

Subsurface Exploration, Geologic Hazard, Infiltration Feasibility, and Preliminary Geotechnical Engineering Report

PSD - SOUTH HILL SITE

Puyallup, Washington

Prepared For: PUYALLUP SCHOOL DISTRICT

Project No. 20210394E001 November 29, 2021

Associated Earth Sciences, Inc. 911 5th Avenue Kirkland, WA 98033 P (425) 827 7701

November 29, 2021 Project No. 20210394E001

Puyallup School District 323 12th Street NW Puyallup, Washington 98371

Attention: Mr. Brady Martin

Subject: Subsurface Exploration, Geologic Hazard, Infiltration Feasibility, and Preliminary Geotechnical Engineering Report PSD - South Hill Site 14th Street Place SW Puyallup, Washington

Dear Mr. Martin:

We are pleased to present the enclosed copy of the referenced report. This report summarizes the results of tasks including subsurface exploration, geologic hazard analysis, infiltration feasibility assessment, and geotechnical engineering, and offers preliminary recommendations for design of the project.

We have enjoyed working with you on this study and are confident that the preliminary recommendations presented in this report will aid in the successful completion of your project. Please contact me if you have any questions or if we can be of additional help to you.

Sincerely, ASSOCIATED EARTH SCIENCES, INC. Kirkland, Washington

Kurt D. Merriman, P.E. Senior Principal Engineer

KDM/ld - 20210394E001-002

SUBSURFACE EXPLORATION, GEOLOGIC HAZARD, INFILTRATION FEASIBILITY, AND PRELIMINARY GEOTECHNICAL ENGINEERING REPORT

PSD - SOUTH HILL SITE

Puyallup, Washington

Prepared for: **Puyallup School District** 323 12th Street NW Puyallup, Washington 98371

Prepared by: Associated Earth Sciences, Inc. 911 5th Avenue Kirkland, Washington 98033 425-827-7701

November 29, 2021 Project No. 20210394E001

I. PROJECT AND SITE CONDITIONS

1.0 INTRODUCTION

This report presents the results of Associated Earth Sciences, Inc.'s (AESI's) subsurface exploration, geologic hazard analysis, preliminary geotechnical engineering, and stormwater infiltration feasibility study for the proposed project in Puyallup, Washington. Our recommendations are preliminary in that the project is in the early design phase. The site location is shown on the "Vicinity Map," Figure 1. The approximate locations of explorations completed for this study are shown on the "Existing Site and Exploration Plan," Figure 2. Interpretive exploration logs of subsurface explorations completed for this study are included in Appendix A.

1.1 Purpose and Scope

The purpose of this study is to provide subsurface soil and groundwater data to be utilized in the preliminary design of the proposed South Hill Site project. Our study included reviewing selected available geologic literature, advancing eight exploration borings (EB-1W through EB-8), and performing a geologic study of subsurface sediment and groundwater conditions. Geotechnical engineering studies were completed to develop recommendations for site preparation, flexible and rigid pavement sections, structural fill, erosion control, and to provide infiltration feasibility recommendations. This report summarizes our current fieldwork and offers preliminary design recommendations based on our present understanding of the project.

1.2 Authorization

Authorization to proceed with this study was given to AESI by means of District Purchase Order CP3655 dated October 15, 2021. Our study was accomplished in general accordance with our proposal dated October 8, 2021. This report has been prepared for the exclusive use of the Puyallup School District (PSD) and its agents for specific application to this project. Within the limitations of scope, schedule, and budget, our services have been performed in accordance with generally accepted geotechnical engineering and engineering geology practices in effect in this area at the time our report was prepared. No other warranty, express or implied, is made.

2.0 PROJECT AND SITE DESCRIPTION

The site known as Parcel B is located along 14th Street Place SW just north of 39th Avenue NW in Puyallup, Washington as shown on Figure 2, "Existing Site and Exploration Plan." Roughly rectangular in shape, the site encompasses about 4.8 acres. The site is bounded to the north by a stormwater pond associated with the Costco store to the east of the site, to the south by

commercial property and undeveloped Parcel A, to the west by PSD property, and to the east by 14th Street Place SW.

AESI previously completed a "Subsurface Exploration and Geotechnical Engineering Report" dated May 30, 2018 for the Logistics Center Warehouse (LSC) Addition immediately to the west of the subject site. We also completed a "Subsurface Exploration, Infiltration Testing, and Design Infiltration Rate Determination" dated June 21, 2018 for the LSC Addition. AESI performed geotechnical monitoring during construction of the addition and a stormwater infiltration trench.

AESI previously completed a "Subsurface Exploration and Geotechnical Engineering Report" dated June 17, 2019 for the LSC-Kessler Center southwest of the subject site. We also completed a "Subsurface Exploration, Infiltration Testing, and Design Infiltration Rate Determination" dated December 18, 2019 for the LSC-Kessler Center. AESI performed geotechnical monitoring during construction of the addition, bioretention facility, and infiltration trenches.

Topography on the site is dominated by a large mound composed of fill soils reportedly associated with construction of the Costco store across the street according to the PSD. Surface elevations surrounding the mound range from about 355 feet in the northwestern corner, to about 372 feet in the southeastern corner. The top of the mound is about elevation 380 feet. An approximate 10-foot-high slope is present on the eastern site boundary. Vegetation across the site generally consists of tall grasses and occasional Scotch broom. No surface water features were observed at the time of our site visit.

Based on discussions with TCF Architecture and review of conceptual plans, we understand that development of Parcel B will involve using the fill mound to level the site and create a new paved parking area for district school buses relocated from the downtown maintenance facility site. We understand that project plans will include infiltration of stormwater. Project plans are still in the conceptual stages but based on discussions with the project civil engineer, stormwater will be captured and then conveyed to infiltration trenches for disposal. Favorable infiltration conditions were encountered on the adjacent property where the LSC Warehouse Addition (AESI, May 2018) and also on the nearby LSC- Kessler Center are located (AESI, June 2019). We further understand that future improvements being considered include a direct connection from the new bus parking area to 14th Street Place NW.

3.0 SITE EXPLORATION

Our field explorations were conducted in October 2021 and included advancing eight exploration borings, one of which was completed as a groundwater monitoring well (EB-1W). The existing site conditions, and the approximate locations of subsurface explorations referenced in this study, are presented on the "Existing Site and Exploration Plan" (Figure 2). The various types of

sediments, as well as the depths where the characteristics of the sediments changed, are indicated on the exploration logs presented in Appendix A. The depths indicated on the logs where conditions changed may represent gradational variations between sediment types. If changes occurred between sample intervals in our exploration borings, they were interpreted. Our explorations were approximately located in the field by measuring from known site features depicted on the aerial photograph used as a basis for Figure 2.

The conclusions and recommendations presented in this report are based on the explorations completed for this study. The number, locations, and depths of the explorations were completed within site and budgetary constraints. Because of the nature of exploratory work below ground, extrapolation of subsurface conditions between field explorations is necessary. It should be noted that differing subsurface conditions may be present due to the random nature of deposition and the alteration of topography by past grading and/or filling. The nature and extent of variations between the field explorations may not become fully evident until construction. If variations are observed at that time, it may be necessary to re-evaluate specific recommendations in this report and make appropriate changes.

3.1 Exploration Borings

For this study, eight exploration borings were performed by Advance Drill Technologies, Inc., an independent firm working under subcontract to AESI. The borings were completed by advancing both a 3.25- and 4.25-inch, inside-diameter hollow-stem auger using a track-mounted drill. During the drilling process, samples were generally obtained at 2½- to 5-foot-depth intervals. After completion of drilling, each borehole was backfilled with bentonite chips, and the surface was patched with concrete or sod.

Disturbed, but representative samples were obtained by using the Standard Penetration Test (SPT) procedure in accordance with *ASTM International* (ASTM) D-1586. This test and sampling method consists of driving a standard 2-inch, outside-diameter, split-barrel sampler a distance of 18 inches into the soil with a 140-pound hammer free-falling a distance of 30 inches. The number of blows for each 6-inch interval is recorded, and the number of blows required to drive the sampler the final 12 inches is known as the Standard Penetration Resistance ("N") or blow count. If a total of 50 is recorded within one 6-inch interval, the blow count is recorded as the number of blows for the corresponding number of inches of penetration. The resistance, or N-value, provides a measure of the relative density of granular soils or the relative consistency of cohesive soils; these values are plotted on the attached exploration boring logs.

The borings were continuously observed and logged by a geologist from our firm. The samples obtained from the split-barrel sampler were classified in the field and representative portions placed in watertight containers. The samples were then transported to our laboratory for further

	Subsurjuce Exploration, Geologic Huzura, Injintration reasibility,
PSD - South Hill Site	and Preliminary Geotechnical Engineering Report
Puyallup, Washington	Project and Site Conditions

Subsurface Evoleration Coolerie Lazard Infiltration Forsibility

visual classification and testing. The exploration logs presented in Appendix A are based on the field observations, drilling action, and laboratory test results.

3.2 Monitoring Well

A groundwater monitoring well was installed by Advance Drill Technologies, Inc. in conjunction with our exploration borings in exploration boring EB-1W. The well consists of a 2-inch-diameter polyvinyl chloride (PVC) Schedule-40 well casing with threaded connections, the lower 10 feet of which is finely-slotted (0.020-inch machine slot) well screen to allow water inflow. The annular space around the well screen was backfilled with clean sand, and the upper portion of annulus was sealed with bentonite chips and concrete. An above-grade steel monument was placed over the top of the wellhead for protection. The as-built configuration is illustrated on the boring log in Appendix A. The well was dry at the time of drilling. After installation, an AESI representative developed the well by adding water and documenting that the well remained dry.

4.0 SUBSURFACE CONDITIONS

4.1 Regional Geology and Soils Mapping

The 2006 Draft Geologic Map of the Puyallup 7.5-Minute Quadrangle (1:24,000 scale) indicates that the project site is underlain by Vashon-age Steilacoom gravel outburst deposits. These sediments normally consist of loose to medium dense, well-sorted gravels with sands, and variable amounts of silts and cobbles. The total thickness typically ranges from several feet to several tens of feet. Steilacoom gravel is often underlain by dense to very dense, glacial lodgement till, and the geologic map shows lodgement till covering a large portion of the upland to the west of the site. We did not encounter coarse-grained sand and gravel sediments.

Review of regional soils mapping available via the Natural Resources Conservation Service (NRCS) *Web Soil Survey* web application indicates that the subject site is underlain by Indianola loamy sand which is formed from the weathering of sandy outwash. Finer-grained Kitsap loam soils formed from the weathering of lacustrine sediments are mapped nearby. Our interpretation of the soils encountered in our explorations is in somewhat agreement with the regional soils mapping in that we encountered fine-grained glaciolacustrine sediments in several explorations below the fill mound.

4.2 Site Stratigraphy

Subsurface conditions at the project site were inferred from the field explorations accomplished for this study, visual reconnaissance of the site, and review of selected applicable geologic literature. Our subsurface explorations confirmed the presence of Vashon-age deposits in the

	Subsurface Exploration, Geologic Hazard, Infiltration Feasibility,
PSD - South Hill Site	and Preliminary Geotechnical Engineering Report
Puyallup, Washington	Project and Site Conditions

proposed project area. However, the Steilacoom gravel unit shown on the regional geology map was not encountered. Instead, we observed Vashon-age recessional lacustrine deposits, Vashon-age ice-contact sediments, and Vashon-age advance outwash deposits. In our experience, this deviation from mapped geology is not unusual, because the geology in the project vicinity varies over short distances.

Topsoil

Organic-rich brown topsoil was observed at the ground surface in all borings completed where native sediments were present at ground surface elevation (EB-2, EB-6, EB-7, and EB-8). The observed thicknesses of topsoil ranged between 4 and 6 inches at the boring locations and are shown on the exploration logs. Fill over relic topsoil was also observed in EB-1W at a depth of approximately 7 feet below existing ground surface elevation. Existing topsoil should be stripped from structural areas and exported or reused in landscape applications if specifically permitted by project specifications.

Fill

Fill soils (those not naturally placed), were observed in borings EB-1W, EB-3, EB-4, EB-5, and EB-6. The observed fill thicknesses ranged between 1 foot (EB-5) and 29 feet (EB-3). Figure 2 includes the observed fill depths at each of the exploration locations. The fill generally consisted of loose to medium dense, moist, light brown to brown, fine to medium sand with variable silt content and variable gravel content. Organics (wood pieces) and faint organic odors were observed in the fill at the locations of borings EB-3 and EB-4. Existing fill may require remedial preparation below new pavement areas. Excavated existing fill material is potentially suitable for reuse in structural fill applications if such reuse is specifically allowed by project plans and specifications, if excessively organic and any other deleterious materials are removed, and if moisture content is adjusted (by aeration or cement amendment) to allow compaction to the specified level and to a firm and unyielding condition. Existing fill is not suitable for infiltration of stormwater and will be difficult to reuse during wet weather.

Vashon Recessional Lacustrine Sediments

Immediately below the surficial topsoil and/or fill, in all borings except EB-3, we observed a thick deposit of massive to stratified, silty, fine sands and fine, sandy silts. We interpret this deposit to be Vashon recessional lacustrine sediments that were deposited in a lake or other low-energy setting during the retreat of the Vashon ice sheet. These sediments have a low permeability due to a high percentage of fines, and are not typically suitable for concentrated stormwater infiltration. The recessional lacustrine deposit extended to depths of 22.5 feet (EB-1W), 9 feet (EB-2), 39 feet (EB-4), 7.5 feet (EB-5), 12.5 (EB-7), and 18.5 (EB-8). We did not observe the bottom of the lacustrine deposit in EB-6.

PSD - South Hill Site

Puyallup, Washington

In exploration borings EB-2, EB-4, EB-5, EB-7, and EB-8 we observed a thin layer of sediments interpreted as ice-contact deposits below the Vashon recessional lacustrine sediments and above the Vashon advance outwash. The sediments were generally an unsorted mixture of silty fine sand to sandy silt with variable amounts of coarser sands and gravel, and ranged from medium dense to dense/hard. This material was differentiated from the underlying Vashon advance outwash observed onsite based on fines content (siltier) and composition (unsorted, diamict). This material is not recommended for use as an infiltration receptor due to its variable density and generally high silt content. Vashon ice-contact sediments are suitable for reuse in structural fill applications if allowed by project specifications and if the moisture content is adjusted to allow compaction to a firm and unyielding condition at the specified level.

Vashon Advance Outwash

In exploration borings EB-1W, EB-2, EB-3, EB-5, and EB-7 we observed dense sand and gravel with variable silt content that we interpret to be Vashon advance outwash. Advance outwash deposits were encountered at depths of 22.5 feet (EB-1W), 12.5 feet (EB-2), 29 feet (EB-3), 13 feet (EB-5), and 17.5 feet (EB-7). The advance outwash continued beyond the termination of each boring where it was observed. The Vashon advance outwash consists of sediments that were deposited by meltwater streams that emanated from the advancing Vashon glacier, and were subsequently consolidated by the massive weight of the glacial ice. Where permeable and unsaturated, these sediments are suitable for stormwater infiltration.

4.3 Hydrology

AESI has studied groundwater conditions for the adjacent LSC Warehouse and LSC Kessler PSD projects for infiltration design. There is historical information on shallow and deep groundwater conditions in the site vicinity. Site groundwater consists of two general water-bearing zones: (1) perched water in the recessional lacustrine deposits and advance outwash deposits, and (2) deeper groundwater in the regional Vashon advance aquifer. The recessional lacustrine sediments are expected to be intermittently wet at the base of the unit if the ice-contact/ melt-out till layer is present.

Most of the exploration borings did not encounter groundwater at the time of drilling, consistent with the expected lowered groundwater conditions present in the fall season. Perched groundwater was observed in exploration boring EB-1W at the time of drilling (October 2021) in the advance outwash at a depth of approximately 45 feet below ground surface, perched above a siltier layer with the advance outwash formation.

	Subsurface Exploration, Geologic Hazard, Infiltration Feasibility,
PSD - South Hill Site	and Preliminary Geotechnical Engineering Report
Puyallup, Washington	Project and Site Conditions

Perched water occurs when surface water infiltrates down through relatively permeable soils, such as existing fill, recessional deposits, or coarser-grained advance outwash strata and becomes trapped or "perched" atop a comparatively low-permeability barrier such as the melt-out till deposits. When water becomes perched, it may travel laterally and may follow flow paths related to permeable zones that may not correspond to ground surface topography.

EB-1W was completed as a groundwater monitoring well at approximately 90 feet deep to monitor groundwater fluctuations throughout the year. The well was dry at the time of installation and 1 week after installation. Water level monitoring is ongoing within well EB-1W. The monitoring program is intended to document that there is adequate vertical separation from the base of potential stormwater infiltration systems and the aquifer contained at depth in the Vashon advance outwash deposits.

It should be noted that the presence and quantity of groundwater will largely depend on the soil grain-size distribution, topography, seasonal precipitation, site use, on- and off-site land usage, and other factors. Explorations for the current study were conducted in October 2021. However, there is historical groundwater level monitoring data the LCS site during 2018 to 2020.

4.4 Laboratory Testing

As a part of our geotechnical study, we completed six grain-size analyses, two Modified Proctor tests, and two organic content determinations in accordance with ASTM procedures. Copies of the laboratory testing reports are included in Appendix B.

II. GEOLOGIC HAZARDS AND MITIGATIONS

We reviewed the Washington State Department of Natural Resources (DNR) Geologic Information Portal¹, Pierce County Public GIS,² and City of Puyallup Public GIS³. Steep slopes associated with the fill stockpile that would be classified as a landslide hazard per the City of Puyallup code were identified on the site but are exempt from City code requirements. In addition, we infer that the fine-grained lacustrine deposits and deeper glacial deposits underlying the site represent a negligible hazard with respect to seismically induced liquefaction. Earthquake activity is a widespread hazard throughout Western Washington, but the risk of associated shaking and ground rupture does not appear to be any higher at this site than elsewhere in the region. Geologic hazards are described in further detail below.

5.0 LANDSLIDE HAZARDS AND MITIGATIONS

The topography of the site is undulating to relatively flat with a fill mound that has an approximate height of 20 to 25 feet and slopes steeper than 40 percent. The *Puyallup Municipal Code* Section 21.06 states that a landslide hazard area is any area with a slope of 40 percent or steeper and with a vertical relief of 10 or more feet except areas composed of bedrock. Per the code definition, the fill mound would be classified as a landslide hazard area; however, based on recent AESI discussions with City staff, we understand that the City does not consider the mound a landslide hazard because it is a man-made feature comprised of uncontrolled fill, thus no mitigation is warranted. An approximate 10-foot-tall slope is present along the east side of the site descending from 14th Street Place SW. We interpret the slope to be associated with the construction of 14th Street Place SW and is likely comprised of fill. This slope will not be impacted by the planned site improvements and will remain unchanged.

6.0 SEISMIC HAZARDS AND MITIGATIONS

The following discussion is a more general assessment of seismic hazards that is intended to be useful to the project design team in terms of understanding seismic issues, and to the structural engineer for preliminary design.

All of Western Washington is at risk of strong seismic events resulting from movement of the tectonic plates associated with the Cascadia Subduction Zone (CSZ), where the offshore Juan de

¹<u>https://www.dnr.wa.gov/geologyportal</u>

² PublicGIS (pierce.wa.us)

³ <u>Public Data Viewer (arcgis.com)</u>

	Subsurface Exploration, Geologic Hazard, Infiltration Feasibility,
PSD - South Hill Site	and Preliminary Geotechnical Engineering Report
Puyallup, Washington	Geologic Hazards and Mitigations

Fuca plate subducts beneath the continental North American plate. The site lies within a zone of strong potential shaking from subduction zone earthquakes associated with the CSZ. The CSZ can produce earthquakes up to magnitude 9.0, and the recurrence interval is estimated to be on the order of 500 years. Geologists infer the most recent subduction zone earthquake occurred in 1700 (Goldfinger et al., 2012⁴). Three main types of earthquakes are typically associated with subduction zone environments: crustal, intraplate, and interplate earthquakes. Seismic records in the Puget Sound region document a distinct zone of shallow crustal seismicity (e.g., the Seattle Fault Zone). These shallow fault zones may include surficial expressions of previous seismic events, such as fault scarps, displaced shorelines, and shallow bedrock exposures. The shallow fault zones typically extend from the surface to depths ranging from 16 to 19 miles. A deeper zone of seismicity is associated with the subducting Juan de Fuca plate. Subduction zone seismic events produce intraplate earthquakes at depths ranging from 25 to 45 miles beneath the Puget Lowland including the 1949, 7.2-magnitude event; the 1965, 6.5-magnitude event; and the 2001, 6.8-magnitude event) and interplate earthquakes at shallow depths near the Washington coast including the 1700 earthquake, which had a magnitude of approximately 9.0. The 1949 earthquake appears to have been the largest in this region during recorded history and was centered in the Olympia area. Evaluation of earthquake return rates indicates that an earthquake of the magnitude between 5.5 and 6.0 is likely within a given 20-year period.

Generally, there are four types of potential geologic hazards associated with large seismic events: 1) surficial ground rupture, 2) seismically induced landslides, 3) liquefaction, 4) ground motion. The potential for each of these hazards to adversely impact the proposed project is discussed below.

6.1 Surficial Ground Rupture

The nearest known fault traces to the subject property are possible southern branches of the Tacoma Fault Zone, referred to as Lineaments "C" and "D" (Sherrod et al., 2003⁵) approximately 7 miles northwest and northeast of the site. The geophysical datasets indicate that the vertical displacement of this fault increases to the west. Evidence of uplift or subsidence is recorded in marshes along inlets of southern Puget Sound near Lynch Cove, Burley, North Bay, and Wollochet Bay. This movement suggests a seismic event associated with the Tacoma Fault approximately 1,100 years ago, with up to 3 meters of displacement. Data pertaining to the Tacoma Fault is limited, with studies still ongoing. The recurrence interval of movement along this fault system is still unknown, although it is hypothesized to be in excess of 1,000 years. Due to the suspected

⁴ Goldfinger, C., Nelson, C.H., Morey, A.E., Johnson, J.E., Patton, J.R., Karabanov, E., Gutierrez-Pastor, J., Eriksson, A.T., Gracia, E., Dunhill, G., Enkin, R.J, Dallimore, A., and Vallier, T., 2012, *Turbidite Event History—Methods and Implications for Holocene Paleoseismicity of the Cascadia Subduction Zone*: U.S. Geological Survey Professional Paper 1661–F, 170.

⁵ Sherrod, B.L. Nelson, A.R., Kelsey, H.M., Brocher, T.M., Blakely, R.J., Weaver, C.S., Rountree, N.K., Rhea, S.B., and Jackson, B.S., 2003, *The Catfish Lake Scarp, Allyn, Washington: Preliminary Field Data and Implications for Earthquake Hazards Posed by the Tacoma Fault*, U.S. Geological Survey (USGS) Open File Report 03-0455.

	Subsurjace exploration, Geologic Hazara, Injintration reasibility,
PSD - South Hill Site	and Preliminary Geotechnical Engineering Report
Puyallup, Washington	Geologic Hazards and Mitigations

ubsurface Evaluration Coologic Hazard Infiltration Forsibility

long recurrence interval, and the distance from mapped fault traces, the potential risk to the project from surficial ground rupture is considered to be low during the expected life of the project. We are available to discuss mapped faulting further on request.

6.2 Seismically Induced Landslides

As stated above, slopes associated with the fill mound present at the site meet the City code definition of a landslide hazard; however, because they are man-made features comprised of uncontrolled fill and will be removed, the code does not apply. The existing 10-foot-tall steep slope on the east side of the site that descends from 14th Street Place SW will not be impacted by the proposed site development. No detailed quantitative assessment of slope stability was completed as part of this study.

6.3 Liquefaction

Liquefaction is a process through which unconsolidated soil loses strength as a result of vibrations, such as those which occur during a seismic event. During normal conditions, the weight of the soil is supported by both grain-to-grain contacts and by the fluid pressure within the pore spaces of the soil below the water table. Extreme vibratory shaking can disrupt the grain-to-grain contact, increase the pore pressure, and result in a temporary decrease in soil shear strength. The soil is said to be liquefied when nearly all of the weight of the soil is supported by pore pressure alone. Liquefaction can result in deformation of the sediment and settlement of overlying structures. Areas most susceptible to liquefaction include those areas underlain by very soft to stiff, non-cohesive silt and very loose to medium dense, non-silty to silty sands with low relative densities, accompanied by a shallow water table.

The project is not expected to have substantial risk of damage due to liquefaction because substantial deposits of loose saturated granular sediments were not observed. A detailed liquefaction hazard analysis was not performed as part of this study, and none is warranted based on existing subsurface data, in our opinion.

6.4 Ground Motion/Seismic Site Class (2018 International Building Code)

Any structural designs associated with the proposed project should follow 2018 *International Building Code* (IBC) standards. We recommend that the project be designed in accordance with Site Class "D" in accordance with the 2018 IBC, and the publication *American Society of Civil Engineers* (ASCE) 7 referenced therein, the most recent version of which is ASCE 7-16.

7.0 EROSION HAZARDS AND MITIGATIONS

According to the *City of Puyallup Municipal Code* a site is classified as having an erosion hazard if identified by the U.S. Department of Agriculture's Natural Resources Conservation Service (USDA NRCS) or identified by a special study as having a "moderate to severe," "severe," or "very severe" erosion potential. According to the USDA NRCS, the site soils are classified as part of the Indianola Series on 0 to 5 percent slopes. These soils are identified as having a slight susceptibility to erosion and therefore would not be classified as an erosion hazard. As mentioned previously, there are steeper man-made slopes present on the site associated with the fill mound and grading for 14th Street Place SW.

Due to the variable silt content in the shallow subsurface soils, project plans should include implementation of temporary erosion controls in accordance with local standards of practice. In our opinion, implementation of the following recommendations should be adequate to address the Washington State Department of Ecology (Ecology) and City of Puyallup requirements for management of erosion hazards.

The Ecology Construction Storm Water General Permit requires weekly Temporary Erosion and Sedimentation Control (TESC) inspections, turbidity monitoring and pH monitoring for all sites 1 or more acres in size that discharge stormwater to surface waters of the state. Because we anticipate that the proposed project will require disturbance of more than 1 acre, we anticipate that these inspection and reporting requirements will be triggered. The following recommendations are related to general erosion potential and mitigation.

Best management practices (BMPs) should include but not be limited to:

- 1. Construction activity should be scheduled or phased as much as possible to reduce the amount of earthwork activity that is performed during the winter months.
- 2. The winter performance of a site is dependent on a well-conceived plan for control of site erosion and stormwater runoff. The site plan should include ground-cover measures, access roads, and staging areas. The contractor should be prepared to implement and maintain the required measures to reduce the amount of exposed ground.
- 3. TESC measures for a given area to be graded or otherwise worked should be installed soon after ground clearing. The recommended sequence of construction within a given area after clearing would be to install TESC elements and perimeter flow control prior to starting grading.
- 4. During the wetter months of the year, or when large storm events are predicted during the summer months, each work area should be stabilized so that if showers occur, the

work area can receive the rainfall without excessive erosion or sediment transport. The required measures for an area to be "buttoned-up" will depend on the time of year and the duration the area will be left unworked. During the winter months, areas that are to be left unworked for more than 2 days should be mulched or covered with plastic. During the summer months, stabilization will usually consist of seal-rolling the subgrade. Such measures will aid in the contractor's ability to get back into a work area after a storm event. The stabilization process also includes establishing temporary stormwater conveyance channels through work areas to route runoff to the approved treatment/ discharge facilities.

- 5. All disturbed areas should be revegetated as soon as possible. If it is outside of the growing season, the disturbed areas should be covered with mulch, as recommended in the erosion control plan. Straw mulch provides a cost-effective cover measure and can be made wind-resistant with the application of a tackifier after it is placed.
- 6. Surface runoff and discharge should be controlled during and following development. Uncontrolled discharge may promote erosion and sediment transport. Under no circumstances should concentrated discharges be allowed to flow over the top of steep slopes.
- 7. Soils that are to be reused around the site should be stored in such a manner as to reduce erosion from the stockpile. Protective measures may include, but are not limited to, covering with plastic sheeting, the use of low stockpiles in flat areas, or the use of silt fences around pile perimeters.

It is our opinion that with the proper implementation of the TESC plans and by field-adjusting appropriate mitigation elements (BMPs) during construction, the potential adverse impacts from erosion hazards on the project may be mitigated.

III. PRELIMINARY DESIGN RECOMMENDATIONS

8.0 INTRODUCTION

Our explorations indicate that, from a geotechnical engineering standpoint, the property is suitable for the proposed development provided the recommendations contained herein are properly followed. The subject site is underlain in places by a layer of existing fill that is variable in thickness and density. Existing fill or loose soils may warrant remedial preparation where occurring below paving. AESI should be allowed to review the final project plans once they have been developed to update our recommendations, as necessary.

8.1 Site Preparation

Areas of planned paving should be prepared by stripping existing vegetation and topsoil, and excavating to planned paving subgrade elevation. The resulting subgrade should then be evaluated visually, compacted, and proof-rolled. Exposed soils are expected to consist of existing fill or recessional lacustrine sediments depending on the location and finished subgrade elevation. Areas with organic or deleterious material, or areas that yield during proof-rolling should receive additional preparation tailored to proof-rolling results and field conditions at the time of construction.

8.2 Site Drainage and Surface Water Control

The site should be graded to prevent water from ponding in construction areas and/or flowing into excavations. Exposed grades should be crowned, sloped, and smooth drum-rolled at the end of each day to facilitate drainage. Accumulated water must be removed from subgrades and work areas immediately prior to performing further work in the area. Equipment access may be limited, and the amount of soil rendered unfit for use as structural fill may be greatly increased if drainage efforts are not accomplished in a timely sequence. If an effective drainage system is not utilized, project delays and increased costs could be incurred due to the greater quantities of wet and unsuitable fill, or poor access and unstable conditions.

We do not anticipate the need for extensive dewatering in advance of excavations. However, the contractor should be prepared to intercept any groundwater seepage entering the excavations and route it to a suitable discharge location. Groundwater was not encountered in any of our explorations at shallow depths. Explorations were completed during the end of the seasonal dry weather and wetter conditions may be present at the time of construction. Perched groundwater should be expected during the wetter, winter months.

8.3 Subgrade Protection

If construction will proceed during the winter, we recommend the use of a working surface of sand and gravel, crushed rock, or quarry spalls to protect exposed soils, particularly in areas supporting concentrated equipment traffic. In winter construction staging areas and areas that will be subjected to repeated heavy loads, a minimum thickness of 12 inches of quarry spalls or 18 inches of pit run sand and gravel is recommended. If subgrade conditions are soft and silty, a geotextile separation fabric, such as Mirafi 500X or approved equivalent, should be used between the subgrade and the new fill. Construction of working surfaces from advancing fill pads could be used to avoid directly exposing the subgrade soils to vehicular traffic.

8.4 Proof-Rolling and Subgrade Compaction

Following the recommended clearing, site stripping, planned excavation, and any overexcavation required to remove existing fill, the stripped subgrade should be proof-rolled with heavy, rubber-tired construction equipment, such as a fully-loaded tandem-axle dump truck. Proof-rolling should be performed prior to structural fill placement or pavement section construction. The proof-roll should be monitored by the geotechnical engineer so that any soft or yielding subgrade soils can be identified. Any soft/loose, yielding soils should be removed to a stable subgrade. The subgrade should then be scarified, adjusted in moisture content, and recompacted to the required density. Proof-rolling should only be attempted if soil moisture contents are at or near optimum moisture content. Proof-rolling of wet subgrades could result in further degradation. Low areas and excavations may then be raised to the planned finished grade with compacted structural fill. Subgrade preparation and selection, placement, and compaction of structural fill should be performed under engineering-controlled conditions in accordance with the project specifications.

8.5 Overexcavation/Stabilization

Construction during extended wet weather periods could create the need to overexcavate exposed soils if they become disturbed and cannot be recompacted due to elevated moisture content and/or weather conditions. Even during dry weather periods, soft/wet soils, which may need to be overexcavated, may be encountered in some portions of the site. If overexcavation is necessary, it should be confirmed through continuous observation and testing by AESI. Soils that have become unstable may require remedial measures in the form of one or more of the following:

1. Drying and recompaction. Selective drying may be accomplished by scarifying or windrowing surficial material during extended periods of dry and warm weather.

- 2. Removal of affected soils to expose a suitable bearing subgrade and replacement with compacted structural fill.
- 3. Mechanical stabilization with a coarse crushed aggregate compacted into the subgrade, possibly in conjunction with a geotextile.
- 4. Soil/cement admixture stabilization.

8.6 Wet Weather Conditions

If construction proceeds during an extended wet weather construction period and the moisture-sensitive site soils become wet, they will become unstable. Therefore, the bids for site grading operations should be based upon the time of year that construction will proceed. It is expected that in wet conditions additional soils may need to be removed and/or other stabilization methods used, such as a coarse crushed rock working mat to develop a stable condition if silty subgrade soils are disturbed in the presence of excess moisture. The severity of construction disturbance will be dependent, in part, on the precautions that are taken by the contractor to protect the moisture- and disturbance-sensitive site soils. If overexcavation is necessary, it should be confirmed through continuous observation and testing by a representative of our firm.

8.7 Temporary and Permanent Slopes

In our opinion, stable construction slopes should be the responsibility of the contractor and should be determined during construction. For estimating purposes, however, we anticipate that temporary, unsupported cut slopes in the existing fill or loose to medium dense native deposits can be made at a maximum slope of 1.5H:1V (Horizontal:Vertical) or flatter. Temporary slopes in dense to very dense sediments may be planned at 1H:1V. As is typical with earthwork operations, some sloughing and raveling may occur, and cut slopes may have to be adjusted in the field. If groundwater seepage is encountered in cut slopes, or if surface water is not routed away from temporary cut slope faces, flatter slopes will be required. In addition, WISHA/OSHA regulations should be followed at all times. Permanent cut and structural fill slopes that are not intended to be exposed to surface water should be designed at inclinations of 2H:1V or flatter. All permanent cut or fill slopes should be compacted to at least 95 percent of the modified Proctor maximum dry density, as determined by ASTM D-1557, and the slopes should be protected from erosion by sheet plastic until vegetation cover can be established during favorable weather.

8.8 Frozen Subgrades

If earthwork takes place during freezing conditions, all exposed subgrades should be allowed to thaw and then be recompacted prior to placing subsequent lifts of structural fill or paving components. Alternatively, the frozen material could be stripped from the subgrade to reveal unfrozen soil prior to placing subsequent lifts of fill or paving components. The frozen soil should not be reused as structural fill until allowed to thaw and adjusted to the proper moisture content, which may not be possible during winter months.

9.0 STRUCTURAL FILL

All references to structural fill in this report refer to subgrade preparation, fill type and placement, and compaction of materials, as discussed in this section. If a percentage of compaction is specified under another section of this report, the value given in that section should be used.

9.1 Subgrade Compaction

After stripping, planned excavation, and any required overexcavation have been performed to the satisfaction of the geotechnical engineer, the exposed ground in areas to receive fill should be recompacted to a firm and unyielding condition as determined by the geotechnical engineer. If the subgrade contains silty soils and too much moisture, adequate recompaction may be difficult or impossible to obtain and should probably not be attempted. In lieu of recompaction, the area to receive fill should be blanketed with washed rock or quarry spalls to act as a capillary break between the new fill and the wet subgrade. Where the exposed ground remains soft and further overexcavation is impractical, placement of an engineering stabilization fabric may be necessary to prevent contamination of the free-draining layer by silt migration from below. After recompaction of the exposed ground is approved, or a free-draining rock course is laid, structural fill may be placed to attain desired grades.

9.2 Structural Fill Placement

Structural fill is defined as non-organic soil, acceptable to the geotechnical engineer, placed in maximum 8-inch loose lifts, with each lift being compacted to 95 percent of the modified Proctor maximum density using ASTM D-1557 as the standard. For on-site utility trench backfill, we recommend the structural fill standard described above. In the case of roadway and utility trench filling within City rights-of-way, the backfill should be placed and compacted in accordance with current City of Puyallup codes and standards. The top of the compacted fill should extend horizontally outward a minimum distance of 3 feet beyond the locations of the roadway edges before sloping down at an angle of 2H:1V.

The contractor should note that any proposed fill soils must be evaluated by AESI prior to their use in fills. This would require that we have a sample of the material 72 hours in advance to perform a Proctor test and determine its field compaction standard.

	Subsurjace exploration, Geologic Hazara, Injintration Feasibility,
PSD - South Hill Site	and Preliminary Geotechnical Engineering Report
Puyallup, Washington	Preliminary Design Recommendations

Subsurface Evoleration Coolerie Lazard Infiltration Forsibility

Soils in which the amount of fine-grained material (smaller than the No. 200 sieve) is greater than approximately 5 percent (measured on the minus No. 4 sieve size) should be considered moisture-sensitive. Use of moisture-sensitive soil in structural fills should be limited to favorable dry weather conditions. The native and existing fill soils present onsite contained variably high amounts of silt and are considered moisture-sensitive. Therefore, we anticipate that the use of on-site soils as structural fill may require moisture-conditioning to achieve proper compaction. For non-structural applications, the on-site material is generally considered suitable, as long as it is free of vegetation, topsoil, and any other deleterious materials. In addition, construction equipment traversing the site when the soils are wet can cause considerable disturbance.

9.3 Reuse of Site Soils for Structural Fill

We understand that the existing on-site fill stockpile is being considered for reuse as structural fill to achieve desired site grades. Based on our observations during drilling and laboratory testing results, it is our opinion that the fill has the potential for reuse, provided the recommendations contained herein are properly followed. The fill stockpile has an approximate thickness of 25 to 29 feet, at the highest elevations. During drilling of borings EB-3 and EB-4 located within the fill stockpile, we observed the soil samples collected every 5 feet with SPT methods and cuttings brought up by the auger. The soils generally were a mixture of gravelly, silty sand with variable organic content. Upon completion of the borings within the fill, we collected bulk samples from the soil cuttings that were transported to our Kirkland laboratory for further testing. Modified Proctor (ASTM D-1557), grain-size and organic content analysis tests were completed. Our testing results indicated that the fill soils have a field moisture ranging from 14 to 21 percent. Based on our Modified Proctor analysis of the existing fill from the stockpile, optimum moisture for compaction ranges from 7 to 9 percent. Our grain-size analysis indicates that the fill soils contain a fines portion, ranging from 23 to 24 percent. Our organic matter analysis indicates that the soils contain less than 2 percent organics.

In our opinion, reuse of the fill stockpile will be difficult due to high natural moisture content and high fines content even in dry weather. The high moisture content soils will require moisture-conditioning before placement and compaction. That could involve adding cement or aeration to dry them out in favorable weather conditions, usually between late June to early September. The high fines content of the fill soils will make them more difficult to place and compact in months having wet weather. Overall, the organic components of the bulk samples fell below 2 percent; however, during drilling we did observe larger organic matter. If larger organic material is present it will need to be removed prior to fill placement.

9.4 Wet Weather Structural Fill

If fill is placed during wet weather or if proper compaction cannot be obtained, a select import material consisting of a clean, free-draining gravel and/or sand should be used. Free-draining fill

	Subsurjuce Exploration, Geologic Hazara, Injintration reasibility,
PSD - South Hill Site	and Preliminary Geotechnical Engineering Report
Puyallup, Washington	Preliminary Design Recommendations

Subsurface Exploration Coologic Hazard Infiltration Eaglibility

consists of non-organic soil with the amount of fine-grained material limited to 5 percent by weight when measured on the minus No. 4 sieve fraction with at least 25 percent retained on the No. 4 sieve.

9.5 Compaction Testing

A representative from our firm should observe the stripped subgrade and be present during placement of structural fill to observe the work and perform a representative number of in-place density tests. In this way, the adequacy of the earthwork may be evaluated as filling progresses, and any problem areas may be corrected at that time. It is important to understand that taking random compaction tests on a part-time basis will not assure uniformity or acceptable performance of a fill. As such, we are available to aid in developing a suitable monitoring and testing program.

10.0 PAVEMENT AND SIDEWALK RECOMMENDATIONS

The recommended pavement sections in this report section are for on-site driveway and parking areas, and are not applicable to right-of-way improvements. If any new paving of public streets is required, we should be allowed to offer situation-specific recommendations.

Pavement and sidewalk areas should be prepared in accordance with the "Site Preparation" section of this report. Soft or yielding areas should be overexcavated to provide a suitable subgrade and backfilled with structural fill.

10.1 Conventional Pavement Sections

We understand that conventional (impermeable) flexible (asphalt concrete) pavements might be used in new bus parking areas and driveways, whereas conventional rigid (cement concrete) pavements might be used for sidewalks and/or certain other locations. The following comments and recommendations are given for conventional pavement design and construction purposes.

<u>Soil Design Values</u>: Soil conditions can be defined by a California Bearing Ratio (CBR), which quantitatively predicts the effects of wheel loads imposed on a saturated subgrade. Although our scope of work did not include a CBR test on the surficial site soils, we infer from our observations and limited textural testing that a CBR value on the order of 5 to 8 would likely be appropriate for pavement design purposes. This value corresponds to a subgrade modulus of about 100 to 200 pounds per cubic inch (pci).

<u>Traffic Design Values</u>: Traffic conditions can be defined by a Traffic Index (TI), which quantifies the combined effects of projected car and bus traffic. Although no specific traffic data was

	subsurjace exploration, Geologic Hazara, Injintration Feasibility,
PSD - South Hill Site	and Preliminary Geotechnical Engineering Report
Puyallup, Washington	Preliminary Design Recommendations

ubsurface Evaluration Coologic Hazard Infiltration Forsibility

available at the time of our analysis, we estimate that a TI of 3.0 to 4.0 would likely be appropriate for the car parking areas. A higher TI of about 5.0 to 6.0 appears appropriate for driveways and other areas that are subjected to school buses, delivery trucks, or similar vehicles.

<u>Flexible Pavement Sections</u>: A flexible pavement section typically comprises an asphalt concrete pavement (ACP) over a crushed aggregate base (CAB) over a granular subbase (GSB). Our recommended minimum thicknesses for flexible pavement sections, which are based on the aforementioned design values and a 20-year lifespan, are shown below.

<u>Car Parking Lots</u>					
Asphalt Concrete Pavement (ACP):	2½ inches				
Crushed Aggregate Base Course (CAB):	3 inches				
Granular Subbase Course (GSB):	6 inches				
Bus Parking and Access Driveways					
Asphalt Concrete Pavement (ACP): 4 inc					
Crushed Aggregate Base Course (CAB):	4 inches				
Granular Subbase Course (GSB):	10 inches				

<u>*Rigid Pavement Sections*</u>: A rigid pavement section typically comprises a cement concrete pavement (CCP) over a CAB over a GSB. We recommend the following minimum thicknesses for a rigid pavement section that is subjected to school buses and occasional delivery trucks. Pavements and slabs that are subjected to frequent truck traffic or to other heavy structural loads would require a special design.

Bus Parking and Access Driveways				
Cement Concrete Pavement (CCP):	8 inches			
Crushed Aggregate Base Course (CAB):	2 inches			
Granular Subbase Course (GSB):	8 inches			

<u>Granular Subbase</u>: A GSB helps to provide more-uniform structural support for a pavement section. For the subject site, we recommend using an imported, well-graded sand and gravel, such as "Ballast" per Washington State Department of Transportation (WSDOT) 9-03.9(1) or "Gravel Borrow" per WSDOT 9-03.14. It would also be acceptable to use a crushed recycled concrete, provided that it meets the same general textural criteria as the aforementioned WSDOT materials. In all cases, the GSB should be vibratory-compacted to at least 95 percent based on the modified Proctor maximum dry density (per ASTM D-1557).

<u>Crushed Aggregate Base</u>: We recommend that all CAB material conform to the criteria for "Crushed Surfacing Base Course" or "Crushed Surfacing Top Course" per WSDOT 9-03.9(3).

All CAB material should be compacted to at least 95 percent based on the modified Proctor maximum dry density (per ASTM D-1557).

<u>Asphalt Concrete Pavement</u>: We recommend that the ACP aggregate gradation conform to the control points for a ½-inch mix (per WSDOT 9-03.8(6)) and that the binder conform to Performance Grade 58-22 criteria (per WSDOT 9-02.1(4)). We also recommend that the ACP be compacted to a target average density of 92 percent, with no individual locations compacted to less than 90 percent nor more than 96 percent, based on the Rice theoretical maximum density for that material (per ASTM D-2041).

<u>Cement Concrete Pavement</u>: We recommend that the CCP consist of Portland cement concrete with a minimum compressive strength of 4,000 pounds per square inch (psi) and a minimum rupture modulus of 500. We also recommend that the concrete be reinforced with a welded wire mesh, such as W2-6x6, positioned at a one-third depth within the CCP layer.

<u>Pavement Life and Maintenance</u>: It should be realized that conventional asphaltic pavements are not maintenance-free. The foregoing pavement sections represent our minimum recommendations for an average level of performance during a 20-year design life; therefore, an average level of maintenance will likely be required. Furthermore, a 20-year pavement life typically assumes that an overlay will be placed after about 10 years. Thicker asphalt, base, and subbase courses would offer better long-term performance, but would cost more initially; thinner courses would be more susceptible to "alligator" cracking and other failure modes. As such, pavement design can be considered a compromise between a high initial cost and low maintenance costs versus a low initial cost and higher maintenance costs.

11.0 INFILTRATION FEASIBILITY

We understand that project plans will include infiltration of stormwater. Project plans are still in the conceptual stages but based on discussions with the project civil engineer, stormwater will be captured and then conveyed to infiltration trenches for disposal.

We reviewed subsurface information from our current geotechnical evaluation of the site and our previous geotechnical evaluations associated with the adjacent LSC Warehouse (AESI, May 2018) and LSC-Kessler Center (AESI, June 2019). Site soils consist of a variable thickness layer of silt and silty fine sand (Vashon recessional lacustrine sediments), an intermittent perching layer of ice-contact melt-out till sediments, overlying coarse-grained sand and gravel (Vashon advance outwash sediments).

Shallow infiltration opportunities are limited by the fine-grained Vashon recessional lacustrine sediments. Limited infiltration testing was conducted on the LSC Kessler site in the Vashon

	Subsurjace exploration, Geologic Hazara, Injitration Feasibility,
PSD - South Hill Site	and Preliminary Geotechnical Engineering Report
Puyallup, Washington	Preliminary Design Recommendations

ubsurface Euplaration Coologic Hazard Infiltration Facibility

recessional lacustrine sediments and the field infiltration rates ranged from 1.4 to 2.6 inches per hour. After accounting for correction factors, planning-level design infiltration rates would be on the order of 0.25 to 0.5 inches per hour for shallow facilities situated in the Vashon recessional lacustrine sediments.

Moderate depth infiltration opportunities are present in the coarser-grained Vashon advance outwash sediments. The depth to the top of the Vashon advance outwash ranged from 12.5 (EB-2) to 22.5 (EB-1W). Infiltration testing was conducted on the LSC Warehouse and LSC Kessler sites in the Vashon advance outwash and the field infiltration rates ranged from 28 to 42 inches per hour. For planning considerations, the recommended long-term design infiltration rates for the adjacent facilities were 5 inches per hour. Locating and constructing infiltration trenches with a variable base depth can be challenging and additional subsurface exploration and infiltration testing will be required for facilities planned in the Vashon advance outwash.

Puyallup Municipal Code, Chapter 21.10.040, adopts as their stormwater management manual the 2014 Washington State Department of Ecology *Stormwater Management Manual for Western Washington* (Ecology Manual). The Ecology Manual requires site-specific exploration and testing for infiltration design to assess site suitability criteria for drawdown time (infiltration rate) and separation from perching layers.

Design-specific infiltration facility geotechnical recommendations should be made once a design is available and will include additional facility-specific explorations, field infiltration testing, design infiltration rate, estimation of seasonal groundwater high, and considerations for site and subgrade preparation, overflow path, and protection of the facility. These activities are not included in our current scope of work. We are available to assist in planning for facility location and depth.

12.0 PROJECT DESIGN AND CONSTRUCTION MONITORING

We are available to provide additional geotechnical/hydrogeologic consultation as the project design develops and possibly changes from that upon which this report is based. We recommend that AESI perform a geotechnical review of the plans prior to final design completion. In this way, we can confirm that our recommendations have been correctly interpreted and implemented in the design. The City of Puyallup may require a plan review by the geotechnical engineer as a condition of permitting.

We recommend that AESI be retained to provide geotechnical special inspections during construction, and preparation of a final summary letter when construction is complete. The City of Puyallup may require such geotechnical special inspections. The integrity of the earthwork depends on proper site preparation and construction procedures. In addition, engineering

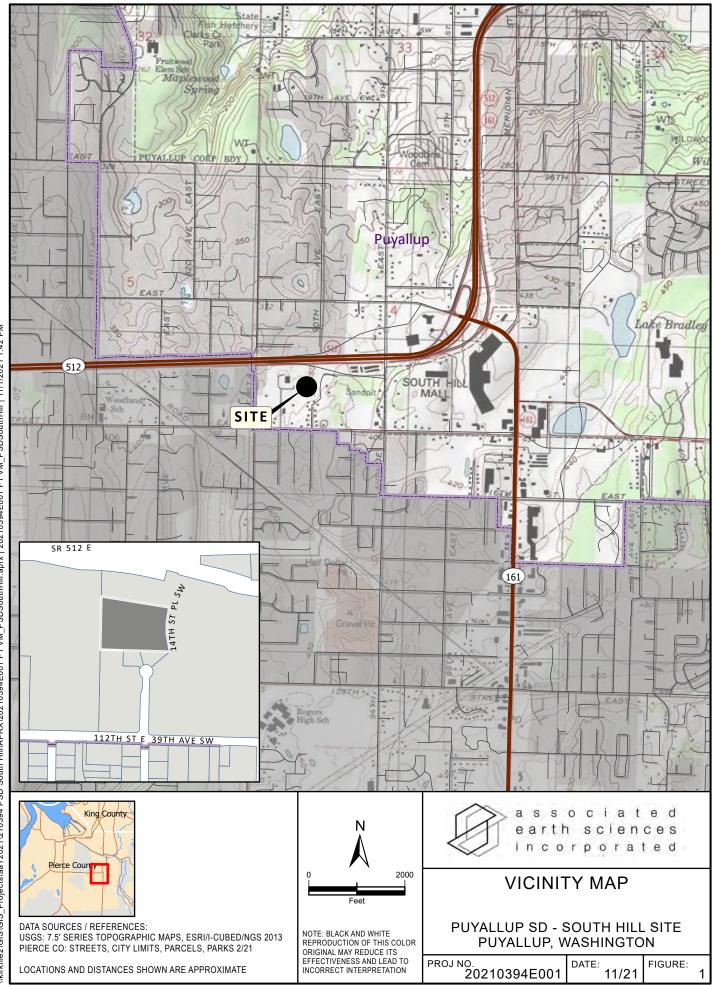
PSD - South Hill Site Puyallup, Washington

decisions may have to be made in the field in the event that variations in subsurface conditions become apparent.

We have enjoyed working with you on this study and are confident these recommendations will aid in the successful completion of your project. If you should have any questions or require further assistance, please do not hesitate to call.

Sincerely, ASSOCIATED EARTH SCIENCES, INC. Kirkland, Washington

Aaron R. Turnley, G.I.T. Senior Staff Geologist


Kurt D. Merriman, P.E. Senior Principal Engineer

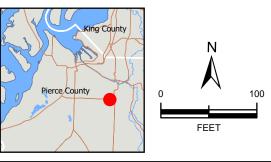
Stephen A. Siebert, P.E. Associate Geotechnical Engineer

Attachments:

Figure 1. Vicinity MapFigure 2. Existing Site and Exploration PlanAppendix A. Exploration LogsAppendix B. Laboratory Test Results

\\kitrifile2\GIS\GIS_Projects\aa Y2021\210394 PSD South Hil\\APRX\20210394E001 F1 VM_PSDSouthHil\.aprx | 20210394E001 F1 VM_PSDSouthHil | 1/1/12021 1:42 PM

LEGEND


- EXPLORATION BORING, DEPTH OF FILL \bigcirc
- MONITORING WELL, DEPTH OF FILL

PARCEL

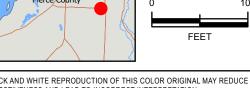
- CONTOUR 10 FT
- CONTOUR 2 FT

DATA SOURCES / REFERENCES: LIDAR: WATERHSED SCIENCES, INC. FOR PIERCE COUNTY DELIVERY 2 FLOWN 12/10, GRID CELL SIZE IS 3'. CONTOURS FROM LIDAR PIERCE CO: STREETS, CITIES, 2/21, PARCELS 8/21 AERIAL: WORLD IMAGERY, ESRI, DIGITAL GLOBE 3/3/21

LOCATIONS AND DISTANCES SHOWN ARE APPROXIMATE

BLACK AND WHITE REPRODUCTION OF THIS COLOR ORIGINAL MAY REDUCE ITS EFFECTIVENESS AND LEAD TO INCORRECT INTERPRETATION

EXISTING SITE AND EXPLORATION PLAN


PUYALLUP SD - SOUTH HILL SITE

PUYALLUP, WASHINGTON

DATE: 11/21

FIGURE:

2

ssociated earth sciences incorporated

APPENDIX A

Exploration Logs

associated earth sciences Project Number Well Number Sheet									
\mathbf{k}		arth sciences					Well Number EB-1W	Sheet 1 of 4	
Project Name PSD- South Hill Site						Location	Puyallup, WA		
Elevation (Top of Well Casing) 362.31 Surface Elevation (ft) ~360						~360			
	[.] Level Ele g/Equipme	ent Advar	<u>y (10/27/20</u> nce / D-50	<u>)21)</u> Track I	Mount	H.S.A.	Date Start/Finish Hole Diameter (in)	10/20/21,10/21/21 4.25 i.d.	
							BMM 300		
					Blows/ 6"	Graphic Symbol	DESCRIPTION		
		Above Grade mon						Fill	
-		Concrete 0 to 1 for	ot	-					
		Bentonite chips/gro	out 1 to 75						
-		feet		1			Maint marial barrow silts for a O		
F					12		(SM).	AND, some broken gravel; unsorted	
					17 12				
- 5				+	_		Upper 6 inches: Moist, grayish br	own, silty, fine SAND, some coarse	
Ļ					6		sand; unsorted (SM).		
				μ	9			y, fine SAND; massive; alternating d light brown sand (SM).	
-								osoil ?	
-					5 5		Moist, dark brown to reddish brow to coarse sand, trace gravel; orga	vn, silty, fine SAND, trace medium anics observed; unsorted (SM).	
					5 7		Vashon Reces	sional Lacustrine	
- 10		2-inch I.D. PVC ca	asina 0 to	+			Moist, reddish brown with iron oxi	de staining, silty, fine SAND, trace	
		79.6 feet			3 2		medium to coarse sand, trace gra unsorted (SM).	avel; pockets of clean sand;	
Ē				1	3				
-				-					
				Т			Moist, light brown with iron oxide	staining, fine sandy, SILT, trace	
							medium to coarse sand; massive	(ML).	
F				₽	4				
- 15									
					4		Moist, light brown, fine SAND, so (SM-SP).	me silt; faintly stratified; massive	
-					4 5				
				ľ					
]					
ł				+					
- 20				+			Very moist, light brown, fine sand	ly, SILT, some medium sand;	
					3 4		massive (ML).		
=				μ	6				
- e				-			Vashon Adv	ance Outwash	
				4					
				1					
0041 1									
2	ampler Ty			No D-	00/07/		M Mojatura		
-	<u> </u>	D Split Spoon Sampler	· · ·		covery		M - Moisture ∑ Water Level ()	Logged by: ART	
2	ш —	D Split Spoon Sampler	(U&M)	-	ample		-	Approved by: JHS	
	🔁 Grab	Sample		Shelby	/ Tube \$	Sample	Water Level at time of dril	ling (ATD)	

9	C	🔊 associatec	Geologic & N	Ionitoring Well Construction Log Well Number Sheet								
<			Project Number 0210394E001	Well Number Sheet EB-1W 2 of 4								
Proi	ect Na	Δ	J210394L001	Location Puyallup, WA								
Elev	/ation	(Top of Well Casing) <u>362.31</u>		Surface Elevation (ft) <u>~360</u>								
		rel Elevation <u>45 Dry (10/27/</u> uipment <u>Advance / D-5</u>	<u>2021)</u> 0 Track Mount H.S.A.	Date Start/Finish <u>10/20/21,10/21/21</u> Hole Diameter (in) <u>4.25 i.d.</u>								
		Veight/Drop <u>140# / 30</u>		Well Tag # BMM 300								
	vel											
Depth	(ft) Water Level		0 Blows/ 6" Symbol									
	/ate	WELL CONSTRUCTION	s ដី ប៉ល៍	DESCRIPTION								
	5											
			7	Moist, brownish gray, silty, fine to medium SAND, some coarse sand, some broken gravel; organic; layer (3 inches thick) of dark								
F				brown sandy silt with rootlets; unsorted (SM).								
Ē.												
-												
F												
- 30												
				Moist, brownish gray, fine to medium sandy, GRAVEL, some silt, some coarse sand; broken gravels; unsorted (GP-GM).								
-												
				Driller notes gravel at 32 feet. Drill action changes.								
-												
-												
- 35												
			27 50/6"	Moist, brownish gray, gravelly, fine to medium SAND, some silt, some broken gravel, trace medium to coarse sand; unsorted								
-				(SP-SM).								
Ē												
-				Gravelly drilling.								
F			- ၀ို၀မ်									
-40												
			44 50/5" ○ ○ ●	Moist, brownish gray, fine to medium sandy, GRAVEL, some silt; contains rare red sand grains; unsorted; poor recovery (GP-GM).								
F				3 <i>y y</i> y <i>y y y y y y y y y y</i>								
Ī												
-												
F												
- 45	▼											
	-		37	Wet, brownish gray, silty, fine to medium SAND, some coarse sand, some gravel; unsorted (SM).								
1/30/												
9.9												
2												
510												
0210		ler Type (ST):	7									
N N	Ш	2" OD Split Spoon Sampler (SPT)	No Recovery	M - Moisture Logged by: ART								
	\square	3" OD Split Spoon Sampler (D & M)	Ring Sample									
NAN L	B	Grab Sample	Shelby Tube Sample	Water Level at time of drilling (ATD)								

9	C	associatec		<u>Geo</u> l	logic	<u> & M</u>	onitoring Well Cor Well Number	nstruction Log
	V	earth sciences		oject Nun 10394E			Well Number EB-1W	Sheet 3 of 4
Proi	ect Na			103946	_001		Location	<u> </u>
Elev	ation ((Top of Well Casing) 362.31	1				Surface Elevation (ft) <u>~360</u>
		el Elevation <u>45 Dry</u> uipment <u>Advanc</u>	(10/27/20) e / D-50 T	21) Frack M	lount	HSA	Date Start/Finish Hole Diameter (in)	<u>10/20/21,10/21/21</u> 4.25 i.d.
		Veight/Drop <u>140# / 3</u>	30				Well Tag #	BMM 300
Depth	(ft) Water Level		TION	S T	Blows/ 6"	RIPTION		
- - - 55 -					43 50/6" 50/4"			edium SAND, some silt, some broken edium SAND, trace to some silt unsorted; poor recovery due to
- - - 60 -				-	50/2"		No recovery.	
- - 65 -					36 42 50/3"		Very moist, brownish gray, mea sand, some silt, trace gravel; u	lium to coarse SAND, some fine nsorted (SP-SM).
					50/1"		Very moist, brownish gray, silty recovery due to gravel (SM).	, fine to medium SAND; poor
10384	Samn	ler Type (ST):				<u>F F. F. I</u> . I		
202		2" OD Split Spoon Sampler (S	SPT) П	No Rec	overy		M - Moisture	Logged by: ART
		3" OD Split Spoon Sampler (E		Ring Sa	-		$\overline{\Sigma}$ Water Level ()	Approved by: JHS
	E E	Grab Sample	′∎ ∏	Shelby		Sample	✓ Water Level at time of c	
z 📖	Ш		£	siøy				3 (· · - /

٢	2	associatec		Geo	logi	c & M	lonit	oring Well Cons Well Number	struction Log
	5	earth sciences							
Projec	ct Nam			10394	2001			EB-1W Location	4 of 4 Puyallup, WA
Eleva	tion (T	op of Well Casing) 362.3	1					Surface Elevation (ft)	~360
		I Elevation <u>45 Dry</u>	<u>y (10/27/20</u>	7/2021) 50 Track Mount H.S.A.				Date Start/Finish Hole Diameter (in)	10/20/21,10/21/21
Hamn	g/⊑qui ner We	ipment <u>Advar</u> eight/Drop 140# /	<u>100 / D-50</u> / 30		lount	п.э.а.		Well Tag #	4.25 i.d. BMM 300
		<u> </u>							
Depth (ft)	Water Level				IS/	Graphic Symbol			
Del Del	terl			s	Blows/ 6"	Sym			
	Ma	WELL CONSTRU	CTION	T				DESCR	RIPTION
		·1 [:-1			20		Vorvr	noist brownish grav fine to	o coarse SAND, some silt, trace
					32 50/5"		gravel	; unsorted (SP-SM).	Coarse SAND, some silt, trace
F				1					
-			001	_					
		Sand pack 75 to ~	90 teet						
F				-					
- 80				-++-	46 50/4"		As ab	ove; more gravel; coarsens	with depth.
				Η	50/4"				
Ī]]					
-				-					
-				1					
-				_					
- 85		2-inch I.D. PVC we	ell screen	-+	50/4"		Moist,	brownish gray, fine to med	lium SAND, some silt, trace broken SP-SM).
		0.020-inch slot wid	th 79.6 to				gravel	; unsorted; poor recovery (SP-SM).
-				-					
Ē				1					
-				-					
- 90					50/5"		Moist,	grayish brown, silty, fine S	AND, some broken gravel;
Ļ							· · · · · · · · · · · · · · · · · · ·	ted; poor recovery (SM). I terminated at 90.5 feet	/¯
							Well c	ompleted at 89.6 feet on 7	
F				-			Perche	ed water at 45 at the time tion and on 10/27/21.	of drilling. Well was dry at time of
							modila		
ł									
_ 05									
- 95				1					
1/20/				-					
ן פ פ				1					
2 2									
				-					
2		er Type (ST):	_						
	=	2" OD Split Spoon Sampler		No Red				- Moisture	Logged by: ART
		3" OD Split Spoon Sampler	(D & M)	Ring S			∑ ■	Water Level ()	Approved by: JHS
	e (Grab Sample	""""""""""""""""""""""""""""""""""""""	Shelby	Tube S	Sample	Ţ	Water Level at time of dril	lling (ATD)

1	2		ass	ociatec		Exploration	Bor	in	g					
\triangleleft	2			r sciences Project Number Exploration Numb						Sheet 1 of 2				
Projec		ame		PSD- South	h Hill Site	I			Surfa	ace Ele	evation (f	i) _~	357	
Location Driller/	Έqι			<u>Puyallup, W</u> Advance / D	7A D-50 Track Mount H.S.A.		Datur Date		rt/Fir	nish	_NAVE _10/21		/21/21	
Hamm	ier \	Veigl	ht/Drop	140# / 30			Hole I	Dia	mete	er (in)	3.75 i	.d		
l î		S	0 -				ы	vel						sts
Depth (ft)	s	Samples	Graphic Symbol				Well Completion	Water Level	Blows/6"		Blows/	Foot		Other Tests
□ ^e	Т	Sa	0 O		DESCRIPTION	Con	Wat	ĕ	10	20	30 40	า	Othe	
				-	Topsoil - 6 inches				-					
-				-	Vashon Recessional Lacustri	ne								
- 5		S-1			wn, silty, fine SAND; faint stratificatio	n; massive (SM).			4 4 4	▲β				
- - 10 -		S-2		Gravel at 9 feet Moist, brownish gravel; layer (0 blowcounts ove	n gray, silty, fine SAND, some mediu .5 inches thick) of dark organics obse	m sand. some broken	_		22 18 20				38	
				·	Vashon Advance Outwash		_							
- - 15 - -		S-3		Moist, brownish some broken g sampler; unsor	n gray, silty, fine SAND, some mediu ravel; coarsens with depth; cleaner s ted (SM).	m to coarse sand, and towards bottom of			16 28 31				▲5	59
AESIBOR 20210394E001.GPJ November 30, 2021		S-4		Moist, brownish coarse sand; br Gravelly drill ac	n gray, fine to medium sandy, GRAVI roken gravel (GP-GM). ction.	EL, some silt, some			18 47 0/5"				4 5	50/5"
AESIBOR 20210394E		2" O[3" O[Spoon Sampler (Spoon Sampler (I		l - Moisture Water Level () Water Level at time o	l	g (A	I ATD))		ged by: roved k	ART DY: JHS	

6	2	> a		ociatec		Exploration	Bor	in	g					
\triangleleft	1			sciences Project Number Exploration Num 20210394E001 EB-2							Sheet 2 of 2			
Projec		me		PSD- South	Hill Site		Grour	nd	Sur	l face El	evation (-357	
Location Driller/		inme	nt	<u>Puyallup, W</u>	/A D-50 Track Mount H.S.A.		Datun Date S		art/F	inish	_NAV	D88	1/21/2	1
Hamm	er V	Veigh	t/Drop	140# / 30	5 66 Huok Mount H.O./ (.					ter (in)	3.75	i.d.	J/Z 1/Z	
							L L	<u>e</u>						s
р (ft)		ples	Graphic Symbol				ell letioi	Leve	's/6"		Blows	/Foot		Test
Depth (ft)	S T	Samples	Gra Syn				Well Completion	/ater	Blows/6"					Other Tests
		•,			DESCRIPTION		0	\leq		10	20	30 4	0	0
	Ш	S-5		Moist, brownish coarse sand, s	n gray to light gray, fine to medium ome gravel; unsorted (SM).	SAND, some silt, some		5	50/6'					50/6"
-														
-														
ſ														
-														
- 30														
		S-6		trace gravel; ur	n gray, fine to medium SAND, som nsorted (SP-SM).	e slit, some coarse sand,		5	28 50/5'					50/5"
-				Bottom of explora	tion boring at 30.9 feet									
-				No groundwater e	encountered.									
-														
-														
- 35														
-														
-														
-														
- 40														
-														
ŀ														
-														
-														
- 45														
0, 202														
aber 3														
Noven														
GPJ														
4E001.														
AESIBOR 20210394E001.GPJ November 30, 2021			pe (ST	⁻): Spoon Sampler (M. Moisturo	_	_	_	_		gged by	· ^-	т
ж 20	—			Spoon Sampler (· Spoon Sampler (·		M - Moisture ∑ Water Level ()						ggea by proved		
			Sampl		Shelby Tube Sample	 Water Level at time c 	of drilling	g (/	ATE	D)				
۹ ـ														

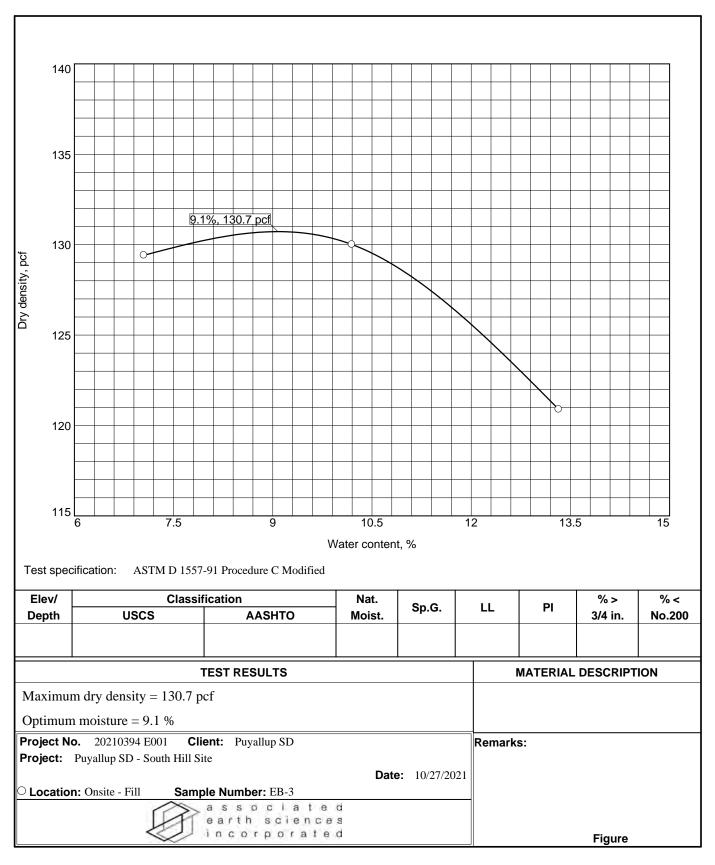
1	2			ciatec		Exploration Exploration Nu	Bor	in	g					
\triangleleft	2			sciences	Project Number 20210394E001	Exploration Nu EB-3	umber					heet of 2		
Projec		ame		PSD- South	Hill Site				urfac	ce Eleva			·376	
Locatio Driller/	Έqι			Puyallup, W Advance / D	D-50 Track Mount H.S.A.		Datun Date :	Star		ish _1	AVD	21,10)/21/2	1
Hamm	ier V	Veigł	nt/Drop	140# / 30			Hole I	Diar	neter	(in) <u>3</u>	8.75 i.	d		
l (ji		s	9 -				u	sel						sts
Depth (ft)	s	Samples	Graphic Symbol				Well Completion	Water Level	BIOWS/6	B	lows/	Foot		Other Tests
۵	Т	Sa	იი		DESCRIPTION		Co	Wat	ñ	10	20 3	30 4	0	Oth
					Fill								Ĭ	
+														
				Gravelly drilling	l.									
Ī														
ł														
- 5	$\left \right $			Moist grav silt	y, gravelly, fine SAND, some mediur	m to coarse sand								
		S-1		contains broker	n gravel; faint organic odor; unsorted	(SM).			2 9 2			▲ 31		
	Н								2					
Ī				Gravelly drilling	J.									
-														
-														
- 10														
		S-2		contains broker	y, gravelly, fine SAND, some mediur n gravel; small dark brown organic pi	n to coarse sand; eces observed;			7		▲ 18			
-	Ш			unsorted (SM).					9 9		10			
ł														
-														
- 15	Π	• •		Moist, dark bro coarse sand: or	wn to brown, silty, gravelly, fine SAN rganics throughout; faint organic odo	D, trace medium to r: unsorted (SM)			2					
-		S-3							2 3 0		▲ 23			
-														
ŀ														
- 20	\square			Moist, dark gra	y to bluish gray, silty, fine SAND; org	anics throughout;								
		S-4		unsorted (SM).					7 9 2		▲ 21			
0, 202									2					
mber 3														
Nove														
1.GPJ				i	Fill / Weathered Vashon Advance O	 utwash?								
94E00		lor Ti	 /pe (ST	.).										
≌I –	- ·	-		Spoon Sampler (\$	SPT) 🗌 No Recovery M	1 - Moisture					Log	ged by	: AR	Т
				Spoon Sampler (I		Water Level ()			TR		App	roved I)): JH	S
AESI	m.	Grab	Sampl	9	Shelby Tube Sample	VVater Level at time of	ot drillin	g (A	ID)					

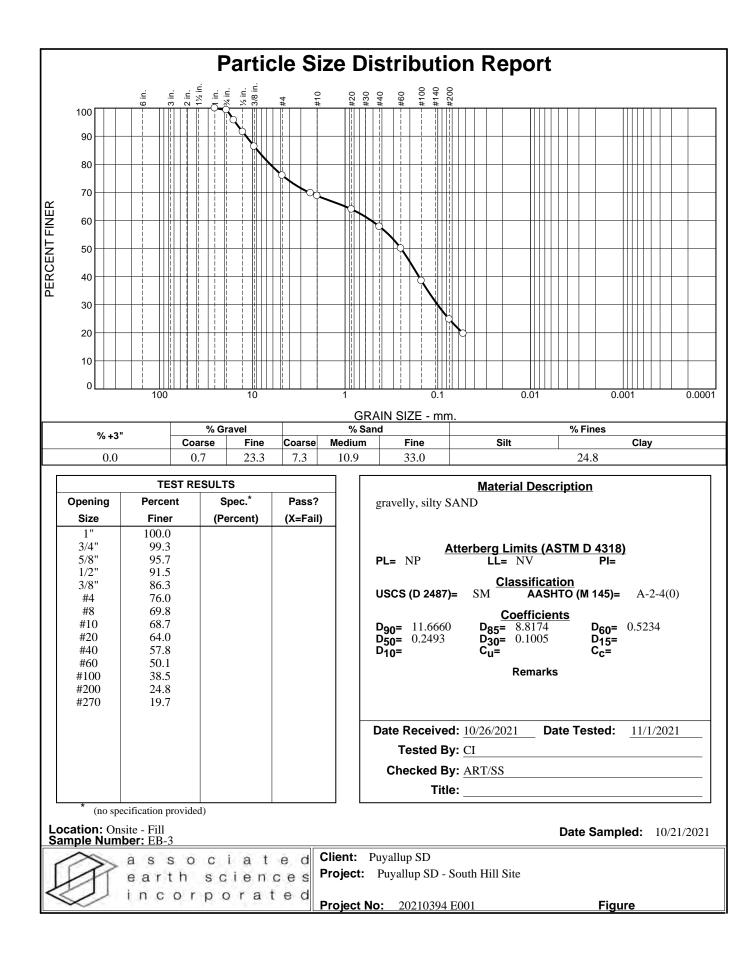
1	2			ociatec		Exploration	Borin	g						
\triangleleft	2			sciences rporalec	Project Number 20210394E001	Exploration Nu EB-3	mber			Sheet 2 of 2				
Projec		ame		PSD- South	Hill Site			urface	e Elevation	(ft)	-376			
Location Driller/	Εqι			Puyallup, W Advance / D	7A D-50 Track Mount H.S.A.		Datum Date Star	t/Finis		$\frac{1}{21.10}$)/21/2	1		
Hamm	er \	Veigł	nt/Drop	140# / 30			Hole Diar	neter ((in) <u>3.75</u>	i.d				
(ŧ)		Se	o lic			tion	0		-		ests			
Depth (ft)	S	Samples	Graphic Symbol			Well Completion Water Level	BIOWS/0	Blow	s/Foot		Other Tests			
	Т	ű			DESCRIPTION	S S S S	מ	10 20	30 4	0	ot			
		S-5		Moist, dark to li gravel; occasio	ght brown with slight oxidation, silty, nal organics (rootlets and larger piec		5							
-		3-5						7 7	▲14					
-														
-														
				Driller reports g	Vashon Advance Outwash gravel at 29 feet.	1								
- 30		S-6		Moist, brown to broken gravel;	light brown, silty, fine SAND, some unsorted (SM).	medium sand, some		4						
-		0-0		_				23 9			▲ 42			
-														
-														
- 35	Π	S-7		Moist, grayish t trace gravel; cc	prown, fine to medium SAND, some parsens with depth; unsorted (SP-SM	silt, some coarse sand, /).		8						
-		3-1						20 22			▲ 42			
-														
-														
- 40	Π	S-8		Moist, grayish t coarse sand; bi	prown to brownish gray, silty, fine to roken gravel observed; unsorted; po	medium SAND, trace or recovery (SM).		25						
-		3-0				,		28 20			4	8		
-					tion boring at 41.5 feet									
-				No groundwater e	ncounterea.									
-														
45														
- 45														
2021														
er 30, :														
ovemb														
N LAD														
AESIBOR 20210394E001.GPJ November 30, 2021														
Sa 521036 Г	- ·	-	ype (ST) Split	Г): Spoon Sampler (\$	SPT) 🗌 No Recovery 🛛 🛚	M - Moisture	_	_	14	ogged by	: AR	т		
				Spoon Sampler (Spoon Sampler (I	D & M) 🔲 Ring Sample 🛛	☑ Water Level ()				oproved				
AESIE	n 7	Grab	Sampl	e	Shelby Tube Sample -	Water Level at time of the second	f drilling (A	TD)						

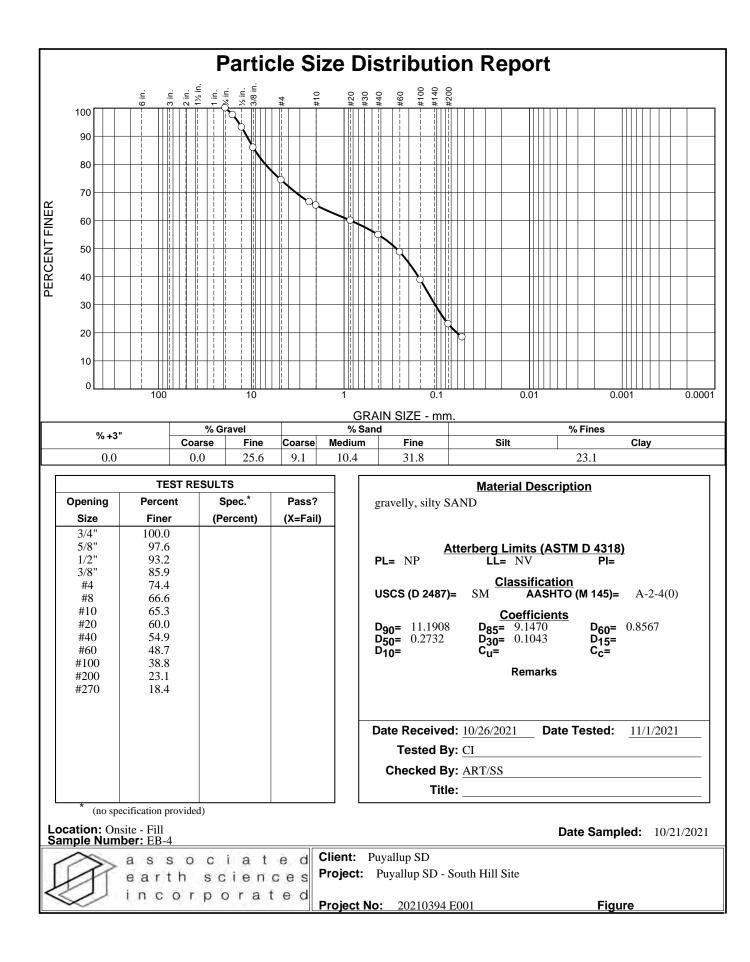
6	2		asso	ciatec		Exploration	Borin	ŋg					
	1			sciences	Project Number 20210394E001	Exploration Nu EB-4	Imber	Ŭ			heet of 2		
Project	t Na	ame		PSD- South	h Hill Site		Ground	Surf	ace Ele	evation (ft)		382	
Locatio Driller/		linme	ant	Puyallup, W	/A D-50 Track Mount H.S.A.		Datum Date Sta			NAVD	88	101/0	1
				140# / 30			Hole Dia			_10/21/ _3.75 i.	d	/21/2	<u> </u>
													s
L (ft)		oles	Graphic Symbol				Leve	"s/6"		Blows/I	=oot		Test
Depth (ft)	S T	Samples	Gra Syn				Well Completion Water Level	Blows/6"					Other Tests
		0,			DESCRIPTION		ŭ≥		10	20 3	30 40)	Õ
					Fill								
-													
ſ													
ł													
- 5	Н			Moist, dark bro	wnish gray, silty, gravelly, fine SAND), some medium to							
		S-1		coarse sand, tr	ace organics; faint organic odor; uns	orted (SM).		7 8 12		▲20			
	Щ							12					
-													
-													
ł													
- 10	$\left \right $			Moist dark bro	wnish gray to greenish gray, silty, gra	avelly fine SAND							
		S-2		occasional orga	anics; unsorted (SM).	avelly, life OAND,		3 4	▲ s				
Ī	Ш							4	ľ				
-													
Ī													
ł													
- 15													
		S-3		Moist, bluish gr throughout; bar	ray, silty, fine SAND, trace broken gra nding (1 inch thick) of dark brown org	avel; organics janics; unsorted (SM).		3 3					
F		3-3		U	0 ()			3 4	7				
-													
-													
-													
- 20				Moist, dark bro organic odor; u	wn to bluish brown, silty, fine SAND;	abundant organics;		3					
		S-4		organic odor, u	nsoned (SiM).			3 4 5	4 9				
0, 202	+												
ber 3(
lover													
AESIBOR 20210394E001.GPJ November 30, 2021													
97E 33	amp	ler T	ype (ST	·):						I		I	
2021(-			Spoon Sampler (SPT) 🗌 No Recovery M	1 - Moisture					ged by:		
B ^B E		3" O[O Split S	Spoon Sampler (I	D & M) 🔲 Ring Sample 🛛 🗵	Water Level ()		. –		Аррі	roved b	y: JHS	5
AES	n Y	Grab	Sample	e	Shelby Tube Sample	VVater Level at time of	ot drilling (ATD)				

٢	\sim		asso	ociatec		Exploration	Bori	ng					
	D			sciences	Project Number 20210394E001	Exploration Nu EB-4	mber	-			neet of 2		
Proje		ame		PSD- South	Hill Site				face Eleva	ation (ft)	_~3	82	
Locat Drille	r/Equ			<u>Puyallup, W</u> Advance / D	7A D-50 Track Mount H.S.A.		Datum Date S	tart/F	inish _	NAVD: 10/21/:	21.10/	21/21	
Hamr	ner \	Weigł	nt/Drop	140# / 30			Hole D	iame	ter (in)	3.75 i.o	d		_
l (j		ŵ	<u>.9 –</u>				u.	o"el					sts
Depth (ft)	s	Samples	Graphic Symbol				Well Completion	Water Level Blows/6"	В	lows/F	oot		Other Tests
	Т	လိ	00		DESCRIPTION		CO	BI	10	20 3	0 40		Oth
-				As above.				5					+
ł		S-5						6 9		15			
-				Driller reports o	jravel at 27 feet.								
				Dimer reports g									
F					Vashon Recessional Lacustr	ine							
- 30		-		Moist, light brow	wn with slight mottling, silty, fine SA	ND ranges to sandy,							
-		S-6		SILT, trace coa	rse sand; faintly stratified otherwise	massive (SM).		5 5 5	10				
		-											
F													
-													
- 35				Very moist ligh	nt brown with iron oxide staining, silt	v fine SAND to fine							
		S-7		sandy, SILT, tra	ace gravel; faintly stratified otherwise	e massive (SM-ML).		3 4	▲ 9				
		-						4 5					
F													
-													
-					Vashon Ice Contact / Melt-out		_						
- 40													
		S-8		Moist, grayish t	prown, silty, fine SAND, trace broker	n gravel; till-like (SM).		5		▲ 22			
T T							_	10 12		-22			
ł				Bottom of explora No groundwater e	tion boring at 41.5 feet								
-				No groundwater e	ncountered.								
- 45													
021													
AESIBOR 20210394E001.GPJ November 30, 2021													
ember													
NON C													
001.G													
0394E	<u> </u>	-	/pe (S1	-									
2021	—			Spoon Sampler (M - Moisture					jed by: oved by	ART	
SIBOF) Split≓ Sampl	Spoon Sampler (I	D & M) Ring Sample	 ✓ Water Level () ✓ Water Level at time of 	of drillina	(ATC))	Appr	oveu by	• JHS	
AE	Ы	Giab	Sampl	C			9	、 -	,				

6	~	> a	s s c	ociatec		Exploration I	Bori	ng					
\triangleleft	2			sciences rporatec	Project Number 20210394E001	Exploration Nun EB-5	nber				heet of 1		
Projec		ame		PSD- South	Hill Site				face El	evation (ft)	_~	359	
Locatio Driller/	Εqι			Puyallup, W Advance / D	D-50 Track Mount H.S.A.		Datum Date S	start/F		_NAVD _10/22/	21.10	/22/2	1
Hamm	er \	Neigh	t/Drop	140# / 30			Hole D	iame	ter (in)	3.75 i.	d		
l (ji		ŵ	. <u>0</u> –					o"e					sts
Depth (ft)	s	Samples	Graphic Symbol				Well Completion	Water Level Blows/6"		Blows/F	oot		Other Tests
ے ا	Т	Sa	ഗഗ		DESCRIPTION		Co	Bi	10	20 3	0 40)	oth
					Fill							-	
-		S-1		_Moist, grayish b _∕(SM).	brown, silty, fine SAND; dark organio	c banding; unsorted	-	2 5 9		▲ 14			
-				Lower 6 inches faintly stratified	Vashon Recessional Lacustr S: Moist, light brown with iron oxide s I otherwise massive (SM).	ine taining, silty, fine SAND;							
- 5		S-2		fine sandy. SIL	h gray with iron oxide staining, silty, T, trace gravel; occasional organics wise massive (SM).	fine SAND ranging to observed; faintly		5 4 5	€g	,			
					Vashon Ice Contact / Melt-out	: T ill	_						
- - 10 -		S-3		Moist, brownish broken gravel,†	h gray, silty fine SAND ranges to fine trace medium to coarse sand; till-lik	e sandy, SILT, some e (SM-ML).		5 11 11		▲22			
				Driller reports g	Vashon Advance Outwash gravel.	1							
-													
- 15 - -		S-4		Moist, brownish coarse sand; co	h gray, fine to medium sandy, GRAV ontains broken gravel; unsorted (GP	/EL, some silt, some -GM).		12 22 22				▲ 44	
er 30, 2021		S-5		No recovery; du Bottom of explora No groundwater e	ation boring at 21.4 feet		_	29 44 50/5					\$ 50/5"
0R 20210		2" OC 3" OC		⁻): Spoon Sampler (Spoon Sampler (I	SPT) ☐ No Recovery 1 D & M)	M - Moisture ☑ Water Level () ☑ Water Level at time of	drilling	(ATI))		jed by: roved b		

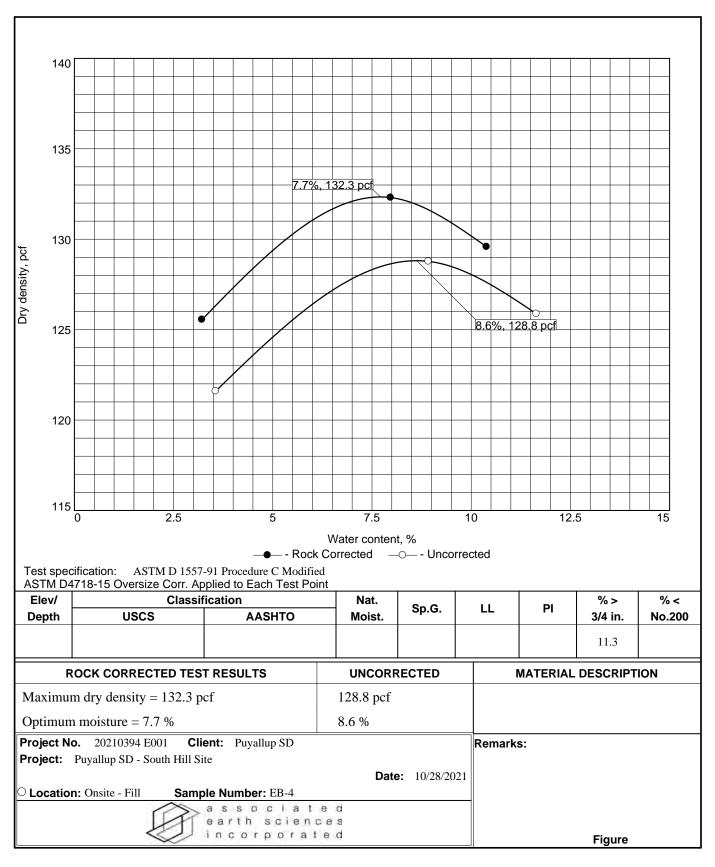

6	~	> a	SS	ociatec		Exploration	Bori	nq					
	3			sciences	Project Number 20210394E001	Exploration Nu EB-6	mber				She	et of 1	
Projec	t Na		0.5.5	PSD- South		ED-0	Groun	d Sur	face	Elevati		~3	52
Locatio	on			Puyallup, W	/A		Datum			_N/	AVD8	88	
Driller/ Hamm				<u>Advance / L</u>	0-50 Track Mount H.S.A.		Date S Hole D)/22/2 75 i.d.	1,10/2	22/21
										/ _0.	10 I.u.		
(F)		Se	이달				Well Completion	evel 6"					
Depth (ft)	s	Samples	Graphic Symbol				Nell Nell	/ater Lev Blows/6"		Blo	ws/Fo	oot	othor T anth
ے ا	Т	Sa	იი		DESCRIPTION		Con	Ble		0	0 00	40	ļ
					Fill / Topsoil ?		_		1	0 2	0 30	40	
- - - 5		S-1		Moist, brown to observed; dark	dark brown, silty, fine SAND, trace organic banding throughout; unsorte	medium sand; rootlets ed (SM).		2222	▲4				
-					Vashon Recessional Lacustr	ine	_						
- 10 -		S-2		Very moist, ligh SILT; faintly str	t brown iron oxide staining, silty, fine atified otherwise massive (SM-ML).	e SAND to fine sandy,		8 4 6		10			
- - - 15				Gravelly drilling As above; very				2					
-		S-3						2 2 2	▲4				
- 20		S-4		As above; grea	ter gravel content in tip.			9 7 11			18		
AESIBOR 20210394E001.GPJ November 30, 2021				No groundwater e	tion boring at 21.5 feet ncountered.								
AESIBOR 202103(2" OC 3" OC		Spoon Sampler (Spoon Sampler (I	D & M) 📕 Ring Sample	∕I - Moisture Z Water Level () ⊈ Water Level at time o	of drilling	(ATI	D)		Logge Approv		ART JHS

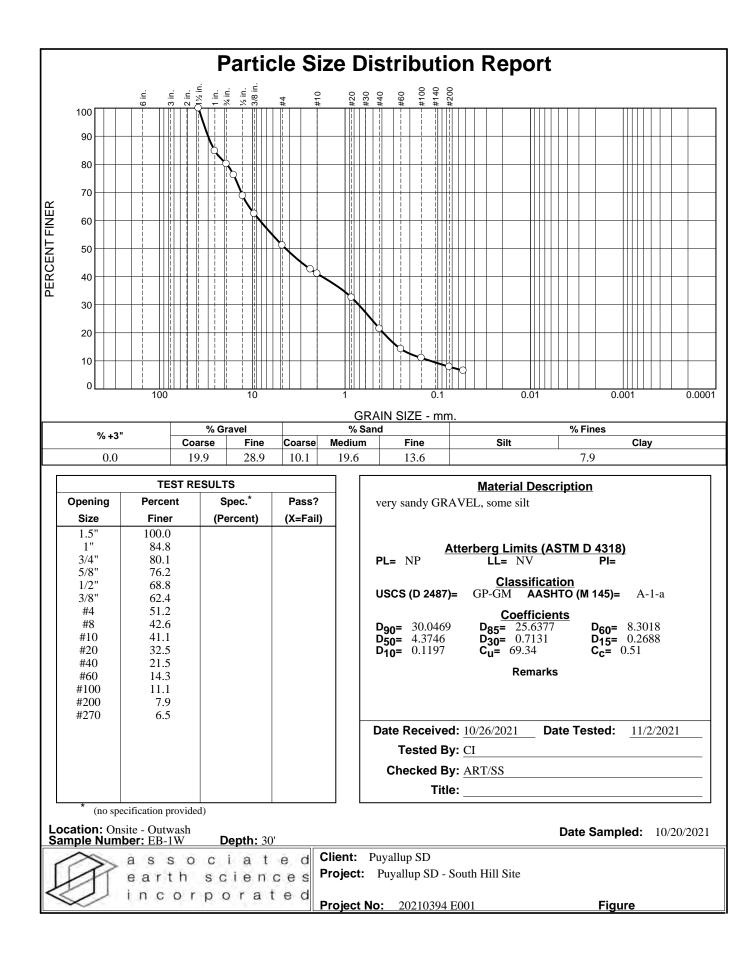

ſ	2	> a	s s d			Exploration	Boring			
\triangleleft	2			sciences rporatec	Project Number 20210394E001	Exploration Nur EB-7	mber		Sheet 1 of 1	
Projec Locati Driller, Hamm	on /Equ	uipme		PSD- South Puyallup, W Advance / D 140# / 30	h Hill Site /A D-50 Track Mount H.S.A.		Ground Sur Datum Date Start/F Hole Diamet	inish	NAVD88	~358 0/22/21
Depth (ft)	ST	Samples	Graphic Symbol				Well Completion Water Level Blows/6"		Blows/Foot	other Tests
					DESCRIPTION			10	20 30	40
					Topsoil - 6 inches Vashon Recessional Lacustri	ne				
-		S-1		Moist, dark bro unsorted; poor	wn, silty, fine SAND, trace medium s recovery (SM).	and; rootlets observed;	5 4 4	▲8		
- 5 - -		S-2		Moist, light brow sand, trace gra	wn with iron oxide staining, fine sand vel, trace rootlets; faintly stratified otl	y, SILT, trace medium herwise massive (ML).	3 3 3	▲6		
- - 10 -		S-3		Moist, light brov otherwise mass	wn with iron oxide staining, silty, fine sive (SM).	SAND; faintly stratified	2 3 2	▲5		
					Vashon Ice Contact / Melt-out	Till	_			
- 15 -		S-4		Moist, brownisł gravel, trace cc	n gray, silty, fine SAND ranges to sar barse sand; unsorted (SM-ML).	ıdy, SILT, some broken	10 13 15		▲ ₂₈	
-				Driller reports g	Vashon Advance Outwash gravel 17.5 feet.					
- 20		S-5		Moist, brownish gravel, trace co	n gray, fine to medium SAND, some s barse sand, contains gravel (SP-SM).	silt, some broken	15 16 17		▲33	1
AESIBOR 20210394E001.GPJ November 30, 2021				Bottom of explora No groundwater e	ation boring at 21.5 feet ancountered.					
AESIBOR 20210394E		2" OE 3" OE		Spoon Sampler (Spoon Sampler (I	D & M) 📕 Ring Sample 🛛 🖓	1 - Moisture ^Z Water Level () Z Water Level at time o	f drilling (ATE)	Logged by Approved	

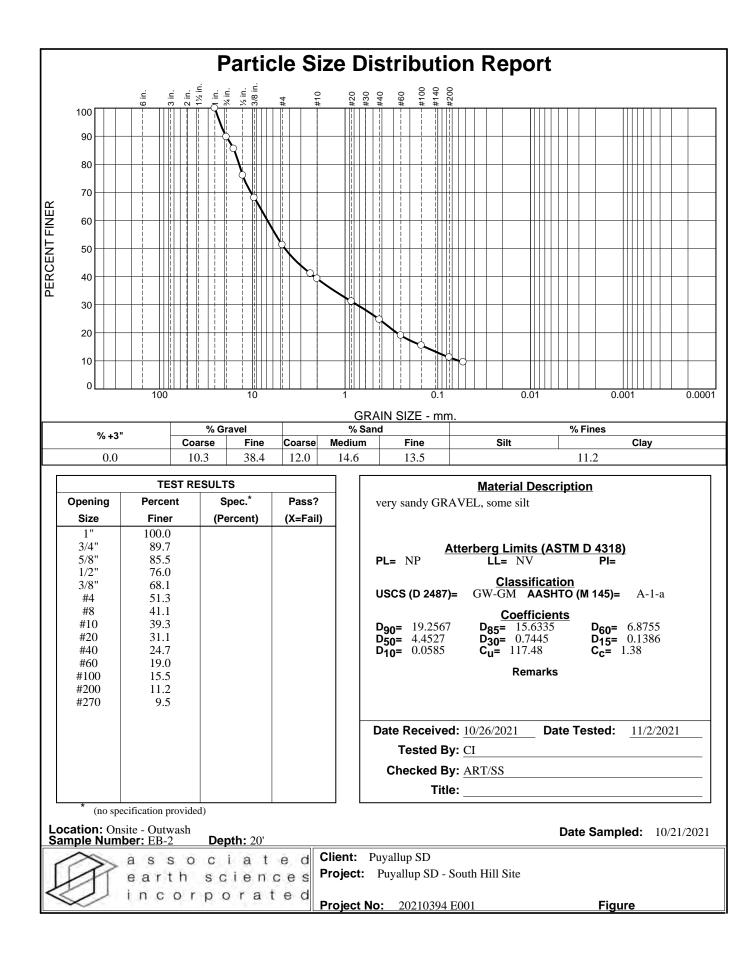

6	2		s s c	ciatec		Exploration	Borir	na					
	1			sciences	Project Number 20210394E001	Exploration Nu EB-8	Imber	J			neet of 1		
Projec	t Na		0.5.5	PSD- South		ED-0	Ground	Sur	 face El	levation (ft)		359	
Locatio	on			Puvallup, W	/A		Datum			NAVD	88		
Driller/ Hamm					D-50 Track Mount H.S.A.		Date Sta Hole Dia			_10/22/ _3.75 i.(21,1(1)/22/2	1
											u.		
(ŧ		SS	o <u>i</u> c				Well Completion Water Level	.9			_		ests
Depth (ft)	s	Samples	Graphic Symbol				Well Completion Water Level	Blows/6"		Blows/F	-oot		Other Tests
De	Т	Sa	იი		DESCRIPTION		Cor	Ē	10	20 2	0 4	0	oţ
			<u> </u>		Topsoil - 6 inches				10	20 3	0 4		
					Vashon Lacustrine Recessional O	utwash							
Ē.													
-													
	Т			Moist, light brow	wn with iron oxide staining, silty, fine	SAND to fine sandy,							
		S-1		SIL I; faintly str	atified otherwise massive (SM-ML).			3	4				
-								1					
- 5													
		6.0		As above; less	iron oxide staining.			3					
-		S-2						3 4 3	7				
F													
- 10				Moist, light brow	wn, silty, fine SAND; massive (SM).								
		S-3						3 4	▲				
	Ш	r.						3					
-													
-													
- 15													
		S-4		very moist, ligh sandy, SILT; m	it brown with iron oxide banding, silty assive (SM-ML).	, fine SAND to fine		1					
-		3-4						2 3	▲ 5				
ŀ													
-					Vashon Ice Contact / Melt-out	Till							
- 20	Т			Very moist, bro	wnish gray, silty, fine SAND, some b	roken gravel; coarsens		10					
-		S-5		with depth (SM).			13 21			4	40	
, 202	H		진하				-	19					
ber 30				Bottom of explora No groundwater e	tion boring at 21.5 feet encountered.								
vemt													
й Г													
001.GI													
AESIBOR 20210394E001.GPJ November 30, 2021	amp	l ler Ty	pe (ST	-):									
] 20210	-	-		, Spoon Sampler (\$	SPT) 🗌 No Recovery M	1 - Moisture					jed by		
B ^B		3" OE) Split \$	Spoon Sampler (I	D & M) 🔲 Ring Sample 🛛	Water Level ()				Appr	oved I	y: JH	S
AESI	m	Grab	Sampl	e	Shelby Tube Sample -	Water Level at time of	of drilling (ATE	D)				

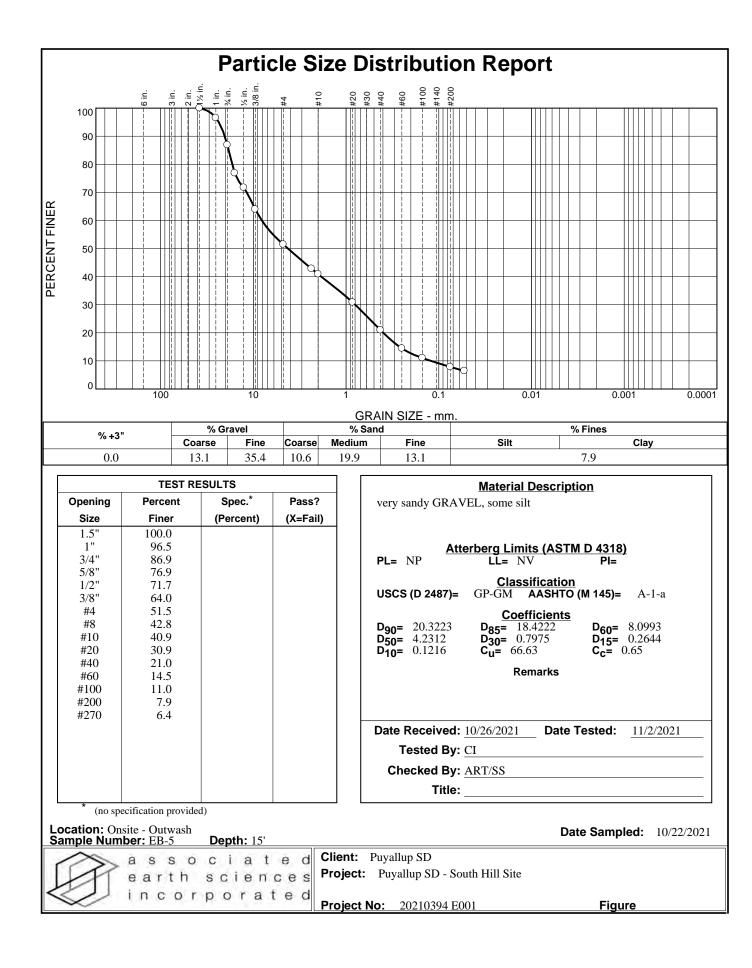
APPENDIX B

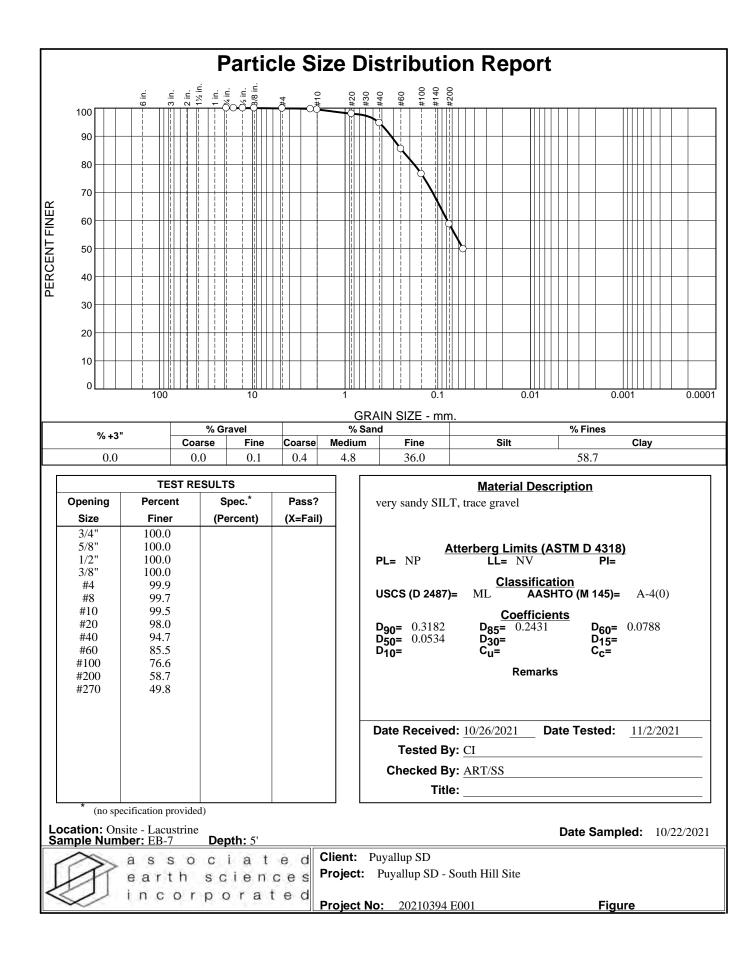
Laboratory Test Results


associated earth sciences incorporated


Moisture, Ash, and Organic Matter of Peat and Other Organic Soils - ASTM 2974


Date Sampled	Project	Project No.	Soil Description			
10/21/2021	South Hill Site	20210394 E001	20210394 E001			
Tested By	Location	EB/EP No.	Depth	fill		
CI	Puyallup, WA	EB				
Moisture Content		Organic Matter and Ash Co	<u>ntent</u>			
Sample ID	EB-3	Dry Soil Before Burn + Pan	625.00			
Wet Weight + Pan	705.00	Dry Soil After Burn + Pan	620.00			
Dry Weight + Pan	625.00	Weight of Pan	245.00			
Weight of Pan	245.00	Wt. Loss Due to Ignition	5.00			
Weight of Moisture	80.00	Actual Wt. Of Soil After Burn	375.00			
Dry Weight of Soil	380.00	% Organics	1.32			
% Moisture	21.05					
Moisture Content		Organic Matter and Ash Co	ntent			
Sample ID	EB-4	Dry Soil Before Burn + Pan	575.00			
Wet Weight + Pan	620.00	Dry Soil After Burn + Pan	570.00			
Dry Weight + Pan	575.00	Weight of Pan	250.00			
Weight of Pan	250.00	Wt. Loss Due to Ignition	5.00			
Weight of Moisture	45.00	Actual Wt. Of Soil After Burn	320.00			
Dry Weight of Soil	325.00	% Organics	1.54			
% Moisture	13.85					


ASSOCIATED EARTH SCIENCES


911 5th Ave., Suite 100 Kirkland, WA 98033 425-827-7701 FAX 425-827-5424

