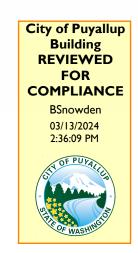


Calculations required to be provided by the Permittee on site for all Inspections

Structural Engineering Calculations

SUN LODGE ART INSTALLATION AT PIERCE COLLEGE

1601 39TH AVE SE PUYALLUP, WASHINGTON PROJECT ADDRESS, 98374

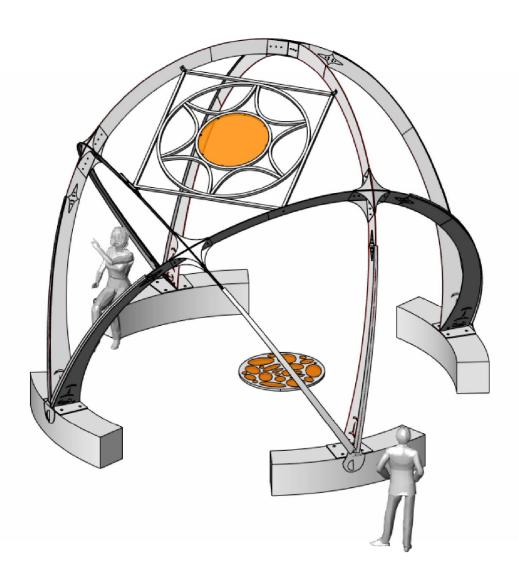

PROJECT NUMBER 2369

PERMIT SET

SEPTEMBER 22, 2023



PRDK20240314


TABLE OF CONTENTS

Project Description	P-1
Design Load Criteria	D-1
Structural Design	S-1
Connection Detail Design	C-1
Foundation and Anchorage Design	F-1

Sun Lodge is a 16-foot tall stainless steel sculpture that will be installed at Pierce College in Puyallup, Washington. The center of the sculpture has a glass inset which is angled so it reflects the sun at noon on the summer solstice. The shape draws inspiration from indigenous architecture.

The sculpture lands on (4) reinforced concrete curbs that are attached to (4) reinforced concrete spread footings.

1 The ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

ATC Hazards by Location

Search Information

Address: 1601 39th Ave SE, Puyallup, WA 98374, USA

Coordinates: 47.155487, -122.2718194

Elevation: 556 ft

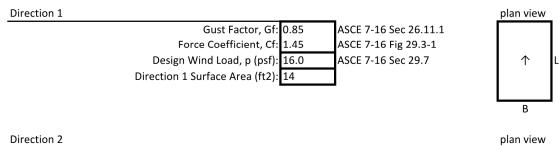
Timestamp: 2023-04-11T21:38:12.976Z

Hazard Type: Wind

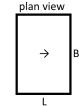
ASCE 7-16	ASCE 7-10	ASCE 7-05
MRI 10-Year 67 mph	MRI 10-Year 72 mph	ASCE 7-05 Wind Speed
MRI 25-Year 73 mph	MRI 25-Year 79 mph	
MRI 50-Year78 mph	MRI 50-Year 85 mph	
MRI 100-Year 82 mph	MRI 100-Year91 mph	
Risk Category I92 mph	Risk Category I 100 mph	
Risk Category II 97 mph	Risk Category II 110 mph	
Risk Category III 104 mph	Risk Category III-IV 115 mph	
Risk Category IV		

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Please note that the ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.



Date: 4/17/2023


Engineer: crc

Wind MWFRS - Other Structures and Building Appurtenances

Structure Type:	Solid Freestanding Walls and Solid Freestanding Signs		
Risk Category:	2	ASCE 7-16 Table 1.5-1	
Basic Wind Speed, V:	97	ASCE 7-16 Fig 26.5-1B	
Exposure Category:	В	ASCE 7-16 Sec 26.7.3	
Height to the highest point, z (ft):	16		
Length Perpindicular to Direction 1, B (ft):	15		
Length Parallel to Direction 1, L (ft):	17		
Kd:	0.85	ASCE 7-16 Table 26.6-1	
Kzt:	1.00	ASCE 7-16 Sec 26.8.2	
Kz:	0.58	ASCE 7-16 Table 26.10-1	
Velocity Pressure, q (psf):	11.9	ASCE 7-16 Eq 26.10-1	

1 2			_
	Gust Factor, Gf:	0.85	ASCE 7-16 Sec 26.11.1
	Force Coefficient, Cf:	1.45	ASCE 7-16 Fig 29.3-1
	Design Wind Load, p (psf):	16.0	ASCE 7-16 Sec 29.7
	Direction 2 Surface Area (ft2):	14	

Direction 1 Wind Base Shear (lbs): **224**Direction 2 Wind Base Shear (lbs:) **224**

1 The ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

ATC Hazards by Location

Search Information

Address: 1601 39th Ave SE, Puyallup, WA 98374, USA

Coordinates: 47.155487, -122.2718194

Elevation: 556 ft

Timestamp: 2023-04-11T21:38:37.960Z

Hazard Type: Seismic

Reference ASCE7-16

Document:

Risk Category:

Site Class: D-default

Basic Parameters

Name	Value	Description
S _S	1.253	MCE _R ground motion (period=0.2s)
S ₁	0.432	MCE _R ground motion (period=1.0s)
S _{MS}	1.503	Site-modified spectral acceleration value
S _{M1}	* null	Site-modified spectral acceleration value
S _{DS}	1.002	Numeric seismic design value at 0.2s SA
S _{D1}	* null	Numeric seismic design value at 1.0s SA

^{*} See Section 11.4.8

▼Additional Information

Name	Value	Description
SDC	* null	Seismic design category
Fa	1.2	Site amplification factor at 0.2s
F _v	* null	Site amplification factor at 1.0s
CR _S	0.914	Coefficient of risk (0.2s)
CR ₁	0.898	Coefficient of risk (1.0s)
PGA	0.5	MCE _G peak ground acceleration
F _{PGA}	1.2	Site amplification factor at PGA
PGA _M	0.6	Site modified peak ground acceleration

TL	6	Long-period transition period (s)
SsRT	1.253	Probabilistic risk-targeted ground motion (0.2s)
SsUH	1.371	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	1.5	Factored deterministic acceleration value (0.2s)
S1RT	0.432	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.481	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	0.6	Factored deterministic acceleration value (1.0s)
PGAd	0.5	Factored deterministic acceleration value (PGA)

^{*} See Section 11.4.8

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Please note that the ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

Date: 6/15/2023

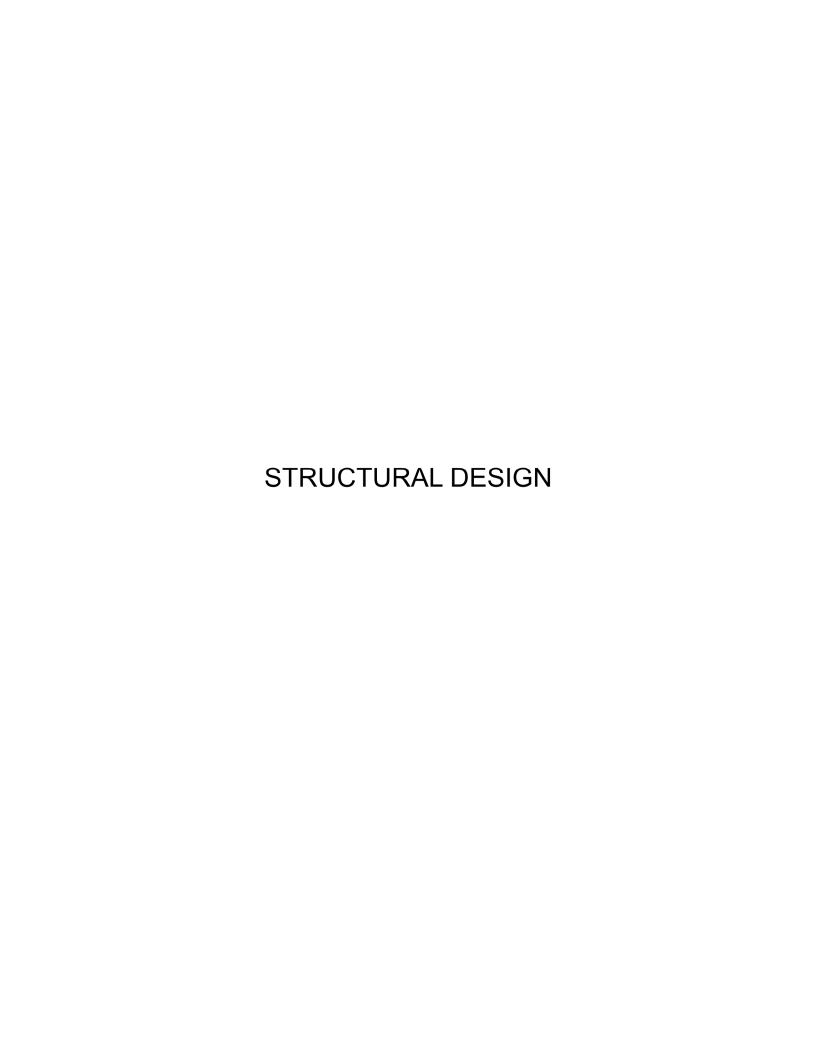
Engineer: crc

Seismic Demands on Nonbuilding Sturctures (ASCE 7-16, CHAPTER 15) Equivalent Lateral Force Procedure:

Lateral System	Amusement St	ructures
Importance Factor, le		ASCE 7-16 Sec 15.4.1.1
Response Modification Factor, R		ASCE 7-16 Table 15.4-2
Overstrength Factor, Ω		ASCE 7-16 Table 15.4-2
Deflection Amplification Factor, Cd	2	ASCE 7-16 Table 15.4-2
Site Class	D	Per Soils Report
Ss	1.253	Per Soils Report or USGS
Fa	1.20	ASCE Table 11.4-1
SMS	1.504	ASCE 7-16 Eq 11.4-1
SDS	1.002	ASCE 7-16 Eq 11.4-3
S1	0.432	Per Soils Report or USGS
Fv	1.87	ASCE 7-16 Table 11.4-2
SM1	0.807	ASCE 7-16 Eq 11.4-2
SD1	0.538	ASCE 7-16 Eq 11.4-4
Seismic Design Category	D	
hn (ft)	16	max height above grade
Approximate Fundamental period, Ta (s)	0.16	ASCE 7-16 Eq 12.8-7 & Table 12.8-2
Fundamental period of structure, T (s)	0.16	
Long-period transition periods, TL (s)	6	
ρ	1	ASCE 7-16 Sec 12.3.4
Seismic Effective Weight, W(lb)	3000	ASCE 7-16 Sec 12.7.2
		_
smic Response Coefficient Cs	0.501	ASCE 7-16 Eq 12.8-2

Governing Seismic Response Coefficient Cs: **0.501** ASCE 7-16 Eq 12.8-2

min Cs: 0.044 ASCE 7-16 Eq 15.4-1


max Cs: 1.68 ASCE 7-16 Eq 12.8-3

Seismic Base Shear, V (lb): **1503.6** ASCE 7-16 Eq 12.8-1

Vertical Seismic Load Coefficient 0.2*SDS: 0.20048

Vertical Seismic Load, Ev (lb): 601.44 ASCE 7-16 Eq 12.4-4a

Seismic loading governs lateral design

Job Number: Checked By:

Node Boundary Conditions

	Node Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot [k-ft/rad]	Y Rot [k-ft/rad]	Z Rot [k-ft/rad]
1	N314	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
2	N316	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
3	N307	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
4	N315	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction

Stainless Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm. Coeff. [1e⁵°F⁻¹]	Density [k/ft³]	n	Yield [ksi]	Fu [ksi]
1	A276 S316	28000	10780	0.3	0.93	0.5	5.6	30	75
2	A276 S321	29000	11165	0.3	0.73	0.48	5.6	65	94
3	A276 S304	28000	10780	0.3	0.93	0.49	5.6	30	75

Stainless Steel Section Sets

	Label	Shape	Type	Design List	Material	Design Rule	Area [in²]	lyy [in⁴]	lzz [in⁴]	J [in⁴]
1	Top of Ring SS	SS8X3/8 SSA	Beam	None	A276 S316	Typical	3	0.035	16	0.136
2	Center Piece SS	HSS1.5X1.5X4 SS	Beam	None	A276 S316	Typical	1.25	0.339	0.339	0.488
3	Ring T SS	T12X4X3/8	Beam	None	A276 S316	Typical	5.859	2.051	89.288	0.276
4	Tapered Ring T SS	T8X2X3/8	Beam	None	A276 S316	Typical	3.609	0.284	23.369	0.17
5	Middle Ring T SS	T10X3X3/8	Beam	None	A276 S316	Typical	4.734	0.886	49.32	0.223

Member Primary Data

	Label	I Node	J Node	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rule
1	M278	N323	N324	300	Middle Ring T	HBrace	None	A276 SS316	Typical
2	M279	N322	N323	300	Middle Ring T	HBrace	None	A276 SS316	Typical
3	M290	N101	N314	270	Ring T	HBrace	None	A276 SS316	Typical
4	M291	N102	N321	300	Ring T	HBrace	None	A276 SS316	Typical
5	M292	N325	N322	300	Tapered Ring T	HBrace	None	A276 SS316	Typical
6	M293	N110	N314	135	Ring T	HBrace	None	A276 SS316	Typical
7	M298	N111	N291	90	Ring T	HBrace	None	A276 SS316	Typical
8	M299	N327	N326	340	Tapered Ring T	HBrace	None	A276 SS316	Typical
9	M300	N326	N328	330	Tapered Ring T	HBrace	None	A276 SS316	Typical
10	M301	N93	N316	260	Ring T	HBrace	None	A276 SS316	Typical
11	M302	N94	N329	330	Ring T	HBrace	None	A276 SS316	Typical
12	M303	N331	N330	330	Middle Ring T	HBrace	None	A276 SS316	Typical
13	M304	N332	N331	330	Middle Ring T	HBrace	None	A276 SS316	Typical
14	M305	N328	N332	330	Tapered Ring T	HBrace	None	A276 SS316	Typical
15	M306	N306	N316	90	Ring T	HBrace	None	A276 SS316	Typical
16	M307	N305	N306	90	Ring T	HBrace	None	A276 SS316	Typical
17	M308	N304	N305	90	Ring T	HBrace	None	A276 SS316	Typical
18	M309	N303	N304	90	Middle Ring T	HBrace	None	A276 SS316	Typical
19	M310	N302	N303	90	Middle Ring T	HBrace	None	A276 SS316	Typical
20	M311	N301	N302	90	Middle Ring T	HBrace	None	A276 SS316	Typical
21	M312	N300	N301	90	Tapered Ring T	HBrace	None	A276 SS316	Typical
22	M313	N95	N315	100	Ring T	HBrace	None	A276 SS316	Typical
23	M314	N96	N333	70	Middle Ring T	HBrace	None	A276 SS316	Typical
24	M315	N335	N334	45	Tapered Ring T	HBrace	None	A276 SS316	Typical
25	M316	N336	N335	25	Tapered Ring T	HBrace	None	A276 SS316	Typical
26	M317	N97	N307	300	Ring T	HBrace	None	A276 SS316	Typical
27	M318	N98	N337	315	Middle Ring T	HBrace	None	A276 SS316	Typical
28	M319	N106	N338	330	Middle Ring T	HBrace	None	A276 SS316	Typical
29	M320	N105	N339	330	Tapered Ring T	HBrace	None	A276 SS316	Typical
30	M321	N109	N292	45	Middle Ring T	HBrace	None	A276 SS316	Typical

Job Number: Checked By:

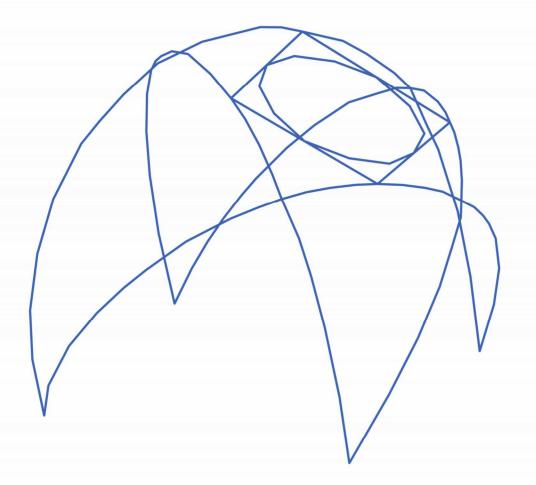
Member Primary Data (Continued)

wen	Wember Primary Data (Continued)									
	Label	l Node	J Node	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rule	
31	M322	N103	N293	45	Tapered Ring T	HBrace	None	A276 SS316	Typical	
32	M323	N104	N294	45	Tapered Ring T	HBrace	None	A276 SS316	Typical	
33	M324	N283	N282	45	Tapered Ring T	HBrace	None	A276 SS316	Typical	
34	M325	N290	N283	45	Tapered Ring T	HBrace	None	A276 SS316	Typical	
35	M326	N319	N320		Centerpiece	None	None	A276 SS316	Typical	
36	M327	N318	N319		Centerpiece	None	None	A276 SS316	Typical	
37	M328	N317	N318		Centerpiece	None	None	A276 SS316	Typical	
38	M329	N320	N317		Centerpiece	None	None	A276 SS316	Typical	
39	M330	N99	N307	90	Ring T	HBrace	None	A276 SS316	Typical	
40	M331	N100	N308	90	Middle Ring T	HBrace	None	A276 SS316	Typical	
41	M332	N107	N309	90	Middle Ring T	HBrace	None	A276 SS316	Typical	
42	M333	N311	N310	75	Tapered Ring T	HBrace	None	A276 SS316	Typical	
43	M334	N312	N311	75	Tapered Ring T	HBrace	None	A276 SS316	Typical	
44	M335	N91	N315	300	Ring T	HBrace	None	A276 SS316	Typical	
45	M336	N92	N295	300	Middle Ring T	HBrace	None	A276 SS316	Typical	
46	M337	N108	N296	315	Middle Ring T	HBrace	None	A276 SS316	Typical	
47	M338	N298	N297	315	Tapered Ring T	HBrace	None	A276 SS316	Typical	
48	M339	N342	N341		Top of Ring	None	None	A276 SS316	Typical	
49	M340	N343	N320		Top of Ring	None	None	A276 SS316	Typical	
50	M341	N341	N344		Top of Ring	None	None	A276 SS316	Typical	
51	M342	N320	N342		Top of Ring	None	None	A276 SS316	Typical	
52	M343	N319	N345		Top of Ring	None	None	A276 SS316	Typical	
53	M344	N347	N346		Top of Ring	None	None	A276 SS316	Typical	
54	M345	N345	N348		Top of Ring	None	None	A276 SS316	Typical	
55	M346	N346	N319		Top of Ring	None	None	A276 SS316	Typical	
56	M347	N350	N349	145	Top of Ring	None	None	A276 SS316	Typical	
57	M348	N352	N351	145	Top of Ring	None	None	A276 SS316	Typical	
58	M349	N351	N353	145	Top of Ring	None	None	A276 SS316	Typical	
59	M350	N354	N350	145	Top of Ring	None	None	A276 SS316	Typical	
60	M351	N355	N354	145	Top of Ring	None	None	A276 SS316	Typical	
61	M352	N318	N355	145	Top of Ring	None	None	A276 SS316	Typical	
62	M353	N356	N300	70	Tapered Ring T	HBrace	None	A276 SS316	Typical	
63	M354	N299	N356	50	Tapered Ring T	HBrace	None	A276 SS316	Typical	
64	M355	N357	N325	300	Tapered Ring T	HBrace	None	A276 SS316	Typical	
65	M356	N313	N357	300	Tapered Ring T	HBrace	None	A276 SS316	Typical	
66	M357	N358	N317	315	Top of Ring	None	None	A276 SS316	Typical	
67	M358	N360	N359	315	Top of Ring	None	None	A276 SS316	Typical	
68	M359	N361	N360	315	Top of Ring	None	None	A276 SS316	Typical	
69	M360	N317	N361	315	Top of Ring	None	None	A276 SS316	Typical	
70	M361	N362	N358	315	Top of Ring	None	None	A276 SS316	Typical	
71	M362	N363	N362	315	Top of Ring	None	None	A276 SS316	Typical	
72	M363	N364	N343		Top of Ring	None	None	A276 SS316	Typical	
73	M364	N112	N347		Top of Ring	None	None	A276 SS316	Typical	
74	M365	N366	N313	300	Top of Ring	None	None	A276 SS316	Typical	
75	M366	N367	N348		Top of Ring	None	None	A276 SS316	Typical	
76	M367	N368	N290	15	Top of Ring	None	None	A276 SS316	Typical	
77	M368	N369	N327	345	Top of Ring	None	None	A276 SS316	Typical	
78	M369	N370	N312	225	Top of Ring	None	None	A276 SS316	Typical	
79	M370	N371	N298	315	Top of Ring	None	None	A276 SS316	Typical	
80	M372	N373	N299	35	Top of Ring	None	None	A276 SS316	Typical	
81	M373	N374	N369		Top of Ring	None	None	A276 SS316	Typical	
82	M374	N374	N368	15	Top of Ring	None	None	A276 SS316	Typical	
83	M375	N364	N374		Top of Ring	None	None	A276 SS316	Typical	
84	M376	N365	N374		Top of Ring	None	None	A276 SS316	Typical	
85	M377	N375	N367		Top of Ring	None	None	A276 SS316	Typical	
									. , pioui	

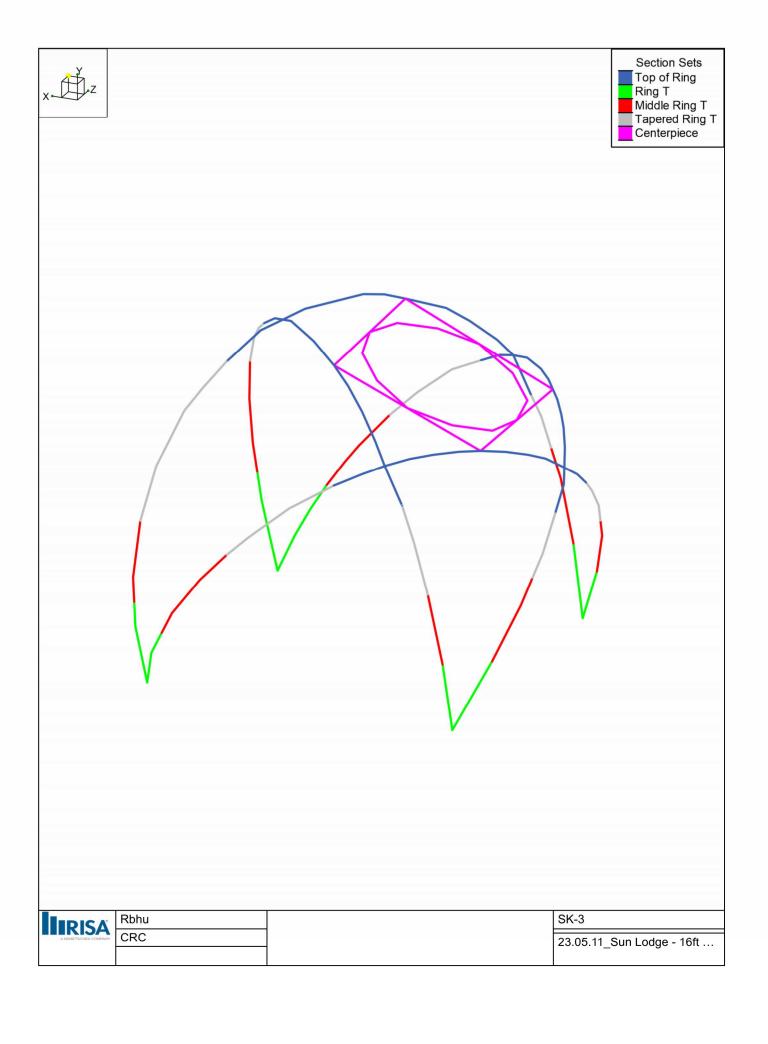
Job Number : Checked By :

Member Primary Data (Continued)

	Label	I Node	J Node	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rule
86	M378	N375	N373	35	Top of Ring	None	None	A276 SS316	Typical
87	M380	N352	N375	35	Top of Ring	None	None	A276 SS316	Typical
88	M381	N376	N363	315	Top of Ring	None	None	A276 SS316	Typical
89	M382	N376	N349	35	Top of Ring	None	None	A276 SS316	Typical
90	M383	N370	N376	315	Top of Ring	None	None	A276 SS316	Typical
91	M384	N376	N371	330	Top of Ring	None	None	A276 SS316	Typical
92	M385	N377	N344		Top of Ring	None	None	A276 SS316	Typical
93	M386	N377	N359	225	Top of Ring	None	None	A276 SS316	Typical
94	M388	N377	N366	315	Top of Ring	None	None	A276 SS316	Typical
95	M389	N353	N318	145	Top of Ring	None	None	A276 SS316	Typical
96	M99	N295	N91	300	Ring T	HBrace	None	A276 SS316	Typical
97	M98	N377	N336	15	Top of Ring	None	None	A276 SS316	Typical
98	M100	N296	N92	300	Middle Ring T	HBrace	None	A276 SS316	Typical
99	M101	N329	N93	260	Ring T	HBrace	None	A276 SS316	Typical
100	M102	N330	N94	330	Middle Ring T	HBrace	None	A276 SS316	Typical
101	M103	N333	N95	100	Ring T	HBrace	None	A276 SS316	Typical
102	M104	N334	N96	70	Middle Ring T	HBrace	None	A276 SS316	Typical
103	M105	N337	N97	300	Ring T	HBrace	None	A276 SS316	Typical
104	M106	N338	N98	315	Middle Ring T	HBrace	None	A276 SS316	Typical
105	M107	N308	N99	90	Ring T	HBrace	None	A276 SS316	Typical
106	M108	N309	N100	90	Middle Ring T	HBrace	None	A276 SS316	Typical
107	M109	N321	N101	270	Ring T	HBrace	None	A276 SS316	Typical
108	M110	N324	N102	300	Middle Ring T	HBrace	None	A276 SS316	Typical
109	M111	N294	N103	45	Tapered Ring T	HBrace	None	A276 SS316	Typical
110	M112	N282	N104	45	Tapered Ring T	HBrace	None	A276 SS316	Typical
111	M114	N339	N106	330	Tapered Ring T	HBrace	None	A276 SS316	Typical
112	M115	N310	N107	75	Tapered Ring T	HBrace	None	A276 SS316	Typical
113	M116	N297	N108	315	Tapered Ring T	HBrace	None	A276 SS316	Typical
114	M117	N293	N109	45	Middle Ring T	HBrace	None	A276 SS316	Typical
115	M118	N291	N110	135	Ring T	HBrace	None	A276 SS316	Typical
116	M119	N292	N111	90	Middle Ring T	HBrace	None	A276 SS316	Typical
117	M120	N365	N112		Top of Ring	None	None	A276 SS316	Typical
118	M121	N375	N105		Top of Ring	None	None	A276 SS316	Typical
119	M132	N124	N128	353.579	Centerpiece	None	None	A276 SS316	Typical
120	M133	N128	N129	342.909	Centerpiece	None	None	A276 SS316	Typical
121	M134	N129	N123	337.218	Centerpiece	None	None	A276 SS316	Typical
122	M135	N123	N131	337.218	Centerpiece	None	None	A276 SS316	Typical
123	M136	N131	N132	342.909	Centerpiece	None	None	A276 SS316	Typical
124	M137	N132	N126	353.579	Centerpiece	None	None	A276 SS316	Typical
125	M138	N126	N134	6.421	Centerpiece	None	None	A276 SS316	Typical
126	M139	N134	N135	17.091	Centerpiece	None	None	A276 SS316	Typical
127	M140	N135	N125	22.782	Centerpiece	None	None	A276 SS316	Typical
128	M141	N125	N137	22.782	Centerpiece	None	None	A276 SS316	Typical
129	M142	N137	N138	17.091	Centerpiece	None	None	A276 SS316	Typical
130	M143	N138	N124	6.421	Centerpiece	None	None	A276 SS316	Typical



IIRISA A NEMETSCHEK COMPANY	Rbhu	SK-1
A NEMETSCHEK COMPANY	CRC	23.05.11_Sun Lodge - 16ft



EDIC A
IKISA
 A NEMETSCHEK COMPANY

Rbhu	
CRC	

SK-4

23.05.11_Sun Lodge - 16ft ...

Job Number: Checked By:

Member Point Loads (BLC 1 : D)

	Member Label	Direction	Magnitude [k, k-ft]	Location [(ft, %)]
	M290	Z	-0.005	%50
	M109	z	-0.005	%50
;	M110	Z	-0.005	%50
	M356	Z	-0.005	%50
	M355	z	-0.005	%50
	M365	z	-0.005	%50
'	M279	Z	-0.005	%50
1	M278	z	-0.005	%50
	M291	Z	-0.005	%50
0	M292	Z	-0.005	%50
1	M108	Z	0.005	%50
2	M383	Z	-0.005	%50
3	M107	Z	0.005	%50
4	M369	Z	-0.005	%50
5	M334	Z	0.005	%50
6	M333	Z	0.005	%50
7	M331	Z	0.005	%50
3	M115	Z	0.005	%50
9	M332	Z	0.005	%50
0	M330	Z	0.005	%50
1	M306	Z	0.005	%50
2	M307	z	0.005	%50
3	M308	Z	0.005	%50
4	M309	Z	0.005	%50
5	M310	Z	0.005	%50
3	M311	Z	0.005	%50
7	M312	Z	0.005	%50
8	M353	Z	0.005	%50
9	M354	Z	0.005	%50
0	M372	Z	0.005	%50
1	M378	Z	0.005	%50
2	M384	Z	-0.005	%50
3	M370	Z	-0.005	%50
4	M338	Z	-0.005	%50
5	M116	Z	-0.005	%50
6	M337	Z	-0.005	%50
7	M100	Z	-0.005	%50 %50
8	M336	Z	-0.005	%50
9	M99	Z	-0.005	%50
0	M335	Z	-0.005	%50
1	M313	Z	0.005	%50
2	M103	Z	0.005	%50
3	M104	Z	0.005	%50
4	M315	Z	0.005	%50
5	M314	Z	0.005	%50
3	M316	Z	0.005	%50
7	M98	Z	0.005	%50
3	M368	Z	-0.005	%50
9	M373	Z	-0.005	%50 %50
0	M299	Z	-0.005	%50 %50
1	M300	Z	-0.005	%50
2	M305	Z	-0.005	%50
3	M304	Z	-0.005	%50 %50
4	M303	Z	-0.005	%50 %50
5	M102		-0.005	%50 %50
J	IVITUZ	Z	-0.003	7000

Job Number : CRC Checked By :

Member Point Loads (BLC 1 : D) (Continued)

	Member Label	Direction	Magnitude [k, k-ft]	Location [(ft, %)]
56	M302	Z	-0.005	%50
57	M101	Z	-0.005	%50
58	M301	Z	-0.005	%50
59	M121	Z	-0.005	%50
60	M320	z	-0.005	%50
61	M114	Z	-0.005	%50
62	M319	Z	-0.005	%50
63	M106	Z	-0.005	%50
64	M318	Z	-0.005	%50
65	M105	Z	-0.005	%50
66	M317	Z	-0.005	%50
67	M293	Z	0.005	%50
68	M298	Z	0.005	%50
69	M119	Z	0.005	%50
70	M117	Z	0.005	%50
71	M322	Z	0.005	%50
72	M323	Z	0.005	%50
73	M111	Z	0.005	%50
74	M112	Z	0.005	%50
75	M324	Z	0.005	%50
76	M325	Z	0.005	%50
77	M374	Z	0.005	%50
78	M367	Z	0.005	%50

Member Distributed Loads (BLC 10 : Pushing LL)

Member Labe	l Direction	Start Magnitude [lb/ft, F, psf, k-ft/ft]	End Magnitude [lb/ft, F, psf, k-ft/ft]	Start Location [(ft, %)]	End Location [(ft, %)]
1 M314	Z	-200	-200	0	%100
2 M103	z	-200	-200	0	%100

Member Area Loads (BLC 5 : Ex)

	Node A	Node B	Node C	Direction	Load Direction	Magnitude [psf]
1	N317	N318	N319	X	Two Way	-1.5
2	N317	N319	N320	X	Two Way	-1.5

Member Area Loads (BLC 6 : Ey)

	Node A	Node B	Node C	Direction	Load Direction	Magnitude [psf]
1	N317	N318	N319	Υ	Two Way	-0.6
2	N317	N319	N320	Υ	Two Way	-0.6

Member Area Loads (BLC 7 : Ez)

	Node A	Node B	Node C	Direction	Load Direction	Magnitude [psf]
1	N317	N318	N319	Z	Two Way	-1.5
2	N317	N319	N320	Z	Two Way	-1.5

Member Area Loads (BLC 9 : Glass DL)

	Node A	Node B	Node C	Direction	Load Direction	Magnitude [psf]
1	N317	N318	N319	Υ	Two Way	-3
2	N317	N319	N320	Υ	Two Way	-3

Job Number: Checked By: Model Name:

Member Area Loads (BLC 11 : SNOW)

	Node A	Node B	Node C	Direction	Load Direction	Magnitude [psf]
1	N319	N318	N317	Υ	Two Way	-18
2	N317	N320	N319	Υ	Two Way	-18

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Point	Distributed	Area(Member)
1	D	DL		-1		78		
2	L	LL						
3	Wz	WLZ						
4	Wx	WLX						
5	Ex	ELX	-0.5					2
6	Ey	ELY		-0.2				2
7	Ez	ELZ			-0.5			2
8	Lr	RLL						
9	Glass DL	DL						2
10	Pushing LL	LL					2	
11	SNOW	SL						2

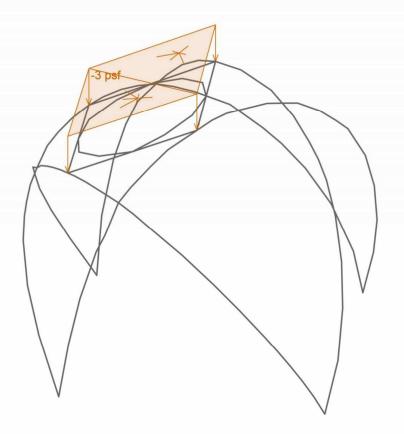
Load Combinations

	Description	Solve	P-Delta	BLC	Factor	BLC	Facto	BLC	Factor								
1	*********LRFD GRAVITY*******																
2	1.4D	Yes	Υ	DL	1.4												
3	1.2D+1.6L+0.5S	Yes	Υ	DL	1.2	LL	1.6	SL	0.5								
4	1.2D+1.6S+1.0L	Yes	Υ	DL	1.2	LL	1	SL	1.6								
5	********LRFD WIND******																
6	1.2D+L+0.5Wz+1.6Lr		Υ	DL	1.2	LL	1	WLZ	0.5			RLL	1.6				
7	1.2D+L-0.5Wz+1.6Lr		Υ	DL	1.2	LL	1	WLZ	-0.5			RLL	1.6				
8	1.2D+L+0.5Wx+1.6Lr		Υ	DL	1.2	LL		WLX				RLL	1.6				
9	1.2D+L-0.5Wx+1.6Lr		Υ	DL	1.2	LL	1	WLX	-0.5			RLL	1.6				
10	1.2D+L+0.5*0.75(Wz+Wx)+1.6Lr		Υ	DL	1.2	LL	1	WLZ	0.375			RLL	1.6				
11	1.2D+L+0.5*0.75(Wz-Wx)+1.6Lr		Υ	DL	1.2	LL	1	WLZ	0.375	WLX	-0.375	RLL	1.6				
12	1.2D+L+0.5*0.75(-Wz+Wx)+1.6Lr		Υ	DL	1.2	LL	1	WLZ	-0.375	WLX	0.375	RLL	1.6				
13	1.2D+L+0.5*0.75(-Wz-Wx)+1.6Lr		Υ	DL	1.2	LL	1	WLZ	-0.375	WLX	-0.375	RLL	1.6				
14	1.2D+L+Wz+0.5Lr		Υ	DL	1.2	LL	1	WLZ	1			RLL	0.5				
15	1.2D+L-Wz+0.5Lr		Υ	DL	1.2	LL	1	WLZ	-1			RLL	0.5				
16	1.2D+L+Wx+0.5Lr		Υ	DL	1.2	LL	1	WLX	1			RLL	0.5				
17	1.2D+L-Wx+0.5Lr		Υ	DL	1.2	LL		WLX				RLL	0.5				
18	1.2D+L+0.75(Wz+Wx)+0.5Lr		Υ	DL	1.2	LL	1	WLZ	0.75	WLX	0.75	RLL	0.5				
19	1.2D+L+0.75(Wz-Wx)+0.5Lr		Υ	DL	1.2	LL			0.75	WLX	-0.75	RLL	0.5				
20	1.2D+L+0.75(-Wz+Wx)+0.5Lr		Υ	DL	1.2	LL	1	WLZ	-0.75	WLX	0.75	RLL	0.5				
21	1.2D+L+.75(-Wz-Wx)+0.5Lr		Υ	DL	1.2	LL	1	WLZ	-0.75	WLX	-0.75	RLL	0.5				
22	0.9D+Wz		Υ	DL	0.9		1	WLZ	1								
23	0.9D-Wz		Υ	DL	0.9		1	WLZ	-1								
24	0.9D+Wx		Υ	DL	0.9		1	WLX	1								
25	0.9D-Wx		Υ	DL	0.9		1	WLX	-1								
26	0.9D+.75(Wz+Wx)		Υ	DL	0.9				0.75	WLX	0.75						
27	0.9D+.75(Wz-Wx)		Υ	DL	0.9				0.75	WLX	-0.75						
28	0.9D+.75(-Wz+Wx)		Υ	DL	0.9		1	WLZ	-0.75	WLX	0.75						
29	0.9D+.75(-Wz-Wx)		Υ	DL	0.9		1	WLZ	-0.75	WLX	-0.75						
30	**********LRFD SEISMIC********																
31	1.2D+L+Ex+Ey	Yes	Υ	DL	1.2	LL	1			ELX	1			ELY	1		
32	1.2D+L-Ex+Ey	Yes	Υ	DL	1.2	LL	1			ELX	-1			ELY	1		
33	1.2D+L+Ez+Ey	Yes	Υ	DL	1.2	LL	1			ELZ	1			ELY	1		

Job Number: Checked By:

Load Combinations (Continued)

	d Combinations (Continued)																
		Solve	P-Delta	BLC	Factor	BLC	Factor	BLC	Factor	BLC	Factor	BLC	Factor	BLC	Facto	rBLC	Factor
34	1.2D+L-Ez+Ey	Yes	Υ	DL	1.2	LL	1			ELZ	-1			ELY	1		
35	1.2D+L+.75(Ex+Ez)+Ey	Yes	Υ	DL	1.2	LL	1			ELX	0.75	ELZ	0.75	ELY	1		
36	1.2D+L+.75(Ex-Ez)+Ey	Yes	Υ	DL	1.2	LL	1			ELX	0.75	ELZ	-0.75	ELY	1		
37	1.2D+L+.75(-Ex+Ez)+Ey	Yes	Υ	DL	1.2	LL	1			ELX	-0.75	ELZ	0.75	ELY	1		
38	1.2D+L+.75(-Ex-Ez)+Ey	Yes	Υ	DL	1.2		1			ELX	-0.75		-0.75	ELY	1		
39	0.9D+Ex-Ey	Yes	Υ	DL	0.9					ELX	1			ELY	-1		
40	0.9D-Ex-Ey	Yes	Y	DL	0.9					ELX	-1			ELY	-1		
41	0.9D+Ez-Ey	Yes	Υ	DL	0.9					ELZ	1			ELY	-1		
42	0.9D-Ez-Ey	Yes	Y	DL	0.9					ELZ	-1			ELY	-1		
43	0.9D+.75(Ex+Ez)-Ey	Yes	Y	DL	0.9					ELX	0.75	ELZ	0.75	ELY	-1		
44	0.9D+.75(-Ex+Ez)-Ey	Yes	Y	DL	0.9					ELX	-0.75		0.75	ELY	-1		
45	0.9D+.75(Ex+-Ez)-Ey	Yes	Y	DL	0.9					ELX	0.75		-0.75		-1		
46	0.9D+.75(-Ex-Ez)-Ey	Yes	Y	DL	0.9					ELX	-0.75		-0.75 -0.75		-1		
	LRFD OVERSTRENGTH SEISMIC			DL	0.9					LLA	-0.73	LLZ	-0.73	<u> </u>			
48	(OS)1.2D+L+Ex+Ey		Υ	DL	1.2	LL	1			Om*ELX	1			Om*ELY	1		
49	· · · · · · · · · · · · · · · · · · ·		Y	DL	1.2		1			Om*ELX	-			Om*ELY			
50	(OS)1.2D+L-Ex+Ey		Y			LL	1			Om*ELZ				Om*ELY			
	(OS)1.2D+L+Ez+Ey			DL	1.2												
51	(OS)1.2D+L-Ez+Ey		Y	DL	1.2		1			Om*ELZ		O*EL 7		Om*ELY	-		
52	(OS)1.2D+L+.75(Ex+Ez)+Ey		Y	DL	1.2	LL	1							Om*ELY			
53	(OS)1.2D+L+.75(Ex-Ez)+Ey		Y	DL	1.2	LL	1							Om*ELY			
54	(OS)1.2D+L+.75(-Ex+Ez)+Ey		Y	DL	1.2	LL	1							Om*ELY			
55	(OS)1.2D+L+.75(-Ex-Ez)+Ey		Υ	DL	1.2	LL	1					Om*ELZ		Om*ELY			
56	(OS)0.9D+Ex-Ey		Υ	DL	0.9					Om*ELX				Om*ELY			
57	(OS)0.9D-Ex-Ey		Υ	DL	0.9					Om*ELX				Om*ELY			
58	(OS)0.9D+Ez-Ey		Y	DL	0.9					Om*ELZ				Om*ELY			
59	(OS)0.9D-Ez-Ey		Υ	DL	0.9					Om*ELZ				Om*ELY			
60	(OS)0.9D+.75(Ex+Ez)-Ey		Υ	DL	0.9									Om*ELY			
61	(OS)0.9D+.75(-Ex+Ez)-Ey		Υ	DL	0.9									Om*ELY			
62	(OS)0.9D+.75(Ex+-Ez)-Ey		Υ	DL	0.9					Om*ELX	0.75	Om*ELZ	-0.75	Om*ELY	-1		
63	(OS)0.9D+.75(-Ex-Ez)-Ey		Υ	DL	0.9					Om*ELX	-0.75	Om*ELZ	-0.75	Om*ELY	-1		
64	***********ASD GRAVITY********																
65	D+L		Υ	DL	1	LL	1										
66	D+.75L+0.75Lr		Υ	DL	1	LL	0.75					RLL	0.75				
67	*********ASD WIND*******																
68	D+0.6Wz		Υ	DL	1			WLZ	0.6								
69	D-0.6Wz		Υ	DL	1				-0.6								
70	D+0.6Wx		Y	DL	1				0.6								
71	D-0.6Wx		Y	DL	1				-0.6								
72	D+0.6(.75(Wz+Wx))		Ý	DL	1				0.45	WLX	0.45						
73	D+0.6(.75(Wz-Wx))		Y	DL	1				0.45		-0.45						
74	D+0.6(.75(-Wz+Wx))		Y	DL	1					WLX	0.45						
75	D+0.6(.75(-Wz-Wx))		Y		1					WLX							
76	D+0.75L+0.75(0.6Wz)+0.75Lr		Y	DL	1	LL	0.75			VVL/\	0.40					RH	0.75
77	D+0.75L+0.75(-0.6Wz)+0.75Lr		Y	DL	1	LL	0.75										0.75
78	D+0.75L+0.75(0.6Wx)+0.75Lr		Y	DL	1	LL	0.75										0.75
			Y		1		0.75									DII	0.75
79	D+0.75L+0.75(-0.6Wx)+0.75Lr D+0.75L+0.75(0.75(0.6Wx+.6Wz))+0.			DL			0.75			\\/\ \\	0.24						0.75
			Y	DL	1	LL					0.34						0.75
	D+0.75L+0.75(0.75(0.6Wx6Wz))+0.		Y	DL	1		0.75										
	D+0.75L+0.75(0.75(-0.6Wx+.6Wz))+0		Y	DL	1_1	LL	0.75				0.34					KLL	0.75
	D+0.75L+0.75(0.75(-0.6Wx6Wz))+0		Y	DL	1	LL	0.75			WLX	-0.34					KLL	0.75
84	0.6D+0.6Wz		Y	DL	0.6				0.6								
85	0.6D-0.6Wz		Υ	DL	0.6				-0.6								
86	0.6D+0.6Wx		Y	DL	0.6				0.6								
87	0.6D-0.6Wx		Υ	DL	0.6				-0.6								
88	0.6D+.75(0.6Wz+0.6Wx)		Υ	DL	0.6			WLZ	0.45	WLX	0.45						

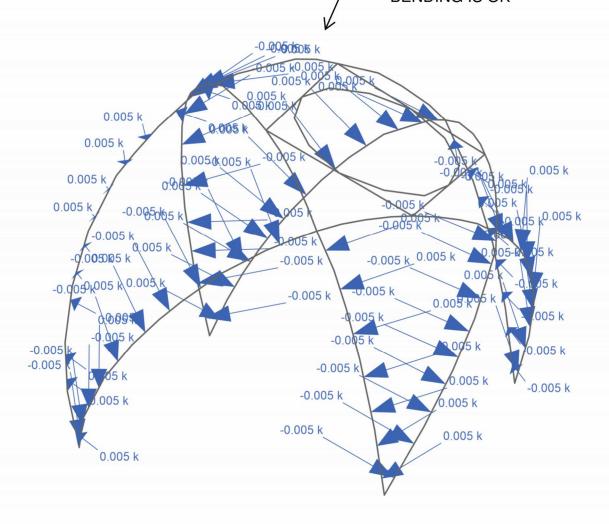


lob Number : Checked By :

Load Combinations (Continued)

	Description	Solvel	P-Delta	BLC	Factor	BLC	FactorE	BLCFactor								
89	0.6D+.75(0.6Wz-0.6Wx)		Υ	DL	0.6			WLZ	0.45	WLX	-0.45					
90	0.6D+.75(-0.6Wz+0.6Wx)		Υ	DL	0.6			WLZ	-0.45	WLX	0.45					
91	0.6D+.75(-0.6Wz-0.6Wx)		Υ	DL	0.6			WLZ	-0.45	WLX	-0.45					
92	*********ASD SEISMIC*********															
93	D+0.75L+0.75(0.7Ex+Ey)		Υ	DL	1	LL	0.75			ELX	0.525			ELY	0.525	
94	D+0.75L+0.75(-0.7Ex+Ey)		Υ	DL	1	LL	0.75			ELX	-0.525			ELY	0.525	
95	D+0.75L+0.75(0.7Ez+Ey)		Υ	DL	1	LL	0.75			ELZ	0.525			ELY	0.525	
96	D+0.75L+0.75(-0.7Ez+Ey)		Υ	DL	1	LL	0.75			ELZ	-0.525			ELY	0.525	
	D+0.75L+0.75(0.7(.75Ex+.75Ez+Ey))		Υ	DL	1	LL	0.75			ELX	0.4	ELZ	0.4	ELY	0.525	
98	D+0.75L+0.75(0.7(.75Ex75Ez+Ey))		Υ	DL	1	LL	0.75			ELX	0.4	ELZ	-0.4	ELY	0.525	
99	D+0.75L+0.75(0.7(75Ex+.75Ez+Ey)		Υ	DL	1	LL	0.75			ELX	-0.4	ELZ	0.4	ELY	0.525	
100	D+0.75L+0.75(0.7(75Ex75Ez+Ey)		Υ	DL	1	LL	0.75			ELX	-0.4	ELZ	-0.4	ELY	0.525	
101	0.6D+0.7Ex-0.7Ey		Υ	DL	0.6					ELX	0.7			ELY	-0.7	
102	0.6D-0.7Ex-0.7Ey		Υ	DL	0.6					ELX	-0.7			ELY	-0.7	
103	0.6D+0.7Ez-0.7Ey		Υ	DL	0.6					ELZ	0.7			ELY	-0.7	
104	0.6D-0.7Ez-0.7Ey		Υ	DL	0.6					ELZ	-0.7			ELY	-0.7	
105	0.6D+0.7(.75Ex+.75Ez)-0.7Ey		Υ	DL	0.6					ELX	0.525	ELZ	0.525	ELY	-0.7	
106	0.6D+0.7(.75Ex75Ez)-0.7Ey		Υ	DL	0.6					ELX	0.525	ELZ	-0.525	ELY	-0.7	
107	0.6D+0.7(75Ex+.75Ez)-0.7Ey		Υ	DL	0.6					ELX	-0.525	ELZ	0.525	ELY	-0.7	
108	0.6D+0.7(75Ex75Ez)-0.7Ey		Υ	DL	0.6					ELX	-0.525	ELZ	-0.525	ELY	-0.7	
109	D+0.7Ex-0.7Ey		Υ	DL	1					ELX	0.7			ELY	0.7	
110	D-0.7Ex-0.7Ey		Υ	DL	1					ELX	-0.7			ELY	0.7	
111	D+0.7Ez-0.7Ey		Υ	DL	1					ELZ	0.7			ELY	0.7	
112	D-0.7Ez-0.7Ey		Υ	DL	1					ELZ	-0.7			ELY	0.7	
113	D+0.7(.75Ex+.75Ez)-0.7Ey		Υ	DL	1						0.525	ELZ	0.525	ELY	0.7	
114	D+0.7(.75Ex75Ez)-0.7Ey		Υ	DL	1						0.525	ELZ	-0.525	ELY	0.7	
115	D+0.7(75Ex+.75Ez)-0.7Ey		Υ	DL	1					ELX	-0.525	ELZ	0.525	ELY	0.7	
116	D+0.7(75Ex75Ez)-0.7Ey		Υ	DL	1					ELX	-0.525	ELZ	-0.525	ELY	0.7	
117	***********SINGLE*******															
118	D	Yes	Υ	DL	1											
119	D (P-DELTA OFF)			DL	1											
120	L	Yes	Υ			LL	1									
121	Wz		Υ					WLZ	1							
122	Wx		Υ					WLX	1							
123	Ex	Yes	Υ							ELX	1					
124	Ey	Yes	Υ							ELY	1					
125	Ez	Yes	Υ							ELZ	1					
126	Lr		Υ									RLL	1			

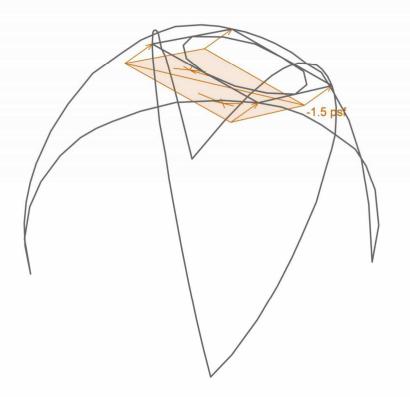
Loads: BLC 9, Glass DL


Ī	Rbhu	
ſ	CRC	
ſ		

\sim	1/		0	
_	n	_	ч	

3 LB NOTIONAL LOADS FOR "OUT-OF-PERFECT" PLATES

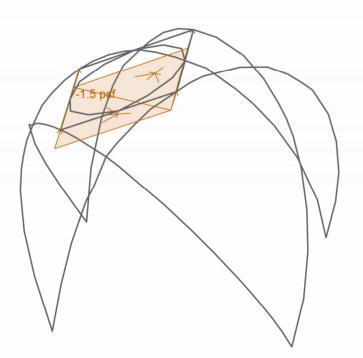
TO VERIFY THAT WEAK AXIS BENDING IS OK



Loads: BLC 1, D

IRISA	Rbhu
A NEMETSCHEK COMPANY	CRC

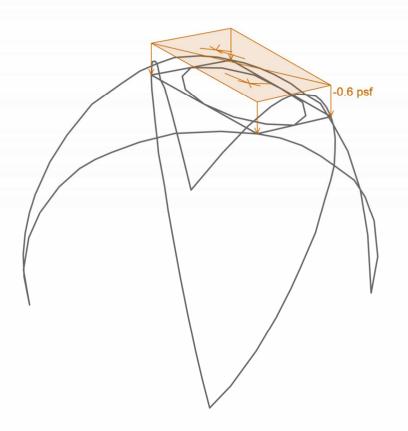
I	SK-5	
I	23.05.11	_Sun Lodge - 16ft


Loads: BLC 5, Ex

IRISA
A NEMETSCHEK COMPANY

Rbhu
CRC

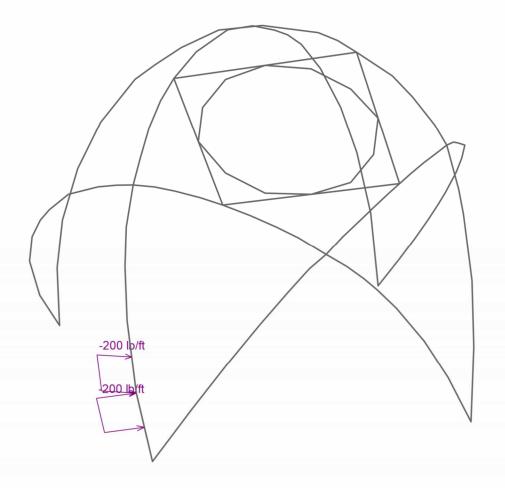
0	1/		7	
_	ĸ	-	/	


Loads: BLC 7, Ez

IRISA
A NEMETSCHEK COMPANY

Rbhu
CRC

•	1/		0	
٦.	n	_	n	


Loads: BLC 6, Ey

HINDA	IDIC A
A NEMETSCHEK COMPANY	KIJA

Rbhu
CRC

•	1/		0	
٦.	n	_	n	

Loads: BLC 10, Pushing LL

IRISA
A NEMETSCHEK COMPANY

Rbhu
CRC

_		-	_	Т
S	ĸ.	.1	n	

ob Number: Checked By:

Envelope Node Reactions

1	Node Label		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N314	max	0.235	39	1.101	32	0.347	37	2.362	37	0.662	38	2.233	32
2		min	-0.675	32	0.205	39	-0.105	45	-0.601	45	-1.01	43	-0.941	39
3	N316	max	0.276	39	0.692	38	0.186	41	0.962	43	0.741	45	0.853	32
4		min	-0.337	32	0.095	43	-0.207	34	-1.035	38	-0.555	32	-1.187	39
5	N307	max	0.426	4	1.578	4	0.215	41	0.414	41	0.256	41	0.25	44
6		min	-0.066	40	0.206	41	-0.663	34	-2.325	4	-0.338	34	-3.017	4
7	N315	max	0.808	3	1.001	4	0.362	41	0.841	43	0.221	41	0.802	46
8		min	-0.175	40	-0.158	46	-0.642	34	-1.34	38	-0.889	3	-4.082	3
9	Totals:	max	1.409	31	4.249	4	1.039	41						
10		min	-1.035	40	1.594	40	-1.547	34						

Envelope Node Displacements

			V Cal		V/ E1	10	7 0-1		V D - 4 - 4 11		V Datatian Incell		7 D - t - t' [1]	
	Node Labe		X [in]	LC	Y [in]	LC	Z [in]		X Rotation [rad]	LC	Y Rotation [rad]		Z Rotation [rad]	
1	N282	max	1.151	38	0.1	43	1.235	38	1.756e-2	38	-5.138e-4	41	1.358e-3	43
2	11000	min	-0.248	43	-0.321	38	-0.369	43	-3.709e-4	43	-2.858e-2	34	-2.555e-2	38
3	N283	max	1.149	38	0.086	43	1.23	38	1.689e-2	38	1.26e-3	41	1.74e-3	43
4		min	-0.262	43	-0.318	38	-0.363	43	1.13e-3	43	-2.959e-2	34	-2.574e-2	38
5	N290	max	1.129	38	0.053	43	1.178	38	1.626e-2	38	1.865e-3	41	1.812e-3	43
6		min	-0.27	43	-0.283	38	-0.334	43	1.875e-3	43	-3.009e-2	34	-2.577e-2	38
7	N291	max	0.051	38	0.004	43	0.059	38	8.789e-3	38	2.188e-2	38	8.302e-4	43
8		min	-0.014	43	-0.013	38	-0.025	41	-1.875e-3	43	-1.583e-3	43	-2.63e-3	38
9	N292	max	0.222	38	0.016	43	0.248	38	1.137e-2	38	2.202e-2	32	1.356e-3	41
10		min	-0.048	43	-0.06	38	-0.08	43	-3.059e-3	43	-2.297e-3	43	-4.86e-3	38
11	N293	max	0.557	38	0.041	43	0.612	38	1.343e-2	38	9.271e-3	32	1.524e-3	43
12		min	-0.108	43	-0.155	38	-0.176	43	-3.536e-3	43	-3.557e-3	35	-1.089e-2	38
13	N294	max	0.907	38	0.079	43	0.99	38	1.578e-2	38	-1.082e-3	44	1.744e-3	43
14		min	-0.183	43	-0.258	38	-0.295	43	-4.003e-3	41	-1.699e-2	34	-1.887e-2	38
15	N295	max	0.01	46	0.004	46	0.025	35	6.536e-3	4	-1.119e-3	41	2.789e-3	43
16		min	-0.106	35	-0.059	35	0.002	46	9.541e-4	44	-1.264e-2	4	-5.355e-3	38
17	N296	max	0.002	46	-0.013	46	0.087	4	8.397e-3	4	4.322e-4	41	3.978e-3	43
18		min	-0.276	35	-0.152	35	0.018	40	5.985e-4	44	-1.641e-2	4	-6.699e-3	38
19	N297	max	-0.036	40	-0.039	40	0.186	4	7.15e-3	34	3.256e-3	41	2.137e-3	43
20		min	-0.401	35	-0.239	4	0.022	44	-1.571e-3	41	-1.48e-2	4	-7.009e-3	38
21	N298	max	-0.043	40	-0.027	44	0.281	4	6.814e-3	34	3.966e-3	41	1.281e-3	43
22		min	-0.471	4	-0.327	4	-0.001	44	-2.526e-3	41	-1.419e-2	4	-7.364e-3	4
23	N299	max	-0.02	44	-0.082	44	0.564	34	5.44e-2	36	-7.967e-3	44	7.655e-3	32
24		min	-0.549	36	-0.42	36	0.046	41	8.857e-3	44	-4.752e-2	36	-1.117e-3	39
25	N300	max	-0.024	44	-0.046	44	0.836	34	4.401e-2	36	-7.482e-3	44	1.227e-2	36
26		min	-0.978	36	-0.907	36	0.125	44	7.628e-3	44	-3.404e-2	36	1.983e-3	44
27	N301	max	-0.027	44	-0.049	44	0.711	34	3.121e-2	36	-5.781e-3	44	1.547e-2	36
28		min	-0.806	36	-0.743	36	0.124	44	6.204e-3	44	-2.208e-2	36	-7.498e-4	44
29	N302	max	-0.038	44	-0.057	44	0.491	34	1.642e-2	36	-2.412e-3	39	1.541e-2	36
30		min	-0.495	36	-0.459	36	0.103	44	4.169e-3	44	-7.222e-3	4	-7.035e-4	44
31	N303	max	-0.038	44	-0.055	44	0.37	34	9.513e-3	34	4.063e-3	36	1.523e-2	36
32		min	-0.343	36	-0.323	34	0.08	41	2.967e-3	41	-2.086e-3	44	-1.884e-4	44
33	N304	max	-0.031	44	-0.042	41	0.227	38	3.459e-3	32	1.466e-2	36	1.466e-2	36
34		min	-0.184	36	-0.191	34	0.05	41	-5.529e-4	39	-3.561e-4	44	7.915e-4	44
35	N305	max	-0.018	41	-0.02	41	0.118	38	1.72e-3	40	1.954e-2	36	1.471e-2	36
36		min	-0.08	34	-0.092	38	0.021	43	-2.954e-3	31	7.187e-4	44	1.328e-3	44
37	N306	max	-0.003	43	-0.002	43	0.035	38	1.21e-3	40	1.798e-2	36	1.23e-2	36
38		min	-0.018	38	-0.027	38	0.002	43	-3.692e-3	31	1.187e-3	44	1.409e-3	44
39	N307	max	0	40	0	41	0	34	0	4	0	34	0	4
40		min	0	4	0	4	0	41	0	41	0	41	0	44
41	N308	max	-0.003	46	0	46	0.003	46	1.77e-3	46	2.96e-3	43	3.55e-3	34

Job Number : Checked By :

Envelope Node Displacements (Continued)

			\		\/ f' 1		7 1		V D + t'		V D + t' - t - 11		70 (" ["	$\overline{}$
	Node Labe		X [in]	LC	Y [in]	LC	Z [in]		X Rotation [rad]		Y Rotation [rad]		Z Rotation [rad]	
42		min	-0.069	35	-0.067	35	-0.075	35	-4.402e-3	35	-5.237e-3	38	1.1e-3	39
43	N309	max	0.008	46	0.018	46	0.029	46	4.889e-3	34	5.27e-4	43	7.072e-3	34
44		min	-0.177	35	-0.175	35	-0.196	35	-4.128e-3	43	-1.208e-2	38	2.743e-3	39
45	N310	max	0.047	46	0.063	46	0.084	42	7.022e-3	34	-2.298e-3	43	9.459e-3	34
46		min	-0.252	35	-0.245	35	-0.272	35	-1.76e-3	41	-1.629e-2	38	3.718e-3	39
47	N311	max	0.084	46	0.103	42	0.132	42	6.574e-3	34	-3.086e-3	43	1.009e-2	34
48		min	-0.258	35	-0.238	35	-0.268	33	1.204e-4	41	-1.689e-2	34	3.732e-3	39
49	N312	max	0.113	46	0.138	34	0.171	34	6.292e-3	34	-3.177e-3	43	1.012e-2	34
50		min	-0.25	35	-0.219	33	-0.251	33	3.924e-4	44	-1.685e-2	34	3.698e-3	39
51	N313	max	0.518	46	0.427	46	0.375	46	-1.548e-2	45	5.058e-2	32	1.011e-2	3
52		min	-0.634	35	-0.59	35	-0.576	35	-5.175e-2	32	1.41e-2	45	7.918e-4	39
53	N314	max	0	32	0	39	0	45	0	45	0	43	0	39
54	14017	min	0	39	0	32	0	37	0	37	0	38	0	32
55	N315	max	0	40	0	46	0	34	0	38	0	3	0	3
56	14010	min	0	3	0	4	0	41	0	43	0	41	0	46
57	N316		0	32	0	43	0	34	0	38	0	32	0	39
	14310	max	0		0		0		0		0		0	
58	NOAZ	min		39		38		41		43		45		32
59	N317	max	0.155	32	-0.005	31	0.05	38	6.289e-3	3	2.454e-3	44	1.618e-4	31
60	110.10	min	-0.104	39	-0.117	4	-0.066	43	-1.972e-5	44	-3.761e-3	36	-9.204e-3	4
61	N318	max	0.078	32	-0.026	40	0.05	38	1.851e-3	4	1.666e-3	43	5.684e-4	39
62		min	-0.085	39	-0.12	4	-0.065	43	-1.165e-3	43	-5.502e-3	4	-3.25e-3	4
63	N319	max	0.098	32	0.006	45	0.163	38	5.971e-3	4	3.583e-3	2	1.62e-3	45
64		min	-0.098	39	-0.187	4	-0.099	43	-1.901e-3	45	6.078e-4	44	-6.031e-3	4
65	N320	max	0.176	32	-0.006	31	0.161	38	1.15e-3	35	4.263e-3	40	-2.342e-4	31
66		min	-0.103	39	-0.202	4	-0.099	43	-7.583e-3	4	-5.222e-3	31	-7.952e-3	4
67	N321	max	-0.01	45	-0.01	45	-0.011	45	6.474e-3	35	3.499e-3	46	1.787e-2	35
68		min	-0.033	37	-0.045	32	-0.059	32	-3.506e-3	46	-2.707e-2	35	-9.231e-4	46
69	N322	max	0.086	46	0.043	46	-0.064	46	-8.095e-3	39	4.072e-2	32	1.17e-2	35
70		min	-0.711	35	-0.664	35	-0.671	35	-3.803e-2	32	1.937e-3	39	-5.075e-3	46
71	N323	max	0.003	46	-0.033	46	-0.114		-1.817e-3	39	2.899e-2	32	1.184e-2	35
72	11020	min	-0.518	35	-0.485	35	-0.519	33	-2.757e-2	32	-5.162e-3	39	-5.118e-3	46
73	N324	max	-0.033	46	-0.059	46	-0.083	42	5.976e-3	39	1.204e-2	46	1.447e-2	35
74	1402-	min	-0.253	35	-0.245	33	-0.294	37	-1.359e-2	32	-1.827e-2	35	-3.399e-3	46
75	N325	max	0.168	46	0.121	46	0.001	46	-1.139e-2	45	4.717e-2	32	1.11e-2	35
76	14020	min	-0.809	35	-0.757	35	-0.749	35	-4.543e-2	32	7.063e-3	39	-3.324e-3	46
	Naae												1.451e-3	
77	N326	max	0.773	32	0.026	42	0.145	45	1.379e-4	39	3.141e-2	32		39
78	NOOZ	min	-0.143	39	-0.151	33	-0.564	37	-1.184e-2	32	-4.095e-4	39	-2.241e-2	32
79	N327	max	0.646	32	0.031	42	0.137	45	1.84e-4	39	3.185e-2	32	1.464e-3	39
80	NICOO	min	-0.15	39	-0.12	33	-0.445	33	-1.153e-2	32	-3.467e-4	39	-2.23e-2	32
81	N328	max	0.846	32	0.032	45	0.149	45	4.402e-5	39	2.983e-2	32	1.488e-3	39
82		min	-0.134	39	-0.17	37	-0.648	37	-1.164e-2	32	-6.05e-4	39	-2.154e-2	32
83	N329	max	0.117	38	0.004		0.004		1.137e-3	45	5.629e-3	45	1.28e-3	43
84		min	-0.016	43	-0.027		-0.044		-6.896e-3	37	-2.439e-2	37	-4.842e-3	38
85	N330	max	0.382	32	0.006	39	0.026	45	1.212e-3	45	5.486e-3	42	2.535e-3	43
86		min	-0.045	39	-0.076	32	-0.221	37	-6.212e-3	37	-1.564e-2	33	-6.604e-3	38
87	N331	max	0.618	32	0.016	45	0.073	45	1.513e-3	45	1.056e-2	38	1.788e-3	39
88		min	-0.084	39	-0.124	37	-0.432		-7.831e-3	37	-4.82e-3	43	-1.096e-2	32
89	N332	max	0.803	32	0.03	45			1.369e-3	45	2.175e-2	32	1.624e-3	39
90		min	-0.115	39	-0.169	37	-0.617		-1.056e-2	37	-9.552e-4	39	-1.722e-2	32
91	N333	max	0.03	43	0.053	3	0.226	3	6.084e-3	3	1.099e-2	32	3.606e-3	31
92		min	-0.125	3	-0.018	43			-3.656e-3	43	-8.367e-3	31	-2.118e-3	40
93	N334	max	0.104	44	0.094	3	0.421	3	7.601e-3	3	2.713e-2	38	3.818e-3	31
94	11007	min	-0.271	3	-0.034	44	-0.184		-4.077e-3	43	-1.227e-2	43	-3.64e-3	40
95	N335		0.211	40	0.099	3	0.44	3	9.187e-3	3	3.151e-2	38	5.23e-3	31
	เของข	max												
96		min	-0.336	31	-0.054	40	-0.239	44	-3.794e-3	43	-1.464e-2	43	-3.95e-3	46

Job Number: Checked By:

Envelope Node Displacements (Continued)

	0.00000	<u></u>	lacements	7,00										
	Node Labe	el	X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation [rad]	LC	Y Rotation [rad]	LC	Z Rotation [rad]	LC
97	N336	max	0.302	40	0.122	31	0.38	36	8.115e-3	3	3.194e-2	38	4.835e-3	35
98		min	-0.418	31	-0.08	40	-0.285	44	-3.343e-3	43	-1.491e-2	43	-3.884e-3	46
99	N337	max	0.05	4	-0.002	43	0.113	4	5.674e-3	4	7.464e-3	36	1.936e-5	43
100	14007	min	0.002	43	-0.002	4	0.008	41	2.195e-4	41	-1.661e-3	44	-2.017e-3	4
101	N338	max	0.002	4	-0.003	43	0.343	4	8.095e-3	4	1.026e-2	34	2.844e-5	39
102	14330		0.002	43	-0.003	43	0.026	41	3.129e-4	41	-1.659e-3	44	-3.141e-3	4
	NICOO	min				_								
103	N339	max	0.253	4	-0.002	43	0.629	4	7.349e-3	4	6.364e-3	42	2.4e-4	42
104		min	0.005	43	-0.069	4	0.056	43	7.303e-4	41	-8.727e-3	4	-3.79e-3	4
105	N341	max	0.174	3	0.028	31	0.223	46	1.913e-4	36	-3.291e-4	41	-1.15e-3	45
106		min	-0.075	39	-0.141	4	-0.24	35	-3.883e-3	4	-3.976e-3	3	-6.605e-3	4
107	N342	max	0.147	32	0.011	31	0.192	38	1.501e-3	35	2.544e-3	46	-1.549e-4	31
108		min	-0.084	39	-0.178	4	-0.165	35	-6.981e-3	4	-7.785e-3	35	-8.445e-3	4
109	N343	max	0.241	32	-0.019	39	0.143	34	-2.703e-4	43	2.725e-3	2	-7.01e-4	43
110		min	-0.112	31	-0.203	4	-0.134	41	-1.164e-2	4	-1.146e-4	34	-1.006e-2	4
111	N344	max	0.154	38	0.045	31	0.169	46	3.659e-3	46	5.544e-3	35	1.644e-3	46
112		min	-0.096	43	-0.098	4	-0.204	35	-3.556e-3	35	-5.906e-3	46	-4.35e-3	35
113	N345	max	0.121	32	0.006	45	0.22	34	4.506e-3	4	3.632e-3	4	2.108e-3	45
114	140-10	min	-0.049	39	-0.165	4	-0.086	41	-2.302e-3	45	1.465e-3	41	-5.549e-3	4
115	N346		0.106	32	0.005	45	0.169	38	8.4e-3	4	2.954e-3	2	1.429e-3	45
	11340	max				45								
116	NIO 47	min	-0.12	39	-0.189	_	-0.116		-1.742e-3	45	-2.177e-4	38	-7.672e-3	4
117	N347	max	0.108	32	0.003	45	0.178	38	9.112e-3	4	2.8e-3	2	1.281e-3	45
118	110.10	min	-0.134	39	-0.185	4	-0.131	43	-1.633e-3	45	-4.62e-4	34	-7.861e-3	4
119	N348	max	0.107	32	0.002	45	0.226	34	4.214e-3	4	1.545e-3	44	8.208e-4	45
120		min	-0.036	39	-0.145	4	-0.082	41	-7.395e-4	39	-2.129e-3	36	-5.492e-3	4
121	N349	max	0.116	38	0.018	46	-0.003	46	2.067e-3	43	1.657e-3	4	1.196e-4	39
122		min	-0.091	43	-0.049	35	-0.064	4	-2.721e-3	4	-1.759e-3	41	-4.519e-3	4
123	N350	max	0.123	38	0.021	46	-0.008	40	1.713e-3	31	5.554e-4	41	6.841e-4	43
124		min	-0.1	43	-0.067	35	-0.074	4	-1.746e-4	40	-2.116e-3	34	-2.761e-3	4
125	N351	max	0.046	40	-0.014	43	0.088	38	2.953e-4	38	7.625e-4	39	1.767e-3	36
126		min	-0.088	31	-0.181	4	-0.078	43	-4.894e-4	43	-3.391e-3	4	-1.368e-3	4
127	N352	max	0.041	40	0.001	39	0.09	38	6.916e-4	45	2.781e-3	4	2.639e-3	4
128	11002	min	-0.08	31	-0.152	4	-0.082	43	-3.046e-3	4	-3.182e-4	39	-1.829e-4	41
129	N353	max	0.061	32	-0.021	43	0.071	38	2.009e-3	4	7.111e-4	43	6.497e-4	39
130	14000	min	-0.085	31	-0.153	4	-0.073	43	-6.152e-4	43	-6.42e-3	4	-3.156e-3	4
	N354		0.108		0.01	46	0.002	46		34		41	7.123e-4	43
131	11334	max		38					2.194e-3		1.853e-3			
132	NOTE	min	-0.095	39	-0.071	35	-0.063	4	-9.433e-4	41	-3.367e-3	34	-2.927e-3	4
133	N355	max	0.091	32	-0.011	46	0.028	38	2.11e-3	34	2.299e-3	43	6.891e-4	43
134	None	min	-0.091	39	-0.089	4	-0.052	35	-1.479e-3	41	-4.624e-3	4	-3.222e-3	4
135	N356	max	-0.043	44	-0.074	44	0.861	34	5.418e-2	36	-8.043e-3	44	8.72e-3	38
136		min	-0.95	36	-0.867	36	0.106	44	8.887e-3	44	-4.519e-2	36	1.257e-3	39
137	N357	max	0.298	46	0.243	46	0.14	46	-1.529e-2	45	5.193e-2	32	8.872e-3	35
138		min	-0.869	35	-0.821		-0.784		-5.239e-2	32		45	2.581e-4	46
139	N358	max	0.131	32	-0.011	41	0.03	46	7.272e-3	4	1.697e-3	44	-2.117e-4	39
140		min	-0.112	31	-0.118	4	-0.088	35	5.401e-4	44	-3.303e-3	34	-1.036e-2	4
141	N359	max	0.173	38	0.126	31	0.093	34	1.012e-2	4	2.414e-3	31	8.254e-4	43
142		min	-0.119	43	-0.128	40	-0.096		-1.014e-4	31	-2.401e-3	40	-4.701e-3	4
143	N360	max	0.171	38	0.105	31	0.093	34	9.042e-3	4	1.102e-3	40	1.113e-3	31
144		min	-0.12	43	-0.143	4	-0.095		1.289e-3	39	-1.911e-3	31	-8.002e-3	4
145	N361	max	0.168	38	0.047	31	0.074	34	7.348e-3	4	3.4e-3	4	5.047e-4	31
146	11001	min	-0.112	43	-0.135	4	-0.08	41	6.075e-4	44	-3.305e-3	36	-1.07e-2	4
147	N362		0.103	32	0.002	44	0.01	40	5.193e-3	4	1.754e-3	33	-5.01e-4	39
	11302	max												
148	NICCO	min	-0.127	31	-0.131	34	-0.097	35	2.73e-5	41	-7.914e-4	42	-9.84e-3	4
149	N363	max	0.088	32	0.009	44	0.004	40	8.927e-4	4	3.945e-3	36	-2.109e-4	43
150	11001	min	-0.113	31	-0.114	34	-0.082		-2.818e-3	36	-1.038e-4	44	-8.559e-3	4
151	N364	max	0.205	32	-0.019	45	0.156	38	5.101e-4	35	1.153e-3	31	2.183e-4	44

Job Number: Checked By:

Envelope Node Displacements (Continued)

	oropo rro	ac Bicp	nacements	100	arra o a ,									
١	Node Labe	el	X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation [rad]	LC	Y Rotation [rad]	LC	Z Rotation [rad]	LC
152		min	-0.087	39	-0.142	4	-0.137	41	-4.299e-3	4	-5.837e-3	32	-1.132e-3	4
153	N365	max	0.091	32	-0.008	45	0.177	38	3.773e-3	4	-7.716e-4	3	4.155e-4	45
154		min	-0.12	39	-0.136	4	-0.132	43	-9.001e-4	45	-4.327e-3	2	-1.685e-3	37
155	N366	max	0.266	38	0.08	46	0.162	46	8.856e-3	46	2.722e-2	35	1.488e-2	46
156		min	-0.286	35	-0.162	35	-0.258	35	-1.04e-2	31	-1.757e-2	46	-2.376e-2	35
157	N367	max	0.063	32	-0.002	39	0.147	34	2.774e-3	34	1.445e-3	44	-6.944e-4	43
158	,,,,,,	min	-0.058	39	-0.116	4	-0.073	41	-6.66e-5	41	-6.368e-3	36	-2.914e-3	4
159	N368	max	0.334	32	-0.026	43	0.415	38	4.614e-3	43	5.353e-3	43	5.15e-3	38
160	11000	min	-0.097	43	-0.099	4	-0.145	43	-1.301e-2	38	-3.181e-2	38	-1.572e-3	43
161	N369	max	0.204	32	0.01	46	0.162	38	6.257e-3	37	1.602e-2	4	9.142e-3	4
162	14000	min	-0.122	39	-0.078	4	-0.128	41	-4.359e-4	45	-2.51e-3	39	-1.588e-4	39
163	N370	max	0.094	38	0.064	34	0.102	34	1.268e-2	33	7.735e-3	34	-1.78e-3	42
164	11370	min	-0.137	43	-0.1	35	-0.13	33	-8.504e-3	34	-8.953e-3	33	-6.362e-3	4
165	N371	max	0.03	40	0.003	44	0.115	34	-1.549e-3	44	1.535e-2	4	-2.598e-3	44
166	INSTI	min	-0.192	31	-0.133	44	-0.05	41	-1.445e-2	4	2.1e-3	44	-8.933e-3	44
167	N373		0.03	44	-0.133	44	0.233	34	2.674e-3	45	-2.135e-3	44	-3.158e-3	44
168	INO/ O	max				34		41		45				
	NOTA	min	-0.226	36	-0.143		-0.035		-5.703e-3		-2.304e-2	36	-1.676e-2	36
169	N374	max	0.142	32	-0.01	42	0.211	38	7.838e-4	33	-1.007e-3	35	3.521e-3	4
170	NOZE	min	-0.097	39	-0.111	4	-0.119	43	-8.557e-4	42	-1.145e-2	2	-3.488e-4	39
171	N375	max	0.043	40	-0.003	39	0.104	38	1.749e-3	45	4.491e-3	4	1.508e-3	4
172	11070	min	-0.089	31	-0.098	4	-0.074	43	-6.455e-3	4	-4.307e-3	36	-9.422e-4	38
173	N376	max	0.073	32	-0.005	40	0.032	46	3.354e-3	41	7.213e-3	34	1.089e-4	43
174		min	-0.089	39	-0.056	4	-0.065	35	-7.975e-3	34	-2.839e-3	41	-5.024e-3	4
175	N377	max	0.186	38	0.057	31	0.078	38	7.82e-3	4	1.31e-2	31	4.366e-3	40
176		min	-0.128	43	-0.068	46	-0.097	43	-7.909e-3	31	-8.363e-3	46	-7.641e-3	31
177	N91	max	0.003	46	0.001	46	0.007	35	3.518e-3	4	-7.316e-4	41	2.015e-3	43
178		min	-0.032	35	-0.018	35	0.001	46	6.018e-4	44	-6.511e-3	4	-2.526e-3	38
179	N92	max	0.007	46	-0.004	46	0.052	35	7.741e-3	4	-4.617e-4	41	3.766e-3	43
180		min	-0.189	35	-0.104	35	0.01	40	8.982e-4	44	-1.467e-2	4	-5.874e-3	38
181	N93	max	0.034	38	0.001	43	0.001	39	5.365e-4	45	2.816e-3	45	6.595e-4	43
182		min	-0.004	43	-0.008	38	-0.013	32	-3.68e-3	37	-1.217e-2	37	-3.174e-3	38
183	N94	max	0.249	32	0.004	39	0.011	45	1.136e-3	45	5.515e-3	45	1.766e-3	43
184		min	-0.025	39	-0.051	32	-0.129	37	-6.697e-3	37	-2.027e-2	37	-6.143e-3	38
185	N95	max	0.009	43	0.02	3	0.086	3	7.279e-3	3	5.607e-3	32	3.75e-3	3
186		min	-0.046	3	-0.005	43	-0.023	43	-2.362e-3	43	-4.074e-3	31	-1.126e-3	44
187	N96	max	0.058	44	0.076	3	0.339	3	7.292e-3	3	1.885e-2	38	4.277e-3	31
188		min	-0.206	3	-0.025	41	-0.128	41	-3.902e-3	43	-9.164e-3	43	-3.219e-3	40
189	N97	max	0.014	4	0	43	0.031	4	3.3e-3	4	3.678e-3	36	5.077e-6	43
190		min	0	43	-0.005	4	0.002	41	1.44e-4	41	-8.437e-4	44	-1.244e-3	4
191	N98	max	0.092	4	-0.002	43	0.215	4	7.253e-3	4	8.58e-3	34	3.679e-5	43
192		min	0.002	43	-0.032	4	0.016	41	2.984e-4	41	-1.681e-3	44	-2.744e-3	4
193	N99	max	-0.001	46	0	46	0.001	46		46		43		34
194		min	-0.02	35	-0.02		-0.022	35	-2.762e-3	35	-2.601e-3	38	8.441e-4	40
195	N100	max	0.001	46	0.007	46	0.013	46	3.292e-3	38	1.741e-3	43	5.307e-3	34
196	11100	min	-0.121	35	-0.118	35	-0.132	35	-4.523e-3	43	-8.643e-3	38	2.06e-3	39
197	N101	max	-0.003	45	-0.003	45	-0.003		2.882e-3	35	1.738e-3	46	9.159e-3	35
198	11101	min	-0.009	37	-0.003	37	-0.003	32	-1.97e-3	46	-1.353e-2	35	-3.484e-4	46
199	N102	max	-0.003	46	-0.036	46	-0.05	42	5.495e-3	39	7.058e-3	46	1.672e-2	35
200	11102	min	-0.021	35	-0.142	33	-0.172	33	-7.924e-3	38	-2.351e-2	35	-1.838e-3	46
201	N103		0.734	38	0.059	43	0.804	38	1.506e-2	38	2.486e-3	44	1.829e-3	43
202	INTUS	max	-0.145		-0.207	38	-0.234			43				
	NI104	min		43				43	-4.263e-3		-8.543e-3	36	-1.508e-2	38
203	N104	max	1.033	38	0.096	43	1.122	38	1.675e-2	38	-1.104e-3	41	1.586e-3	43
204	NIAOE	min	-0.22	43	-0.294	38	-0.346	43	-2.375e-3	43	-2.268e-2	34	-2.222e-2	38
205	N105	max	0.31	4	-0.003	39	0.769	4	7.955e-3	4	6.387e-3	42	2.933e-4	42
206		min	0.008	39	-0.084	4	0.075	43	8.828e-4	41	-9.052e-3	4	-4.316e-3	4

Job Number : Checked By :

Envelope Node Displacements (Continued)

1	Node Labe			Z Rotation [rad]										
207	N106	max	0.194	4	-0.002	43	0.478	4	7.289e-3	4	8.452e-3	34	1.814e-4	39
208		min	0.001	43	-0.058	4	0.039	41	3.743e-4	41	-3.674e-3	4	-2.981e-3	4
209	N107	max	0.027	46	0.041	46	0.054	46	5.53e-3	34	-6.431e-4	43	8.385e-3	34
210		min	-0.218	35	-0.216	35	-0.241	35	-3.272e-3	41	-1.392e-2	38	3.374e-3	39
211	N108	max	-0.018	46	-0.031	40	0.14	4	8.06e-3	4	1.324e-3	41	3.812e-3	43
212		min	-0.353	35	-0.193	35	0.025	44	8.073e-5	41	-1.605e-2	4	-6.733e-3	38
213	N109	max	0.384	38	0.028	43	0.424	38	1.274e-2	38	1.572e-2	32	1.461e-3	43
214		min	-0.077	43	-0.106	38	-0.126	43	-3.363e-3	43	-2.415e-3	43	-8.175e-3	38
215	N110	max	0.014	38	0.001	43	0.016	38	4.64e-3	38	1.089e-2	38	4.871e-4	43
216		min	-0.004	43	-0.004	38	-0.007	41	-1.05e-3	43	-7.67e-4	43	-1.541e-3	38
217	N111	max	0.13	38	0.009	43	0.145	38	9.751e-3	38	2.172e-2	38	1.018e-3	43
218		min	-0.029	43	-0.035	38	-0.049	43	-2.323e-3	43	-1.89e-3	43	-3.47e-3	38
219	N112	max	0.089	32	-0.002	45	0.173	38	6.547e-3	4	1.531e-3	44	8.296e-4	45
220		min	-0.138	39	-0.164	4	-0.141	43	-1.254e-3	45	-1.1e-3	36	-4.601e-3	4
221	N123	max	0.484	4	-0.088	39	0.162	38	4.794e-4	35	3.764e-4	43	1.73e-4	39
222		min	-0.073	39	-1.121	4	-0.099	43	-6.607e-4	46	-8.579e-4	38	-5.017e-3	4
223	N124	max	0.398	4	-0.082	39	0.113	38	4.197e-4	37	4.655e-4	41	3.651e-4	45
224		min	-0.062	39	-0.922	4	-0.085	43	-1.652e-4	39	-1.649e-3	4	-2.008e-3	4
225	N125	max	0.373	4	-0.093	39	0.049	38	6.551e-4	35	2.772e-4	39	1.985e-4	31
226		min	-0.068	39	-0.864	4	-0.066	43	-4.606e-4	46	-6.069e-4	32	-3.621e-3	4
227	N126	max	0.417	4	-0.073	39	0.109	38	2.428e-3	4	9.336e-4	35	-5.982e-5	39
228		min	-0.076	39	-0.861	4	-0.088	43	8.447e-5	40	-1.218e-3	46	-2.32e-3	4
229	N128	max	0.446	4	-0.081	39	0.144	38	2.118e-4	37	2.62e-4	41	7.381e-5	45
230		min	-0.061	39	-0.994	4	-0.089	43	-8.226e-4	4	-1.427e-3	38	-4.754e-3	4
231	N129	max	0.485	4	-0.085	39	0.159	38	4.091e-4	33	5.936e-4	4	8.986e-5	39
232		min	-0.064	39	-1.089	4	-0.096	43	-6.525e-4	4	-7.602e-4	38	-5.276e-3	4
233	N131	max	0.492	4	-0.088	39	0.158	38	8.523e-4	35	1.828e-4	41	-9.772e-5	39
234		min	-0.072	39	-1.105	4	-0.098	43	-6.487e-4	46	-1.113e-3	4	-6.221e-3	4
235	N132	max	0.46	4	-0.08	39	0.141	38	2.694e-3	4	4.647e-4	35	-2.481e-4	39
236		min	-0.072	39	-0.975	4	-0.097	43	-6.956e-5	46	-1.112e-3	38	-6.019e-3	4
237	N134	max	0.405	4	-0.077	39	0.07	38	2.274e-3	4	8.77e-4	35	2.36e-4	31
238		min	-0.073	39	-0.841	4	-0.07	43	1.123e-4	44	-1.327e-3	38	-1.707e-3	4
239	N135	max	0.391	4	-0.085	39	0.051	38	1.857e-3	4	1.228e-4	43	2.183e-4	31
240		min	-0.07	39	-0.846	4	-0.065	43	-2.794e-4	46	-7.171e-4	38	-2.329e-3	4
241	N137	max	0.396	4	-0.094	39	0.05	38	4.578e-4	35	6.233e-4	4	2.83e-4	31
242		min	-0.057	39	-0.866	4	-0.067	43	-7.314e-4	4	-6.891e-4	38	-2.341e-3	4
243	N138	max	0.401	4	-0.09	39	0.069	38	3.251e-4	36	6.182e-4	41	4.865e-4	36
244		min	-0.056	39	-0.885	4	-0.075	43	-2.197e-4	4	-1.753e-3	38	-1.514e-3	4

Envelope AISC 15TH (360-16): LRFD Member Steel Code Checks

	Member	Shape	Code Check	Loc[ft]LCS	Shear Ched	ckLoc[ft]DirLCp	hi*Pnc [k	ː]phi*Pnt [k]	phi*Mn y-y [k-ft]	phi*Mn z-z [k-ft]	Cb	Eqn
1	M278	W9X3X1/4	0.334	0 32	0.134	2.331 z 33	4.024	79.313	1.377	3.166	1	H1-1b
2	M279	W9X3X1/4	0.307	0 32	0.117	1.84 z 33	4.024	79.313	1.377	3.166	1	H1-1b
3	M290	WT12X4X1/4	0.533	1.11435	0.225	1.114 y 35	7.66	106.313	2.428	4.349	1	H1-1b
4	M291	WT12X4X1/4	0.292	1.38535	0.098	1.385 y 32	7.66	106.313	2.428	4.349	1	H1-1b
5	M292	WT8X2X1/4	0.868	1.31938	0.107	1.319 z 33	1.323	65.813	0.636	1.89	1	H1-1a
6	M293	WT12X4X1/4	0.297	1.25238	0.145	1.252 y 38	7.66	106.313	2.428	15.15	1	H1-1b
7	M298	WT12X4X1/4	0.171	1.06738	0.015	1.067 y 37	7.66	106.313	2.428	15.15	1	H1-1b
8	M299	WT8X2X1/4	0.145	1.09834	0.005	0 z 37	1.323	65.813	0.636	1.89	1	H1-1b*
9	M300	WT8X2X1/4	0.251	1.22534	0.02	0 z 37	1.323	65.813	0.636	1.89	1	H1-1b
10	M301	WT12X4X1/4	0.345	1.60137	0.12	1.601 y 37	7.66	106.313	2.428	4.349	1	H1-1b
11	M302	WT12X4X1/4	0.156	1.44233	0.046	1.442 y 37	7.66	106.313	2.428	4.349	1	H1-1b
12	M303	W9X3X1/4	0.168	2.43837	0.091	2.438 z 37	4.024	79.313	1.377	3.166	1	H1-1b
13	M304	W9X3X1/4	0.152	2.44738	0.082	2.447 z 37	4.024	79.313	1.377	3.166	1	H1-1b
14	M305	WT8X2X1/4	0.314	1.95834	0.059	1.958 z 37	1.323	65.813	0.636	1.89	1	H1-1b

Model Name:

Checked By:

Envelope AISC 15TH (360-16): LRFD Member Steel Code Checks (Continued)

	Member	Shape	Code Check	Loc[ft]LCS	Shear Chec	kLoc[ft]DirLCp	hi*Pnc [k]phi*Pnt [k]	phi*Mn y-y [k-ft]	phi*Mn z-z [k-ft]	Cb	Eqn
15	M306	WT12X4X1/4	0.459	1.67336	0.202	1.673 y 36	8.467	106.313	2.428	4.491	1	H1-1b
16	M307	WT12X4X1/4	0.392	1.30731	0.026	1.307 y 36	8.467	106.313	2.428	4.491	1	H1-1b
17	M308	WT12X4X1/4	0.325	1.26231	0.073	0 y 36	8.467	106.313	2.428	4.491	1	H1-1b
18	M309	W9X3X1/4	0.387	1.28 31	0.127	1.28 z 36	4.593	79.313	1.377	3.319	1	H1-1b
19	M310	W9X3X1/4	0.259	1.03631	0.138	1.036 z 36	4.593	79.313	1.377	3.319	1	H1-1b
20	M311	W9X3X1/4	0.169	2.09631	0.131	2.096 z 36	4.593	79.313	1.377	3.319	1	H1-1b
21	M312	WT8X2X1/4	0.223	0 32	0.114	1.846 z 36	1.527	65.813	0.636	2.004	1	H1-1b
22	M313	WT12X4X1/4	0.936	1.643 3	0.07	0 z 38	8.467	106.313	2.428	17.017	1	H1-1b
23	M314	W9X3X1/4	0.475	1.618 3	0.114	1.618 z 3	4.593	79.313	1.377	7.316	1	H1-1b
24	M315	WT8X2X1/4	0.616	2.309 4	0.039	0 y 3	1.527	65.813	0.636	3.099	1	H1-1a
25	M316	WT8X2X1/4	0.531	1.691 4	0.006	0 y 3	1.527	65.813	0.636	3.099	1	H1-1a
26	M317	WT12X4X1/4	0.418	1.642 4	0.047	1.642 y 36	9.365	106.313	2.428	18.856	1	H1-1b
27	M318	W9X3X1/4	0.479	1.446 4	0.021	1.446 y 34	5.284	79.313	1.377	8.177	1	H1-1a
28	M319	W9X3X1/4	0.201	1.439 4	0.038	0 y 4	5.284	79.313	1.377	8.177	1	H1-1b
29	M320	WT8X2X1/4	0.678	1.075 4	0.006	1.075 z 4	1.78	65.813	0.636	3.417	1	H1-1a
30	M321	W9X3X1/4	0.22	1.21837	0.086	1.218 z 38	4.024	79.313	1.377	6.613	1	H1-1b
31	M322	WT8X2X1/4	0.541	1.21237	0.11	1.212 z 38	1.323	65.813	0.636	2.833	1	H1-1a
32	M323	WT8X2X1/4	0.522	0 33	0.067	1.315 z 38	1.323	65.813	0.636	1.89	1	H1-1a
33	M324	WT8X2X1/4	0.572	1.22833	0.012	1.228 z 33	1.323	65.813	0.636	1.89	1	H1-1a
34	M325	WT8X2X1/4	0.471	1.543 4	0.004	1.543 z 33	1.323	65.813	0.636	1.89	1	H1-1a
35		HSS1.5X1.5X1/4		4.064 4	0.061	8.128 y 4	7.762	33.75	1.336			H1-1b
36		HSS1.5X1.5X1/4	0.568	3.746 4	0.104	7.491 y 4	9.138	33.75	1.336			H1-1b
37		HSS1.5X1.5X1/4	0.594	3.907 4	0.086	0 y 4	8.397	33.75	1.336			H1-1b
38		HSS1.5X1.5X1/4		3.646 4	0.127	0 y 4	9.642	33.75	1.336			H1-1b
39	M330	WT12X4X1/4	0.24	1.69331	0.034	0 y 38	9.365	106.313	2.428	18.856	1.200	H1-1b
40	M331	W9X3X1/4	0.162	1.34234	0.034	1.342 y 34	5.284	79.313	1.377	8.177	1	H1-1b
41	M332	W9X3X1/4	0.162	1.19634	0.042	1.196 z 35	5.284	79.313	1.377	3.485	1	H1-1b*
42	M333	WT8X2X1/4	0.143	1.32634	0.020	0 z 35	1.78	65.813	0.636	2.133	1	H1-1a
43	M334		0.499	0.80234		0 z 43	1.78	65.813	0.636	2.133	1	
44	M335	WT8X2X1/4 WT12X4X1/4	0.467	1.69336	0.006	1.693 y 34	8.467	106.313	2.428		1	H1-1a H1-1b
45				1.342 4	0.07		4.593		1.377	4.491 3.319	1	
	M336	W9X3X1/4	0.191		0.024			79.313				H1-1b
46	M337 M338	W9X3X1/4 WT8X2X1/4	0.172	0.59833	0.011	1.196 z 31 0 z 35	4.593	79.313	1.377	3.319	1	H1-1b
47			0.439	1.85833	0.004		1.527	65.813	0.636	2.004		H1-1a
48	M339	8X3/8	0.472	0 4	0.05	1.455 y 4	2.13	81	0.633	4.676	1	H1-1a
49	M340	8X3/8	0.35	2.156 4	0.05	0 y 4	2.13	81	0.633	4.676	1	H1-1b
50	M341	8X3/8	0.429	0 4	0.091	1.49 y 4	2.13	81	0.633	4.676	1	H1-1a
51	M342	8X3/8	0.559	0 4	0.031	1.434 y 4	2.13	81	0.633	4.676	1	H1-1a
52	M343	8X3/8	0.587	0 4	0.017	1.92 y 4	2.13	81	0.633	4.676	1	H1-1a
53	M344	8X3/8	0.266	0.962 4	0.021	0 y 4	2.13	81	0.633	4.676	1	H1-1b
54	M345	8X3/8	0.452	0 4	0.045	1.257 y 4	2.13	81	0.633	4.676	1	H1-1a
55	M346	8X3/8	0.321	0.995 4	0.056	0 y 4	2.13	81	0.633	4.676	1	H1-1b
56	M347	8X3/8	0.29	0 4	0.037	1.149 y 4	2.13	81	0.633	4.676	1	H1-1b
57	M348	8X3/8	0.277	1.508 4	0.017	0 y 4	2.13	81	0.633	4.676	1	H1-1b
58		8X3/8	0.326	1.031 4	0.015	0 y 4	2.13	81	0.633	4.676	1	H1-1b
59	M350	8X3/8	0.311	0 4	0.018	0.825 y 4	2.13	81	0.633	4.676	1	H1-1b
60	M351	8X3/8	0.366	0 4	0.018	1.028 y 4	2.13	81	0.633	4.676	1	H1-1b
61	M352	8X3/8	0.391	0 4	0.014	0.788 y 4	2.13	81	0.633	4.676	1	H1-1b
62	M353	WT8X2X1/4	0.199	2.15936	0.071	0 z 36	1.527	65.813	0.636	2.004	1	H1-1b
63	M354	WT8X2X1/4	0.186	2.09332	0.008	0 z 36	1.527	65.813	0.636	2.004	1	H1-1b
64	M355	WT8X2X1/4	0.863	2.27338	0.069	2.273 z 35	1.323	65.813	0.636	1.89	1	H1-1a
65	M356	WT8X2X1/4	0.796	2.15638	0.007	2.156 z 38	1.323	65.813	0.636	1.89	1	H1-1a
66		8X3/8	0.429	1.26 4	0.033	0 y 4	2.13	81	0.633	4.676	1	H1-1b
67	M358	8X3/8	0.27	0 4	0.039	1.064 y 3	2.13	81	0.633	4.676	1	H1-1b
68		8X3/8	0.317	0 4	0.029	1.189 y 31	2.13	81	0.633	4.676	1	H1-1b
69	M360	8X3/8	0.37	0 4	0.052	1.04 y 4	2.13	81	0.633	4.676	1	H1-1b

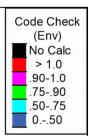
Model Name :

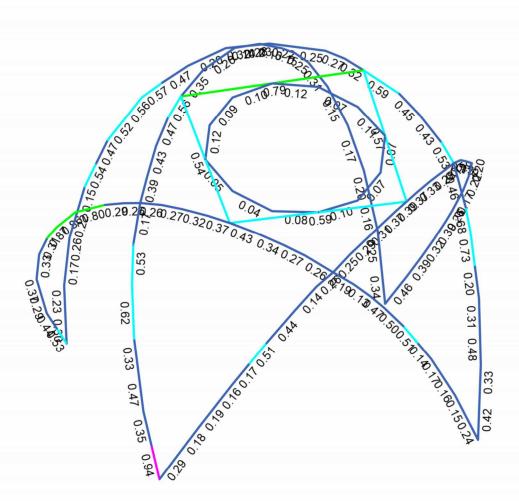
Checked By:

Envelope AISC 15TH (360-16): LRFD Member Steel Code Checks (Continued)

T1 M362	Eqn
T1 M362	11-1b
T2 M363	11-1b
Name	11-1b
T4 M365	11-1b
To M366	11-1b
To M367	11-1a
T7	11-1b
Temporal	11-1b
To M370	1-1b*
80 M372 8X3/8 0.13 0 36 0.002 0 y 31 5.367 81 0.633 10.974 1 1 82 M374 8X3/8 0.276 0 32 0.035 0 y 37 5.367 81 0.633 10.974 1 1 83 M374 8X3/8 0.317 0 38 0.058 1.075 y 38 5.367 81 0.633 10.974 1 1 83 M375 8X3/8 0.317 0 4 0.13 1.079 y 4 2.13 81 0.633 4.676 1 1 84 M376 8X3/8 0.225 1.084 4 0.09 1.084 y 4 2.13 81 0.633 4.676 1 1 85 M377 8X3/8 0.531 0 4 0.048 0 y 37 2.13 81 0.633 4.676 1 1 86 M378 8X3/8 0.531 0 4 0.048 0 y 37 2.13 81 0.633 10.974 1 1 87 M380 8X3/8 0.591 0 4 0.048 0 y 37 2.13 81 0.633 10.974 1 1 87 M380 8X3/8 0.29 0 36 0.031 0 y 36 5.367 81 0.633 10.974 1 1 88 M381 8X3/8 0.259 0 34 0.058 0 y 4 2.13 81 0.633 4.676 1 1 89 M382 8X3/8 0.248 1.077 4 0.02 0 y 4 2.13 81 0.633 4.676 1 1 89 M382 8X3/8 0.248 1.077 4 0.02 0 y 4 2.13 81 0.633 4.676 1 1 89 M383 8X3/8 0.257 0 35 0.068 0 y 37 5.367 81 0.633 10.974 1 1 92 M384 8X3/8 0.257 0 35 0.068 0.997 y 35 5.367 81 0.633 10.974 1 1 92 M385 8X3/8 0.392 1.166 4 0.079 0 y 4 2.13 81 0.633 10.974 1 1 92 M385 8X3/8 0.261 0 38 0.109 0 y 3 2.13 81 0.633 4.676 1 1 93 M386 8X3/8 0.261 0 38 0.109 0 y 3 2.13 81 0.633 4.676 1 1 93 M386 8X3/8 0.264 0 35 0.022 1.029 y 38 5.367 81 0.633 4.676 1 1 93 M388 8X3/8 0.264 0 35 0.022 1.029 y 38 5.367 81 0.633 10.974 1 1 95 M388 8X3/8 0.264 0 35 0.022 1.029 y 38 5.367 81 0.633 4.676 1 1 95 M388 8X3/8 0.264 0 35 0.022 1.029 y 38 5.367 81 0.633 4.676 1 1 95 M388 8X3/8 0.664 0 3 0.000 0 y 3 2.13 81 0.633 4.676 1 1 95 M388 8X3/8 0.664 0 3 0.000 0 y 3 2.13 81 0.633 4.676 1 1 95 M388 8X3/8 0.664 0 3 0.000 0 y 3 2.13 81 0.633 4.676 1 1 95 M388 8X3/8 0.664 0 3 0.000 0 y 3 2.13 81 0.633 4.676 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11-1b
81 M373 8X3/8 0.276 0 32 0.035 0 y 37 5.367 81 0.633 10.974 1 18 18 18 18 18 18 18	11-1b
82 M374 8X3/8 0.317 0 38 0.058 1.075 v 38 5.367 81 0.633 10.974 1 1 83 M375 8X3/8 0.137 0 4 0.13 1.079 v 4 2.13 81 0.633 4.676 1 1 85 M377 8X3/8 0.225 1.084 4 0.09 1.084 v 4 2.13 81 0.633 4.676 1 1 85 M377 8X3/8 0.251 0 4 0.048 0 v 37 2.13 81 0.633 4.676 1 1 85 M377 8X3/8 0.29 0 36 0.031 0 v 36 5.367 81 0.633 10.974 1 1 87 M380 8X3/8 0.151 0 4 0.084 1.061 v 4 2.13 81 0.633 4.676 1 1 88 M381 8X3/8 0.259 0 34 0.058 0 v 4 2.13 81 0.633 4.676 1 1 88 M381 8X3/8 0.259 0 34 0.058 0 v 4 2.13 81 0.633 4.676 1 1 89 M382 8X3/8 0.188 1.04935 0.018 0 v 36 5.367 81 0.633 4.676 1 1 90 M383 8X3/8 0.188 1.04935 0.018 0 v 36 5.367 81 0.633 10.974 1 1 91 M384 8X3/8 0.257 0 35 0.063 0.997 v 35 5.367 81 0.633 10.974 1 1 91 M384 8X3/8 0.261 0 38 0.109 0 v 4 2.13 81 0.633 4.676 1 1 92 M385 8X3/8 0.261 0 38 0.109 0 v 4 2.13 81 0.633 4.676 1 1 92 M385 8X3/8 0.261 0 38 0.109 0 v 4 2.13 81 0.633 4.676 1 1 92 M388 8X3/8 0.261 0 38 0.109 0 v 3 2.13 81 0.633 4.676 1 1 92 M388 8X3/8 0.261 0 38 0.109 0 v 3 2.13 81 0.633 4.676 1 1 93 M388 8X3/8 0.261 0 38 0.109 0 v 3 2.13 81 0.633 4.676 1 1 94 M388 8X3/8 0.261 0 38 0.109 0 v 3 2.13 81 0.633 4.676 1 1 95 M388 8X3/8 0.261 0 38 0.109 0 v 3 2.13 81 0.633 4.676 1 1 95 M388 8X3/8 0.264 0 35 0.022 1.029 v 38 5.367 81 0.633 10.974 1 1 1 95 M388 8X3/8 0.264 0 35 0.022 1.029 v 38 5.367 81 0.633 10.974 1 1 1 95 M388 8X3/8 0.264 0 35 0.022 1.029 v 38 5.367 81 0.633 10.974 1 1 1 95 M388 8X3/8 0.368 0.788 4 0.013 0 v 34 2.13 81 0.633 4.676 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11-1b
83 M375 8X3/8 0.137 0 4 0.13 1.079 y 4 2.13 81 0.633 4.676 1 8 8 M377 8X3/8 0.255 1.084 4 0.09 1.084 y 4 2.13 81 0.633 4.676 1 8 8 M377 8X3/8 0.531 0 4 0.048 0 y 37 2.13 81 0.633 4.676 1 8 8 M378 8X3/8 0.29 0 36 0.031 0 y 36 5.367 81 0.633 10.974 1 8 8 M381 8X3/8 0.259 0 34 0.058 0 y 4 2.13 81 0.633 4.676 1 8 8 M381 8X3/8 0.259 0 34 0.058 0 y 4 2.13 81 0.633 4.676 1 8 8 M381 8X3/8 0.259 0 34 0.058 0 y 4 2.13 81 0.633 4.676 1 8 9 M382 8X3/8 0.248 1.077 4 0.02 0 y 4 2.13 81 0.633 4.676 1 9 9 M383 8X3/8 0.248 1.077 4 0.02 0 y 4 2.13 81 0.633 4.676 1 9 9 M383 8X3/8 0.248 1.077 4 0.02 0 y 4 2.13 81 0.633 4.676 1 9 9 M383 8X3/8 0.257 0 35 0.063 0.997 y 35 5.367 81 0.633 10.974 1 9 9 M385 8X3/8 0.261 0 38 0.109 0 y 3 2.13 81 0.633 4.676 1 9 9 M385 8X3/8 0.261 0 38 0.109 0 y 3 2.13 81 0.633 4.676 1 9 9 M388 8X3/8 0.264 0 35 0.022 1.029 y 38 5.367 81 0.633 4.676 1 9 9 M388 8X3/8 0.264 0 35 0.022 1.029 y 38 5.367 81 0.633 4.676 1 9 9 M388 8X3/8 0.264 0 35 0.022 1.029 y 38 5.367 81 0.633 4.676 1 9 9 M388 8X3/8 0.264 0 35 0.022 1.029 y 38 5.367 81 0.633 4.676 1 9 9 M389 8X3/8 0.368 0.788 4 0.013 0 y 34 2.13 81 0.633 4.676 1 9 9 M389 8X3/8 0.368 0.788 4 0.013 0 y 34 2.13 81 0.633 4.676 1 9 9 M389 8X3/8 0.368 0.788 4 0.013 0 y 34 2.13 81 0.633 10.974 1 9 9 M100 W3X3X1/4 0.162 0 33 0.025 1.324 z 4 4.593 79.313 1.377 3.166 1 1 101 M103 WT12X4X1/4 0.348 0 3 0.005 0 y 38 5.367 81 0.633 10.974 1 1 100 M102 W9X3X1/4 0.25 1.60137 0.12 1.601 y 37 7.66 106.313 2.428 4.491 1 1 100 M102 W9X3X1/4 0.326 1.6424 0.046 1.642 y 36 9.365 106.313 2.428 4.349 1 1 100 M102 W9X3X1/4 0.326 1.6424 0.046 1.642 y 36 9.365 106.313 2.428 4.349 1 1 104 M106 W9X3X1/4 0.326 1.6424 0.046 1.642 y 36 9.365 106.313 2.428 18.856 1 1 104 M106 W9X3X1/4 0.366 0.656 1.842 4 0.046 1.845 z 32 4.024 79.313 1.377 3.166 1 1 101 M103 WT12X4X1/4 0.348 0 3 0.053 1.442 z 32 4.024 79.313 1.377 3.465 1 1 109 M110 W9X3X1/4 0.165 1.34234 0.042 1.342 y 34 5.284 79.313 1.377 3.465 1 1 109 M111 WT8X2X1/4 0.466 0 33 0.108 1.212 z 38	11-1b
84 M376 8X3/8 0.225 1.084 4 0.09 1.084 y 4 2.13 81 0.633 4.676 1 1 85 M377 8X3/8 0.531 0 4 0.048 0 y 37 2.13 81 0.633 4.676 1 1 86 M378 8X3/8 0.29 0 36 0.031 0 y 36 5.367 81 0.633 10.974 1 1 87 M380 8X3/8 0.151 0 4 0.084 1.061 y 4 2.13 81 0.633 4.676 1 1 88 M381 8X3/8 0.248 1.077 4 0.02 0 y 4 2.13 81 0.633 4.676 1 90 M383 8X3/8 0.248 1.077 4 0.02 0 y 2.13 81 0.633 10.974 1 1 91 93 836 <td>11-1b</td>	11-1b
85 M377 8X3/8 0.531 0 4 0.048 0 y 37 2.13 81 0.633 4.676 1 86 M378 8X3/8 0.151 0 4 0.084 1.061 y 4 2.13 81 0.633 10.974 1 1 88 M381 8X3/8 0.151 0 4 0.084 1.061 y 4 2.13 81 0.633 4.676 1 1 89 M382 8X3/8 0.248 1.077 4 0.02 0 y 2.13 81 0.633 4.676 1 9 90 M383 8X3/8 0.257 0 35 0.063 0.97 y 36 5.367 81 0.633 10.974 1 9 91 M384 8X3/8 0.257 0 35 0.063 0.97 y 4 2.13 81 0.633 10.974	11-1b
86 M378 8X3/8 0.29 0 36 0.031 0 y 36 5.367 81 0.633 10.974 1 1 87 M380 8X3/8 0.151 0 4 0.084 1.061 y 4 2.13 81 0.633 4.676 1 1 88 M381 8X3/8 0.259 0 34 0.058 0 y 4 2.13 81 0.633 4.676 1 1 89 M382 8X3/8 0.248 1.077 4 0.02 0 y 4 2.13 81 0.633 4.676 1 90 M383 8X3/8 0.257 0 35 0.063 0.997 y 35 5.367 81 0.633 10.974 1 91 M385 8X3/8 0.251 0 38 0.097 y 4 2.13 81 0.633 10.974 1 94 M388 8X3/8 0.	11-1a
87 M380 8X3/8 0.151 0 4 0.084 1.061 y 4 2.13 81 0.633 4.676 1 88 M381 8X3/8 0.259 0 34 0.058 0 y 4 2.13 81 0.633 4.676 1 8 89 M382 8X3/8 0.248 1.077 4 0.02 0 y 4 2.13 81 0.633 4.676 1 1 90 M383 8X3/8 0.188 1.04935 0.018 0 y 6 5.367 81 0.633 10.974 1 1 91 M384 8X3/8 0.257 0 35 0.063 0.997 y 35 5.367 81 0.633 10.974 1 1 9 1 1 9 1 1 1 9 1 1 1 9 3 3 3 1 9 <	11-1b
88 M381 8X3/8 0.259 0 34 0.058 0 y 4 2.13 81 0.633 4.676 1 89 M382 8X3/8 0.248 1.077 4 0.02 0 y 4 2.13 81 0.633 4.676 1 90 M383 8X3/8 0.188 1.04935 0.018 0 y 36 5.367 81 0.633 10.974 1 91 M384 8X3/8 0.257 0 35 0.063 0.997 y 35 5.367 81 0.633 10.974 1 92 M385 8X3/8 0.392 1.166 4 0.079 0 y 4 2.13 81 0.633 4.676 1 93 M386 8X3/8 0.261 0 38 0.109 0 y 3 2.13 81 0.633 4.676 1 94 M388 8X3/8 0.261 0 38 0.109 0 y 3 2.13 81 0.633 10.974 1 95 M389 8X3/8 0.364 0.35 0.022 1.029 y 38 5.367 81 0.633 10.974 1 96 M99 WT12X4X1/4 0.18 1.69336 0.069 1.693 y 34 8.467 106.313 2.428 4.491 1 97 M98 8X3/8 0.168 0 3 0.005 0 y 38 5.367 81 0.633 10.974 1 98 M100 W9X3X1/4 0.162 0 33 0.005 0 y 38 5.367 81 0.633 10.974 1 99 M101 WT12X4X1/4 0.25 1.60137 0.12 1.601 y 37 7.66 106.313 2.428 4.349 1 100 M102 W9X3X1/4 0.348 0 3 0.07 1.643 z 38 8.467 106.313 2.428 4.349 1 101 M103 WT12X4X1/4 0.348 0 3 0.07 1.643 z 38 8.467 106.313 2.428 17.017 1 102 M104 W9X3X1/4 0.327 1.618 3 0.084 0 y 3 4.593 79.313 1.377 7.316 1 103 M105 WT12X4X1/4 0.348 0 3 0.07 1.643 z 38 8.467 106.313 2.428 17.017 1 102 M104 W9X3X1/4 0.326 1.642 4 0.046 1.642 y 36 9.365 106.313 2.428 18.856 1 104 M106 W9X3X1/4 0.314 1.446 4 0.021 1.446 y 34 5.284 79.313 1.377 3.166 1 105 M105 WT12X4X1/4 0.155 1.69331 0.034 0 y 38 9.365 106.313 2.428 18.856 1 106 M108 W9X3X1/4 0.314 1.446 4 0.021 1.446 y 34 5.284 79.313 1.377 3.485 1 106 M108 W9X3X1/4 0.365 1.69331 0.034 0 y 38 9.365 106.313 2.428 18.856 1 106 M108 W9X3X1/4 0.365 1.69331 0.034 0 y 38 9.365 106.313 2.428 18.856 1 106 M108 W9X3X1/4 0.366 1.69331 0.034 0 y 38 9.365 106.313 2.428 18.856 1 107 M109 WT12X4X1/4 0.456 0 33 0.108 1.212 z 38 1.323 65.813 0.636 1.89 1 110 M112 WT8X2X1/4 0.466 0 33 0.108 1.212 z 38 1.323 65.813 0.636 1.89 1 110 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 110 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 110 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 110 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 3	11-1b
89 M382 8X3/8 0.248 1.077 4 0.02 0 y 4 2.13 81 0.633 4.676 1 90 90 M383 8X3/8 0.188 1.04935 0.018 0 y 36 5.367 81 0.633 10.974 1 1 91 M384 8X3/8 0.257 0 35 0.063 0.997 y 35 5.367 81 0.633 10.974 1 1 92 M385 8X3/8 0.261 0 38 0.109 0 y 2.13 81 0.633 4.676 1 1 94 M388 8X3/8 0.264 0 35 0.022 1.029 y y 38 5.367 81 0.633 4.676 1 9 95 M389 8X3/8 0.368 0.788 4 0.013 0 y 34 8.467 106.313 2.428 4.491 1<	11-1b 11-1b
90 M383 8X3/8 0.188 1.04935 0.018 0 y 36 5.367 81 0.633 10.974 1 H 91 M384 8X3/8 0.257 0 35 0.063 0.997 y 35 5.367 81 0.633 10.974 1 H 92 M385 8X3/8 0.392 1.166 4 0.079 0 y 4 2.13 81 0.633 4.676 1 H 93 M386 8X3/8 0.261 0 38 0.109 0 y 3 2.13 81 0.633 4.676 1 H 94 M388 8X3/8 0.264 0 35 0.022 1.029 y 38 5.367 81 0.633 10.974 1 H 95 M389 8X3/8 0.368 0.788 4 0.013 0 y 34 2.13 81 0.633 4.676 1 H 95 M389 8X3/8 0.368 0.788 4 0.013 0 y 34 2.13 81 0.633 4.676 1 H 95 M389 8X3/8 0.368 0.788 4 0.013 0 y 34 2.13 81 0.633 4.676 1 H 96 M99 WT12X4X1/4 0.18 1.69336 0.069 1.693 y 34 8.467 106.313 2.428 4.491 1 H 97 M98 8X3/8 0.168 0 3 0.005 0 y 38 5.367 81 0.633 10.974 1 H 97 M98 8X3/8 0.168 0 3 0.005 0 y 38 5.367 81 0.633 10.974 1 H 19 M100 W9X3X1/4 0.162 0 33 0.023 1.342 z 4 4.593 79.313 1.377 3.319 1 H 100 M102 W9X3X1/4 0.25 1.60137 0.12 1.601 y 37 7.666 106.313 2.428 4.349 1 H 100 M102 W9X3X1/4 0.348 0 3 0.053 1.442 z 32 4.024 79.313 1.377 3.166 1 H 101 M103 WT12X4X1/4 0.348 0 3 0.07 1.643 z 38 8.467 106.313 2.428 17.017 1 H 102 M104 W9X3X1/4 0.327 1.618 3 0.084 0 y 3 4.593 79.313 1.377 7.316 1 H 103 M105 WT12X4X1/4 0.326 1.642 4 0.046 1.642 y 34 5.284 79.313 1.377 3.166 1 H 105 M107 WT12X4X1/4 0.326 1.642 4 0.046 1.642 y 34 5.284 79.313 1.377 3.485 1 H 105 M107 WT12X4X1/4 0.165 1.34234 0.042 1.342 y 34 5.284 79.313 1.377 3.485 1 H 105 M107 WT12X4X1/4 0.165 1.34234 0.042 1.342 y 34 5.284 79.313 1.377 3.485 1 H 106 M108 W9X3X1/4 0.165 1.34234 0.042 1.342 y 34 5.284 79.313 1.377 3.485 1 H 106 M108 W9X3X1/4 0.165 1.34234 0.042 1.342 y 34 5.284 79.313 1.377 3.485 1 H 106 M108 W9X3X1/4 0.165 1.34234 0.042 1.342 y 34 5.284 79.313 1.377 3.485 1 H 107 M109 WT12X4X1/4 0.366 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 H 109 M111 WT8X2X1/4 0.466 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 H 109 M111 WT8X2X1/4 0.466 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 H 109 M111 WT8X2X1/4 0.666 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 H 109 M111 WT8X2X1/4 0.666 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 H 109 M111 WT8X2X1/4 0.666 0 33 0.066 0	11-1b 11-1b
91 M384 8X3/8 0.257 0 35 0.063 0.997 y 35 5.367 81 0.633 10.974 1 P 92 M385 8X3/8 0.392 1.166 4 0.079 0 y 4 2.13 81 0.633 4.676 1 P 93 M386 8X3/8 0.261 0 38 0.109 0 y 3 2.13 81 0.633 4.676 1 P 94 M388 8X3/8 0.264 0 35 0.022 1.029 y 38 5.367 81 0.633 10.974 1 P 95 M389 8X3/8 0.368 0.788 4 0.013 0 y 34 2.13 81 0.633 10.974 1 P 96 M99 WT12X4X1/4 0.18 1.693/36 0.069 1.693 y 34 8.467 106.313 2.428 4.491 1 P 97 M98 8X3/8 0.168 0 3 0.005 0 y 38 5.367 81 0.633 10.974 1 P 98 M100 W9X3X1/4 0.162 0 33 0.005 0 y 38 5.367 81 0.633 10.974 1 P 99 M101 WT12X4X1/4 0.25 1.601/37 0.12 1.601/37 7.66 106.313 2.428 4.349 1 P 100 M102 W9X3X1/4 0.2 1.442/33 0.053 1.442/2 32 4.024 79.313 1.377 3.166 1 P 101 M103 WT12X4X1/4 0.348 0 3 0.07 1.643/2 38 8.467 106.313 2.428 17.017 1 P 101 M103 WT12X4X1/4 0.348 0 3 0.07 1.643/2 38 8.467 106.313 2.428 17.017 1 P 103 M105 WT12X4X1/4 0.348 0 3 0.07 1.643/2 38 8.467 106.313 2.428 18.856 1 P 104 M106 W9X3X1/4 0.326 1.642/4 0.046 1.642/4 0.365 1.642/4 0.046 1.642/4 0.365 1.642/4 0.046 1.642/4 0.365 1.642/4 0.046 1.642/4 0.365 1.642/4 0.366 1.89 1 P 105 M107 WT12X4X1/4 0.314 1.446/4 0.021 1.44	11-1b 11-1b
92 M385 8X3/8 0.392 1.166 4 0.079 0 y 4 2.13 81 0.633 4.676 1 93 M386 8X3/8 0.261 0 38 0.109 0 y 3 2.13 81 0.633 4.676 1 94 M388 8X3/8 0.264 0 35 0.022 1.029 y 38 5.367 81 0.633 10.974 1 1 95 M389 8X3/8 0.368 0.788 4 0.013 0 y 34 2.13 81 0.633 10.974 1 1 96 M99 WT12X4X1/4 0.18 1.69336 0.069 1.693 y 34 8.467 106.313 2.428 4.491 1 1 97 M98 8X3/8 0.168 0 3 0.005 0 y 38 5.367 81 0.633 10.974 1 1 99 M101 WT12X	11-1b 11-1b
93 M386 8X3/8 0.261 0 38 0.109 0 y 3 2.13 81 0.633 4.676 1 F 94 M388 8X3/8 0.264 0 35 0.022 1.029 y 38 5.367 81 0.633 10.974 1 F 95 M389 8X3/8 0.368 0.788 4 0.013 0 y 34 2.13 81 0.633 4.676 1 F 96 M99 WT12X4X1/4 0.18 1.693 36 0.069 1.693 y 34 8.467 106.313 2.428 4.491 1 F 97 M98 8X3/8 0.168 0 3 0.005 0 y 38 5.367 81 0.633 10.974 1 F 98 M100 W9X3X1/4 0.162 0 33 0.023 1.342 z 4 4.593 79.313 1.377 3.319 1 F 100 M102 W9X3X1/4 0.25 1.601 37 0.12 1.601 y 37 7.66 106.313 2.428 4.349 1 F 101 M103 WT12X4X1/4 0.348 0 3 0.07 1.643 z 38 8.467 106.313 2.428 17.017 1 F 102 M104 W9X3X1/4 0.327 1.618 3 0.084 0 y 3 4.593 79.313 1.377 7.316 1 F 103 M105 WT12X4X1/4 0.326 1.642 4 0.046 1.642 y 36 9.365 106.313 2.428 18.856 1 F 104 M106 W9X3X1/4 0.314 1.446 4 0.021 1.446 y 34 5.284 79.313 1.377 7.316 1 F 105 M107 WT12X4X1/4 0.15 1.693 31 0.034 0 y 38 9.365 106.313 2.428 18.856 1 F 106 M108 W9X3X1/4 0.165 1.342 34 0.042 1.342 y 34 5.284 79.313 1.377 3.485 1 F 106 M108 W9X3X1/4 0.37 0.75 31 0.034 0 y 38 9.365 106.313 2.428 18.856 1 F 106 M108 W9X3X1/4 0.37 0.75 31 0.042 1.342 y 34 5.284 79.313 1.377 3.485 1 F 109 M110 W712X4X1/4 0.466 0 33 0.108 1.212 z 38 1.323 65.813 0.636 1.89 1 F 109 M111 W78X2X1/4 0.466 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 109 M111 W78X2X1/4 0.466 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 109 M111 W78X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 109 M111 W78X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 109 M111 W78X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 109 M111 W78X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 109 M111 W78X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 109 M111 W78X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 109 M111 W78X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 109 M111 W78X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 109 M111 W78X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 109 M111 W78X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 109 M111 W78X2	11-16 11-1a
94 M388 8X3/8 0.264 0 35 0.022 1.029 y 38 5.367 81 0.633 10.974 1 95 M389 8X3/8 0.368 0.788 4 0.013 0 y 34 2.13 81 0.633 4.676 1 96 M99 WT12X4X1/4 0.18 1.693/36 0.069 1.693 y 34 8.467 106.313 2.428 4.491 1 97 M98 8X3/8 0.168 0 3 0.005 0 y 38 5.367 81 0.633 10.974 1 98 M100 W9X3X1/4 0.162 0 33 0.023 1.342 z 4 4.593 79.313 1.377 3.319 1 99 M101 WT12X4X1/4 0.25 1.601/37 0.12 1.601 y 37 7.66 106.313 2.428 4.349 1 100 M102 W9X3X1/4 0.2 1.442/33 0.053 1.442 z 32 4.024 79.313 1.377 3.166 1 101 M103 WT12X4X1/4 0.348 0 3 0.07 1.643 z 38 8.467 106.313 2.428 17.017 1 102 M104 W9X3X1/4 0.327 1.618 3 0.084 0 y 3 4.593 79.313 1.377 7.316 1 103 M105 WT12X4X1/4 0.326 1.642 4 0.046 1.642 y 36 9.365 106.313 2.428 18.856 1 104 M106 W9X3X1/4 0.314 1.446 4 0.021 1.446 y 34 5.284 79.313 1.377 3.485 1 105 M107 WT12X4X1/4 0.155 1.693/31 0.034 0 y 38 9.365 106.313 2.428 18.856 1 106 M108 W9X3X1/4 0.155 1.693/31 0.034 0 y 38 9.365 106.313 2.428 18.856 1 106 M108 W9X3X1/4 0.155 1.693/31 0.034 0 y 38 9.365 106.313 2.428 18.856 1 107 M109 WT12X4X1/4 0.437 1.114/35 0.225 1.114 y 35 7.66 106.313 2.428 4.349 1 108 M110 W9X3X1/4 0.437 1.114/35 0.225 1.114 y 35 7.66 106.313 2.428 4.349 1 108 M110 W9X3X1/4 0.437 1.114/35 0.225 1.114 y 35 7.66 106.313 2.428 4.349 1 108 M110 W9X3X1/4 0.437 1.114/35 0.225 1.114 y 35 7.66 106.313 2.428 4.349 1 108 M110 W9X3X1/4 0.437 1.114/35 0.225 1.114 y 35 7.66 106.313 2.428 4.349 1 108 M110 W9X3X1/4 0.437 1.114/35 0.225 1.114 y 35 7.66 106.313 2.428 4.349 1 109 M111 WT8X2X1/4 0.466 0 33 0.108 1.212 z 38 1.323 65.813 0.636 1.89 1 109 M111 WT8X2X1/4 0.466 0 33 0.108 1.212 z 38 1.323 65.813 0.636 1.89 1 109 M111 WT8X2X1/4 0.466 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 109 M111 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 109 M111 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 109 M111 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 109 M111 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 109 M111 WT8X2X1/4 0	11-1a 11-1b
95 M389 8X3/8 0.368 0.788 4 0.013 0 y 34 2.13 81 0.633 4.676 1 F 96 M99 WT12X4X1/4 0.18 1.693/36 0.069 1.693 y 34 8.467 106.313 2.428 4.491 1 F 97 M98 8X3/8 0.168 0 3 0.005 0 y 38 5.367 81 0.633 10.974 1 F 98 M100 W9X3X1/4 0.162 0 33 0.023 1.342 z 4 4.593 79.313 1.377 3.319 1 F 99 M101 WT12X4X1/4 0.25 1.601/37 0.12 1.601 y 37 7.66 106.313 2.428 4.349 1 F 100 M102 W9X3X1/4 0.2 1.442/33 0.053 1.442 z 32 4.024 79.313 1.377 3.166 1 F 101 M103 WT12X4X1/4 0.348 0 3 0.07 1.643 z 38 8.467 106.313 2.428 17.017 1 F 102 M104 W9X3X1/4 0.327 1.618/3 0.084 0 y 3 4.593 79.313 1.377 7.316 1 F 103 M105 WT12X4X1/4 0.326 1.642/4 0.046 1.642/y 36 9.365 106.313 2.428 18.856 1 F 104 M106 W9X3X1/4 0.314 1.446/4 0.021 1.446/y 34 5.284 79.313 1.377 8.177 1 F 105 M107 WT12X4X1/4 0.15 1.693/31 0.034 0 y 38 9.365 106.313 2.428 18.856 1 F 106 M108 W9X3X1/4 0.165 1.342/34 0.0442 1.342/y 34 5.284 79.313 1.377 3.485 1 F 107 M109 WT12X4X1/4 0.437 1.114/35 0.225 1.114/y 35 7.66 106.313 2.428 4.349 1 F 108 M110 W9X3X1/4 0.37 0.75/31 0.106 1.385/z 32 4.024 79.313 1.377 3.466 1 F 109 M111 WT8X2X1/4 0.466 0 33 0.108 1.212/z 38 1.323 65.813 0.636 1.89 1 F 109 M111 WT8X2X1/4 0.466 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 109 M111 WT8X2X1/4 0.466 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 109 M111 WT8X2X1/4 0.466 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 109 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 109 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 109 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 109 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 109 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 109 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 109 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 109 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 109 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 109 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.6	11-1b 11-1b
96 M99 WT12X4X1/4 0.18 1.693/36 0.069 1.693/y 34 8.467 106.313 2.428 4.491 1 1 97 M98 8X3/8 0.168 0 3 0.005 0 y 38 5.367 81 0.633 10.974 1 1 98 M100 W9X3X1/4 0.162 0 33 0.023 1.342 z 4 4.593 79.313 1.377 3.319 1 1 99 M101 WT12X4X1/4 0.25 1.601/37 0.12 1.601 y 37 7.66 106.313 2.428 4.349 1 1 100 M102 W9X3X1/4 0.2 1.442/33 0.053 1.442 z 32 4.024 79.313 1.377 3.166 1 1 101 M103 WT12X4X1/4 0.348 0 3 0.07 1.643 z 38 8.467 106.313 2.428 17.017 1 1 102 M104 W9X3X1/4 0.326	11-1b 11-1b
97 M98 8X3/8 0.168 0 3 0.005 0 y 38 5.367 81 0.633 10.974 1 p 98 M100 W9X3X1/4 0.162 0 33 0.023 1.342 z 4 4.593 79.313 1.377 3.319 1 p 99 M101 WT12X4X1/4 0.25 1.601 y 7 0.12 1.601 y 37 7.66 106.313 2.428 4.349 1 p 100 M102 W9X3X1/4 0.2 1.442 y 3 0.053 1.442 z 3 0.053 1.	
98 M100 W9X3X1/4 0.162 0 33 0.023 1.342 z 4 4.593 79.313 1.377 3.319 1 F 99 M101 WT12X4X1/4 0.25 1.601 37 0.12 1.601 y 37 7.66 106.313 2.428 4.349 1 F 100 M102 W9X3X1/4 0.2 1.442 33 0.053 1.442 z 32 4.024 79.313 1.377 3.166 1 F 101 M103 WT12X4X1/4 0.348 0 3 0.07 1.643 z 38 8.467 106.313 2.428 17.017 1 F 102 M104 W9X3X1/4 0.327 1.618 3 0.084 0 y 3 4.593 79.313 1.377 7.316 1 F 103 M105 WT12X4X1/4 0.326 1.642 4 0.046 1.642 y 36 9.365 106.313 2.428 18.856 1 F 104 M106 W9X3X1/4 0.314 1.446 4 0.021 1.446 y 34 5.284 79.313 1.377 8.177 1 F 105 M107 WT12X4X1/4 0.15 1.693 31 0.034 0 y 38 9.365 106.313 2.428 18.856 1 F 106 M108 W9X3X1/4 0.165 1.342 34 0.042 1.342 y 34 5.284 79.313 1.377 3.485 1 F 107 M109 WT12X4X1/4 0.437 1.114 35 0.225 1.114 y 35 7.66 106.313 2.428 4.349 1 F 108 M110 W9X3X1/4 0.466 0 33 0.108 1.212 z 38 1.323 65.813 0.636 1.89 1 F 109 M111 WT8X2X1/4 0.466 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 109 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 109 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 109 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 109 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 109 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 109 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 109 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 109 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 109 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 109 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 109 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 109 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 109 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 109 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 109 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 109 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.63	11-1b
99 M101 WT12X4X1/4 0.25 1.601 37 0.12 1.601 y 37 7.66 106.313 2.428 4.349 1 F 100 M102 W9X3X1/4 0.2 1.442 33 0.053 1.442 z 32 4.024 79.313 1.377 3.166 1 F 101 M103 WT12X4X1/4 0.348 0 3 0.07 1.643 z 38 8.467 106.313 2.428 17.017 1 F 102 M104 W9X3X1/4 0.327 1.618 3 0.084 0 y 3 4.593 79.313 1.377 7.316 1 F 103 M105 WT12X4X1/4 0.326 1.642 4 0.046 1.642 y 36 9.365 106.313 2.428 18.856 1 F 104 M106 W9X3X1/4 0.314 1.446 4 0.021 1.446 y 34 5.284 79.313 1.377 8.177 1 F 105 M107 WT12X4X1/4 0.15 1.693 1 0.034 0 y 38 9.365 106.313 2.428 18.856 1 F 106 M108 W9X3X1/4 0.165 1.342 34 0.042 1.342 y 34 5.284 79.313 1.377 3.485 1 F 107 M109 WT12X4X1/4 0.437 1.114 35 0.225 1.114 y 35 7.66 106.313 2.428 4.349 1 F 108 M110 W9X3X1/4 0.37 0.75 31 0.106 1.385 z 32 4.024 79.313 1.377 3.166 1 F 109 M111 WT8X2X1/4 0.466 0 33 0.108 1.212 z 38 1.323 65.813 0.636 1.89 1 F 110 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 100 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 100 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 100 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 100 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 100 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 100 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 100 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 100 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 100 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 100 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 100 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 100 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 100 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 100 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 100 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 F 100 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813	11-1b
100 M102 W9X3X1/4 0.2 1.442/33 0.053 1.442/z 32 4.024 79.313 1.377 3.166 1 1 101 M103 WT12X4X1/4 0.348 0 3 0.07 1.643/z 38 8.467 106.313 2.428 17.017 1 1 102 M104 W9X3X1/4 0.327 1.618/3 0.084 0 y 3 4.593 79.313 1.377 7.316 1 1 103 M105 WT12X4X1/4 0.326 1.642/4 0.046 1.642/y 36 9.365 106.313 2.428 18.856 1 1 104 M106 W9X3X1/4 0.314 1.446/4 0.021 1.446/y 34 5.284 79.313 1.377 8.177 1 1 105 M107 WT12X4X1/4 0.15 1.693/31 0.034 0 y 38 9.365 106.313 2.428 18.856 1 1 </td <td>11-1b</td>	11-1b
101 M103 WT12X4X1/4 0.348 0 3 0.07 1.643 z 38 8.467 106.313 2.428 17.017 1 I 102 M104 W9X3X1/4 0.327 1.618 3 0.084 0 y 3 4.593 79.313 1.377 7.316 1 I 103 M105 WT12X4X1/4 0.326 1.642 4 0.046 1.642 y 36 9.365 106.313 2.428 18.856 1 I 104 M106 W9X3X1/4 0.314 1.446 4 0.021 1.446 y 34 5.284 79.313 1.377 8.177 1 I 105 M107 WT12X4X1/4 0.15 1.693 1 0.034 0 y 38 9.365 106.313 2.428 18.856 1 I 106 M108 W9X3X1/4 0.165 1.34234 0.042 1.342 y 34 5.284	11-1b
102 M104 W9X3X1/4 0.327 1.618 3 0.084 0 y 3 4.593 79.313 1.377 7.316 1 1 103 M105 WT12X4X1/4 0.326 1.642 4 0.046 1.642 y 36 9.365 106.313 2.428 18.856 1 1 104 M106 W9X3X1/4 0.314 1.446 4 0.021 1.446 y 34 5.284 79.313 1.377 8.177 1 1 105 M107 WT12X4X1/4 0.15 1.693 1 0.034 0 y 38 9.365 106.313 2.428 18.856 1 1 106 M108 W9X3X1/4 0.165 1.342 4 0.042 1.342 y 34 5.284 79.313 1.377 3.485 1 1 107 M109 WT12X4X1/4 0.437 1.114 35 0.225 1.114 y 35 7.66 106.313 2.428 4.349 1 1	11-1b
103 M105 WT12X4X1/4 0.326 1.642 4 0.046 1.642 y 36 9.365 106.313 2.428 18.856 1 1 104 M106 W9X3X1/4 0.314 1.446 4 0.021 1.446 y 34 5.284 79.313 1.377 8.177 1 1 105 M107 WT12X4X1/4 0.15 1.693 1 0.034 0 y 38 9.365 106.313 2.428 18.856 1 1 106 M108 W9X3X1/4 0.165 1.342 4 0.042 1.342 y 34 5.284 79.313 1.377 3.485 1 1 107 M109 WT12X4X1/4 0.437 1.114 35 0.225 1.114 y 35 7.66 106.313 2.428 4.349 1 1 108 M110 W9X3X1/4 0.37 0.75 31 0.106 1.385	11-1b
104 M106 W9X3X1/4 0.314 1.446 4 0.021 1.446 y 34 5.284 79.313 1.377 8.177 1 1 105 M107 WT12X4X1/4 0.15 1.69331 0.034 0 y 38 9.365 106.313 2.428 18.856 1 1 106 M108 W9X3X1/4 0.165 1.34234 0.042 1.342 y 34 5.284 79.313 1.377 3.485 1 1 107 M109 WT12X4X1/4 0.437 1.11435 0.225 1.114 y 35 7.66 106.313 2.428 4.349 1 1 108 M110 W9X3X1/4 0.37 0.75 31 0.106 1.385 z 32 4.024 79.313 1.377 3.166 1 1 109 M111 WT8X2X1/4 0.466 0 33 0.108 1.212 z 38 1.323 65.813 0.636 1.89 1 110 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89	11-1b
105 M107 WT12X4X1/4 0.15 1.69331 0.034 0 y 38 9.365 106.313 2.428 18.856 1 1 106 M108 W9X3X1/4 0.165 1.34234 0.042 1.342 y 34 5.284 79.313 1.377 3.485 1 1 107 M109 WT12X4X1/4 0.437 1.11435 0.225 1.114 y 35 7.66 106.313 2.428 4.349 1 1 108 M110 W9X3X1/4 0.37 0.75 31 0.106 1.385 z 32 4.024 79.313 1.377 3.166 1 1 109 M111 WT8X2X1/4 0.466 0 33 0.108 1.212 z 38 1.323 65.813 0.636 1.89 1 1 110 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 1	11-1b
106 M108 W9X3X1/4 0.165 1.342 34 0.042 1.342 y 34 5.284 79.313 1.377 3.485 1 107 M109 WT12X4X1/4 0.437 1.11435 0.225 1.114 y 35 7.66 106.313 2.428 4.349 1 108 M110 W9X3X1/4 0.37 0.75 31 0.106 1.385 z 32 4.024 79.313 1.377 3.166 1 109 M111 WT8X2X1/4 0.466 0 33 0.108 1.212 z 38 1.323 65.813 0.636 1.89 1 110 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1	11-1b
107 M109 WT12X4X1/4 0.437 1.114/35 0.225 1.114/y y 35 7.66 106.313 2.428 4.349 1 108 M110 W9X3X1/4 0.37 0.75/31 0.106 1.385/z 32 4.024 79.313 1.377 3.166 1 109 M111 WT8X2X1/4 0.466 0 33 0.108 1.212/z 38 1.323 65.813 0.636 1.89 1 110 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1	<u>11-1b</u>
108 M110 W9X3X1/4 0.37 0.75 31 0.106 1.385 z 32 4.024 79.313 1.377 3.166 1 1 109 M111 WT8X2X1/4 0.466 0 33 0.108 1.212 z 38 1.323 65.813 0.636 1.89 1 1 110 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 1	11-1b
109 M111 WT8X2X1/4 0.466 0 33 0.108 1.212 z 38 1.323 65.813 0.636 1.89 1 1 110 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 1	11-1b
110 M112 WT8X2X1/4 0.561 0 33 0.066 0 z 38 1.323 65.813 0.636 1.89 1 H	11-1b
	11-1a
444 M444 MTOVOV4/4 0 700 4 400 4 0 045 0 4 4 70 05 040 0 000	11-1a
	<u>11-1a</u>
	11-1a
	<u>I1-1a</u>
	11-1b
	11-1b
	<u>11-1b</u>
	11-1b
	11-1b
119 M132 HSS1.5X1.5X1/4 0.113 0 4 0.014 0 y 4 30.9 33.75 1.336 1.336 1.388	
120 M133 HSS1.5X1.5X1/4 0.072 0 4 0.025 0 y 4 30.768 33.75 1.336 1.336 2.141 H	
121 M134 HSS1.5X1.5X1/4 0.123 1.957 4 0.03 1.957 y 4 30.768 33.75 1.336 1.336 2.369	
122 M135 HSS1.5X1.5X1/4 0.103 1.692 4 0.047 0 y 4 30.768 33.75 1.336 1.336 1.766	
123 M136 HSS1.5X1.5X1/4 0.089 0 4 0.042 1.957 y 4 30.768 33.75 1.336 1.336 1.838	
124 M137 HSS1.5X1.5X1/4 0.122 1.971 4 0.034 1.971 y 4 30.727 33.75 1.336 1.336 1.499 H	11-1b

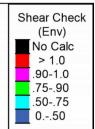
Job Number: Checked By: Model Name:

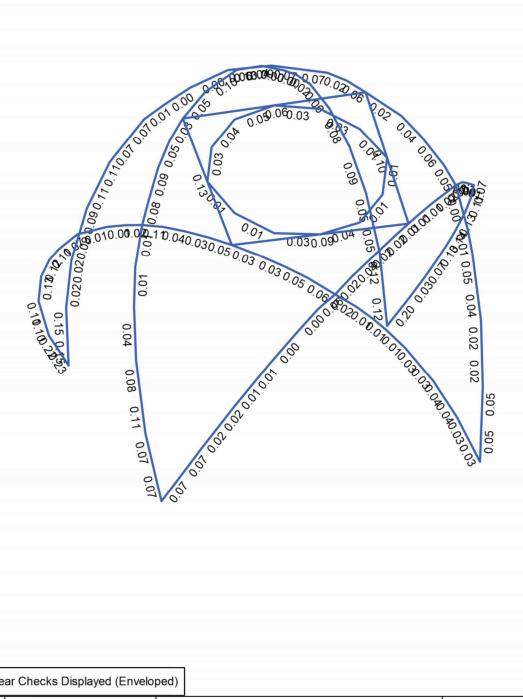

Envelope AISC 15TH (360-16): LRFD Member Steel Code Checks (Continued)


	Member	· Shape	Code Check	<pre><loc[ft]< pre=""></loc[ft]<></pre>]LC	Shear Check	<pre>cLoc[ft]</pre>	Dir	LC	phi*Pnc [k]	phi*Pnt [k]	phi*Mn y-y [k-ft]	phi*Mn z-z [k-	ft] Cb	Eqn
125	M138	HSS1.5X1.5X1/4	0.05	0	4	0.012	0	У	3	30.501	33.75	1.336	1.336	2.135	H1-1b
126	M139	HSS1.5X1.5X1/4	0.04	1.957	4	0.007	0	У	3	30.768	33.75	1.336	1.336	1.321	H1-1b
127	M140	HSS1.5X1.5X1/4	0.082	1.981	4	0.027	0	z	4	30.697	33.75	1.336	1.336	1.035	H1-1b
128	M141	HSS1.5X1.5X1/4	0.101	0	4	0.036	1.86	z	4	31.045	33.75	1.336	1.336	1.013	H1-1b
129	M142	HSS1.5X1.5X1/4	0.067	0	4	0.008	1.957	У	4	30.768	33.75	1.336	1.336	1.333	H1-1b
130	M143	HSS1.5X1.5X1/4	0.072	2.152	4	0.012	0	Z	4	30.177	33.75	1.336	1.336	2.112	H1-1b

Material Take-Off

	Material	Size	Pieces	Length[ft]	Weight[K]
1	Hot Rolled Steel				
2	A276 SS316	8X3/8	47	60.5	0.617
3	A276 SS316	HSS1.5X1.5X1/4	16	54.4	0.231
4	A276 SS316	W9X3X1/4	23	35.1	0.351
5	A276 SS316	WT12X4X1/4	20	29.4	0.394
6	A276 SS316	WT8X2X1/4	24	37	0.307
7	Total HR Steel		130	216.4	1.901


Member Code Checks Displayed (Enveloped)



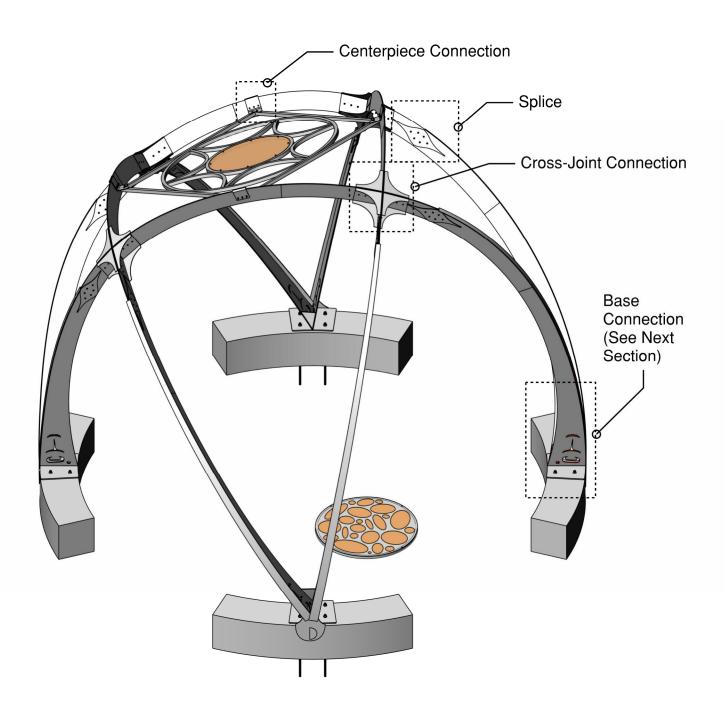
Rbhu
CRC

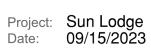
5K-12	
23.05.11	Sun Lodge - 16ft

Member Shear Checks Displayed (Enveloped)

Rbhu	
CRC	

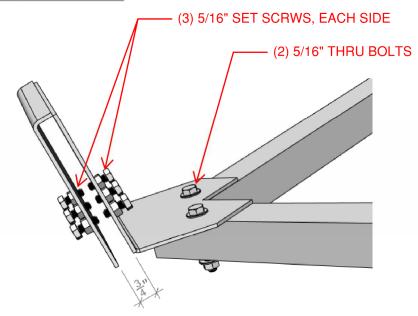
SK-13	
23.05.11	_Sun Lodge - 16ft




Project: Sun Lodge Date: 09/15/2023

Subject: Connection Detail Calcs

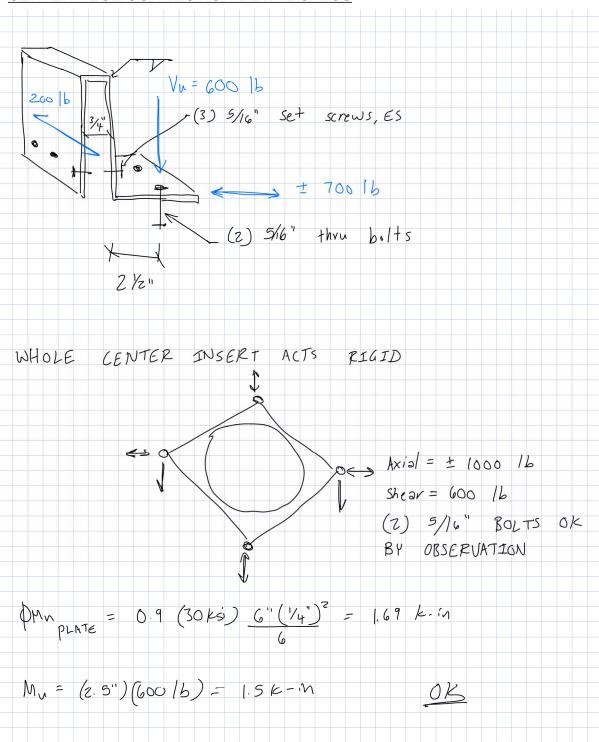
Project #:



Project #:

Subject: Connection Detail Calcs

CENTERPIECE CONNECTION

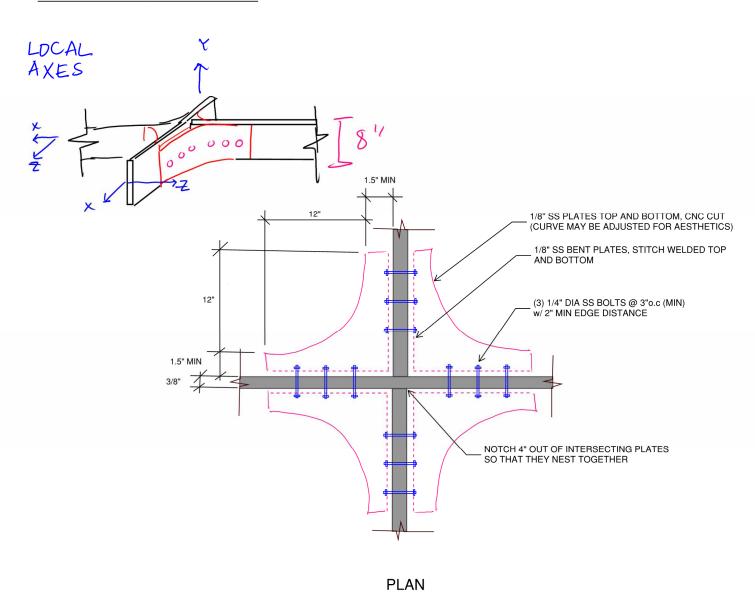


Project: Sun Lodge Date: 09/15/2023

Subject: Connection Detail Calcs

Project #:

CENTERPIECE CONNECTION DETAIL CALCS



Project: Sun Lodge Date: 09/15/2023

Subject: Connection Detail Calcs

Project #:

CROSS-JOINT CONNECTION

Project: Sun Lodge

Date: 09/15/2023

Subject: Connection Detail Calcs

Project #:

CROSS-JOINT CONNECTION DETAIL CALCS

BOUT SHEAR

Vu=292K (COMBINED BOLTSHEAR & SHEAR FROM BENDING)

(3) 1/4" \$ SS BOUTS

 $4V_u = (0.75)(30)(51)(11)(0.25)^2 = 1.1 \text{ k } \times 3 = 3.3 \text{ k}$

Yu = QVu ok

PLATE BENDING W/STIFFENER

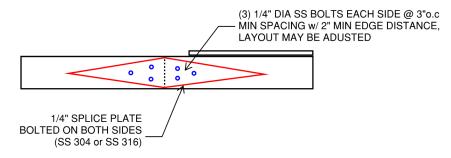
 $M_{u-x} = 0.636 \, \text{K-in}$

 $\phi M_{y-x} = \phi F_{y} Z = (0.9) \times 30 \text{ Ksi} \left(8 \cdot \left(\frac{3.3752}{6} \right) \right) = 410 \text{ Lin}$ $M_{y-x} \leq \phi M_{y} \quad 0 \text{ L}$

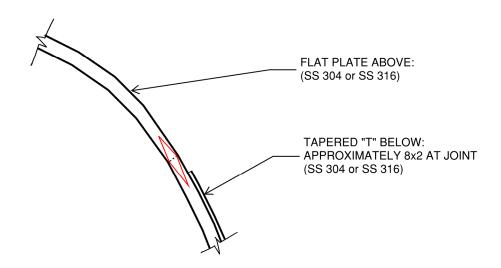
My= 0.594 K-Ft

 $\phi M_n = (0.75)(30 \text{Ks}_1) \left[\frac{3.375(8 \text{in})^2}{6} \right] = 810 \text{ K-in}$ = 67.5 K-ft

OK



Project: Sun Lodge Date: 09/15/2023


Subject: Connection Detail Calcs

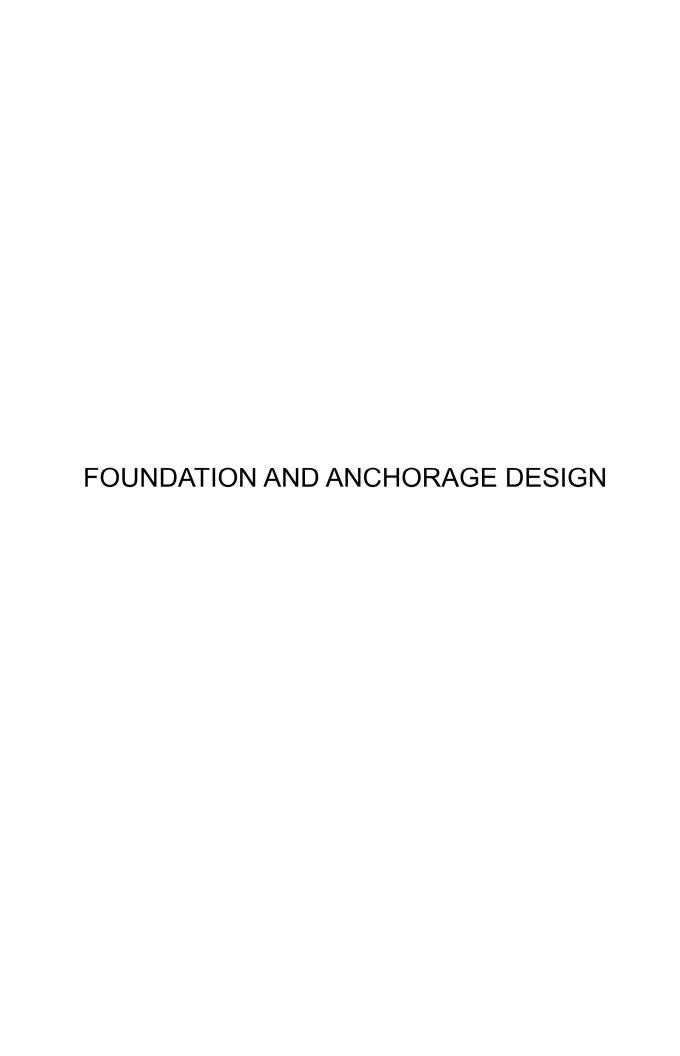
Project #:

ARCH SPLICE CONNECTION

ELEVATION

Project: Sun Lodge Date: 09/15/2023

Subject: Connection Detail Calcs


Project #:

ARCH SPLICE CONNECTION DETAIL CALCS

V₄= 1.04 κ/6 BOUTS = 0.173 κ/BOUT 1/4" Φ SS BOUTS

$$\Phi V_n = (0.75 \times 30 \text{ks} 1 \times 11 \times (0.25)^2) = 1.10 \text{k/80} \text{m}$$

$$V_u \leq \Phi V_n \underline{OL}$$

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

Design: Concrete - Apr 24, 2023 Date: 4/26/2023
Fastening point:

OR SS304 OR SS316 ANCHORS

Specifier's comments:

1 Input data

Anchor type and diameter: Hex Head ASTM F 1554 GR. 36 3/4

Item number: not available Effective embedment depth: $h_{ef} = 12.000$ in.

Effective embedment depth: $h_{\rm ef}$ = 12.000 in. Material: ASTM F 1554

Evaluation Service Report: Hilti Technical Data

Issued I Valid: - | -

Proof: Design Method ACI 318-19 / CIP

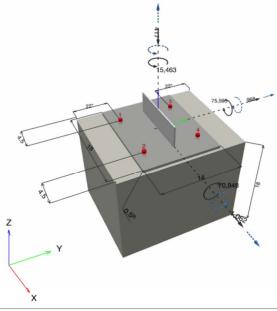
Stand-off installation: $e_b = 0.000$ in. (no stand-off); t = 0.500 in.

Anchor plate^R: $I_x \times I_y \times t = 18.000 \text{ in. } \times 14.000 \text{ in. } \times 0.500 \text{ in.;}$ (Recommended plate thickness: not calculated)

Profile: Rectangular plates and bars (AISC), 12 - 1/4; (L x W x T) = 12.000 in. x 0.250 in.

Base material: cracked concrete, 2500, f_c ' = 2,500 psi; h = 18.000 in.

Reinforcement: tension: present, shear: not present; anchor reinforcement: tension


edge reinforcement: > No. 4 bar

Seismic loads (cat. C, D, E, or F)

Tension load: yes (17.10.5.3 (d))

Shear load: yes (17.10.6.3 (c))

Geometry [in.] & Loading [lb, in.lb]

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2023 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

 $^{^{\}mbox{\scriptsize R}}$ - The anchor calculation is based on a rigid anchor plate assumption.

www.hilti.com

 Company:
 Page:

 Address:
 Specifier:

 Phone I Fax:
 |
 E-Mail:

 Design:
 Concrete - Apr 24, 2023
 Date:

Fastening point:

1.1 Unfactored loads

	Sustained load factor	Load factor f ₁ or f ₂	V _x [lb]	V _v [lb]	N [lb]	M _x [in.lb]	M _y [in.lb]	M _z [in.lb]
D (Dead)	-	-	170	169	-785	-18,360	12,216	2,916
F (Fluid)	-	-	-	-	-	-	-	-
T (Temperature)	-	-	-	-	-	-	-	-
L (Live)	-	1.000	54	5	5	-552	1,848	324
H (Lateral)	-	-	-	-	-	-	-	-
L, (Roof live)	-	-	-	-	-	-	-	-
S (Snow)	-	0.200	-	-	-	-	-	-
R (Rain)	-	-	-	-	-	-	-	-
W (Wind)	-	-	-	-	-	-	-	-
E (Earthquake)	-	-	804	760	520	-48,264	59,088	11,640

1.2 Load combination and design results

1.2.1 Load combination

Load case	Load combination
Equation (16-1)	1.4 (D + F)
Equation (16-2a)	$1.2 (D + F) + 1.6 (L + H) + 0.5 (L_r)$
Equation (16-5)	1.2 (D + F) + 1.0 (E) + f ₁ L + 1.6 (H) + f ₂ S
Equation (16-7)	0.9 (D + F) + 1.0 (E) + 1.6 (H)

1.2.2 Design results

Case	Description	Forces [lb] / Moments [in.lb]	Seismic	Max. Util. Anchor [%]
Equation (16-1)	1.4 (D + F)	$N = -1,099; V_x = 238; V_y = 237;$ $M_x = -25,704; M_y = 17,102; M_z = 4,082;$	yes	16
Equation (16-2a)	1.2 (D + F) + 1.6 (L + H) + 0.5 (L _r)	$N = -934; V_x = 290; V_y = 211;$ $M_x = -22,915; M_y = 17,616; M_z = 4,018;$	yes	15
Equation (16-5)	1.2 (D + F) + 1.0 (E) + f ₁ L + 1.6 (H) + f ₂ S	$\frac{N = -417; \ V_{\underline{x}} = 1,062; \ V_{\underline{y}} = 968;}{M_{\underline{x}} = -70,848; \ M_{\underline{y}} = 75,595; \ M_{\underline{z}} = 15,463;}$	<u>ves</u>	<u>72</u>
Equation (16-7)	0.9 (D + F) + 1.0 (E) + 1.6 (H)	$N = -187; V_x = 957; V_y = 912;$ $M_x = -64,788; M_y = 70,082; M_z = 14,264;$	yes	64

2

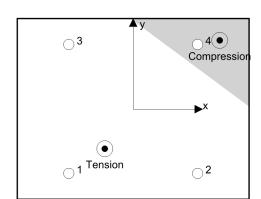
4/26/2023

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:
Design: Concrete - Apr 24, 2023 Date:

Fastening point: Concrete - Apr 24, 2

2 Load case/Resulting anchor forces


Controlling load case: Equation (16-5) 1.2 (D + F) + 1.0 (E) + f_1L + 1.6 (H) + f_2S

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	4,325	668	652	-145
2	2,279	906	652	629
3	1,552	189	-121	-145
4	0	640	-121	629

 $\begin{array}{lll} \text{max. concrete compressive strain:} & 0.19 \ [\%] \\ \text{max. concrete compressive stress:} & 838 \ [\text{psi}] \\ \text{resulting tension force in (x/y)=(-2.205/-3.097):} & 8,156 \ [\text{lb}] \\ \text{resulting compression force in (x/y)=(6.719/5.318):} & 8,573 \ [\text{lb}] \end{array}$

SS ANCHORS OK ALT.

3

4/26/2023

Anchor forces are calculated based on the assumption of a rigid anchor plate.

3 Tension load

	Load N _{ua} [lb]	Capacity ♥ N _n [lb]	Utilization $\beta_N = N_{ua}/\Phi N_n$	Status	
Steel Strength*	4,325	14,529	30	OK	
Pullout Strength*	4,325	6,867	63	OK	
Concrete Breakout Failure**1	N/A	N/A	N/A	N/A	
Concrete Side-Face Blowout, direction x-**	5,877	22,441	27	OK	

^{*} highest loaded anchor **anchor group (anchors in tension)

CONCRETE BREAKOUT CHECK W/ REBAR:

Pn=(0.75)(60 Ksi)(0.2011/2 x le) = 54,000 lbs -

3.1 Steel Strength

$$\begin{array}{ll} {\rm N_{sa}} & = {\rm A_{se,N}} \ {\rm f_{uta}} \\ & \Phi \ {\rm N_{sa}} \ge {\rm N_{ua}} \end{array} \qquad \begin{array}{ll} {\rm ACI} \ 318\mbox{-}19 \ {\rm Eq.} \ (17.6.1.2) \\ {\rm ACI} \ 318\mbox{-}19 \ {\rm Table} \ 17.5.2 \end{array}$$

Variables

A _{se,N} [in. ²]	f _{uta} [psi]
0.33	58,000

Calculations

N_{sa} [lb] 19.372

Results

N _{sa} [lb]	ϕ_{steel}	φ N _{sa} [lb]	N _{ua} [lb]
19,372	0.750	14,529	4,325

#4-7020112

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2023 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

¹ Tension Anchor Reinforcement has been selected!

www.hilti.com

Company: Address: Phone I Fax:

Fastening point:

Design:

Concrete - Apr 24, 2023

Page: Specifier:

E-Mail: Date:

4/26/2023

4

3.2 Pullout Strength

$$\begin{split} N_{pN} &= \psi_{c,p} \ N_p \\ N_p &= 8 \ A_{brg} \ f_c \\ \varphi \ N_{pN} \geq N_{ua} \end{split}$$

ACI 318-19 Eq. (17.6.3.1) ACI 318-19 Eq. (17.6.3.2.2a)

ACI 318-19 Table 17.5.2

Variables

φ concrete

0.700

Calculations

N_{pn} [lb]

Results

3.3 Concrete Side-Face Blowout, direction x-

$$N_{sb} = 160 c_{a1} \sqrt{A_{brg}} \lambda_a \sqrt{f_c}$$

ACI 318-19 Eq. (17.6.4.1) ACI 318-19 Eq. (17.6.4.2)

 $N_{\text{sbg}} = \alpha_{\text{group}} N_{\text{sb}}$ $\phi N_{\text{sbg}} \geq N_{\text{ua}}$

ACI 318-19 Table 17.5.2

 $\alpha_{\text{group}} = \left(1 + \frac{s}{6 c_{a1}}\right)$

see ACI 318-19, Section 17.6.4.2, Eq. (17.6.4.2)

Variables

Calculations

$$\alpha_{\sf group}$$
 1.370

 $N_{\rm sb}$ [lb] 29,113

Results

www.hilti.com

Company: Page: Specifier: Address: Phone I Fax: E-Mail:

Concrete - Apr 24, 2023 Date: 4/26/2023 Design:

Fastening point:

- SS ANCHORS OK ALT. 4 Shear load

	Load V _{ua} [lb]	Capacity	Utilization $\beta_V = V_{ua}/\Phi V_n$	Status	
Steel Strength*	906	7,555	12	OK	
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A	
Pryout Strength*	906	9,205	10	OK	
Concrete edge failure in direction x+**	1,811	4,096	45	OK	

4.1 Steel Strength

$$\begin{array}{lll} \text{V}_{\text{sa}} &= 0.6 \; \text{A}_{\text{se,V}} \; \text{f}_{\text{uta}} & \text{ACI 318-19 Eq. (17.7.1.2b)} \\ \varphi \; \text{V}_{\text{steel}} \; \geq \; \text{V}_{\text{ua}} & \text{ACI 318-19 Table 17.5.2} \end{array}$$

Variables

$A_{se,V}$ [in. ²]	f _{uta} [psi]
0.33	58,000

Calculations

Results

V _{sa} [lb]	ϕ_{steel}	φ V _{sa,eq} [lb]	V _{ua} [lb]	
11.623	0.650	7.555	906	

5

www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: E-Mail:

Design: Concrete - Apr 24, 2023 Date: 4/26/2023 Fastening point:

4.2 Pryout Strength

 $V_{cp} = k_{cp} \left[\left(\frac{A_{Nc}}{A_{Nc0}} \right) \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_b \right]$ ACI 318-19 Eq. (17.7.3.1a) ACI 318-19 Table 17.5.2

 $A_{Nc0} = 9 h_{ef}^2$ ACI 318-19 Eq. (17.6.2.1.4)

 $\psi_{\text{ ec,N}} = \left(\frac{1}{1 + \frac{2 e_N}{3 h_{ef}}}\right) \le 1.0$ ACI 318-19 Eq. (17.6.2.3.1)

 $\psi_{\text{ ed,N}} \, = 0.7 \, + 0.3 \, \left(\frac{c_{a,min}}{1.5 h_{ef}} \right) \, \leq 1.0$ ACI 318-19 Eq. (17.6.2.4.1b)

$$\begin{split} \psi_{cp,N} &= \text{MAX}\bigg(\frac{c_{a,\text{min}}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}}\bigg) \leq 1.0 \\ N_b &= 16 \ \lambda_a \ \sqrt{f_c} \ h_{bf}^{5/3} \end{split}$$
ACI 318-19 Eq. (17.6.2.6.1b)

ACI 318-19 Eq. (17.6.2.2.3)

Variables

k_{cp}	h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]
2	12.000	0.000	0.000	4.500
$\psi_{c,N}$	c _{ac} [in.]	k _c	λ _a	f _c [psi]
1.000	∞	16	1.000	2.500

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	$\Psi_{\text{ ec1,N}}$	$\psi_{\text{ec2,N}}$	$\psi_{\text{ed},N}$	$\psi_{\text{cp},\text{N}}$	N _b [lb]
218.50	1,296.00	1.000	1.000	0.775	1.000	50,318

Results

V _{cp} [lb]	$\phi_{ m concrete}$	$\phi_{\sf seismic}$	$\phi_{nonductile}$	φ V _{cp} [lb]	V _{ua} [lb]
13.149	0.700	1.000	1.000	9.205	906

6

www.hilti.com

Company:		Page:	7
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Apr 24, 2023	Date:	4/26/2023

Fastening point:

4.3 Concrete edge failure in direction x+

$V_{cbg} = \left(\frac{A_{Vc}}{A_{Vc0}}\right) \psi_{ec,V} \psi_{ed,V} \psi_{c,V} \psi_{h,V} \psi_{parallel,V} V_{b}$	ACI 318-19 Eq. (17.7.2.1b)
$\phi V_{cbg} \ge V_{ua}$	ACI 318-19 Table 17.5.2
A _{Vc} see ACI 318-19, Section 17.7.2.1, Fig. R 17.7.2.1(b)	
$A_{Vc0} = 4.5 c_{a1}^2$	ACI 318-19 Eq. (17.7.2.1.3)
$ \psi_{\text{ec,V}} = \left(\frac{1}{1 + \frac{e_{v}}{1.5c_{a1}}}\right) \le 1.0 $	ACI 318-19 Eq. (17.7.2.3.1)
$\Psi_{\text{ed,V}} = 0.7 + 0.3 \left(\frac{c_{a2}}{1.5c_{a1}} \right) \le 1.0$	ACI 318-19 Eq. (17.7.2.4.1b)
$ \psi_{h,V} = \sqrt{\frac{1.5c_{a1}}{h_a}} \ge 1.0 $ $ V_b = 9 \lambda_a \sqrt{f_c} c_{a1}^{1.5} $	ACI 318-19 Eq. (17.7.2.6.1)
$V_b = 9 \lambda_a \sqrt{\dot{f_c}} c_{a1}^{1.5}$	ACI 318-19 Eq. (17.7.2.2.1b)

Variables

c _{a1} [in.]	c _{a2} [in.]	e _{cV} [in.]	$\Psi_{c,V}$	h _a [in.]
4.500	22.000	3.600	1.200	18.000
l _e [in.]	λ _a	d _a [in.]	f _c [psi]	Ψ parallel,V
6.000	1.000	0.750	2,500	1.000

Calculations

A _{vc} [in.²]	A_{Vc0} [in. ²]	$\Psi_{\text{ec,V}}$	$\psi_{\text{ed,V}}$	$\Psi_{h,V}$	V _b [lb]
158.62	91.12	0.652	1.000	1.000	4,296
D 14 -					

Results

V _{cbg} [lb]	ϕ_{concrete}	$\phi_{\sf seismic}$	$\phi_{nonductile}$	φ V _{cbg} [lb]	V _{ua} [lb]
5,852	0.700	1.000	1.000	4,096	1,811

5 Combined tension and shear loads, per ACI 318-19 section 17.8

β_{N}	β_{V}	ζ	Utilization $\beta_{N,V}$ [%]	Status	
0.630	0.442	5/3	72	OK	

 $\beta_{NV} = \beta_N^{\zeta} + \beta_V^{\zeta} \le 1$

 hilti	00m	

Company:		Page:	3
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Apr 24, 2023	Date:	4/26/2023
Fastening point:	·		

6 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout or pryout strength governs.
- For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- "An anchor design approach for structures assigned to Seismic Design Category C, D, E or F is given in ACI 318-19, Chapter 17, Section 17.10.5.3 (a) that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure. If this is NOT the case, the connection design (tension) shall satisfy the provisions of Section 17.10.5.3 (b), Section 17.10.5.3 (c), or Section 17.10.5.3 (d). The connection design (shear) shall satisfy the provisions of Section 17.10.6.3 (a), Section 17.10.6.3 (b), or Section 17.10.6.3 (c)."
- Section 17.10.5.3 (b) / Section 17.10.6.3 (a) require the attachment the anchors are connecting to the structure be designed to undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength. Section 17.10.5.3 (c) / Section 17.10.6.3 (b) waive the ductility requirements and require the anchors to be designed for the maximum tension / shear that can be transmitted to the anchors by a non-yielding attachment. Section 17.10.5.3 (d) / Section 17.10.6.3 (c) waive the ductility requirements and require the design strength of the anchors to equal or exceed the maximum tension / shear obtained from design load combinations that include E, with E increased by ω₀.
- The design of Anchor Reinforcement is beyond the scope of PROFIS Engineering. Refer to ACI 318-19, Section 17.5.2.1 (a) for information about Anchor Reinforcement.
- Anchor Reinforcement has been selected as a design option, calculations should be compared with PROFIS Engineering calculations.

Fastening meets the design criteria!

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:
Design: Concrete - Apr 24, 2023 Date:

Fastening point:

7 Installation data

Profile: Rectangular plates and bars (AISC), 12 - 1/4; (L x W x T) = 12.000 in. x

0.250 in.

Hole diameter in the fixture: $d_f = 0.812$ in.

Plate thickness (input): 0.500 in.

Recommended plate thickness: not calculated

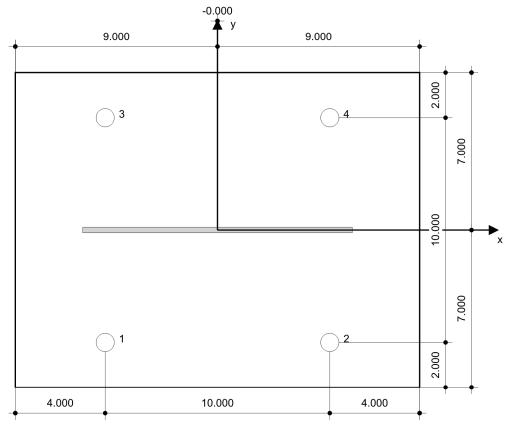
Anchor type and diameter: Hex Head ASTM F 1554 GR.

9

4/26/2023

36 3/4

Item number: not available


Maximum installation torque: -

Hole diameter in the base material: - in.

Hole depth in the base material: 12.000 in.

Minimum thickness of the base material: 13.000 in.

Hilti Hex Head headed stud anchor with 12 in embedment, 3/4, Steel galvanized, installation per instruction for use

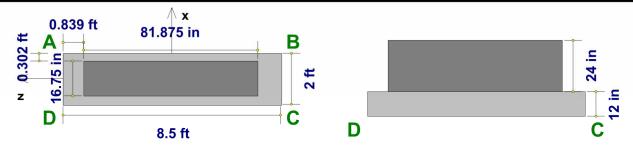
Coordinates Anchor [in.]

Anchor	x	у	C _{-x}	C+x	c _{-y}	c _{+y}
1	-5.000	-5.000	4.500	14.500	22.000	32.000
2	5.000	-5.000	14.500	4.500	22.000	32.000
3	-5.000	5.000	4.500	14.500	32.000	22.000
4	5.000	5.000	14.500	4.500	32.000	22.000

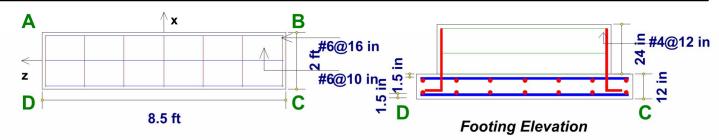
Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2023 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

VAC/AC/AC	h:	14:	

Company:		Page:	10
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Apr 24, 2023	Date:	4/26/2023
Fastening point:			

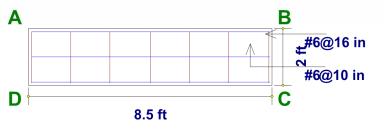

8 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each
 case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data
 or programs, arising from a culpable breach of duty by you.


Designer : CRC
Job Number : 20XX

Job Number: 20XX Footing 1 - R3D_N307 Checked By:___

Sketch


Details

x Dir. Steel: 3.09 in² (7 #6)

z Dir. Steel: 1.33 in² (3 #6)

Bottom Rebar Plan

x Dir. Steel: 3.09 in² (7 #6) z Dir. Steel: 1.33 in² (3 #6)

Top Rebar Plan

Geometry, Materials and Criteria

Length: Width: Thickness: Height: Rot. Angle:	8.5 ft 2 ft 12 in 24 in 0 deg	•		Gross Allow. Bearing: Concrete Weight: Concrete f'c: Design Code:	0.14 2.5	0 psf (gross) 45 k/ft^3 ksi 318-19	Steel fy: Minimum Steel: Maximum Steel:	60 ksi .0018 .0075
•	Bar Cover: com Bar Cove ngitudinal Ba		1.5 in 1.5 in er: 1.5 in	Overturning / Sliding SF: Coefficient of Friction: Passive Resistance of S		VARIES 0.3 0 k	Φ for Flexure: Φ for Shear: Φ for Bearing:	0.9 0.75 0.65

81.875 in

Pedestal Rebar Plan

Company : Rbhu June 23, 2023

Designer : CRC

Job Number : 20XX Footing 1 - R3D_N307 Checked By:___

Loads

	P (k)	Vx (k)	Vz (k)	Mx (k-ft)	Mz (k-ft)	Overburden (psf)
DL	0.797	-0.176	-0.203	0.802	-1.205	0.1
LL	0.025	0.017	-0.03	0.019		
SL	0.414	-0.129	-0.141	0.698	-0.81	
ELX	0.106	-0.193	0.018	0.267	-0.652	
ELZ	-0.364	0.022	0.36	-1.008	0.847	
	+P	+Vx	+Vz	+Mx	+Mz	+Over
		A D	D C	D C	A D	

Company : **Rbhu** June 23, 2023

Designer : CRC

Job Number: 20XX Footing 1 - R3D_N307 Checked By:____

Soil Bearing

Description	Categories and Factors	Gross Allow.(psf)	Max Bearing (psf)	Max/Allowable Rat
Service	1DL+1LL+1HL	1500	717.043 (C)	0.478
IBC 21/ASCE 1	1DL	1500	718.692 (C)	0.479
IBC 21/ASCE 2	1DL+1HL+1LL+1LLS	1500	717.043 (C)	0.478
IBC 21/ASCE 3	1DL+1HL+1RLL	1500	718.692 (C)	0.479
IBC 21/ASCE 3	1DL+1HL+1SL	1500	1062.367 (C)	0.708
IBC 21/ASCE 3	1DL+1HL+1RL	1500	718.692 (C)	0.479
IBC 21/ASCE 4	1DL+1HL+0.75LL+0.75LLS	1500	717.454 (C)	0.478
IBC 21/ASCE 4	1DL+1HL+0.75LL+0.75LLS	1500	957.97 (C)	0.639
IBC 21/ASCE 4	1DL+1HL+0.75LL+0.75LLS	1500	717.454 (C)	0.478
IBC 21/ASCE 5	1DL+1HL+0.6WLX	1500	718.692 (C)	0.479
IBC 21/ASCE 5	1DL+1HL+0.6WLZ	1500	718.692 (C)	0.479
IBC 21/ASCE 6	1DL+1HL+0.45WLX+0.75LL	1500	717.454 (C)	0.478
IBC 21/ASCE 6	1DL+1HL+0.45WLZ+0.75LL	1500	717.454 (C)	0.478
IBC 21/ASCE 6	1DL+1HL+0.45WLX+0.75LL	1500	957.97 (C)	0.639
IBC 21/ASCE 6	1DL+1HL+0.45WLZ+0.75LL	1500	957.97 (C)	0.639
IBC 21/ASCE 6	1DL+1HL+0.45WLX+0.75LL	1500	717.454 (C)	0.478
IBC 21/ASCE 6	1DL+1HL+0.45WLZ+0.75LL	1500	717.454 (C)	0.478
IBC 21/ASCE 7	0.6DL+1HL+0.6WLX	1500	431.215 (C)	0.287
IBC 21/ASCE 7	0.6DL+1HL+0.6WLZ	1500	431.215 (C)	0.287
IBC 21/ASCE 7	0.6DL+0.6HL+0.6WLX	1500	431.215 (C)	0.287
IBC 21/ASCE 7	0.6DL+0.6HL+0.6WLZ	1500	431.215 (C)	0.287
IBC 21/ASCE 8	1DL+0.14Sds*DL+1HL+0.7	1500	819.309 (C)	0.546
IBC 21/ASCE 8	1DL+0.14Sds*DL+1HL+0.7	1500	819.309 (C)	0.546
IBC 21/ASCE 8	1DL+0.14Sds*DL+1HL+0.7	1500	819.309 (C)	0.546
IBC 21/ASCE 8	1DL+0.14Sds*DL+1HL+0.7	1500	819.309 (C)	0.546
IBC 21/ASCE 8	1DL+0.14Sds*DL+1HL+-0	1500	819.309 (C)	0.546
IBC 21/ASCE 8	1DL+0.14Sds*DL+1HL+-0	1500	819.309 (C)	0.546
IBC 21/ASCE 8	1DL+0.14Sds*DL+1HL+-0	1500	819.309 (C)	0.546
IBC 21/ASCE 8	1DL+0.14Sds*DL+1HL+-0	1500	819.309 (C)	0.546
IBC 21/ASCE 9	1DL+0.105Sds*DL+1HL+0	1500	1029.832 (C)	0.687
IBC 21/ASCE 9	1DL+0.105Sds*DL+1HL+0	1500	1029.832 (C)	0.687
IBC 21/ASCE 9	1DL+0.105Sds*DL+1HL+0	1500	1029.832 (C)	0.687
IBC 21/ASCE 9	1DL+0.105Sds*DL+1HL+0	1500	1029.832 (C)	0.687
IBC 21/ASCE 9	1DL+0.105Sds*DL+1HL+-0	1500	1029.832 (C)	0.687
IBC 21/ASCE 9	1DL+0.105Sds*DL+1HL+-0	1500	1029.832 (C)	0.687
IBC 21/ASCE 9	1DL+0.105Sds*DL+1HL+-0	1500	1029.832 (C)	0.687
IBC 21/ASCE 9	1DL+0.105Sds*DL+1HL+-0	1500	1029.832 (C)	0.687
IBC 21/ASCE 1	0.6DL+-0.14Sds*DL+1HL+	1500	330.598 (C)	0.22
IBC 21/ASCE 1	0.6DL+-0.14Sds*DL+1HL+	1500	330.598 (C)	0.22
IBC 21/ASCE 1	0.6DL+-0.14Sds*DL+1HL+	1500	330.598 (C)	0.22
IBC 21/ASCE 1	0.6DL+-0.14Sds*DL+1HL+	1500	330.598 (C)	0.22
IBC 21/ASCE 1	0.6DL+-0.14Sds*DL+1HL+	1500	330.598 (C)	0.22
IBC 21/ASCE 1	0.6DL+-0.14Sds*DL+1HL+	1500	330.598 (C)	0.22
IBC 21/ASCE 1	0.6DL+-0.14Sds*DL+1HL+	1500	330.598 (C)	0.22
IBC 21/ASCE 1	0.6DL+-0.14Sds*DL+1HL+	1500	330.598 (C)	0.22
IBC 21/ASCE 1	0.6DL+-0.14Sds*DL+0.6H	1500	330.598 (C)	0.22

Company : **Rbhu** June 23, 2023

Designer : CRC

Job Number: 20XX Footing 1 - R3D_N307 Checked By:____

IBC 21/ASCE 1	ID0 04/400E 4	0.001 - 0.440 #01 -0.011	4.700	000 500 (0)	• • • •
IBC 21/ASCE 1.					
IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 330.598 (C) 0.22 IBC 21/ASCE 8 1DL+0.14Sds*DL+1HL+0.7 1500 936.608 (C) 0.624 IBC 21/ASCE 8 1DL+0.14Sds*DL+1HL+0.7 1500 679.605 (C) 0.453 IBC 21/ASCE 8 1DL+0.14Sds*DL+1HL+0.7 1500 1079.657 (C) 0.453 IBC 21/ASCE 8 1DL+0.14Sds*DL+1HL+0.7 1500 582.154 (C) 0.388 IBC 21/ASCE 8 1DL+0.14Sds*DL+1HL+0.7 1500 713.402 (C) 0.476 IBC 21/ASCE 8 1DL+0.14Sds*DL+1HL+0 1500 713.402 (C) 0.476 IBC 21/ASCE 8 1DL+0.14Sds*DL+1HL+0 1500 966.424 (C) 0.644 IBC 21/ASCE 8 1DL+0.14Sds*DL+1HL+0 1500 960.352 (C) 0.4 IBC 21/ASCE 8 1DL+0.14Sds*DL+1HL+0 1500 960.352 (C) 0.4 IBC 21/ASCE 8 1DL+0.14Sds*DL+1HL+0 1500 1090.824 (C) 0.727 IBC 21/ASCE 9 1DL+0.10Sds*DL+1HL+0 1500 1156.749 (C) 0.771 IBC 21/ASCE 9 1DL+0.10SSds*DL+1HL+0 1500 916.403 (C) 0.771 IBC 21/ASCE 9 1DL+0.10SSds*DL+1HL+0 1500 1292.207 (C) 0.861 IBC 21/ASCE 9 1DL+0.10SSds*DL+1HL+0 1500 929.808 (C) 0.624 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+0 1500 929.808 (C) 0.624 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+0 1500 929.808 (C) 0.564 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 929.808 (C) 0.133 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 92					
IBC 21/ASCE 1					
IBC 21/ASCE 1					
IBC 21/ASCE 1				, ,	
IBC 21/ASCE 8 IDL+0.14Sds*DL+1HL+0.7 1500 936.608 (C) 0.624 IBC 21/ASCE 8 IDL+0.14Sds*DL+1HL+0.7 1500 679.605 (C) 0.453 IBC 21/ASCE 8 IDL+0.14Sds*DL+1HL+0.7 1500 1079.657 (C) 0.72 IBC 21/ASCE 8 IDL+0.14Sds*DL+1HL+0.7 1500 582.154 (C) 0.388 IBC 21/ASCE 8 IDL+0.14Sds*DL+1HL+0 1500 713.402 (C) 0.476 IBC 21/ASCE 8 IDL+0.14Sds*DL+1HL+0 1500 966.424 (C) 0.644 IBC 21/ASCE 8 IDL+0.14Sds*DL+1HL+0 1500 966.424 (C) 0.644 IBC 21/ASCE 8 IDL+0.14Sds*DL+1HL+0 1500 600.352 (C) 0.4 IBC 21/ASCE 9 IDL+0.105Sds*DL+1HL+0 1500 1099.824 (C) 0.727 IBC 21/ASCE 9 IDL+0.105Sds*DL+1HL+0 1500 1156.749 (C) 0.771 IBC 21/ASCE 9 IDL+0.105Sds*DL+1HL+0 1500 906.403 (C) 0.604 IBC 21/ASCE 9 IDL+0.105Sds*DL+1HL+0 1500 1292.207 (C) 0.861 IBC 21/ASCE 9 IDL+0.105Sds*DL+1HL+0 1500 1292.207 (C) 0.861 IBC 21/ASCE 9 IDL+0.105Sds*DL+1HL+0 1500 929.808 (C) 0.62 IBC 21/ASCE 9 IDL+0.105Sds*DL+1HL+0 1500 1166.651 (C) 0.778 IBC 21/ASCE 9 IDL+0.105Sds*DL+1HL+0 1500 1292.094 (C) 0.861 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+0 1500 1292.094 (C) 0.861 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 224.699 (C) 0.15 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 244.699 (C) 0.15 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 244.699 (C) 0.15 IBC 21/ASCE 1 0.6DL					
IBC 21/ASCE 8 IDL+0.14Sds*DL+1HL+0.7 1500 679.605 (C) 0.453 IBC 21/ASCE 8 IDL+0.14Sds*DL+1HL+0.7 1500 1079.657 (C) 0.72 IBC 21/ASCE 8 IDL+0.14Sds*DL+1HL+0.7 1500 582.154 (C) 0.388 IBC 21/ASCE 8 IDL+0.14Sds*DL+1HL+0 1500 713.402 (C) 0.476 IBC 21/ASCE 8 IDL+0.14Sds*DL+1HL+0 1500 966.424 (C) 0.644 IBC 21/ASCE 8 IDL+0.14Sds*DL+1HL+0 1500 966.424 (C) 0.644 IBC 21/ASCE 8 IDL+0.14Sds*DL+1HL+0 1500 1090.824 (C) 0.727 IBC 21/ASCE 8 IDL+0.105Sds*DL+1HL+0 1500 1090.824 (C) 0.727 IBC 21/ASCE 9 IDL+0.105Sds*DL+1HL+0 1500 1156.749 (C) 0.771 IBC 21/ASCE 9 IDL+0.105Sds*DL+1HL+0 1500 1156.749 (C) 0.771 IBC 21/ASCE 9 IDL+0.105Sds*DL+1HL+0 1500 1292.207 (C) 0.861 IBC 21/ASCE 9 IDL+0.105Sds*DL+1HL+0 1500 1292.207 (C) 0.861 IBC 21/ASCE 9 IDL+0.105Sds*DL+1HL+0 1500 326.724 (C) 0.551 IBC 21/ASCE 9 IDL+0.105Sds*DL+1HL+0 1500 929.808 (C) 0.62 IBC 21/ASCE 9 IDL+0.105Sds*DL+1HL+0 1500 929.808 (C) 0.62 IBC 21/ASCE 9 IDL+0.105Sds*DL+1HL+0 1500 1166.651 (C) 0.778 IBC 21/ASCE 9 IDL+0.105Sds*DL+1HL+0 1500 1460.651 (C) 0.778 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+0 1500 483.004 (C) 0.322 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 483.004 (C) 0.322 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 254.656 (D) 0.17 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 492.657 (C) 0.155 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H					
IBC 21/ASCE 8 1DL+0.14Sds*DL+1HL+0.7 1500 1079.657 (C) 0.72 IBC 21/ASCE 8 1DL+0.14Sds*DL+1HL+0 1500 582.154 (C) 0.338 IBC 21/ASCE 8 1DL+0.14Sds*DL+1HL+0 1500 713.402 (C) 0.476 IBC 21/ASCE 8 1DL+0.14Sds*DL+1HL+0 1500 966.424 (C) 0.644 IBC 21/ASCE 8 1DL+0.14Sds*DL+1HL+0 1500 600.352 (C) 0.4 IBC 21/ASCE 8 1DL+0.14Sds*DL+1HL+0 1500 1090.824 (C) 0.727 IBC 21/ASCE 8 1DL+0.105Sds*DL+1HL+0 1500 1156.749 (C) 0.771 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 1156.749 (C) 0.771 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 906.403 (C) 0.604 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 1292.207 (C) 0.861 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 826.724 (C) 0.551 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 929.808 (C) 0.62 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 929.808 (C) 0.62 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 1166.51 (C) 0.778 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 1490.2094 (C) 0.861 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 1490.2094 (C) 0.861 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 483.004 (C) 0.322 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 254.656 (D) 0.17 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 723.481 (C) 0.482 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 244.699 (C) 0.15 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 224.699 (C) 0.15 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 248.699 (C) 0.15 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 248.699 (C) 0.15 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 248.699 (C) 0.15 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 248.	IBC 21/ASCE 8	1DL+0.14Sds*DL+1HL+0.7	1500	· ,	0.624
IBC 21/ASCE 8 1DL+0.14Sds*DL+1HL+0.7 1500 582.154 (C) 0.388 IBC 21/ASCE 8 1DL+0.14Sds*DL+1HL+0 1500 713.402 (C) 0.476 IBC 21/ASCE 8 1DL+0.14Sds*DL+1HL+0 1500 966.424 (C) 0.644 IBC 21/ASCE 8 1DL+0.14Sds*DL+1HL+0 1500 600.352 (C) 0.4 IBC 21/ASCE 8 1DL+0.14Sds*DL+1HL+0 1500 1090.824 (C) 0.727 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 1156.749 (C) 0.771 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 1292.207 (C) 0.861 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 1292.207 (C) 0.861 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 1292.207 (C) 0.861 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 826.724 (C) 0.551 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 826.724 (C) 0.551 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 1166.651 (C) 0.778 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 1166.651 (C) 0.778 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 1292.094 (C) 0.861 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 1292.094 (C) 0.861 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 1292.094 (C) 0.322 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 483.004 (C) 0.322 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 493.004 (C) 0.322 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 493.004 (C) 0.459 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 493	IBC 21/ASCE 8	1DL+0.14Sds*DL+1HL+0.7	1500	679.605 (C)	0.453
IBC 21/ASCE 8 1DL+0.14Sds*DL+1HL+-0 1500 713.402 (C) 0.476 IBC 21/ASCE 8 1DL+0.14Sds*DL+1HL+-0 1500 966.424 (C) 0.644 IBC 21/ASCE 8 1DL+0.14Sds*DL+1HL+-0 1500 600.352 (C) 0.4 IBC 21/ASCE 8 1DL+0.14Sds*DL+1HL+-0 1500 1090.824 (C) 0.727 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 1156.749 (C) 0.771 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 906.403 (C) 0.604 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 906.403 (C) 0.604 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 1292.207 (C) 0.861 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 826.724 (C) 0.551 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 929.808 (C) 0.62 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 929.808 (C) 0.62 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 1166.651 (C) 0.778 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 840.352 (C) 0.56 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 840.352 (C) 0.56 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 840.352 (C) 0.60 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 483.004 (C) 0.322 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 254.656 (D) 0.17 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 199.952 (A) 0.135 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 199.952 (A) 0.133 IBC 21/ASCE	IBC 21/ASCE 8	1DL+0.14Sds*DL+1HL+0.7	1500	1079.657 (C)	0.72
IBC 21/ASCE 8 1DL+0.14Sds*DL+1HL+-0 1500 966.424 (C) 0.644 IBC 21/ASCE 8 1DL+0.14Sds*DL+1HL+-0 1500 600.352 (C) 0.4 IBC 21/ASCE 8 1DL+0.14Sds*DL+1HL+-0 1500 1090.824 (C) 0.727 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 1156.749 (C) 0.7771 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 906.403 (C) 0.604 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 906.403 (C) 0.604 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 929.207 (C) 0.861 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 826.724 (C) 0.551 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 929.808 (C) 0.62 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 929.808 (C) 0.62 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 1166.651 (C) 0.778 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 840.352 (C) 0.56 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 840.352 (C) 0.56 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 1292.094 (C) 0.861 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 1292.094 (C) 0.861 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 254.656 (D) 0.17 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 224.699 (C) 0.15 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 483.004 (C) 0.322 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 483.004 (C) 0.322 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 224.699 (C) 0.15 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 254.656 (D) 0.17 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 224.699 (C) 0.459 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6D	IBC 21/ASCE 8	1DL+0.14Sds*DL+1HL+0.7	1500	582.154 (C)	0.388
IBC 21/ASCE 8 1DL+0.14Sds*DL+1HL+0 1500 1090.824 (C) 0.727 1BC 21/ASCE 8 1DL+0.14Sds*DL+1HL+0 1500 1090.824 (C) 0.727 1BC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 1156.749 (C) 0.771 1BC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 906.403 (C) 0.604 1BC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 1292.207 (C) 0.861 1BC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 826.724 (C) 0.551 1BC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 826.724 (C) 0.551 1BC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 929.808 (C) 0.62 1BC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 1166.651 (C) 0.778 1BC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 1466.651 (C) 0.778 1BC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 1292.094 (C) 0.861 1BC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 1292.094 (C) 0.861 1BC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 1292.094 (C) 0.861 1BC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 254.656 (D) 0.17 1BC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 254.656 (D) 0.17 1BC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 1299.952 (A) 0.133 1BC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 224.699 (C) 0.15 1BC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 242.699 (C) 0.15 1BC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 492.657 (C) 0.328 1BC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 483.004 (C) 0.322 1BC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 483.004 (C) 0.322 1BC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 483.004 (C) 0.322 1BC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 244.699 (C) 0.15 1BC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 150	IBC 21/ASCE 8	1DL+0.14Sds*DL+1HL+-0	1500	713.402 (C)	0.476
IBC 21/ASCE 8 1DL+0.14Sds*DL+1HL+0 1500 1090.824 (C) 0.727 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 1156.749 (C) 0.771 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 906.403 (C) 0.604 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 1292.207 (C) 0.861 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 826.724 (C) 0.551 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 929.808 (C) 0.62 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 929.808 (C) 0.62 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 1166.651 (C) 0.778 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 1490.04 (C) 0.56 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 840.352 (C) 0.56 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 1292.094 (C) 0.861 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 483.004 (C) 0.322 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 254.656 (D) 0.17 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 723.481 (C) 0.482 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 224.699 (C) 0.15 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 483.004 (C) 0.322 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 483.004 (C) 0.322 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 254.656 (D) 0.17 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 254.656 (D) 0.15 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 254.656 (D) 0.15 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 254.656 (D) 0.15 IBC 21/ASCE 1 0.6DL+0.1	IBC 21/ASCE 8	1DL+0.14Sds*DL+1HL+-0	1500	966.424 (C)	0.644
IBC 21/ASCE 9 IDL+0.105Sds*DL+1HL+0 1500 1156.749 (C) 0.771 IBC 21/ASCE 9 IDL+0.105Sds*DL+1HL+0 1500 906.403 (C) 0.604 IBC 21/ASCE 9 IDL+0.105Sds*DL+1HL+0 1500 1292.207 (C) 0.861 IBC 21/ASCE 9 IDL+0.105Sds*DL+1HL+0 1500 826.724 (C) 0.551 IBC 21/ASCE 9 IDL+0.105Sds*DL+1HL+0 1500 929.808 (C) 0.62 IBC 21/ASCE 9 IDL+0.105Sds*DL+1HL+0 1500 1166.651 (C) 0.778 IBC 21/ASCE 9 IDL+0.105Sds*DL+1HL+0 1500 1166.651 (C) 0.778 IBC 21/ASCE 9 IDL+0.105Sds*DL+1HL+0 1500 840.352 (C) 0.56 IBC 21/ASCE 9 IDL+0.105Sds*DL+1HL+0 1500 1292.094 (C) 0.861 IBC 21/ASCE 9 IDL+0.105Sds*DL+1HL+ 1500 1292.094 (C) 0.861 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 483.004 (C) 0.322 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 254.656 (D) 0.17 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 723.481 (C) 0.482 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 224.699 (C) 0.15 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 201.826 (B) 0.135 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 254.656 (D) 0.17 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 254.656 (D) 0.17 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 254.656 (D) 0.17 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 723.481 (C) 0.482 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 150	IBC 21/ASCE 8	1DL+0.14Sds*DL+1HL+-0	1500	600.352 (C)	0.4
IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 906.403 (C) 0.604 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 1292.207 (C) 0.861 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 826.724 (C) 0.551 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 929.808 (C) 0.62 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 1166.651 (C) 0.778 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 840.352 (C) 0.56 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 840.352 (C) 0.56 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 1292.094 (C) 0.861 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 483.004 (C) 0.322 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 254.656 (D) 0.17 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 723.481 (C) 0.482 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 224.699 (C) 0.15 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 688.954 (C) 0.459 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 483.004 (C) 0.322 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 254.656 (D) 0.17 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 254.656 (D) 0.17 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 254.656 (D) 0.17 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 199.952 (A) 0.135 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL	IBC 21/ASCE 8	1DL+0.14Sds*DL+1HL+-0	1500	1090.824 (C)	0.727
IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 1292.207 (C) 0.861 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 826.724 (C) 0.551 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 929.808 (C) 0.62 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 1166.651 (C) 0.778 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 840.352 (C) 0.56 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 1292.094 (C) 0.861 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+ 1500 1292.094 (C) 0.861 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 254.656 (D) 0.17 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 254.656 (D) 0.17 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 723.481 (C) 0.482 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 224.699 (C) 0.15 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 688.954 (C) 0.459 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 483.004 (C) 0.322 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 483.004 (C) 0.322 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 254.656 (D) 0.17 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 723.481 (C) 0.482 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 201.826 (B) 0.135 IBC 21/ASCE 1 0.6	IBC 21/ASCE 9	1DL+0.105Sds*DL+1HL+0	1500	1156.749 (C)	0.771
IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+0 1500 826.724 (C) 0.551 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+-0 1500 929.808 (C) 0.62 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+-0 1500 1166.651 (C) 0.778 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+-0 1500 840.352 (C) 0.56 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+-0 1500 1292.094 (C) 0.861 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 483.004 (C) 0.322 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 254.656 (D) 0.17 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 723.481 (C) 0.482 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 224.699 (C) 0.15 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 201.826 (B) 0.135 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+1HL+ 1500 688.954 (C) 0.459 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 483.004 (C) 0.322 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 254.656 (D) 0.17 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 199.952 (A) 0.135 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H 1500 199.952 (B) 0.135 IBC 21/ASCE 1 0.6DL+0.14Sds*DL+0.6H.	IBC 21/ASCE 9	1DL+0.105Sds*DL+1HL+0	1500	906.403 (C)	0.604
IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+-0 1500 929.808 (C) 0.62 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+-0 1500 1166.651 (C) 0.778 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+-0 1500 840.352 (C) 0.56 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+-0 1500 1292.094 (C) 0.861 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 483.004 (C) 0.322 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 254.656 (D) 0.17 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 723.481 (C) 0.482 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 224.699 (C) 0.15 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 201.826 (B) 0.135 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 688.954 (C) 0.459 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 483.004 (C) 0.322 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 254.656 (D) 0.17 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 723.481 (C) 0.482 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 199.952 (A) 0.135 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 201.826 (B) 0.135 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500	IBC 21/ASCE 9	1DL+0.105Sds*DL+1HL+0	1500	1292.207 (C)	0.861
IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+-0 1500 1166.651 (C) 0.778 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+-0 1500 840.352 (C) 0.56 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+-0 1500 1292.094 (C) 0.861 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 483.004 (C) 0.322 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 254.656 (D) 0.17 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 723.481 (C) 0.482 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 224.699 (C) 0.15 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 201.826 (B) 0.135 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 688.954 (C) 0.459 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 483.004 (C) 0.322 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 254.656 (D) 0.17 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 254.656 (D) 0.17 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 723.481 (C) 0.482 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 199.952 (A) 0.135 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 199.952 (A) 0.135 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 199.952 (A) 0.135 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 201.826 (B) 0.135 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 201.826 (B) 0.135 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 201.826 (B) 0.135 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 201.826 (B) 0.1	IBC 21/ASCE 9	1DL+0.105Sds*DL+1HL+0	1500	826.724 (C)	0.551
IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+-0 1500 840.352 (C) 0.56 IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+-0 1500 1292.094 (C) 0.861 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 483.004 (C) 0.322 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 254.656 (D) 0.17 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 723.481 (C) 0.482 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 224.699 (C) 0.15 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 688.954 (C) 0.459 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 483.004 (C) 0.322 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 254.656 (D) 0.17 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 254.656 (D) 0.17 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 723.481 (C) 0.482 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 224.699 (C) 0.15 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 201.826 (B) 0.135	IBC 21/ASCE 9	1DL+0.105Sds*DL+1HL+-0	1500	929.808 (C)	0.62
IBC 21/ASCE 9 1DL+0.105Sds*DL+1HL+-0 1500 1292.094 (C) 0.861 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 483.004 (C) 0.322 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 254.656 (D) 0.17 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 723.481 (C) 0.482 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 224.699 (C) 0.15 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 201.826 (B) 0.135 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 688.954 (C) 0.459 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 483.004 (C) 0.322 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 254.656 (D) 0.17 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 723.481 (C) 0.482 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 224.699 (C) 0.15 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 224.699 (C) 0.15 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 201.826 (B) 0.135 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 201.826 (B) 0.135	IBC 21/ASCE 9	1DL+0.105Sds*DL+1HL+-0	1500	1166.651 (C)	0.778
IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 254.656 (D) 0.17 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 254.656 (D) 0.17 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 723.481 (C) 0.482 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 224.699 (C) 0.15 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 201.826 (B) 0.135 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 688.954 (C) 0.459 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 483.004 (C) 0.322 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 254.656 (D) 0.17 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 723.481 (C) 0.482 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 224.699 (C) 0.15 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 201.826 (B) 0.135 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 201.826 (B) 0.135	IBC 21/ASCE 9	1DL+0.105Sds*DL+1HL+-0	1500	840.352 (C)	0.56
IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 254.656 (D) 0.17 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 723.481 (C) 0.482 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 224.699 (C) 0.15 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 201.826 (B) 0.135 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 688.954 (C) 0.459 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 483.004 (C) 0.322 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 254.656 (D) 0.17 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 723.481 (C) 0.482 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 224.699 (C) 0.15 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 201.826 (B) 0.135 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 201.826 (B) 0.135	IBC 21/ASCE 9	1DL+0.105Sds*DL+1HL+-0	1500	1292.094 (C)	0.861
IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 723.481 (C) 0.482 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 224.699 (C) 0.15 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 201.826 (B) 0.135 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 688.954 (C) 0.459 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 483.004 (C) 0.322 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 254.656 (D) 0.17 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 723.481 (C) 0.482 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 224.699 (C) 0.15 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 201.826 (B) 0.135 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 201.826 (B) 0.135	IBC 21/ASCE 1	0.6DL+-0.14Sds*DL+1HL+	1500	483.004 (C)	0.322
IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 224.699 (C) 0.15 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 201.826 (B) 0.135 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 688.954 (C) 0.459 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 483.004 (C) 0.322 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 254.656 (D) 0.17 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 723.481 (C) 0.482 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 224.699 (C) 0.15 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 201.826 (B) 0.135 IBC 21/ASCE 1 0	IBC 21/ASCE 1	0.6DL+-0.14Sds*DL+1HL+	1500	254.656 (D)	0.17
IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 224.699 (C) 0.15 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 201.826 (B) 0.135 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 688.954 (C) 0.459 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 483.004 (C) 0.322 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 254.656 (D) 0.17 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 723.481 (C) 0.482 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 224.699 (C) 0.15 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 201.826 (B) 0.135	IBC 21/ASCE 1	0.6DL+-0.14Sds*DL+1HL+	1500	723.481 (C)	0.482
IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 201.826 (B) 0.135 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 688.954 (C) 0.459 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 483.004 (C) 0.322 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 254.656 (D) 0.17 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 723.481 (C) 0.482 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 224.699 (C) 0.15 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 201.826 (B) 0.135	IBC 21/ASCE 1	0.6DL+-0.14Sds*DL+1HL+	1500	199.952 (A)	0.133
IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 201.826 (B) 0.135 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 688.954 (C) 0.459 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 483.004 (C) 0.322 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 254.656 (D) 0.17 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 723.481 (C) 0.482 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 224.699 (C) 0.15 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 201.826 (B) 0.135	IBC 21/ASCE 1	0.6DL+-0.14Sds*DL+1HL+	1500	224.699 (C)	0.15
IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+1HL+ 1500 688.954 (C) 0.459 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 483.004 (C) 0.322 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 254.656 (D) 0.17 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 723.481 (C) 0.482 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 224.699 (C) 0.15 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 201.826 (B) 0.135	IBC 21/ASCE 1	0.6DL+-0.14Sds*DL+1HL+	1500	492.657 (C)	0.328
IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 483.004 (C) 0.322 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 254.656 (D) 0.17 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 723.481 (C) 0.482 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 224.699 (C) 0.15 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 201.826 (B) 0.135	IBC 21/ASCE 1	0.6DL+-0.14Sds*DL+1HL+	1500	201.826 (B)	0.135
IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 254.656 (D) 0.17 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 723.481 (C) 0.482 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 224.699 (C) 0.15 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 201.826 (B) 0.135	IBC 21/ASCE 1	0.6DL+-0.14Sds*DL+1HL+	1500	688.954 (C)	0.459
IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 723.481 (C) 0.482 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 224.699 (C) 0.15 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 201.826 (B) 0.135	IBC 21/ASCE 1	0.6DL+-0.14Sds*DL+0.6H	1500	483.004 (C)	0.322
IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 199.952 (A) 0.133 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 224.699 (C) 0.15 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 201.826 (B) 0.135	IBC 21/ASCE 1	0.6DL+-0.14Sds*DL+0.6H	1500	254.656 (D)	0.17
IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 224.699 (C) 0.15 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 201.826 (B) 0.135	IBC 21/ASCE 1	0.6DL+-0.14Sds*DL+0.6H	1500	723.481 (C)	0.482
IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 492.657 (C) 0.328 IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 201.826 (B) 0.135	IBC 21/ASCE 1	0.6DL+-0.14Sds*DL+0.6H	1500	199.952 (A)	0.133
IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 201.826 (B) 0.135	IBC 21/ASCE 1	0.6DL+-0.14Sds*DL+0.6H	1500	224.699 (C)	0.15
IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 201.826 (B) 0.135	IBC 21/ASCE 1	0.6DL+-0.14Sds*DL+0.6H	1500	492.657 (C)	0.328
IBC 21/ASCE 1 0.6DL+-0.14Sds*DL+0.6H 1500 688.954 (C) 0.459	IBC 21/ASCE 1	0.6DL+-0.14Sds*DL+0.6H	1500		0.135
	IBC 21/ASCE 1	0.6DL+-0.14Sds*DL+0.6H	1500	688.954 (C)	0.459