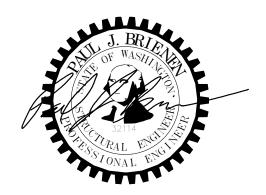


THE APPROVED CONSTRUCTION PLANS AND ALL ENGINEERING MUST BE POSTED ON THE JOB AT ALL INSPECTIONS IN A VISIBLE AND READILY ACCESSIBLE LOCATION. PRINT IN COLOR and to SCALE.

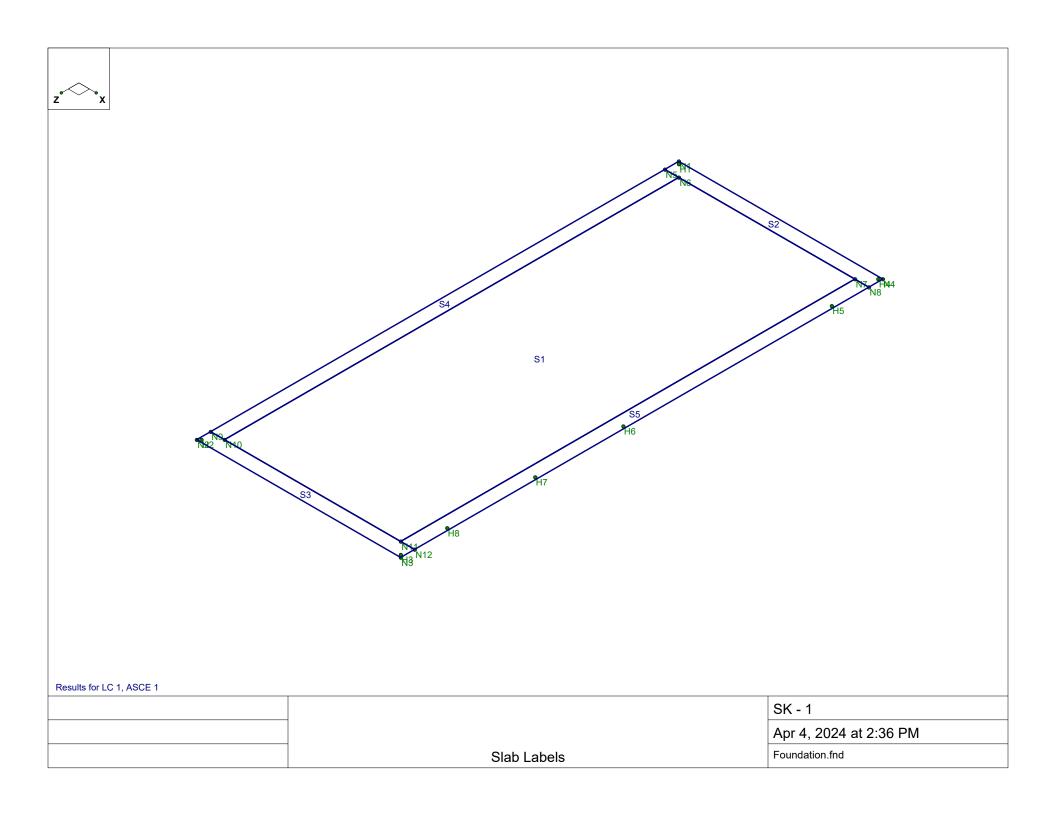

Approval of submitted plans is not an approval of omissions or oversight by this office or noncompliance with any applicable regulations of local government. The contractor is responsible for making sure that the building complies with all applicable building codes and regulations of the local government.

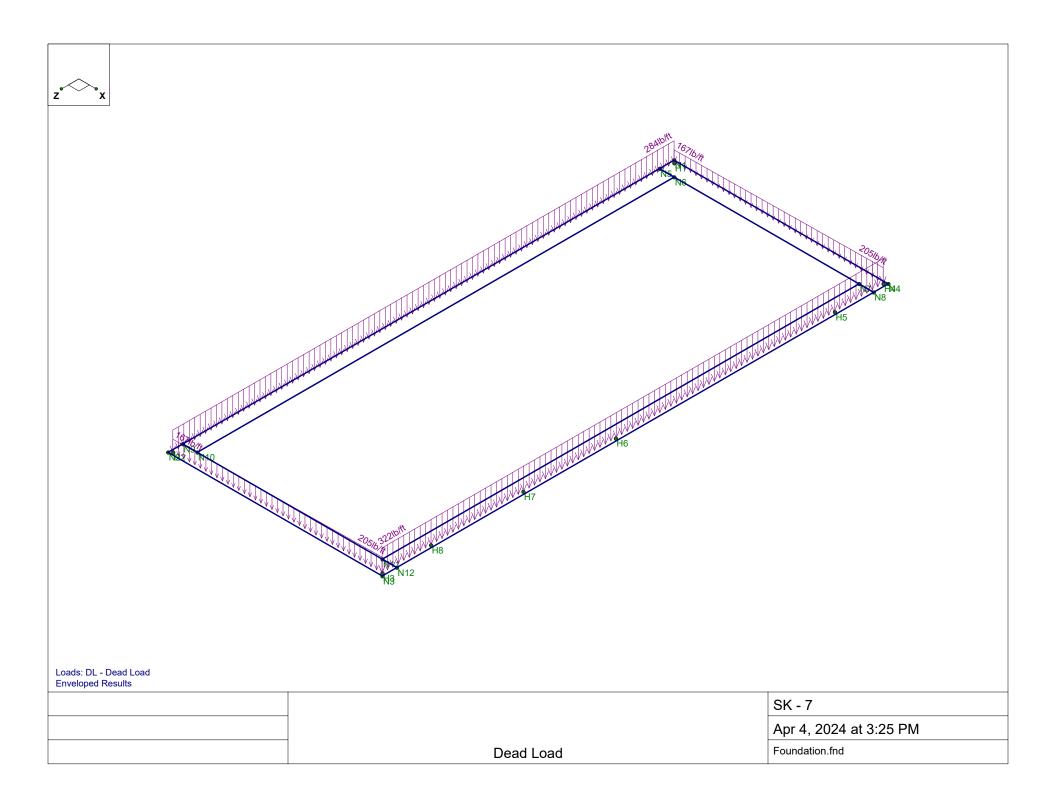
City of Puyallup Development & Permitting Services ISSUED PERMIT				
Building Planning				
Engineering	Public Works			
Fire OF V	Traffic			

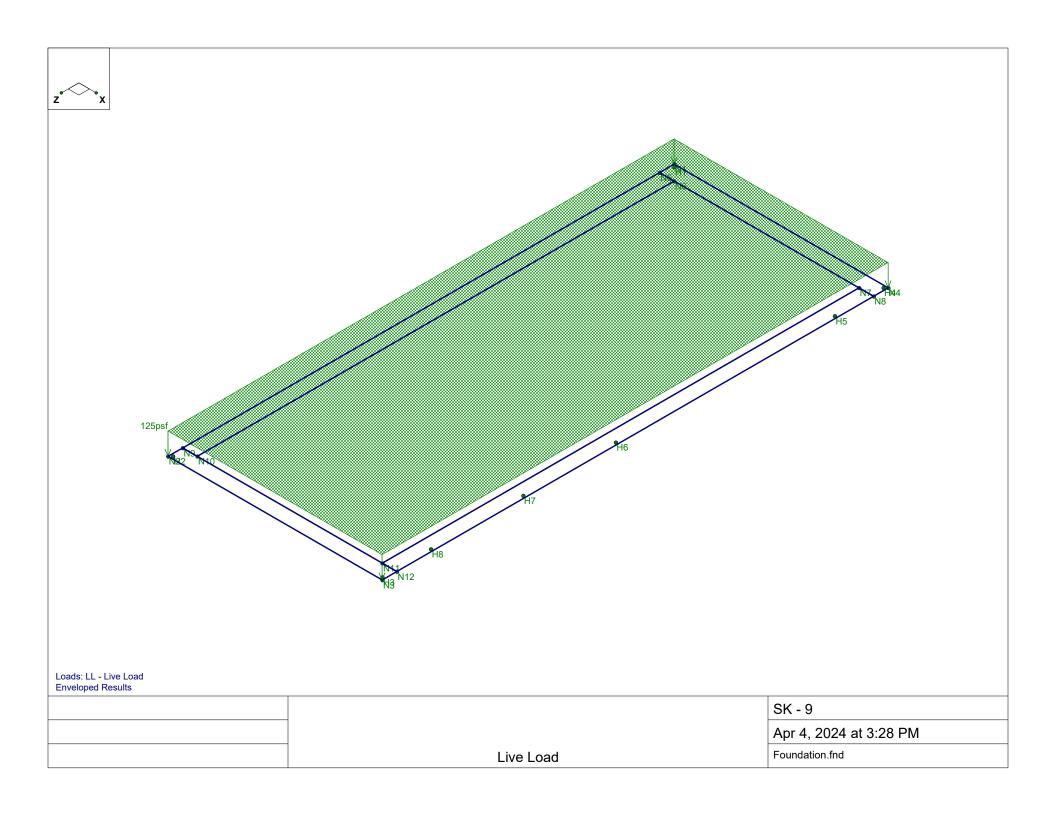
Centeris Data Center Shed 1023 39th Avenue South East Puyallup, WA 98374

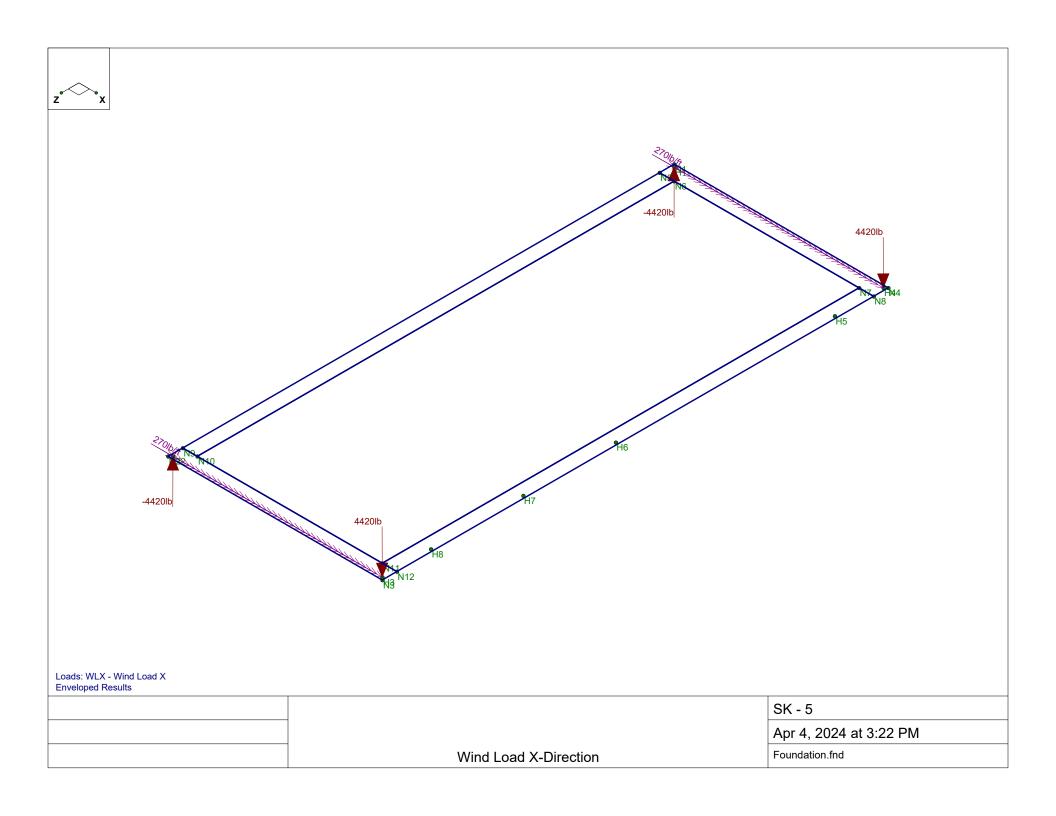
Foundation Permit Submittal Structural Calculations

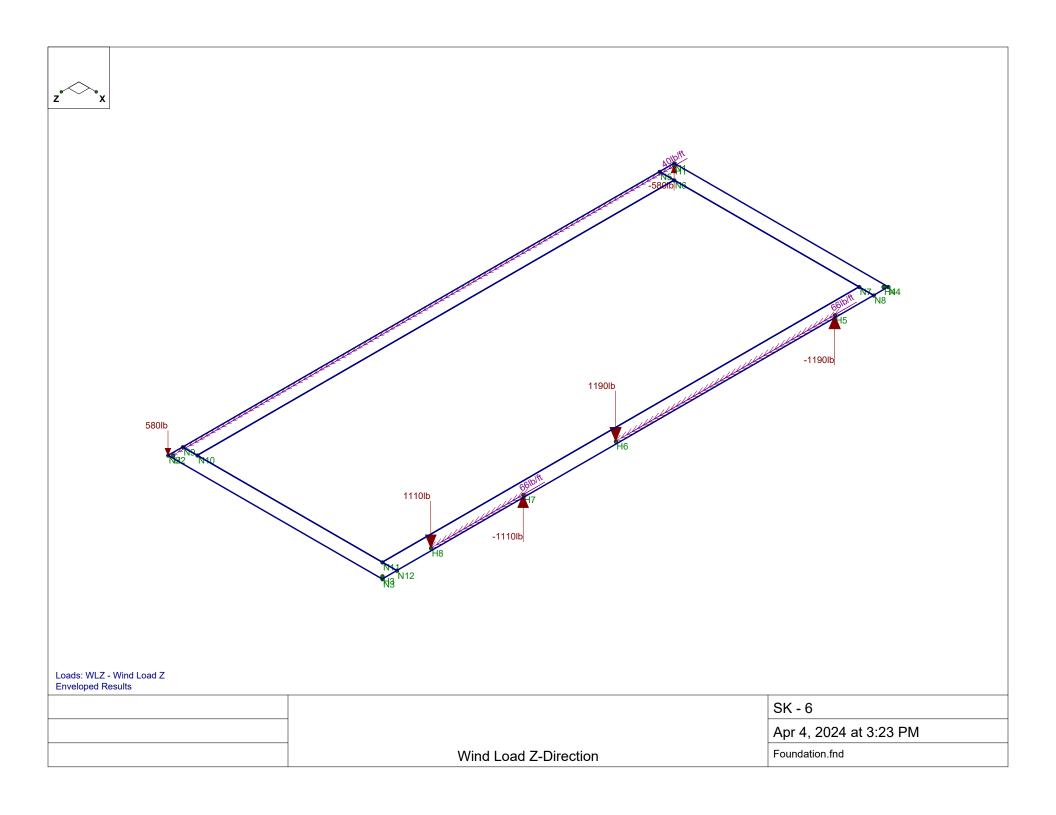
Project Number 24202 04/05/2024

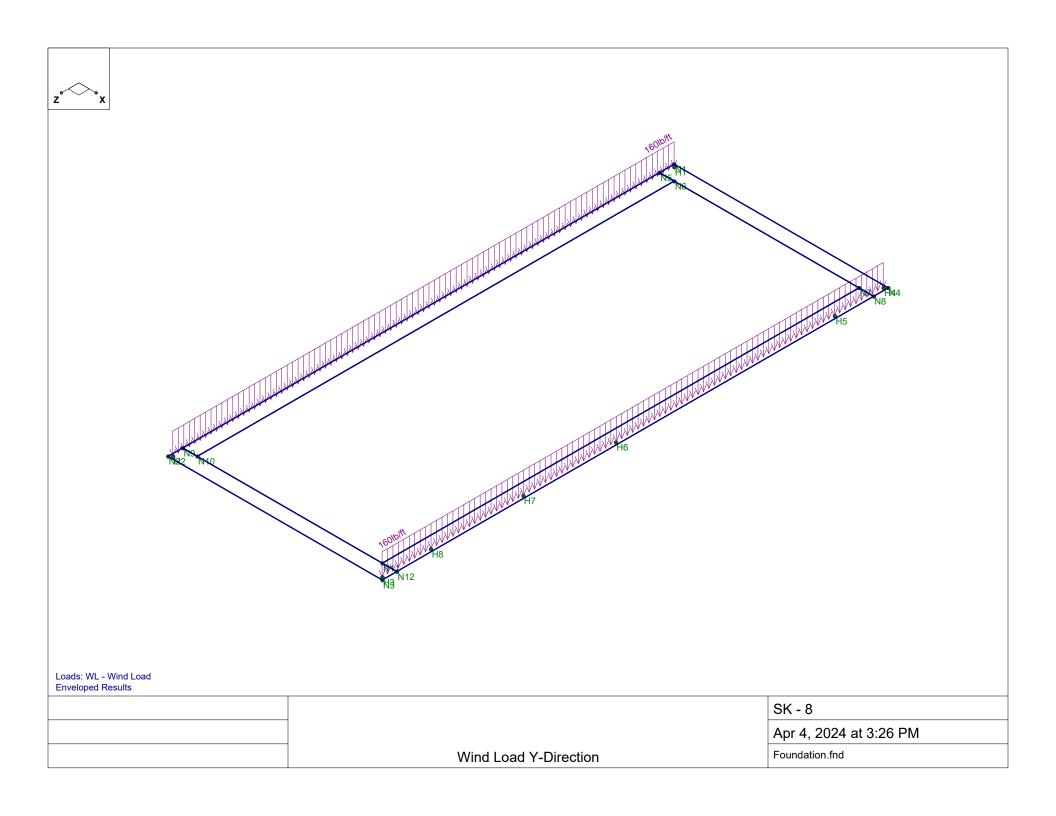

NOTE TO THE REVIEWER:

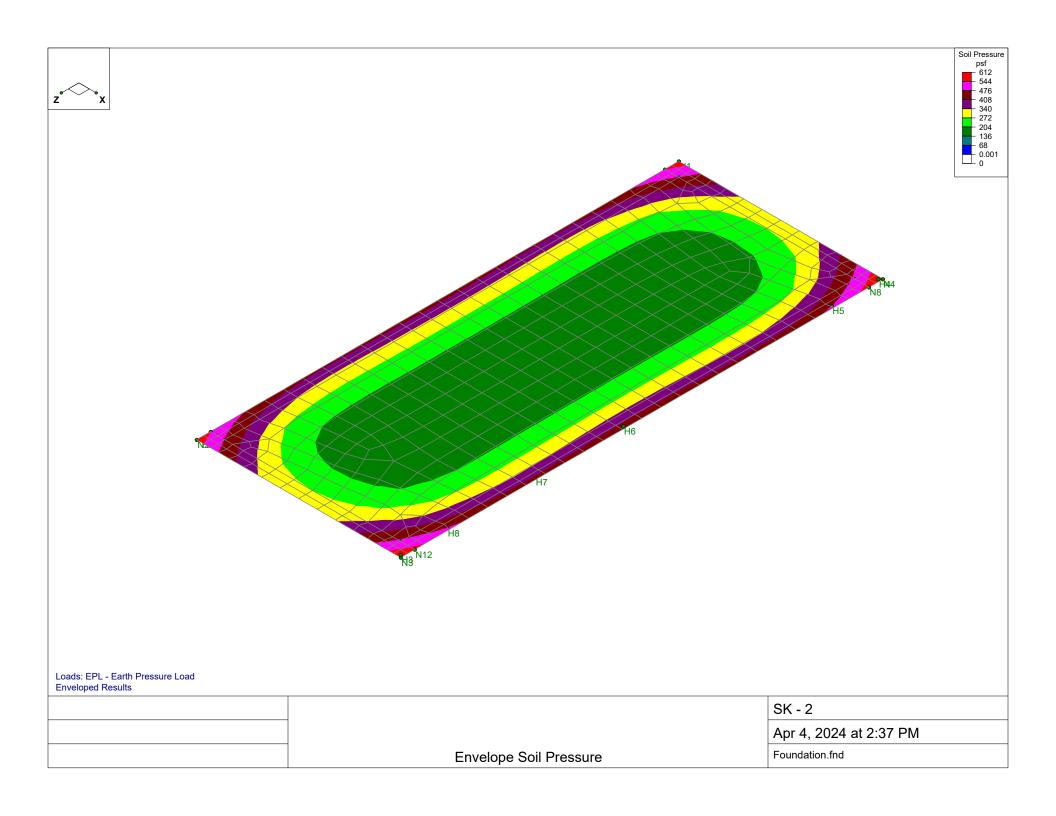

THE CALCULATION PACKAGE IS BEING SUBMITTED FOR THE FOUNDATION PERMIT SUBMITTAL ONLY. HOWEVER, IN ORDER TO DETERMINE THE LATERAL AND GRAVITY LOADS ON THE FOUNDATION, THE WHOLE STRUCTURE IS INCLUDED IN THIS CALCULATION PACKAGE FOR REFERENCE ONLY. THE SUPERSTRUCTURE WILL BE PERMITED SEPARATELY AT A LATER DATE.

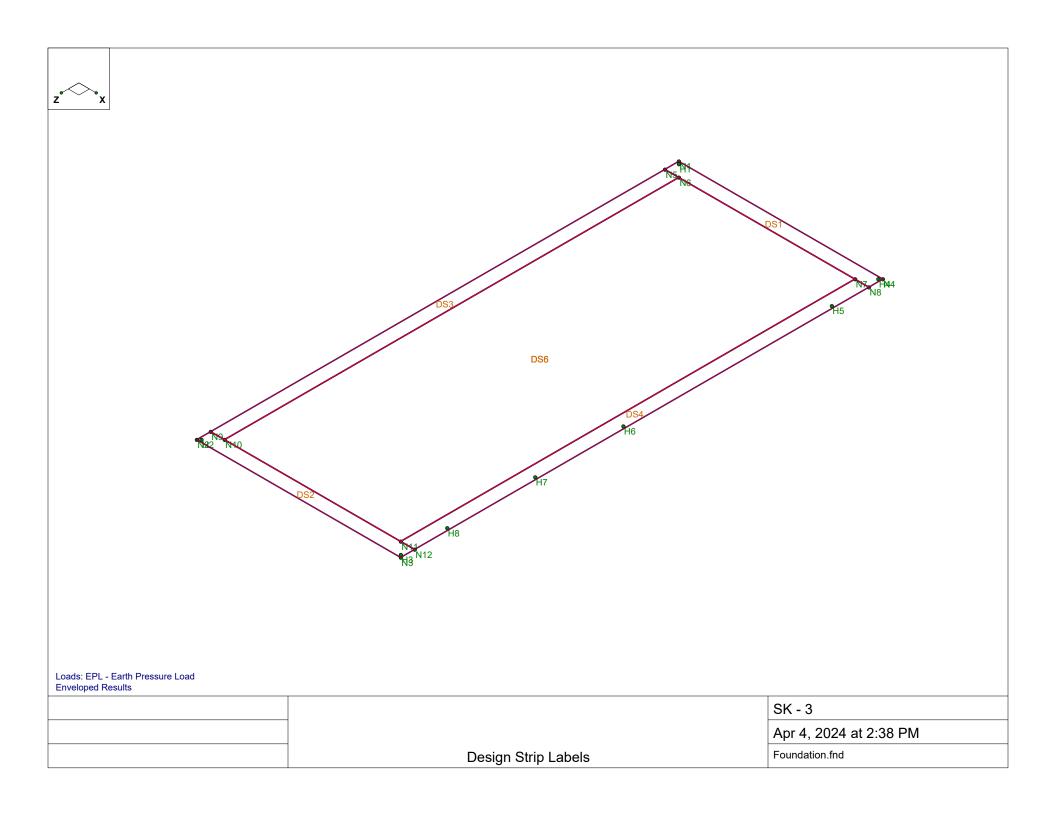

THE FOUNDATION DESIGN OCCURS ON PAGES 3 - 19. THE SUPERSTRUCTURE LATERAL DESIGN OCCURS ON PAGES 20 - 46 (WHICH INCLUDES HOLDDOWN & SHEAR ANCHORAGE), AND THE VERTICAL DESIGN ON PAGES 47 - 63.




RISA Foundation



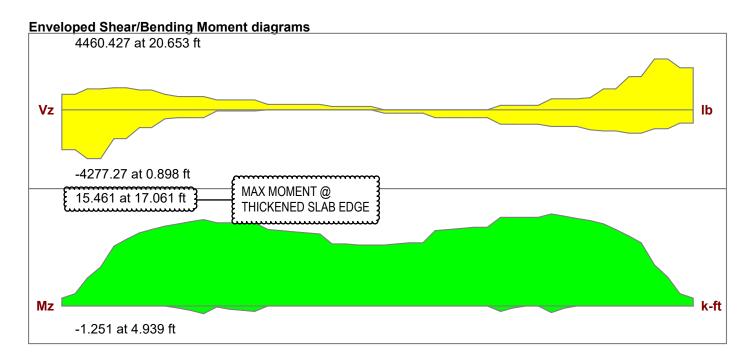




Apr 4, 2024 2:40 PM Checked By:

Max Top bar Spac.: Strip: DS₁ 18 in Stress Block: Rectangular Material: Conc4000NW Min Top bar Spac.: 12 in Rebar Orientation: 90 Strip Width: Max Bot bar Spac.: Rebar Spacing Inc: 18 in 18 in 2 in Total Cuts: Min Bot bar Spac.: Design Rule: **50** 12 in **Typical**

ACI 318-19 Code Check


Top Bending Check	0.526	Bot Bending Check	0.047	1 Way Shear Check	0.385
Gov Mu Top	14.921 k-ft	Gov Mu Bot	-1.204 k-ft	Gov Vu	4422.675 lb
phi*Mn Top	28.376 k-ft	phi*Mn Bot	25.725 k-ft	phi*Vn	11479.326 lb
Governing Cut	DS1-X39	Governing Cut	DS1-X12	Governing Cut	DS1-X48
Governing LC	52	Governing LC	64	Governing LC	52
Tension Bar Fy	CO kai	Canarata Waight	0.445 1-/640	Ton Cover	1.5 in
rension barry	60 ksi	Concrete Weight	0.145 k/ft^3	Top Cover	1.5 111
Shear Bar Fy	60 ksi	Concrete vveignt λ	0.145 K/π ⁻ 3 1	Bottom Cover	3 in
•		J	0.145 k/π ⁻³ 1 3644 ksi	•	_
Shear Bar Fy	60 ksi	λ	1	Bottom Cover	3 in

	Тор	Тор	Bot	Bot	Rho	Rho	Rho
Cut Label	As Reqd	As Prvd	As Reqd	As Prvd	Reqd(T/S)	Reqd(Flex)	Prvd(Gross)
DS1-X39	0.205	0.393	0.012	0.393	0.00180	0.00180	0.00242
DS1-X12	0.198	0.393	0.018	0.393	0.00180	0.00180	0.00242

Apr 4, 2024 2:40 PM Checked By:

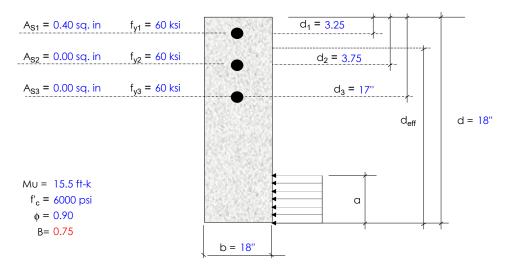
Strip: DS₂ Max Top bar Spac.: 18 in Stress Block: Rectangular Material: Conc4000NW Min Top bar Spac.: 12 in Rebar Orientation: 90 Strip Width:

Max Bot bar Spac.: Rebar Spacing Inc: 18 in 18 in 2 in Total Cuts: Min Bot bar Spac.: Design Rule: **Typical 50 12** in

ACI 318-19 Code Check

Top Bending Check	0.545	Bot Bending Check	0.049	1 Way Shear Check	0.389
Gov Mu Top	15.461 k-ft	Gov Mu Bot	-1.251 k-ft	Gov Vu	4460.427 lb
phi*Mn Top	28.376 k-ft	phi*Mn Bot	25.725 k-ft	phi*Vn	11479.325 lb
Governing Cut	DS2-X39	Governing Cut	DS2-X12	Governing Cut	DS2-X48
Governing LC	52	Governing LC	64	Governing LC	52
Tension Bar Fy	60 ksi	Concrete Weight	0.145 k/ft^3	Top Cover	1.5 in
Shear Bar Fy	60 ksi	λ	1	Bottom Cover	3 in
F'c	4 ksi	E_Concrete	3644 ksi	Side Cover	0 in
Flex. Rebar Set	ASTM A615	Rho Bot Prvd	0.00148	Rho Top Prvd	0.00134
		Prvd Bot Bar Spac.	#4@12in	Prvd Top Bar Spac.	#4@12in

	Тор	Тор	Bot	Bot	Rho	Rho	Rho
Cut Label	As Reqd	As Prvd	As Reqd	As Prvd	Reqd(T/S)	Reqd(Flex)	Prvd(Gross)
DS2-X39	0.213	0.393	0.017	0.393	0.00180	0.00180	0.00242
DS2-X12	0.198	0.393	0.019	0.393	0.00180	0.00180	0.00242


 JOB TITLE:
 Centeris Shed
 JOB NO: 24202

 SUBJECT:
 Bottom Reinforcing
 DESIGNER: BJB

 SHEET:
 1
 DATE: 4/5/2024

G:\2024\24201.2 Centeris Shed\Calcs\[Concrete Bending Capacity.xlsx]Concrete Beam Capacity

Diagram/Input

<u>Results</u>

$$\phi M_n = \phi T \left(d_{eff} - \frac{\alpha}{2} \right) = 26.3 \text{ ft-k} > Mu = 15.5 \text{ ft-k}$$

$\begin{array}{c} \text{Maximum Reinforcing Check} \\ \rho = 0.0015 & < 0.75 \text{*p bal} = 0.0283 \\ \text{Steel Strain} = & 0.1239 & > 0.005 & ACI-19 \end{array}$

Minimum Reinforcing Check ρ_{-} min > 0.0039 or 4/3* ϕ Mn > Mu

Result Summary Strength - OK Maximum Reinforcing Ratio - OK Minimum Reinforcing Ratio - OK

Calculations:

$$T = A_{S1} f_{y1} + A_{S2} f_{y2} + A_{S3} f_{y3} = 24.00 \text{ k}$$

$$d_{eff} = d - \left(\frac{A_{S1} f_{y1} d_1 + A_{S2} f_{y2} d_2 + A_{S3} f_{y3} d_3}{T} \right) = 18'' - \left(\frac{78.00 \text{ in-k}}{24.00 \text{ k}} \right) = 14.75''$$

$$a = \frac{T}{0.85 f'_{c} b} = \frac{24.00 \text{ k}}{91.80 \text{ k/in}} = 0.26''$$

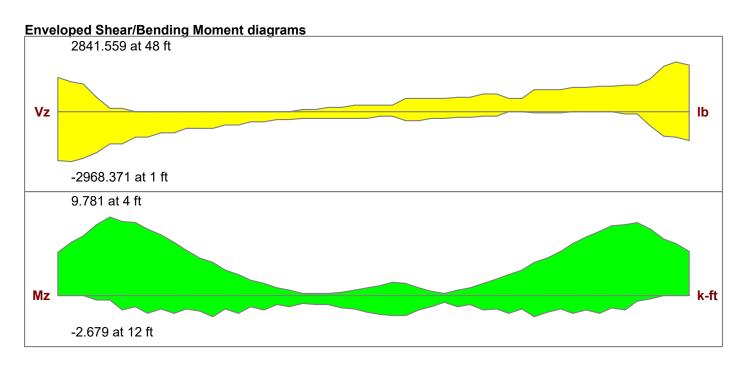

$$Ku = Mu*12000/bd^2 = 47$$

$$Ku = \phi Mn*12000/bd^2 = 81$$

Apr 4, 2024 2:40 PM Checked By:

Max Top bar Spac.: Strip: DS₃ 18 in Stress Block: Rectangular Material: Conc4000NW Min Top bar Spac.: 12 in Rebar Orientation:

Strip Width: Max Bot bar Spac.: 18 in Rebar Spacing Inc: 18 in 2 in Total Cuts: Min Bot bar Spac.: Design Rule: **50** 12 in **Typical**


ACI 318-19 Code Check

Top Bending Check	0.335	Bot Bending Check	0.107	1 Way Shear Check	0.257
Gov Mu Top	9.52 k-ft	Gov Mu Bot	-2.748 k-ft	Gov Vu	2955.897 lb
phi*Mn Top	28.376 k-ft	phi*Mn Bot	25.725 k-ft	phi*Vn	11479.261 lb
Governing Cut	DS3-X5	Governing Cut	DS3-X13	Governing Cut	DS3-X49
Governing LC	54	Governing LC	52	Governing LC	52
Tension Bar Fy	60 ksi	Concrete Weight	0.145 k/ft^3	Top Cover	1.5 in
		- 3			-
Shear Bar Fy	60 ksi	λ	1	Bottom Cover	3 in
Shear Bar Fy F'c	60 ksi 4 ksi	· ·	1 3644 ksi	•	3 in 0 in
•		λ	1	Bottom Cover	-

	Тор	Тор	Bot	Bot	Rho	Rho	Rho
Cut Label	As Reqd	As Prvd	As Reqd	As Prvd	Reqd(T/S)	Reqd(Flex)	Prvd(Gross)
DS3-X5	0.131	0.393	0.012	0.393	0.00180	0.00180	0.00242
DS3-X13	0.055	0.393	0.041	0.393	0.00180	0.00180	0.00242

Apr 4, 2024 2:41 PM Checked By:

Max Top bar Spac.: Stress Block: Strip: DS4 18 in Rectangular Material: Conc4000NW Min Top bar Spac.: 12 in Rebar Orientation: Strip Width: Max Bot bar Spac.: 18 in Rebar Spacing Inc: 18 in 2 in Total Cuts: Min Bot bar Spac.: Design Rule: **50** 12 in **Typical**

ACI 318-19 Code Check

Top Bending Check	0.345	Bot Bending Check	0.104	1 Way Shear Check	0.259
Gov Mu Top	9.781 k-ft	Gov Mu Bot	-2.679 k-ft	Gov Vu	2968.371 lb
phi*Mn Top	28.376 k-ft	phi*Mn Bot	25.725 k-ft	phi*Vn	11479.091 lb
Governing Cut	DS4-X5	Governing Cut	DS4-X13	Governing Cut	DS4-X2
Governing LC	52	Governing LC	54	Governing LC	54
Tension Bar Fy	60 ksi	Concrete Weight	0.145 k/ft^3	Top Cover	1.5 in
Shear Bar Fy	60 ksi	λ	1	Bottom Cover	3 in
F'c	4 ksi	E_Concrete	3644 ksi	Side Cover	0 in
Flex. Rebar Set	ACTM ACAE	Rho Bot Prvd	0.00148	Rho Top Prvd	0.00134
i lex. i tebai det	ASTM A615	KIIO BOL FIVO	0.00146	Titlo Top Fiva	0.00134

	Тор	Тор	Bot	Bot	Rho	Rho	Rho
Cut Label	As Reqd	As Prvd	As Reqd	As Prvd	Reqd(T/S)	Reqd(Flex)	Prvd(Gross)
DS4-X5	0.134	0.393	0.009	0.393	0.00180	0.00180	0.00242
DS4-X13	0.055	0.393	0.04	0.393	0.00180	0.00180	0.00242

Apr 4, 2024 2:53 PM Checked By:

Strip: DS5 ← SOG Conc4000NW Strip Width: 228 in 50

Max Top bar Spac.: 18 in Min Top bar Spac.: 12 in Max Bot bar Spac.: NA Min Bot bar Spac.: NA

Stress Block: Rectangular
Rebar Orientation: 0
Rebar Spacing Inc: 2 in
Design Rule: SOG

1 Way Shear Check 0.160

5692.11 lb

DS5-X1

33

35652.424 lb

Gov Vu

phi*Vn

Governing Cut

Governing LC

Enveloped Shear/Bending Moment diagrams

5692.11 at 0 ft

-5383.398 at 48 ft

4.382 at 2 ft

Mz

-3.404 at 49 ft

ACI 318-19 Code Check Top Bending Check 0.159

Gov Mu Top 4.382 k-ft phi*Mn Top 27.581 k-ft **Governing Cut DS5-X3** Governing LC 33 Tension Bar Fy 60 ksi Shear Bar Fy 60 ksi F'c 4 ksi Flex. Rebar Set **ASTM A615** Bot Bending Check
Gov Mu Bot
phi*Mn Bot
Governing Cut
Governing LC

Concrete Weight

0.123
27.581 k-ft
DS5-X50
55
0.145 k/ft^3

λ 1
E_Concrete 3644 ksi
Rho Mid Prvd 0.00448
Prvd Mid Bar Spac. #4@18in

Тор	Тор	Mid	Mid	Rho	Rho	Rho
As Reqd	As Prvd	As Reqd	As Prvd	Reqd(T/S)	Reqd(Flex)	Prvd(Gross)
0.304	2.553	NA	NA	0.00180	0.00180	0.00224
0.304	2.553	NA	NA	0.00180	0.00180	0.00224
	As Reqd 0.304	As Reqd As Prvd 0.304 2.553	As Reqd As Prvd As Reqd 0.304 2.553 NA	As Reqd As Prvd As Reqd As Prvd 0.304 2.553 NA NA	As Reqd As Prvd As Reqd As Prvd Reqd(T/S) 0.304 2.553 NA NA 0.00180	As Reqd As Prvd As Reqd As Prvd Reqd(T/S) Reqd(Flex) 0.304 2.553 NA NA 0.00180 0.00180

Apr 4, 2024 2:53 PM Checked By:

Strip:

Material:
Strip Width:
Total Cuts:

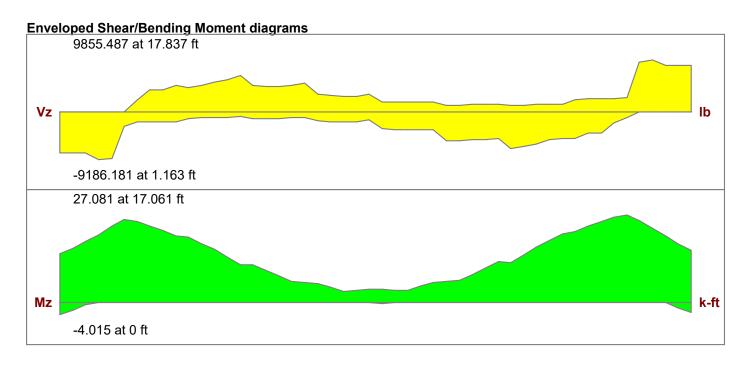
DS6
Conc4000NW

588 in

50

Max Top bar Spac.: 18 in Min Top bar Spac.: 12 in Max Bot bar Spac.: NA Min Bot bar Spac.: NA

Stress Block: Rectangular
Rebar Orientation: 90
Rebar Spacing Inc: 2 in
Design Rule: SOG


1 Way Shear Check 0.108

Gov Vu

phi*Vn

Governing Cut

Governing LC

ACI 318-19 Code Check Top Rending Check 0.387

Top Bending Check	0.387	Bot Bending Check	0.057
Gov Mu Top	27.081 k-ft	Gov Mu Bot	-4.015 k-ft
phi*Mn Top	70.06 k-ft	phi*Mn Bot	70.06 k-ft
Governing Cut	DS6-X45	Governing Cut	DS6-X1
Governing LC	52	Governing LC	64
Tension Bar Fy	60 ksi	Concrete Weight	0.145 k/ft^3
Shear Bar Fy	60 ksi	λ	1
F'c	4 ksi	E_Concrete	3644 ksi
Flex. Rebar Set	ASTM A615	Rho Mid Prvd	0.00441
		Prvd Mid Bar Spac.	#4@18in

Bending Steel Reqd/Prvd, Units: in^2)

	Тор	Тор	Mid	Mid	Rho	Rho	Rho
Cut Label	As Reqd	As Prvd	As Reqd	As Prvd	Reqd(T/S)	Reqd(Flex)	Prvd(Gross)
DS6-X45	1.357	6.48	NA	NA	0.00180	0.00180	0.00220
DS6-X1	1.357	6.48	NA	NA	0.00180	0.00180	0.00220

9855.487 lb

DS6-X47

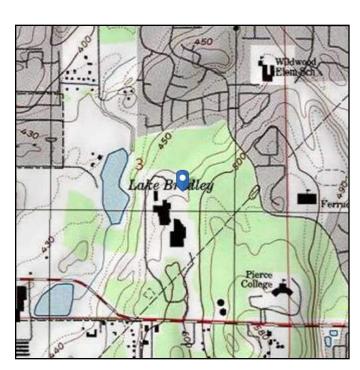
54

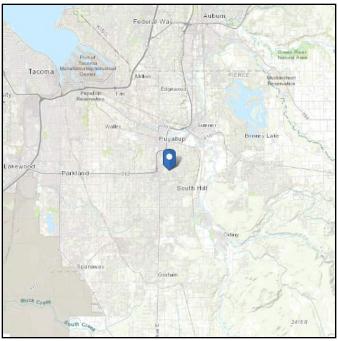
91462.079 lb

Lateral Design

Address:

1023 39th Ave SE Puyallup, Washington


98374


ASCE Hazards Report

Standard: ASCE/SEI 7-16 Latitude: 47.160853
Risk Category: II Longitude: -122.279318

Soil Class: D - Default (see **Elevation:** 482.88472036372787 ft

Section 11.4.3) (NAVD 88)

Wind

Results:

Wind Speed	98 Vmph
10-year MRI	67 Vmph
25-year MRI	73 Vmph
50-year MRI	78 Vmph
100-year MRI	83 Vmph

Data Source: ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2

Date Accessed: Mon Feb 05 2024

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is not in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2.

Seismic

Site Soil Class: D - Default (see Section 11.4.3)

Results:

 $S_{\mbox{\scriptsize S}}$: S_{D1} : 1.257 N/A T_L : S₁ : 0.434 6 F_a : 1.2 PGA: 0.5 F_v : N/A PGA_M: 0.6 S_{MS} : 1.509 F_{PGA} : 1.2 S_{M1} : N/A 1 1.006 C_{v} : 1.351

Ground motion hazard analysis may be required. See ASCE/SEI 7-16 Section 11.4.8.

Data Accessed: Mon Feb 05 2024

Date Source: <u>USGS Seismic Design Maps</u>

The ASCE Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE Hazard Tool.

MecaWind v2462

Developed by Meca Enterprises Inc., www.mecaenterprises.com, Copyright © 2024

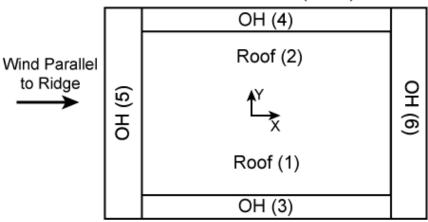
Calculations Prepared by:

Date: Feb 08, 2024

File Location: G:\2024\24202 Centeris Shed\Calcs\Centris Wind.wnd

General:

Wind Load Standard	= ASCE 7-16	Basic Wind Speed	= 98.0 mph
Exposure Classification	= B	Risk Category	= II
Structure Type	= Building	Design Basis for Wind Pressures	= LRFD
MWFRS Analysis Method	= Ch 27 Pt 1	C&C Analysis Method	= Ch 30 Pt 1
Dynamic Type of Structure	= Rigid	Show Advanced Options	= -1
Reset Advanced Options to Default	= Defaults	Simple Diaphragm Building	= 0
Values			
Show Base Reactions in Output	= Summary	Altitude above Sea Level	= 482.900 ft
Base Elevation Of Structure	= 0.000 ft	MWFRS Pressure Elevations	= Mean Ht
Topographic Effects	= None	Override Directionality Factor K _d	= 0
Override the Gust Factor G	= 0	Override Minimum Pressure	= 0
Building:			


		9 •							
Roof	=	Roof Type	=	Monoslope	Encl	=	Enclosure Classification	=	Enclosed
Help	=	Help on Building Roof Type	=	Help	Pitch	=	Pitch of Roof	=	2.0 :12
θ	=	Slope of Roof	=	9.46 Deg	R _{Ht}	=	Ridge Height	=	23.161 ft
$\mathrm{E}_{\mathtt{Ht}}$	=	Eave Height	=	14.830 ft	W	=	Building Width	=	22.000 ft
L	=	Building Length	=	52.000 ft	OH	-	Type of Overhang	=	None
Par	=	Parapet	=	None	HTover	=	Override Mean Roof Height	=	0
Ht_{man}	=	Mean Roof Height	=	14.830 ft	RAover	-	Override Roof Area	=	0
GC_{pi_o}	=	Override GC _{pi} value	=	0		-			
					,				

Exposure Constants [Tbl 26.11-1]:

$\alpha = 3-s$ Gust-speed exponent	= 7.000	Z _q = Nominal Ht of Boundary Layer	= 1200.000 ft
â = Reciprocol of α	= 0.143	b = 3 sec gust speed factor	= 0.840
α_{m} = Mean hourly Wind-Speed Exponent	= 0.250	b _m = Mean hourly Windspeed Exponent	= 0.450
<pre>c = Turbulence Intensity Factor</pre>	= 0.300	ϵ = Integral Length Scale Exponent	= 0.3333

Main Wind Force Resisting System (MWFRS) Wind Calculations per Ch 27 Pt1

Roof Low Side (Eave)

Roof High Side (Ridge)

Wind Normal to Ridge

```
= 14.830 ft
h
             = Mean structure height
             = Elevation from Grade to Top of Structure
                                                                                                              = 14.830 ft
h_{\text{grade}}
             = 2.01 \cdot (15/Z_g)^{2/\alpha}[Tbl 26.10-1]
                                                                                                              = 0.575
K_{h}
             = No Topographic feature specified
K_{\text{zt}}
                                                                                                              = 1.000
K_d
             = Wind Directionality Factor per Tbl 26.6-1
                                                                                                              = 0.85
+GC<sub>pi</sub>
             = Enclosed Positive Internal Pressure Tbl 26.13-1
                                                                                                              = +0.18
             = Enclosed Negative Internal Pressure Tbl 26.13-1
-GC<sub>pi</sub>
                                                                                                                 -0.18
                                                                                                              = 1.00
LF
             = Load Factor based upon STRENGTH Design
{\rm K_{\rm e}}
             = Ground Elev Factor [Tbl 26.9-1]
                                                                                                              = 0.983
             = 0.00256 \cdot K_h \cdot K_{zt} \cdot K_d \cdot K_e \cdot V^2 + LF [Eq 26.10-1]
                                                                                                              = 11.80 psf
q_h
RA
             = Roof Area
                                                                                                              = 1223.28 ft<sup>2</sup>
```

```
= 0.00256 \cdot K_h \cdot K_{zt} \cdot K_d \cdot K_e \cdot V^2 \star LF [Eq 26.10-1]
                                                                                                    = 11.80 psf
                                                                                                    = 11.80 psf
= 11.80 psf
            = Negative Internal Pressure: qh • LF
q_{\rm in}
            = Positive Internal Pressure: q<sub>h</sub>•LF
MWFRS Wind Loads [Normal to Ridge]
h = Mean Roof Height Of Building
                                                                                                    = 14.830 ft
            = Ridge Height Of Roof
                                                                                                    = 23.161 ft
RHt.
B
           = Horizontal Dimension Of Building Normal To Wind Direction
                                                                                                    = 52.000 ft
            = Horizontal Dimension Of building Parallel To Wind Direction
                                                                                                    = 22.000 ft
L
           = Ratio Of L/B used For Cp determination
                                                                                                    = 0.423
L/B
h/L
          = Ratio Of h/L used For Cp determination
= Slope Of Roof
                                                                                                    = 0.674
Slope
                                                                                                    = 9.46 Deg
Gust Factor Calculation for Wind: [Normal to Ridge]
*Gust Factor Category I Rigid Structures - Simplified Method*
G<sub>1</sub> = Simplified: For Rigid Structures can use 0.85
                                                                                                   = 0.85
*Gust Factor Category II Rigid Structures - Complete Analysis*
Z_m = Equiv Struc Height: Max(0.6•h, Z_{min})
                                                                                                    = 30.000 ft
            = Turbulence Intensity: c \cdot (33/Z_m)^{1/6}[Eq 26.11-1]
                                                                                                    = 0.305
                                                                                                    = 309.993 ft
           = Turbulence Integral Length Scale: \ell \cdot (Z_m/33)^{\epsilon} [Eq 26.11-9]
           = Building Width Width Normal to Wind Direction
                                                                                                    = 52.000 ft
В
Q
G<sub>2</sub>
            = [1/(1+0.63 \cdot [(B+h)/L_{zm}]^{0.63})]^{0.5}[Eq 26.11-8]
                                                                                                    = 0.898
          = Detailed: 0.925 \cdot [(1+1.7 \cdot g_q \cdot I_{zm} \cdot Q) / (1+1.7 \cdot g_v \cdot I_{zm})] [Eq 26.11-6]
                                                                                                   = 0.865
*Gust Factor Used in Analysis*
      = Gust Factor: Min(G_1, G_2)
                                                                                                    = 0.850
        = Windward Wall Coefficient (All L/B Values)
\mathtt{Cp}_{\mathtt{WW}}
                                                                                                    = 0.800
          = Leeward Wall Coefficient using L/B
= Side Wall Coefficient (All L/B values)
                                                                                                    = -0.500
= -0.700
Cp_{LW}
```

Wind Pressures [Normal to Ridge]

All wind pressures include a Load Factor (LF) of 1.0

Elev	GC_{pi}	GC _{pi}	\mathbf{q}_{i}	K _z	K _{zt}	q_z	Windward	Leeward	Side	Total	Minimum
	Windward	Leeward					Press	Press	Press	Press	Pressure*
ft			psf			psf	psf	psf	psf	psf	psf
23.161	+0.18	+0.18	11.80	0.651	1.000	13.36	6.96	-7.14	-9.15	14.10	16.00
14.830	+0.18	+0.18	11.80	0.575	1.000	11.80	5.90	-7.14	-9.15	13.04	16.00
23.161	-0.18	-0.18	11.80	0.651	1.000	13.36	11.21	-2.89	-4.90	14.10	16.00
14.830	-0.18	-0.18	11.80	0.575	1.000	11.80	10.15	-2.89	-4.90	13.04	16.00

```
= 2.01 • (15/Z_g)^{2/a} [Tbl 26.10-1] K_{zt} = No Topographic feature specified q_z = 0.00256 • K_z • K_d • K_e • V^2 * LF [Eq 26.10-1]
                                                                     26.13-1 = Positive Internal Pressure: q_h \cdot LF | q_{in} = Negative Internal Pressure: q_h \cdot LF
q_{ip} = Positive Internal Pressure: q_h \cdot Lr q_{in} = Negative Internal Pressure: q_h \cdot Lr Side = q_h \cdot G \cdot Cp_{SN} - q_{ip} \cdot (+GC_{pi}) [Eq 27.3-1] Uindward = q_x \cdot G \cdot Cp_{NN} - q_{ip} \cdot (+GC_{pi}) [Eq 27.3-1] Uindward = q_x \cdot G \cdot Cp_{NN} - q_{ip} \cdot (+GC_{pi}) [Eq 27.3-1] Uindward = Q_x \cdot G \cdot Cp_{NN} - Q_{ip} \cdot (+GC_{pi}) [Eq 27.3-1] Uindward = Q_x \cdot G \cdot Cp_{NN} - Q_{ip} \cdot (+GC_{pi}) [Eq 27.3-1] Uindward = Q_x \cdot G \cdot Cp_{NN} - Q_{ip} \cdot (+GC_{pi}) [Eq 27.3-1] Uindward = Q_x \cdot G \cdot Cp_{NN} - Q_{ip} \cdot (+GC_{pi}) [Eq 27.3-1] Uindward = Q_x \cdot G \cdot Cp_{NN} - Q_{ip} \cdot (+GC_{pi}) [Eq 27.3-1] Uindward = Q_x \cdot G \cdot Cp_{NN} - Q_{ip} \cdot (+GC_{pi}) [Eq 27.3-1] Uindward = Q_x \cdot G \cdot Cp_{NN} - Q_{ip} \cdot (+GC_{pi}) [Eq 27.3-1] Uindward = Q_x \cdot G \cdot Cp_{NN} - Q_{ip} \cdot (+GC_{pi}) [Eq 27.3-1] Uindward = Q_x \cdot G \cdot Cp_{NN} - Q_{ip} \cdot (+GC_{pi}) [Eq 27.3-1] Uindward = Q_x \cdot G \cdot Cp_{NN} - Q_{ip} \cdot (+GC_{pi}) [Eq 27.3-1]
```

- · Positive Pressures Act TOWARD Surface and Negative Pressures Act AWAY from Surface

Roof Wind Pressures for Positive & Negative Internal Pressure ($\pm GC_{pi}$) [Normal to Ridge] All wind pressures include a Load Factor (LF) of 1.0

Reference	Description	Location	Start	End	C _p	C _p	GC_{pi}	Pressure	Pressure				
			Dist	Dist	Min	Max		Min	Max				
			ft	ft				psf	psf				
Roof	Roof $(0 to h/2)$	All	0.000	7.415	-0.949	-0.180	+0.18/-0.18	-11.64	8.00				
Roof	Roof (h/2 to h)	All	7.415	14.830	-0.830	-0.180	+0.18/-0.18	-10.45	8.00				
Roof	Roof (h to 2*h)	All	14.830	22.000	-0.570	-0.180	+0.18/-0.18	-8.00	8.00				

```
Roof Pressures based upon Ch 27 Pt1:
```

Срем

• 0.800 Reduction Factor applied for h/L>=1 & Slope10 Deg

• The smaller uplift pressures due to Cp_Min can become critical when wind is combined with roof live load or snow load; load combinations are given in ASCE 7

· Positive Pressures Act TOWARD Surface and Negative Pressures Act AWAY from Surface

MWFRS Wind Loads [Normal to Eave]

	Willia Zodao [Noimai do Zave]	
h	= Mean Roof Height Of Building	= 14.830 ft
RHt	= Ridge Height Of Roof	= 23.161 ft
В	= Horizontal Dimension Of Building Normal To Wind Direction	= 52.000 ft
L	= Horizontal Dimension Of building Parallel To Wind Direction	= 22.000 ft
L/B	= Ratio Of L/B used For Cp determination	= 0.423
h/L	= Ratio Of h/L used For Cp determination	= 0.674
Slope	= Slope Of Roof	= 9.46 Deg

Gust Factor Calculation for Wind: [Normal to Eave]

```
*Gust Factor Category I Rigid Structures - Simplified Method*
         = Simplified: For Rigid Structures can use 0.85
                                                                                                       = 0.85
*Gust Factor Category II Rigid Structures - Complete Analysis*
Z_m = Equiv Struc Height: Max(0.6•h, Z_{min})
                                                                                                       = 30.000 ft
            = Turbulence Intensity: c \cdot (33/Z_m)^{1/6}[Eq 26.11-1]
= Turbulence Integral Length Scale: \ell \cdot (Z_m/33)^s[Eq 26.11-9]
                                                                                                        = 0.305
Τ....
                                                                                                        = 309.993 ft
\mathbf{L}_{\mathtt{zm}}
В
            = Building Width Width Normal to Wind Direction
                                                                                                        = 52.000 ft
            = [1/(1+0.63 \cdot [(B+h)/L_{zm}]^{0.63})]^{0.5}[Eq 26.11-8]
0
                                                                                                        = 0.898
\tilde{\mathsf{G}}_2
            = Detailed: 0.925 \cdot [(1+1.7 \cdot g_q \cdot I_{zm} \cdot Q) / (1+1.7 \cdot g_v \cdot I_{zm})] [Eq 26.11-6]
                                                                                                        = 0.865
*Gust Factor Used in Analysis*
      = Gust Factor: Min(G_1, G_2)
                                                                                                        = 0.850
          = Windward Wall Coefficient (All L/B Values)
                                                                                                        = 0.800
Cp_{ww}
            = Leeward Wall Coefficient using L/B
                                                                                                        = -0.500
Cp_{LW}
            = Side Wall Coefficient (All L/B values)
                                                                                                        = -0.700
Cpsw
```

Wind Pressures [Normal to Eave]

All wind pressures include a Load Factor (LF) of 1.0

Elev	GC _{pi}	GC _{pi}	\mathbf{q}_{i}	Kz	Kzt	$\mathbf{q}_{\mathbf{z}}$	Windward	Leeward	Side	Total	Minimum
	Windward	Leeward					Press	Press	Press	Press	Pressure*
ft			psf			psf	psf	psf	psf	psf	psf
14.830	+0.18	+0.18	11.80	0.575	1.000	11.80	5.90	-7.14	-9.15	13.04	16.00
14.830	-0.18	-0.18	11.80	0.575	1.000	11.80	10.15	-2.89	-4.90	13.04	16.00

```
= 2.01 \cdot (15/Z_g)^{2/\alpha} [Tbl 26.10-1]
= Enclosed Internal Pressure Tbl
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               \begin{array}{lll} \textit{K}_{zt} & = \textit{No Topographic feature specified} \\ \textit{q}_z & = \textit{0.00256 \cdot K}_z \cdot \textit{K}_{zt} \cdot \textit{K}_d \cdot \textit{K}_e \cdot \textit{V}^2 * \textit{LF [Eq 26.10-1]} \\ \end{array} 
                                                             GC_{pi}
                                                                                                                                                                           26.13-1
q_{ip} = Positive \ Internal \ Pressure: \ q_h \cdot LF \\ Side = q_h \cdot G \cdot Cp_{SM} - q_{ip} \cdot (+GC_{pi}) \ [Eq \ 27.3-1] \\ Windward = q_2 \cdot G \cdot Cp_{SM} - q_{ip} \cdot (+GC_{pi}) \ [Eq \ 27.3-1] \\ Variance = Q_{positive} \ Pressure: \ Q_{positi
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    = Negative Internal Pressure: q<sub>h</sub>•LF
```

- · Positive Pressures Act TOWARD Surface and Negative Pressures Act AWAY from Surface

Roof Wind Pressures for Positive & Negative Internal Pressure (±GCpi) [Normal to Eave] All wind pressures include a Load Factor (LF) of 1.0

Reference	Description	Location	Start	End	C _p	C _p	GC_{pi}	Pressure	Pressure
			Dist	Dist	Min	Max		Min	Max
			ft	ft				psf	psf
Roof	Roof (0 to h/2)	All	0.000	7.415	-0.949	-0.180	+0.18/-0.18	-11.64	8.00
Roof	Roof (h/2 to h)	All	7.415	14.830	-0.830	-0.180	+0.18/-0.18	-10.45	8.00
Roof	Roof (h to 2*h)	All	14.830	22.000	-0.570	-0.180	+0.18/-0.18	-8.00	8.00

```
Roof Pressures based upon Ch 27 Pt1:
  • 0.800 Reduction Factor applied for h/L>=1 & (0 to h/2)
```

- The smaller uplift pressures due to Cp_Min can become critical when wind is combined
- with roof live load or snow load; load $\overline{}$ combinations are given in ASCE 7
- · Positive Pressures Act TOWARD Surface and Negative Pressures Act AWAY from Surface

MWFRS Wind Loads [Parallel to Ridge]

h	= Mean Roof Height Of Building	= 14.830 ft
RHt	= Ridge Height Of Roof	= 23.161 ft
В	= Horizontal Dimension Of Building Normal To Wind Direction	= 22.000 ft
L	= Horizontal Dimension Of building Parallel To Wind Direction	= 52.000 ft
L/B	= Ratio Of L/B used For Cp determination	= 2.364
h/L	= Ratio Of h/L used For Cp determination	= 0.285
Slope	= Slope Of Roof	= 9.46 Deg

Gust Factor Calculation for Wind: [Parallel to Ridge]

```
*Gust Factor Category I Rigid Structures - Simplified Method*
G_1 = Simplified: For Rigid Structures can use 0.85
                                                                                                        = 0.85
*Gust Factor Category II Rigid Structures - Complete Analysis*
      = Equiv Struc Height: Max(0.6 h, Z<sub>min</sub>)
= Turbulence Intensity: c • (33/Z<sub>m</sub>) 1/6 [Eq 26.11-1]
                                                                                                         = 30.000 ft.
                                                                                                         = 0 305
\mathbb{L}_{\text{zm}}
            = Turbulence Integral Length Scale: ( • (Z<sub>m</sub>/33) <sup>c</sup> [Eq 26.11-9]
                                                                                                         = 309.993 ft
            = Building Width Width Normal to Wind Direction
                                                                                                         = 22.000 ft
В
           = [1/(1+0.63 \cdot [(B+h)/L_{zm}]^{0.63})]^{0.5}[Eq 26.11-8]
                                                                                                         = 0.927
0
            = Detailed: 0.925 \cdot [(1+1.7 \cdot g_q \cdot I_{zm} \cdot Q) / (1+1.7 \cdot g_v \cdot I_{zm})] [Eq 26.11-6]
                                                                                                         = 0.882
G_2
*Gust Factor Used in Analysis*
                                                                                                         = 0.850
          = Gust Factor: Min(G<sub>1</sub>, G<sub>2</sub>)
         = Windward Wall Coefficient (All L/B Values)
                                                                                                         = 0.800
            = Leeward Wall Coefficient using L/B
                                                                                                         = -0.282
Срти
- → Cp<sub>sw</sub>
                                                                                                          = -0.700
           = Side Wall Coefficient (All L/B values)
```

Wind Pressures [Parallel to Ridge] All wind pressures include a Load Factor (LF) of 1.0

Elev	GC _{pi}	GCpi	\mathbf{q}_{i}	Kz	K _{zt}	\mathbf{q}_{z}	Windward	Leeward	Side	Total	Minimum
	Windward	Leeward					Press	Press	Press	Press	Pressure*
ft			psf			psf	psf	psf	psf	psf	psf
23.161	+0.18	+0.18	11.80	0.651	1.000	13.36	6.96	-4.95	-9.15	11.91	16.00
14.830	+0.18	+0.18	11.80	0.575	1.000	11.80	5.90	-4.95	-9.15	10.85	16.00
23.161	-0.18	-0.18	11.80	0.651	1.000	13.36	11.21	-0.70	-4.90	11.91	16.00
14.830	-0.18	-0.18	11.80	0.575	1.000	11.80	10.15	-0.70	-4.90	10.85	16.00

= $2.01 \cdot (15/Z_{\sigma})^{2/\alpha}$ [Tbl 26.10-1] K_{zt} = No Topographic feature specified Κ., GC_{pi} = Enclosed Internal Pressure Tbl = $0.00256 \cdot K_z \cdot K_{zt} \cdot K_d \cdot K_e \cdot V^2 * LF$ [Eq. 26.10-1] q_z 26.13-1 = Positive Internal Pressure: q, •LF = Negative Internal Pressure: q, •LF q_{ip} q_{in} $= q_h \cdot G \cdot Cp_{LW} - q_{ip} \cdot (+GC_{pi}) \quad [Eq \ 27.3 - 1]$ $= q_h \cdot G \cdot Cp_{SW} - q_{ip} \cdot (+GC_{pi}) \quad [Eq \ 27.3 - 1]$ Side Leeward Windward = $q_z \cdot G \cdot Cp_{NW} - q_{ip} \cdot (+GC_{pi})$ [Eq 27.3-1] Total = Windward - Leev Minimum Pressure: § 27.1.5 no less than 16.00 psf (Incl LF) applied to Walls = Windward - Leeward

Positive Pressures Act TOWARD Surface and Negative Pressures Act AWAY from Surface

Roof Wind Pressures for Positive & Negative Internal Pressure $(\pm GC_{pi})$ [Parallel to Ridge] All wind pressures include a Load Factor (LF) of 1.0

Reference	Description	Location	Start	End	C _p	C _p	GC_{pi}	Pressure	Pressure
			Dist	Dist	Min	Max	_	Min	Max
			ft	ft				psf	psf
Roof	Roof (0 to h)	All	0.000	14.830	-0.900	-0.180	+0.18/-0.18	-11.15	8.00
Roof	Roof (h to 2*h)	All	14.830	29.660	-0.500	-0.180	+0.18/-0.18	-8.00	8.00
Roof	Roof (>= 2*h)	All	29.660	52.000	-0.300	-0.180	+0.18/-0.18	-8.00	8.00

Roof Pressures based upon Ch 27 Pt1:

= Start Dist from Windward Edge End = End Dist from Windward Edge Start = Smallest Coefficient Magnitude = Largest Coefficient Magnitude C_{p_max} $Press_{Max} = q_h \cdot G \cdot C_{p_max} - q_{in} \cdot (-GC_{pi}) \quad Eq \quad 27.3-1$ = $q_h \cdot G \cdot C_{p_min} - q_{ip} \cdot (+GC_{pi})$ Eq 27.3-1 Pressmin

• No reduction factor was applicable

• The smaller uplift pressures due to Cp_Min can become critical when wind is combined

with roof live load or snow load; load combinations are given in ASCE 7
• Positive Pressures Act TOWARD Surface and Negative Pressures Act AWAY from Surface

Reaction Summary Wind (MWFRS)

	Description	Fx	Fy	$\mathbf{F}_{\mathbf{z}}$	$\mathbf{M}_{\mathbf{x}}$	$\mathbf{M}_{\mathbf{y}}$	M_z	
		Kip	Kip	Kip	k•ft	k•ft	k•ft	
	Normal to Ridge: Walls+Roof +GCPi	0.00	-17.41	-11.44	226.26	0.00	0.00	
	Normal to Ridge: Walls Only +GCPi	0.00	-13.07	0.00	131.86	0.00	0.00	
	Normal to Ridge: Walls+Roof -GCPi	0.00	-14.78	0.36	164.21	0.00	0.00	
m	Normal to Ridge: Walls Only -GCP1	100.00x	16.41-2	مهنهب	199183	223.82	10. 20 L	لسمد
/	Normal to Ridge: Walls+Roof Min Pressure	0.00	-19.27	0.00	223.16	0.00	0.00	2
}	Normal to Eave: Walls+Roof +GCPi	0.00	8.82	-11.44	-63.11	0.00	0.00	7
ζ	Normal to Eave: Walls Only +GCPi	0.00	13.15	0.00	-133.33	0.00	0.00	∣
}	Normal to Eave: Walls+Roof -GCPi	0.00	11.45	0.36	-100.99	0.00	0.00	1
>	Normal to Eave: Walls Only -GCPi	0.00	11.31	0.00	-98.37	0.00	0.00	∣
ζ	Normal to Eave: Walls+Roof Min Pressure	0.00	15.80	0.00	-157.32	0.00	0.00	1 3
}	Parallel to Ridge: Walls+Roof +GCPi	-4.63	0.75	-8.49	-14.19	-84.43	10.75	1
}	Parallel to Ridge: Walls Only +GCPi	-4.63	3.96	0.00	-75.27	-45.48	-4.00	⊢ `રે
ζ	Parallel to Ridge: Walls+Roof -GCPi	-4.63	2.26	0.36	-42.93	-45.48	-4.00	1
}	Parallel to Ridge: Walls Only -GCPi	-4.63	2.12	0.00	-40.31	-45.48	-4.00	
-	Parallel to Ridge: Walls+Roof Min Pressure	-6.69	0.00	0.00	0.00	-64.52	-5.38	7
7								
w	Www.per.mecanibrary.meinntry, Ose greater		er carcur	ated with	MILION OF WILLIAM	ببهيب	سس	محدد

* X= Along Building ridge, Y= Normal to Building Ridge, Z= V= tical

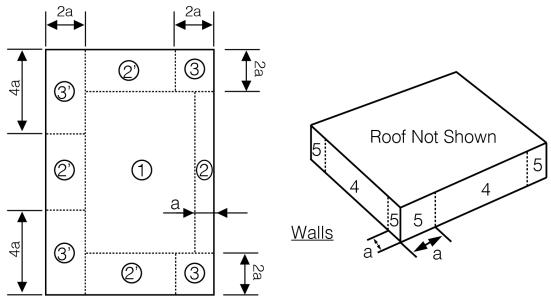
* Minimum Pressures applied to a vertical plane normal to wind.

* Reactions calculated about the geometric center of the footprint

Components and Cladding (C&C) Zone Summary per Ch 30 Pt 1: h/W = Ratio of mean roof height to building width

h/W h/L = Ratio of mean roof height to building length h = Mean structure height Elevation from Grade to Top of Structure hgrade $2.01 \cdot (15/Z_g)^{2/\alpha}$ [Tbl 26.10-1] K_h K_{zt} No Topographic feature specified K_d Wind Directionality Factor per Tbl 26.6-1

+GC_{pi} = Enclosed Positive Internal Pressure Tbl 26.13-1 = Enclosed Negative Internal Pressure Tbl 26.13-1 $-\mathsf{GC}_{\mathtt{pi}}$ = Load Factor based upon STRENGTH Design T.F


Ground Elev Factor [Tbl 26.9-1] K. = $0.00256 \cdot K_h \cdot K_{zt} \cdot K_d \cdot K_e \cdot V^2 + LF$ [Eq 26.10-1] q_h = Least Horizontal Dimension: Min(B, L) LHD

= $Min(0.1 \cdot LHD, 0.4 \cdot h)$ a_1 = $Max(a_1, 0.04 \cdot LHD, 3 ft [0.9 m])$

h/B = Ratio of mean roof height to least horizontal dim: h/B

= 0.674Controlling lateral = 0.28514.830 ft wind design load -14.830 ft. = 0.575 Compare with = 1.000 Seismic forces = 0.85

+0.18 -0.181.00 = 0.983 11.80 psf = 22.000 ft= 2.200 ft= 3.000 ft = 0.674

Wind Pressure Summary for C&C Zones based Upon Areas Ch 30 Pt 1 (Table 1 of 2) All wind pressures include a Load Factor (LF) of 1.0

Zone	Figure	Pos A ≤	Neg A. ≤	Pos A =	Neg A =	Pos A =	Neg A =	
		10 ft ²	10 ft ²	20 ft ²	20 ft ²	50 ft ²	50 ft ²	
		psf	psf	psf	psf	psf	psf	
1	30.3-5A	16.00	-16.00	16.00	-16.00	16.00	-16.00	
2	30.3-5A	16.00	-17.47	16.00	-17.11	16.00	-16.64	
2'	30.3-5A	16.00	-21.01	16.00	-20.65	16.00	-20.18	
3	30.3-5A	16.00	-23.37	16.00	-21.24	16.00	-18.42	
3'	30.3-5A	16.00	-32.81	16.00	-29.26	16.00	-24.56	
4	30.3-1	16.00	-16.00	16.00	-16.00	16.00	-16.00	
5	30.3-1	16.00	-17.00	16.00	-16.00	16.00	-16.00	

Wind Pressure Summary for C&C Zones based Upon Areas Ch 30 Pt 1 (Table 2 of 2) All wind pressures include a Load Factor (LF) of 1.0

mil wind probbates include a load ractor (li) or 1:0								
Zone	Figure	Pos A = 100 ft ² psf	Neg A = 100 ft ² psf	Pos A = 200 ft ² psf	Neg A = 200 ft ² psf	Pos A > 500 ft ² psf	Neg A > 500 ft ² psf	
1	30.3-5A	16.00	-16.00	16.00	-16.00	16.00	-16.00	
2	30.3-5A	16.00	-16.29	16.00	-16.29	16.00	-16.29	
2'	30.3-5A	16.00	-19.83	16.00	-19.83	16.00	-19.83	
3	30.3-5A	16.00	-16.29	16.00	-16.29	16.00	-16.29	
3'	30.3-5A	16.00	-21.01	16.00	-21.01	16.00	-21.01	
4	30.3-1	16.00	-16.00	16.00	-16.00	16.00	-16.00	
5	30.3-1	16.00	-16.00	16.00	-16.00	16.00	-16.00	

- * A is effective wind area for C&C: Span Length * Effective Width
- * Effective width need not be less than 1/3 of the span length
- * Maximum and minimum values of pressure shown.
- * + Pressures acting toward surface, Pressures acting away from surface * Per § 30.2.2 the Minimum Pressure for C&C is 16.00 psf [0.766 kPa] {Includes LF} * Interpolation can be used for values of A that are between those values shown.

Calculation of Seismic Response Coefficient, Cs

(ASCE 7-16, Chapter 11 and 12, Equivalent Lateral Force "ELF" Procedure)

BUILDING INFORMATION:

Risk Category:	Ξ	(ASCE 7-16 Table 1.5-1 & IBC Table 1604.5)
Importance Factor, le :	1.00	(ASCE 7-16 Table 1.5-2)
Response Modification Factor, R:	6.5	(ASCE 7-16 Table 12.2-1)
Overstrength Factor, Ω :	3	(ASCE 7-16 Table 12.2-1)
Deflection Amplification Factor, Cd:	4	(ASCE 7-16 Table 12.2-1)

SITE INFO & SEISMIC ACCELERATIONS:

Site Class: D (default) (IBC Section 1613.2.2, "D" Assumed or per Geotech.) Ss: 1.257 S1: 0.434 1.866 Fv: (ASCE 7-16 TABLE 11.4-2) 1.006 Sds: Sd1: 0.540 (Eqn 11.4-2 & 11.4-4) Seismic Design Category: D (ASCE 7-16 TABLE 11.6-1 & 11.6-2)

PERIOD DETERMINATION:

Ct: 0.02 (ASCE 7-16 Table 12.8-2) x : 0.75 (ASCE 7-16 Table 12.8-2) hn (ft): 14.67 $Ta = Ct*hn^x$: 0.150 (Eqn 12.8-7) Ts = (Sd1/Sds): 0.537 (ASCE 7-16 11.4.6) 1.5*Ts: 0.805

CALCULATE Cs:

 $Cs = Sds/(R/I): 0.155 \qquad (Eqn 12.8-2)$ $Max Cs = Sd1/(Ta*(R/I)): 0.554 \qquad (Eqn 12.8-3)$ $Min Cs = 0.044*Sds*I > 0.01: 0.044 \qquad (Eqn 12.8-5)$ $Min Cs = 0.5*S1/(R/I): 0.000 \qquad (Eqn 12.8-6, for S1 > 0.6g)$ Minimum Cs: 0.044

Cs : **0.155**

Base Shear, V = Cs * W : 0.155 * W

SITE CLASS CHECKS:

Check ASCE-16, 11.4.8, Site Class F :

Check ASCE-16, 11.4.8, Site Class E :

Check ASCE-16, 11.4.8, Site Class E :

Check ASCE-16, 11.4.8, Site Class D,

Exception 2:

Site Response Analysis

Not Required

Analysis Not Required

Analysis Not Required

Ground Motion Hazard Analysis <u>is</u>
Required for seismically isolated
structures or structures with damping
systems on sites with S1 >/= 0.6

Seismic Weight

-Roof

Metal Roofing	1.5 psf
Wood Sheathing	2.2 psf
Metal Truss Framing	5.0 psf
Insulation	2.5 psf
Mech.	1.5 psf
Misc.	1.8 psf
Total	13 psf

-Exterior Walls

Metal Siding	1.5 psf
Wood Sheathing	1.5 psf
Gyp Board	2.8 psf
Insulation	2.2 psf
Metal Stud Framing	2.0 psf
Total	10 psf

Seismic Base Shear

Roof:

 $(52ft \times 22ft) \times (13psf) = 14872lbs$

Exterior Walls:

perimeter = $(2 \times 52ft) + (2 \times 22ft) = 148ft$ wall height = 14.67ft $(148ft \times 14.67ft/2) \times (10psf) = 10856lbs$

Seismic Weight = 14872lbs + 10974lbs = 25846lbs

Base Shear, V = Cs * W = 0.155 * 25846lbs = 4006lbs = 4.0kips

Compare with Wind Base Shear

Wind Controls, V = 19.27kips

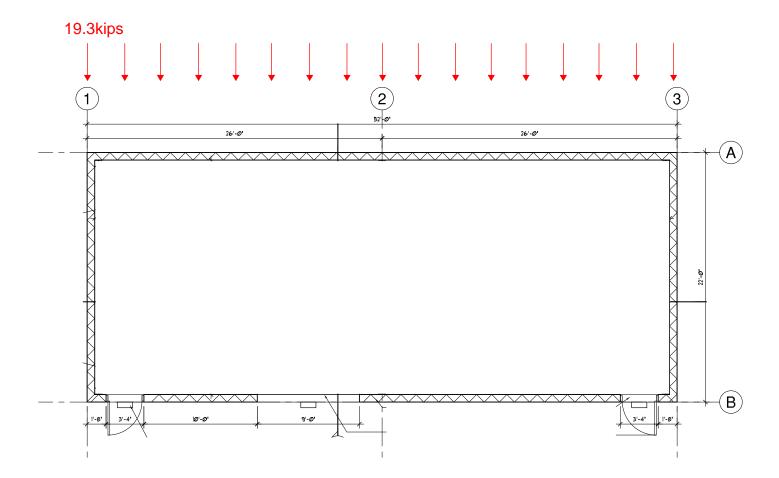
(Normal to ridge)

V = 6.69 kips

(Parallel to ridge)

Diaphragm Design

-Diphragm Forces


Normal to Ridge: V = 19.3kips (LRFD) = 0.6*19.3kips = 11.6kips (ASD)

Distributed Wind Load w = 11.6kips / 52ft = 223lbs /ft

- 2 walls ea end of diaphragm Force to each wall = (11.6kips) / 2 = 5.8kips ea

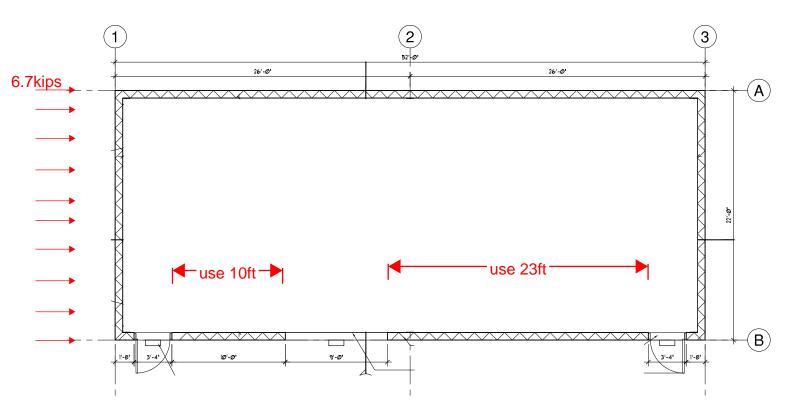
-Max Diaphragm shear @ gridlines 1 & 2 v = (5.8kips) / 22ft = 0.264kips/ft = 264 lbs/ft

-Max chord Forces @ gridlines A & B Mmax = $(223lbs/ft) * (52ft)^2 / 8 = 89232 lb-ft$ Total Chord Force, T/C = (89232lb-ft) / 22ft = 4056lbs Linear chord force = 4056lbs / 52ft = 78lbs/ft

Diaphragm Design

-Diphragm Forces

Parallel to Ridge: V = 6.7kips (LRFD) = 0.6*6.7kips = 4.0kips (ASD)


Distributed Wind Load w = 4.0kips / 22ft = 183lbs/ft

- 2 walls ea end of diaphragm Force to each wall = (4.0kips) / 2 =2.0kips ea

-Max Diaphragm shear @ gridline B v = (2.0kips) / 52ft = 0.039kips/ft = 39 lbs/ft

-Max Diaphragm shear @ gridline A v = (2.0kips) / (10ft + 23ft) = 0.061kips/ft = 61 lbs/ft

-Max chord Forces @ gridlines 1&2 Mmax = $(61lbs/ft) * (22ft)^2 / 8 = 3691 lb-ft$ Total Chord Force, T/C = (3691lb-ft) / 52ft = 71lbsLinear chord force = 71lbs / (9ft+24ft) = 2lbs/ft

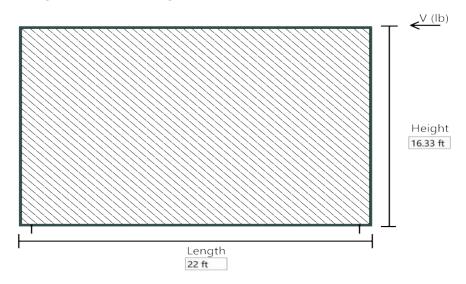
Diaphragm Design

-Diphragm Forces

Table F2.4-1
Nominal Shear Strength (v_n) per Unit Length for Diaphragms Sheathed
With Wood Structural Panel Sheathing ^{1,2}
United States and Mexico (lb/ft)

Officed States and Mexico (III)									
Sheathing		Blocked			Unblocked				
	Thick-	Screw spacing at diaphragm boundary edges and at all continuous panel edges (in.) Screws spaced months on all supports.						naximum of 6 in. orted edges	
	ness	6	4	2.5	2	Load			
	(in.)	Screw spacing at all other panel edges (in.)				perpendicular unblocked edges and continuous		All other configurations	
		6	6	4	3	panel joints			
	3/8	768	1022	1660	2045	685		510	
Structural I	7/16	768	1127	1800	2255	755	\sim	565	
	15/32	925	1232	1970	2465	825	}	615	
C-D, C-C and	3/8	690	920	1470	1840	615		460	
other graded wood structural	7/16	760	1015	1620	2030	680		505	
panels	15/32	832	1110	1770	2215	740		555	

^{1.} For SI: 1" = 25.4 mm, 1 ft = 0.305 m, 1 lb = 4.45 N


Using 15/32" min thickness OSB @ roof w/ #8 SMS @ 6"oc at panel edges-

825 lb/ft / W = 330 plf > 264 lb/ft [OK]

For diaphragms sheathed with wood structural panels, tabulated R_n values are applicable for short-term load duration (seismic loads).

Model: Gridline - 1&2 Code: AISI S100-16

Simple Shear Wall design is intended for use with element and component design or other designs where special seismic considerations are not required. For design of building LFRS shear walls, use CFS Designer's LFRS Shear Wall design module

Chord Data	Load Data
------------	-----------

Chords: 600S162-54 (50) Back-To-Back		V(wind) =	5820 lb
AISI S100-16	40 :	V(seismic) =	1400 lb
Chord Fastener Spacing, a = Shearwall Chord Force =	12 in 4353 lb	Sheathing Data	
Includes Anchor Offset =	2.0 in	Shear values per IBC 2018 (AISI S240-15)
Additional Axial Loads =	1000 lb	See AISI S240-15 for additional informatio	n n
Total Axial Loads =	5353 lb		••
KyLy, KtLt for Axial Capacity =	Sheathed	Stud Thickness = 54 mils	
Maximum KL/r =	86	Sheathing: 7/16 Rated Sheathing (OSB) 1	1 side
Allowable Axial Load =	6444 lb	Fasteners: 6-inches oc edges, 12-inches	
Input Chard Mament =	0 ft-lh	r astoriors. O-mones of edges, 12-mones	oc neid

0 ft-lb Input Chord Moment = Full Flexural Bracing =

Distortional Buckling Inputs for Moment and Axial K-phi = 0 lb-in/in None

Lm = 3860 ft-lb Allowable Moment = Chord Interaction = 0.831

Overturning Uplift Data

2.0 in Anchor offset Each End = Uplift at Anchor - Wind = 4353 lb Uplift at Anchor - Seismic = 1047 lb

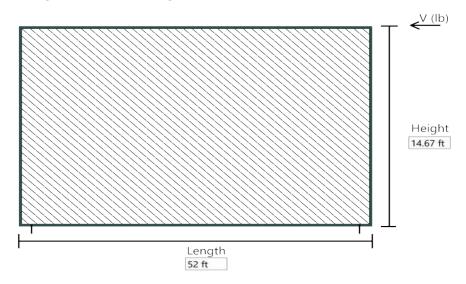
Holdown Data

Holdown: S/HDU11 - 54 Tension Force: 4353 lb Allowable Tension: 7665 lb

Interaction: 0.57

Screws attaching panels to CFS steel framing shall comply with ASTM C1513. Also, for framing members that are 54 mil and thinner, use minimum #8. For 68 mil and thicker, use min. #10.

Aspect Ratio =	0.74:1
Allowable Aspect Ratio for Seismic =	2.00:1
Allowable Aspect Ratio for Wind =	2.00:1
Unit Shear (Wind) =	265 lb/ft
Allowable Unit Shear (Wind) =	455 lb/ft
Unit Shear (Seismic) =	64 lb/ft
Allowable Unit Shear (Seismic) =	455 lb/ft


(Factored ASD)

Page 1 of 1

Model: Gridline - A Code: AISI S100-16

Simpson Strong-Tie® CFS Designer™ 5.2.3.0

Simple Shear Wall design is intended for use with element and component design or other designs where special seismic considerations are not required. For design of building LFRS shear walls, use CFS Designer's LFRS Shear Wall design module.

12 in

577 lb

ı

Chords:	600S162-54 (50) Back-To-Back	
AISI S100-16	, ,	
Chord Fasten	er Spacing, a =	
Shearwall Ch	ord Force =	
Includes Anch	nor Offset =	

Flexural Bracing = Full

Distortional Buckling Inputs for Moment and Axial

 K-phi =
 0 lb-in/in

 Lm =
 None

 Allowable Moment =
 3860 ft-lb

 Chord Interaction =
 0.090

Overturning Uplift Data

Anchor offset Each End = 2.0 in
Uplift at Anchor - Wind = 577 lb
Uplift at Anchor - Seismic = 396 lb

Holdown Data

Holdown: S/HDU4 - 54 Tension Force: 577 lb Allowable Tension: 2550 lb

Interaction: 0.23

Load Data (Factored ASD)

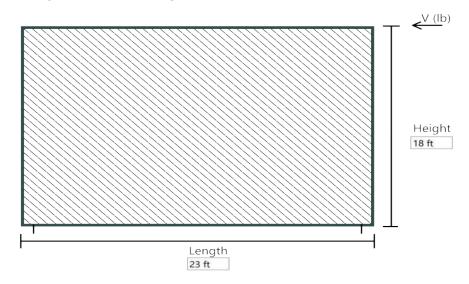
V(wind) =	2040 lb
V(seismic) =	1400 lb

Sheathing Data

Shear values per IBC 2018 (AISI S240-15) See AISI S240-15 for additional information

Stud Thickness = 54 mils

Sheathing: 7/16 Rated Sheathing (OSB) 1 side Fasteners: 6-inches oc edges, 12-inches oc field


Screws attaching panels to CFS steel framing shall comply with ASTM C1513. Also, for framing members that are 54 mil and thinner, use minimum #8. For 68 mil and thicker, use min. #10.

Aspect Ratio =	0.28:1
Allowable Aspect Ratio for Seismic =	2.00:1
Allowable Aspect Ratio for Wind =	2.00:1
Unit Shear (Wind) =	39 lb/ft
Allowable Unit Shear (Wind) =	455 lb/ft
Unit Shear (Seismic) =	27 lb/ft
Allowable Unit Shear (Seismic) =	455 lb/ft

Page 1 of 1 Date: 03/08/2024

Code: AISI S100-16 Simpson Strong-Tie® CFS Designer™ 5.2.3.0

Simple Shear Wall design is intended for use with element and component design or other designs where special seismic considerations are not required. For design of building LFRS shear walls, use CFS Designer's LFRS Shear Wall design module

Chord Data

600S162-54 (50) Single Chords: AISI S100-16

1170 lb Shearwall Chord Force = Includes Anchor Offset = 2.0 in Additional Axial Loads = 0 lb Total Axial Loads = 1170 lb KyLy, KtLt for Axial Capacity = Sheathed Maximum KL/r = 95 3222 lb Allowable Axial Load =

0 ft-lb Input Chord Moment = Flexural Bracing = Full Distortional Buckling Inputs for Moment and Axial

0 lb-in/in K-phi = Lm = None Allowable Moment = 3860 ft-lb Chord Interaction = 0.363

Overturning Uplift Data

Anchor offset Each End = 2.0 in 1170 lb Uplift at Anchor - Wind = Uplift at Anchor - Seismic = 803 lb

Holdown Data

Holdown: S/HDU4 - 54 Tension Force: 1170 lb Allowable Tension: 2550 lb

Interaction: 0.46

Load Data (Factored ASD)

V(wind) =1484 lb V(seismic) = 1018 lb

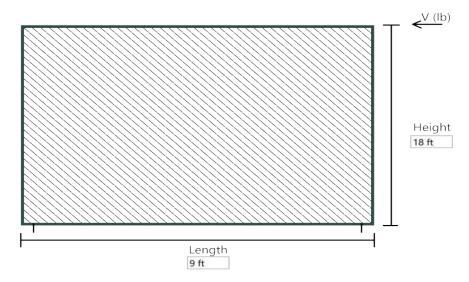
Sheathing Data

Shear values per IBC 2018 (AISI S240-15) See AISI S240-15 for additional information

Stud Thickness = 54 mils

Sheathing: 7/16 Rated Sheathing (OSB) 1 side Fasteners: 6-inches oc edges, 12-inches oc field

Screws attaching panels to CFS steel framing shall comply with ASTM C1513. Also, for framing members that are 54 mil and thinner, use minimum #8. For 68 mil and thicker, use min. #10.


Aspect Ratio =	0.78:1
Allowable Aspect Ratio for Seismic =	2.00:1
Allowable Aspect Ratio for Wind =	2.00:1
Unit Shear (Wind) =	65 lb/ft
Allowable Unit Shear (Wind) =	455 lb/ft
Unit Shear (Seismic) =	44 lb/ft
Allowable Unit Shear (Seismic) =	455 lb/ft

Simpson Strong-Tie® CFS Designer™ 5.2.3.0

Page 1 of 1 Date: 03/08/2024

Model: Gridline - B(2) Code: AISI S100-16

Simple Shear Wall design is intended for use with element and component design or other designs where special seismic considerations are not required. For design of building LFRS shear walls, use CFS Designer's LFRS Shear Wall design module

Chord Data

600S162-54 (50) Single Chords: AISI S100-16

Shearwall Chord Force = 1133 lb Includes Anchor Offset = 2.0 in Additional Axial Loads = 0 lb Total Axial Loads = 1133 lb KyLy, KtLt for Axial Capacity = Sheathed Maximum KL/r = 95 3222 lb Allowable Axial Load = 0 ft-lb Input Chord Moment = Flexural Bracing = Full

Distortional Buckling Inputs for Moment and Axial

0 lb-in/in K-phi = Lm = None 3860 ft-lb Allowable Moment = Chord Interaction = 0.352

Overturning Uplift Data

Anchor offset Each End = 2.0 in 1133 lb Uplift at Anchor - Wind = Uplift at Anchor - Seismic = 776 lb

Holdown Data

Holdown: S/HDU4 - 54 Tension Force: 1133 lb Allowable Tension: 2550 lb

Interaction: 0.44

Load Data (Factored ASD)

V(wind) =556 lb V(seismic) = 381 lb

Sheathing Data

Shear values per IBC 2018 (AISI S240-15) See AISI S240-15 for additional information

Stud Thickness = 54 mils

Sheathing: 7/16 Rated Sheathing (OSB) 1 side Fasteners: 6-inches oc edges, 12-inches oc field

Screws attaching panels to CFS steel framing shall comply with ASTM C1513. Also, for framing members that are 54 mil and thinner, use minimum #8. For 68 mil and thicker, use min. #10.

Aspect Ratio =	2.00:1
Allowable Aspect Ratio for Seismic =	2.00:1
Allowable Aspect Ratio for Wind =	2.00:1
Unit Shear (Wind) =	62 lb/ft
Allowable Unit Shear (Wind) =	455 lb/ft
Unit Shear (Seismic) =	42 lb/ft
Allowable Unit Shear (Seismic) =	455 lb/ft

Date:

Brienen Structural Engineers, P.S.

Shear Transfer - Bot Track Anchors BOT TRACK DA AISI S100 - Section E3 AucHor 1 Track thickness, E = 54 mil BOLT
Track thickness, $t = 54 \text{ mil}$ $F_y = 50 \text{ ks.}$; $F_u = 65 \text{ ks.}$ Anchor Bolt 9 , $D = 0.625$ " $A_p = 0.31 \text{ in}^2$
ABISED ES.3.1.1 Pn = C *mp xd x t x F
$C = 4 - 0.1(\frac{d}{k}) = 4 - 0.1(\frac{-0.625''}{0.091''}) = 2.84$ $m_{\xi} = 0.75 (w/ washer)$
$P_n = (284)(0.75)(0.635'') \cdot (.054'') \cdot (675)$
$= 4.67 kips$ $\frac{P_0}{\Omega} = 4.67 kips / 2.5 = 1.87 kips$
Try Bolt Hole Deformation
Alsi sio E3.3.2.1 $P_n = (4.64 + 1.53) d + F_n = \Omega = 222$
Pn = (4.64.(1.0).(.041") + 1.53). (0.635")(.054")(65)
$= 3.91 k_{\text{IPS}}$ $= 1.76 t \text{are anchor}$

Hilti PROFIS Engineering 3.0.91

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

Design: Alt Bot Track Anchor Date: 2/14/2024

Fastening point:

Specifier's comments:

1 Input data

Anchor type and diameter: KWIK HUS-EZ (KH-EZ) 5/8 (3 1/4)

Item number: 418078 KH-EZ 5/8"x3 1/2"

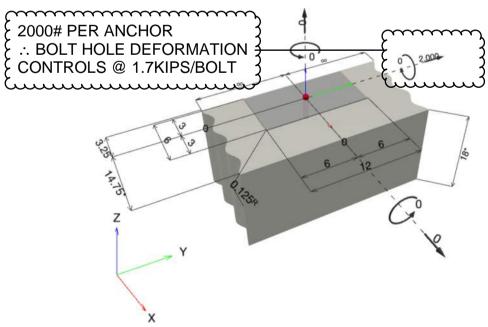
Effective embedment depth: $h_{ef,act} = 2.390 \text{ in.}, h_{nom} = 3.250 \text{ in.}$

Material: Carbon Steel
Evaluation Service Report: ESR-3027

Issued I Valid: 4/1/2022 | 12/1/2023

Proof: Design Method ACI 318-19 / Mech Stand-off installation: $e_h = 0.000$ in. (no stand-off); t = 0.125 in.

Anchor plate^R: $l_x \times l_y \times t = 6.000$ in. x 12.000 in. x 0.125 in.; (Recommended plate thickness: not calculated)


Profile: no profile

Base material: cracked concrete, 2500, $f_c' = 2,500$ psi; h = 18.000 in. Installation: hammer drilled hole, Installation condition: Dry

Reinforcement: tension: not present, shear: not present; no supplemental splitting reinforcement present

edge reinforcement: none or < No. 4 bar

Geometry [in.] & Loading [lb, in.lb]

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2024 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

^R - The anchor calculation is based on a rigid anchor plate assumption.

2

Hilti PROFIS Engineering 3.0.91

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

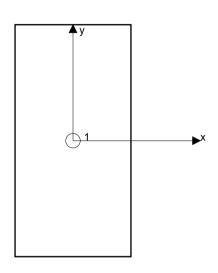
Design: Alt Bot Track Anchor Date: 2/14/2024

Fastening point:

1.1 Design results

Case	Description	Forces [lb] / Moments [in.lb]	Seismic	Max. Util. Anchor [%]
1	Combination 1	$N = 0$; $V_x = 0$; $V_y = 2,000$;	no	99
	$M_x = 0$; $M_y = 0$; $M_z = 0$;			

2 Load case/Resulting anchor forces


Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	0	2,000	0	2,000

 $\begin{tabular}{ll} max. concrete compressive strain: & - [\%] \\ max. concrete compressive stress: & - [psi] \\ resulting tension force in (x/y)=(0.000/0.000): & 0 [lb] \\ resulting compression force in (x/y)=(0.000/0.000): & 0 [lb] \\ \end{tabular}$

Anchor forces are calculated based on the assumption of a rigid anchor plate.

3 Tension load

	Load N _{ua} [lb]	Capacity ∮ N _n [lb]	Utilization $\beta_N = N_{ua}/\Phi N_n$	Status
Steel Strength*	N/A	N/A	N/A	N/A
Pullout Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Failure**	N/A	N/A	N/A	N/A

^{*} highest loaded anchor **anchor group (anchors in tension)

3

Hilti PROFIS Engineering 3.0.91

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

Design: Alt Bot Track Anchor Date: 2/14/2024

Fastening point:

4 Shear load

	Load V _{ua} [lb]	Capacity V _n [lb]	Utilization $\beta_V = V_{ua}/\Phi V_n$	Status
Steel Strength*	2,000	6,732	30	ОК
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength**	2,000	2,037	99	OK
Concrete edge failure in direction x-**	2,000	2,968	68	OK

4.1 Steel Strength

 V_{sa} = ESR value refer to ICC-ES ESR-3027 ϕ $V_{steel} \geq V_{ua}$ ACI 318-19 Table 17.5.2

Variables

A _{se,V} [in. ²]	f _{uta} [psi]
0.27	90.180

Calculations

V_{sa} [lb] 11,220

Results

V _{sa} [lb]	ϕ_{steel}	φ V _{sa} [lb]	V _{ua} [lb]	
11.220	0.600	6.732	2.000	

Hilti PROFIS Engineering 3.0.91

www.hilti.com

Company: Page: Specifier: Address: Phone I Fax: E-Mail:

Design: Alt Bot Track Anchor Date: 2/14/2024

Fastening point:

4.2 Pryout Strength

 $V_{cp} = k_{cp} \left[\left(\frac{A_{Nc}}{A_{Nc0}} \right) \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_b \right]$ ACI 318-19 Eq. (17.7.3.1a) ACI 318-19 Table 17.5.2 $A_{Nc0} = 9 h_{ef}^2$ ACI 318-19 Eq. (17.6.2.1.4)
$$\begin{split} & \psi_{ed,N} = 0.7 + 0.3 \left(\frac{c_{a,min}}{1.5 h_{ef}} \right) \leq 1.0 \\ & \psi_{cp,N} = \text{MAX} \left(\frac{c_{a,min}}{c_{ac}}, \frac{1.5 h_{ef}}{c_{ac}} \right) \leq 1.0 \\ & N_b = k_c \ \lambda_a \ \sqrt{\dot{f_c}} \ h_{ef}^{1.5} \end{split}$$
ACI 318-19 Eq. (17.6.2.4.1b) ACI 318-19 Eq. (17.6.2.6.1b)

ACI 318-19 Eq. (17.6.2.2.1)

Variables

k _{cp}	h _{ef} [in.]	c _{a,min} [in.]	$\psi_{c,N}$
1	2.390	3.250	1.000
c _{ac} [in.]	k _c	λ	f _c [psi]
3.630	17	1.000	2,500

Calculations

A _{Nc} [in. ²]	A_{Nc0} [in. ²]	$\psi_{\text{ed,N}}$	$\Psi_{cp,N}$	N _b [lb]
49.01	51.41	0.972	1.000	3.141

Results

V _{cp} [lb]	$\phi_{ m concrete}$	φ V _{cp} [lb]	V _{ua} [lb]
2,910	0.700	2,037	2,000

Hilti PROFIS Engineering 3.0.91

www.hilti.com

 Company:
 Page:
 5

 Address:
 Specifier:

 Phone I Fax:
 |
 E-Mail:

 Design:
 Alt Bot Track Anchor
 Date:
 2/14/2024

 Fastening point:
 2/14/2024

4.3 Concrete edge failure in direction x-

/ A \

$V_{cb} = \left(\frac{A_{Vc}}{A_{Vc0}}\right) \psi_{ed,V} \psi_{c,V} \psi_{h,V} \psi_{parallel,V} V_{b}$	ACI 318-19 Eq. (17.7.2.1a)
$\phi V_{cb} \ge V_{ua}$	ACI 318-19 Table 17.5.2
A _{Vc} see ACI 318-19, Section 17.7.2.1, Fig. R 17.7.2.1(b)	
$A_{Vc0} = 4.5 c_{a1}^2$	ACI 318-19 Eq. (17.7.2.1.3)
$\Psi_{\text{ed,V}} = 0.7 + 0.3 \left(\frac{c_{a2}}{1.5c_{a1}} \right) \le 1.0$	ACI 318-19 Eq. (17.7.2.4.1b)
$\Psi_{h,V} = \sqrt{\frac{1.5c_{a1}}{h_a}} \ge 1.0$	ACI 318-19 Eq. (17.7.2.6.1)
$V_{b} = \left(7 \left(\frac{I_{e}}{d_{a}}\right)^{0.2} \sqrt{d_{a}}\right) \lambda_{a} \sqrt{f_{c}} c_{a1}^{1.5}$	ACI 318-19 Eq. (17.7.2.2.1a)

Variables

c _{a1} [in.]	c _{a2} [in.]	$\psi_{c,V}$	h _a [in.]	l _e [in.]
3.250	-	1.000	18.000	2.390
3		f Incil		
Λa	d _a [in.]	f _c [psi]	Ψ _{parallel,V}	
	a	<u> </u>	- paralici, v	
1.000	0.625	2,500	2.000	
	-		·	

Calculations

A _{Vc} [in. ²]	A _{Vc0} [in. ²]	$\psi_{\text{ ed,V}}$	$\Psi_{h,V}$	V _b [lb]
47.53	47.53	1.000	1.000	2,120
Results				
V _{cb} [lb]	ϕ_{concrete}	φ V _{cb} [lb]	V _{ua} [lb]	
4,240	0.700	2,968	2,000	_

5 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout or pryout strength governs.
- · Refer to the manufacturer's product literature for cleaning and installation instructions.
- For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- Hilti post-installed anchors shall be installed in accordance with the Hilti Manufacturer's Printed Installation Instructions (MPII). Reference ACI 318-19, Section 26.7.

Page 37

Hilti PROFIS Engineering 3.0.91

www.	hilti	.com
------	-------	------

 Company:
 Page:
 6

 Address:
 Specifier:

 Phone I Fax:
 |
 E-Mail:

 Design:
 Alt Bot Track Anchor
 Date:
 2/14/2024

 Fastening point:
 2/14/2024

Fastening meets the design criteria!

2/14/2024

Hilti PROFIS Engineering 3.0.91

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:
Design: Alt Bot Track Anchor Date:

Fastening point:

6 Installation data

Profile: no profile

Hole diameter in the fixture: $d_f = 0.750$ in.

Plate thickness (input): 0.125 in.

Recommended plate thickness: not calculated

Drilling method: Hammer drilled

Cleaning: Manual cleaning of the drilled hole according to instructions for use is

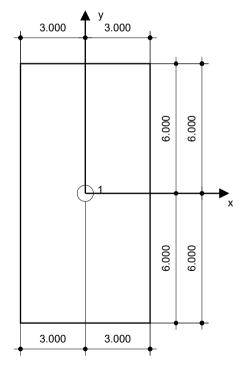
required.

Anchor type and diameter: KWIK HUS-EZ (KH-EZ) 5/8 (3

1/4)

Item number: 418078 KH-EZ 5/8"x3 1/2" Maximum installation torque: 1,020 in.lb Hole diameter in the base material: 0.625 in. Hole depth in the base material: 3.625 in.

Minimum thickness of the base material: 5.000 in.


Hilti KH-EZ screw anchor with 3.25 in embedment, 5/8 (3 1/4), Carbon steel, installation per ESR-3027

6.1 Recommended accessories

DrillingCleaningSetting• Suitable Rotary Hammer• Manual blow-out pump• Torque wrench

· Properly sized drill bit

Hilti SIW 9-A22 Impact Wrench

Coordinates Anchor [in.]

Anchor	x	у	C _{-x}	C+x	C _{-y}	C _{+y}
1	0.000	0.000	3 250	14 750	_	_

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2024 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

Page 39

Hilti PROFIS Engineering 3.0.91

www.h	iilti	.com
-------	-------	------

Company:		Page:	3
Address:		Specifier:	
Phone I Fax:	1	E-Mail:	
Design:	Alt Bot Track Anchor	Date:	2/14/2024
Fastening point:			

7 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each
 case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data
 or programs, arising from a culpable breach of duty by you.

B rienen **S** tructural **E** ngineers, P.S.

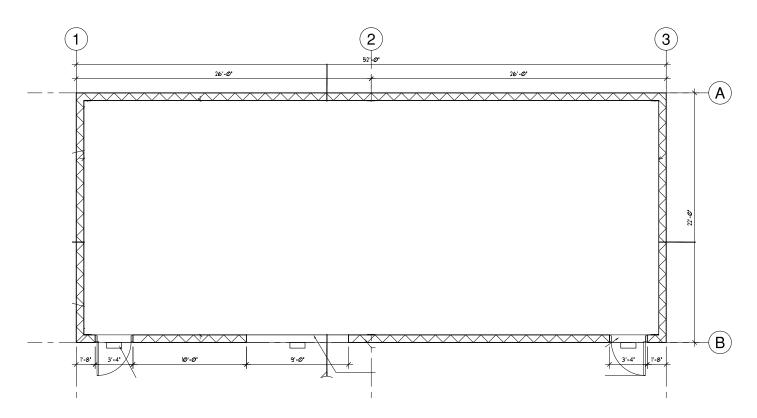
Vertical Design

${m B}$ rienen ${m S}$ tructural ${m E}$ ngineers, P.S.

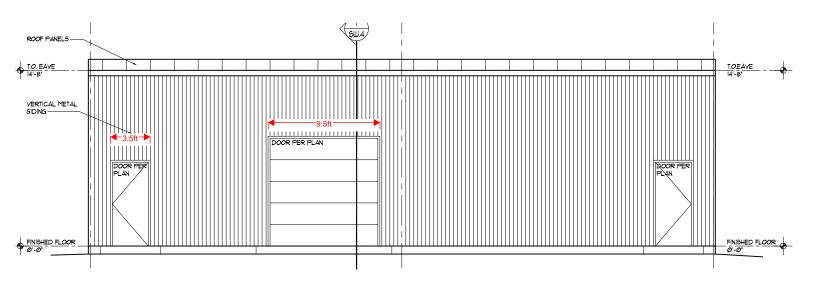
Building Weights

-Roof

Wood Sheathing	2.2 psf
Metal Joist Framing	2.8 psf
Insulation	2.5 psf
Gypsum Sheathing	2.2 psf
Mech.	1.5 psf
Misc.	1.8 psf
Total Dead Load	13 psf
Total Live Load	20 psf
Total Snow Load	25 psf


-Exterior Walls

Metal Siding Wood Sheathing Gyp Board	1.5 psf 1.5 psf 2.8 psf
Insulation	2.2 psf
Metal Stud Framing	2.0 psf
Total Dead Load	10 psf
Lateral Live Load	5 psf
Wind Load	16 psf



 ${m B}$ rienen ${m S}$ tructural ${m E}$ ngineers, P.S.

Building Plan

Building Elevation

Model: C&C Wind Date: 03/08/2024

Code: ASCE 7-16 Simpson Strong-Tie® CFS Designer™ 5.2.3.0

WIND LOAD - ASCE 7-16

98 mph, Exposure B, Mean Roof Height = 16.5 ft

 K_{zt} at Base = 1

 $K_d = 0.85$, Roof Slope 9.46 degrees (2:12)

Enclosed Building, GCpi = 0.18

(Wind Loads Shown are for Alternate Basic Load Combinations Using Allowable Stress Design and are Multiplied by a Factor of 0.6 to convert to ASD)

WALL COMPONENTS AND CLADDING per ASCE7-16 Figure 30.3-1

GCp by	GCp by Zone				
Zone 4 (+/-)	Zone 5 (+/-)				
0.90/-0.99	0.90/-1.26				
0.79/-0.88	0.79/-1.04				
0.63/-0.72	0.63/-0.72				
	Zone 4 (+/-) 0.90/-0.99 0.79/-0.88				

Height		sures (psf) by 2	(psf) by Zone ()						
z (ft)	K_{z}	K_{zt}	K_e	q _z (psf)	Tributary Area (ft2)	Windward (4,5)	Leeward (4)	Leeward (5)	
0 - 16.5	0.70	1.00	1.00	14.64	10	9.6	-10.3	-12.6	
					50	9.6	-9.6	-10.7	
					500	9.6	-9.6	-9.6	

ROOF COMPONENTS AND CLADDING - MONOSLOPE ROOF

ASCE7-16 Figure 30.3-5A

 $K_h = 0.70$; K_{zt} at roof = 1.00; $K_e = 1.00$; $q_h = 14.64$ psf

	Positive Pressure, p (psf)					Negative	Pressure	e, p (psf)
	A=1	10 A=100			,	4=10	A=10	00
Zone	GC_p	р	GC_p	р	GC_{p}	р	GC_p	р
1	0.30	9.60	0.20	9.60	-1.10	-11.24	-1.10	-11.24
2	0.30	9.60	0.20	9.60	-1.30	-13.00	-1.20	-12.12
3	0.30	9.60	0.20	9.60	-1.80	-17.39	-1.20	-12.12
2'	0.30	9.60	0.20	9.60	-1.60	-15.64	-1.50	-14.76
3'	0.30	9.60	0.20	9.60	-2.60	-24.42	-1.60	-15.64

Project Name: Centeris

Model: 18'-3" Bearing Wall

Code: AISI S100-16

18.25

Page 1 of 1
Date: 03/08/2024
Simpson Strong-Tie® CFS Designer™ 5.2.3.0

Section: 600S162-54 (50 ksi) @ 24" o.c. Single C Stud (punched) **Maxo** = 2313.4 ft-lb **Va** = 2822.9 lb **I** = 2.86 in^4

Wind Selection: C&C Wind, Leeward (5) Tributary Area: Span: Length^2/3

Loads have not been modified for strength checks

Loads have been multiplied by 0.70 for deflection calculations

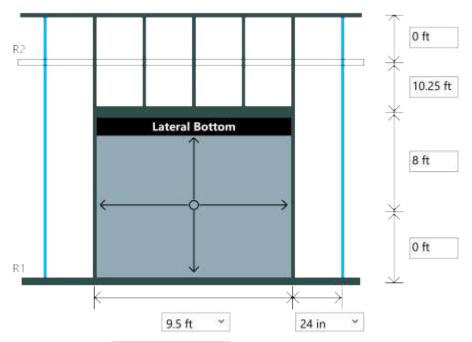
Bridging Connectors - Design Method =AISI S100

Span	Axial KyLy, KtLt	Flexual, Distortional	Connector	Stress Ratio
Span	48.0", 48.0"	48.0", 219.0"	LSUBH3.25 (Min)	0.36

Web Crippling Bearing Pa M Support Load (lb) (in) Max Int. Stiffener? (lb) (ft-lbs) R2 -177.03 1.00 598.9 0.0 0.15 NO 1.00 R1 -177.03 598.9 0.0 0.15 NO "*" after support means punched near support

Gravity Load

Type	Load (lb)
Uniform	20.00plf (Span)
P1y	857.00lb @ 18.25ft


	Code Check	Required	Allowed	Interaction	Notes		
Span	Max. Axial, lbs	1222.0(c)	4458.1(c)	27%	КФ=0.00 lb-in/in Max KL/r = 97		
	Max. Shear, lbs	177.0	1947.4	9%	Shear (Punched)		
	Max. Moment (MaFy, Ma-dist), ft-lbs	807.7	1930.2	42%	Ma-dist (control),КФ=0.00 lb-in/in		
	Moment Stability, ft-lbs	807.7	2079.7	39% 35% 70%	Shear 0.0, Moment 807.7 Axial 1049.4(c), Moment 805.3		
	Shear/Moment	0.35	1.00				
	Axial/Moment	0.70	1.00				
	Deflection Span, in	0.402	meets L/545				
					Connector Anchor		

Support	Rx(lb)	Ry(lb)	Simpson Strong-Tie Connector	Interaction	Interaction					
R2	-177.0	0.0	By Others & Anchorage Designed by Engineer	NA	NA					
R1	-177.0	1222.0	By Others & Anchorage Designed by Engineer	NA	NA					
* Reference	Reference catalog for connector and anchor requirement notes as well as screw placement requirements									

Project Name: Centeris Model: Garage Header Code: AISI S100-16

Page 1 of 2 Date: 03/08/2024

Simpson Strong-Tie® CFS Designer™ 5.2.3.0

Design Loads

Wind Selection : C&C Wind, Leeward (5)

Trib. Area : Span : Length^2/3

Wall Lateral Pressure : -9.7 psf

Parapet Lateral Pressure:

RO Lateral Pressure : 4-Ways

Lateral element force multiplier

Strength: 1.0

Deflection: 0.7

Header: Box (lateral top, bottom)

Gravity Load at Header: 10 psf

Additional Pt. Load ea. Stud: 220 lbs

Additional Jamb Axial Load : 865 lbs

Back-to-Back Member L/6 Interconnection Spacing per AISI S100 I1.1

MemberSpanCantileverJamb Studs36.5 in0.0 in

See AISI S100 I1.1 for Add'nI Requirements

Brace Settings

Lateral Pressure to:

4-Ways

Component(s)	Members(s)	Flexural Bracing	Axial KyLy	Axial KtLt	Distortional K-Phi(lb-in/in)	Distortional Lm	Interconnection Spacing
Jamb Studs	600S162-54(50), Back-To-Back	Full	48 in	48 in	0	None	12 in
Vertical Header	800S200-43(33), Boxed	Full	N/A	N/A	0	None	N/A
Lat. Top Head	600T125-54(50), Single	Full	N/A	N/A	0	None	N/A
Lat. Bottom Head	600T125-54(50), Single	Full	N/A	N/A	0	None	N/A

Analysis Results

Component(s)	Members(s)	Load (lb)	Max KL/r	(ft-lb)		Reaction (lb)	Reaction (lb)
Jamb Studs	600S162-54(50), Back-To-Back	1874.4	97	2286.8	402.3	-508.9	-272.8
Vertical Header	800S200-43(33), Boxed	N/A	N/A	2397.3	1009.4	N/A	1009.4
Lat. Top Head	600T125-54(50), Single	N/A	N/A	560.8	236.1	N/A	236.1
Lat. Bottom Head	600T125-54(50), Single	N/A	N/A	334.2	106.7	N/A	106.7

Design Results Deflection V + M A + M Interaction Interaction Web Stiffners Design OK Component(s) Members(s) Span **Parapet** L/447 L/0 0.836 Jamb Studs 600S162-54(50), Back-To-Back 0.50 No Yes Vertical Header 800S200-43(33), Boxed L/916 NA 0.56 0.56 R1, R2 Yes L/1182 0.38 0.38 Yes Lat. Top Head 600T125-54(50), Single NA Nο Lat. Bottom Head 600T125-54(50), Single L/2056 NA 0.23 0.04 No Yes

Simpson Strong-Tie® Connectors @ Jambs

Support	Rx(lb)	Ry(lb)	Simpson Strong-Tie® Connector	Connector Interaction	Anchor Interaction
R2	-272.81	0.00	By Others & Anchorage Designed by Engineer	NA	NA

Project Name: Centeris

Model: Garage Header

Page 2 of 2

Date: 03/08/2024

Code: AISI S100-16 Simpson Strong-Tie® CFS Designer™ 5.2.3.0

R1 -508.95 2136.88 600T125-54 (50) & (2) .157", 1" embed SST PDPA/PDPAT to 45.02 % 82.09 % 4000 nw concrete

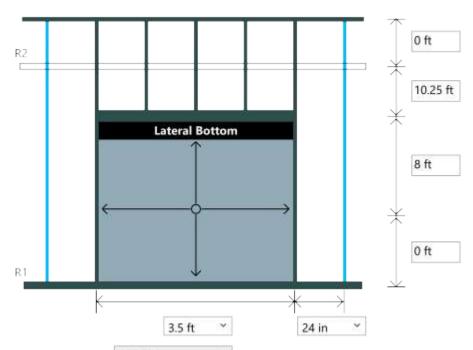
Simpson Strong-Tie® Wall Stud Bridging Connectors @ Jambs

Span/Parapet	Bracing Length(in.)	Design Number of Braces	Pn(lb.)	LSUBH (Min)¹	LSUBH (Max)¹	SUBH (Min)¹	SUBH (Max)¹	MSUBH (Min)¹	MSUBH (Max)¹
Span	Varies	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Notes:

- 1) Values in parentheses are stress ratios.
- 2) Bridging connectors are not designed for back-back, box, or built-up sections.
- 3) Reference <u>www.strongtie.com</u> for latest load data, important information, and general notes.
- 4) CFS Designer will not select bridging connectors unless all flexural and axial bracing settings are the same.
- 5) If the bracing length is larger than the span length, bridging connectors are not designed.

^{*} Reference catalog for connector and anchor requirement notes as well as screw placements requirement


Project Name: Centeris

Model: Door Header

Date: 03/08/2024

Page 1 of 2

Code: AISI S100-16 Simpson Strong-Tie® CFS Designer™ 5.2.3.0

Design Loads

Wind Selection : C&C Wind, Leeward (5)

Trib. Area : Span : Length^2/3

Wall Lateral Pressure : -9.7 psf

Parapet Lateral Pressure:

RO Lateral Pressure : 4-Ways

Lateral element force multiplier

Strength: 1.0

Deflection: 0.7

Header: Box (lateral top, bottom)

Gravity Load at Header: 10 psf

Additional Pt. Load ea. Stud: 220 lbs

Additional Jamb Axial Load : 865 lbs

Back-to-Back Member L/6 Interconnection Spacing per AISI S100 I1.1

MemberSpanCantileverJamb Studs36.5 in0.0 in

See AISI S100 I1.1 for Add'nI Requirements

Brace Settings

Lateral Pressure to:

4-Ways

Component(s)	Members(s)	Flexural Bracing	Axial KyLy	Axial KtLt	Distortional K-Phi(lb-in/in)	Distortional Lm	Interconnection Spacing
Jamb Studs	600S162-54(50), Back-To-Back	Full	60 in	60 in	0	None	12 in
Vertical Header	600S200-43(33), Boxed	Full	N/A	N/A	0	None	N/A
Lat. Top Head	600T125-54(50), Single	Full	N/A	N/A	0	None	N/A
Lat. Bottom Head	600T125-54(50), Single	Full	N/A	N/A	0	None	N/A

Analysis Results

Design Results

Component(s)	Members(s)	Load (lb)	Max KL/r	(ft-lb)		Reaction (lb)	Reaction (lb)
Jamb Studs	600S162-54(50), Back-To-Back	1236.9	97	1093.7	228.6	-243.4	-156.4
Vertical Header	600S200-43(33), Boxed	N/A	N/A	325.4	371.9	N/A	371.9
Lat. Top Head	600T125-54(50), Single	N/A	N/A	76.1	87.0	N/A	87.0
Lat. Bottom Head	600T125-54(50), Single	N/A	N/A	17.3	14.9	N/A	14.9

Deflection V + M A + M Interaction Interaction Web Stiffners Design OK Component(s) Members(s) Span **Parapet** L/0 0.424 Jamb Studs 600S162-54(50), Back-To-Back L/883 0.24 No Yes Vertical Header 600S200-43(33), Boxed L/9265 NA 0.11 0.15 No Yes L/23630 0.05 0.05 Yes Lat. Top Head 600T125-54(50), Single NA No Lat. Bottom Head 600T125-54(50), Single L/108130 NA 0.01 0.01 No Yes

Simpson Strong-Tie® Connectors @ Jambs

Support	Rx(lb)	Ry(lb)	Simpson Strong-Tie® Connector	Connector Interaction	Anchor Interaction
R2	-156.41	0.00	By Others & Anchorage Designed by Engineer	NA	NA

Project Name: Centeris

Page 2 of 2

Model: Door Header

Date: 03/08/2024

Code: AISI S100-16 Simpson Strong-Tie® CFS Designer™ 5.2.3.0

R1 -243.41 1499.38 600T125-54 (50) & (2) .157", 3/4" embed SST PDPA/PDPAT to 21.53 % 90.15 %

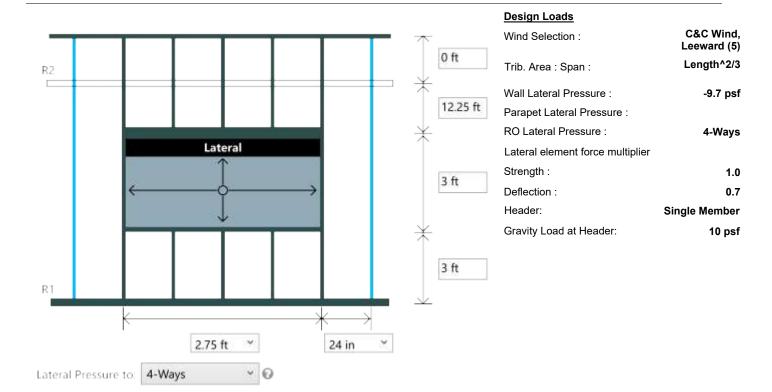
4000 nw concrete

Simpson Strong-Tie® Wall Stud Bridging Connectors @ Jambs

Span/Parapet	Bracing Length(in.)	Design Number of Braces	Pn(lb.)	LSUBH (Min)¹	LSUBH (Max)¹	SUBH (Min)¹	SUBH (Max)¹	MSUBH (Min)¹	MSUBH (Max)¹
Span	Varies	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Notes:

- 1) Values in parentheses are stress ratios.
- 2) Bridging connectors are not designed for back-back, box, or built-up sections.
- 3) Reference <u>www.strongtie.com</u> for latest load data, important information, and general notes.
- 4) CFS Designer will not select bridging connectors unless all flexural and axial bracing settings are the same.
- 5) If the bracing length is larger than the span length, bridging connectors are not designed.


^{*} Reference catalog for connector and anchor requirement notes as well as screw placements requirement

Project Name: Centeris

Model: Louver Opening Simpson Strong-Tie® CFS Designer™ 5.2.3.0 Code: AISI S100-16

Date: 03/08/2024

Page 1 of 2

Brace Settings

Component(s)	Members(s)	Flexural Bracing	Axial KyLy	Axial KtLt	Distortional K-Phi(lb-in/in)	Distortional Lm	Interconnection Spacing
Jamb Studs	600S162-54(50), Single	Full	60 in	60 in	0	None	N/A
Vertical Header	600S162-43(33), Y-Y Axis	Full	N/A	N/A	0	None	N/A
Lateral Header	600S162-43(33), Single	Full	N/A	N/A	0	None	N/A
Sill	600T125-54(50), Single	Full	N/A	N/A	0	None	N/A

Analysis Results

Component(s)	Members(s)	Load (lb)	Max KL/r	(ft-lb)		Reaction (lb)	Reaction (lb)
Jamb Studs	600S162-54(50), Single	410.9	105	846.6	190.2	-190.2	-128.5
Vertical Header	600S162-43(33), Y-Y Axis	N/A	N/A	115.8	168.4	N/A	168.4
Lateral Header	600S162-43(33), Single	N/A	N/A	64.6	90.9	N/A	90.9
Sill	600T125-54(50), Single	N/A	N/A	22.2	29.2	N/A	29.2

Design Results Deflection A + M V + M Members(s) **Parapet** Interaction Interaction Web Stiffners Design OK Component(s) Span 600S162-54(50), Single L/557 L/0 0.54 Yes Jamb Studs 0.37 No Vertical Header 600S162-43(33), Y-Y Axis L/697 NA 0.65 0.65 No Yes 600S162-43(33), Single L/36834 0.06 0.07 Yes Lateral Header NA No Combined Header 0.71 Sill 600T125-54(50), Single L/104904 0.01 0.01 NA No Yes

Simpson Strong-Tie® Connectors @ Jambs

				Connector	Anchor
Support	Rx(lb)	Ry(lb)	Simpson Strong-Tie® Connector	Interaction	Interaction

Project Name: Centeris

Page 2 of 2

Model: Louver Opening

Date: 03/08/2024

Model: Louver Opening

Date: 03/08/2024

Code: AISI S100-16

Simpson Strong-Tie® CFS Designer™ 5.2.3.0

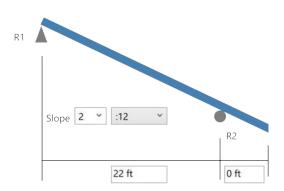
R2	-128.53	0.00	By Others & Anchorage Designed by Engineer	NA	NA
R1	-190.21	410.94	600T125-54 (50) & (3) .157", 3/4" embed SST PDPA/PDPAT to 2500 nw concrete	20.44 %	52.84 %

^{*} Reference catalog for connector and anchor requirement notes as well as screw placements requirement

Simpson Strong-Tie® Wall Stud Bridging Connectors @ Jambs

Span/Parapet	Bracing Length(in.)	Design Number of Braces	Pn(lb.)	LSUBH (Min)¹	LSUBH (Max)¹	SUBH (Min)¹	SUBH (Max)¹	MSUBH (Min) ¹	MSUBH (Max)¹
Span	Varies	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Notes:


- 1) Values in parentheses are stress ratios.
- 2) Bridging connectors are not designed for back-back, box, or built-up sections.
- 3) Reference <u>www.strongtie.com</u> for latest load data, important information, and general notes.
- 4) CFS Designer will not select bridging connectors unless all flexural and axial bracing settings are the same.
- 5) If the bracing length is larger than the span length, bridging connectors are not designed.

Project Name: Centeris Page 1 of 2

Model: Single 22ft Joist Roof Framing

Date: 03/08/2024

Code: AISI S100-16 Simpson Strong-Tie® CFS Designer™ 5.2.3.0

Bracing, Interconnection and Distortional Buckling Parameters

	Span	Overhang
Flexural Bracing	96 in	None
Axial Bracing	NA	None
Distortional Buckling, K-phi	0 lb-in/in	0 lb-in/in
Distortional Buckling Bracing, Lm	None	None

Load Cases

	Span (psf)	Overhang (psf)
Dead Load	13	NA
Live Load	20	NA
Snow Load	25	NA
Inward Wind Load	16	NA
Outward Wind Load	-29	NA

Load Combinations

LC Number	Dead	Live	Snow	Inward Wind	Outward Wind
1	1	1	0	0	0
2	1	0	1	0	0
3	1	0	0	0.6	0
4	1	0.75	0	0.45	0
5	1	0	0.75	0.45	0
6	0.6	0	0	0	0.6

Project Name: Centeris Page 2 of 2 Date: 03/08/2024

Model: Single 22ft Joist Roof Framing

Code: AISI S100-16 Simpson Strong-Tie® CFS Designer[™] 5.2.3.0

Reactions

		Ve	rtical		Horizontal				
	Max Rxn (lb)	Load Comb.	Min Rxn (lb)	Load Comb.	Max Rxn (lb)	Load Comb.	Min Rxn (lb)	Load Comb.	
					mmmm	~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mmm	
R1	856.45	5	-198.20	6	{ 70.40	3	-127.60	6	
mmm	~~~~~~~	m	\cdots	mm					
R2	865.25	5	-219.47	6 }	0.00	1	0.00	1	
	exural and De								

Mmax (ft-lb)	Ma (ft-lb)	Mmax/ Ma	Load Comb.	Span Defl	Load Comb.	Overhang Defl	Load Comb.	
4759	5271	0.90	5	L/292	5	L/292	5	_

Rafter Bending and Web Crippling

Support	Load (lb)	Load Comb.	Bearing (in)	Pa (lb)	Pn (lb)	Max Intr.	Load Comb.	Stiffeners Req'd
R1	853.5	5	6.00	1492.4	2611.7	0.30	5	NO
R2	853.5	5	6.00	1492.4	2611.7	0.30	5	NO

Rafter Bending and Shear

Support	Vmax (lb)	Load Comb.	Va Factor	V/Va	M/Ma	Intr. Unstiffen	Load Comb.	Intr. Stiffen	Load Comb.
R1	853	5	1.000	0.26	0.00	0.26	5	N/A	N/A
R2	853	5	1.000	0.26	0.00	0.26	5	N/A	N/A

FCB/MFCB Bypass Framing Fixed-Clip Connector

This product is preferable to similar connectors because of a) easier installation, b) higher loads, c) lower installed cost, or a combination of these features.

The FCB/MFCB clip is an economical, high-performance fixed-clip connector that can be used for a variety of framing applications. It is rated for tension, compression, shear and in-plane loads and offers the designer the flexibility of specifying different screw and anchorage patterns that conform to desired load levels.

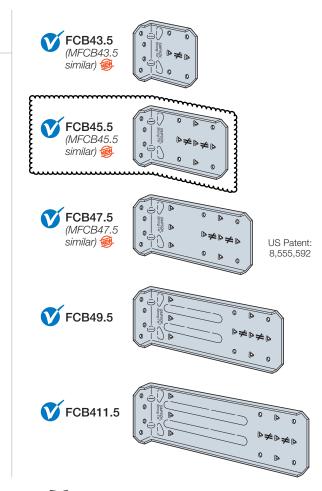
Features:

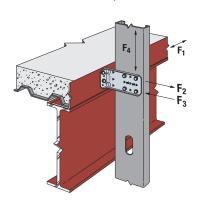
- Rated for tension, compression, shear and in-plane loads
- Provides design flexibility with varying screw and anchorage patterns that achieve different load levels
- Strategically placed stiffeners, embossments and anchor holes maximize connector performance

Material: FCB — 54 mil (16 ga.); MFCB — 68 mil (14 ga.)

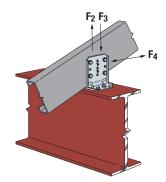
Finish: Galvanized (G90)

Installation:

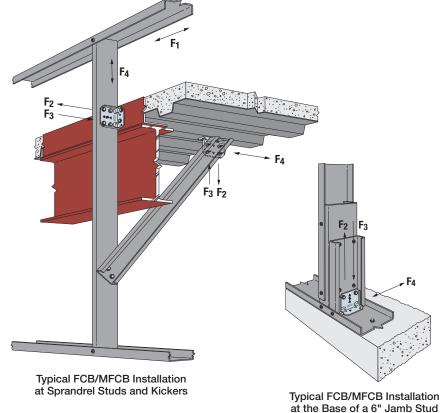

- Use the specified type and number of anchors.
- Use the specified number of #12 self-drilling screws to CFS framing. Note that #10 self-drilling screws can be used per the load tables given on strongtie.com.
- For installations to wood framing, see Simpson Strong-Tie[®] engineering letter L-CF-FIXCLIPW at strongtie.com.


Codes: See p. 13 for Code Reference Key Chart

Ordering Information:


FCB43.5-R25, MFCB43.5-R25, FCB45.5-R25, MFCB45.5-R25, FCB47.5-R25, MFCB47.5-R25, FCB49.5-R25, FCB411.5-R25 contain:

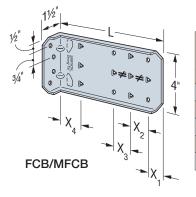
• Box of 25 connectors (screws not included)



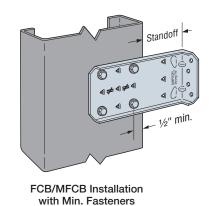
Typical FCB/MFCB Installation at Bypass Framing

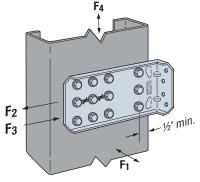
Typical FCB/MFCB Installation for Roof Rafters

FCB/MFCB Bypass Framing Fixed-Clip Connector


FCB/MFCB Allowable Connector Loads (lb.)

	Connector			No. of						Stud Th	ickness						
Model No.	Material Thickness	L (in.)	Min./ Max.	#12–14 Self-Drilling		33 mil ((20 ga.)			43 mil	(18 ga.)			54 mil	(16 ga.)		Code Ref.
	mil (ga.)	, ,		Screws	F1 ^{3,4}	F ₂	F ₃	F ₄	F ₁ ^{3,4}	F ₂	F ₃	F ₄	F ₁ ^{3,4}	F ₂	F ₃	F ₄	
FCB43.5	54 (16)	31/2	Min.	4	140	755	755	755	175	1,105	905	1,055	330	1,250	905	1,235	
1 0043.3	34 (10)	372	Max.	6	205	1,100	1,130	1,075	260	1,105	1,105	1,350	330	1,250	2,245	1,770	
MFCB43.5	68 (14)	31/2	Min.	4	140	755	755	755	220	1,105	1,105	1,055	410	1,530	2,280	1,595	
	00 (14)		Max.	6	205	1,130	1,130	1,075	260	1,265	1,105	1,545	410	1,530	2.630	1,770	h
FCB45.5	54 (16)	5½	Min.	4	120	755	755	700	150	1,105	905	875	285	1,105	905	1,100]}
	54 (10) 5 72		Max.	9	155	1,100	1,260	1,095	195	1,105	1,105	1,380	330	1,105	2,245	1,785	
MFCB45.5	68 (14)	5%	Min.	4	170	755	755	700	220	1,105	1,105	1,030	410	1,530	2,280	1,595	
WII 0D43.3	00 (14)	372	Max.	9	170	1,265	1,260	1,695	220	1,265	1,105	2,315	410	1,605	3,205	2,315	IBC, FL,
FCB47.5	54 (16)	54 (16) 71/2	Min.	4	90	755	755	220	110	1,105	875	330	215	1,105	875	815	LA
10047.5	34 (10)	1 72	Max.	12	110	1,100	1,260	705	135	1,105	1,260	1,050	260	1,105	2,245	1,345]
MFCB47.5	68 (14)	71/2	Min.	4	165	755	755	415	215	1,105	1,105	540	410	1,580	2,280	1,025	
WIF GD47.5	00 (14)	1 72	Max.	12	165	1,265	1,260	1,345	215	1,265	1,405	1,530	410	1,605	3,350	2,700	
FCB49.5	54 (16)	91/2	Min.	4	_	755	755	170	_	1,105	905	255		1,105	905	340	
F0049.0	34 (10)	3 72	Max.	12	_	1,100	1,260	750	_	1,105	1,260	1,115		1,105	2,245	1,200	
FCB411.5	54 (16)	111/2	Min.	4	_	755	755	140	_	1,105	935	205		1,105	935	340	
100411.0	34 (10)	1172	Max.	12	_	1,100	1,260	795	_	1,105	1,260	860	_	1,105	2,245	860	


- 1. Min. fastener quantity and load values fill all round holes; max. fastener quantity and load values fill all round and triangular holes.
- Allowable loads are based on clip capacity only and do not consider anchorage. The capacity of the connection system will be
 the minimum of the tabulated value and the allowable load from the FCB/MFCB Allowable Anchorage Loads table on p. 75.
- 3. Anchorage to the supporting structure using welds or a minimum of (2) #12-24 self-drilling screws is required.
- 4. Tabulated F_1 loads are based on assembly tests with the load through the centerline of stud. Tested failure modes were due to screw pullout; therefore compare F_1 against F_p calculated per ASCE 7-16 Chapter 13 with $a_p = 1.25$ and $R_p = 1.0$.
- 5. Tabulated values for 54 mil (16 ga.) CFS framing may be used for 68 mil (14 ga.) and greater steel thickness.


FCB/MFCB Standoff Distances

Model No.	L (in.)	Min./ Max.	No. of #12–14 Self-Drilling Screws	Maximum Standoff (in.)
FCB43.5	3½	Min.	4	1
FGB43.5	372	Max.	6	1
MFCB43.5	3½	Min.	4	1
IVIFUD43.3	3/2	Max.	6	1
FCB45.5	5½	Min.	4	1½
FUD40.0	3/2	Max.	9	1
MFCB45.5	5½	Min.	4	1½
IVIFUD40.0	3/2	Max.	9	1
FCB47.5	7½	Min.	4	3½
FUD47.3	1 /2	Max.	12	1
MFCB47.5	7½	Min.	4	3½
WFCB47.5	1 //2	Max.	12	1
FCB49.5	9½	Min.	4	5½
FUD49.5	9/2	Max.	12	1
FCB411.5	111/	Min.	4	7½
FUD411.5	11½	Max.	12	1

		Dim	nensions ((in.)										
Variable	FCB/MFCB													
	43.5	45.5	47.5	49.5	411.5									
X ₁	3/4	1	1	1	1									
X ₂	11/4	11/4	11/4	11/4	11/4									
Х3	_	11/4	11/4	11/4	11/4									
X ₄	_		1 ½	1½	11/2									
L	3½	5½	71/2	91/2	111/2									

FCB/MFCB Installation with Max. Fasteners

Model: Blocking @ Roof

Date: 03/08/2024

Page 1 of 1

Code: AISI S100-16

Section: 600S200-54 (50 ksi) Y-Y Axis C Stud (punched) Mayo = 499.8 ft-lb **Va =** 3644.3 lb $I = 0.24 \text{ in}^4$

Simpson Strong-Tie® CFS Designer™ 5.2.3.0

Loads have not been modified for strength checks Loads have not been modified for deflection calculations

Bridging Conn	<u> 1ectors - D</u>	<u>esign Method =#</u>	<u> </u>
	Avial	Flavoral	

Span	Axial KyLy, KtLt	Flexual, Distortional	Connector	Stress Ratio
Span	NA	Full, N/A	N/A	-
Web Crin	plina			

WED OND	TTOS GIIPPIIII		Pa	M		
Support	Load (lb)	(in)	(lb)	(ft-lbs)	Max Int.	Stiffener?
R1	432.50	1.00	1067.7	0.0	0.20	NO
R2	432.50	1.00	1067.7	0.0	0.20	NO
P1	865.00	1.50	2013.8	432.5	0.74	NO

Point Loads P1 Load(lb) 865.00 1.00 X-Dist.(ft)

	Code Check	Required	Allowed	Interaction	Notes
Span	Max. Axial, lbs	0.0(t)	-	0%	KΦ=0.00 lb-in/in Max KL/r = N/A
	Max. Shear, lbs	432.5	3644.3	12%	Shear (Punched)
	Max. Moment (MaFy, Ma-dist), ft-lbs	432.5	499.8	87%	
	Moment Stability, ft-lbs	432.5	499.8	87%	
	Shear/Moment	0.87	1.00	87%	Shear 432.5, Moment 432.5
	Axial/Moment	0.87	1.00	87%	Axial 0.0(c), Moment 432.5
	Deflection Span. in	0.035	meets L/692		

Support	Rx(lb)	Ry(lb)	Simpson Strong-Tie Connector	Connector Interaction	Anchor Interaction
R1	0.0	432.5	NA with Y-Y Axis design & NA	0.00 %	0.00 %
R2	0.0	432.5	NA with Y-Y Axis design & NA	0.00 %	0.00 %

^{*} Reference catalog for connector and anchor requirement notes as well as screw placement requirements

Screw Capacities

Table Notes

- 1. Capacities based on AISI S100 Section E4.
- When connecting materials of different steel thicknesses or tensile strengths, use the lowest values. Tabulated values assume two sheets of equal thickness are connected.
- 3. Capacities are based on Allowable Strength Design (ASD) and include safety factor of 3.0.
- 4. Where multiple fasteners are used, screws are assumed to have a center-to-center spacing of at least 3 times the nominal diameter (d).
- Screws are assumed to have a center-of-screw to edge-of-steel dimension of at least 1.5 times the nominal diameter (d) of the screw.

- 6. Pull-out capacity is based on the lesser of pull-out capacity in sheet closest to screw tip or tension strength of screw.
- 7. Pull-over capacity is based on the lesser of pull-over capacity for sheet closest to screw header or tension strength of screw.
- 8. Values are for pure shear or tension loads. See AISI Section E4.5 for combined shear and pull-over.
- 9. Screw Shear (Pss), tension (Pts), diameter, and head diameter are from CFSEI Tech Note (F701-12).
- 10. Screw shear strength is the average value, and tension strength is the lowest value listed in CFSEI Tech Note (F701-12).
- 11. Higher values for screw strength (Pss, Pts), may be obtained by specifying screws from a specific manufacturer.

	Allowable Screw Connection Capacity (lbs)																			
					#6 Screw	}		#8 Screw			#10 Screw		#12 Screw			,	1/4" Screw			
Thickness	Design	Fy Yield	Fu	(Pss = 64	13 lbs, Pts	= 419 lbs	(Pss= 12	(Pss= 1278 lbs, Pts = 586 lbs)			4 lbs, Pts	= 1158 lbs)	() ss= 2330 lbs, Pts = 2325 lbs				(Pss= 3048 lbs, Pts = 3201 lbs)			
(Mils)	Thickness	(ksi)	Tensile (ksi)	0.138"	dia, 0.272	"Head }	0.164"	0.164" dia, 0.272" Head			0.190" dia, 0.340" Head			0.216" dia, 0.340" Head				0.250" dia, 0.409" Head		
				Shear	Pull-Out	Pull-Ove	r Shear	Pull-Out	Pull-Over	Shear	Pull-Out	Pull-Over	}Sh	ear	Pull-Out	Pull-Over	Shear	Pull-Out	Pull-Over	
18	0.0188	33	33	44	24	84 🗜	48	29	84	52	33	105	3 5	5	38	105	60	44	127	
27	0.0283	33	33	82	37	127	89	43	127	96	50	159	3 10)2	57	159	110	66	191	
30	0.0312	33	33	95	40	140	103	48	140	111	55	175	1 1'	8	63	175	127	73	211	
33	0.0346	33	45	151	61	140	164	72	195	177	84	265	3 18	38	95	265	203	110	318	
43	0.0451	33	45	214	79	140 8	244	94	195	263	109	345	3 28	30	124	345	302	144	415	
54	0.0566	-33	45	214	100	140 €	344	118	195	370	137	386	3 39)4	156	433	424	180	521	
- 68	0.0713	33	45	214	125	140 €	426	149	195	523	173	386	3 5t		196	545	600	227	656	
97	0.1017	33	45	214	140	140	426	195	195	548	246	386	3 7	77	280	775	1,016	324	936	
118	0.1242	33	45	214	140	140	426	195	195	548	301	386	3 7	77	342	775	1,016	396	1,067	
54	0.0566	50	65	214	140	140	426	171	195	534	198	386	3 50		225	625	613	261	752	
68	0.0300	50	65	214	140	140	426	195	195	548	249	386	3 7		284	775	866	328	948	
97	0.0713	50	65	214	140	140	426	195	195	548	356	386	3 7		405	775	1,016	468	1,067	
118	0.1017	50	65	214	140	140	426	195	195	548	386	386	3 7		494	775	1,016	572	1,007	

	SUPREME Allowable Screw Connection Capacity (Pounds Per Screw)																	
					#6 Screw			#8 Screw			#10 Screw	,		#12 Screw		1/4" Screw		
Thickness	Design	Fy Yield	Fu Tensile	(Pss = 64	13 lbs, Pts	= 419 lbs)	(Pss= 12	Pss= 1278 lbs, Pts = 586 lbs) (P			(Pss= 1644 lbs, Pts = 1158 lbs) (0 lbs, Pts =	= 2325 lbs)	(Pss= 3048 lbs, Pts = 3201 lbs)		
(mil)	Thickness (in)	(ksi)	(ksi)	0.138"	Dia; 0.272	" Head	0.164"	0.164" Dia; 0.272" Head		0.190" Dia; 0.340" Head		0.216" Dia; 0.340" Head		" Head	0.250" Dia; 0.409" He		" Head	
	. ,	` '	, ,	Shear	Pull-Out	Pull-Over	Shear	Pull-Out	Pull-Over	Shear	Pull-Out	Pull-Over	Shear	Pull-Out	Pull-Over	Shear	Pull-Out	Pull-Over
D25	0.0155	50	65	111	39	137	111	47	137	111	54	171	-	-	-	-	-	-
D20	0.0188	57	65	142 ¹	48	140	150 ¹	57	166	164 ¹	66	208	109	75	208	-	-	-
30EQD	0.0235	57	65	174 ¹	60	140	184 ¹	71	195	236 ¹	82	260	152	93	260	-	-	-
33EQD	0.0235	57	65	174 ¹	60	140	184 ¹	71	195	236 ¹	82	260	152	93	260	-	-	-
33EQS	0.0295	57	65	171	75	140	187	89	195	201	103	326	214	117	326	231	136	392
43EQS	0.0400	57	65	270	102	140	295	121	195	317	140	386	338	159	442	364	184	532

¹Values are based on testing using AISI S100 procedures.