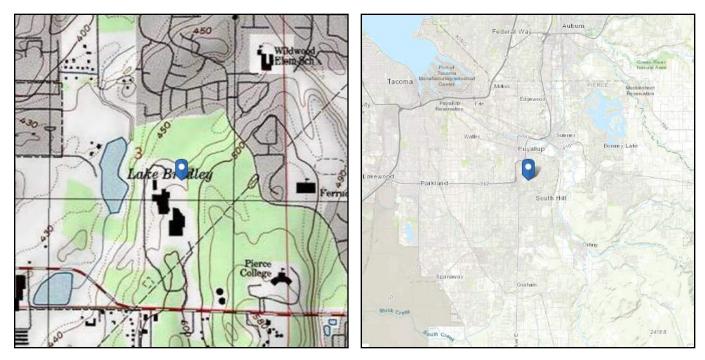


Centeris Data Center Shed 1023 39th Avenue South East Puyallup, WA 98374

See separate architectural and engineering plans.

local government.

Lateral Design


Address: 1023 39th Ave SE Puyallup, Washington 98374

ASCE Hazards Report

Standard: ASCE/SEI 7-16

Risk Category: II Soil Class: D

y: II D - Default (see Section 11.4.3) Latitude: 47.160853 Longitude: -122.279318 Elevation: 482.88472036372787 ft (NAVD 88)

Wind

Results:

Wind Speed	98 Vmph
10-year MRI	67 Vmph
25-year MRI	73 Vmph
50-year MRI	78 Vmph
100-year MRI	83 Vmph

Data Source:	ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2
Date Accessed:	Mon Feb 05 2024

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is not in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2.

Site Soil Class: Results:	D - Default (se	e Section 11.4.3)	
S _s :	1.257	S _{D1} :	N/A
S ₁ :	0.434	T _L :	6
F _a :	1.2	PGA :	0.5
F _v :	N/A	PGA M:	0.6
S _{MS} :	1.509	F _{PGA} :	1.2
S _{M1} :	N/A	l _e :	1
S _{DS} :	1.006	C _v :	1.351
Ground motion hazard ar	alysis may be required.	See ASCE/SEI 7-16 Se	ection 11.4.8.

Data Accessed: Mon Feb 05 2024

 Date Source:
 USGS Seismic Design Maps

The ASCE Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE Hazard Tool.

= 1223.28 ft²

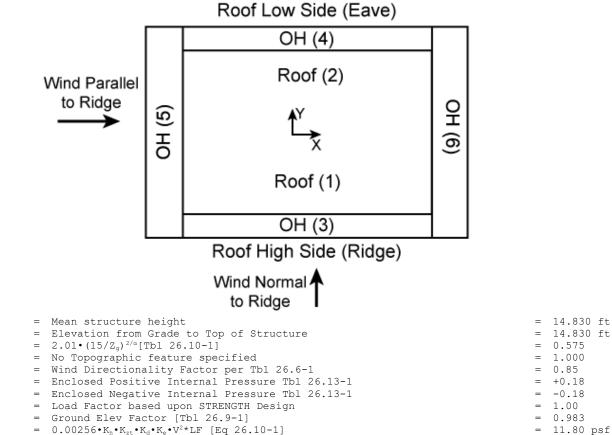
MecaWind v2462

Developed by Meca Enterprises Inc., www.mecaenterprises.com, Copyright © 2024

Calculations Prepared by:

Date: Feb 08, 2024

File Location: G:\2024\24202 Centeris Shed\Calcs\Centris Wind.wnd


General:			
Wind Load Standard	= ASCE 7-16	Basic Wind Speed	= 98.0 mph
Exposure Classification	= B	Risk Category	= II
Structure Type	= Building	Design Basis for Wind Pressures	= LRFD
MWFRS Analysis Method	= Ch 27 Pt 1	C&C Analysis Method	= Ch 30 Pt 1
Dynamic Type of Structure	= Rigid	Show Advanced Options	= -1
Reset Advanced Options to Default	= Defaults	Simple Diaphragm Building	= 0
Values			
Show Base Reactions in Output	= Summary	Altitude above Sea Level	= 482.900 ft
Base Elevation Of Structure	= 0.000 ft	MWFRS Pressure Elevations	= Mean Ht
Topographic Effects	= None	Override Directionality Factor K _d	= 0
Override the Gust Factor G	= 0	Override Minimum Pressure	= 0
Building:			
Roof = Roof Type	= Monoslope	Encl = Enclosure Classification	= Enclosed
Help = Help on Building Roof Type	= Help	Pitch = Pitch of Roof	= 2.0 :12
θ = Slope of Roof	= 9.46 Deg	R _{Ht} = Ridge Height	= 23.161 ft

ncrb		herp on burraring hoor rype		TICTP	LTCCII				2.0 .12
θ	=	Slope of Roof	=	9.46 Deg	$R_{\rm Ht}$	=	Ridge Height	=	23.161 ft
E _{Ht}	=	Eave Height	=	14.830 ft	W	=	Building Width	=	22.000 ft
L	=	Building Length	=	52.000 ft	OH	=	Type of Overhang	=	None
Par	=	Parapet	=	None	$\mathrm{HT}_{\mathrm{over}}$	=	Override Mean Roof Height	=	0
Ht_{man}	=	Mean Roof Height	=	14.830 ft	RA _{over}	=	Override Roof Area	=	0
GC_{pi_o}	=	Override GC_{pi} value	=	0		=			
GC _{pi_o}	=	Override GC _{pi} value	=	0		=			

Exposure Constants [Tbl 26.1	.1-1]:	
	- 7 000	

Impostite constants [ibi 20.11 i]	•		
α = 3-s Gust-speed exponent	= 7.000	Z _g = Nominal Ht of Boundary Layer	= 1200.000 ft
\hat{a} = Reciprocol of α	= 0.143	b = 3 sec gust speed factor	= 0.840
α_m = Mean hourly Wind-Speed Exponent	= 0.250	b _m = Mean hourly Windspeed Exponent	= 0.450
c = Turbulence Intensity Factor	= 0.300	ε = Integral Length Scale Exponent	= 0.3333

Main Wind Force Resisting System (MWFRS) Wind Calculations per Ch 27 Pt1

$.00256 \bullet K_h \bullet K_{zt} \bullet K_d \bullet K_e \bullet V^2 \star LF$	[Eq 26.10-1]
- F 7	

RA = Roof Area

h

 ${\tt K}_{\rm h}$

 ${\rm K}_{\rm zt}$ Kd

+GC_{pi}

-GC_{pi}

LF

 K_{e}

 $q_{\rm h}$

 $h_{\tt grade}$

q _{in} =	0.00256•K _h •K _{zt} •K _d •K _e •V ² *LF [Eq 26.10-1] Negative Internal Pressure: q _h •LF Positive Internal Pressure: q _h •LF	=	11.80 psf 11.80 psf 11.80 psf
MWFRS Wind	Loads [Normal to Ridge]		
h =	Mean Roof Height Of Building	=	14.830 ft
RHt =	Ridge Height Of Roof	=	23.161 ft
в =	Horizontal Dimension Of Building Normal To Wind Direction	=	52.000 ft
L =	Horizontal Dimension Of building Parallel To Wind Direction	=	22.000 ft
L/B =	Ratio Of L/B used For Cp determination	=	0.423
h/L =	Ratio Of h/L used For Cp determination	=	0.674
Slope =	Slope Of Roof	=	9.46 Deg
Gust Facto	Calculation for Wind: [Normal to Ridge] or Category I Rigid Structures - Simplified Method		0.05
	Simplified: For Rigid Structures can use 0.85 pr Category II Rigid Structures - Complete Analysis*	=	0.85
	Equiv Struc Height: Max(0.6•h, Zmin)	=	30.000 ft
	Turbulence Intensity: $c \cdot (33/Z_m)^{1/6}$ [Eq 26.11-1]	=	0.305
	Turbulence Integral Length Scale: $\ell \cdot (\mathbb{Z}_m/33)^{\circ}$ [Eq 26.11-9]	=	309.993 ft
	Building Width Width Normal to Wind Direction	=	52.000 ft
Q =	$[1/(1+0.63 \cdot [(B+h)/L_{zm}]^{0.63})]^{0.5}$ [Eq 26.11-8]	=	0.898
G ₂ =	Detailed: 0.925•[(1+1.7•gq•Izm•Q)/(1+1.7•gv•Izm)] [Eq 26.11-6]	=	0.865
Gust Facto	or Used in Analysis		
G =	Gust Factor: Min(G ₁ , G ₂)	=	0.850
Cp _{LW} =	Windward Wall Coefficient (All L/B Values) Leeward Wall Coefficient using L/B Side Wall Coefficient (All L/B values)	=	0.800 -0.500 -0.700

Wind Pressures [Normal to Ridge]

All wind pressures include a Load Factor (LF) of 1.0

Elev	GC_{pi}	GC _{pi}	\mathbf{q}_{i}	Kz	K_{zt}	$\mathbf{d}^{\mathbf{z}}$	Windward	Leeward	Side	Total	Minimum
	Windward	Leeward					Press	Press	Press	Press	Pressure*
ft			psf			psf	psf	psf	psf	psf	psf
23.161	+0.18	+0.18	11.80	0.651	1.000	13.36	6.96	-7.14	-9.15	14.10	16.00
14.830	+0.18	+0.18	11.80	0.575	1.000	11.80	5.90	-7.14	-9.15	13.04	16.00
23.161	-0.18	-0.18	11.80	0.651	1.000	13.36	11.21	-2.89	-4.90	14.10	16.00
14.830	-0.18	-0.18	11.80	0.575	1.000	11.80	10.15	-2.89	-4.90	13.04	16.00

K_z	=	2.01 • (15/	$Z_g)^{2/\alpha}$ [Tbl	26.10-1]	
GC_{pi}	=	Enclosed	Internal	Pressure	Tbl

 K_{zt} = Enclosed Internal Pressure Tbl q_z

= No Topographic feature specified $= 0.00256 \cdot K_z \cdot K_{dt} \cdot K_{d} \cdot K_{e} \cdot V^2 \star LF [Eq \ 26.10-1]$

= Negative Internal Pressure: q_h•LF

26.13-1 = Positive Internal Pressure: q_h•LF

 q_{in}

 $\begin{array}{rcl} q_{1n} & - & negacive internal Pressure; q_h \\ Leeward & = & q_h \cdot G \cdot Cp_{LN} - q_{ip} \cdot (+GC_{pi}) & [Eq \ 27.3-1] \\ Total & = & Windward - Leeward \end{array}$

• Positive Pressures Act TOWARD Surface and Negative Pressures Act AWAY from Surface

Roof Wind Pressures for Positive & Negative Internal Pressure $(\pm GC_{pi})$ [Normal to Ridge] All wind pressures include a Load Factor (LF) of 1.0

Reference	Description	Location	Start Dist ft	End Dist ft	C _p Min	C _p Max	GC _{pi}	Pressure Min psf	Pressure Max psf
Roof	Roof (0 to $h/2$)	All	0.000	7.415	-0.949	-0.180	+0.18/-0.18	-11.64	8.00
Roof	Roof (h/2 to h)	All	7.415	14.830	-0.830	-0.180	+0.18/-0.18	-10.45	8.00
Roof	Roof (h to 2*h)	All	14.830	22.000	-0.570	-0.180	+0.18/-0.18	-8.00	8.00

End

Roof Pressures based upon Ch 27 Pt1:

 q_{ip}

- Start = Start Dist from Windward Edge
- = Smallest Coefficient Magnitude C_{p_min}
- $Press_{Min} = q_h \cdot G \cdot C_{p_{min}} q_{ip} \cdot (+GC_{pi}) \quad Eq \ 27.3-1$

 $\begin{array}{rcl} C_{p_max} &= & Largest & Contribution \\ Press_{Max} &= & q_h \bullet G \bullet C_{p_max} - q_{in} \bullet (-GC_{pi}) & Eq \ 27.3 - 1 \end{array}$

• 0.800 Reduction Factor applied for h/L>=1 & Slope10 Deg

• The smaller uplift pressures due to Cp_Min can become critical when wind is combined with roof live load or snow load; load combinations are given in ASCE 7

• Positive Pressures Act TOWARD Surface and Negative Pressures Act AWAY from Surface

MWFRS Wind Loads [Normal to Eave]

h	=	Mean Roof Height Of Building
RHt	=	Ridge Height Of Roof
В	=	Horizontal Dimension Of Building Normal To Wind Direction
L	=	Horizontal Dimension Of building Parallel To Wind Direction
L/B	=	Ratio Of L/B used For Cp determination
h/L	=	Ratio Of h/L used For Cp determination
Slope	=	Slope Of Roof

= 0.674 = 9.46 Deg

= 14.830 ft = 23.161 ft = 52.000 ft = 22.000 ft = 0.423

Page 18

Gust F	actor Calculation for Wind: [Normal to Eave]	
Gust	Factor Category I Rigid Structures - Simplified Method	
G_1	= Simplified: For Rigid Structures can use 0.85	= 0.85
Gust	Factor Category II Rigid Structures - Complete Analysis	
Zm	= Equiv Struc Height: Max(0.6•h, Z _{min})	= 30.000 ft
Izm	= Turbulence Intensity: $c \cdot (33/Z_m)^{1/6} [Eq 26.11-1]$	= 0.305
L _{zm}	= Turbulence Integral Length Scale: ℓ•(Zm/33) ^ε [Eq 26.11-9]	= 309.993 ft
В	= Building Width Width Normal to Wind Direction	= 52.000 ft
Q	$= [1/(1+0.63 \cdot [(B+h)/L_{zm}]^{0.63})]^{0.5} [Eq 26.11-8]$	= 0.898
G_2	= Detailed: $0.925 \cdot [(1+1.7 \cdot g_q \cdot I_{zm} \cdot Q) / (1+1.7 \cdot g_v \cdot I_{zm})]$ [Eq 26.11-6]	= 0.865
Gust	Factor Used in Analysis	
G	= Gust Factor: $Min(G_1, G_2)$	= 0.850
Сруу	= Windward Wall Coefficient (All L/B Values)	= 0.800
Cp _{LW}	= Leeward Wall Coefficient using L/B	= -0.500
Cpsw	= Side Wall Coefficient (All L/B values)	= -0.700
- T- 2M		0.700

Wind Pressures [Normal to Eave]

	All wind pressures include a Load Factor (LF) of 1.0														
Elev	GC_{pi}	GC _{pi}	\mathbf{q}_{i}	Kz	K_{zt}	$\mathbf{q}_{\mathbf{z}}$	Iz Windward Leeward Side Total Minimu								
	Windward	Leeward					Press	Press	Press	Press	Pressure*				
ft			psf			psf	psf	psf	psf	psf	psf				
14.830	+0.18	+0.18	11.80	0.575	1.000	11.80	5.90	-7.14	-9.15	13.04	16.00				
14,830	-0.18	-0.18	11.80	0.575	1.000	11.80	10.15	-2.89	-4,90	13.04	16.00				

 K_{zt}

 q_z

= $2.01 \cdot (15/Z_g)^{2/\alpha}$ [Tbl 26.10-1] K., = Enclosed Internal Pressure Tbl GC_{pi}

26.13-1

 q_{ip}

 C_{p_min}

= No Topographic feature specified

= Negative Internal Pressure: q_h•LF

 $= 0.00256 \cdot K_z \cdot K_{zt} \cdot K_d \cdot K_e \cdot V^2 \star LF \ [Eq \ 26.10-1]$

= Positive Internal Pressure: $q_h \cdot LF$ q_{in} $\begin{array}{rcl} \begin{array}{c} & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$

Leeward = $q_h \cdot G \cdot Cp_{LW} - q_{ip} \cdot (+GC_{pi})$ [Eq 27.3-1] = Windward - Leeward

· Positive Pressures Act TOWARD Surface and Negative Pressures Act AWAY from Surface

Roof Wind Pressures for Positive & Negative Internal Pressure (±GCpi) [Normal to Eave] All wind pressures include a Load Factor (LF) of 1.0

Reference	Description	Location	Start Dist ft	End Dist ft	C _p Min	C _p Max	GC_{pi}	Pressure Min psf	Pressure Max psf
Roof	Roof (0 to $h/2$)	All	0.000	7.415	-0.949	-0.180	+0.18/-0.18	-11.64	8.00
Roof	Roof (h/2 to h)	All	7.415	14.830	-0.830	-0.180	+0.18/-0.18	-10.45	8.00
Roof	Roof (h to 2*h)	All	14.830	22.000	-0.570	-0.180	+0.18/-0.18	-8.00	8.00

Roof Pressures based upon Ch 27 Pt1:

- Start = Start Dist from Windward Edge $C_{P_{c}min} = Smallest$ Coefficient Magnitude
 - End = End Dist from Windward Edge C_{p_max}

= End Dist from minanes ____ = Largest Coefficient Magnitude

 $Press_{Max} = q_h \bullet G \bullet C_{p_max} - q_{in} \bullet (-GC_{pi}) Eq 27.3 - 1$

• The smaller uplift pressures due to Cp Min can become critical when wind is combined with roof live load or snow load; load combinations are given in ASCE 7

· Positive Pressures Act TOWARD Surface and Negative Pressures Act AWAY from Surface

MWFRS Wind Loads [Parallel to Ridge]

h	= Mean Roof Height Of Building	= 14.830 ft
RHt	= Ridge Height Of Roof	= 23.161 ft
В	= Horizontal Dimension Of Building Normal To Wind Direction	= 22.000 ft
L	= Horizontal Dimension Of building Parallel To Wind Direction	= 52.000 ft
L/B	= Ratio Of L/B used For Cp determination	= 2.364
h/L	= Ratio Of h/L used For Cp determination	= 0.285
Slope	= Slope Of Roof	= 9.46 Deg
-	-	_

Gust Factor Calculation for Wind: [Parallel to Ridge]

Gust	Factor Category I Rigid Structures - Simplified Method	
G1	= Simplified: For Rigid Structures can use 0.85	= 0.85
Gust	Factor Category II Rigid Structures - Complete Analysis	
Zm	= Equiv Struc Height: Max(0.6•h, Z _{min})	= 30.000 ft
Izm	= Turbulence Intensity: $c \cdot (33/Z_m)^{1/6} [Eq 26.11-1]$	= 0.305
L_{zm}	= Turbulence Integral Length Scale: $\ell \cdot (Z_m/33)^{\varepsilon}[\text{Eq } 26.11-9]$	= 309.993 ft
В	= Building Width Width Normal to Wind Direction	= 22.000 ft
Q	$= [1/(1+0.63 \cdot [(B+h)/L_{zm}]^{0.63})]^{0.5} [Eq 26.11-8]$	= 0.927
G ₂	= Detailed: $0.925 \cdot [(1+1.7 \cdot g_q \cdot I_{zm} \cdot Q) / (1+1.7 \cdot g_v \cdot I_{zm})]$ [Eq 26.11-6]	= 0.882
Gust	Factor Used in Analysis	
G	= Gust Factor: Min(G ₁ , G ₂)	= 0.850
Cpww	= Windward Wall Coefficient (All L/B Values)	= 0.800
Cp _{LW}	= Leeward Wall Coefficient using L/B	= -0.282
Cpsw	= Side Wall Coefficient (All L/B values)	= -0.700

= 0.674

Wind Pressures [Parallel to Ridge] All wind pressures include a Load Factor (LF) of 1.0

All wind pressures include a load factor (h) of i.o													
Elev	GC_{pi}	GC _{pi}	\mathbf{q}_{i}	Kz	K _{zt}	$\mathbf{q}_{\mathbf{z}}$	Windward	Leeward	Side	Total	Minimum		
	Windward	Leeward					Press	Press Press Pre		Press	Pressure*		
ft			psf			psf	psf	psf	psf	psf	psf		
23.161	+0.18	+0.18	11.80	0.651	1.000	13.36	6.96	-4.95	-9.15	11.91	16.00		
14.830	+0.18	+0.18	11.80	0.575	1.000	11.80	5.90	-4.95	-9.15	10.85	16.00		
23.161	-0.18	-0.18	11.80	0.651	1.000	13.36	11.21	-0.70	-4.90	11.91	16.00		
14.830	-0.18	-0.18	11.80	0.575	1.000	11.80	10.15	-0.70	-4.90	10.85	16.00		

 K_{zt}

 q_z

 q_{in}

= $2.01 \cdot (15/Z_{\sigma})^{2/\alpha}$ [Tbl 26.10-1] = Enclosed Internal Pressure Tbl GC_{pi}

26.13-1

= No Topographic feature specified $= 0.00256 \cdot K_z \cdot K_{zt} \cdot K_d \cdot K_p \cdot V^2 \cdot LF \ [Eq \ 26.10-1]$

= Negative Internal Pressure: $q_h \cdot LF$

= Positive Internal Pressure: $q_h \cdot LF$

Leeward = $q_h \cdot G \cdot Cp_{LW} - q_{ip} \cdot (+GC_{pi})$ [Eq 27.3-1]

dip = Positive Internal Plessure. qin = Negative Internal Plessure. qin = Negative Internal Plessure. Additional planet pla

Roof Wind Pressures for Positive & Negative Internal Pressure $(\pm GC_{pi})$ [Parallel to Ridge] All wind pressures include a Load Factor (LF) of 1.0

Reference	Description	Location	Start	End	Cp	Cp	GC_{pi}	Pressure	Pressure
			Dist	Dist	Min	Max		Min	Max
			ft	ft				psf	psf
Roof	Roof (0 to h)	All	0.000	14.830	-0.900	-0.180	+0.18/-0.18	-11.15	8.00
Roof	Roof (h to 2*h)	All	14.830	29.660	-0.500	-0.180	+0.18/-0.18	-8.00	8.00
Roof	Roof (>= 2*h)	All	29.660	52.000	-0.300	-0.180	+0.18/-0.18	-8.00	8.00

Roof Pressures based upon Ch 27 Pt1:

Κ.,

 q_{ip}

- = Start Dist from Windward Edge Start
- = Smallest Coefficient Magnitude C_{p_min}

 $Press_{Min} = q_h \cdot G \cdot C_{p_min} - q_{ip} \cdot (+GC_{pi}) \quad Eq \quad 27.3-1$

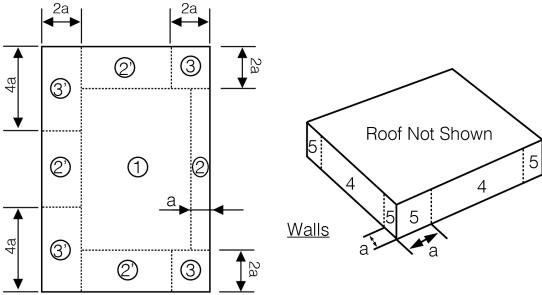
• No reduction factor was applicable

• The smaller uplift pressures due to Cp_Min can become critical when wind is combined

With roof live load or snow load; load combinations are given in ASCE 7
 Positive Pressures Act TOWARD Surface and Negative Pressures Act AWAY from Surface

Reaction Summary Wind (MWFRS)													
Description	Fx	Fy	\mathbf{F}_{z}	M _x	My	Mz							
	Kip	Kip	Kip	k•ft	k•ft	k∙ft							
Normal to Ridge: Walls+Roof +GCPi	0.00	-17.41	-11.44	226.26	0.00	0.00							
Normal to Ridge: Walls Only +GCPi	0.00	-13.07	0.00	131.86	0.00	0.00							
Normal to Ridge: Walls+Roof -GCPi	0.00	-14.78	0.36	164.21	0.00	0.00							
Normal to Ridge: Walls Only -GCP1	1,001 QU	<u>~-14.91</u>	<u> </u>	166.83	~~7.87	x 10.90	\sim						
Normal to Ridge: Walls+Roof Min Pressure	0.00	-19.27	0.00	223.16	0.00	0.00							
Normal to Eave: Walls+Roof +GCPi	0.00	8.82	-11.44	-63.11	0.00	0.00							
Normal to Eave: Walls Only +GCPi	0.00	13.15	0.00	-133.33	0.00	0.00							
Normal to Eave: Walls+Roof -GCPi	0.00	11.45	0.36	-100.99	0.00	0.00							
Normal to Eave: Walls Only -GCPi	0.00	11.31	0.00	-98.37	0.00	0.00							
Normal to Eave: Walls+Roof Min Pressure	0.00	15.80	0.00	-157.32	0.00	0.00							
Parallel to Ridge: Walls+Roof +GCPi	-4.63	0.75	-8.49	-14.19	-84.43	10.75							
Parallel to Ridge: Walls Only +GCPi	-4.63	3.96	0.00	-75.27	-45.48	-4.00							
Parallel to Ridge: Walls+Roof -GCPi	-4.63	2.26	0.36	-42.93	-45.48	-4.00							
Parallel to Ridge: Walls Only -GCPi	-4.63	2.12	0.00	-40.31	-45.48	-4.00							
Parallel to Ridge: Walls+Roof Min Pressure	-6.69	0.00	0.00	0.00	-64.52	-5.38							

www.eer hecarborary.restencry. ose greater of shear catcurated with or without toor.


* X= Along Building ridge, Y = Normal to Building Ridge, Z = Vertical

* Minimum Pressures applied to a vertical plane normal to wind.

* Reactions calculated about the geometric center of the footprint nonte and Cladding (CSC) Zone Summary per Ch 30 Pt 1.

Component	s a	and CL	ado	ung	(C & C)	zone	Sui	mary p	er	Ch	30		
h/W	=	Ratio	of	mean	roof	height	to	buildi	ng	widt	h	\mathcal{m}	٢

h/L	=	Ratio of mean roof height to building length	Controlling lateral	=	0.285
h	=	Mean structure height		=	14.830 ft
h _{grade}	=	Elevation from Grade to Top of Structure	{ wind design load - ٢	=	14.830 ft
K _h	=	2.01•(15/Z _g) ^{2/a} [Tbl 26.10-1]	Compare with	=	0.575
K _{zt}	=	No Topographic feature specified	ע י	=	1.000
K _d	=	Wind Directionality Factor per Tbl 26.6-1	Seismic forces	=	0.85
+GC _{pi}	=	Enclosed Positive Internal Pressure Tbl 26.13-1	(mmmmm)	=	+0.18
-GC _{pi}	=	Enclosed Negative Internal Pressure Tbl 26.13-1		=	-0.18
LF	=	Load Factor based upon STRENGTH Design		=	1.00
Ke	=	Ground Elev Factor [Tbl 26.9-1]		=	0.983
\mathbf{q}_{h}	=	0.00256•K _h •K _{zt} •K _d •K _e •V ² *LF [Eq 26.10-1]		=	11.80 psf
LHD	=	Least Horizontal Dimension: Min(B, L)		=	22.000 ft
a ₁	=	Min(0.1•LHD, 0.4•h)		=	2.200 ft
a	=	Max(a1, 0.04•LHD, 3 ft [0.9 m])		=	3.000 ft
h/B	=	Ratio of mean roof height to least horizontal dim	n: h/B	=	0.674

Wind Pressure	Summary	for C&C	Zones	based	Upon	Areas	Ch 30	Ρt	1	(Table	1	of	2)
P	All wind	pressur	es inc	lude a	Load	Factor	(LF)	of	1.	0			

Zone	Figure	Pos A \leq 10 ft ²	Neg A \leq 10 ft ²	Pos A = 20 ft^2	Neg A = 20 ft^2	Pos A = 50 ft^2	Neg A = 50 ft^2
		psf	psf	psf	psf	psf	psf
1	30.3-5A	16.00	-16.00	16.00	-16.00	16.00	-16.00
2	30.3-5A	16.00	-17.47	16.00	-17.11	16.00	-16.64
2'	30.3-5A	16.00	-21.01	16.00	-20.65	16.00	-20.18
3	30.3-5A	16.00	-23.37	16.00	-21.24	16.00	-18.42
3'	30.3-5A	16.00	-32.81	16.00	-29.26	16.00	-24.56
4	30.3-1	16.00	-16.00	16.00	-16.00	16.00	-16.00
5	30.3-1	16.00	-17.00	16.00	-16.00	16.00	-16.00

Wind Pressure Summary for C&C Zones based Upon Areas Ch 30 Pt 1 (Table 2 of 2) All wind pressures include a Load Factor (LF) of 1.0

Zone	Figure	Pos A = 100 ft^2	Neg A = 100 ft^2	Pos A = 200 ft^2	Neg A = 200 ft^2	Pos A > 500 ft ²	Neg A > 500 ft ²
		psf	psf	psf	psf	psf	psf
1	30.3-5A	16.00	-16.00	16.00	-16.00	16.00	-16.00
2	30.3-5A	16.00	-16.29	16.00	-16.29	16.00	-16.29
2'	30.3-5A	16.00	-19.83	16.00	-19.83	16.00	-19.83
3	30.3-5A	16.00	-16.29	16.00	-16.29	16.00	-16.29
3'	30.3-5A	16.00	-21.01	16.00	-21.01	16.00	-21.01
4	30.3-1	16.00	-16.00	16.00	-16.00	16.00	-16.00
5	30.3-1	16.00	-16.00	16.00	-16.00	16.00	-16.00

* A is effective wind area for C&C: Span Length * Effective Width

* Effective width need not be less than 1/3 of the span length

* Maximum and minimum values of pressure shown.

* + Pressures acting toward surface, - Pressures acting away from surface * Per § 30.2.2 the Minimum Pressure for C&C is 16.00 psf [0.766 kPa] {Includes LF} * Interpolation can be used for values of A that are between those values shown.

Calculation of Seismic Response Coefficient, Cs

(ASCE 7-16, Chapter 11 and 12, Equivalent Lateral Force "ELF" Procedure)

BUILDING INFORMATION :

Risk Category :	Ш	(ASCE 7-16 Table 1.5-1 & IBC Table 1604.5)
Importance Factor, le :	1.00	(ASCE 7-16 Table 1.5-2)
Response Modification Factor, R :	6.5	(ASCE 7-16 Table 12.2-1)
Overstrength Factor, Ω :	3	(ASCE 7-16 Table 12.2-1)
Deflection Amplification Factor, Cd :	4	(ASCE 7-16 Table 12.2-1)
-		

SITE INFO & SEISMIC ACCELERATIONS :

Site Class :	D (default)	(IBC Section 1613.2.2, "D" Assumed or per Geotech.)
Ss :	1.257	
S1 :	0.434	
Fv:	1.866	(ASCE 7-16 TABLE 11.4-2)
Sds :	1.006	
Sd1:	0.540	(Eqn 11.4-2 & 11.4-4)
Seismic Design Category :	D	(ASCE 7-16 TABLE 11.6-1 & 11.6-2)

PERIOD DETERMINATION :

Ct :	0.02	(ASCE 7-16 Table 12.8-2)
x :	0.75	(ASCE 7-16 Table 12.8-2)
hn (ft) :	14.67	
Ta = Ct*hn^x :	0.150	(Eqn 12.8-7)
Ts = (Sd1/Sds) :	0.537	(ASCE 7-16 11.4.6)
1.5*Ts :	0.805	

CALCULATE Cs :

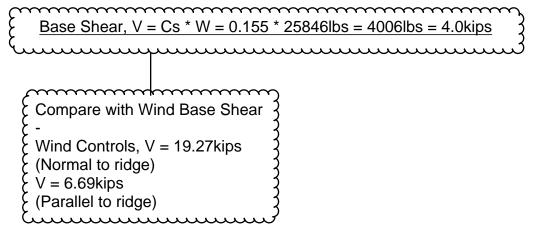
Cs = Sds/(R/I) :	0.155	(Eqn 12.8-2)					
Max Cs = Sd1/(Ta*(R/I)):	0.554	(Eqn 12.8-3)					
Min Cs = 0.044*Sds*I > 0.01 :	0.044	(Eqn 12.8-5)					
Min Cs = 0.5*S1/(R/I) :	0.000	(Eqn 12.8-6, for S1 > 0.6g)					
Minimum Cs :	0.044						
		•					
Cs :	0.155						
Base Shear, V = Cs * W : 0.155 * W							
		•					

SITE CLASS CHECKS :

Check ASCE-16, 11.4.8, Site Class F :	Site Response Analysis Not Required	Ground Motion Hazard Analysis <u>is</u>
Check ASCE-16, 11.4.8, Site Class E :	Ground Motion Hazard Analysis Not Required	Required for seismically isolated structures or structures with damping
Check ASCE-16, 11.4.8, Site Class D, Exception 2:		systems on sites with S1 >/= 0.6
LACEPTION 2.	Analysis Not Required	

Seismic Weight

-Roof	
Metal Roofing	1.5 psf
Wood Sheathing	2.2 psf
Metal Truss Framing	5.0 psf
Insulation	2.5 psf
Mech.	1.5 psf
Misc.	1.8 psf
Total	13 psf
-Exterior Walls	
Metal Siding	1.5 psf
Wood Sheathing	1.5 psf


Metal Siding	1.5 psf
Wood Sheathing	1.5 psf
Gyp Board	2.8 psf
Insulation	2.2 psf
Metal Stud Framing	2.0 psf
Total	10 psf

Seismic Base Shear

Roof: (52ft x 22ft) x (13psf) = 14872lbs

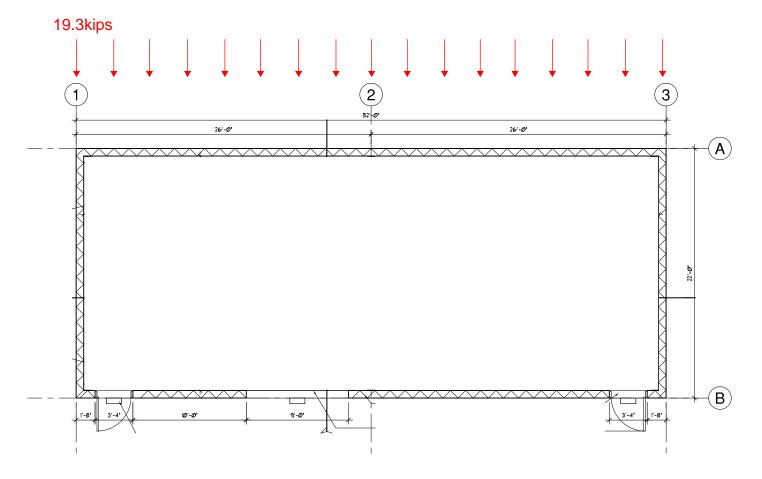
Exterior Walls: perimeter = $(2 \times 52ft) + (2 \times 22ft) = 148ft$ wall height = 14.67ft (148ft x 14.67ft/2) x (10psf) = 10856lbs

Seismic Weight = 14872lbs + 10974lbs = 25846lbs

BSE B rienen S tructural E ngineers, P.S.

Diaphragm Design

-Diphragm Forces


Normal to Ridge: V = 19.3kips (LRFD) = 0.6*19.3kips = 11.6kips (ASD)

Distributed Wind Load w = 11.6kips / 52ft = 223lbs /ft

- 2 walls ea end of diaphragm Force to each wall = (11.6kips) / 2 = 5.8kips ea

-Max Diaphragm shear @ gridlines 1 & 2 v = (5.8kips) / 22ft = 0.264kips/ft = 264 lbs/ft

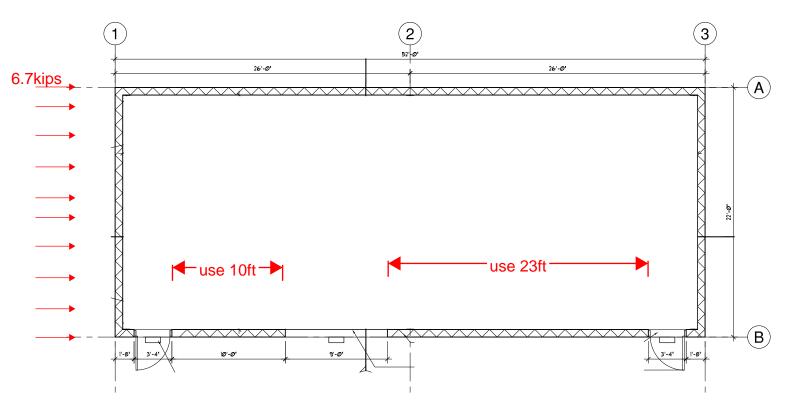
-Max chord Forces @ gridlines A & B Mmax = $(223lbs/ft) * (52ft)^2 / 8 = 89232 lb-ft$ Total Chord Force, T/C = (89232lb-ft) / 22ft = 4056lbsLinear chord force = 4056lbs / 52ft = 78lbs/ft

BSE B rienen S tructural E ngineers, P.S.

Diaphragm Design

-Diphragm Forces

Parallel to Ridge: V = 6.7kips (LRFD) = 0.6*6.7kips = 4.0kips (ASD)


Distributed Wind Load w = 4.0kips / 22ft = 183lbs/ft

- 2 walls ea end of diaphragm Force to each wall = (4.0kips) / 2 =2.0kips ea

-Max Diaphragm shear @ gridline B v = (2.0kips) / 52ft = 0.039kips/ft = 39 lbs/ft

-Max Diaphragm shear @ gridline A v = (2.0 kips) / (10 ft + 23 ft) = 0.061 kips/ft = 61 lbs/ft

-Max chord Forces @ gridlines 1&2 Mmax = $(61lbs/ft) * (22ft)^2 / 8 = 3691 lb-ft$ Total Chord Force, T/C = (3691lb-ft) / 52ft = 71lbsLinear chord force = 71lbs / (9ft+24ft) = 2lbs/ft

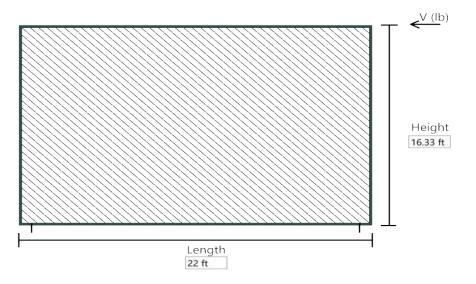
Diaphragm Design

-Diphragm Forces

United States and Mexico (lb/ft)									
		Blocked				Unblocked			
	Thick- ness (in.)	Screw spacing at diaphragm boundary edges and at all continuous panel edges (in.)				Screws spaced maximum of 6 in. on all supported edges			
Sheathing		6	4	2.5	2	Load			
		Screw spacing at all other panel edges (in.)				perpendicular to unblocked edges and continuous	All other configurations		
		6	6	4	3	panel joints			
	3/8	768	1022	1660	2045	685	510		
Structural I	7/16	768	1127	1800	2255	755	565		
	15/32	925	1232	1970	2465	825	615		
C-D, C-C and other graded wood structural panels	3/8	690	920	1470	1840	615	460		
	7/16	760	1015	1620	2030	680	505		
	15/32	832	1110	1770	2215	740	555		

Table F2.4-1 Nominal Shear Strength (v_n) per Unit Length for Diaphragms Sheathed With Wood Structural Panel Sheathing ^{1,2} United States and Mexico (lb/ft)

1. For SI: 1" = 25.4 mm, 1 ft = 0.305 m, 1 lb = 4.45 N


 For diaphragms sheathed with wood structural panels, tabulated R_n values are applicable for short-term load duration (seismic loads).

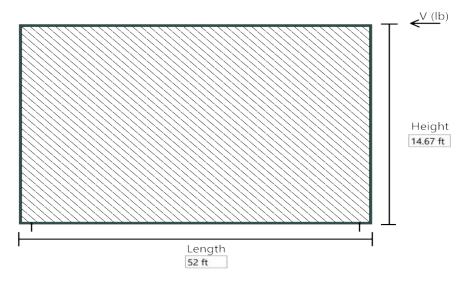
> Using 15/32" min thickness OSB @ foof w/ #8 SMS @ 6"oc at panel edges-825lb/ft / W = 330plf > 264lb/ft [OK]

> >

Project Name: Centeris Model: Gridline - 1&2 Code: AISI S100-16

Simple Shear Wall design is intended for use with element and component design or other designs where special seismic considerations are not required. For design of building LFRS shear walls, use CFS Designer's LFRS Shear Wall design module.

Chord Data

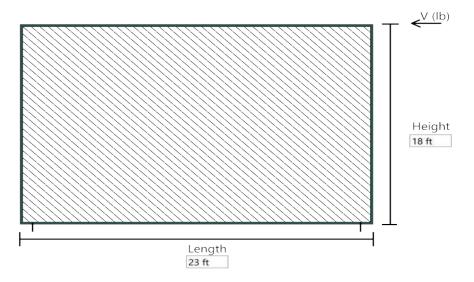

Chord Data		Load Data (Factored ASD)			
Chords: 600S162-54 (50) Back-To-Back AISI S100-16 Chord Fastener Spacing, a = Shearwall Chord Force = Includes Anchor Offset =	12 in 4353 lb 2.0 in	V(wind) = V(seismic) = <u>Sheathing Data</u> Shear values per IBC 2018 (AISI S240-15	5820 lb 1400 lb		
Additional Axial Loads = Total Axial Loads = KyLy, KtLt for Axial Capacity = Maximum KL/r =	1000 lb 5353 lb Sheathed 86	See AISI S240-15 for additional information Stud Thickness = 54 mils			
Allowable Axial Load = Input Chord Moment =	6444 lb 0 ft-lb	Sheathing: 7/16 Rated Sheathing (OSB) 1 side Fasteners: 6-inches oc edges, 12-inches oc field			
Flexural Bracing = Distortional Buckling Inputs for Moment and Axial K-phi = Lm =	Full 0 lb-in/in None	Screws attaching panels to CFS steel framing shall comply v ASTM C1513. Also, for framing members that are 54 mil and thinner, use minimum #8. For 68 mil and thicker, use min. #			
Allowable Moment = Chord Interaction =	3860 ft-lb 0.831	Aspect Ratio = Allowable Aspect Ratio for Seismic =	0.74:1 2.00:1		
Overturning Uplift Data Anchor offset Each End = Uplift at Anchor - Wind = Uplift at Anchor - Seismic = Holdown Data Holdown: S/HDU11 - 54	2.0 in 4353 lb 1047 lb	Allowable Aspect Ratio for Wind = Unit Shear (Wind) = Allowable Unit Shear (Wind) = Unit Shear (Seismic) = Allowable Unit Shear (Seismic) =	2.00:1 265 lb/ft 455 lb/ft 64 lb/ft 455 lb/ft		
Tension Force: 4353 lb					

Allowable Tension: 7665 lb

Interaction: 0.57

Project Name: Centeris Model: Gridline - A Code: AISI S100-16

Simple Shear Wall design is intended for use with element and component design or other designs where special seismic considerations are not required. For design of building LFRS shear walls, use CFS Designer's LFRS Shear Wall design module.


Chord Data

Chord Data		Load Data (Factored ASD)	
Chords: 600S162-54 (50) Back-To-Back AISI S100-16 Chord Fastener Spacing, a = Shearwall Chord Force = Includes Anchor Offset = Additional Axial Loads = Total Axial Loads = KyLy, KtLt for Axial Capacity = Maximum KL/r = Allowable Axial Load = Input Chord Moment =	12 in 577 lb 2.0 in 0 lb 577 lb Sheathed 78 6444 lb 0 ft-lb		
Flexural Bracing = Distortional Buckling Inputs for Moment and Axial K-phi = Lm =	Full 0 lb-in/in None	Screws attaching panels to CFS stee ASTM C1513. Also, for framing mem thinner, use minimum #8. For 68 mi	bers that are 54 mil and
Allowable Moment = Chord Interaction = Overturning Uplift Data Anchor offset Each End = Uplift at Anchor - Wind = Uplift at Anchor - Seismic = Holdown Data Holdown: S/HDU4 - 54	3860 ft-lb 0.090 2.0 in 577 lb 396 lb	Aspect Ratio = Allowable Aspect Ratio for Seismic = Allowable Aspect Ratio for Wind = Unit Shear (Wind) = Allowable Unit Shear (Wind) = Unit Shear (Seismic) = Allowable Unit Shear (Seismic) =	0.28:1 2.00:1 2.00:1 39 lb/ft 455 lb/ft 27 lb/ft 455 lb/ft
Tension Force: 577 lb Allowable Tension: 2550 lb			

Interaction: 0.23

Project Name: Centeris Model: Gridline - B(1) Code: AISI S100-16

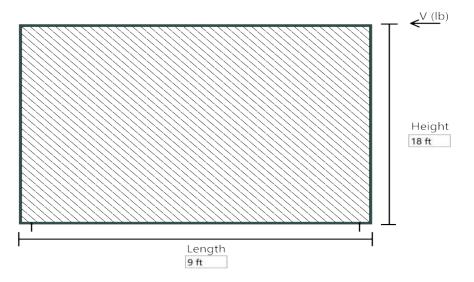
Simple Shear Wall design is intended for use with element and component design or other designs where special seismic considerations are not required. For design of building LFRS shear walls, use CFS Designer's LFRS Shear Wall design module.

Chord Data

Chords: 600S162-54 (50) Single AISI S100-16

Shearwall Chord Force = Includes Anchor Offset = Additional Axial Loads = Total Axial Loads = KyLy, KtLt for Axial Capacity = Maximum KL/r = Allowable Axial Load = Input Chord Moment =	1170 lb 2.0 in 0 lb 1170 lb Sheathed 95 3222 lb 0 ft-lb	:
Flexural Bracing =	Full	
Distortional Buckling Inputs for Moment and Axial K-phi = Lm =	0 lb-in/in None	ł
Allowable Moment = Chord Interaction =	3860 ft-lb 0.363	
Overturning Uplift Data		1
Anchor offset Each End =	2.0 in	
Uplift at Anchor - Wind =	1170 lb	1
Uplift at Anchor - Seismic =	803 lb	l
<u>Holdown Data</u>		/
Holdown: S/HDU4 - 54		

Holdown: S/HDU4 - 54
Tension Force: 1170 lb
Allowable Tension: 2550 lb
Interaction: 0.46


Load Data	(Factored ASD)	
V(wind) =		1484 lb
V(seismic) =		1018 lb
Sheathing D	<u>ata</u>	
	per IBC 2018 (AISI S2)-15 for additional info	,
0	s = 54 mils 16 Rated Sheathing (0 inches oc edges, 12-ir	,
Screws atta	ching panels to Cl	FS steel framing

Screws attaching panels to CFS steel framing shall comply with ASTM C1513. Also, for framing members that are 54 mil and thinner, use minimum #8. For 68 mil and thicker, use min. #10.

Aspect Ratio =	0.78:1
Allowable Aspect Ratio for Seismic =	2.00:1
Allowable Aspect Ratio for Wind =	2.00:1
Unit Shear (Wind) =	65 lb/ft
Allowable Unit Shear (Wind) =	455 lb/ft
Unit Shear (Seismic) =	44 lb/ft
Allowable Unit Shear (Seismic) =	455 lb/ft

Project Name: Centeris Model: Gridline - B(2) Code: AISI S100-16

Simple Shear Wall design is intended for use with element and component design or other designs where special seismic considerations are not required. For design of building LFRS shear walls, use CFS Designer's LFRS Shear Wall design module.

Chord Data

Chords: 600S162-54 (50) Single AISI S100-16

Shearwall Chord Force = Includes Anchor Offset = Additional Axial Loads = Total Axial Loads = KyLy, KtLt for Axial Capacity = Maximum KL/r = Allowable Axial Load =	1133 lb 2.0 in 0 lb 1133 lb Sheathed 95 3222 lb
Input Chord Moment =	0 ft-lb
Flexural Bracing =	Full
Distortional Buckling Inputs for Moment and Axial	
K-phi =	0 lb-in/in
Lm =	None
Allowable Moment =	3860 ft-lb
Chord Interaction =	0.352
Overturning Uplift Data	
Anchor offset Fach End =	2.0 in
Uplift at Anchor - Wind =	1133 lb
Uplift at Anchor - Seismic =	776 lb
Holdown Data	
Holdown: S/HDU4 - 54	

Holdown: S/HDU4 - 54
Tension Force: 1133 lb
Allowable Tension: 2550 lb
Interaction: 0.44

Load Data	(Factored AS)
V(wind) =		556 lb
V(seismic) =		381 lb
Sheathing Da	<u>ita</u>	
	er IBC 2018 (AIS 15 for additional	,
0	6 Rated Sheathir	ng (OSB) 1 side 12-inches oc field
Screws attac	hing panels to	o CFS steel framin

Screws attaching panels to CFS steel framing shall comply with ASTM C1513. Also, for framing members that are 54 mil and thinner, use minimum #8. For 68 mil and thicker, use min. #10.

Aspect Ratio =	2.00:1
Allowable Aspect Ratio for Seismic =	2.00:1
Allowable Aspect Ratio for Wind =	2.00:1
Unit Shear (Wind) =	62 lb/ft
Allowable Unit Shear (Wind) =	455 lb/ft
Unit Shear (Seismic) =	42 lb/ft
Allowable Unit Shear (Seismic) =	455 lb/ft

Project:

Date:

Brienen Structural Engineers, P.S.

Shear Transfer - Bot Track Anchors BOT TRACK D ABI SIDO - Section E3 AUCHOR Track Hickness, t= 54 mil BOLT Fy = 50 ts.; Fu = 65 ks; Anchor Bolt $\mathscr{G}, D = 0.625''$ $A_{\perp} = 0.31in^2$ ABISDOF3.3.1.1 P. = C*mpxd x txF S2=3.5 $C = 4 - 0.1 \binom{d_k}{k} = 4 - 0.1 \binom{-0.625''}{0.051''} = 2$ mg= 0.75 (w/ washer $D_{n} = (284)(0.75)(0.6.5")(.054")(6.75)$ = 4.67 kips Pn/0 = 4.67 kips / 2.5 = 1.87 kips Try Bolt Hole Deformation AISI SIO E3. 3.2.1 Pn = (4.64 + 1.53) dxtxF = 222 $\alpha = 1.0$ $P_n = (4.64.(1.0) \cdot (.0.54") + 1.53) \cdot 0.675")(.054")(.65+5.)$ = 3.91 kips Pn/2 = 3.91 kips/2.22 = 1.76 kips per-anchor

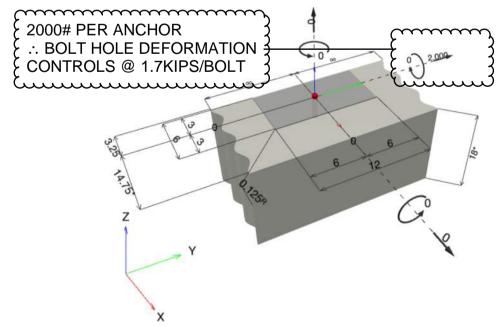
www.bse-ps.com

Company:		Page:	1
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Alt Bot Track Anchor	Date:	2/14/2024
Fastening point:			

Specifier's comments:

Anchor type and diameter:

1 Input data

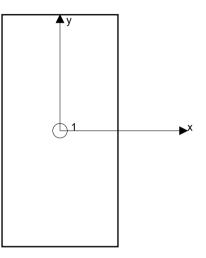

		the state	1	
	11	11		
T	1	<i>111</i>		

Item number:	418078 KH-EZ 5/8"x3 1/2"
Effective embedment depth:	h _{ef,act} = 2.390 in., h _{nom} = 3.250 in.
Material:	Carbon Steel
Evaluation Service Report:	ESR-3027
Issued I Valid:	4/1/2022 12/1/2023
Proof:	Design Method ACI 318-19 / Mech
Stand-off installation:	e _b = 0.000 in. (no stand-off); t = 0.125 in.
Anchor plate ^R :	$I_x \times I_y \times t = 6.000$ in. x 12.000 in. x 0.125 in.; (Recommended plate thickness: not calculated)
Profile:	no profile
Base material:	cracked concrete, 2500, f_c ' = 2,500 psi; h = 18.000 in.
Installation:	hammer drilled hole, Installation condition: Dry
Reinforcement:	tension: not present, shear: not present; no supplemental splitting reinforcement present
	edge reinforcement: none or < No. 4 bar

KWIK HUS-EZ (KH-EZ) 5/8 (3 1/4)

 $^{\rm R}$ - The anchor calculation is based on a rigid anchor plate assumption.

Geometry [in.] & Loading [lb, in.lb]


Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2024 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.com				
Company:		Page:		2
Address:		Specifier:		
Phone I Fax:		E-Mail:		
Design:	Alt Bot Track Anchor	Date:		2/14/2024
Fastening point:				
1.1 Design result	s			
Case	Description	Forces [lb] / Moments [in.lb]	Seismic	Max. Util. Anchor [%]
1	Combination 1	$N = 0; V_x = 0; V_y = 2,000;$	no	99
		$M_x = 0; M_y = 0; M_z = 0;$		

2 Load case/Resulting anchor forces

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	0	2,000	0	2,000
nax. concrete c esulting tensior	compressive strain: compressive stress: n force in (x/y)=(0.00 ession force in (x/y)=	- 00/0.000): 0	[‰] [psi] [lb] [lb]	

Anchor forces are calculated based on the assumption of a rigid anchor plate.

3 Tension load

	Load N _{ua} [lb]	Capacity ଦ N _n [lb]	Utilization $\beta_N = N_{ua} / \Phi N_n$	Status
Steel Strength*	N/A	N/A	N/A	N/A
Pullout Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Failure**	N/A	N/A	N/A	N/A

* highest loaded anchor **anchor group (anchors in tension)

www.hilti.com

Company: Address:		Page: Specifier:	3
Phone I Fax:		É-Mail:	
Design: Fastening point:	Alt Bot Track Anchor	Date:	2/14/2024

4 Shear load

	Load V _{ua} [lb]	Capacity ଦ V _n [lb]	Utilization $\beta_v = V_{ua} / \Phi V_n$	Status
Steel Strength*	2,000	6,732	30	ОК
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength**	2,000	2,037	99	OK
Concrete edge failure in direction x-**	2,000	2,968	68	OK

* highest loaded anchor **anchor group (relevant anchors)

4.1 Steel Strength

V_{sa}	= ESR value	refer to ICC-ES ESR-3027
	$_{\rm el} \ge V_{\rm ua}$	ACI 318-19 Table 17.5.2

Variables

_{uta} [psi]
90,180

Calculations

V _{sa} [lb]	
11,220	

Results

V _{sa} [lb]	∲ _{steel}	♦ V _{sa} [lb]	V _{ua} [lb]
11,220	0.600	6,732	2,000

www.hilti.com

Company:		Page:	4
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Alt Bot Track Anchor	Date:	2/14/2024
Fastening point:			

4.2 Pryout Strength

$V_{cp} = k_{cp} \left[\left(\frac{A_{Nc}}{A_{Nc0}} \right) \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b} \right]$	ACI 318-19 Eq. (17.7.3.1a)
$\phi V_{cp} \ge V_{ua}$	ACI 318-19 Table 17.5.2
A _{Nc} see ACI 318-19, Section 17.6.2.1, Fig. R 17.6.2.1(b)	
$A_{\rm Nc0} = 9 h_{\rm ef}^2$	ACI 318-19 Eq. (17.6.2.1.4)
$\Psi_{ed,N} = 0.7 + 0.3 \left(\frac{c_{a,min}}{1.5h_{ef}} \right) \le 1.0$	ACI 318-19 Eq. (17.6.2.4.1b)
$\Psi_{cp,N} = MAX \left(\frac{c_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}} \right) \le 1.0$	ACI 318-19 Eq. (17.6.2.6.1b)
$N_{b} = k_{c} \lambda_{a} \sqrt{f_{c}^{a}} h_{ef}^{1.5}$	ACI 318-19 Eq. (17.6.2.2.1)

Variables

k _{cp}	h _{ef} [in.]	c _{a,min} [in.]	$\Psi_{c,N}$	
1	2.390	3.250	1.000	
c _{ac} [in.]	k _c	λ _a	ŕ _c [psi]	
3.630	17	1.000	2,500	
			-	_

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	$\psi_{\text{ ed},\text{N}}$	$\psi_{\text{cp},\text{N}}$	N _b [lb]
49.01	51.41	0.972	1.000	3,141
Results				
V _{cp} [lb]	ϕ_{concrete}	φ V _{cp} [lb]	V _{ua} [lb]	
2,910	0.700	2,037	2,000	

www.hilti.com

Company:		Page:	5
Address:		Specifier:	
Phone Fax:		E-Mail:	
Design:	Alt Bot Track Anchor	Date:	2/14/2024
Fastening point:			

4.3 Concrete edge failure in direction x-

$V_{cb} = \left(\frac{A_{Vc}}{A_{Vc0}}\right) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} \Psi_{parallel,V} V_{b}$	ACI 318-19 Eq. (17.7.2.1a)
$\phi V_{cb} \ge V_{ua}$	ACI 318-19 Table 17.5.2
A _{vc} see ACI 318-19, Section 17.7.2.1, Fig. R 17.7.2.1(b)	
$A_{Vc0} = 4.5 c_{a1}^2$	ACI 318-19 Eq. (17.7.2.1.3)
$\Psi_{\text{ed},V} = 0.7 + 0.3 \left(\frac{c_{a2}}{1.5 c_{a1}} \right) \le 1.0$	ACI 318-19 Eq. (17.7.2.4.1b)
$ \psi_{h,V} = \sqrt{\frac{1.5c_{a1}}{h_a}} \ge 1.0 $	ACI 318-19 Eq. (17.7.2.6.1)
$V_{b} = \left(7 \left(\frac{I_{e}}{d_{a}}\right)^{0.2} \sqrt{d_{a}}\right) \lambda_{a} \sqrt{f_{c}} c_{a1}^{1.5}$	ACI 318-19 Eq. (17.7.2.2.1a)

Variables

c _{a1} [in.]	c _{a2} [in.]	$\Psi_{c,V}$	h _a [in.]	l _e [in.]
3.250	-	1.000	18.000	2.390
λ_{a}	d _a [in.]	f _c [psi]	$\psi_{\text{parallel},V}$	
1.000	0.625	2,500	2.000	

Calculations

A _{vc} [in. ²]	A _{Vc0} [in. ²]	$\psi_{\text{ed},\text{V}}$	$\Psi_{h,V}$	V _b [lb]
47.53	47.53	1.000	1.000	2,120
Results				
V _{cb} [lb]	$\phi_{concrete}$	φ V _{cb} [lb]	V _{ua} [lb]	
4,240	0.700	2,968	2,000	-

5 Warnings

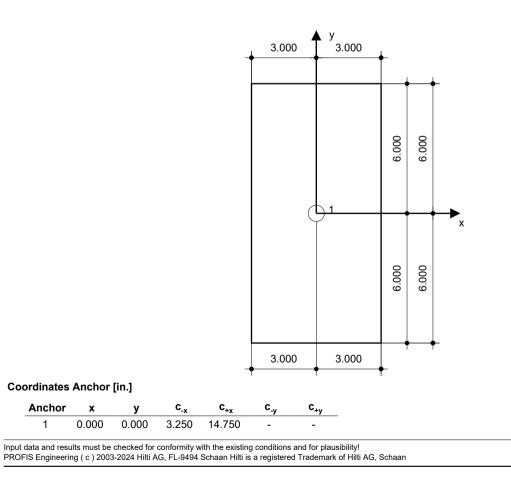
- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered - the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout or pryout strength governs.
- Refer to the manufacturer's product literature for cleaning and installation instructions.
- For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- Hilti post-installed anchors shall be installed in accordance with the Hilti Manufacturer's Printed Installation Instructions (MPII). Reference ACI 318-19, Section 26.7.

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2024 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.com			
Company:		Page:	6
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Alt Bot Track Anchor	Date:	2/14/2024
Fastening point:			

Fastening meets the design criteria!

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2024 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan


www.hilti.com			
Company: Address: Phone I Fax:		Page: Specifier: E-Mail:	7
Design: Fastening point:	Alt Bot Track Anchor	Date:	2/14/2024
6 Installation da	ata		
		Anchor type and diameter: KWIK 1/4)	HUS-EZ (KH-EZ) 5/8 (3
Profile: no profile		Item number: 418078 KH-EZ 5/8"	x3 1/2"
Hole diameter in the f	ïxture: d _f = 0.750 in.	Maximum installation torque: 1,02	20 in.lb
Plate thickness (input): 0.125 in.	Hole diameter in the base materia	al: 0.625 in.
Recommended plate	thickness: not calculated	Hole depth in the base material: 3	3.625 in.
Drilling method: Ham Cleaning: Manual clea	mer drilled aning of the drilled hole according to instructior	Minimum thickness of the base m	aterial: 5.000 in.

Hilti KH-EZ screw anchor with 3.25 in embedment, 5/8 (3 1/4), Carbon steel, installation per ESR-3027

6.1 Recommended accessories

required.

Drilling	Cleaning	Setting
Suitable Rotary Hammer	 Manual blow-out pump 	Torque wrench
 Properly sized drill bit 		 Hilti SIW 9-A22 Impact Wrench

www.hilti.com			
Company:		Page:	8
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Alt Bot Track Anchor	Date:	2/14/2024
Fastening point:			

7 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each
 case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data
 or programs, arising from a culpable breach of duty by you.

Vertical Design

Building Weights

Wind Load

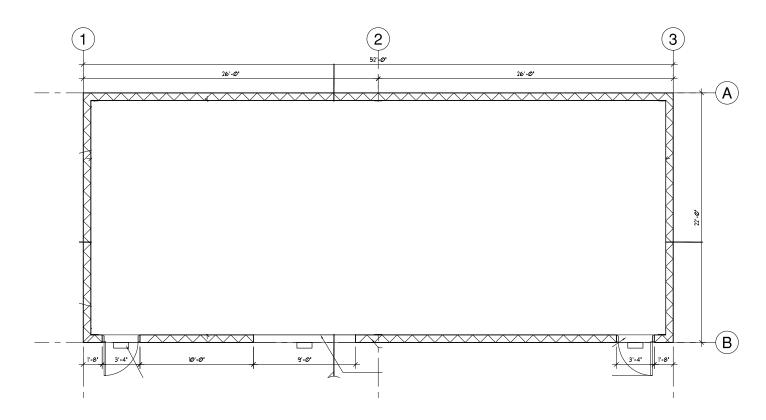
Metal Stud Framing

Total Dead Load

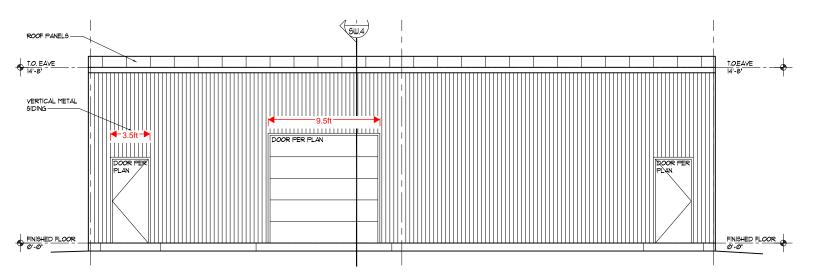
Lateral Live Load

-Roof	
Wood Sheathing Metal Joist Framing Insulation Gypsum Sheathing Mech. <u>Misc.</u> Total Dead Load	2.2 psf 2.8 psf 2.5 psf 2.2 psf 1.5 psf 1.8 psf 13 psf
Total Live Load	20 psf
Total Snow Load	25 psf
-Exterior Walls	
Metal Siding Wood Sheathing Gyp Board Insulation	1.5 psf 1.5 psf 2.8 psf 2.2 psf

2.0 psf


10 psf

5 psf


16 psf

Building Plan

Building Elevation

Project Name: Centeris Model: C&C Wind Code: ASCE 7-16 Page 1 of 1 Date: 03/08/2024 Simpson Strong-Tie® CFS Designer™ 5.2.3.0

ASCE7-16 Figure 30.3-5A

WIND LOAD - ASCE 7-16

98 mph, Exposure B, Mean Roof Height = 16.5 ft

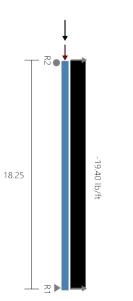
K_{zt} at Base = 1

K_d = 0.85 , Roof Slope 9.46 degrees (2:12)

Enclosed Building, GC_{pi} = 0.18

(Wind Loads Shown are for Alternate Basic Load Combinations Using Allowable Stress Design and are Multiplied by a Factor of 0.6 to convert to ASD)

WALL COMPONENTS AND CLADDING per ASCE7-16 Figure 30.3-1

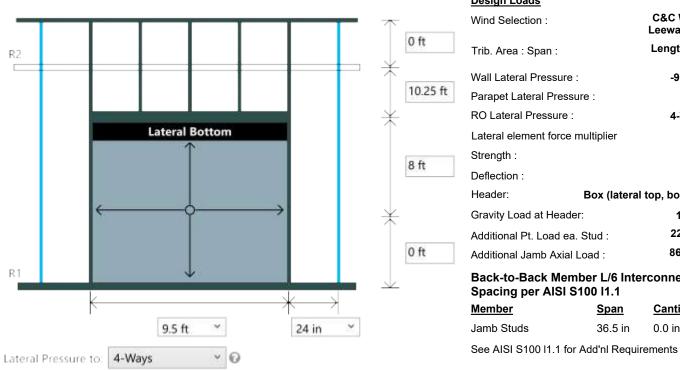

Tributary		<u>GCp</u>	by Zone					
Area (ft2)	Zone 4	4 (+/-)		Zone 5 (+/-)			
10 ft ²	0.90/-	-0.99		0.90/-1.26				
50 ft ²	0.79/-	-0.88		0.79/-1.04				
500 ft ²	0.63/-	-0.72		0.63/-0.72				
Height					Tributary	Wind Press	sures (psf) by 2	<u>Zone ()</u>
z (ft)	Kz	K _{zt}	K _e	q _z (psf)	Area (ft2)	Windward (4,5)	Leeward (4)	Leeward (5)
0 - 16.5	0.70	1.00	1.00	14.64	10	9.6	-10.3	-12.6
					50	9.6	-9.6	-10.7
					500	9.6	-9.6	-9.6

ROOF COMPONENTS AND CLADDING - MONOSLOPE ROOF

K_h = 0.70; K_{zt} at roof = 1.00; K_e = 1.00; q_h = 14.64 psf

	Positive Pressure, p (psf)				Negative Pressure, p (psf)			
	A=1	0	A=	100	I	A=10	A=10	00
Zone	GC_{p}	р	GC_p	р	GC_p	р	GC_{p}	р
1	0.30	9.60	0.20	9.60	-1.10	-11.24	-1.10	-11.24
2	0.30	9.60	0.20	9.60	-1.30	-13.00	-1.20	-12.12
3	0.30	9.60	0.20	9.60	-1.80	-17.39	-1.20	-12.12
2'	0.30	9.60	0.20	9.60	-1.60	-15.64	-1.50	-14.76
3'	0.30	9.60	0.20	9.60	-2.60	-24.42	-1.60	-15.64

Project Name: Centeris Model: 18'-3" Bearing Wall Code: AISI S100-16


Simpson Strong-Tie® CFS Designer™ 5.2.3.0

Section :	600S162-54	4 (50 ks	si) @ 24" o.	c. Single C	Stud (pund	ched)
Maxo =	2313.4 ft-lb		Va = 2822.	9 lb	I = 2.86	6 in^4
Wind Sele	ection: C&C V	Vind, L	eeward (5)			
Tributary /	Area: Span: I	_ength [,]	^2/3			
Loads hav	ve not been r	nodifie	d for strengt	h checks		
Loads hav	e been multi	iplied b	y 0.70 for d	eflection ca	lculations	
Bridaina	Connector	s - Des	sian Metho	od =AISI S	100	
	Axia		Flexual,			Stress
Span	KyLy, KtLt		· •		connector	Ratio
Span	48.0", 4	48.0"	48.0", 219	9.0" LSU	BH3.25 (M	lin) 0.36
Web Crip	opling	D				
		Bear	ing Pa	Μ		
Support	Load (lb)	(in)	(lb)	(ft-lbs)	Max Int.	Stiffener?
R2	-177.03	1.00	598.9	0.0	0.15	NO
R1	-177.03	1.00	598.9	0.0	0.15	NO
"*" after s	upport meai	ns pun	ched near	support		
Gravity L	.oad					
Туре	Load (lb)					
Uniform	20.00plf (\$	Span)				
P1y	857.00lb (a) 18.2	5ft			
	•	-				

		Code Check	Required	Allowed	Interaction	Notes			
Span		Max. Axial, lbs	1222.0(c)	4458.1(c)	27%	KΦ=0.00 lb-in/in Max	KL/r = 97		
		Max. Shear, lbs	177.0	1947.4	9%	Shear (Punched)			
Ν	/lax. Momer	nt (MaFy, Ma-dist), ft-lbs	807.7	1930.2	42%	Ma-dist (control),ΚΦ=0.00 lb-in/ir			
		Moment Stability, ft-lbs	807.7	2079.7	39%				
		Shear/Moment	0.35	1.00	35%	Shear 0.0, Moment 8	07.7		
		Axial/Moment	0.70	1.00	70%	Axial 1049.4(c), Moment 805.3			
		Deflection Span, in	0.402	meets L/545					
Support	Rx(lb)	Ry(lb)	Simpso	n Strong-Tie Con	nector	Connector Interaction	Anchor Interaction		
R2	-177.0	0.0 By	Others & A	nchorage Designe	d by Engineer	NA	NA		
R1	-177.0	1222.0 By	By Others & Anchorage Designed by Engineer NA						
* Reference	e catalog fo	r connector and anchor	requirement	notes as well as s	crew placemen	t requirements			

Project Name: Centeris Model: Garage Header Code: AISI S100-16

Simpson Strong-Tie® CFS Designer™ 5.2.3.0

Design Loads		
Wind Selection :		C&C Wind, Leeward (5)
Trib. Area : Span :		Length ^{2/3}
Wall Lateral Pressure :		-9.7 psf
Parapet Lateral Pressur	e:	
RO Lateral Pressure :		4-Ways
Lateral element force m	ultiplier	
Strength :		1.0
Deflection :		0.7
Header:	Box (lateral	top, bottom)
Gravity Load at Header	:	10 psf
Additional Pt. Load ea.	Stud :	220 lbs
Additional Jamb Axial L	oad :	865 lbs
Back-to-Back Memb Spacing per AISI S1		rconnection
<u>Member</u>	<u>Span</u>	<u>Cantilever</u>
Jamb Studs	36.5 in	0.0 in

Brace Settings

Members(s)		Flexural Bracing	Axial KyLy	Axial KtLt	Distortional K-Phi(lb-in/in)	Distortional Lm	Interconnection Spacing
600S162-54(50),	Back-To-Back	Full	48 in	48 in	0	None	12 in
800S200-43(33),	Boxed	Full	N/A	N/A	0	None	N/A
600T125-54(50),	Single	Full	N/A	N/A	0	None	N/A
600T125-54(50),	Single	Full	N/A	N/A	0	None	N/A
	600S162-54(50), 800S200-43(33), 600T125-54(50),	Members(s) 600S162-54(50), Back-To-Back 800S200-43(33), Boxed 600T125-54(50), Single 600T125-54(50), Single	Members(s) Bracing 600S162-54(50), Back-To-Back Full 800S200-43(33), Boxed Full 600T125-54(50), Single Full	Members(s) Bracing Axial KyLy 600S162-54(50), Back-To-Back Full 48 in 800S200-43(33), Boxed Full N/A 600T125-54(50), Single Full N/A	Members(s) Bracing Axial KyLy Axial KtLt 600S162-54(50), Back-To-Back Full 48 in 48 in 800S200-43(33), Boxed Full N/A N/A 600T125-54(50), Single Full N/A N/A	Members(s) Bracing Axial KyLy Axial KtLt K-Phi(lb-in/in) 600S162-54(50), Back-To-Back Full 48 in 48 in 0 800S200-43(33), Boxed Full N/A N/A 0 600T125-54(50), Single Full N/A N/A 0	Members(s)BracingAxial KyLyAxial KtLtK-Phi(lb-in/in)Lm600S162-54(50), Back-To-BackFull48 in48 in0None800S200-43(33), BoxedFullN/AN/A0None600T125-54(50), SingleFullN/AN/A0None

Analysis Results	5
------------------	---

Component(s)	Members(s)	Axial Load (lb)	Max KL/r	Max. Moment (ft-lb)		Bottom Reaction (Ib)	Top or End Reaction (lb)
Jamb Studs	600S162-54(50), Back-To-Back	1874.4	97	2286.8	402.3	-508.9	-272.8
Vertical Header	800S200-43(33), Boxed	N/A	N/A	2397.3	1009.4	N/A	1009.4
Lat. Top Head	600T125-54(50), Single	N/A	N/A	560.8	236.1	N/A	236.1
Lat. Bottom Head	600T125-54(50), Single	N/A	N/A	334.2	106.7	N/A	106.7

Design Results							
		Deflection		A + M	V + M		
Component(s)	Members(s)	Span	Parapet	Interaction	Interaction	Web Stiffners	Design OK
Jamb Studs	600S162-54(50), Back-To-Back	L/447	L/0	0.836	0.50	No	Yes
Vertical Header	800S200-43(33), Boxed	L/916	NA	0.56	0.56	R1, R2	Yes
Lat. Top Head	600T125-54(50), Single	L/1182	NA	0.38	0.38	No	Yes
Lat. Bottom Head	600T125-54(50), Single	L/2056	NA	0.23	0.04	No	Yes

Simpson Strong-Tie® Connectors @ Jambs

Support	Rx(lb)	Ry(lb)	Simpson Strong-Tie® Connector	Connector Interaction	Anchor Interaction
R2	-272.81	0.00	By Others & Anchorage Designed by Engineer	NA	NA

Project Name: Centeris Model: Garage Header Code: AISI S100-16

Simpson Strong-Tie® CFS Designer™ 5.2.3.0

R1 -508.95 2136.88 600T125-54 (50) & (2) .157", 1" embed SST PDPA/PDPAT to 45.02 % 82.09 % 4000 nw concrete

* Reference catalog for connector and anchor requirement notes as well as screw placements requirement

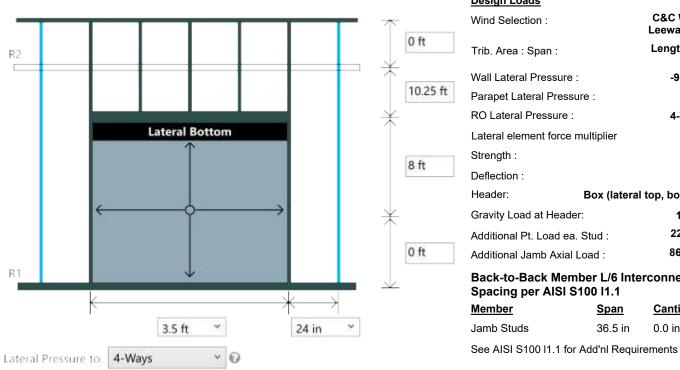
Simpson Strong-Tie® Wall Stud Bridging Connectors @ Jambs

Span/Parapet	Bracing Length(in.)	Design Number of Braces	Pn(lb.)	LSUBH (Min)¹	LSUBH (Max)¹	SUBH (Min)¹	SUBH (Max)¹	MSUBH (Min)¹	MSUBH (Max)¹
Span	Varies	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Notes:

1) Values in parentheses are stress ratios.

2) Bridging connectors are not designed for back-back, box, or built-up sections.


3) Reference <u>www.strongtie.com</u> for latest load data, important information, and general notes.

4) CFS Designer will not select bridging connectors unless all flexural and axial bracing settings are the same.

5) If the bracing length is larger than the span length, bridging connectors are not designed.

Project Name: Centeris Model: Door Header Code: AISI S100-16

Simpson Strong-Tie® CFS Designer™ 5.2.3.0

Design Loads		
Wind Selection :		C&C Wind, Leeward (5)
Trib. Area : Span :		Length ^{2/3}
Wall Lateral Pressure :		-9.7 psf
Parapet Lateral Pressure	:	
RO Lateral Pressure :		4-Ways
Lateral element force mu	ltiplier	
Strength :		1.0
Deflection :		0.7
Header: B	lox (latera	al top, bottom)
Gravity Load at Header:		10 psf
Additional Pt. Load ea. St	tud :	220 lbs
Additional Jamb Axial Loa	ad :	865 lbs
Back-to-Back Membe Spacing per AISI S10		erconnection
Member	<u>Span</u>	<u>Cantilever</u>

36.5 in

0.0 in

Brace Settings

Component(s)	Members(s)	Flexural Bracing	Axial KyLy	Axial KtLt	Distortional K-Phi(lb-in/in)	Distortional Lm	Interconnection Spacing
Jamb Studs	600S162-54(50), Back-To-Back	Full	60 in	60 in	0	None	12 in
Vertical Header	600S200-43(33), Boxed	Full	N/A	N/A	0	None	N/A
Lat. Top Head	600T125-54(50), Single	Full	N/A	N/A	0	None	N/A
Lat. Bottom Head	600T125-54(50), Single	Full	N/A	N/A	0	None	N/A

Analysis Results

Component(s)	Members(s)	Axial Load (lb)	Max KL/r	Max. Moment (ft-lb)	Max. Shear (Ib)	Bottom Reaction (Ib)	Top or End Reaction (lb)
Jamb Studs	600S162-54(50), Back-To-Back	1236.9	97	1093.7	228.6	-243.4	-156.4
Vertical Header	600S200-43(33), Boxed	N/A	N/A	325.4	371.9	N/A	371.9
Lat. Top Head	600T125-54(50), Single	N/A	N/A	76.1	87.0	N/A	87.0
Lat. Bottom Head	600T125-54(50), Single	N/A	N/A	17.3	14.9	N/A	14.9

Design Results							
		Deflection		A + M	V + M		
Component(s)	Members(s)	Span	Parapet	Interaction	Interaction	Web Stiffners	Design OK
Jamb Studs	600S162-54(50), Back-To-Back	L/883	L/0	0.424	0.24	No	Yes
Vertical Header	600S200-43(33), Boxed	L/9265	NA	0.11	0.15	No	Yes
Lat. Top Head	600T125-54(50), Single	L/23630	NA	0.05	0.05	No	Yes
Lat. Bottom Head	600T125-54(50), Single	L/108130	NA	0.01	0.01	No	Yes

Simpson Strong-Tie® Connectors @ Jambs

Support	Rx(lb)	Ry(lb)	Simpson Strong-Tie® Connector	Connector Interaction	Anchor Interaction
R2	-156.41	0.00	By Others & Anchorage Designed by Engineer	NA	NA

Project Name: Centeris Model: Door Header Code: AISI S100-16

Simpson Strong-Tie® CFS Designer™ 5.2.3.0

R1 -243.41 1499.38 600T125-54 (50) & (2) .157", 3/4" embed SST PDPA/PDPAT to 21.53 % 90.15 % 4000 nw concrete

* Reference catalog for connector and anchor requirement notes as well as screw placements requirement

Simpson Strong-Tie® Wall Stud Bridging Connectors @ Jambs

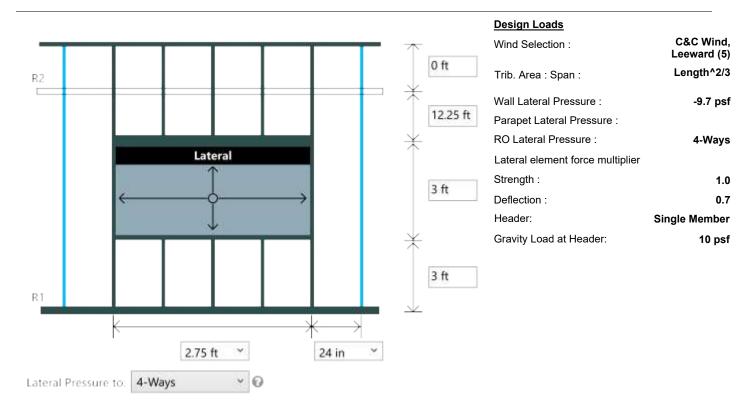
Span/Parapet	Bracing Length(in.)	Design Number of Braces	Pn(lb.)	LSUBH (Min)¹	LSUBH (Max) ¹	SUBH (Min)¹	SUBH (Max)¹	MSUBH (Min)¹	MSUBH (Max)¹
Span	Varies	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Notes:

1) Values in parentheses are stress ratios.

2) Bridging connectors are not designed for back-back, box, or built-up sections.

3) Reference <u>www.strongtie.com</u> for latest load data, important information, and general notes.


4) CFS Designer will not select bridging connectors unless all flexural and axial bracing settings are the same.

5) If the bracing length is larger than the span length, bridging connectors are not designed.

Project Name: Centeris Model: Louver Opening Code: AISI S100-16

Page 1 of 2 Date: 03/08/2024

Simpson Strong-Tie® CFS Designer™ 5.2.3.0

Brace Settings

Component(s)	Members(s)	Flexural Bracing	Axial KyLy	Axial	KtLt	Distortion K-Phi(lb-i				rconnection cing
Jamb Studs	600S162-54(50), Single	Full	60 in	60 in		0	N	one	N/A	
Vertical Header	600S162-43(33), Y-Y Axis	Full	N/A	N/A		0	N	one	N/A	
Lateral Header	600S162-43(33), Single	Full	N/A	N/A		0	Ν	one	N/A	
Sill	600T125-54(50), Single	Full	N/A	N/A		0	Ν	one	N/A	
<u>Analysis Resu</u>	lts									
Component(s)	Members(s)		Axial Load (lb)	Max KL/r		x. Moment lb)	Max. Shear (Bottom (Ib) Reaction	(lb)	Top or End Reaction (lb)
Jamb Studs	600S162-54(50), Single		410.9	105	846	6.6	190.2	-190.2		-128.5
Vertical Header	600S162-43(33), Y-Y Axis		N/A	N/A	11:	5.8	168.4	N/A		168.4
Lateral Header	600S162-43(33), Single		N/A	N/A	64.	.6	90.9	N/A		90.9
Sill	600T125-54(50), Single		N/A	N/A	22.	2	29.2	N/A		29.2
Design Results	2	De	eflection		A + M	v	⊦M			
Component(s)	Members(s)	Span	Parape	t	Intera	ction Int	eraction	Web Stiffne	rs	Design OK
Jamb Studs	600S162-54(50), Single	L/557	L/0		0.54	0.3	37	No		Yes
Vertical Header	600S162-43(33), Y-Y Axis	L/697	NA		0.65	0.6	5	No		Yes
Lateral Header	600S162-43(33), Single	L/36834	1 NA		0.06	0.0)7	No		Yes
Combined Heade	r				0.71	0				
Sill	600T125-54(50), Single	L/10490	04 NA		0.01	0.0)1	No		Yes
0.										

Simpson Strong-Tie® Connectors @ Jambs

				Connector	Anchor
Support	Rx(lb)	Ry(lb)	Simpson Strong-Tie® Connector	Interaction	Interaction

Simpson	Strong-Tie®	CFS [Designer™	5.2.3.0
011103011			Jesigner	0.2.0.0

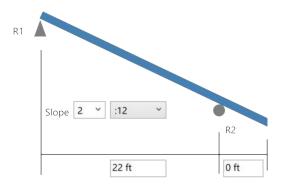
R2	-128.53	0.00	By Others & Anchorage Designed by Engineer	NA	NA
R1	-190.21	410.94	600T125-54 (50) & (3) .157", 3/4" embed SST PDPA/PDPAT to 2500 nw concrete	20.44 %	52.84 %

* Reference catalog for connector and anchor requirement notes as well as screw placements requirement

Simpson Strong-Tie® Wall Stud Bridging Connectors @ Jambs

Span/Parapet	Bracing Length(in.)	Design Number of Braces	Pn(lb.)	LSUBH (Min) ¹	LSUBH (Max)¹	SUBH (Min)¹	SUBH (Max)¹	MSUBH (Min) ¹	MSUBH (Max)¹
Span	Varies	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Notes:


1) Values in parentheses are stress ratios.

2) Bridging connectors are not designed for back-back, box, or built-up sections.

3) Reference <u>www.strongtie.com</u> for latest load data, important information, and general notes.

4) CFS Designer will not select bridging connectors unless all flexural and axial bracing settings are the same.

5) If the bracing length is larger than the span length, bridging connectors are not designed.

Section :	1000S250-68 (50 ksi)) @ 24" o.c. Single C	Stud (punched)	
Maxo =	6907.2(ft-lb)	Va = 3345.4	I = 15.741	

Bracing, Interconnection and Distortional Buckling Parameters

	Span	Overhang
Flexural Bracing	96 in	None
Axial Bracing	NA	None
Distortional Buckling, K-phi	0 lb-in/in	0 lb-in/in
Distortional Buckling Bracing, Lm	None	None

Load Cases

	Span (psf)	Overhang (psf)
Dead Load	13	NA
Live Load	20	NA
Snow Load	25	NA
Inward Wind Load	16	NA
Outward Wind Load	-29	NA

Load Combinations

LC Number	Dead	Live	Snow	Inward Wind	Outward Wind
1	1	1	0	0	0
2	1	0	1	0	0
3	1	0	0	0.6	0
4	1	0.75	0	0.45	0
5	1	0	0.75	0.45	0
6	0.6	0	0	0	0.6

Simpson Strong-Tie® CFS Designer™ 5.2.3.0

Reactions

		Ver	tical			Hori	ontal			
	Max Rxn (lb)	Load Comb.	Min Rxn (lb)	Load Comb.	Max Rxn (lb)	Load Comb.	Min Rxn (lb)	Load Comb.		
						······	······	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
R1	856.45	5	-198.20	6	ξ 70.40	3	-127.60	6		
	*****	······	*****	mm			······			
R2	865.25	5	-219.47	6 }	0.00	1	0.00	1		

Rafter Flexural and Deflection

Mmax (ft-lb)	Ma (ft-lb)	Mmax/ Ma	Load Comb.	Span Defl	Load Comb.	Overhang Defl	Load Comb.	
4759	5271	0.90	5	L/292	5	L/292	5	

Rafter Bending and Web Crippling

Support	Load (Ib)	Load Comb.	Bearing (in)	Pa (lb)	Pn (lb)	Max Intr.	Load Comb.	Stiffeners Req'd
R1	853.5	5	6.00	1492.4	2611.7	0.30	5	NO
R2	853.5	5	6.00	1492.4	2611.7	0.30	5	NO

Rafter Bending and Shear

	Vmax	Load	Va			Intr.	Load	Intr.	Load
Support	(lb)	Comb.	Factor	V/Va	M/Ma	Unstiffen	Comb.	Stiffen	Comb.
R1	853	5	1.000	0.26	0.00	0.26	5	N/A	N/A
R2	853	5	1.000	0.26	0.00	0.26	5	N/A	N/A

FCB/MFCB Bypass Framing Fixed-Clip Connector

This product is preferable to similar connectors because of a) easier installation, b) higher loads, c) lower installed cost, or a combination of these features.

The FCB/MFCB clip is an economical, high-performance fixed-clip connector that can be used for a variety of framing applications. It is rated for tension, compression, shear and in-plane loads and offers the designer the flexibility of specifying different screw and anchorage patterns that conform to desired load levels.

Features:

- Rated for tension, compression, shear and in-plane loads
- · Provides design flexibility with varying screw and anchorage patterns that achieve different load levels
- Strategically placed stiffeners, embossments and anchor holes maximize connector performance

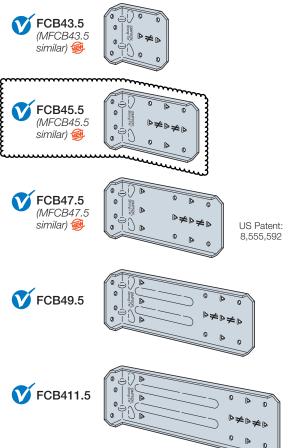
Material: FCB - 54 mil (16 ga.); MFCB - 68 mil (14 ga.)

Finish: Galvanized (G90)

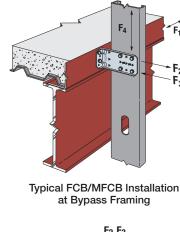
Installation:

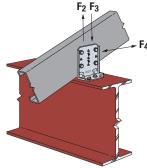
- Use the specified type and number of anchors.
- Use the specified number of #12 self-drilling screws to CFS framing. Note that #10 self-drilling screws can be used per the load tables given on strongtie.com.
- For installations to wood framing, see Simpson Strong-Tie® engineering letter L-CF-FIXCLIPW at strongtie.com.

Codes: See p. 13 for Code Reference Key Chart

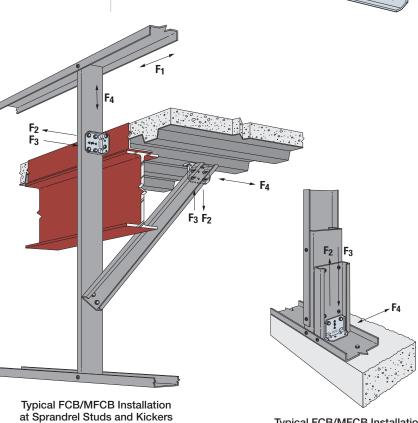

Ordering Information:

FCB43.5-R25, MFCB43.5-R25, FCB45.5-R25, MFCB45.5-R25, FCB47.5-R25, MFCB47.5-R25, FCB49.5-R25, FCB411.5-R25 contain:


Box of 25 connectors (screws not included)


F۸

g



Typical FCB/MFCB Installation for Roof Rafters

Typical FCB/MFCB Installation at the Base of a 6" Jamb Stud

SIMPSON

Strong-Tie

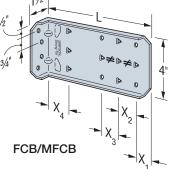
FCB/MFCB Bypass Framing Fixed-Clip Connector

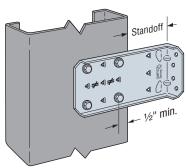
FCB/MFCB Allowable Connector Loads (lb.)

	Connector			No. of						Stud Th	ickness						
Model No.	Material Thickness	L (in.)	Min./ Max.	#12–14 Self-Drilling		33 mil	(20 ga.)		43 mil (18 ga.)				54 mil (16 ga.)				Code Ref.
	mil (ga.)	. ,		Screws	F1 ^{3,4}	F ₂	F3	F4	F1 ^{3,4}	F ₂	F3	F4	F1 ^{3,4}	F ₂	F3	F4	
FCB43.5	54 (16)	31/2	Min.	4	140	755	755	755	175	1,105	905	1,055	330	1,250	905	1,235	
F6643.5	54 (10)	3 72	Max.	6	205	1,100	1,130	1,075	260	1,105	1,105	1,350	330	1,250	2,245	1,770	
MFCB43.5	68 (14)	31/2	Min.	4	140	755	755	755	220	1,105	1,105	1,055	410	1,530	2,280	1,595	
	00 (14)		Max.	6	205	1,130	1,130	1,075	260	1,265	1,105	1,545	410	1.530	2.630	1,770	
FCB45.5	54 (16)	5½	Min.	4	120	755	755	700	150	1,105	905	875	285	1,105	905	1,100	
Ę	. ,		Max.	9	155	1,100	1,260	1,095	195	1,105	1,105	1,380	330	1,105	2,245	1,785	P
MFCB45.5	68 (14)	51/2	Min.	4	170	755	755	700	220	1,105	1,105	1,030	410	1,530	2,280	1,595	
WIF0B45.5	00 (14)	0 72	Max.	9	170	1,265	1,260	1,695	220	1,265	1,105	2,315	410	1,605	3,205	2,315	IBC, FL,
FCB47.5	54 (16)	71/2	Min.	4	90	755	755	220	110	1,105	875	330	215	1,105	875	815	LA
F0B47.5	54 (10)	1 72	Max.	12	110	1,100	1,260	705	135	1,105	1,260	1,050	260	1,105	2,245	1,345	
MFCB47.5	68 (14)	71/2	Min.	4	165	755	755	415	215	1,105	1,105	540	410	1,580	2,280	1,025	
INIFGD47.0	00 (14)	/ /2	Max.	12	165	1,265	1,260	1,345	215	1,265	1,405	1,530	410	1,605	3,350	2,700	
FCB49.5	54 (16)	91⁄2	Min.	4	—	755	755	170	—	1,105	905	255	—	1,105	905	340	
FUD49.0	34 (10)	972	Max.	12	_	1,100	1,260	750	_	1,105	1,260	1,115	_	1,105	2,245	1,200	
FCB411.5	54 (16)	111/2	Min.	4	—	755	755	140	—	1,105	935	205	_	1,105	935	340	
100411.0	54 (10)	1172	Max.	12		1,100	1,260	795		1,105	1,260	860	_	1,105	2,245	860	

1. Min. fastener quantity and load values - fill all round holes; max. fastener quantity and load values - fill all round and triangular holes.

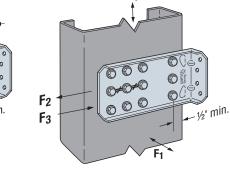
Allowable loads are based on clip capacity only and do not consider anchorage. The capacity of the connection system will be the minimum of the tabulated value and the allowable load from the FCB/MFCB Allowable Anchorage Loads table on p. 75.


3. Anchorage to the supporting structure using welds or a minimum of (2) #12-24 self-drilling screws is required.


4. Tabulated F_1 loads are based on assembly tests with the load through the centerline of stud. Tested failure modes were due to screw pullout; therefore compare F_1 against F_p calculated per ASCE 7-16 Chapter 13 with $a_p = 1.25$ and $R_p = 1.0$.

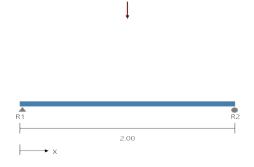
5. Tabulated values for 54 mil (16 ga.) CFS framing may be used for 68 mil (14 ga.) and greater steel thickness.

FCB/MFCB Standoff Distances


Model No.	L (in.)	Min./ Max.	No. of #12–14 Self-Drilling Screws	Maximum Standoff (in.)
FCB43.5	3½	Min.	4	1
F6D43.5	372	Max.	6	1
MFCB43.5	3½	Min.	4	1
IVIF6643.3	372	Max.	6	1
	E1/	Min.	4	1½
FCB45.5	5½	Max.	9	1
MFCB45.5	5%	Min.	4	1½
WF6B45.5	J/2	Max.	9	1
FCB47.5	7½	Min.	4	3½
FUB47.0	1 /2	Max.	12	1
MEOD 47 F	71/	Min.	4	3½
MFCB47.5	7½	Max.	12	1
	01/	Min.	4	5½
FCB49.5	9½	Max.	12	1
EOD 411 E	441/	Min.	4	7½
FCB411.5	11½	Max.	12	1

FCB/MFCB Installation with Min. Fasteners

	Dimensions (in.)											
Variable	FCB/MFCB											
	43.5	45.5	47.5	49.5	411.5							
X ₁	3⁄4	1	1	1	1							
X ₂	1 1⁄4	11⁄4	11⁄4	1 1⁄4	11⁄4							
X ₃	_	11⁄4	11⁄4	11⁄4	11⁄4							
X ₄		_	1 1/2	1 1⁄2	1 1/2							
L	31⁄2	51⁄2	71⁄2	91⁄2	111/2							



FCB/MFCB Installation with Max. Fasteners

Project Name: Centeris Model: Blocking @ Roof Code: AISI S100-16

Point Loads

Load(lb)

P1

865.00

P₁

Simpson Strong-Tie® CFS Designer™ 5.2.3.0

Section	: 600S200-54	(50 ksi) Y-Y Axis C Stud	(punched)
Mayo =	499.8 ft-lb	Va = 3644.3 lb	I = 0.24 in^4

Loads have not been modified for strength checks Loads have not been modified for deflection calculations

Span	Axia KyLy,	•••••••••••••••••••••••••••••••••••••••	- Flexual, Distortior	nal (Connector	Stress Ratio
Span	Span NA		⁻ ull, N/A		N/A	-
Web Crip	pling	Bearin	g Pa	м		
Support	Load (Ib)	(in)	(lb)	(ft-lbs)	Max Int.	Stiffener?
Support R1	Load (lb) 432.50	(in) 1.00	(Ib) 1067.7	(ft-lbs) 0.0	Max Int. 0.20	Stiffener? NO
	. ,	. ,	. /			

X-Dist.(ft)	1.00				
	Code Check	Required	Allowed	Interaction	Notes
Span	Max. Axial, lbs	0.0(t)	-	0%	KΦ=0.00 lb-in/in Max KL/r = N/A
	Max. Shear, lbs	432.5	3644.3	12%	Shear (Punched)
	Max. Moment (MaFy, Ma-dist), ft-lbs	432.5	499.8	87%	
	Moment Stability, ft-lbs	432.5	499.8	87%	
	Shear/Moment	0.87	1.00	87%	Shear 432.5, Moment 432.5
	Axial/Moment	0.87	1.00	87%	Axial 0.0(c), Moment 432.5
	Deflection Span, in	0.035	meets L/692		

Support	Rx(lb)	Ry(lb)	Simpson Strong-Tie Connector	Connector Interaction	Anchor Interaction
R1	0.0	432.5	NA with Y-Y Axis design & NA	0.00 %	0.00 %
R2	0.0	432.5	NA with Y-Y Axis design & NA	0.00 %	0.00 %

* Reference catalog for connector and anchor requirement notes as well as screw placement requirements

Screw Capacities

Table Notes

- 1. Capacities based on AISI S100 Section E4.
- 2. When connecting materials of different steel thicknesses or tensile strengths, use the lowest values. Tabulated values assume two sheets of equal thickness are connected.
- 3. Capacities are based on Allowable Strength Design (ASD) and include safety factor of 3.0.
- 4. Where multiple fasteners are used, screws are assumed to have a center-to-center spacing of at least 3 times the nominal diameter (d).
- Screws are assumed to have a center-of-screw to edge-of-steel dimension of at least 1.5 times the nominal diameter (d) of the screw.

- 6. Pull-out capacity is based on the lesser of pull-out capacity in sheet closest to screw tip or tension strength of screw.
- 7. Pull-over capacity is based on the lesser of pull-over capacity for sheet closest to screw header or tension strength of screw.
- 8. Values are for pure shear or tension loads. See AISI Section E4.5 for combined shear and pull-over.
- 9. Screw Shear (Pss), tension (Pts), diameter, and head diameter are from CFSEI Tech Note (F701-12).
- 10. Screw shear strength is the average value, and tension strength is the lowest value listed in CFSEI Tech Note (F701-12).
- 11. Higher values for screw strength (Pss, Pts), may be obtained by specifying screws from a specific manufacturer.

	Allowable Screw Connection Capacity (Ibs)																	
					#6 Screw	ł		#8 Screw #10 Screw				#12 Screw			1/4" Screw			
Thickness	Design	Fy Yield	Fu Tensile	(Pss = 64	43 lbs, Pts	= 419 lbs	(Pss= 127	78 lbs, Pts	= 586 lbs)	(Pss= 164	4 lbs, Pts =	= 1158 lbs)	()ss= 233	30 lbs, Pts =	= 2325 lbs)	(Pss= 304	8 lbs, Pts =	= 3201 lbs)
(Mils)	Thickness	(ksi)	(ksi)	0.138"	' dia, 0.272'	"Head န	0.164" dia, 0.272" Head		0.190" dia, 0.340" Head		0.216" dia, 0.340" Head		" Head	0.250" dia, 0.409" Head		" Head		
				Shear	Pull-Out	Pull-Ove	Shear	Pull-Out	Pull-Over	Shear	Pull-Out	Pull-Over	Shear	Pull-Out	Pull-Over	Shear	Pull-Out	Pull-Over
18	0.0188	33	33	44	24	84 🕻	48	29	84	52	33	105	55	38	105	60	44	127
27	0.0283	33	33	82	37	127 🕻	89	43	127	96	50	159	102	57	159	110	66	191
30	0.0312	33	33	95	40	140 🕻	103	48	140	111	55	175	118	63	175	127	73	211
33	0.0346	33	45	151	61	140 🖡	164	72	195	177	84	265	3 188	95	265	203	110	318
43	0.0451	33	45	214	79	140 E	244	94	195	263	109	345	3 280	124	345	302	144	415
54	0.0566	- 33	45	214	100	140 8	344	118	195	370	137	386	3 394	156	433	424	180	521
68	0.0713	33	45	214	125	140 8	426	149	195	523	173	386	3 557	196	545	600	227	656
97	0 1017	- 33	45	214	440	440 8	400	195	195	548	246	200	4 777	000	775	4.040	204	000
440	0.1017	33	45	014	140	140	420	105	105	E 4 0	201	200	3 777	200	775	1,010	206	930
110	0.1242			214	140	140 2	420	190	195	540	400	300	3	342	115	1,010	390	1,007
54	0.0566	50	65	214	140	140 2	426	171	195	534	198	386	569	225	625	613	261	752
68	0.0713	50	65	214	140	140 🛓	426	195	195	548	249	386	777	284	775	866	328	948
97	0.1017	50	65	214	140	140 ¢	426	195	195	548	356	386	777	405	775	1,016	468	1,067
118	0.1242	50	65	214	140	140 č	426	195	195	548	386	386	3 777	494	775	1,016	572	1,067

timminimminimminimminimmini

SUPREME Allowable Screw Connection Capacity (Pounds Per Screw)																																	
Thickness (mil)	Design Thickness (in)	Fy Yield (ksi)	Fu Tensile (ksi)	#6 Screw (Pss = 643 lbs, Pts = 419 lbs) 0.138" Dia; 0.272" Head			#8 Screw (Pss= 1278 lbs, Pts = 586 lbs) 0.164" Dia; 0.272" Head			#10 Screw (Pss= 1644 lbs, Pts = 1158 lbs) 0.190" Dia; 0.340" Head			#12 Screw (Pss= 2330 lbs, Pts = 2325 lbs) 0.216" Dia; 0.340" Head			1/4" Screw (Pss= 3048 lbs, Pts = 3201 lbs) 0.250" Dia; 0.409" Head																	
																			Shear	Pull-Out	Pull-Over												
																			D25	0.0155	50	65	111	39	137	111	47	137	111	54	171	-	-
				D20	0.0188	57	65	142 ¹	48	140	150 ¹	57	166	164 ¹	66	208	109	75	208	-	-	-											
30EQD	0.0235	57	65	174 ¹	60	140	184 ¹	71	195	236 ¹	82	260	152	93	260	-	-	-															
33EQD	0.0235	57	65	174 ¹	60	140	184 ¹	71	195	236 ¹	82	260	152	93	260	-	-	-															
33EQS	0.0295	57	65	171	75	140	187	89	195	201	103	326	214	117	326	231	136	392															
43EQS	0.0400	57	65	270	102	140	295	121	195	317	140	386	338	159	442	364	184	532															

¹Values are based on testing using AISI S100 procedures.