3 - Point (lb)	5' 3 3/4" (Front)	N/A	405	1222	Linked from: Short Stair Stringers, Support 1

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Chon Pieruccioni Pieruccioni Engineering (206) 949-7866 cpieru@hotmail.com	

3rd Floor Framing, 4' Mid Landing Joists 1 piece(s) 2 x 8 HF No.2 @ 16" OC

Overall Length: 4' 9 1/4"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	577 @ 2"	911 (1.50")	Passed (63%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	420 @ 9 1/4"	1088	Passed (39%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	640 @ 2' 4 5/8"	1284	Passed (50%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.028 @ 2' 4 5/8"	0.148	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.037 @ 2' 4 5/8"	0.222	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Applicable calculations are based on NDS.

· No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Hanger on 7 1/4" LSL beam	2.00"	Hanger ¹	1.50"	143	477	620	See note 1
2 - Hanger on 7 1/4" LSL beam	2.00"	Hanger ¹	1.50"	143	477	620	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments					
Top Edge (Lu)	4' 5" o/c						
Bottom Edge (Lu)	4' 5" o/c						

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie									
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories			
1 - Face Mount Hanger	LU26	1.50"	N/A	6-10d	4-10dx1.5				
2 - Face Mount Hanger	LU26	1.50"	N/A	6-10d	4-10dx1.5				

· Refer to manufacturer notes and instructions for proper installation and use of all connectors.

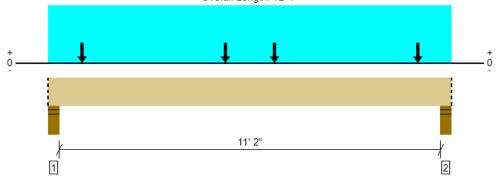
			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 4' 9 1/4"	16"	45.0	150.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Chon Pieruccioni Pieruccioni Engineering (206) 949-7866 cpieru@hotmail.com	



3/7/2024 3:47:32 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: East Town Crossing Building A Page 39 / 68

Member Length : 4' 5 1/4" System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Overall Length: 12' 1"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	6299 @ 11' 9"	12251 (5.50")	Passed (51%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	4890 @ 1' 5 1/2"	11660	Passed (42%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	17407 @ 6' 7/16"	26400	Passed (66%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.207 @ 6' 1/2"	0.285	Passed (L/663)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.276 @ 6' 1/2"	0.571	Passed (L/496)		1.0 D + 1.0 L (All Spans)

Member Length : 12' 1" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 11' 5".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

• Applicable calculations are based on NDS.

	Bearing Length			Load	ds to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	5.50"	5.50"	2.83"	1586	4707	6293	Blocking
2 - Stud wall - HF	5.50"	5.50"	2.83"	1587	4712	6299	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	12' 1" o/c				
Bottom Edge (Lu)	12' 1" o/c				
•Maximum allowable bracing intervals based on applied load.					

num allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 12' 1"	N/A	16.0		
1 - Uniform (PSF)	0 to 12' 1" (Front)	2' 6"	45.0	150.0	Default Load
2 - Point (lb)	1' 1/4" (Front)	N/A	405	1222	Linked from: Short Stair Stringers, Support 1
3 - Point (lb)	5' 3 3/4" (Front)	N/A	405	1222	Linked from: Short Stair Stringers, Support 1
4 - Point (lb)	6' 9 3/8" (Front)	N/A	405	1222	Linked from: Short Stair Stringers, Support 1
5 - Point (lb)	11' 7/8" (Front)	N/A	405	1222	Linked from: Short Stair Stringers, Support 1

ForteWEB Software Operator Chon Pieruccioni Pieruccioni Engineering (206) 949-7866 cpieru@hotmail.com

Job Notes

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Chon Pieruccioni Pieruccioni Engineering (206) 949-7866 cpieru@hotmail.com Job Notes

3/7/2024 3:47:32 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: East Town Crossing Building A Page 41 / 68

3rd Floor Framing, Mid Landing Outer Beam 1 piece(s) 3 1/2" x 10 1/2" 24F-V4 DF Glulam

Overall Length: 12' 1"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2999 @ 4"	7796 (5.50")	Passed (38%)		1.0 D + 1.0 L (All Spans)
Shear (Ibs)	2337 @ 1' 4"	6493	Passed (36%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	8088 @ 6' 1/2"	12863	Passed (63%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.236 @ 6' 1/2"	0.285	Passed (L/581)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.312 @ 6' 1/2"	0.571	Passed (L/439)		1.0 D + 1.0 L (All Spans)

Member Length : 12' 1" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 11' 5".

The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	5.50"	5.50"	2.12"	734	2266	2999	Blocking
2 - Stud wall - HF	5.50"	5.50"	2.12"	734	2266	2999	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

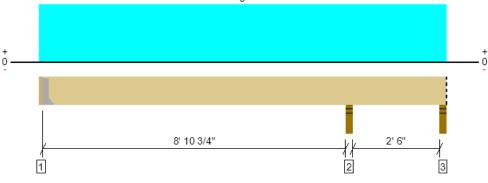
Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	12' 1" o/c				
Bottom Edge (Lu)	12' 1" o/c				
•Maximum allowable bracing intervals based on applied load.					

ium allowable bracing intervals based on applied load

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 12' 1"	N/A	8.9		
1 - Uniform (PSF)	0 to 12' 1" (Front)	2' 6"	45.0	150.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


ForteWEB Software Operator	Job Notes
Chon Pieruccioni	
Pieruccioni Engineering	
(206) 949-7866	
cnieru@hotmail.com	

3rd Floor Framing, 8'-10" Deck Joist 1 piece(s) 2 x 12 HF No.2 @ 16" OC

Overall Length: 12' 1 3/4"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1168 @ 9' 2 1/2"	2126 (3.50")	Passed (55%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	520 @ 8' 1 1/2"	1688	Passed (31%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	-968 @ 9' 2 1/2"	2577	Passed (38%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.028 @ 4' 2 7/8"	0.301	Passed (L/999+)		1.0 D + 1.0 L (Alt Spans)
Total Load Defl. (in)	0.042 @ 4' 2 3/4"	0.452	Passed (L/999+)		1.0 D + 1.0 L (Alt Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

• -285 lbs uplift at support located at 11' 11 1/4". Strapping or other restraint may be required.

Applicable calculations are based on NDS.

• No composite action between deck and joist was considered in analysis.

	Bearing Length			Load	ds to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Hanger on 11 1/4" HF beam	2.00"	Hanger ¹	1.50"	152	306	457	See note 1
2 - Stud wall - HF	3.50"	3.50"	1.92"	389	779	1168	None
3 - Stud wall - HF	3.50"	3.50"	1.50"	-55	120/-230	64/-285	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	12' o/c				
Bottom Edge (Lu)	12' o/c				
Manimum allaundala hur sina internala hanadan angli daland					

Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

1 0							
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories	
1 - Face Mount Hanger	LUS28	1.75"	N/A	6-10dx1.5	3-10d		
Defer to manufacturer notes and instructions for proper installation and use of all connectors							

Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 12' 1 3/4"	16"	30.0	60.0	Default Load

Weyerhaeuser Notes

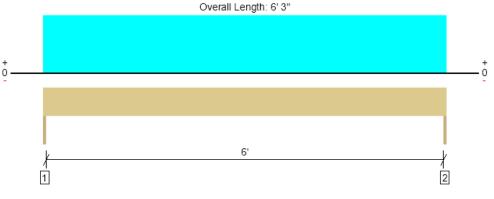
Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

 ForteWEB Software Operator
 Job Notes

 Chon Pieruccioni
 Pieruccioni Engineering

 (206) 949-7866
 cpieru@hotmail.com


3/7/2024 3:47:32 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: East Town Crossing Building A Page 43 / 68

Member Length : 11' 11 3/4" System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

3rd Floor Framing, 6' Window Header 1 piece(s) 4 x 10 DF No.2

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2272 @ 0	3281 (1.50")	Passed (69%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1621 @ 10 3/4"	3885	Passed (42%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	3550 @ 3' 1 1/2"	4492	Passed (79%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.031 @ 3' 1 1/2"	0.208	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.068 @ 3' 1 1/2"	0.313	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 6' 3" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Load	ds to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	1215	1057	2272	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	1215	1057	2272	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6' 3" o/c	
Bottom Edge (Lu)	6' 3" o/c	

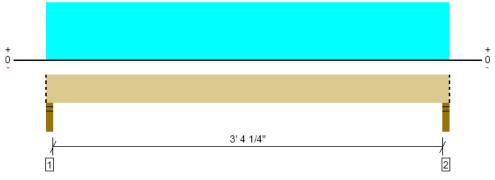
•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 6' 3"	N/A	8.2		
1 - Uniform (PSF)	0 to 6' 3"	6' 7"	30.0	40.0	Floor
2 - Uniform (PLF)	0 to 6' 3"	N/A	108.0	-	Wall
3 - Uniform (PSF)	0 to 6' 3"	3'	25.0	25.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator	Job
Chon Pieruccioni Pieruccioni Engineering (206) 949-7866	
cpieru@hotmail.com	

Job Notes

Overall Length: 3' 11 1/4"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1409 @ 2"	4961 (3.50")	Passed (28%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	492 @ 1' 3 3/8"	7343	Passed (7%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-lbs)	1163 @ 1' 11 5/8"	16452	Passed (7%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.002 @ 1' 11 5/8"	0.090	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.003 @ 1' 11 5/8"	0.180	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 3' 11 1/4" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 3' 7 1/4".

The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	3.50"	3.50"	1.50"	615	794	1409	Blocking
2 - Stud wall - HF	3.50"	3.50"	1.50"	615	794		Blocking

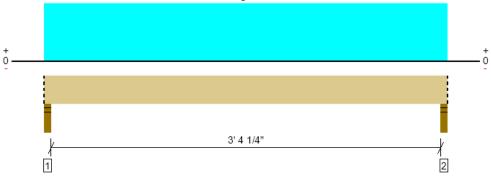
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	3' 11" o/c					
Bottom Edge (Lu) 3' 11" o/c						
•Maximum allowable bracing intervals based on applied load.						

um allowable bracing intervals based on applied load

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 3' 11 1/4"	N/A	10.1		
1 - Uniform (PSF)	0 to 3' 11 1/4" (Front)	10' 1"	30.0	40.0	Default Load

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Chon Pieruccioni	
Pieruccioni Engineering	
(206) 949-7866	
cpieru@hotmail.com	

Overall Length: 3' 11 1/4"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1409 @ 2"	4961 (3.50")	Passed (28%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	492 @ 1' 3 3/8"	7343	Passed (7%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	1163 @ 1' 11 5/8"	16452	Passed (7%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.002 @ 1' 11 5/8"	0.090	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.003 @ 1' 11 5/8"	0.180	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 3' 11 1/4" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

PASSED

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 3' 7 1/4".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	3.50"	3.50"	1.50"	615	794	1409	Blocking
2 - Stud wall - HF	3.50"	3.50"	1.50"	615	794	1409	Blocking

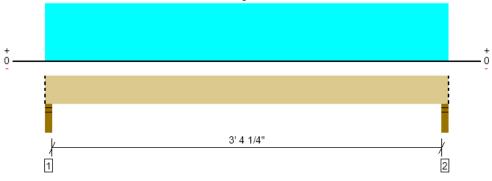
• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	3' 11" o/c					
Bottom Edge (Lu)	3' 11" o/c					
•Maximum allowable bracing intervals based on applied load						

Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 3' 11 1/4"	N/A	10.1		
1 - Uniform (PSF)	0 to 3' 11 1/4" (Front)	10' 1"	30.0	40.0	Default Load

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Chon Pieruccioni	
Pieruccioni Engineering	1
(206) 949-7866	1
cnieru@hotmail.com	1

3rd Floor Framing, Grid 3.1 (B.6-B.8) Flush Beam 1 piece(s) 3 1/2" x 11 7/8" 24F-V4 DF Glulam

Overall Length: 3' 11 1/4"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1398 @ 2"	4961 (3.50")	Passed (28%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	488 @ 1' 3 3/8"	7343	Passed (7%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	1153 @ 1' 11 5/8"	16452	Passed (7%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.002 @ 1' 11 5/8"	0.090	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.003 @ 1' 11 5/8"	0.180	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 3' 11 1/4" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

PASSED

· Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 3' 7 1/4".

The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

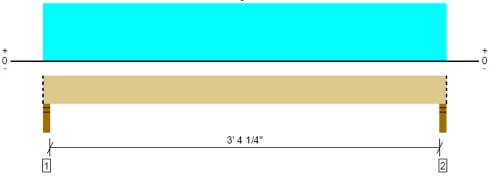
	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	3.50"	3.50"	1.50"	611	788	1398	Blocking
2 - Stud wall - HF	3.50"	3.50"	1.50"	611	788	1398	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	3' 11" o/c					
Bottom Edge (Lu)	3' 11" o/c					
•Maximum allowable bracing intervals based on applied load						

um allowable bracing intervals based on applied load

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 3' 11 1/4"	N/A	10.1		
1 - Uniform (PSF)	0 to 3' 11 1/4" (Front)	10'	30.0	40.0	Default Load


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Chon Pieruccioni	
Pieruccioni Engineering	
(206) 949-7866	
cpieru@hotmail.com	

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

	-				
Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1398 @ 2"	4961 (3.50")	Passed (28%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	488 @ 1' 3 3/8"	7343	Passed (7%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	1153 @ 1' 11 5/8"	16452	Passed (7%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.002 @ 1' 11 5/8"	0.090	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.003 @ 1' 11 5/8"	0.180	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 3' 11 1/4" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 3' 7 1/4".

The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	3.50"	3.50"	1.50"	611	788	1398	Blocking
2 - Stud wall - HF	3.50"	3.50"	1.50"	611	788		Blocking

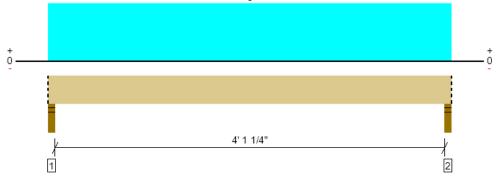
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	3' 11" o/c					
Bottom Edge (Lu)	3' 11" o/c					
•Maximum allowable bracing intervals based on applied load						

um allowable bracing intervals based on applied load

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 3' 11 1/4"	N/A	10.1		
1 - Uniform (PSF)	0 to 3' 11 1/4" (Front)	10'	30.0	40.0	Default Load

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Chon Pieruccioni	
Pieruccioni Engineering	
(206) 949-7866	
cpieru@hotmail.com	

Overall Length: 4' 8 1/4"

LDF

1.00

1.00

Load: Combination (Pattern)

1.0 D + 1.0 L (All Spans)

Member Length : 4' 8 1/4" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240)

Design Results

Shear (lbs)

Member Reaction (lbs)

Pos Moment (Ft-lbs)

Live Load Defl. (in)

Total Load Defl. (in)

· Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 4' 4 1/4".

The effects of positive or negative camber have not been accounted for when calculating deflection.

Actual @ Location

1664 @ 2"

754 @ 1' 3 3/8"

1683 @ 2' 4 1/8"

0.004 @ 2' 4 1/8"

0.007 @ 2' 4 1/8"

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Result

Passed (34%)

Passed (10%)

Passed (10%)

Passed (L/999+)

Passed (L/999+)

Allowed

4961 (3.50")

7343

16452

0.109

0.218

Applicable calculations are based on NDS.

	Bearing Length			Load	ds to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	3.50"	3.50"	1.50"	727	938	1664	Blocking
2 - Stud wall - HF	3.50"	3.50"	1.50"	727	938	1664	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu) 4' 8" o/c						
Bottom Edge (Lu)	4' 8" o/c					
•Maximum allowable bracing intervals based on applied load.						

im allowable bracing intervals based on applied load

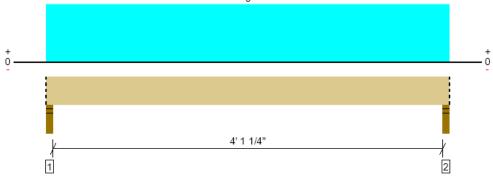
			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 4' 8 1/4"	N/A	10.1		
1 - Uniform (PSF)	0 to 4' 8 1/4" (Front)	10'	30.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

es


ForteWEB Software Operator	Job Not
Chon Pieruccioni	
Pieruccioni Engineering	
(206) 949-7866	
cnieru@hotmail.com	

3rd Floor Framing, Grid 8.8 (B.6-B.8) Flush Beam 1 piece(s) 3 1/2" x 11 7/8" 24F-V4 DF Glulam

Overall Length: 4' 8 1/4"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs) 1664 @ 2"		4961 (3.50")	Passed (34%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	754 @ 1' 3 3/8"	7343	Passed (10%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	1683 @ 2' 4 1/8"	16452	Passed (10%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.004 @ 2' 4 1/8"	0.109	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.007 @ 2' 4 1/8"	0.218	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 4' 8 1/4" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

PASSED

· Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 4' 4 1/4".

The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

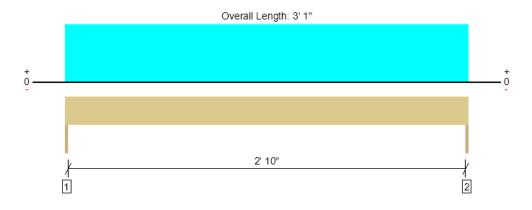
	Bearing Length			Load	ds to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	3.50"	3.50"	1.50"	727	938	1664	Blocking
2 - Stud wall - HF	3.50"	3.50"	1.50"	727	938	1664	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu) 4' 8" o/c						
Bottom Edge (Lu)	4' 8" o/c					
•Maximum allowable bracing intervals based on applied load.						

um allowable bracing intervals based on applied load

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 4' 8 1/4"	N/A	10.1		
1 - Uniform (PSF)	0 to 4' 8 1/4" (Front)	10'	30.0	40.0	Default Load


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Chon Pieruccioni	
Pieruccioni Engineering	
(206) 949-7866	
cnieru@hotmail.com	

3rd Floor Framing, Grid 5.2 (B.8-B.9) Bathroom Door Header 1 piece(s) 4 x 8 DF No.2

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	ber Reaction (lbs) 1089 @ 0		Passed (33%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	574 @ 8 3/4"	3045	Passed (19%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	839 @ 1' 6 1/2"	2989	Passed (28%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.005 @ 1' 6 1/2"	0.103	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.008 @ 1' 6 1/2"	0.154	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 3' 1" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

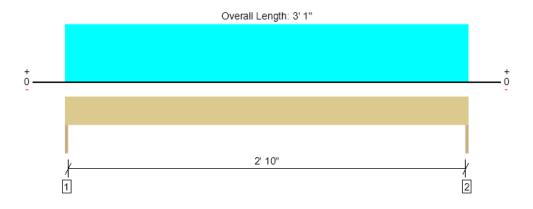
	Bearing Length			Load	ls to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	472	617	1089	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	472	617	1089	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 1" o/c	
Bottom Edge (Lu)	3' 1" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 3' 1"	N/A	6.4		
1 - Uniform (PSF)	0 to 3' 1"	10'	30.0	40.0	Default Load

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Chon Pieruccioni Pieruccioni Engineering (206) 949-7866	
cpieru@hotmail.com	

3rd Floor Framing, Grid 8.8 (B.8-B.9) Bathroom Door Header 1 piece(s) 4 x 8 DF No.2

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1089 @ 0	3281 (1.50")	Passed (33%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	574 @ 8 3/4"	3045	Passed (19%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	839 @ 1' 6 1/2"	2989	Passed (28%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.005 @ 1' 6 1/2"	0.103	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.008 @ 1' 6 1/2"	0.154	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 3' 1" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

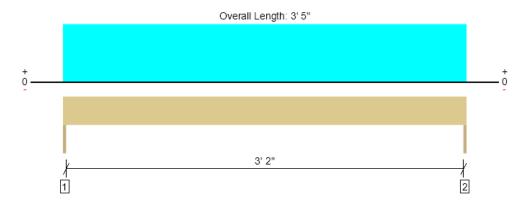
	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	472	617	1089	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	472	617	1089	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 1" o/c	
Bottom Edge (Lu)	3' 1" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 3' 1"	N/A	6.4		
1 - Uniform (PSF)	0 to 3' 1"	10'	30.0	40.0	Default Load

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Chon Pieruccioni Pieruccioni Engineering (206) 949-7866	
cpieru@hotmail.com	

3rd Floor Framing, Grid 6.2 (B.4-B.5) Bedroom Door Header 1 piece(s) 4 x 8 DF No.2

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1207 @ 0	3281 (1.50")	Passed (37%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	692 @ 8 3/4"	3045	Passed (23%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1031 @ 1' 8 1/2"	2989	Passed (34%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.007 @ 1' 8 1/2"	0.114	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.012 @ 1' 8 1/2"	0.171	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 3' 5" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	523	683	1207	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	523	683	1207	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 5" o/c	
Bottom Edge (Lu)	3' 5" o/c	

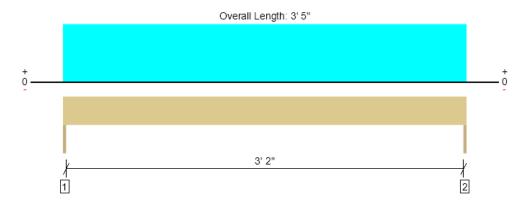
•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 3' 5"	N/A	6.4		
1 - Uniform (PSF)	0 to 3' 5"	10'	30.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator	Job Notes
Chon Pieruccioni Pieruccioni Engineering (206) 949-7866	
cpieru@hotmail.com	

3/7/2024 3:47:32 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: East Town Crossing Building A Page 53 / 68

3rd Floor Framing, Grid 7.8 (B.4-B.5) Bedroom Door Header 1 piece(s) 4 x 8 DF No.2

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1207 @ 0	3281 (1.50")	Passed (37%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	692 @ 8 3/4"	3045	Passed (23%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1031 @ 1' 8 1/2"	2989	Passed (34%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.007 @ 1' 8 1/2"	0.114	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.012 @ 1' 8 1/2"	0.171	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 3' 5" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

PASSED

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Load	ds to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	523	683	1207	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	523	683	1207	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 5" o/c	
Bottom Edge (Lu) 3' 5" o/c		

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 3' 5"	N/A	6.4		
1 - Uniform (PSF)	0 to 3' 5"	10'	30.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Chon Pieruccioni Pieruccioni Engineering (206) 949-7866 cpieru@hotmail.com	
cpieru@notmair.com	

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3136 @ 8' 10"	4961 (3.50")	Passed (63%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2226 @ 1' 5 3/8"	7343	Passed (30%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	6413 @ 4' 7"	16452	Passed (39%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.053 @ 4' 7"	0.213	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.095 @ 4' 7"	0.425	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 8' 10 1/2" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

PASSED

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 8' 6".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Load	ls to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	5.50"	4.00"	2.23"	1420	1833	3253	1 1/2" Rim Board
2 - Stud wall - HF	3.50"	3.50"	2.21"	1370	1767	3136	Blocking

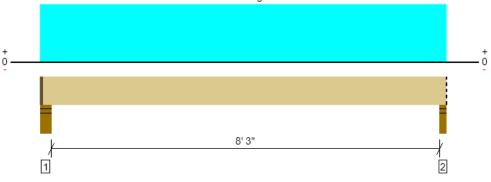
• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	8' 11" o/c	
Bottom Edge (Lu)	8' 11" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	1 1/2" to 9'	N/A	10.1		
1 - Uniform (PSF)	0 to 9' (Front)	10'	30.0	40.0	Default Load


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes Chon Pieruccioni Pieruccioni Engineering (206) 949-7866 cpieru@hotmail.com

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3136 @ 8' 10"	4961 (3.50")	Passed (63%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2226 @ 1' 5 3/8"	7343	Passed (30%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	6413 @ 4' 7"	16452	Passed (39%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.053 @ 4' 7"	0.213	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.095 @ 4' 7"	0.425	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 8' 10 1/2" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 8' 6".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Load	ls to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	5.50"	4.00"	2.23"	1420	1833	3253	1 1/2" Rim Board
2 - Stud wall - HF	3.50"	3.50"	2.21"	1370	1767	3136	Blocking

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	8' 11" o/c	
Bottom Edge (Lu)	8' 11" o/c	

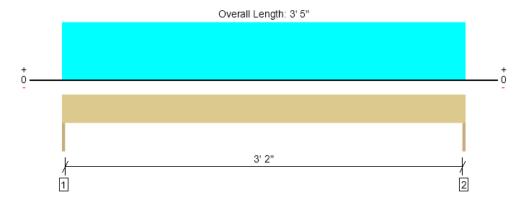
•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	1 1/2" to 9'	N/A	10.1		
1 - Uniform (PSF)	0 to 9' (Front)	10'	30.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator Job Notes Chon Pieruccioni Pieruccioni Engineering (206) 949-7866 cpieru@hotmail.com

3/7/2024 3:47:32 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: East Town Crossing Building A Page 56 / 68

3rd Floor Framing, Grid 2.3 (D-D.1) Bedroom Door Header 1 piece(s) 4 x 8 DF No.2

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	988 @ 0	3281 (1.50")	Passed (30%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	566 @ 8 3/4"	3045	Passed (19%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	844 @ 1' 8 1/2"	2989	Passed (28%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.006 @ 1' 8 1/2"	0.114	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.010 @ 1' 8 1/2"	0.171	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 3' 5" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

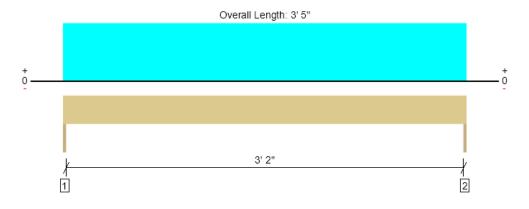
	Bearing Length			Load	ds to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	430	558	988	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	430	558	988	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 5" o/c	
Bottom Edge (Lu)	3' 5" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 3' 5"	N/A	6.4		
1 - Uniform (PSF)	0 to 3' 5"	8' 2"	30.0	40.0	Default Load

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Chon Pieruccioni Pieruccioni Engineering (206) 949-7866 cpieru@hotmail.com	

3rd Floor Framing, Grid 11.7 (D-D.1) Bedroom Door Header 1 piece(s) 4 x 8 DF No.2

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	988 @ 0	3281 (1.50")	Passed (30%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	566 @ 8 3/4"	3045	Passed (19%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	844 @ 1' 8 1/2"	2989	Passed (28%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.006 @ 1' 8 1/2"	0.114	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.010 @ 1' 8 1/2"	0.171	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 3' 5" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Load	ds to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	430	558	988	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	430	558	988	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 5" o/c	
Bottom Edge (Lu)	3' 5" o/c	

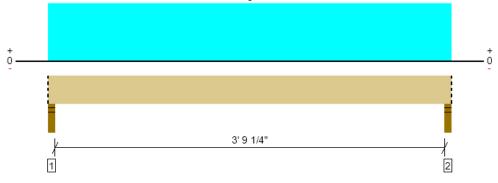
•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 3' 5"	N/A	6.4		
1 - Uniform (PSF)	0 to 3' 5"	8' 2"	30.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator	Job Notes
Chon Pieruccioni Pieruccioni Engineering (206) 949-7866	
cpieru@hotmail.com	

3/7/2024 3:47:32 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: East Town Crossing Building A Page 58 / 68

Overall Length: 4' 4 1/4"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	er Reaction (lbs) 1736 @ 2"		Passed (35%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	715 @ 1' 3 3/8"	7343	Passed (10%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	1612 @ 2' 2 1/8"	16452	Passed (10%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.003 @ 2' 2 1/8"	0.101	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.005 @ 2' 2 1/8"	0.201	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 4' 4 1/4" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

· Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 4' 1/4".

The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	3.50"	3.50"	1.50"	757	980	1736	Blocking
2 - Stud wall - HF	3.50"	3.50"	1.50"	757	980		Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

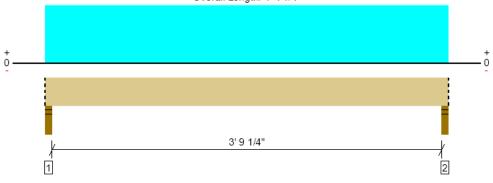
Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	4' 4" o/c					
Bottom Edge (Lu) 4' 4" o/c						
Maximum allowable bracing intervals based on applied load						

um allowable bracing intervals based on applied load

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 4' 4 1/4"	N/A	10.1		
1 - Uniform (PSF)	0 to 4' 4 1/4" (Front)	11' 3"	30.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


ForteWEB Software Operator	Job Notes
Chon Pieruccioni	
Pieruccioni Engineering	
(206) 949-7866	
cpieru@hotmail.com	

3rd Floor Framing, Grid 11.3 (D.2-D.4) Flush Beam 1 piece(s) 3 1/2" x 11 7/8" 24F-V4 DF Glulam

Overall Length: 4' 4 1/4"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	ember Reaction (lbs) 1736 @ 2"		Passed (35%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	715 @ 1' 3 3/8"	7343	Passed (10%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	1612 @ 2' 2 1/8"	16452	Passed (10%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.003 @ 2' 2 1/8"	0.101	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.005 @ 2' 2 1/8"	0.201	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 4' 4 1/4" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 4' 1/4".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	3.50"	3.50"	1.50"	757	980	1736	Blocking
2 - Stud wall - HF	3.50"	3.50"	1.50"	757	980	1736	Blocking

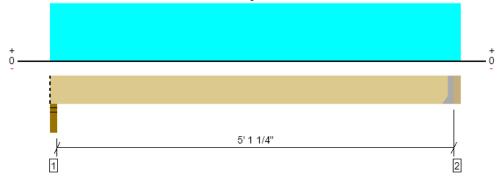
• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	4' 4" o/c					
Bottom Edge (Lu) 4' 4" o/c						
•Maximum allowable bracing intervals based on applied load.						

Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 4' 4 1/4"	N/A	10.1		
1 - Uniform (PSF)	0 to 4' 4 1/4" (Front)	11' 3"	30.0	40.0	Default Load

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Chon Pieruccioni	
Pieruccioni Engineering	
(206) 949-7866	
cpieru@hotmail.com	

3rd Floor Framing, Grid 5.6 (D-D.3) Flush Beam 1 piece(s) 3 1/2" x 11 7/8" 24F-V4 DF Glulam

Overall Length: 5' 8 1/4"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2101 @ 5' 4 3/4"	3413 (1.50")	Passed (62%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1306 @ 4' 4 7/8"	7343	Passed (18%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	2746 @ 2' 9 3/8"	16452	Passed (17%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.009 @ 2' 9 3/8"	0.131	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.015 @ 2' 9 3/8"	0.261	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 5' 4 3/4" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 5' 2 3/4".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length		th	Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	3.50"	3.50"	1.58"	974	1261	2235	Blocking
2 - Hanger on 11 7/8" LSL beam	3.50"	Hanger ¹	1.50"	1015	1318	2332	See note 1

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	5' 5" o/c					
Bottom Edge (Lu)	5' 5" o/c					
Maximum allowable burging intervals based on annihild band						

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie								
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories		
2 - Face Mount Hanger	LUS414	2.00"	N/A	10-16d	6-16d			

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

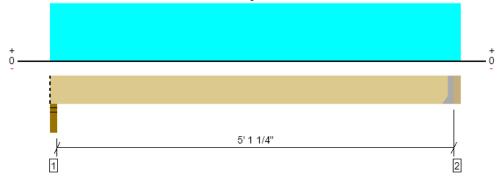
			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 5' 4 3/4"	N/A	10.1		
1 - Uniform (PSF)	0 to 5' 8 1/4" (Front)	11' 4"	30.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Chon Pieruccioni Pieruccioni Engineering (206) 949-7866 cpieru@hotmail.com	



3/7/2024 3:47:32 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: East Town Crossing Building A Page 61 / 68

3rd Floor Framing, Grid 8.4 (D-D.3) Flush Beam 1 piece(s) 3 1/2" x 11 7/8" 24F-V4 DF Glulam

Overall Length: 5' 8 1/4"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2101 @ 5' 4 3/4"	3413 (1.50")	Passed (62%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1306 @ 4' 4 7/8"	7343	Passed (18%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	2746 @ 2' 9 3/8"	16452	Passed (17%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.009 @ 2' 9 3/8"	0.131	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.015 @ 2' 9 3/8"	0.261	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 5' 4 3/4" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 5' 2 3/4".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	3.50"	3.50"	1.58"	974	1261	2235	Blocking
2 - Hanger on 11 7/8" LSL beam	3.50"	Hanger ¹	1.50"	1015	1318	2332	See note 1

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	5' 5" o/c					
Bottom Edge (Lu)	5' 5" o/c					
Maximum allowable burging intervals based on annihild band						

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie								
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories		
2 - Face Mount Hanger	LUS414	2.00"	N/A	10-16d	6-16d			

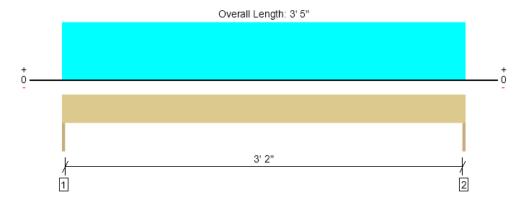
• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 5' 4 3/4"	N/A	10.1		
1 - Uniform (PSF)	0 to 5' 8 1/4" (Front)	11' 4"	30.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator	Job Notes
Chon Pieruccioni Pieruccioni Engineering (206) 949-7866 cpieru@hotmail.com	

3/7/2024 3:47:32 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: East Town Crossing Building A Page 62 / 68

3rd Floor Framing, Grid 6 (D.5-D.6) Bedroom Door Header 1 piece(s) 4 x 8 DF No.2

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

					-
Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1366 @ 0	3281 (1.50")	Passed (42%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	783 @ 8 3/4"	3045	Passed (26%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1167 @ 1' 8 1/2"	2989	Passed (39%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.008 @ 1' 8 1/2"	0.114	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.014 @ 1' 8 1/2"	0.171	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 3' 5" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Load	ls to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	592	774	1366	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	592	774	1366	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 5" o/c	
Bottom Edge (Lu)	3' 5" o/c	

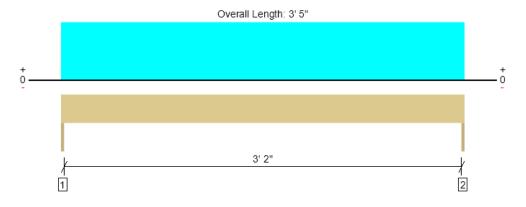
•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 3' 5"	N/A	6.4		
1 - Uniform (PSF)	0 to 3' 5"	11' 4"	30.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator	Job Notes
Chon Pieruccioni Pieruccioni Engineering (206) 949-7866 cojeru@hotmail.com	
cpieru@riotinali.com	

3/7/2024 3:47:32 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: East Town Crossing Building A Page 63 / 68

3rd Floor Framing, Grid 8 (D.5-D.6) Bedroom Door Header 1 piece(s) 4 x 8 DF No.2

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1366 @ 0	3281 (1.50")	Passed (42%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	783 @ 8 3/4"	3045	Passed (26%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1167 @ 1' 8 1/2"	2989	Passed (39%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.008 @ 1' 8 1/2"	0.114	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.014 @ 1' 8 1/2"	0.171	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 3' 5" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	592	774	1366	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	592	774	1366	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 5" o/c	
Bottom Edge (Lu)	3' 5" o/c	

•Maximum allowable bracing intervals based on applied load.

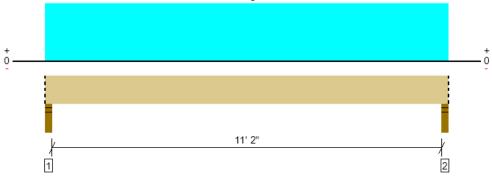
			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 3' 5"	N/A	6.4		
1 - Uniform (PSF)	0 to 3' 5"	11' 4"	30.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Chon Pieruccioni Pieruccioni Engineering (206) 949-7866 cpieru@hotmail.com	



3/7/2024 3:47:32 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: East Town Crossing Building A Page 64 / 68

Roof Framing, Grid D.7 Entry Roof Beam 1 piece(s) 3 1/2" x 10 1/2" 24F-V4 DF Glulam

Overall Length: 11' 9"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	5084 @ 2"	4961 (3.50")	Passed (102%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	4075 @ 1' 2"	7466	Passed (55%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	14099 @ 5' 10 1/2"	14792	Passed (95%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.269 @ 5' 10 1/2"	0.571	Passed (L/509)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.545 @ 5' 10 1/2"	0.761	Passed (L/252)		1.0 D + 1.0 S (All Spans)

Member Length : 11' 9" System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0.25/12

· Deflection criteria: LL (L/240) and TL (L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 11' 5".

The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - HF	3.50"	3.50"	3.59"	2569	2515	5084	Blocking
2 - Stud wall - HF	3.50"	3.50"	3.59"	2569	2515	5084	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

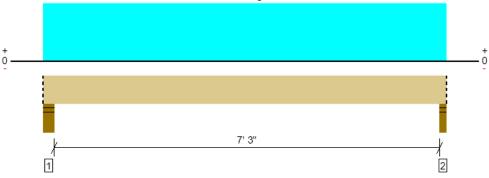
Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	11' 2" o/c					
Bottom Edge (Lu)	11' 9" o/c					
•Maximum allowable bracing intervals based on applied load						

ium allowable bracing intervals based on applied load

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 11' 9"	N/A	8.9		
1 - Uniform (PSF)	0 to 11' 9" (Front)	17' 1 1/2"	25.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

es

ForteWEB Software Operator	Job Not
Chon Pieruccioni	
Pieruccioni Engineering	
(206) 949-7866	
cpieru@hotmail.com	

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3257 @ 7' 10"	4961 (3.50")	Passed (66%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	2495 @ 1' 1"	5333	Passed (47%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	5847 @ 4' 1"	7547	Passed (77%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.133 @ 4' 1"	0.375	Passed (L/679)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.267 @ 4' 1"	0.500	Passed (L/337)		1.0 D + 1.0 S (All Spans)

Member Length : 8' System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0.25/12

• Deflection criteria: LL (L/240) and TL (L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 7' 6".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - HF	5.50"	5.50"	2.40"	1711	1684	3396	Blocking
2 - Stud wall - HF	3.50"	3.50"	2.30"	1641	1616		Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

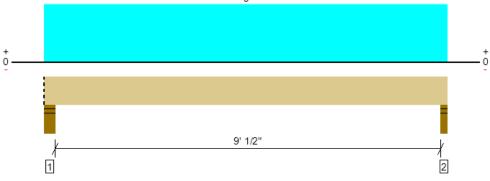
Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	8' o/c					
Bottom Edge (Lu)	8' o/c					
Maximum allowable bracing intervals based on applied load						

Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 8'	N/A	6.4		
1 - Uniform (PSF)	0 to 8' (Front)	16' 6"	25.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


ForteWEB Software Operator	Job Notes
Chon Pieruccioni	
Pieruccioni Engineering	
(206) 949-7866	
cnieru@hotmail.com	

Roof Framing, Grid G 9' Deck Roof Beam 1 piece(s) 3 1/2" x 9" 24F-V4 DF Glulam

Overall Length: 9' 9 1/2"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4414 @ 9' 7 1/2"	4961 (3.50")	Passed (89%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	3459 @ 1' 2 1/2"	6400	Passed (54%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	9899 @ 4' 11 3/4"	10868	Passed (91%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.199 @ 4' 11 3/4"	0.465	Passed (L/559)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.402 @ 4' 11 3/4"	0.620	Passed (L/277)		1.0 D + 1.0 S (All Spans)

Member Length : 9' 9 1/2" System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0.25/12

• Deflection criteria: LL (L/240) and TL (L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 9' 3 1/2".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - HF	5.50"	5.50"	3.22"	2303	2264	4567	Blocking
2 - Stud wall - HF	3.50"	3.50"	3.11"	2226	2188	4414	None

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	9' 10" o/c					
Bottom Edge (Lu)	9' 10" o/c					
Maximum allowable bracing intervals based on applied load						

Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 9' 9 1/2"	N/A	7.7		
1 - Uniform (PSF)	0 to 9' 9 1/2" (Front)	18' 2 1/4"	25.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Chon Pieruccioni	
Pieruccioni Engineering	
(206) 949-7866	
cpieru@hotmail.com	

3/7/2024 3:47:32 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: East Town Crossing Building A Page 67 / 68

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2956 @ 0	3281 (1.50")	Passed (90%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	2108 @ 10 3/4"	4468	Passed (47%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	4618 @ 3' 1 1/2"	5166	Passed (89%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.044 @ 3' 1 1/2"	0.208	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.088 @ 3' 1 1/2"	0.313	Passed (L/853)		1.0 D + 1.0 S (All Spans)

Member Length : 6' 3" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	1491	1465	2956	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	1491	1465	2956	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6' 3" o/c	
Bottom Edge (Lu)	6' 3" o/c	

•Maximum allowable bracing intervals based on applied load.

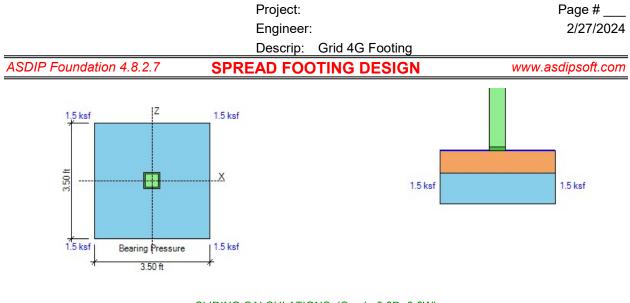
			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 6' 3"	N/A	8.2		
1 - Uniform (PSF)	0 to 6' 3"	18' 9"	25.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Chon Pieruccioni Pieruccioni Engineering	
(206) 949-7866	
cpieru@hotmail.com	


Weyerhaeuser

			oject: ngineer:			-	e # 27/202
			escrip: Grid 4G	Footing			
ASDIP Foundation 4.8.2.	7 SP	REA		ESIGN	WV	vw.asdips	oft.co
GEOM	TDV			801			
Footing Length (X-dir)		ft		s Allow. Soil Pre	PRESSURES (<u>D+L)</u> 2.0	ksf
Footing Width (Z-dir)		ft		Pressure at Corn		1.5	ksf
Footing Thickness		in		Pressure at Corn		1.5	ksf
Soil Cover				Pressure at Corn		1.5	ksf
Column Length (X-dir)		in		Pressure at Corn		1.5	ksf
Column Width (Z-dir)		in		ing Pressure Rat		0.76	
Offset (X-dir)		in		Area in Contact v		100.0	
Offset (Z-dir)		in	_	centricity / Ftg. L		0.00	
Base Plate (L x W)	6.0 x 6.0	in		centricity / Ftg. V	-	0.00	
	0.0 x 0.0		2.000	Sonthony / Lig. 1		0.00	
			APPLIED LOADS				
-	Dead	Live	RLive	Snow	Wind	Seismic	;
Axial Force P	5.2	12.8	0.0	0.0	0.0	0.0	k
Moment about X Mx	0.0	0.0	0.0	0.0	0.0	0.0	k
Moment about Z Mz	0.0	0.0	0.0	0.0	0.0	0.0	k
Shear Force Vx	0.0	0.0	0.0	0.0	0.0	0.0	k
Shear Force Vz	0.0	0.0	0.0	0.0	0.0	0.0	k
	OVERTUR		ALCULATIONS (C	omb: 0.6D+0.6\	٨/)		
- Overturning about X-X	OVENION			0.000.0.00	•)		
- Moment Mx = 0.6 * 0.0 + 0.6	* 0.0 = 0.0 k-ft						
- Shear Force Vz = 0.6 * 0.0 +	0.6 * 0.0 = 0.0 ki	р					
Arm = 0.00 + 8.0 / 12 = 0.67	ft		Moment = 0.0	* 0.67 = 0.0 k-f	t		
- Passive Force = 0.0 kip		Arm =	0.27 ft	Moment =	0.0 k-ft		
- Overturning moment X-X = 0	.0 + 0.0 = 0.0 k-f	t					
- Resisting about X-X							
- Footing weight = $0.6 * W * L$	* Thick * Densitv	= 0.6	6 * 3.50 * 3.50 * 8 0 /	12 * 0.15 = 0.7	kip		
Arm = $W/2 = 3.50/2 = 1.7$	-	0.0	Moment = 0.7 * 1.7		1°		
- Pedestal weight = $0.6 * W * L$		0.6 *			σ		
Arm = $W/2$ - Offset = 3.50	-			0.0 * 1.75 = 0.0	•		
			* 3.50 - 6.0 / 12 * 6.0				
Arm = $W/2 = 3.50/2 = 1.7$			Moment = 0.0 * 1.7		'		
- Buoyancy = 0.6 * W * L * γ		(T) = (ip		
Arm = $W/2 = 3.50/2 = 1.7$,	Moment = 0.3 * 1.7				
- Axial force P = 0.6 * 5.2 + 0.6	5 * 0.0 = 3.1 kip						
		75 ft	Moment = 1	3.1 * 1.75 = 5.5	k-ft		
Arm = W/2 - Offset = 3.50	/2-0.0/12-1.	/0	Woment				
Arm = <i>W</i> / <i>2</i> - <i>Offset</i> = 3.50 - Resisting moment X-X = 1.3							

Project: Engineer: Descrip: Grid 4G Footing	Page # 2/27/2024
ASDIP Foundation 4.8.2.7 SPREAD FOOTING DESIGN	www.asdipsoft.com
- Overturning about Z-Z - Moment Mz = $0.6 * 0.0 + 0.6 * 0.0 = 0.0 \text{ k-ft}$ - Shear Force Vx = $0.6 * 0.0 + 0.6 * 0.0 = 0.0 \text{ kip}$ Arm = $0.00 + 8.0 / 12 = 0.67 \text{ ft}$ - Passive Force = 0.0 kip - Overturning moment Z-Z = $0.0 + 0.0 = 0.0 \text{ k-ft}$ - Overturning moment Z-Z = $0.0 + 0.0 = 0.0 \text{ k-ft}$	
- Resisting about Z-Z - Footing weight = $0.6 * W * L * Thick * Density = 0.6 * 3.50 * 3.50 * 8.0 / 12 * 0.15 = 0.7 kip$ Arm = $L/2 = 3.50/2 = 1.75$ ft Moment = $0.7 * 1.75 = 1.3$ k-ft - Pedestal weight = $0.6 * W * L * H * Density = 0.6 * 6.0 / 12 * 6.0 / 12 * 0.0 * 0.15 = 0.0 kip$ Arm = $L/2 - Offset = 3.50/2 - 0.0 / 12 = 1.75$ ft Moment = $0.0 * 1.75 = 0.0$ k-ft - Soil cover = $0.6 * W * L * SC * Density = 0.6 * (3.50 * 3.50 - 6.0 / 12 * 6.0 / 12) * 0.0 * 110 = 0.0 kip$ Arm = $L/2 = 3.50/2 = 1.75$ ft Moment = $0.0 * 1.75 = 0.0$ k-ft - Buoyancy = $0.6 * W * L * Y * (SC + Thick - WT) = 0.6 * 3.50 * 3.50 * 62 * (0.67) = -0.3 kip$ Arm = $L/2 = 3.50/2 = 1.75$ ft Moment = $0.3 * 1.75 = -0.5$ k-ft - Axial force P = $0.6 * 5.2 + 0.6 * 0.0 = 3.1$ kip Arm = $L/2 - Offset = 3.50/2 - 0.0 / 12 = 1.75$ ft Moment = $3.1 * 1.75 = 5.5$ k-ft - Resisting moment Z-Z = $1.3 + 0.0 + 0.0 + 5.5 + -0.5 = 6.2$ k-ft - Overturning safety factor Z-Z = $\frac{Resisting moment}{Overturning moment} = \frac{6.2}{0.0} = 62.11 > 1.50$ OK	
SOIL BEARING PRESSURES (Comb: D+L)	
Overturning moment X-X = 0.0 + 0.0 = 0.0 k-ftResisting moment X-X = 2.1 + 0.0 + 0.0 + -0.9 + 31.5 = 32.8 k-ftOverturning moment Z-Z = 0.0 + 0.0 = 0.0 k-ftResisting moment Z-Z = 2.1 + 0.0 + 0.0 + -0.9 + 31.5 = 32.8 k-ftResisting force = Footing + Pedestal + Soil - Buoyancy + P = 1.2 + 0.0 + 0.0 - 0.5 + 18.0 = 18.7 kipX-coordinate of resultant from maximum bearing corner:Xp = $\frac{Z-Resisting moment - Z-Overturning moment}{Resisting force}$ 32.8 - 0.0X = 1.75 ftZ-coordinate of resultant from maximum bearing corner:X-Resisting moment - X-Overturning moment32.8 - 0.032.8 - 0.0	
Zp =	

X-ecc = Length / 2 - Xp = 3.50 / 2 - 1.75 = 0.00 ft Z-ecc = Width / 2 - Zp = 3.50 / 2 - 1.75 = 0.00 ft Area = Width * Length = 3.50 * 3.50 = 12.3 ft² Sx = Length * Width²/6 = 3.50 * 3.50²/6 = 7.1 ft³ Sz = Width * Length²/6 = 3.50 * 3.50²/6 = 7.1 ft³ - Footing is in full bearing. Soil pressures are as follows: P1 = P*(1/A + Z-ecc / Sx + X-ecc / Sz) = 18.7*(1/12.3+0.00/7.1+0.00/7.1) = 1.53 ksf P2 = P*(1/A - Z-ecc/Sx + X-ecc/Sz) = 18.7*(1/12.3-0.00/7.1+0.00/7.1) = 1.53 ksf P3 = P*(1/A - Z-ecc/Sx - X-ecc/Sz) = 18.7*(1/12.3-0.00/7.1-0.00/7.1) = 1.53 ksf P4 = P*(1/A + Z-ecc / Sx - X-ecc / Sz) = 18.7*(1 / 12.3 + 0.00 / 7.1 - 0.00 / 7.1) = 1.53 ksf

Resisting force

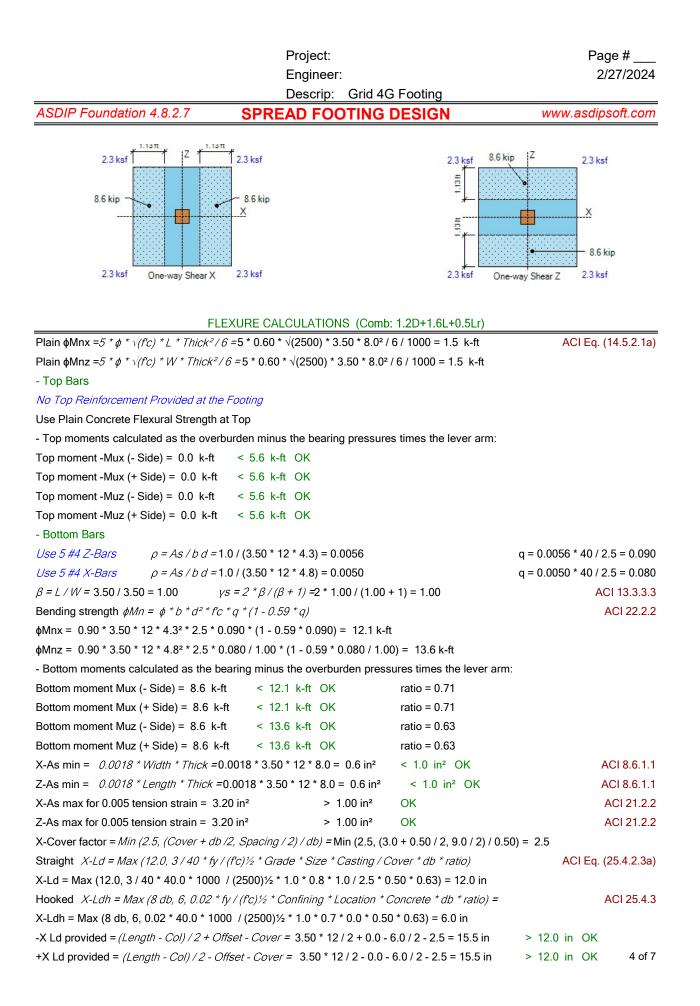
SLIDING CALCULATIONS (Comb: 0.6D+0.6W)

Internal friction angle = 28.0 deg

Passive coefficient *kp* = 4.33 (*per Coulomb*)

Pressure at mid-depth = kp * Density * (Cover + Thick / 2) = 4.33 * 110 * (0.00 + 8.0 / 12 / 2) = 0.16 ksf X-Passive force = Pressure * Thick * Width = 0.16 * 8.0 / 12 * 3.50 = 0.4 kip Z-Passive force = Pressure * Thick * Length = 0.16 * 8.0 / 12 * 3.50 = 0.4 kip Friction force = Resisting force * Friction coeff. = Max (0, 3.5 * 0.35) = 1.2 kip

Use 100% of Passive + 100% of Friction for sliding resistance

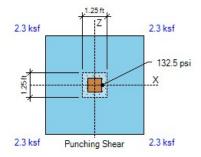

1.00 * 0.4 + 1.00 * 1.2 = 16.12 > 1.50 OK X-Passive force + Friction - Sliding safety factor X-X = X-Horizontal load 0.0 1.00 * 0.4 + 1.00 * 1.2 Z-Passive force + Friction - Sliding safety factor Z-Z = -= 16.12 > 1.50 OK Z-Horizontal load 0.0

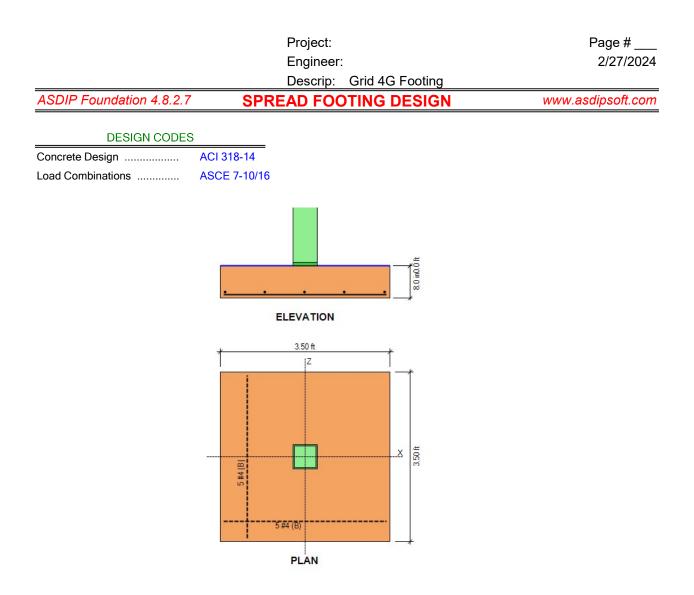
UPLIFT CALCULATIONS (Comb: 0.6D+0.6W)

- Uplift safety factor	Pedestal + Footing + Cover - Buoyancy		0.0 + 0.7 + 0.0 - 0.3	= 99.99 > 1.00	OK	
	 Uplift load	-	0.0	- 99.99 > 1.00	UK	

ONE-WAY SHEAR CALCULATIONS (Comb: 1.2D+1.6L+0.5Lr)

Concrete f'c = 2.5 ksi	Steel fy = 40.0 ksi	Soil density = 110 pcf	
d Top X-dir = Thick - Cover - X-diame	<i>ter / 2 =</i> 8.0 - 2.0 - 0.8 / 2 = 5.0	6 in	
d Top Z-dir = Thick - Cover - X-diame	<i>ter - Z-diameter / 2 =</i> 8.0 - 2.0	- 0.8 - 0.8 / 2 = 4.9 in	
d Bot X-dir = Thick - Cover - X-diame	<i>ter / 2 =</i> 8.0 - 3.0 - 0.5 / 2 = 4.3	8 in	
d Bot Z-dir = Thick - Cover - X-diame	<i>ter - Z-diameter / 2 =</i> 8.0 - 3.0	- 0.5 - 0.5 / 2 = 4.3 in	
φVcx = 2 * φ * √(fc) * Width * d / 1000	<i>=</i> 2 * 0.75 * √(2500) * 3.5 * 12	* 4.8 / 1000 = 15.0 kip	ACI Eq. (22.5.5.1)
φVcz = 2 * φ * √(fc) * Length * d / 1000	? =2 * 0.75 * √(2500) * 3.5 * 12	2 * 4.3 / 1000 = 13.4 kip	
- Shear forces calculated as the volun	ne of the bearing pressures ur	nder the effective areas:	
One-way shear Vux (- Side) = 8.6 kip	< 15.0 kip OK		
One-way shear Vux (+ Side) = 8.6 ki	o < 15.0 kip OK		
One-way shear Vuz (- Side) = 8.6 kip	< 13.4 kip OK		
One-way shear Vuz (+ Side) = 8.6 ki	o < 13.4 kip OK		


	Project: Engineer:	Page # 2/27/2024
	Descrip: Grid 4G Footing	
ASDIP Foundation 4.8.2.7	PREAD FOOTING DESIGN	www.asdipsoft.com
Z-Cover factor = Min (2.5, (Cover + db /2, Spa	<i>acing / 2) / db) =</i> Min (2.5, (3.0 + 0.50 / 2, 9.0 / 2) / 0.5	50) = 2.5
Straight Z-Ld = Max (12.0, $3/40 * fy/(fc)\frac{1}{2}$	* Grade * Size * Casting / Cover * db * ratio)	ACI Eq. (25.4.2.3a)
Z-Ld = Max (12.0, 3 / 40 * 40.0 * 1000 / (250	0)½ * 1.0 * 0.8 * 1.0 / 2.5 * 0.50 * 0.63) = 12.0 in	
Hooked Z-Ldh = Max (8 db, 6, 0.02 * fy / (f'c,)½ * Confining * Location * Concrete * db * ratio) =	ACI 25.4.3
Z-Ldh = Max (8 db, 6, 0.02 * 40.0 * 1000 / (2	500)½ * 1.0 * 0.7 * 0.0 * 0.50 * 0.71) = 6.0 in	
-Z Ld provided = (Width - Col) / 2 + Offset - Col	<i>Cover</i> = 3.50 * 12 / 2 + 0.0 - 6.0 / 2 - 2.5 = 15.5 in	> 12.0 in OK
+Z Ld provided =(Width - Col) / 2 - Offset - Co	over = 3.50 * 12 / 2 - 0.0 - 6.0 / 2 - 2.5 = 15.5 in	> 12.0 in OK
X-bar spacing = 9.0 in < Min (3 * t, 18.0) =	= 18.0 in OK	ACI 7.7.2.3



LOAD TRANSFER CALCULATIONS (Comb: 1.2D+1.6L+0.5Lr)

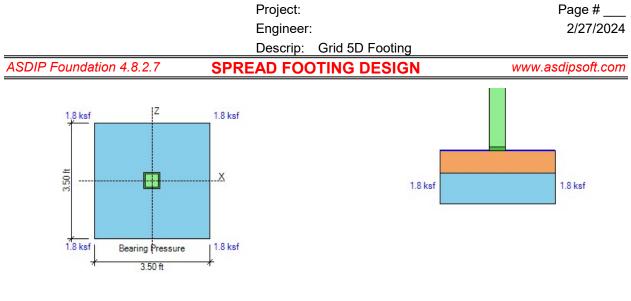
Area $A1 = col L * col W = 6.0 * 6.0 = 36.0 \text{ in}^2$ Sx = $col W * col L^2/6 = 6.0 * 6.0^2/6 = 36.0 \text{ in}^3$ Sz = $col L * col W^2/6 = 6.0 * 6.0^2/6 = 36.0 \text{ in}^3$ Bearing Pbu = P/A1 + Mz/Sx + Mx/Sz = 26.7/36.0 + 0.0 * 12/36.0 + 0.0 * 12/36.0 = 0.7 ksiMin edge = Min (L/2 - X-offset - col L/2, W/2 - Z-offset - col W/2) Min edge = Min (3.50 * 12/2 - 0.0 - 6.0/2, 3.50 * 12/2 - 0.0 - 6.0/2 = 18.0 in Area A2 = Min [L * W, (col L + 2 * Min edge) * (col W + 2 * Min edge)]ACI R22.8.3.2 A2 = Min [3.50 * 12 * 3.5 * 12, (6.0 + 2 * 18.0) * (6.0 + 2 * 18.0)] = 1764.0 in^2 Footing $\phi Pnc = \phi * 0.85 * fc * Min [2, \sqrt{(A2/A1)]} = 0.65 * 0.85 * 2.5 * Min [2, \sqrt{(1764.0/36.0)]} = 2.8 \text{ ksi}$ Footing $\phi Pns = \phi * As * Fy/A1 = 0.0 \text{ ksi}$ Footing $\phi Pn = \phi Pnc + \phi Pns = 2.8 + 0.0 = 2.8 \text{ ksi} > 0.7 \text{ psi OK}$

	Project: Engineer:	Page # 2/27/2024
ASDIP Foundation 4.8.2.7	Descrip: Grid 4G Footing SPREAD FOOTING DESIGN	www.asdipsoft.com
	SPREAD FOOTING DESIGN	
Ldh = Max (8 db, 6, 0.02 * 60.0 * 10 Ld provided = <i>Dowel length</i> = 3.00 *	$\frac{1}{(fc)} \frac{1}{2} * Confining * Location * Concrete * db * ratio)$ $\frac{1}{2} = 36.0 \text{ in} > 23.1 \text{ in OK}$ $\frac{1}{2} = 8.00 - 3.0 = 5.0 \text{ in} < 6.0 \text{ in NG}$	ACI 25.4.3
PUNC	HING SHEAR CALCULATIONS (Comb: 1.2D+1.6L+0.5Lr)	
X-Edge = $d/2 = 4.5/2 = 2.3$ in	αsx = 20	
Z-Edge = $d/2 = 4.5/2 = 2.3$ in	asz = 20	
$\alpha s = \alpha s x + \alpha s z = 20 + 20 = 40$	Col type = Interior $\beta = L / W = 6.0 / 6.0 = 1.00$	ACI 22.6.5.2
Perimeter $bo = asz / 10 * (L + d/2 + d)$	X-Edge) + asx / 10 * (W + d / 2 + Z-Edge)	ACI 22.6.4.2
bo = 20 / 10 * (6.0 + 4.5 / 2 + 2.3) +	20 / 10 * (6.0 + 4.5 / 2 + 2.3) = 42.0 in	
Area <i>Abo</i> = (<i>L</i> + <i>d</i> / <i>2</i> + <i>X</i> - <i>Edge</i>) * (<i>W</i>	+ <i>d</i> / <i>2</i> + <i>Z</i> - <i>Edge</i>) (6.0 + 4.5 / 2 + 2.3) * (6.0 + 4.5 / 2 + 2.3) = ⁻	110.3 in²
$\phi Vc = \phi * Min (2 + 4 / \beta, \alpha s * d / bo +$	2, 4) * $\sqrt{(fc)}$	ACI 22.6.5.2
φVc = 0.75 * Min (2 + 4 / 1.00, 40 *	4.5 / 42.0 + 2, 4) * √(2500) = 150.0 psi	
Punching force <i>F</i> = <i>P</i> + Overburden	* Abo - Bearing	
F = 26.7 + 0.07 * 110.3 / 144 - 1.7 =	25.1 kip	
b1 = <i>L</i> + <i>d</i> / <i>2</i> + <i>X</i> - <i>Edge</i> =6.0 + 4.5 / 2 ·	+ 2.3 = 10.5 in $b2 = W + d/2 + Z - Edge = 6.0 + 4.5/2 + C = 6.0 + 6.0 $	· 2.3 = 10.5 in
$\gamma vx \text{ factor} = 1 - \frac{1}{1 + (2/3) \sqrt{(b2/b1)}}$	= 1 = 0.40	
		ACI Eq. (8.4.4.2.2)
$\gamma vz \text{ factor} = 1 - \frac{1}{1 + (2/3) \sqrt{(b1/b2)}}$	$= 1 - \frac{1}{1 - \frac{1}$	ACI Eq. (8.4.2.3.2)
	X2x = b2/2 = 10.5/2 = 5.3 in	
$Jcz = b1 * d^3/6 + b1^3 * d/6 + b1^2 * b.$		ACI R8.4.4.2.3
$Jcz = 10.5 * 4.5^{3} / 6 + 10.5^{3} * 4.5 / 6$		ACI R8.4.4.2.3
$Jcx = b2 * d^{3}/6 + b2^{3} * d/6 + b2^{2} * b$ $Jcx = 10.5 * 4.5^{3}/6 + 10.5^{3} * 4.5/6$		AUI R0.4.4.2.3
	$25.1/(42.0 \times 4.5) \times 1000 = 132.5 \text{ psi}$	
· · · · · ·	23.17(42.0 + 4.3) + 1000 - 132.3 psi 2x / Jcx = 0.40 * 0.0 * 12 * 5.3 / 3632 * 1000 = 0.0 psi	
,	z/Jcz = 0.40 * 0.0 * 12 * 5.3 / 3632 * 1000 = 0.0 psi	
	ss + Mz-stress = 132.5 + 0.0 + 0.0 = 132.5 psi < 150.0 ps	si OK

			oject: ngineer:				•	e # 27/202
		D	escrip:	Grid 5D [Footing			
ASDIP Foundation 4.8.2.	.7 SP	REA	D FOO ⁻	ГING D	ESIGN	WV	w.asdips	oft.cc
GEOM	FTRY				SOIL	PRESSURES (D+I)	
Footing Length (X-dir)		ft		Gross	Allow. Soil Pres	```	2.0	ksf
Footing Width (Z-dir)					ressure at Corne		1.8	ksf
Footing Thickness		in	ОК	Soil P	ressure at Corne	er 2	1.8	ksf
Soil Cover		ft			ressure at Corne		1.8	ksf
Column Length (X-dir)	. 6.0	in		Soil P	ressure at Corne	er 4	1.8	ksf
Column Width (Z-dir)		in		Bearir	ng Pressure Rati	o	0.90	0
Offset (X-dir)		in	ОК	Ftg. A	rea in Contact w	vith Soil	100.0) %
Offset (Z-dir)		in	ОК	-	entricity / Ftg. Le		0.00) 01
Base Plate (L x W)	6.0 x 6.0	in			entricity / Ftg. W	-	0.00	0
			APPLIED	LOADS				
-	Dead	Live	F	RLive	Snow	Wind	Seismic	:
Axial Force P	6.0	15.3		0.0	0.0	0.0	0.0	k
Moment about X Mx	0.0	0.0		0.0	0.0	0.0	0.0	k
Moment about Z Mz	0.0	0.0		0.0	0.0	0.0	0.0	k
Shear Force Vx	0.0	0.0		0.0	0.0	0.0	0.0	k
Shear Force Vz	0.0	0.0		0.0	0.0	0.0	0.0	k
	OVERTUR	NING (CALCULAT	IONS (Co	omb: 0.6D+0.6V	V)		
- Overturning about X-X	012111011					•/		
- Moment Mx = 0.6 * 0.0 + 0.6	* 0.0 = 0.0 k-ft							
- Shear Force Vz = 0.6 * 0.0 +	0.6 * 0.0 = 0.0 ki	p						
Arm = 0.00 + 8.0 / 12 = 0.67	ft		Mon	1ent = 0.0 [•]	* 0.67 = 0.0 k-ft			
- Passive Force = 0.0 kip		Arm =	0.27 ft		Moment = (0.0 k-ft		
- Overturning moment X-X = 0	0.0 + 0.0 = 0.0 k-f	t						
- Resisting about X-X								
- Footing weight = $0.6 * W * L$	* Thick * Density	= 0.6	3 * 3 50 * 3	50 * 8 0 / ⁻	12 * 0 15 = 0 7 k	in		
Arm = $W/2 = 3.50/2 = 1.7$	-	0.0			5 = 1.3 k-ft	üΡ		
- Pedestal weight = $0.6 * W * I$		06*				n		
Arm = $W/2$ - Offset = 3.50					.0 * 1.75 = 0.0 k			
	* <i>SC</i> * <i>Density</i> 0 = 6							
Arm = $W/2 = 3.50/2 = 1.7$	2	(0.00			5 = 0.0 k-ft	0.0 10		
- Buoyancy = $0.6 * W * L * \gamma$		(T) = (D		
Arm = $W/2 = 3.50/2 = 1.7$	1	- /			5 = -0.5 k-ft	F		
- Axial force $P = 0.6 * 6.0 + 0.6$				5.0 1.70				
Arm = $W/2 - Offset = 3.50$		75 ft	N	loment = 3	.6 * 1.75 = 6.3 k	:-ft		
- Resisting moment X-X = 1.3								
-	Resistina m							
- Overturning safety factor X->								

	Page # 2/27/2024							
ASDIP Foundation 4.8.2.7	SPREAD FOOTING	DESIGN	www.asdipsoft.com					
- Overturning about Z-Z - Moment Mz = $0.6 * 0.0 + 0.6 * 0.0 = 0.4$ - Shear Force Vx = $0.6 * 0.0 + 0.6 * 0.0 = 0.4$ Arm = $0.00 + 8.0 / 12 = 0.67$ ft - Passive Force = 0.0 kip - Overturning moment Z-Z = $0.0 + 0.0 = 0.0$ - Resisting about Z-Z - Footing weight = $0.6 * W * L * Thick * L$ Arm = $L/2 = 3.50 / 2 = 1.75$ ft - Pedestal weight = $0.6 * W * L * H * Dec$ Arm = $L/2 = 0.6 * W * L * H * Dec$ Arm = $L/2 = 3.50 / 2 = 1.75$ ft - Soil cover = $0.6 * W * L * SC * Densite$ Arm = $L/2 = 3.50 / 2 = 1.75$ ft - Buoyancy = $0.6 * W * L * Y * (SC + T)^2$ Arm = $L/2 = 3.50 / 2 = 1.75$ ft - Axial force P = $0.6 * 6.0 + 0.6 * 0.0 = 3$ Arm = $L/2 - Offset = 3.50 / 2 - 0.0 / 2$ - Resisting moment Z-Z = $1.3 + 0.0 + 0.0$	0 k-ft = 0.0 kip Moment = 0. Arm = 0.27 ft 0.0 k-ft Density = 0.6 * $3.50 * 3.50 * 8.0$ Moment = 0.7 * 1. nsity = 0.6 * 6.0 / 12 * 6.0 / 12 * 10 12 = 1.75 ft Moment = $0.0 * 1$. hick - WT) = 0.6 * 3.50 * 3.50 * 6.0 Moment = 0.3 * 1. bick - WT) = 0.6 * 3.50 * 3.50 * 6.0 Moment = $0.3 * 1$. bick - WT = 0.5 = 7.1 k-ft isting moment 7.1	0 * 0.67 = 0.0 k-ft Moment = 0.0 k-ft / 12 * 0.15 = 0.7 kip 75 = 1.3 k-ft 0.0 * 0.15 = 0.0 kip 0.0 * 1.75 = 0.0 k-ft .0 / 12) * 0.0 * 110 = 0.0 kip 75 = 0.0 k-ft 2 * (0.67) = -0.3 kip 75 = -0.5 k-ft : 3.6 * 1.75 = 6.3 k-ft						
- Overturning safety factor Z-Z = Overt	$\frac{1}{2} = \frac{1}{0.0} = 7$ SOIL BEARING PRESSURES	0.51 > 1.50 OK (Comb: D+L)						
Overturning moment X-X = 0.0 + 0.0 = 0).0 k-ft							
Resisting moment X-X = 2.1 + 0.0 + 0.0	+ -0.9 + 37.3 = 38.5 k-ft							
Overturning moment Z-Z = 0.0 + 0.0 = 0	.0 k-ft							
Resisting moment Z-Z = 2.1 + 0.0 + 0.0	+ -0.9 + 37.3 = 38.5 k-ft							
Resisting force = Footing + Pedestal +	<i>Soil - Buoyancy + P =</i> 1.2 + 0.0 ·	+ 0.0 - 0.5 + 21.3 = 22.0 kip						
X-coordinate of resultant from maximum	X-coordinate of resultant from maximum bearing corner:							

38.5 - 0.0


Z-Resisting moment - Z-Overturning moment 38.5 - 0.0

$$Xp = \frac{Z - Resisting moment - Z - Overturning moment}{Resisting force} = \frac{38.5 - 0.0}{22.0} = 1.75 \text{ ft}$$

Z-coordinate of resultant from maximum bearing corner:

X-Resisting moment - X-Overturning moment

 $Zp = \frac{A + 1666 \text{ ang memory } A + 266 \text{ and } mm \text{ memory } 1}{Resisting force} = \frac{100.0 + 0.0}{22.0} = 1.75 \text{ ft}$ $X \cdot \text{ecc} = Length / 2 - Xp = 3.50 / 2 - 1.75 = 0.00 \text{ ft}$ $Z \cdot \text{ecc} = Width / 2 - Zp = 3.50 / 2 - 1.75 = 0.00 \text{ ft}$ $Area = Width * Length = 3.50 * 3.50 = 12.3 \text{ ft}^2$ $Sx = Length * Width^2 / 6 = 3.50 * 3.50^2 / 6 = 7.1 \text{ ft}^3$ $Sz = Width * Length^2 / 6 = 3.50 * 3.50^2 / 6 = 7.1 \text{ ft}^3$ - Footing is in full bearing. Soil pressures are as follows: $P1 = P * (1/A + Z \cdot ecc / Sx + X \cdot ecc / Sz) = 22.0 * (1 / 12.3 + 0.00 / 7.1 + 0.00 / 7.1) = 1.80 \text{ ksf}$ $P2 = P * (1/A - Z \cdot ecc / Sx + X \cdot ecc / Sz) = 22.0 * (1 / 12.3 - 0.00 / 7.1 + 0.00 / 7.1) = 1.80 \text{ ksf}$ $P3 = P * (1/A - Z \cdot ecc / Sx - X \cdot ecc / Sz) = 22.0 * (1 / 12.3 - 0.00 / 7.1 - 0.00 / 7.1) = 1.80 \text{ ksf}$ $P4 = P * (1/A + Z \cdot ecc / Sx - X \cdot ecc / Sz) = 22.0 * (1 / 12.3 + 0.00 / 7.1 - 0.00 / 7.1) = 1.80 \text{ ksf}$

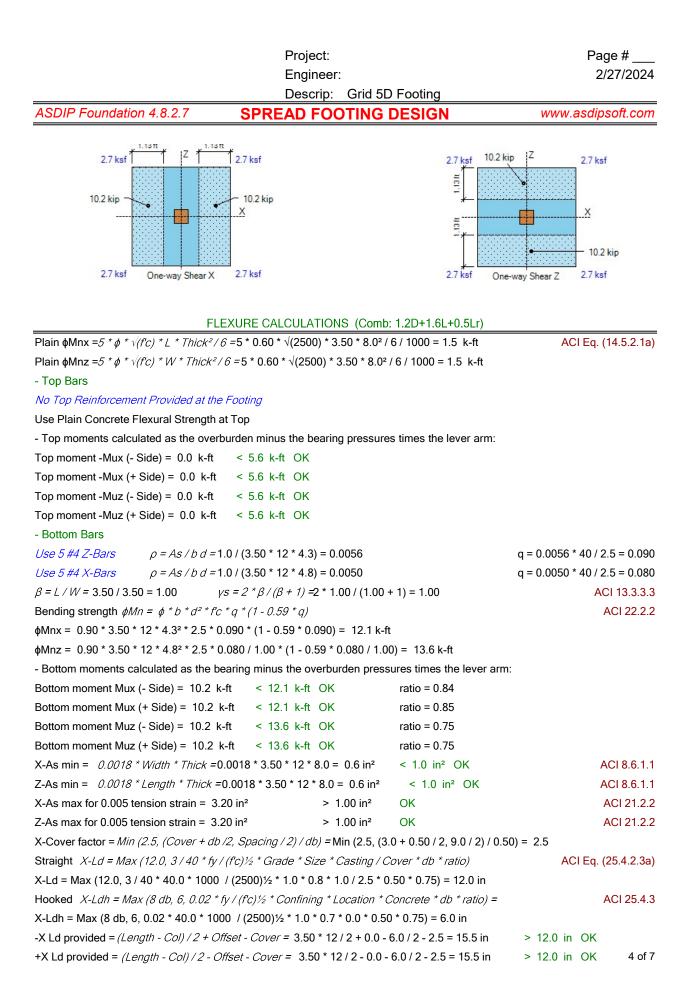
SLIDING CALCULATIONS (Comb: 0.6D+0.6W)

Internal friction angle = 28.0 deg

Passive coefficient *kp* = 4.33 (per Coulomb)

Pressure at mid-depth = kp * Density * (Cover + Thick / 2) = 4.33 * 110 * (0.00 + 8.0 / 12 / 2) = 0.16 ksfX-Passive force = Pressure * Thick * Width = 0.16 * 8.0 / 12 * 3.50 = 0.4 kipZ-Passive force = Pressure * Thick * Length = 0.16 * 8.0 / 12 * 3.50 = 0.4 kipFriction force = Resisting force * Friction coeff. = Max (0, 4.0 * 0.35) = 1.4 kip

Use 100% of Passive + 100% of Friction for sliding resistance

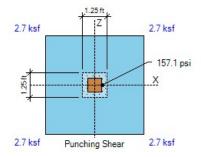

- Sliding safety factor X-X = $\frac{X - Passive \ force + Friction}{X - Horizontal \ load} = \frac{1.00 * 0.4 + 1.00 * 1.4}{0.0} = 17.80 > 1.50 \text{ OK}$ - Sliding safety factor Z-Z = $\frac{Z - Passive \ force + Friction}{Z - Horizontal \ load} = \frac{1.00 * 0.4 + 1.00 * 1.4}{0.0} = 17.80 > 1.50 \text{ OK}$

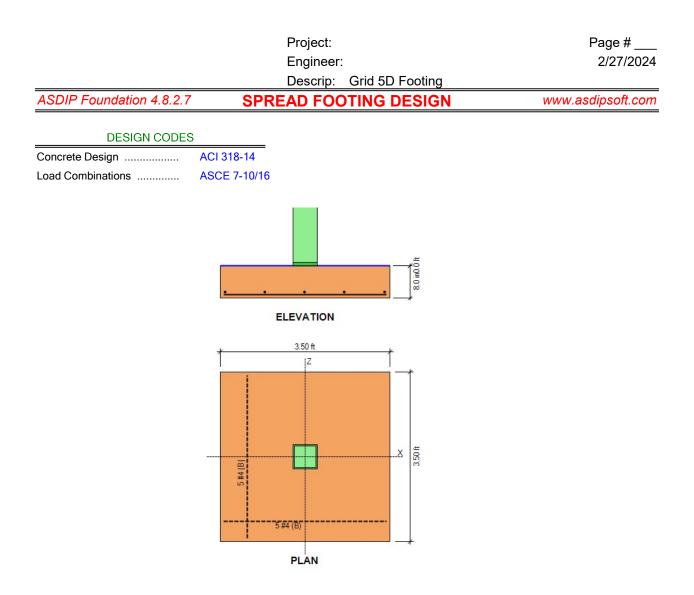
UPLIFT CALCULATIONS (Comb: 0.6D+0.6W)

- Uplift safety factor =	_Pedestal + Footing + Cover - Buoyancy		0.0 + 0.7 + 0.0 - 0.3	= 99.99 > 1.00	OK	
	 Uplift load	-	0.0	- 99.99 > 1.00	UK	

ONE-WAY SHEAR CALCULATIONS (Comb: 1.2D+1.6L+0.5Lr)

Concrete f'c = 2.5 ksi	Steel fy = 40.0 ksi	Soil density = 110 pcf	
d Top X-dir = Thick - Cover - X-dia	<i>meter / 2 =</i> 8.0 - 2.0 - 0.8 / 2 = 5	5.6 in	
d Top Z-dir = Thick - Cover - X-dia	meter - Z-diameter / 2 = 8.0 - 2	.0 - 0.8 - 0.8 / 2 = 4.9 in	
d Bot X-dir = Thick - Cover - X-dia	<i>meter / 2 =</i> 8.0 - 3.0 - 0.5 / 2 = 4	1.8 in	
d Bot Z-dir = Thick - Cover - X-dia	<i>meter - Z-diameter / 2 = 8.0 - 3</i>	.0 - 0.5 - 0.5 / 2 = 4.3 in	
φVcx = 2 * φ * √(f'c) * Width * d / 10	<i>000 =</i> 2 * 0.75 * √(2500) * 3.5 * 12	2 * 4.8 / 1000 = 15.0 kip	ACI Eq. (22.5.5.1)
φVcz = 2 * φ * √(fc) * Length * d / 1	<i>000 =</i> 2 * 0.75 * √(2500) * 3.5 * ⁻	12 * 4.3 / 1000 = 13.4 kip	
- Shear forces calculated as the vo	lume of the bearing pressures	under the effective areas:	
One-way shear Vux (- Side) = 10.2	2 kip < 15.0 kip OK		
One-way shear Vux (+ Side) = 10.2	2 kip < 15.0 kip OK		
One-way shear Vuz (- Side) = 10.2	2 kip < 13.4 kip OK		
One-way shear Vuz (+ Side) = 10.3	2 kip < 13.4 kip OK		


Project: Engineer:	Page # 2/27/2024
Descrip: Grid 5D Footing	
ASDIP Foundation 4.8.2.7 SPREAD FOOTING DESIGN	www.asdipsoft.com
Z-Cover factor = <i>Min (2.5, (Cover + db /2, Spacing / 2) / db) =</i> Min (2.5, (3.0 + 0.50 / 2, 9.0 / 2) / 0.50) = 2.5
Straight Z-Ld = Max (12.0, 3 / 40 * fy / (fc)½ * Grade * Size * Casting / Cover * db * ratio)	ACI Eq. (25.4.2.3a)
Z-Ld = Max (12.0, 3 / 40 * 40.0 * 1000 / (2500)½ * 1.0 * 0.8 * 1.0 / 2.5 * 0.50 * 0.75) = 12.0 in	
Hooked Z-Ldh = Max (8 db, 6, 0.02 * fy / (fc)1/2 * Confining * Location * Concrete * db * ratio) =	ACI 25.4.3
Z-Ldh = Max (8 db, 6, 0.02 * 40.0 * 1000 / (2500)½ * 1.0 * 0.7 * 0.0 * 0.50 * 0.85) = 6.0 in	
-Z Ld provided = (Width - Col) / 2 + Offset - Cover = 3.50 * 12 / 2 + 0.0 - 6.0 / 2 - 2.5 = 15.5 in	> 12.0 in OK
+Z Ld provided =(Width - Col) / 2 - Offset - Cover = 3.50 * 12 / 2 - 0.0 - 6.0 / 2 - 2.5 = 15.5 in	> 12.0 in OK
X-bar spacing = 9.0 in < Min (3 * t, 18.0) = 18.0 in OK	ACI 7.7.2.3



LOAD TRANSFER CALCULATIONS (Comb: 1.2D+1.6L+0.5Lr)

Area $A1 = col L * col W = 6.0 * 6.0 = 36.0 \text{ in}^2$ Sx = $col W * col L^2/6 = 6.0 * 6.0^2/6 = 36.0 \text{ in}^3$ Sz = $col L * col W^2/6 = 6.0 * 6.0^2/6 = 36.0 \text{ in}^3$ Bearing Pbu = P/A1 + Mz/Sx + Mx/Sz = 31.7/36.0 + 0.0 * 12/36.0 + 0.0 * 12/36.0 = 0.9 ksiMin edge = Min (L/2 - X - offset - col L/2, W/2 - Z - offset - col W/2)Min edge = Min (3.50 * 12/2 - 0.0 - 6.0/2, 3.50 * 12/2 - 0.0 - 6.0/2 = 18.0 in Area A2 = Min [L * W, (col L + 2 * Min edge) * (col W + 2 * Min edge)]ACI R22.8.3.2 A2 = Min [3.50 * 12 * 3.5 * 12, (6.0 + 2 * 18.0) * (6.0 + 2 * 18.0)] = 1764.0 in^2 Footing $\phi Pnc = \phi * 0.85 * fc * Min [2, \sqrt{(A2/A1)}] = 0.65 * 0.85 * 2.5 * Min [2, \sqrt{(1764.0/36.0)}] = 2.8 \text{ ksi}$ Footing $\phi Pns = \phi * As * Fy/A1 = 0.0 \text{ ksi}$ Footing $\phi Pn = \phi Pnc + \phi Pns = 2.8 + 0.0 = 2.8 \text{ ksi} > 0.9 \text{ psi OK}$

	Project: Engineer:	Page # 2/27/2024
ASDIP Foundation 4.8.2.7	Descrip: Grid 5D Footing SPREAD FOOTING DESIGN	www.asdipsoft.com
	SPREAD FOOTING DESIGN	
Ldh = Max (8 db, 6, 0.02 * 60.0 * 10 Ld provided = <i>Dowel length</i> = 3.00 *		ACI 25.4.3
Ldh provided = <i>Footing thickness - C</i>	over = 8.00 - 3.0 = 5.0 in < 6.0 in NG	
PUNC	HING SHEAR CALCULATIONS (Comb: 1.2D+1.6L+0.5Lr)	
X-Edge = <i>d</i> /2 = 4.5 / 2 = 2.3 in	αsx = 20	
Z-Edge = <i>d</i> /2 = 4.5 / 2 = 2.3 in	asz = 20	
$\alpha s = asx + asz = 20 + 20 = 40$	Col type = Interior $\beta = L / W = 6.0 / 6.0 = 1.00$	ACI 22.6.5.2
Perimeter bo = $\alpha sz / 10 * (L + d/2 + d/2)$	X-Edge) + asx / 10 * (W + d / 2 + Z-Edge)	ACI 22.6.4.2
bo = 20 / 10 * (6.0 + 4.5 / 2 + 2.3) +	20 / 10 * (6.0 + 4.5 / 2 + 2.3) = 42.0 in	
Area <i>Abo = (L + d / 2 + X-Edge) * (W</i>	+ d/2 + Z-Edge) = (6.0 + 4.5 / 2 + 2.3) * (6.0 + 4.5 / 2 + 2.3) =	110.3 in ²
$\phi Vc = \phi * Min (2 + 4/\beta, \alpha s * d/bo +$	$(-2, 4) * \sqrt{(fc)}$	ACI 22.6.5.2
φVc = 0.75 * Min (2 + 4 / 1.00, 40 *	4.5 / 42.0 + 2, 4) * √(2500) = 150.0 psi	
Punching force F = P + Overburden	* Abo - Bearing	
F = 31.7 + 0.07 * 110.3 / 144 - 2.0 =	29.7 kip	
b1 = L + d/2 + X - Edge = 6.0 + 4.5/2	+ 2.3 = 10.5 in $b^2 = W + d/2 + Z - Edge = 6.0 + 4.5/2$	+ 2.3 = 10.5 in
$\gamma vx \text{ factor} = 1 - \frac{1}{1 + (2/3) \sqrt{(b2/b1)}}$	$= 1 - \frac{1}{2} = 0.40$	
		ACI Eq. (8.4.4.2.2)
$\gamma vz \text{ factor} = 1 - \frac{1}{1 + (2/3) \sqrt{(b1/b2)}}$	$r = 1 - \frac{1}{1 + (2/3)\sqrt{(10.5/10.5)}} = 0.40$	ACI Eq. (8.4.2.3.2)
	X2x = b2/2 = 10.5/2 = 5.3 in	
$Jcz = b1 * d^3/6 + b1^3 * d/6 + b1^2 * b_1^3$	2*d/2	ACI R8.4.4.2.3
Jcz = 10.5 * 4.5 ³ / 6 + 10.5 ³ * 4.5 / 6	5 + 10.5² * 10.5 * 4.5 / 2 = 3632 in⁴	
$Jcx = b2 * d^3/6 + b2^3 * d/6 + b2^2 * b$	1*d/2	ACI R8.4.4.2.3
Jcx = 10.5 * 4.5 ³ / 6 + 10.5 ³ * 4.5 / 6	5 + 10.5² * 10.5 * 4.5 / 2 = 3632 in⁴	
Stress due to $P = F / (bo * d) * 1000 =$	= 29.7 / (42.0 * 4.5) * 1000 = 157.1 psi	
Stress due to Mx = $\gamma vx * X$ -OTM * X2	2x / Jcx = 0.40 * 0.0 * 12 * 5.3 / 3632 * 1000 = 0.0 psi	
Stress due to Mz = yvz *Z-OTM *X2	2 <i>z / Jcz</i> = 0.40 * 0.0 * 12 * 5.3 / 3632 * 1000 = 0.0 psi	
Punching stress = <i>P</i> -stress + Mx-stre	<i>pss + Mz-stress =</i> 157.1 + 0.0 + 0.0 = 157.1 psi > 150.0 p	si NG

			oject: ngineer:			-	e # 27/202
			escrip: Grid 9D	Footing			
ASDIP Foundation 4.8.2.	.7 SP				WV	vw.asdips	oft.co
0501				001			
GEOM					PRESSURES (,	
Footing Length (X-dir)				s Allow. Soil Pre		2.0	ksf
Footing Width (Z-dir)				Pressure at Corn		1.8	ksf
Footing Thickness				Pressure at Corn Pressure at Corn		1.8 1.8	ksf
Soil Cover				Pressure at Corn		1.o 1.8	ksf kof
Column Length (X-dir)							ksf) Ol
Column Width (Z-dir)		in in		ing Pressure Rat		0.90 100.0	
Offset (X-dir)			_	Area in Contact v			
Offset (Z-dir)				centricity / Ftg. L	-	0.00	
Base Plate (L x W)	6.0 x 6.0	in	Z-ec	centricity / Ftg. W	viatn	0.00	0
			APPLIED LOADS				
-	Dead	Live	RLive	Snow	Wind	Seismic	;
Axial Force P	6.0	15.3	0.0	0.0	0.0	0.0	k
Moment about X Mx	0.0	0.0	0.0	0.0	0.0	0.0	k
Moment about Z Mz	0.0	0.0	0.0	0.0	0.0	0.0	k
Shear Force Vx	0.0	0.0	0.0	0.0	0.0	0.0	k
Shear Force Vz	0.0	0.0	0.0	0.0	0.0	0.0	k
					۸/)		
- Overturning about X-X	OVENTUNI	und c	CALCULATIONS (C		/v)		
- Moment Mx = 0.6 * 0.0 + 0.6	* 0.0 = 0.0 k-ft						
- Shear Force Vz = 0.6 * 0.0 +		ip					
Arm = 0.00 + 8.0 / 12 = 0.67		P	Moment = 0.0)*0.67 = 0.0 k-f	t		
- Passive Force = 0.0 kip		Arm =	0.27 ft	Moment =			
- Overturning moment X-X = 0							
- Resisting about X-X							
- Footing weight = $0.6 * W * L$	* Thick * Density	- 04	3 * 3 50 * 3 50 * 8 0 /	12 * 0 15 = 0 7	kin		
Arm = $W/2 = 3.50/2 = 1.2$	-	0.0	Moment = $0.7 * 1.7$		νΡ		
- Pedestal weight = $0.6 * W * L$		06*			in		
Arm = W/2 - Offset = 3.50	-			0.0 * 1.75 = 0.0			
			* 3.50 - 6.0 / 12 * 6.				
Arm = $W/2 = 3.50/2 = 1.7$		(0.00	Moment = $0.0 * 1.7$		0.0 Np		
- Buoyancy = $0.6 * W * L * \gamma$		(T) = 0			tip		
Arm = $W/2 = 3.50/2 = 1.7$		· /	Moment = 0.3 * 1.7		F		
- Axial force P = 0.6 * 6.0 + 0.6							
		75 ft	Moment =	3.6 * 1.75 = 6.3	k-ft		
Arm = $W/2$ - Offset = 3.50							
Arm = $W/2 - Offset = 3.50$ - Resisting moment X-X = 1.3							

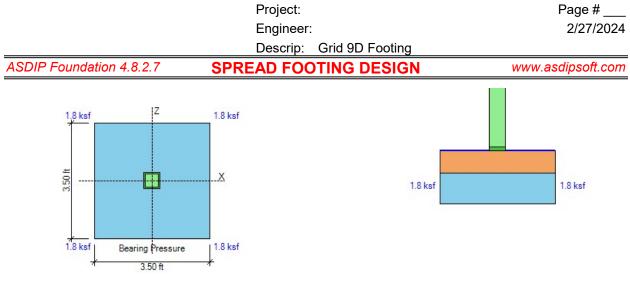
	Page # 2/27/2024		
	Descrip: Grid 9	D Footing	
ASDIP Foundation 4.8.2.7	SPREAD FOOTING	DESIGN	www.asdipsoft.com
- Overturning about Z-Z			
- Moment Mz = 0.6 * 0.0 + 0.6 * 0.0 = 0.	0 k-ft		
- Shear Force Vx = 0.6 * 0.0 + 0.6 * 0.0	= 0.0 kip		
Arm = 0.00 + 8.0 / 12 = 0.67 ft	Moment = 0	.0 * 0.67 = 0.0 k-ft	
- Passive Force = 0.0 kip	Arm = 0.27 ft	Moment = 0.0 k-ft	
- Overturning moment Z-Z = 0.0 + 0.0 =	0.0 k-ft		
- Resisting about Z-Z			
- Footing weight = 0.6 * W * L * Thick *	Density = 0.6 * 3.50 * 3.50 * 8.0) / 12 * 0.15 = 0.7 kip	
Arm = <i>L</i> / <i>2</i> = 3.50 / 2 = 1.75 ft	Moment = 0.7 * 1	.75 = 1.3 k-ft	
- Pedestal weight = $0.6 * W * L * H * Detection H = 0.6 * W * U * H * Detection H = 0.6 * W * U * U * U * U * U * U * U * U * U$	ensity = 0.6 * 6.0 / 12 * 6.0 / 12 *	0.0 * 0.15 = 0.0 kip	
Arm = L / 2 - Offset = 3.50 / 2 - 0.0	/ 12 = 1.75 ft Moment	= 0.0 * 1.75 = 0.0 k-ft	
- Soil cover = 0.6 * W * L * SC * Densi	ty = 0.6 * (3.50 * 3.50 - 6.0 / 12 *)	6.0 / 12) * 0.0 * 110 = 0.0 kip	
Arm = <i>L</i> / <i>2</i> = 3.50 / 2 = 1.75 ft	Moment = 0.0 * 1	.75 = 0.0 k-ft	
- Buoyancy = 0.6 * W * L * Y * (SC + 7)	hick - WT) = 0.6 * 3.50 * 3.50 * 6	62 * (0.67) = -0.3 kip	
Arm = <i>L</i> / <i>2</i> = 3.50 / 2 = 1.75 ft	Moment = 0.3 * 1	.75 = -0.5 k-ft	
- Axial force P = 0.6 * 6.0 + 0.6 * 0.0 = 3	3.6 kip		
Arm = L / 2 - Offset = 3.50 / 2 - 0.0	/ 12 = 1.75 ft Moment	= 3.6 * 1.75 = 6.3 k-ft	
- Resisting moment Z-Z = 1.3 + 0.0 + 0.	.0 + 6.3 + -0.5 = 7.1 k-ft		
 Overturning safety factor Z-Z = —— 	$\frac{determinant}{durning moment} = \frac{7.1}{0.0} = \frac{7.1}{0.0}$	70.51 > 1.50 OK	
	SOIL BEARING PRESSURES	6 (Comb: D+L)	
Overturning moment X-X = 0.0 + 0.0 =	0.0 k-ft		
Resisting moment X-X = 2.1 + 0.0 + 0.0) + -0.9 + 37.3 = 38.5 k-ft		
Overturning moment Z-Z = 0.0 + 0.0 = 0).0 k-ft		
Resisting moment Z-Z = 2.1 + 0.0 + 0.0	+ -0.9 + 37.3 = 38.5 k-ft		
Resisting force = Footing + Pedestal +	<i>Soil - Buoyancy + P = </i> 1.2 + 0.0	+ 0.0 - 0.5 + 21.3 = 22.0 kip	
X-coordinate of resultant from maximur	n boaring cornor:		

38.5 - 0.0

22.0

-

– = 1.75 ft


X-coordinate of resultant from maximum bearing corner:

Xp =	Z-Resisting moment - Z-Overturning moment	_	38.5 - 0.0	· = 1.75 ft
vh –	Resisting force		22.0	· – 1.75 II

Z-coordinate of resultant from maximum bearing corner: Zp = <u>X-Resisting moment - X-Overturning moment</u>

Resisting force

X-ecc = Length / 2 - Xp = 3.50 / 2 - 1.75 = 0.00 ft Z-ecc = Width / 2 - Zp = 3.50 / 2 - 1.75 = 0.00 ft Area = Width * Length = 3.50 * 3.50 = 12.3 ft² Sx = Length * Width²/6 = 3.50 * 3.50²/6 = 7.1 ft³ Sz = Width * Length²/6 = 3.50 * 3.50² / 6 = 7.1 ft³ - Footing is in full bearing. Soil pressures are as follows: P1 = P*(1/A + Z-ecc / Sx + X-ecc / Sz) = 22.0*(1/12.3+0.00/7.1+0.00/7.1) = 1.80 ksf P2 = P*(1/A-Z-ecc/Sx+X-ecc/Sz) = 22.0*(1/12.3-0.00/7.1+0.00/7.1) = 1.80 ksf P3 = P*(1/A - Z-ecc/Sx - X-ecc/Sz) = 22.0*(1/12.3-0.00/7.1-0.00/7.1) = 1.80 ksf P4 = P*(1/A + Z-ecc / Sx - X-ecc / Sz) = 22.0*(1/12.3+0.00/7.1-0.00/7.1) = 1.80 ksf

SLIDING CALCULATIONS (Comb: 0.6D+0.6W)

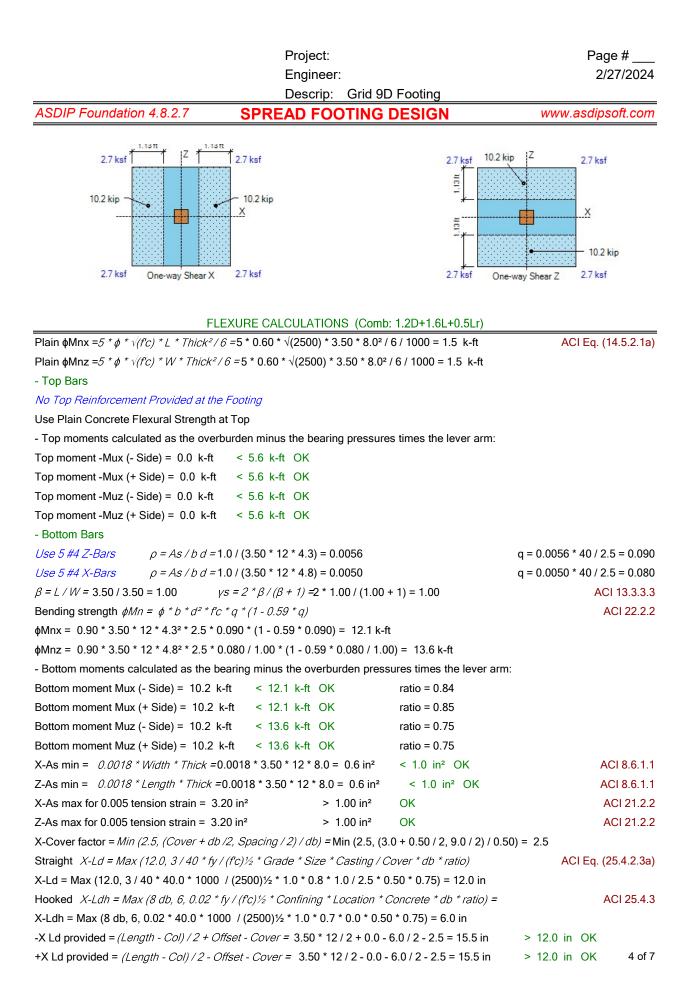
Internal friction angle = 28.0 deg

Passive coefficient *kp* = 4.33 (per Coulomb)

Pressure at mid-depth = kp * Density * (Cover + Thick / 2) = 4.33 * 110 * (0.00 + 8.0 / 12 / 2) = 0.16 ksfX-Passive force = *Pressure * Thick * Width* = 0.16 * 8.0 / 12 * 3.50 = 0.4 kip Z-Passive force = *Pressure * Thick * Length* = 0.16 * 8.0 / 12 * 3.50 = 0.4 kip

Friction force = Resisting force * Friction coeff. = Max (0, 4.0 * 0.35) = 1.4 kip

Use 100% of Passive + 100% of Friction for sliding resistance

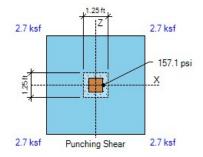

- Sliding safety factor X-X = $\frac{X-Passive \text{ force + Friction}}{X-Horizontal load} = \frac{1.00 * 0.4 + 1.00 * 1.4}{0.0} = 17.80 > 1.50 \text{ OK}$ - Sliding safety factor Z-Z = $\frac{Z-Passive \text{ force + Friction}}{Z-Horizontal load} = \frac{1.00 * 0.4 + 1.00 * 1.4}{0.0} = 17.80 > 1.50 \text{ OK}$

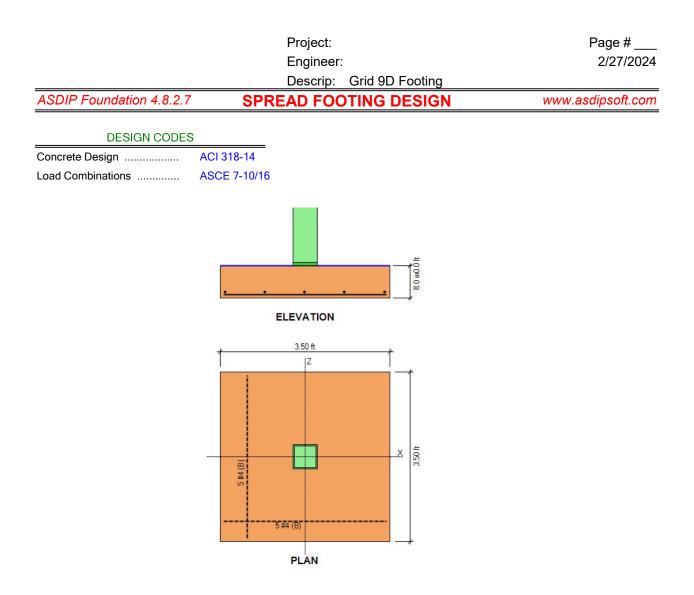
UPLIFT CALCULATIONS (Comb: 0.6D+0.6W)

- Uplift safety factor =	Pedestal + Footing + Cover - Buoyancy		0.0 + 0.7 + 0.0 - 0.3	= 99.99 > 1.00	OK	
	 Uplift load	-	0.0	- 33.33 > 1.00	UK	

ONE-WAY SHEAR CALCULATIONS (Comb: 1.2D+1.6L+0.5Lr)

Concrete f'c = 2.5 ksi	Steel fy = 40.0 ksi	Soil density = 110 pcf	
d Top X-dir = Thick - Cover - X-di	<i>ameter / 2 =</i> 8.0 - 2.0 - 0.8 / 2 = 5	.6 in	
d Top Z-dir = Thick - Cover - X-di	<i>ameter - Z-diameter / 2 =</i> 8.0 - 2.0	0 - 0.8 - 0.8 / 2 = 4.9 in	
d Bot X-dir = Thick - Cover - X-di	<i>ameter / 2 =</i> 8.0 - 3.0 - 0.5 / 2 = 4	.8 in	
d Bot Z-dir = Thick - Cover - X-di	<i>ameter - Z-diameter / 2 =</i> 8.0 - 3.0	0 - 0.5 - 0.5 / 2 = 4.3 in	
φVcx = 2 * φ * √(f'c) * Width * d / 1	/ <i>000 =</i> 2 * 0.75 * √(2500) * 3.5 * 12	2 * 4.8 / 1000 = 15.0 kip	ACI Eq. (22.5.5.1)
φVcz = 2 * φ * √(fc) * Length * d /	<i>1000 =</i> 2 * 0.75 * √(2500) * 3.5 * 1	2 * 4.3 / 1000 = 13.4 kip	
- Shear forces calculated as the v	olume of the bearing pressures u	nder the effective areas:	
One-way shear Vux (- Side) = 10	.2 kip < 15 .0 kip OK		
One-way shear Vux (+ Side) = 10).2 kip < 15 .0 kip OK		
One-way shear Vuz (- Side) = 10	.2 kip < 13.4 kip OK		
One-way shear Vuz (+ Side) = 10	0.2 kip < 13.4 kip OK		

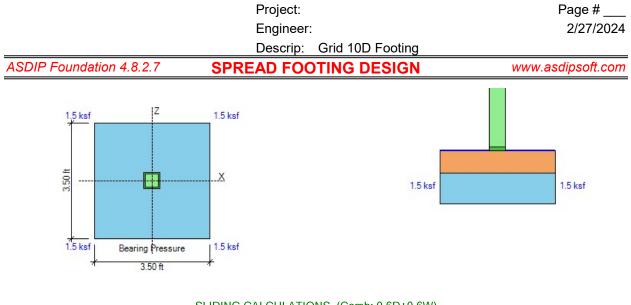

Project: Engineer:	Page # 2/27/2024
Descrip: Grid 9D Footing	
ASDIP Foundation 4.8.2.7 SPREAD FOOTING DESIGN	www.asdipsoft.com
Z-Cover factor = $Min (2.5, (Cover + db/2, Spacing / 2) / db)$ = Min (2.5, (3.0 + 0.50 / 2, 9.0 / 2) / 0.50) Straight Z-Ld = $Max (12.0, 3 / 40 * fy / (fc)\frac{1}{2} * Grade * Size * Casting / Cover * db * ratio)$ Z-Ld = Max (12.0, 3 / 40 * 40.0 * 1000 / (2500) $\frac{1}{2}$ * 1.0 * 0.8 * 1.0 / 2.5 * 0.50 * 0.75) = 12.0 in) = 2.5 ACI Eq. (25.4.2.3a)
Hooked Z-Ldh = Max (8 db, 6, 0.02 * fy / (fc) $\frac{1}{2}$ * Confining * Location * Concrete * db * ratio) = Z-Ldh = Max (8 db, 6, 0.02 * 40.0 * 1000 / (2500) $\frac{1}{2}$ * 1.0 * 0.7 * 0.0 * 0.50 * 0.85) = 6.0 in -Z Ld provided = (Width - Col) / 2 + Offset - Cover = 3.50 * 12 / 2 + 0.0 - 6.0 / 2 - 2.5 = 15.5 in +Z Ld provided =(Width - Col) / 2 - Offset - Cover = 3.50 * 12 / 2 - 0.0 - 6.0 / 2 - 2.5 = 15.5 in	ACI 25.4.3 > 12.0 in OK > 12.0 in OK
X-bar spacing = 9.0 in < Min (3 * t, 18.0) = 18.0 in OK	ACI 7.7.2.3



LOAD TRANSFER CALCULATIONS (Comb: 1.2D+1.6L+0.5Lr)

Area $A1 = col L * col W = 6.0 * 6.0 = 36.0 \text{ in}^2$ Sx = $col W * col L^2/6 = 6.0 * 6.0^2/6 = 36.0 \text{ in}^3$ Sz = $col L * col W^2/6 = 6.0 * 6.0^2/6 = 36.0 \text{ in}^3$ Bearing Pbu = P/A1 + Mz/Sx + Mx/Sz = 31.7/36.0 + 0.0 * 12/36.0 + 0.0 * 12/36.0 = 0.9 ksiMin edge = Min (L/2 - X - offset - col L/2, W/2 - Z - offset - col W/2)Min edge = Min (3.50 * 12/2 - 0.0 - 6.0/2, 3.50 * 12/2 - 0.0 - 6.0/2 = 18.0 in Area A2 = Min [L * W, (col L + 2 * Min edge) * (col W + 2 * Min edge)]ACI R22.8.3.2 A2 = Min [3.50 * 12 * 3.5 * 12, (6.0 + 2 * 18.0) * (6.0 + 2 * 18.0)] = 1764.0 in^2 Footing $\phi Pnc = \phi * 0.85 * fc * Min [2, \sqrt{(A2/A1)]} = 0.65 * 0.85 * 2.5 * Min [2, \sqrt{(1764.0/36.0)]} = 2.8 \text{ ksi}$ Footing $\phi Pns = \phi * As * Fy/A1 = 0.0 \text{ ksi}$ Footing $\phi Pn = \phi Pnc + \phi Pns = 2.8 + 0.0 = 2.8 \text{ ksi} > 0.9 \text{ psi OK}$

	Project: Engineer:	Page # 2/27/2024
ASDID Equipation 4.9.2.7	Descrip: Grid 9D Footing	
ASDIP Foundation 4.8.2.7	SPREAD FOOTING DESIGN	www.asdipsoft.com
		ACI 25.4.3
PUNCHING	SHEAR CALCULATIONS (Comb: 1.2D+1.6L+0.5)	Lr)
X-Edge = $d/2 = 4.5/2 = 2.3$ in o	usx = 20	
Z-Edge = $d/2$ = 4.5 / 2 = 2.3 in o	asz = 20	
$\alpha s = \alpha s x + \alpha s z = 20 + 20 = 40$ Co	I type = Interior $\beta = L / W = 6.0 / 6.0 = 1.00$	ACI 22.6.5.2
Perimeter <i>bo</i> = <i>asz</i> / 10 * (L + <i>d</i> / 2 + X-Ed	lge) + asx / 10 * (W + d / 2 + Z-Edge)	ACI 22.6.4.2
bo = 20 / 10 * (6.0 + 4.5 / 2 + 2.3) + 20 / 7	10 * (6.0 + 4.5 / 2 + 2.3) = 42.0 in	
Area <i>Abo = (L + d / 2 + X-Edge) * (W + d /</i>	2 + Z-Edge) (6.0 + 4.5 / 2 + 2.3) * (6.0 + 4.5 / 2 + 2.3)	= 110.3 in ²
$\phi Vc = \phi * Min (2 + 4/\beta, \alpha s * d/bo + 2, 4)$	$) * \sqrt{(f_{C})}$	ACI 22.6.5.2
φVc = 0.75 * Min (2 + 4 / 1.00, 40 * 4.5 /	42.0 + 2, 4) * √(2500) = 150.0 psi	
Punching force $F = P + Overburden * Abc$	o - Bearing	
F = 31.7 + 0.07 * 110.3 / 144 - 2.0 = 29.7	kip	
b1 = L + d/2 + X-Edge =6.0 + 4.5 / 2 + 2.3	= 10.5 in $b^2 = W + d/2 + Z - Edge = 6.0 + 4.5/$	2 + 2.3 = 10.5 in
$\gamma vx \text{ factor} = 1 - \frac{1}{1 + (2/3) \sqrt{b^2 / b^1}} = 1$	= 0.40	
		ACI Eq. (8.4.4.2.2)
$\gamma vz \text{ factor} = 1 - \frac{1}{1 + (2/3) \sqrt{b1/b2}} = 1$	= 0.40	ACI Eq. (8.4.2.3.2)
X2z = b1/2 = 10.5/2 = 5.3 in		
$Jcz = b1 * d^3/6 + b1^3 * d/6 + b1^2 * b2 * d$		ACI R8.4.4.2.3
Jcz = 10.5 * 4.5 ³ / 6 + 10.5 ³ * 4.5 / 6 + 10		
$Jcx = b2 * d^{3}/6 + b2^{3} * d/6 + b2^{2} * b1 * d,$		ACI R8.4.4.2.3
$Jcx = 10.5 * 4.5^{3} / 6 + 10.5^{3} * 4.5 / 6 + 10$		
Stress due to $P = F / (bo * d) * 1000 = 29.7$	(, , , , , , , , , , , , , , , , , , ,	
,	cx = 0.40 * 0.0 * 12 * 5.3 / 3632 * 1000 = 0.0 psi	
	cz = 0.40 * 0.0 * 12 * 5.3 / 3632 * 1000 = 0.0 psi	
Punching stress = <i>P</i> -stress + Mx-stress + <i>h</i>	<i>Mz-stress</i> = 157.1 + 0.0 + 0.0 = 157.1 psi > 150.0	psi NG



			roject: ngineer:	:			-	e # 27/202
			-	Grid 10D	Footing			
ASDIP Foundation 4.8.2.7	SP	REA	D FOC	DTING D	ESIGN	WV	vw.asdips	oft.co
GEOME	TRY				SOIL	PRESSURES (D+L)	
Footing Length (X-dir)	3.50	ft		Gross	Allow. Soil Pres		2.0	ksf
Footing Width (Z-dir)	3.50	ft			ressure at Corne		1.5	ksf
Footing Thickness	8.0	in	OK		ressure at Corne		1.5	ksf
Soil Cover	0.00	ft			ressure at Corne		1.5	ksf
Column Length (X-dir)	6.0	in		Soil P	ressure at Corne	ər 4	1.5	ksf
Column Width (Z-dir)	6.0	in		Bearir	ng Pressure Rat	io	0.76	Oł
Offset (X-dir)	0.00	in	ОК		rea in Contact w		100.0	%
Offset (Z-dir)	0.00	in	ОК	-	entricity / Ftg. Le		0.00	Oł
Base Plate (L x W)	6.0 x 6.0	in			entricity / Ftg. W	-	0.00	Ok
, , , , , , , , , , , , , , , , , , ,					, ,			
			APPLIE	D LOADS				
_	Dead	Live		RLive	Snow	Wind	Seismic	
Axial Force P	5.2	12.8		0.0	0.0	0.0	0.0	ki
Moment about X Mx	0.0	0.0		0.0	0.0	0.0	0.0	k-
Moment about Z Mz	0.0	0.0		0.0	0.0	0.0	0.0	k-
Shear Force Vx	0.0	0.0		0.0 0.0	0.0	0.0	0.0	ki
	OVERTUR	VING C		ATIONS (Co	omb: 0.6D+0.6V	V)		
- Overturning about X-X								
- Moment Mx = 0.6 * 0.0 + 0.6 *	0.0 = 0.0 k-ft							
- Shear Force Vz = 0.6 * 0.0 + 0	.6 * 0.0 = 0.0 ki	р						
Arm = 0.00 + 8.0 / 12 = 0.67 f	t		Мо	oment = 0.0 *	0.67 = 0.0 k-ft			
- Passive Force = 0.0 kip		Arm =	0.27 ft		Moment =	0.0 k-ft		
- Overturning moment X-X = 0.0	+0.0 = 0.0 k-f	t						
- Resisting about X-X								
- Footing weight = 0.6 * W * L *	Thick * Density	= 0.6	6 * 3.50 *	3.50 * 8.0 / 1	2 * 0.15 = 0.7 k	tip		
Arm = W/2 = 3.50/2 = 1.75	5 ft		Momen	t = 0.7 * 1.75	5 = 1.3 k-ft			
- Pedestal weight = 0.6 * W * L	* H * Density =	0.6 *	6.0 / 12 *	6.0 / 12 * 0.0	0 * 0.15 = 0.0 ki	р		
Arm = W/2 - Offset = 3.50 /	2 - 0.0 / 12 = 1.	75 ft		Moment = 0	.0 * 1.75 = 0.0 k	k-ft		
- Soil cover = 0.6 * W * L * S	SC * Density0 . 6	* (3.50	* 3.50 - 6	6.0 / 12 * 6.0	/ 12) * 0.0 * 110	= 0.0 kip		
Arm = $W/2 = 3.50/2 = 1.75$	5 ft		Momen	t = 0.0 * 1.75	5 = 0.0 k-ft			
- Buoyancy = 0.6 * W * L * Y * (ŚC + Thick - W	(T) = (0.6 * 3.50	* 3.50 * 62 *	(0.67) = -0.3 ki	р		
Arm = $W/2 = 3.50/2 = 1.75$	5 ft		Momen	t = 0.3 * 1.75	5 = -0.5 k-ft			
- Axial force P = 0.6 * 5.2 + 0.6 *	* 0.0 = 3.1 kip							
A	2 - 0.0 / 12 = 1.	75 ft		Moment = 3	.1 * 1.75 = 5.5 k	k-ft		
Arm = $W/2 - Offset = 3.50/$								
- Resisting moment X-X = $1.3 +$	0.0 + 0.0 + 5.5	+ -0.5 =	= 6.2 k-ft					

	Project: Engineer: Descrip: Grid 10	D Footing	Page # 2/27/2024
ASDIP Foundation 4.8.2.7	SPREAD FOOTING	DESIGN	www.asdipsoft.com
 Overturning about Z-Z Moment Mz = 0.6 * 0.0 + 0.6 * 0.0 = 0.0 Shear Force Vx = 0.6 * 0.0 + 0.6 * 0.0 = Arm = 0.00 + 8.0 / 12 = 0.67 ft Passive Force = 0.0 kip Overturning moment Z-Z = 0.0 + 0.0 = 0 	0.0 kip Moment = 0. Arm = 0.27 ft	0 * 0.67 = 0.0 k-ft Moment = 0.0 k-ft	
 Overturning safety factor Z-Z = ——— 	Moment = 0.7 * 1 $sity = 0.6 * 6.0 / 12 * 6.0 / 12 * 2 = 1.75 ft Moment = 2 = 0.6 * (3.50 * 3.50 - 6.0 / 12 * 6 Moment = 0.0 * 1 + 12 + 12 + 12 + 12 + 12 + 12 + 12$.75 = 1.3 k-ft 0.0 * 0.15 = 0.0 kip = 0.0 * 1.75 = 0.0 k-ft 5.0 / 12) * 0.0 * 110 = 0.0 kip .75 = 0.0 k-ft 2 * (0.67) = -0.3 kip .75 = -0.5 k-ft	
	SOIL BEARING PRESSURES	(Comb: D+L)	
Overturning moment X-X = $0.0 + 0.0 = 0$. Resisting moment X-X = $2.1 + 0.0 + 0.0 + 0.0 + 0.0 + 0.0 + 0.0 + 0.0 + 0.0 = 0.0$ Resisting moment Z-Z = $2.1 + 0.0 $	-0.9 + 31.5 = 32.8 k-ft $-0.9 + 31.5 = 32.8 k-ft$	+ 0.0 - 0.5 + 18.0 = 18.7 kip • = 1.75 ft	
Resisting force Z-coordinate of resultant from maximum	18.7		

 $Zp = \frac{X-Resisting moment - X-Overturning moment}{Resisting force} = \frac{32.8 - 0.0}{18.7} = 1.75 \text{ ft}$ X-ecc = Length / 2 - Xp = 3.50 / 2 - 1.75 = 0.00 ft Z-ecc = Width / 2 - Zp = 3.50 / 2 - 1.75 = 0.00 ftArea = Width * Length = 3.50 * 3.50 = 12.3 ft² $Sx = Length * Width^{2} / 6 = 3.50 * 3.50^{2} / 6 = 7.1 \text{ ft}^{3}$ $Sz = Width * Length^{2} / 6 = 3.50 * 3.50^{2} / 6 = 7.1 \text{ ft}^{3}$ - Footing is in full bearing. Soil pressures are as follows: P1 = P * (1/A + Z-ecc / Sx + X-ecc / Sz) = 18.7 * (1 / 12.3 + 0.00 / 7.1 + 0.00 / 7.1) = 1.53 ksf P2 = P * (1/A - Z-ecc / Sx - X-ecc / Sz) = 18.7 * (1 / 12.3 - 0.00 / 7.1 - 0.00 / 7.1) = 1.53 ksf P4 = P * (1/A + Z-ecc / Sx - X-ecc / Sz) = 18.7 * (1 / 12.3 + 0.00 / 7.1 - 0.00 / 7.1) = 1.53 ksf

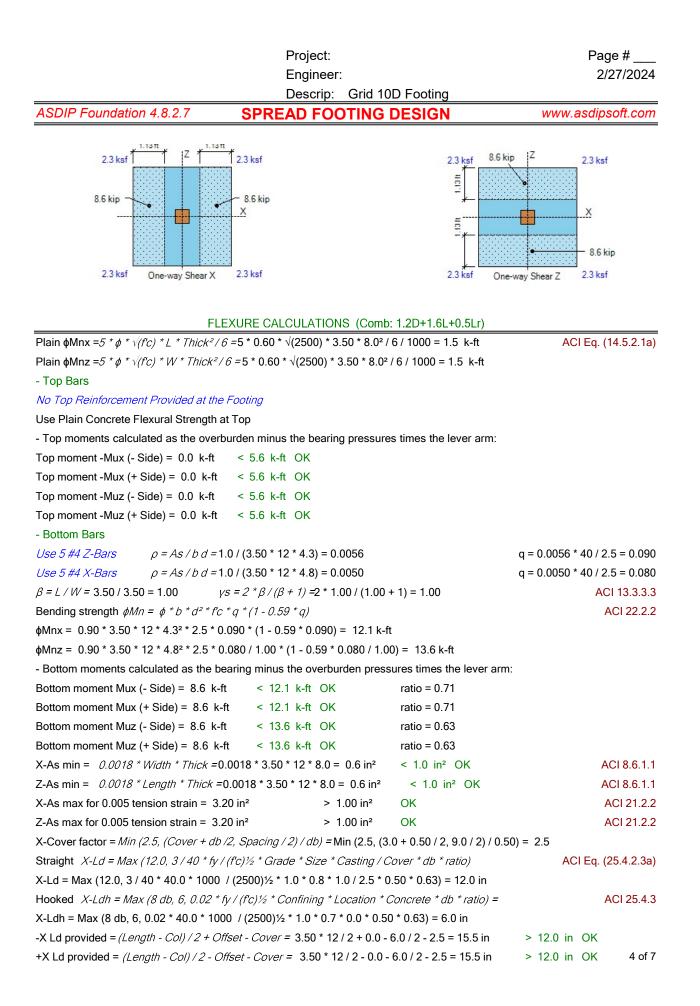
SLIDING CALCULATIONS (Comb: 0.6D+0.6W)

Internal friction angle = 28.0 deg

Passive coefficient *kp* = 4.33 (*per Coulomb*)

Pressure at mid-depth = kp * Density * (Cover + Thick / 2) = 4.33 * 110 * (0.00 + 8.0 / 12 / 2) = 0.16 ksfX-Passive force = Pressure * Thick * Width = 0.16 * 8.0 / 12 * 3.50 = 0.4 kipZ-Passive force = Pressure * Thick * Length = 0.16 * 8.0 / 12 * 3.50 = 0.4 kipFriction force = Resisting force * Friction coeff. = Max (0, 3.5 * 0.35) = 1.2 kip

Use 100% of Passive + 100% of Friction for sliding resistance

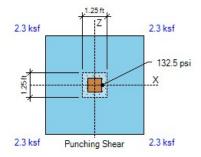

- Sliding safety factor X-X = $\frac{X-Passive \text{ force + Friction}}{X-Horizontal load} = \frac{1.00 * 0.4 + 1.00 * 1.2}{0.0} = 16.12 > 1.50 \text{ OK}$ - Sliding safety factor Z-Z = $\frac{Z-Passive \text{ force + Friction}}{Z-Horizontal load} = \frac{1.00 * 0.4 + 1.00 * 1.2}{0.0} = 16.12 > 1.50 \text{ OK}$

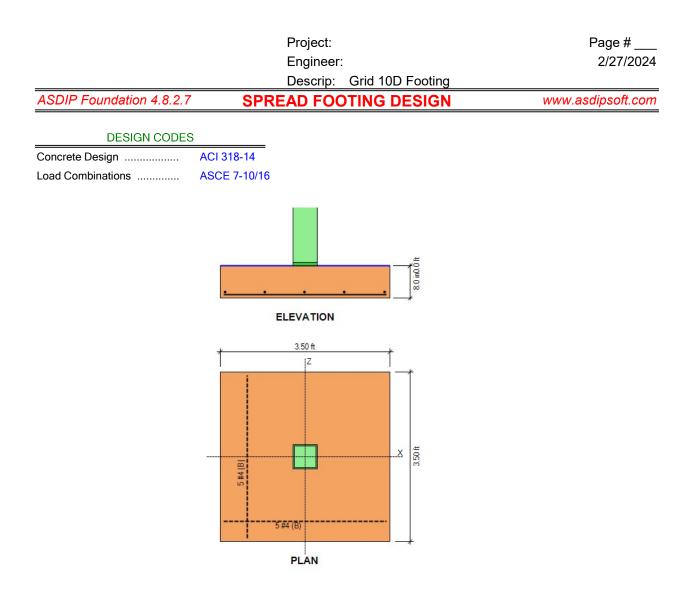
UPLIFT CALCULATIONS (Comb: 0.6D+0.6W)

- Uplift safety factor	Pedestal + Footing + Cover - Buoyancy		0.0 + 0.7 + 0.0 - 0.3	= 99.99 > 1.00 (OK
	 Uplift load	-	0.0	- 99.99 > 1.00 (JK

ONE-WAY SHEAR CALCULATIONS (Comb: 1.2D+1.6L+0.5Lr)

Concrete f'c = 2.5 ksi	Steel fy = 40.0 ksi	Soil density = 110 pcf	
d Top X-dir = Thick - Cover - X-diamen	<i>ter / 2 =</i> 8.0 - 2.0 - 0.8 / 2 = 5.	6 in	
d Top Z-dir = Thick - Cover - X-diamen	<i>ter - Z-diameter / 2 =</i> 8.0 - 2.0	- 0.8 - 0.8 / 2 = 4.9 in	
d Bot X-dir = Thick - Cover - X-diamen	<i>ter / 2 = </i> 8.0 - 3.0 - 0.5 / 2 = 4.	8 in	
d Bot Z-dir = Thick - Cover - X-diamen	<i>ter - Z-diameter / 2 =</i> 8.0 - 3.0	- 0.5 - 0.5 / 2 = 4.3 in	
φVcx = 2 * φ * √(fc) * Width * d / 1000 +	=2 * 0.75 * √(2500) * 3.5 * 12	* 4.8 / 1000 = 15.0 kip	ACI Eq. (22.5.5.1)
φVcz = 2 * φ * √(fc) * Length * d / 1000	9 <i>=</i> 2 * 0.75 * √(2500) * 3.5 * 12	2 * 4.3 / 1000 = 13.4 kip	
- Shear forces calculated as the volum	e of the bearing pressures ur	nder the effective areas:	
One-way shear Vux (- Side) = 8.6 kip	< 15.0 kip OK		
One-way shear Vux (+ Side) = 8.6 kip	o < 15.0 kip OK		
One-way shear Vuz (- Side) = 8.6 kip	< 13.4 kip OK		
One-way shear Vuz (+ Side) = 8.6 kip	o < 13.4 kip OK		


	Project: Engineer:	Page # 2/27/2024
	Descrip: Grid 10D Footing	
ASDIP Foundation 4.8.2.7 SPR	EAD FOOTING DESIGN	www.asdipsoft.com
Z-Cover factor = Min (2.5, (Cover + db /2, Spacing	(/2)/db) = Min (2.5, (3.0 + 0.50 / 2, 9.0 / 2) / 0.50) = 2.5
Straight Z-Ld = Max (12.0, 3 / 40 * fy / (f'c) ¹ / ₂ * Gra	ade * Size * Casting / Cover * db * ratio)	ACI Eq. (25.4.2.3a)
Z-Ld = Max (12.0, 3 / 40 * 40.0 * 1000 / (2500) ¹ / ₂ *	1.0 * 0.8 * 1.0 / 2.5 * 0.50 * 0.63) = 12.0 in	
Hooked Z-Ldh = Max (8 db, 6, 0.02 * fy / (fc) ^{1/2} *	Confining * Location * Concrete * db * ratio) =	ACI 25.4.3
Z-Ldh = Max (8 db, 6, 0.02 * 40.0 * 1000 / (2500)	⁄₂ * 1.0 * 0.7 * 0.0 * 0.50 * 0.71) = 6.0 in	
-Z Ld provided = (Width - Col) / 2 + Offset - Cover	= 3.50 * 12 / 2 + 0.0 - 6.0 / 2 - 2.5 = 15.5 in	> 12.0 in OK
+Z Ld provided =(Width - Col) / 2 - Offset - Cover -	= 3.50 * 12 / 2 - 0.0 - 6.0 / 2 - 2.5 = 15.5 in	> 12.0 in OK
X-bar spacing = 9.0 in < Min (3 * t, 18.0) = 18.0	in OK	ACI 7.7.2.3



LOAD TRANSFER CALCULATIONS (Comb: 1.2D+1.6L+0.5Lr)

Area $A1 = col L * col W = 6.0 * 6.0 = 36.0 \text{ in}^2$ Sx = $col W * col L^2/6 = 6.0 * 6.0^2/6 = 36.0 \text{ in}^3$ Sz = $col L * col W^2/6 = 6.0 * 6.0^2/6 = 36.0 \text{ in}^3$ Bearing Pbu = P/A1 + Mz/Sx + Mx/Sz = 26.7/36.0 + 0.0 * 12/36.0 + 0.0 * 12/36.0 = 0.7 ksiMin edge = Min (L/2 - X-offset - col L/2, W/2 - Z-offset - col W/2) Min edge = Min (3.50 * 12/2 - 0.0 - 6.0/2, 3.50 * 12/2 - 0.0 - 6.0/2 = 18.0 in Area A2 = Min [L * W, (col L + 2 * Min edge) * (col W + 2 * Min edge)]ACI R22.8.3.2 A2 = Min [3.50 * 12 * 3.5 * 12, (6.0 + 2 * 18.0) * (6.0 + 2 * 18.0)] = 1764.0 in^2 Footing $\phi Pnc = \phi * 0.85 * fc * Min [2, <math>\sqrt{(A2/A1)}] = 0.65 * 0.85 * 2.5 * Min [2, <math>\sqrt{(1764.0/36.0)}] = 2.8 \text{ ksi}$ Footing $\phi Pns = \phi * As * Fy/A1 = 0.0 \text{ ksi}$ Footing $\phi Pn = \phi Pnc + \phi Pns = 2.8 + 0.0 = 2.8 \text{ ksi} > 0.7 \text{ psi OK}$

	Project: Engineer:	Page # 2/27/2024
ASDIP Foundation 4.8.2.7	Descrip: Grid 10D Footing SPREAD FOOTING DESIGN	www.asdipsoft.com
ASDII 1 0011001011 4.0.2.1	SFREAD FOOTING DESIGN	
	(fc)½ * Confining * Location * Concrete * db * ratio) / (2500)½ * 1.0 * 0.7 * 0.0 * 0.75 * 0.13) = 6.0 in	ACI 25.4.3
Ld provided = Dowel length = 3.00 * 12	2 = 36.0 in > 23.1 in OK	
Ldh provided = Footing thickness - Cove	er = 8.00 - 3.0 = 5.0 in < 6.0 in NG	
PUNCHIN	NG SHEAR CALCULATIONS (Comb: 1.2D+1.6L+0.5L	.r)
X-Edge = <i>d</i> /2 = 4.5 / 2 = 2.3 in	αsx = 20	
Z-Edge = <i>d</i> /2 = 4.5 / 2 = 2.3 in	asz = 20	
$\alpha s = \alpha s x + \alpha s z = 20 + 20 = 40$	Col type = Interior $\beta = L / W = 6.0 / 6.0 = 1.00$	ACI 22.6.5.2
Perimeter <i>bo</i> = <i>asz</i> / 10 * (L + <i>d</i> / 2 + X-	Edge) + asx / 10 * (W + d / 2 + Z-Edge)	ACI 22.6.4.2
bo = 20 / 10 * (6.0 + 4.5 / 2 + 2.3) + 20	/ 10 * (6.0 + 4.5 / 2 + 2.3) = 42.0 in	
Area <i>Abo</i> = (L + d / 2 + X-Edge) * (W + c	d/2 + Z-Edge) $(6.0 + 4.5 / 2 + 2.3) * (6.0 + 4.5 / 2 + 2.3)$	= 110.3 in ²
$\phi Vc = \phi * Min (2 + 4/\beta, as * d/bo + 2,$	4) * $\sqrt{(fc)}$	ACI 22.6.5.2
φVc = 0.75 * Min (2 + 4 / 1.00, 40 * 4.5	5 / 42.0 + 2, 4) * √(2500) = 150.0 psi	
Punching force F = P + Overburden * A	Abo - Bearing	
F = 26.7 + 0.07 * 110.3 / 144 - 1.7 = 25	5.1 kip	
b1 = <i>L</i> + <i>d</i> / <i>2</i> + <i>X</i> - <i>Edge</i> =6.0 + 4.5 / 2 + 2	b2 = W + d/2 + Z - Edge = 6.0 + 4.5/2	2 + 2.3 = 10.5 in
$\gamma vx \text{ factor} = 1 - \frac{1}{1 + (2/3) \sqrt{(b2/b1)}} =$	$1 - \frac{1}{1 + (2/2) + (10.5)} = 0.40$	
		ACI Eq. (8.4.4.2.2)
$\gamma vz \text{ factor} = 1 - \frac{1}{1 + (2/3) \sqrt{(b1/b2)}} =$	$1 - \frac{1}{1 + (2/3)\sqrt{(10.5 / 10.5)}} = 0.40$	ACI Eq. (8.4.2.3.2)
	X2x = b2/2 = 10.5/2 = 5.3 in	
$Jcz = b1 * d^3/6 + b1^3 * d/6 + b1^2 * b2 *$	d/2	ACI R8.4.4.2.3
Jcz = 10.5 * 4.5 ³ / 6 + 10.5 ³ * 4.5 / 6 +	10.5² * 10.5 * 4.5 / 2 = 3632 in⁴	
$Jcx = b2 * d^3/6 + b2^3 * d/6 + b2^2 * b1 *$	d/2	ACI R8.4.4.2.3
Jcx = 10.5 * 4.5 ³ / 6 + 10.5 ³ * 4.5 / 6 +	10.5² * 10.5 * 4.5 / 2 = 3632 in⁴	
Stress due to $P = F / (bo * d) * 1000 = 25$	5.1 / (42.0 * 4.5) * 1000 = 132.5 psi	
Stress due to Mx = $\gamma vx * X$ -OTM * X2x /	/ Jcx = 0.40 * 0.0 * 12 * 5.3 / 3632 * 1000 = 0.0 psi	
Stress due to Mz = yvz *Z-OTM *X2z/	/ Jcz = 0.40 * 0.0 * 12 * 5.3 / 3632 * 1000 = 0.0 psi	
Punching stress = <i>P</i> -stress + <i>M</i> x-stress	+ <i>Mz-stress</i> = 132.5 + 0.0 + 0.0 = 132.5 psi < 150.0	psi OK

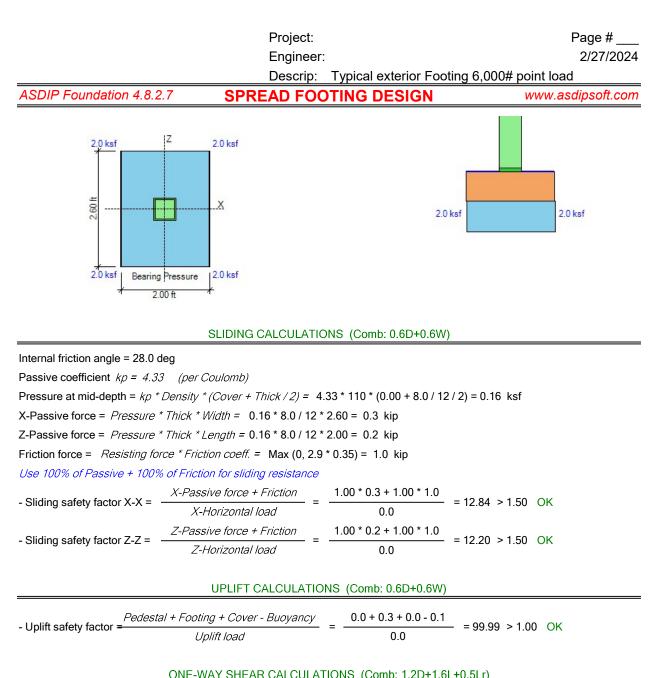
			ngineer:					27/20
ACDID Foundation 4.9.9.7			escrip:			g 6,000# poin		- 4 -
ASDIP Foundation 4.8.2.7	SPI	REA	DFOC	TING D	ESIGN	WV	/w.asdips	οπ.c
GEOME	TRY				SOIL	PRESSURES (D+L)	
Footing Length (X-dir)	2.00	ft		Gross	Allow. Soil Pres	ssure	2.0	ksf
Footing Width (Z-dir)	2.60	ft		Soil P	ressure at Corne	er 1	2.0	ksf
Footing Thickness	8.0	in	OK	Soil P	ressure at Corne	er 2	2.0	ksf
Soil Cover	0.00	ft		Soil P	ressure at Corne	er 3	2.0	ksf
Column Length (X-dir)	6.0	in		Soil P	ressure at Corne	er 4	2.0	ksf
Column Width (Z-dir)	6.0	in		Bearin	ng Pressure Rat	io	0.99	0
Offset (X-dir)	0.00	in	OK	Ftg. A	rea in Contact w	vith Soil	100.0	%
Offset (Z-dir)	0.00	in	OK	X-ecc	entricity / Ftg. Le	ength	0.00	0
Base Plate (L x W)	6.0 x 6.0	in		Z-ecc	entricity / Ftg. W	'idth	0.00	0
				D LOADS				
	Dead	Live		RLive	Snow	Wind	Seismic	
Axial Force P	4.5	5.5		0.0	0.0	0.0	0.0	I
Moment about X Mx	0.0	0.0		0.0	0.0	0.0	0.0	ł
Moment about Z Mz	0.0	0.0		0.0	0.0	0.0	0.0	ł
Shear Force Vx	0.0	0.0		0.0	0.0	0.0	0.0	ł
Shear Force Vz	0.0	0.0		0.0	0.0	0.0	0.0	ł
	OVERTURN	NING (CALCULA	TIONS (Co	omb: 0.6D+0.6V	V)		
- Overturning about X-X								
- Moment Mx = 0.6 * 0.0 + 0.6 *								
- Shear Force Vz = 0.6 * 0.0 + 0		р						
Arm = 0.00 + 8.0 / 12 = 0.67 1				ment = 0.0	* 0.67 = 0.0 k-ft			
- Passive Force = 0.0 kip			0.27 ft		Moment =	0.0 k-ft		
- Overturning moment X-X = 0.0) + U.U = U.U k-fl							
- Resisting about X-X								
- Footing weight = 0.6 * W * L *	Thick * Density	= 0.				kip		
Arm = $W/2 = 2.60/2 = 1.30$				t = 0.3 * 1.30				
- Pedestal weight = 0.6 * W * L	* H * Density =	0.6 *	6.0 / 12 *	6.0 / 12 * 0.0	0 * 0.15 = 0.0 ki	р		
Arm = <i>W</i> /2 - <i>Offset</i> = 2.60 /					.0 * 1.30 = 0.0 k			
- Soil cover = 0.6 * W * L * 3	SC * Density 0.6	* (2.60) * 2.00 - 6	5.0 / 12 * 6.0	/ 12) * 0.0 * 110	= 0.0 kip		
Arm = $W/2 = 2.60/2 = 1.30$				t = 0.0 * 1.30				
- Buoyancy = 0.6 * W * L * Y *	(SC + Thick - W	T) =	0.6 * 2.60	* 2.00 * 62	* (0.67) = -0.1 ki	ip		
Arm = $W/2 = 2.60/2 = 1.30$) ft		Moment	t = 0.1 * 1.30) = -0.2 k-ft			
- Axial force P = 0.6 * 4.5 + 0.6	* 0.0 = 2.7 kip							
Arm = W/2 - Offset = 2.60 /	2 - 0.0 / 12 = 1.3	30 ft		Moment = 2	7 * 1.30 = 3.5 k	⟨-ft		
- Resisting moment X-X = 0.4 +	0.0 + 0.0 + 3.5	+ -0.2	= 3.7 k-ft					
- Overturning safety factor X-X	= Resisting m Overturning n		_ =	.7	47 > 1.50 OK			

	Project: Engineer: Descrip: Typical exterior F	Page # 2/27/2024
ASDIP Foundation 4.8.2.7	SPREAD FOOTING DESIGN	
 Overturning about Z-Z Moment Mz = 0.6 * 0.0 + 0.6 * 0.0 = 0.0 Shear Force Vx = 0.6 * 0.0 + 0.6 * 0.0 = Arm = 0.00 + 8.0 / 12 = 0.67 ft Passive Force = 0.0 kip Overturning moment Z-Z = 0.0 + 0.0 = 	= 0.0 kip Moment = 0.0 * 0.67 = 0 Arm = 0.27 ft Mon	0.0 k-ft nent = 0.0 k-ft
Arm = $L/2$ = 2.00/2 = 1.00 ft - Pedestal weight = 0.6 * W * L * H * Den Arm = $L/2$ - Offset = 2.00/2 - 0.0/ - Soil cover = 0.6 * W * L * SC * Density Arm = $L/2$ = 2.00/2 = 1.00 ft - Buoyancy = 0.6 * W * L * Y * (SC + Th Arm = $L/2$ = 2.00/2 = 1.00 ft - Axial force P = 0.6 * 4.5 + 0.6 * 0.0 = 2 Arm = $L/2$ - Offset = 2.00/2 - 0.0/ - Resisting moment Z-Z = 0.3 + 0.0 + 0.0 - Overturning safety factor Z-Z = $\frac{Rest}{2}$	y = 0.6 * (2.60 * 2.00 - 6.0 / 12 * 6.0 / 12) * 0.0 Moment = 0.0 * 1.00 = 0.0 k- bick - WT) = 0.6 * 2.60 * 2.00 * 62 * (0.67) = Moment = 0.1 * 1.00 = -0.1 k .7 kip 12 = 1.00 ft Moment = 2.7 * 1.00 =	ft 0.0 kip = 0.0 k-ft 0 * 110 = 0.0 kip ft -0.1 kip -ft = 2.7 k-ft
	SOIL BEARING PRESSURES (Comb: D1	
X-coordinate of resultant from maximum $Xp = \frac{Z-Resisting moment - Z-Overturn}{Resisting force}$ Z-coordinate of resultant from maximum X-Resisting moment - X-Overturn	0.0 k-ft + -0.3 + 13.0 = 13.4 k-ft 0.0 k-ft + -0.2 + 10.0 = 10.3 k-ft Soil - Buoyancy + P = 0.5 + 0.0 + 0.0 - 0.2 + the bearing corner: $\frac{10.3 - 0.0}{10.3} = 1.00 \text{ ft}$ the bearing corner: ning moment 13.4 - 0.0	
Zp =	$\frac{10.3}{10.3} = \frac{1.30 \text{ ft}}{10.3}$	

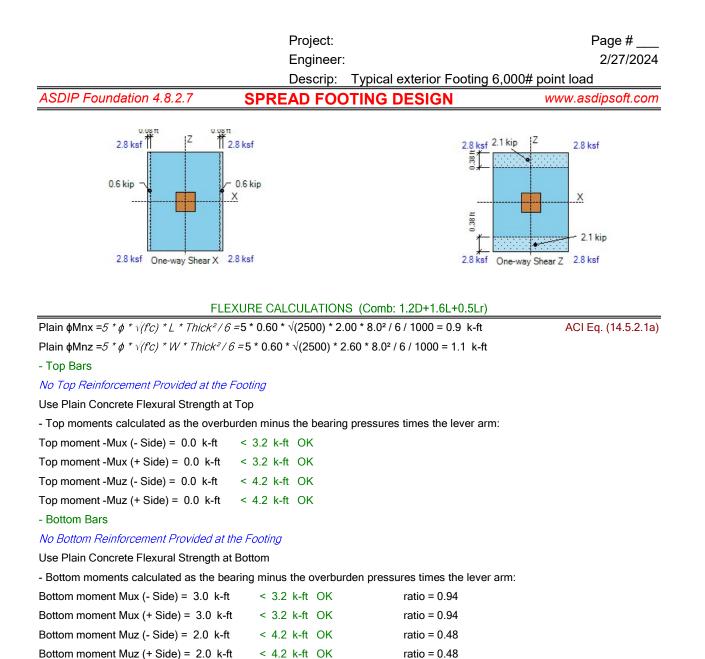
10.3

Resisting force X-ecc = *Length* / *2* - *Xp* =2.00 / 2 - 1.00 = 0.00 ft

Z-ecc = Width / 2 - Zp = 2.60 / 2 - 1.30 = 0.00 ft

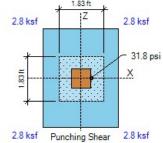

Area = Width * Length = 2.60 * 2.00 = 5.2 ft²

 $Sx = Length * Width^2/6 = 2.00 * 2.60^2/6 = 2.3 ft^3$


Sz = Width * Length²/6 = 2.60 * 2.00²/6 = 1.7 ft³

- Footing is in full bearing. Soil pressures are as follows:

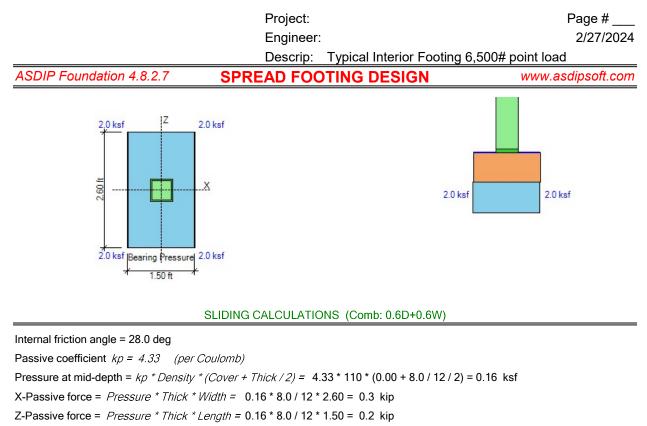
P1 = P * (1/A + Z - ecc / Sx + X - ecc / Sz) = 10.3 * (1 / 5.2 + 0.00 / 2.3 + 0.00 / 1.7) = 1.98 ksf P2 = P * (1/A - Z - ecc / Sx + X - ecc / Sz) = 10.3 * (1 / 5.2 - 0.00 / 2.3 + 0.00 / 1.7) = 1.98 ksf P3 = P * (1/A - Z - ecc / Sx - X - ecc / Sz) = 10.3 * (1 / 5.2 - 0.00 / 2.3 - 0.00 / 1.7) = 1.98 ksf P4 = P * (1/A + Z - ecc / Sx - X - ecc / Sz) = 10.3 * (1 / 5.2 + 0.00 / 2.3 - 0.00 / 1.7) = 1.98 ksf


	AT SHEAR CALCULATIONS		
Concrete f'c = 2.5 ksi	Steel fy = 40.0 ksi	Soil density = 110 pcf	
Use Plain Concrete Shear Strength			
$\phi Vcx = 4/3 * \phi * \sqrt{(fc)} * Width * t / 1000$	9 =4/3 * 0.60 * √(2500) * 2.6 * 12	2 * 8.0 / 1000 = 10.0 kip	ACI 14.5.5.1
φVcz = 4/3 * φ * √(fc) * Length * t / 100	<i>0 =</i> 4/3 * 0.60 * √(2500) * 2.0 * 1	2 * 8.0 / 1000 = 7.7 kip	
- Shear forces calculated as the volume	of the bearing pressures unde	er the effective areas:	
One-way shear Vux (- Side) = 0.6 kip	< 10.0 kip OK		
One-way shear Vux (+ Side) = 0.6 kip	< 10.0 kip OK		
One-way shear Vuz (- Side) = 2.1 kip	< 7.7 kip OK		
One-way shear Vuz (+ Side) = 2.1 kip	< 7.7 kip OK		

	Project: Engineer:	Page # 2/27/2024
	Descrip: Typical exterior Fo	ooting 6,000# point load
ASDIP Foundation 4.8.2.7	PREAD FOOTING DESIGN	www.asdipsoft.com
LOAD TRANS	SFER CALCULATIONS (Comb: 1.2D+1	.6L+0.5Lr)
Area A1 = col L * col W = 6.0 * 6.0 = 36.0 in	2	
$Sx = co/W * co/L^2/6 = 6.0 * 6.0^2/6 = 36.0$	in ³	
Sz = $col L * col W^2/6 = 6.0 * 6.0^2/6 = 36.0$	in³	
Bearing Pbu = P / A1 + Mz / Sx + Mx / Sz =	14.2 / 36.0 + 0.0 * 12 / 36.0 + 0.0 * 12 / 36.	.0 = 0.4 ksi
Min edge = Min (L / 2 - X-offset - col L / 2, W	V / 2 - Z-offset - col W / 2)	
Min edge = Min (2.00 * 12 / 2 - 0.0 - 6.0 / 2,	2.60 * 12 / 2 - 0.0 - 6.0 / 2 = 9.0 in	
Area A2 = Min [L * W, (col L + 2 * Min edge)) * (col W + 2 * Min edge)]	ACI R22.8.3.2
A2 = Min [2.00 * 12 * 2.6 * 12, (6.0 + 2 * 9.0	0) * (6.0 + 2 * 9.0)] = 576.0 in ²	
Footing $\phi Pnc = \phi * 0.85 * fc * Min [2, \sqrt{A2}$	(<i>A1)]</i> = 0.65 * 0.85 * 2.5 * Min [2, √(576.0 Å	/ 36.0)] = 2.8 ksi
Footing $\phi Pns = \phi * As * Fy / A1 = 0.0$ ksi		ACI 22.8.3.2
Footing bearing $\phi Pn = \phi Pnc + \phi Pns = 2.8 +$	0.0 = 2.8 ksi > 0.4 psi OK	

	Project: Engineer: Descrip:	Typical exterior Fo	oting 6,000# p	Page # 2/27/2024 oint load
ASDIP Foundation 4.8.2.7 SPRI		TING DESIGN		www.asdipsoft.com
Hooked Ldh = Max (8 db, 6, 0.02 * fy / (fc) ^{1/2} * Co Ldh = Max (8 db, 6, 0.02 * 60.0 * 1000 / (2500) ^{1/2} Ld provided = Dowel length = 3.00 * 12 = 36.0 in Ldh provided = Footing thickness - Cover = 8.00 -	¹ / ₂ * 1.0 * 0.7 * > 12.3	0.0 * 0.75 * 0.07) = 6.0 in OK		ACI 25.4.3
PUNCHING SHEA	R CALCULA ⁻	TIONS (Comb: 1.2D+1	.6L+0.5Lr)	
X-Edge = Length / 2 - Offset - Col / 2 = 2.00 * 12 /	2 - 0.0 - 6.0 /	2 = 9.0 in	αsx = 10	
Z-Edge = Width / 2 - Offset - Col / 2 = 2.60 * 12 / 2	2 - 0.0 - 6.0 / 2	2 = 12.6 in	αsz = 10	
$\alpha s = \alpha s x + \alpha s z = 10 + 10 = 20$ Col type =	Corner	$\beta = L / W = 6.0 / 6.0 =$	= 1.00	ACI 22.6.5.2
Perimeter $bo = asz / 10 * (L + d / 2 + X-Edge) + ast$	sx / 10 * (W +	d / 2 + Z-Edge)		ACI 22.6.4.2
bo = 10 / 10 * (6.0 + 8.0 / 2 + 9.0) + 10 / 10 * (6.0) + 8.0 / 2 + 12	2.6) = 41.6 in		
Area Abo = (L + d / 2 + X-Edge) * (W + d / 2 + Z-E	<i>dge) </i>	.0 / 2 + 9.0) * (6.0 + 8.0	/ 2 + 12.6) = 429.4	l in²
Use Plain Concrete Shear Strength				
$\phi Vc = \phi * Min (1 + 2 / \beta, 2) * 4/3 * \sqrt{(fc)}$				ACI 14.5.5.1
φVc = 0.60 * Min (1 + 2 / 1.00, 2) * 4/3 √(2500) =	= 80.0 psi			
Punching force F = P + Overburden * Abo - Bear	ing			
F = 14.2 + 0.07 * 429.4 / 144 - 3.8 = 10.6 kip				
b1 = <i>L</i> + <i>d</i> / <i>2</i> + <i>X</i> - <i>Edge</i> =6.0 + 8.0 / 2 + 9.0 = 19.0	in b2 =	<i>W + d / 2 + Z-Edge =</i> 6.	0 + 8.0 / 2 + 12.6	= 22.6 in
1	1	- 0.42		
$\gamma vx \text{ factor} = 1 - \frac{1}{1 + (2/3) \sqrt{b^2 / b^1}$	/3) √(22.6 / 19			ACI Eq. (8.4.4.2.2)
γvz factor = $1 - \frac{1}{1 + (2/3) \sqrt{(b1/b2)}} = 1 - \frac{1}{1 + (2/3) \sqrt{(b1/b2)}}$	1	- 0.29		ACI Eq. (8.4.2.3.2)
$\sqrt{b1/b2} = \frac{1}{1 + (2/3)} \sqrt{b1/b2} = \frac{1}{1 + (2/3)} \sqrt{b1/b2}$	/3) √(19.0 / 22	2.6) - 0.38		
$X2z = \frac{b1^2}{2} \frac{(b1 + b2)}{2} = \frac{19.0^2}{2} \frac{(19.0 + 22.6)}{(19.0 + 22.6)}$) = 4.3 in	$X2x = b2^2/2/(b)$	2 <i>+b1) =</i> 6.1 in	
$Jcz = b1 * d^3 / 12 + b1^3 * d / 12 + b1 * d * (b1 / 2 - 2)$	(2z)² + b2 * d	* X2z²		ACI R8.4.4.2.3
Jcz = 19.0 * 8.0 ³ / 12 + 19.0 ³ * 8.0 / 12 + 19.0 * 8	3.0 * (19.0 / 2	* 4.3) ² + 22.6 * 8.0 * 4.3	² = 12836 in⁴	
$Jcx = b2 * d^3 / 12 + b2^3 * d / 12 + b2 * d * (b2 / 2 - 2)$	X2x)²+b1 *d	* X2x²		ACI R8.4.4.2.3
Jcz = 22.6 * 8.0 ³ / 12 + 22.6 ³ * 8.0 / 12 + 22.6 * 8	3.0 * (22.6 / 2	* 6.1) ² + 19.0 * 8.0 * 6.1	² = 19204 in⁴	
Stress due to P = $F / (bo * d) * 1000 = 10.6 / (41.6)$	* 8.0) * 1000	= 31.8 psi		
Stress due to $Mx = \gamma vx * X - OTM * X2x / Jcx = 0.4$	42 * 0.0 * 12 *	6.1 / 19204 * 1000 = 0.0) psi	
Stress due to Mz = $\gamma vz * Z$ -OTM * $X2z / Jcz = 0.4$	42 * 0.0 * 12 *	4.3 / 12836 * 1000 = 0.0) psi	
Punching stress = <i>P</i> -stress + Mx-stress + Mz-stre	<i>ss =</i> 31.8 + 0	0.0 + 0.0 = 31.8 psi	< 80.0 psi OK	
	1.83 f	^{it} k		

ASDIP Foundation 4.8.2.7	Project: Engineer: Descrip: Typical exterior Footing 6, SPREAD FOOTING DESIGN	Page # 2/27/2024 000# point load www.asdipsoft.com
DESIGN CODES		
-	CI 318-14 SCE 7-10/16	
	PLAN	


ASDIP Foundation 4.8.2.7	[′] SP		escrip:	OTING D	nterior Footing		/w.asdips	oft.c
GEOME						PRESSURES (I		
Footing Length (X-dir)	1.50				s Allow. Soil Pres		2.0	ksf
Footing Width (Z-dir)	2.60		<u></u>		Pressure at Corne		2.0	ksf
Footing Thickness	8.0		OK		Pressure at Corne		2.0	ksf
Soil Cover	0.00				Pressure at Corne Pressure at Corne		2.0	ksf
Column Length (X-dir)	6.0						2.0 0.99	ksf C
Column Width (Z-dir)	6.0 0.00		ОК		ng Pressure Rati		0.99 100.0	
Offset (X-dir)			OK		rea in Contact w entricity / Ftg. Le			
Offset (Z-dir) Base Plate (L x W)	0.00 6.0 x 6.0	in in	UK		, ,	U	0.00 0.00	
	0.0 x 0.0	111		2-800	entricity / Ftg. W	iuui	0.00	C
			APPLI	ED LOADS				
	Dead	Live		RLive	Snow	Wind	Seismic	
Axial Force P	3.0	4.5		0.0	0.0	0.0	0.0	
Moment about X Mx	0.0	0.0		0.0	0.0	0.0	0.0	
Moment about Z Mz	0.0	0.0		0.0	0.0	0.0	0.0	
Shear Force Vx	0.0	0.0		0.0	0.0	0.0	0.0	
Shear Force Vz	0.0	0.0		0.0	0.0	0.0	0.0	
2	OVERTUR	NING	CALCUL	ATIONS (C	omb: 0.6D+0.6W	V)		
- Overturning about X-X								
- Moment Mx = $0.6 * 0.0 + 0.6 *$								
- Shear Force $Vz = 0.6 * 0.0 + 0.0$		ιþ	R./	amont - 0.0	*067-0064			
Arm = $0.00 + 8.0 / 12 = 0.67 + 0.000$		Arm -	0.27 ft	0.00000000000000000000000000000000000	* 0.67 = 0.0 k-ft Momont = (
 Passive Force = 0.0 kip Overturning moment X-X = 0.0 			U.2/ T		Moment = (J.U K-IL		
-	5 · 0.0 – 0.0 K-I	L						
- Resisting about X-X								
- Footing weight = $0.6 * W * L *$	-	<i>=</i> 0.				lip		
Arm = $W/2 = 2.60/2 = 1.30$				nt = 0.2 * 1.3				
- Pedestal weight = 0.6 * W * L			6.0 / 12					
Arm = W/2 - Offset = 2.60/					0.0 * 1.30 = 0.0 k			
	-	* (2.60			/ 12) * 0.0 * 110	= 0.0 kip		
Arm = $W/2 = 2.60/2 = 1.30$				nt = 0.0 * 1.3				
- Buoyancy = $0.6 * W * L * \gamma *$		(T) =				р		
Arm = $W/2 = 2.60/2 = 1.30$			Mome	nt = 0.1 * 1.3	0 = -0.1 k-ft			
- Axial force P = 0.6 * 3.0 + 0.6	* 0.0 = 1.8 kip							
Arm = $W/2 - Offset = 2.60/$	2 - 0.0 / 12 = 1.	30 ft		Moment = 1	.8 * 1.30 = 2.3 k	:-ft		
- Resisting moment X-X = 0.3 +	0.0 + 0.0 + 2.3	+ -0.1	= 2.5 K-1	L				

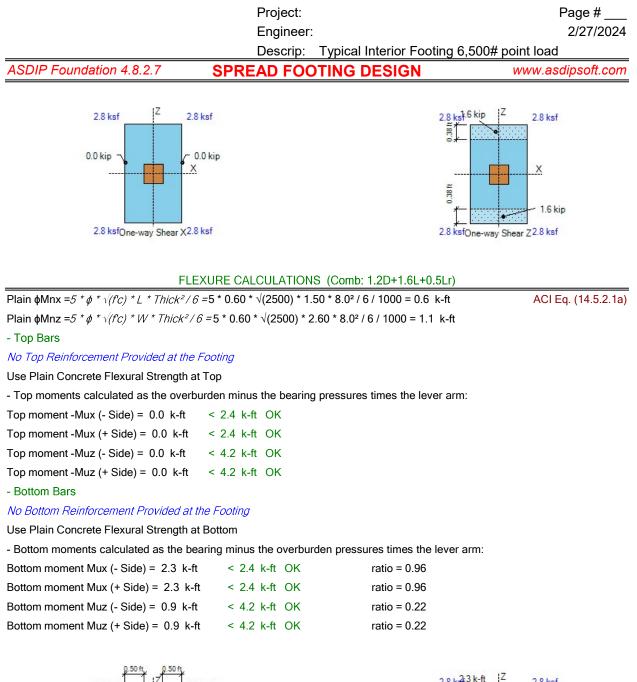
	Project: Engineer: Descrip: Typical Interior Footing 6,500#	Page # 2/27/2024 point load
ASDIP Foundation 4.8.2.7	PREAD FOOTING DESIGN	www.asdipsoft.com
 Overturning about Z-Z Moment Mz = 0.6 * 0.0 + 0.6 * 0.0 = 0.0 k-f Shear Force Vx = 0.6 * 0.0 + 0.6 * 0.0 = 0.0 Arm = 0.00 + 8.0 / 12 = 0.67 ft 	kip Moment = 0.0 * 0.67 = 0.0 k-ft	
 Passive Force = 0.0 kip Overturning moment Z-Z = 0.0 + 0.0 = 0.0 	Arm = 0.27 ft Moment = 0.0 k-ft	
- Resisting about Z-Z - Footing weight = $0.6 * W * L * Thick * Dense Arm = L/2 = 1.50/2 = 0.75 ft- Pedestal weight = 0.6 * W * L * H * DensityArm = L/2 - Offset = 1.50/2 - 0.0/12 =- Soil cover = 0.6 * W * L * SC * Density = 0Arm = L/2 = 1.50/2 = 0.75 ft- Buoyancy = 0.6 * W * L * \gamma * (SC + Thick - Arm = L/2 = 1.50/2 = 0.75 ft- Axial force P = 0.6 * 3.0 + 0.6 * 0.0 = 1.8 kiArm = L/2 - Offset = 1.50/2 - 0.0/12 =- Resisting moment Z-Z = 0.2 + 0.0 + 0.0 + 1- Overturning safety factor Z-Z = \frac{Resisting}{Overturning}$	i/ty = 0.6 * 2.60 * 1.50 * 8.0 / 12 * 0.15 = 0.2 kip Moment = 0.2 * 0.75 = 0.2 k-ft = 0.6 * 6.0 / 12 * 6.0 / 12 * 0.0 * 0.15 = 0.0 kip 0.75 ft Moment = 0.0 * 0.75 = 0.0 k-ft .6 * (2.60 * 1.50 - 6.0 / 12 * 6.0 / 12) * 0.0 * 110 = 0.0 kip Moment = 0.0 * 0.75 = 0.0 k-ft WT) = 0.6 * 2.60 * 1.50 * 62 * (0.67) = -0.1 kip Moment = 0.1 * 0.75 = -0.1 k-ft 0.75 ft Moment = 1.8 * 0.75 = 1.4 k-ft	
Overturning moment X-X = $0.0 + 0.0 = 0.0$ k		
Resisting moment X-X = $0.5 + 0.0 + 0.0 + -0.0$		
Overturning moment $Z-Z = 0.0 + 0.0 = 0.0$ k. Resisting moment $Z-Z = 0.3 + 0.0 + 0.0 + -0.$ Resisting force = <i>Footing + Pedestal + Soil</i> - X-coordinate of resultant from maximum bea	1 + 5.6 = 5.8 k-ft <i>Buoyancy + P</i> = 0.4 + 0.0 + 0.0 - 0.2 + 7.5 = 7.7 kip	
Xp = Z-Resisting moment - Z-Overturning in Resisting force	= $=$ $=$ $=$ $=$ 0.75 ft	
Z-coordinate of resultant from maximum bea Zp = <u>X-Resisting moment - X-Overturning</u> Resisting force		
X-ecc = $Length / 2 - Xp = 1.50 / 2 - 0.75 = 0.1$ Z-ecc = $Width / 2 - Zp = 2.60 / 2 - 1.30 = 0.1$ Area = $Width * Length = 2.60 * 1.50 = 3.9$ Sx = $Length * Width^2 / 6 = 1.50 * 2.60^2$	00 ft ft²	

Sz = Width * Length² / 6 = 2.60 * 1.50² / 6 = 1.0 ft³

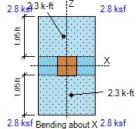
- Footing is in full bearing. Soil pressures are as follows:

P1 = $P * (1/A + Z \cdot ecc / Sx + X \cdot ecc / Sz) = 7.7 * (1 / 3.9 + 0.00 / 1.7 + 0.00 / 1.0) = 1.98$ ksf P2 = $P * (1/A - Z \cdot ecc / Sx + X \cdot ecc / Sz) = 7.7 * (1 / 3.9 - 0.00 / 1.7 + 0.00 / 1.0) = 1.98$ ksf P3 = $P * (1/A - Z \cdot ecc / Sx - X \cdot ecc / Sz) = 7.7 * (1 / 3.9 - 0.00 / 1.7 - 0.00 / 1.0) = 1.98$ ksf P4 = $P * (1/A + Z \cdot ecc / Sx - X \cdot ecc / Sz) = 7.7 * (1 / 3.9 + 0.00 / 1.7 - 0.00 / 1.0) = 1.98$ ksf

Friction force = Resisting force * Friction coeff. = Max (0, 1.9 * 0.35) = 0.7 kip

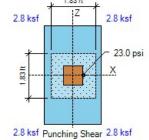

Use 100% of Passive + 100% of Friction for sliding resistance


- Sliding safety factor X-X =	X-Passive force + Friction	_	1.00 * 0.3 + 1.00 * 0.7	= 9.53	> 1.50	OK
	X-Horizontal load	-	0.0			UK
- Sliding safety factor Z-Z =	Z-Passive force + Friction	_	1.00 * 0.2 + 1.00 * 0.7	- 8 36	> 1.50	OK
	Z-Horizontal load	-	0.0	- 0.30		UK

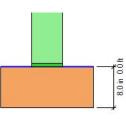

UPLIFT CALCULATIONS (Comb: 0.6D+0.6W)

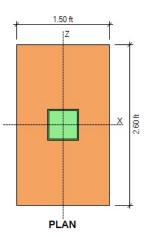
- Uplift safety factor	Pedestal + Footing + Cover - Buoyancy		0.0 + 0.2 + 0.0 - 0.1	= 99.99 > 1.00 (OK
	 Uplift load	-	0.0	- 99.99 > 1.00 Or	`

ONE-W	AY SHEAR CALCULATIONS (Comb: 1.2D+1.6L+0.5Lr)	
Concrete f'c = 2.5 ksi	Steel fy = 40.0 ksi	Soil density = 110 pcf	
Use Plain Concrete Shear Strength			
$\phi Vcx = 4/3 * \phi * \sqrt{(fc)} * Width * t / 100$	<i>0 =</i> 4/3 * 0.60 * √(2500) * 2.6 * 12	* 8.0 / 1000 = 10.0 kip	ACI 14.5.5.1
φVcz = 4/3 * φ * √(fc) * Length * t / 10	<i>00 =</i> 4/3 * 0.60 * √(2500) * 1.5 * 12	2 * 8.0 / 1000 = 5.8 kip	
- Shear forces calculated as the volum	e of the bearing pressures under	the effective areas:	
One-way shear Vux (- Side) = 0.0 kip	< 10.0 kip OK		
One-way shear Vux (+ Side) = 0.0 kip	< 10.0 kip OK		
One-way shear Vuz (- Side) = 1.6 kip	< 5.8 kip OK		
One-way shear Vuz (+ Side) = 1.6 kip	< 5.8 kip OK		



	Project: Engineer:	Page # 2/27/2024
	Descrip: Typical Interior Fo	
ASDIP Foundation 4.8.2.7	PREAD FOOTING DESIGN	
LOAD TRAN	SFER CALCULATIONS (Comb: 1.2D+1	l.6L+0.5Lr)
Area A1 = col L * col W = 6.0 * 6.0 = 36.0 ir	1 ²	
$Sx = co/W * co/L^2/6 = 6.0 * 6.0^2/6 = 36.0$) in ³	
Sz = $co/L * co/W^2/6 = 6.0 * 6.0^2/6 = 36.0^2$) in ³	
Bearing Pbu = P/A1 + Mz/Sx + Mx/Sz =	10.8 / 36.0 + 0.0 * 12 / 36.0 + 0.0 * 12 / 36	0.0 = 0.3 ksi
Min edge = Min (L / 2 - X-offset - col L / 2, V	N / 2 - Z-offset - col W / 2)	
Min edge = Min (1.50 * 12 / 2 - 0.0 - 6.0 / 2	, 2.60 * 12 / 2 - 0.0 - 6.0 / 2 = 6.0 in	
Area A2 = Min [L * W, (col L + 2 * Min edge) * (col W + 2 * Min edge)]	ACI R22.8.3.2
A2 = Min [1.50 * 12 * 2.6 * 12, (6.0 + 2 * 6.	.0) * (6.0 + 2 * 6.0)] = 324.0 in ²	
Footing $\phi Pnc = \phi * 0.85 * fc * Min [2, \sqrt{A2}]$	/ <i>A1)] =</i> 0.65 * 0.85 * 2.5 * Min [2, √(324.0	/ 36.0)] = 2.8 ksi
Footing $\phi Pns = \phi * As * Fy / A1 = 0.0$ ksi		ACI 22.8.3.2
Footing bearing $\phi Pn = \phi Pnc + \phi Pns = 2.8 +$	-0.0=2.8 ksi > 0.3 psi OK	


	Project: Engineer: Descrip:		oting 6,500# point loa	Page # 2/27/2024 d
ASDIP Foundation 4.8.2.7		TING DESIGN		sdipsoft.com
Hooked Ldh = Max (8 db, 6, 0.02 * fy / (Ldh = Max (8 db, 6, 0.02 * 60.0 * 1000 Ld provided = Dowel length = 3.00 * 12 Ldh provided = Footing thickness - Cove	/ (2500)½ * 1.0 * 0.7 * 2 = 36.0 in > 12.0	0.0 * 0.75 * 0.05) = 6.0 in OK		ACI 25.4.3
PUNCHIN	IG SHEAR CALCULA	TIONS (Comb: 1.2D+1	.6L+0.5Lr)	
X-Edge = Length / 2 - Offset - Col / 2 = 1			αsx = 10	
Z-Edge = Width / 2 - Offset - Col / 2 = 2.			αsz = 10	
-		$\beta = L / W = 6.0 / 6.0 =$	= 1.00	ACI 22.6.5.2
Perimeter bo = $asz / 10 * (L + d/2 + X-L)$	Edge) + asx / 10 * (W +	d/2+Z-Edge)		ACI 22.6.4.2
bo = 10 / 10 * (6.0 + 8.0 / 2 + 6.0) + 10	/ 10 * (6.0 + 8.0 / 2 + 1	2.6) = 38.6 in		
Area <i>Abo = (L + d / 2 + X-Edge) * (W + d</i>	1/ <i>2 + Z-Edge) </i>	.0 / 2 + 6.0) * (6.0 + 8.0	/ 2 + 12.6) = 361.6 in ²	
Use Plain Concrete Shear Strength				
$\phi Vc = \phi * Min (1 + 2/\beta, 2) * 4/3 * \sqrt{(fc)}$				ACI 14.5.5.1
φVc = 0.60 * Min (1 + 2 / 1.00, 2) * 4/3	√(2500) = 80.0 psi			
Punching force $F = P + Overburden * A$	bo - Bearing			
F = 10.8 + 0.07 * 361.6 / 144 - 3.9 = 7.1	1 kip			
b1 = L + d / 2 + X-Edge =6.0 + 8.0 / 2 + 6	.0 = 16.0 in b2 =	= W + d / 2 + Z-Edge = 6.	0 + 8.0 / 2 + 12.6 = 22.6 i	n
$1 = \frac{1}{2}$	1 1	- 0.44		
$\gamma vx \text{ factor} = 1 - \frac{1}{1 + (2/3) \sqrt{(b2/b1)}} =$	1 + (2/3) √(22.6 / 10	<u> </u>	AC	l Eq. (8.4.4.2.2)
γvz factor = 1 - $\frac{1}{1 + (2/3) \sqrt{(b1/b2)}}$ =	11	- 0.36	AC	l Eq. (8.4.2.3.2)
$\sqrt{21} \sqrt{(b1/b2)} = \frac{1}{1 + (2/3)} \sqrt{(b1/b2)} = \frac{1}{1 + (2/3)} \sqrt{(b1/b2)}$	1 + (2/3) √(16.0 / 22	2.6)		
$X2z = \frac{b1^2}{2} \frac{(b1 + b2)}{2} = \frac{16.0^2}{2} \frac{(16)^2}{2}$	6.0 + 22.6) = 3.3 in	$X2x = b2^2/2/(b)$	2 + <i>b1) =</i> 6.6 in	
$Jcz = b1 * d^3 / 12 + b1^3 * d / 12 + b1 * d *$	* (b1 / 2 - X2z)² + b2 * d	* X2z²		ACI R8.4.4.2.3
Jcz = 16.0 * 8.0 ³ / 12 + 16.0 ³ * 8.0 / 12			^{3²} = 8210 in⁴	
$Jcx = b2 * d^3 / 12 + b2^3 * d / 12 + b2 * d *$	* (b2 / 2 - X2x)² + b1 * d	* X2x²		ACI R8.4.4.2.3
Jcz = 22.6 * 8.0 ³ / 12 + 22.6 ³ * 8.0 / 12	+ 22.6 * 8.0 * (22.6 / 2	* 6.6) ² + 16.0 * 8.0 * 6.6	6² = 18229 in⁴	
Stress due to $P = F / (bo * d) * 1000 = 7$.	.1 / (38.6 * 8.0) * 1000 =	= 23.0 psi		
Stress due to $Mx = \gamma vx * X - OTM * X2x /$			•	
Stress due to Mz = $\gamma vz * Z$ -OTM * X2z /	<i>Jcz</i> = 0.44 * 0.0 * 12 *	3.3 / 8210 * 1000 = 0.0	psi	
Punching stress = <i>P</i> -stress + <i>Mx</i> -stress	+ Mz-stress = 23.0 + 0	0.0 + 0.0 = 23.0 psi	< 80.0 psi OK	
	2.8 ksf	2.8 ksf		


	Project:	Page #
	Engineer:	2/27/2024
	Descrip: Typical Interior Footing 6	5,500# point load
ASDIP Foundation 4.8.2.7	SPREAD FOOTING DESIGN	www.asdipsoft.com

DESIGN CODES

Concrete DesignACI 318-14Load CombinationsASCE 7-10/16

ELEVATION

$$\frac{2}{27/2024} C_{-} P_{1}ER_{-} U C_{-} U U M_{1}} P_{E} E_{TC} - EU U D_{-} M_{2}E_{0}E_{0} LATERAL ANDLYS 10} 1$$

$$\frac{10}{100} V_{ALO} = 85meth V U T = 110meth Exp. B V_{24,0-1,0} 5 LOPE 00 LSVO
ZONE R = 12,9P3E v.106 = 13.2PSF 16.0PSF mIN
ZONE C = 10.2PSF v.106 = 9.5PSF
ZONE C = 10.2PSF v.106 = 9.5PSF
ZONE C = 10.2PSF v.106 = 2.4PSF 8.0PSF mIN
ZONE D = 7.0PSF v.106 = 2.4PSF 8.0PSF mIN
ZONE D = 7.0PSF v.106 = 2.4PSF 8.0PSF mIN
ZONE D = 7.0PSF v.106 = 2.4PSF 8.0PSF mIN
ZONE C = 50 = 0.331 R=4.5 E E = 1.0
C_{S} = (2.331 / (6.57/.0))/1, 4 = 0.091
W LONG = (35PSF x, 94675F) = 298,345F 1 = 9' hz = 29'
W_{CRU22}/(201E x, 74055F) = 298,345F 1 = 9' hz = 20'
W_{CRU22}/(201E x, 74055F) = 298,340F 1 = 9' hz = 20'
W_{CRU22}/(201E x, 74055F) = 298,340F 1 = 9' hz = 20'
W_{CRU22}/(201E x, 74055F) = 298,200F 1 = 92,321 F 17,613,800F
US = 9.04,625 F 0.091 = 82,321 F 17,613,800F
V_{S} = 9.04,625 F 0.091 = 82,321 F 17,613,800F
FROOPE (216,345 F 0.29') + (213,600F 0.0)) + (309,680F 10)] x 82,321 F = 40,054F
FILERES (296,680F 10) + (213,600F 0.0)) + (309,680F 10)] x 83,321 F = 27,834F
FILERES (296,680F 10) + (213,600F 10) + (309,680F 10)] x 83,321 F = 14,433FF$$

$$2/27/2024 C. (16.8 + 2C-10.01, CE) ETC-BULDING G (MTERPL ANDRUVUS 7)$$

$$\frac{C2.8 + 0.12.13}{F_{3.6.5} = (16.0 + 25 + 15.35E) + (13.8 + 28.9 + 25.5) + (18.0 + 28.4 + 28.5) = 3.501^{d2}$$

$$F_{3.6} = (16.0 + 25.4 + 27.934 + (19.055) = 5.582^{d1}$$

$$F_{2.6} = 3.501^{d2} + (16.0 + 21.725E) = 6.253^{d2}$$

$$F_{2.6} = 5.582^{d2} + 27.934 + (105735F) + 7.4655C) = 9.508^{d2}$$

$$F_{1.6} = 6.253^{d2} + (16.0 + 1725E) = 7.903^{d2}$$

$$F_{1.6} = 6.253^{d2} + (16.0 + 1725E) = 7.903^{d2}$$

$$F_{1.6} = 4.503^{d2} + (14.933^{d2} \times (10535F) + 7.9425E) = 11.471^{d2}$$

$$\frac{65.8 + 0.059^{d2} \times (10535F) + (14.933^{d2} \times (10535F) + 7.9425E) = 11.4771^{d2}$$

$$\frac{65.8 + 0.059^{d2} \times (10557F) + (14.933^{d2} \times (10535F) + 7.9425E) = 16.189^{d2}$$

$$F_{2.6} = 40.059^{d2} \times (20575F) + (17325F) + 7.9425E) = 16.189^{d2}$$

$$F_{2.6} = 9.731^{d2} + (16.005F \times 3272F) = 16.189^{d2}$$

$$F_{2.6} = 10.189^{d2} + (10.005F \times 3272F) = 16.189^{d2}$$

$$F_{2.6} = 10.189^{d2} + (10.933^{d2} \times (18715E) + 7.9425E) = 19.877^{d2}$$

$$F_{2.6} = 5.4924^{d2} + (10.95F \times 3295E) = 5.4924^{d2}$$

$$F_{2.6} = 40.059^{d2} \times (11735F) + 9.995E + 7.9924^{d2}$$

$$F_{2.6} = 5.4924^{d2} + (10.95F \times 3005F) = 10.724^{d2}$$

$$F_{2.6} = 9.424^{d2} + (16.005F \times 3015E) = 10.724^{d2}$$

$$F_{2.6} = 10.724^{d2} + (16.005F \times 3015E) = 10.724^{d2}$$

$$F_{2.6} = 10.724^{d2} + (16.005F \times 3015E) = 10.724^{d2}$$

2/27/2024	C. CIERUCCIONI, PE ETC-BUILDING & LATERAL	ANALYSIS	3
0	GRID A-B		
<i>y</i>	F3W= (16.0 PSFx122SE) + (2.3 PSFx1065E)+(8.0 PSFx335E)	= 3;202#	
	F3EZ 40,054 # x (2,0513P/8,4675 E)	= 9,702 th	-
e en la composición de	F2WZ 3,202# + (16.005Fx 1553E)	= 5,882 [#]	
	F2E= 9,702#+27,034#× (1,8255E/7,4655E)	= 16,507th	
	Fin= 5,692#+(16.0PSFX 1565F)	= 8,178#	
• • • • • • • • • • •	FIET 16,507#+14,433#× (19245E/7,7425E)	= 19,903#	-
	GRID C		
	F322 (16.0PSFX 270SP)+(8.0PSFX 42SP)	= 4,656	
	F3E2 40,054 #x (4,0275 P/ 9,4675 F)	= 19,026 TZ	
	Fam2 4,656 # (16.005Fx3245F)	= 9,840 ±	
	. F25= 19,026# + 27,834# (3,7745# (7,4655))	= 33,098#	P
1.	Fine 9, 840# + (16.005Fx3255P)	= 15,040#	
	Fie= 33,69 8 + 14,433 × (3,9735= 17,7425E)	= 40,505t	
	BRIDS G-H		
	F3W= (16.005Fx 2425F)+(9.305Fx 325F)	= 4,190#	
	F3EZ 40,054 # x (Z13945E 8,46751E)	= 11,325#	
	F2W= 41170 F + (16.005 FX 1945E)	= 7,274#	
	F2EZ 11,325#+27, 834 #2 (1,8665E/7,4655E)	= 18,283#	
	Fine 7,274 # + (16.005 = x 1965=)	= 10,410#	
	FIEZ 18,283#+14, 433# (49450F/7,7426R)	= 21,909#	
	2014년 1월 17일 전에 2월 2014년 1월 28일 전에 2월 2014년 1월 2 1917년 1월 2014년 1월 2014		

2/22/2024	
2/27/2024	$\begin{array}{c c} C.P.EELUCUIDM, QB & ETC-BUILDINGG & SHEAR & Q\\ \underline{Geios 1813}(EVEL3) FE=5,582^{\pm} & 7SEGMENUTS L=6'0'' h=9\\ UG=5,592^{\pm}/34.16'=163 PIF & L=7'5''\\ USE & UT & VEALOUGE 2470 PIF (1.05-0.105 x 9'/2.83')=206 PIF & L=4'D''\\ USE & UT & VEALOUGE 2470 PIF (1.05-0.105 x 9'/2.83')=206 PIF & L=4'D''\\ L=2'40''\\ L=2'40''\\ L=2'40''\\ L=2'40''\\ L=3'4'2''\\ TE=163PIF uFu 9'_{21.25} - 112/55 PIF x1'x 1.42')-12(12 PIF uFu 5'x 1.42')=1778''\\ USE & AST 37 W 120 TOPS & FEALOW = 2,140'' x 1.41/16=1,279'''\\ USE & AST 37 W 120 TOPS & FEALOW = 2,140'' x 1.41/16=1,279'''\\ UE = 9,509 Ff/39.16' = 278 PIF \\ \hline VE = 9,509 Ff/39.16' = 278 PIF \\ \hline \end{array}$
$\hat{\mathbf{C}}$	$USE \overline{U2} UE + icou = 3530 \cdot F_{2}(1.25 - 0.125 \times 7)_{283} = 301 \text{ err}$ $Ho is Dominis$ $TE = 2780 \cdot F_{2}9'_{2}(.25 + 1.778^{2} - 1/2/3005 \times 7'_{2}(.41)) - 1/2(1245769'_{12}(.42)) = 9,680^{44}$ $\overline{U5E} = 15760 \overline{U}(2 \text{ STURS}) TE + irow = 5,405^{45} \cdot 1^{-4}/1.6 = 4,729^{44}$ $GRIO IR 13 (EUEL)) FE = 11.471^{4} 75864^{-4} Env Tis \ L = 34'-2" h=9'$ $VE = 11.471^{-5}/34.16' = 33601E$ $USE \overline{U3} VEAICOU = 45661F_{2}(1.25 - 0.125 \times 7)/283) = 3880E12$ $Ho is Downs$ $TE = 3360 \cdot F_{2}9'_{2}(1.25 + 4680) = \frac{1}{2}(300E_{2}7'_{2}(1.42)) - \frac{1}{2}(20E_{1}E_{2}(2.42)) = 9,239^{-4}$ $USE HDU14-50525 GU(4 + 57065) TE + 1104 = 12425^{-4}y \cdot 1.4116 = 10,872^{-4}$

2/27/2024	C- PIERUCLION, PO ETC-BUILDING G SHEAR 5	-
$\widehat{}$	$\frac{G_{R,10} \cdot 4[529/10 \text{ (EVEL3)}}{V_{E=9,731} \neq 158.67' = 166 \text{ PIF}} = 9,731^{\#} 75E6 \text{ ments } 2=29'-4'' \text{ h=9}}{\frac{1229'-4''}{27=58'-9''}}$	
e Lucio	USE EUT VEAIdow = 24201E	
	HO-DDOWNS	
	TE= 1660 1 Fx9 x1.25-12 (0501 Fx 2×14.67)-12 (1205 Fx 4.5×14.67) = 1,103 P	
	USE MST37 W12 STUDS TEARCON= 2,140 #x1.4/1.6=1,874	
	BAID 415 29/10 (EVEL2) FE= 16,189# 25EBATATS 1258-9" 1291	
	UE= 16,199 th/58.67'= 276 pif	
	USE DUZ VERNOW= 353PU=	
	Horo Downes	
	TE = 27601Fx9×1.25+1,103#-1/2(3005Fx4×14,67)-12(1205Fx9×14,67)=2,535#	
	USE MST 49W (2-STURS) TEHICOW = 3,425 × 1.4/1.6=2,997#	
	LIR 10 4/5 & 9/10 (EVELI) FEE19,677 P 25 EGMENTS LESS-3" 329"	
	VE=19,677# (58.6712 335016	
	USE WZ VEALOW = 353 PUF	
	HOLD DOWNS	
	TE=335PIRA9 21-25+ 2,535 - 12 (3005E×4/219.67)-12 (1205F×9/214.67)= 9,636#	
	USE HDU8-50575 W (2 STURS) TENCOW= 5,820 E.M. 6= 5,093#	

$$\frac{1}{2} \frac{1}{2} \frac{1}$$

$$2(17/202 C. PicPuccion, PT Fic-Sulloin) 6.6 SHEAR
$$\frac{6 Pio C (IFVEL) Fee (1,026) Fee (1,026) Using (1,026) Fee (1,026) Fee$$$$

-

	C. PIERIOCUMULAS ETC-BOILDING & SHEAR	9
7	GRIOS 6-H' (LEVEL 3) FE=11,325# 13 SEGAENTS (=9'0" L=2'8" L=3'4" L=2'3"	Б39 ¹ 1
0.829	USE [W27] VEALOWE 353PLF of (1.55-0.125x91/267) = 293PLP L=2+8" L=3+4" L=2+8" L=3+4" L=2+8" L=2+0" L=2+8" L=2+0" L=7+8" L=7+8" LT = 50'-8" TE = 224FUEx9'x1.25-16(25P2Fx20.58'x1.33')-1/2(12PSEx4.5'x1.33') = 2,142 LT	
	USE ASTUB W/ 25TOPS TEMICOW= 3,425 # 14/1.6= 2,997 # GROSG-14 (EVEL2) FE=18,283# 135EG-AENTS LT= 50'-8" +=9'	
	VE = 18,293\$ / 50.671 = 361 PUE USE W3 VERNOW 2456PUEx (1.23-0.125x9 / 2.62) = 378 PUE HOLD DOWNS	
$\hat{}$	$TE = 3610 VF \times 9' \times 1.25 + 2,142^{\pm} - b_2(12rsFx9' \times 1.33') = 6,131^{\pm}$ $USE CMST12 W (2STUDS) FEALOW = 9,215^{\pm} \times 1.46 = 8,063^{\pm}$	
	(GRIDS 6-H (LEVELI) FE=21,909# 13556MENTS 15=50-8" 179'VE = 21,909#150.67=432015	
	USE WY VENICON=5950 VEX (1.25-0.125x9/287)=49301F HOLD DOWNS TE=432017×9×1.25+6,131 - 1/2(12055×9×1.33)=10,919#	
	USE HOV14-50525 w/ 4 DE#25TUDS TEAMOWE 14, 445 \$ X19/1.6= 12,639#	