

Re: J1086674 HC Homes Inc

Tri-State Engineering, Inc. 12810 NE 178th Street Suite 218 Woodinville, WA 98072 425.481.6601

The truss drawing(s) referenced below have been prepared by Tri-State Engineering under my direct supervision based on the parameters provided by The Truss Company (Sumner).

Pages or sheets covered by this seal:I14706691thru I14706706My license renewal date for the state of Washington isAugust 20, 2024.

<u>REPORT</u> REQUIRED TO BE PROVIDED BY THE PERMITTEE ON SITE FOR ALL INSPECTIONS

April 17,2023

The seal on these drawings indicate acceptance of professional engineering responsibility solely for the truss components shown. The suitability and use of this component for any particular building is the responsibility of the building designer, per ANSI/TPI 1.

L			32-0-0		
Γ			32-0-0		1
Plate Offsets (X,Y) [23	3:0-3-0,0-3-0]				
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL 8.0 BCLL 0.0 * BCDL 7.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.14 BC 0.08 WB 0.13 Matrix-SH	DEFL. in Vert(LL) 0.00 Vert(CT) 0.01 Horz(CT) 0.00	(loc) l/defl L/d 17 n/r 120 17 n/r 90 16 n/a n/a	PLATES GRIP MT20 185/148 Weight: 148 lb FT = 20%
LUMBER- TOP CHORD 2x4 HF N BOT CHORD 2x4 HF N OTHERS 2x4 DF St	lo.2 lo.2 tud		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing direct Rigid ceiling directly applied or 1 MiTek recommends that Stabil during truss erection, in accord	ly applied or 6-0-0 oc purlins. 0-0-0 oc bracing. izers and required cross bracing be installed lance with Stabilizer Installation guide.
(lb) - Max Horz	z 2–-71/LC 13)				

Max Uplift All uplift 100 lb or less at joint(s) 2, 25, 26, 27, 28, 29, 30, 23, 22, 21, 20, 19, 18, 16

Max Grav All reactions 250 lb or less at joint(s) 24, 25, 26, 27, 28, 29, 23, 22, 21, 20, 19 except 2=258(LC 19), 30=286(LC 1), 18=286(LC 1), 16=258(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-(13-14)

- Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.8psf; BCDL=4.2psf; h=12ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -1-6-0 to 1-8-6, Exterior(2N) 1-8-6 to 12-9-10, Corner(3R) 12-9-10 to 19-2-6, Exterior(2N) 19-2-6 to 30-3-10, Corner(3E) 30-3-10 to 33-6-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

Unbalanced snow loads have been considered for this design.

- 5) This truss has been designed for greater of min roof live load of 16.0 psf or 1.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads
- 6) All plates are 1.5x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- 8) Gable studs spaced at 2-0-0 oc.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 10) * This truss has been designed for a live load of 23.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 25, 26, 27, 28, 29, 30, 23, 22, 21, 20, 19, 18, 16.

12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 13) All dimensions given in feet-inches-sixteenths (FFIISS) format.

14) Notch 4-0-0 o.c.

LOAD CASE(S) Standard

1	8-0-0	16-0-0	24	4-0-0	32-0-0	
	8-0-0	8-0-0	8	-0-0	8-0-0	
Plate Offsets (X,Y) [2:0-3	3-6,0-1-8], [4:0-3-0,0-2-8], [6:0-3-6,0-1-8]					
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL 8.0 BCLL 0.0 * BCDU 7.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.95 BC 0.70 WB 0.38 Matrix-SH	DEFL. in (lt Vert(LL) -0.17 -0.30 8- Vert(CT) -0.30 8- Horz(CT) 0.13	xc) l/defi L/d 10 >999 360 10 >999 240 6 n/a n/a	PLATES GRIP MT20 185/148 Weight: 125 lb FT = 20%	
BUMBER- TOP CHORD 2x4 DF No.1&Btr BRACING- TOP CHORD BOT CHORD 2x4 DF No.1&Btr TOP CHORD BOT CHORD 2x4 HF No.2 BOT CHORD WEBS 2x4 DF Stud "Except" 5-10,3-10: 2x4 HF No.2 BOT CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 5-10,3-10: 2x4 HF No.2 WEBS						
REACTIONS. (lb/size) 2=1376/0-5-8 (min. 0-2-4), 6=1376/0-5-8 (min. 0-2-4) Max Horz 2=-71(LC 13) Max Uplift2=-46(LC 12), 6=-46(LC 13)						
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-12=-2608/34, 3-12=-2514/61, 3-13=-1746/66, 13-14=-1635/80, 4-14=-1624/92, 4-15=-1624/92, 15-16=-1635/80, 5-16=-1746/66, 5-17=-2614/61, 6-17=-2608/34 BOT CHORD 2-11=-61/2319, 10-11=-61/2319, 9-10=0/2319, 8-9=0/2319, 6-8=0/2319 WEBS 4-10=-0781, 5-10=-1006/109, 5-8=0/284, 3-10=-1006/109, 3-11=0/284						
NOTES- (9) 1) Wind: ASCE 7-16; Vult= zone and C-C Exterior(2) 33-6-0 zone; cantilever le DOL=1.60 plate grip DOI 2) TCLL: ASCE 7-16; Pi=22 3) Unbalanced snow loads 4) This truss has been desi loads. 5) This truss has been desi chord and any other mer 2) Brevide mochanical com	110mph (3-second gust) Vasd=87mph; TCE E) -1-6-0 to 1-8-6, Interior(1) 1-8-6 to 12-9-1 fa and right exposed ; end vertical left and r L=1.60 0.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is have been considered for this design, gned for greater of min roof live load of 16.0 gned for a 10.0 psf bottom chord live load n signed for a live load of 23.0psf on the botto obers.	PL=4.8psf; BCDL=4.2psf; h=12f 0, Exterior(2R) 12-9-10 to 19-2 ight exposed;C-C for members =1.0; Rough Cat B; Partially Ex psf or 1.00 times flat roof load onconcurrent with any other live m chord in all areas where a re	t; Cat. II; Exp B; Enclosed; M -6, Interior(1) 19-2-6 to 30-3- and forces & MWFRS for rea ep.; Ce=1.0; Cs=1.00; Ct=1.10 of 25.0 psf on overhangs nor e loads. ctangle 3-6-0 tall by 2-0-0 wid	WFRS (envelope) gable end I0, Exterior(2E) 30-3-10 to ctions shown; Lumber 		

3) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) All dimensions given in feet-inches-sixteenths (FFIISS) format.

LOAD CASE(S) Standard

April 17,2023

L	7-9-0	15-9-0	23-9-0	31-9-0			
	7-9-0	8-0-0	8-0-0	8-0-0			
Plate Offsets (X,Y) [1:0-0-8,0-0-0], [3:0-3-0,0-2-8], [5:0-3-6,0-1-8]							
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL TCDL 8.0 BCLL 0.0 * BCDL 7.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.95 BC 0.75 WB 0.38 Matrix-SH	DEFL. in (loc) l/defl L/d Vert(LL) -0.17 1-10 >999 360 Vert(CT) -0.30 7-9 >999 240 Horz(CT) 0.13 5 n/a n/a	PLATES GRIP MT20 185/148 Weight: 123 lb FT = 20%			
LUMBER- TOP CHORD 2x4 DF No.1&Btr BRACING- TOP CHORD Structural wood sheathing directly applied. BOT CHORD 2x4 HF No.2 BOT CHORD BOT CHORD Rigid ceiling directly applied or 10-0-0 co bracing. WEBS 2x4 DF Stud *Except* 4-9,2-9: 2x4 HF No.2 WEBS 1 Row at midpt 4-9, 2-9 REACTIONS (Ib/size) 1=1254/0-2-8 (min. 0-2-1), 5=1374/0-5-8 (min. 0-2-4) Max Horz 1=-77(LC 13) Minute for an equivalence of the stabilizer installation guide.							
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-11=-2596/60, 2-11=-2511/78, 2-12=-1741/70, 12-13=-1629/85, 3-13=-1619/97, 3-14=-1619/97, 14-15=-1629/85, 4-15=-1741/70, 4-16=-2510/65, 5-16=-2603/39 BOT CHORD 1-10=-65/2311, 9-10=-65/2314, 5-7=0/2314, 5-7=0/2314 WEBS 3-9=0/779, 4-9=-1006/109, 4-7=0/283, 2-9=-1002/113, 2-10=0/283							
 NOTES- (10) 1) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.8psf; BCDL=4.2psf; h=12ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-1-4 to 3-3-6, Interior(1) 3-3-6 to 12-6-14, Exterior(2R) 12-6-14 to 18-11-2, Interior(1) 18-11-2 to 30-0-14, Exterior(2E) 30-0-14 to 33-3-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15) Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design. 4) This truss has been designed for greater of min roof live load of 16.0 psf or 1.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 23.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 1. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 10) All dimensions given in feet-inches-sixteenths (FFIISS) format. 							
POLY POLY							

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MITek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not russ designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult **ANS/ITPII Quality Control**, DSB-89 and BCSI1 Building Component **Safety Information** available from Truss Plate Institute, 583 DOnofrio Drive, Madison, WI 53719.

the**TRUSS**CO. INC.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MITek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ASIEPT In Quality Control, storage, delivery, erection and bracing, consult ASIEPT In Quality Control, storage, delivery, erection and bracing, consult ASIEPT In Quality Control, storage, the studie, 583 D'Onofrio Drive, Madison, WI 53719.

the**TRUSS**CO. INC.

LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL 8.0 BCLL 0.0 * BCDL 7.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.30 BC 0.31 WB 0.48 Matrix-P	DEFL. in (loc) l/defl L/d Vert(LL) -0.05 2-7 >999 360 Vert(CT) -0.08 2-7 >999 240 Horz(CT) 0.01 6 n/a n/a	PLATES GRIP MT20 185/148 Weight: 82 lb FT = 20%
LUMBER- TOP CHORD 2x4 DF No.18 BOT CHORD 2x4 HF No.2	&Btr		BRACING- TOP CHORD Structural wood sheathing dire BOT CHORD Rigid ceiling directly applied o	ectly applied or 6-0-0 oc purlins, except end verticals. 10-0-0 oc bracing.

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed

during truss erection, in accordance with Stabilizer Installation guide.

LU TOF

BOT CHORD 2x4 HF No.2 2x4 DF Stud WEBS

OTHERS 2x4 DF Stud SLIDER Left 2x4 DF No.1&Btr 5-11-14

REACTIONS. (lb/size) 2=580/0-5-8 (min. 0-1-8), 6=573/0-5-8 (min. 0-1-8)

Max Horz 2=143(LC 9) Max Uplift 2=-26(LC 12), 6=-62(LC 12)

Max Grav 2=606(LC 19), 6=760(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-18=-779/60, 3-18=-708/78, 4-6=-416/115

BOT CHORD 2-7=-80/654, 6-7=-85/647 WEBS 3-6=-719/173

NOTES-(12-13)

1) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.8psf; BCDL=4.2psf; h=12ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -1-6-0 to 1-6-0, Exterior(2N) 1-6-0 to 10-6-0, Corner(3E) 10-6-0 to 13-6-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design

5) This truss has been designed for greater of min roof live load of 16.0 psf or 1.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live

loads.

6) All plates are 1.5x4 MT20 unless otherwise indicated.

7) Gable studs spaced at 2-0-0 oc.

s) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) * This truss has been designed for a live load of 23.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.

11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 12) All dimensions given in feet-inches-sixteenths (FFIISS) format.

13) Notch 4-0-0 o.c.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply F	IC Homes Inc	PRRNSF202309	918 14706697
1086674	BP1	FLAT SUPPORTED GABLE	18	1 Jo	b Reference (optional)		
The Truss Company (Sumner), Sumner, WA - 98390,		ID:YLcgXvNyj	8.0 DRbUpX6?FIHo	530 s Nov 19 2022 MiTeł 22UjAK-GzYNVZrvD	< Industries, Inc. Fri Apr 14 16:52 _zaD4W3rI8v02pDCKI2jBBTj _	:11 2023 Page 1 vECTpzQkpo
			1-10-6				
		3x4 =	= 2				Scale = 1:20.0
		E 1-4	1-2 3x4 1-3 2-3				
		4 3x6	5x6 = 3				
		 	1-10-6 1-10-6				
late Offsets (X,Y) [3:0-3-	-0,0-3-0]						
CLL 25.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.25	DEFL. i Vert(LL) n/	n (loc) l/defl a - n/a	L/d 999	PLATES GRIP MT20 185/148	
CDL 8.0	Lumber DOL 1.15 Rep Stress Incr NO	BC 0.06 WB 0.22	Vert(CT) n/ Horz(CT) -0.0	a - n/a) 3 n/a	999 n/a		
CDL 0.0 *	Code IRC2018/TPI2014	Matrix-P				Weight: 16 lb FT = 20%	
UMBER- OP CHORD 2x4 HF No.2 OT CHORD 2x4 HF No.2 VEBS 2x4 DF Stud EACTIONS. (lb/size) 4=	:63/1-10-8 (min. 0-1-8), 3=63/1-10∙	8 (min. 0-1-8)	BRACING- TOP CHORD BOT CHORD	2-0-0 oc purlins Rigid ceiling dir MiTek recomm during truss e	: 1-2, except end vertic ectly applied or 6-0-0 or nends that Stabilizers a rection, in accordance v	als. c bracing. nd required cross bracing be in vith Stabilizer Installation guide.	stalled
Max Horz 4= Max Uplift 4= Max Grav 4= ORCES. (Ib) - Max. Comp	-831(LC 29), 3=-831(LC 32) -838(LC 36), 3=838(LC 33) o./Max. Ten All forces 250 (lb) or l	ess except when shown.					
OP CHORD 1-4=-827/8 OT CHORD 3-4=-410/4 /EBS 1-3=-930/9	37, 1-2=-378/372 05 30						
IOTES- (14)) Wind: ASCE 7-16; Vult=1 zone and C-C Corner(3) z Lumber DOL=1.60 plate g) Truss designed for wind li applicable, or consult qua) TCLL: ASCE 7-16; Pf=25.) Provide adequate drainag) Gable requires continuous) Truss to be fully sheathed) Gable studs spaced at 1-) This truss has been desig () * This truss has been desig () * This truss has been desig () * This truss is designed in 2) This truss is designed in 2) This truss been desig from 0-0-0 to 1-10-6 for 3) Graphical purlin represe	10mph (3-second gust) Vasd=87m cone; cantilever left and right exposi- rip DOL=1.60 bads in the plane of the truss only. Ified building designer as per ANS 0 psf (Lum DOL=1.15 Plate DOL=7 e to prevent water ponding. If rom one face or securely braced to a too the baring. If rom one face or securely braced to c. ned for a 10.0 psf bottom chord live igned for a live load of 23.0psf on the bers. nection (by others) of truss to bearin accordance with the 2018 Internati gned for a total drag load of 250 pli 250.0 plf.	bh; TCDL=4.8psf; BCDL=4.2psf; h=12 ed ; end vertical left and right exposed For studs exposed to wind (normal to TCPI 1. .15); Is=1.0; Rough Cat B; Partially E against lateral movement (i.e. diagona cload nonconcurrent with any other line bottom chord in all areas where a r ng plate capable of withstanding 100 I onal Residential Code sections R502 . Lumber DOL=(1.60) Plate grip DOL- ne orientation of the purlin along the t	2ft; Cat. II; Exp B; Enclose d;C-C for members and fo o the face), see Standard I Exp.; Ce=1.0; Cs=1.00; Ct al web). ve loads. rectangle 3-6-0 tall by 2-0- lb uplift at joint(s) except (.11.1 and R802.10.2 and =(1.60) Connect truss to top and/or bottom chord.	d; MWFRS (envir rces & MWFRS) ndustry Gable Ei =1.10 0 wide will fit bet it=lb) 4=831, 3=8 referenced stanc resist drag loads	elope) gable end for reactions shown; nd Details as ween the bottom 131. lard ANSI/TPI 1. along bottom chord	Bort L. F	O W
 All dimensions given in f OAD CASE(S) Standard 	eet-inches-sixteenths (FFIISS) forn	at.				PROFESSIONA	
					e	City of Puyaliup bevelopment & Permitting Services ISSUED PERMIT Building Planning Engineering Public Works Fire Traffic	April 17,2

1086674	Truss	Truss Type	Qty Ply HC Homes Inc	PRRNSE20230918 14706698
	BP2	FLAT SUPPORTED GABLE	2 1 Job Reference (d	optional)
The Truss Company (Sumn	er), Sumner, WA - 98390,		8.630 s Nov 19 2 ID:YLcgXvNyjDRbUpX6?FIHq?zUjAK-IA6m	022 MiTek Industries, Inc. Fri Apr 14 16:52:12 2023 Page 1 jvrX_H5RrE5F00f8YGMOvjeTSeUcxZzm?GzQkpn
			<u> </u>	
		3x4	=	Scale = 1:20.0
		영 역 연	1-3	
			3-4	
		4 3x6	5x6 = ³	
			<u>1-8-1</u> 1-8-1	
late Offsets (X,Y) [3:0-	3-0,0-3-0]			
CLL 25.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.25	DEFL. in (loc) I/defl L/d Vert(LL) n/a - n/a 999	PLATES GRIP MT20 185/148
CDL 8.0	Lumber DOL 1.15 Rep Stress Incr YES	BC 0.05 WB 0.22	Vert(CT) n/a - n/a 999 Horz(CT) -0.00 3 n/a n/a	
CDL 7.0	Code IRC2018/TPI2014	Matrix-P		Weight: 15 lb FT = 20%
UMBER- OP CHORD 2x4 HF No.	2		BRACING-TOP CHORD2-0-0 oc purlins: 1-2, except	end verticals.
OT CHORD 2x4 HF No. /EBS 2x4 DF Stu	2 d		BOT CHORD Rigid ceiling directly applied of MiTek recommends that Sta	r 6-0-0 oc bracing. bilizers and required cross bracing be installed
EACTIONS. (lb/size)	4=55/1-8-0 (min. 0-1-8), 3=55/1-8-() (min. 0-1-8)	during truss erection, in acc	ordance with Stabilizer Installation guide.
Max Horz 4 Max Uplift	1=-65(LC 7) 4=-839(LC 29), 3=-839(LC 32)			
Max Grav 4	4=845(LC 36), 3=845(LC 33)			
ORCES. (lb) - Max. Con OP CHORD 1-4=-836/ OT CHORD 3-4=-367/ /EBS 1-3=-917/	 1p./Max. Ten All forces 250 (lb) or 845, 1-2=-335/329 '361 '917 	r less except when shown.		
IOTES- (14)				
	110mph (3-second gust) Vasd=87n cone; cantilever left and right expo	nph; TCDL=4.8psf; BCDL=4.2psf; h=1: sed ; end vertical left and right expose	2ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable e d;C-C for members and forces & MWFRS for reactions s	nd hown;
) Wind: ASCE 7-16; Vult= zone and C-C Corner(3)	grip DOL=1.60	. For studs exposed to wind (normal to		
Wind: ASCE 7-16; Vult= zone and C-C Corner(3; Lumber DOL=1.60 plate Truss designed for wind	loads in the plane of the truss only.		o the face), see Standard Industry Gable End Details as	
) Wind: ASCE 7-16; Vult= zone and C-C Corner(3, Lumber DOL=1.60 plate) Truss designed for wind applicable, or consult qu) TCLL: ASCE 7-16; Pf=2	loads in the plane of the truss only alified building designer as per ANS 5.0 psf (Lum DOL=1.15 Plate DOL=	SI/TPI 1. =1.15); Is=1.0; Rough Cat B; Partially E	b the face), see Standard Industry Gable End Details as Exp.; Ce=1.0; Cs=1.00; Ct=1.10	
) Wind: ASCE 7-16; Vult- zone and C-C Corner(3; Lumber DOL=1.60 plate) Truss designed for wind applicable, or consult q.) TCLL: ASCE 7-16; Pf=2) Provide adequate draina) Truss to be fully sheath	l loads in the plane of the truss only ialified building designer as per ANS 5.0 psf (Lum DOL=1.15 Plate DOL= ige to prevent water ponding. Ind from one face or securely braced	SI/TPI 1. =1.15); Is=1.0; Rough Cat B; Partially E I against lateral movement (i.e. diagon	o the face), see Standard Industry Gable End Details as Exp.; Ce=1.0; Cs=1.00; Ct=1.10 al web).	
) Wind: ASCE 7-16; Vult- zone and C-C Correr(3, Lumber DOL=1.60 plate) Truss designed for wind applicable, or consult qu) TCLL: ASCE 7-16; Pf=2) Provide adequate draina) Truss to be fully sheathe) Gable studs spaced at 1) This truss has been des	loads in the plane of the truss only ialified building designer as per AN: 5.0 psf (Lum DOL=1.15 Plate DOL= age to prevent water ponding. id from one face or securely braced -4-0 oc. igned for a 10.0 psf bottom chord liv	SI/TPI 1. =1.15); Is=1.0; Rough Cat B; Partially E I against lateral movement (i.e. diagon ve load nonconcurrent with any other li	5 the face), see Standard Industry Gable End Details as Exp.; Ce=1.0; Cs=1.00; Ct=1.10 al web). ive loads.	
 Wind: ASCE 7-16; Vultazone and C-C Correr(3, Lumber DOL=1.60 plate Truss designed for wind applicable, or consult qu TCLL: ASCE 7-16; Pf=2 Provide adequate draina Truss to be fully sheather Gable studs spaced at 1 This truss has been des chord and any other me 	I loads in the plane of the truss only laified building designer as per AN 5.0 psf (Lum DOL=1.15 Plate DOL- age to prevent water ponding. ad from one face or securely braced -4-0 oc. igned for a 10.0 psf bottom chord liv signed for a live load of 23.0psf on mbers.	SI/TPI 1. =1.15); Is=1.0; Rough Cat B; Partially E I against lateral movement (i.e. diagon /e load nonconcurrent with any other li the bottom chord in all areas where a	5 the face), see Standard Industry Gable End Details as Exp.; Ce=1.0; Cs=1.00; Ct=1.10 al web). ive loads. rectangle 3-6-0 tall by 2-0-0 wide will fit between the both	om
 Wind: ASCE 7-16; Vultazone and C-C Corner(3, Lumber DOL=1.60 plate Truss designed for wind applicable, or consult quitable, provide adequate draina Truss to be fully sheather (Gable study spaced at 1) This truss has been des (Carl and any other me chanical con 0) Non Standard bearing (Carl and Carl and	I loads in the plane of the truss only ialified building designer as per AN! 5.0 psf (Lum DOL=1.15 Plate DOL- age to prevent water ponding. ad from one face or securely bracec -4-0 oc. igned for a 10.0 psf bottom chord liv signed for a live load of 23.0psf on mbers. nection (by others) of truss to bearin condition. Review required.	SI/TPI 1. =1.15); Is=1.0; Rough Cat B; Partially E I against lateral movement (i.e. diagon ve load nonconcurrent with any other li the bottom chord in all areas where a ing plate capable of withstanding 100 lb	b the face), see Standard Industry Gable End Details as Exp.; Ce=1.0; Cs=1.00; Ct=1.10 al web). ive loads. rectangle 3-6-0 tall by 2-0-0 wide will fit between the bott o uplift at joint(s) except (jt=lb) 4=839, 3=839.	om 1
) Wind: ASCE 7-16; Vultazone and C-C Corner(3 Lumber DOL=1.60 plate) Truss designed for wind applicable, or consult qu) TCLL: ASCE 7-16; Pf=2) Provide adequate draina) Truss to be fully sheather) Gable studs spaced at 1) This truss has been des) * This truss has been de chord and any other me) Provide mechanical con 0) Non Standard bearing 1) This truss has been de from 0.0 to 1.8.1 for	I loads in the plane of the truss only laified building designer as per AN 5.0 psf (Lum DOL=1.15 Plate DOL- age to prevent water ponding. ad from one face or securely bracec -4-0 oc. igned for a 10.0 psf bottom chord lin signed for a live load of 23.0psf on mbers. nection (by others) of truss to bearin condition. Review required. in accordance with the 2018 Interna signed for a total drag load of 250 p 26.0 ptf	SI/TPI 1. =1.15); Is=1.0; Rough Cat B; Partially E I against lateral movement (i.e. diagon ve load nonconcurrent with any other li the bottom chord in all areas where a ng plate capable of withstanding 100 lt ttional Residential Code sections R502 If. Lumber DOL=(1.60) Plate grip DOL	5 the face), see Standard Industry Gable End Details as Exp.; Ce=1.0; Cs=1.00; Ct=1.10 al web). ive loads. rectangle 3-6-0 tall by 2-0-0 wide will fit between the bott o uplift at joint(s) except (jt=lb) 4=839, 3=839. 2.11.1 and R802.10.2 and referenced standard ANSI/TPI =(1.60) Connect truss to resist drag loads along bottom	om 1. chord
) Wind: ASCE 7-16; Vultazone and C-C Corner(3 Lumber DOL=1.60 plate) Truss designed for wind applicable, or consult qu) TCLL: ASCE 7-16; Pf=2) Provide adequate drain:) Truss to be fully sheather () Gable studs spaced at 1) This truss has been des chord and any other me provide mechanical con 0) Non Standard bearing 1) This truss has been de from 0-0-0 to 1-8-1 for 3) Graphical purilin repres 1) Mil dimensions given in Vall dimensions given in Vall dimensions given in Vall dimensions given in	I loads in the plane of the truss only ialified building designer as per AN: 5.0 psf (Lum DOL=1.15 Plate DOL- age to prevent water ponding. ad from one face or securely braced -4-0 oc. igned for a 10.0 psf bottom chord lin isigned for a live load of 23.0psf on mbers. nection (by others) of truss to bearin condition. Review required. in accordance with the 2018 Interna signed for a total drag load of 250 p 250.0 plf.	SI/TPI 1. =1.15); Is=1.0; Rough Cat B; Partially E I against lateral movement (i.e. diagona ve load nonconcurrent with any other li the bottom chord in all areas where a ing plate capable of withstanding 100 lb titional Residential Code sections R502 off. Lumber DOL=(1.60) Plate grip DOL the orientation of the purlin along the form	5 the face), see Standard Industry Gable End Details as Exp.; Ce=1.0; Cs=1.00; Ct=1.10 al web). ive loads. rectangle 3-6-0 tall by 2-0-0 wide will fit between the bott o uplift at joint(s) except (jt=lb) 4=839, 3=839. 2.11.1 and R802.10.2 and referenced standard ANSI/TPI .=(1.60) Connect truss to resist drag loads along bottom top and/or bottom chord.	om 1. chord
 Wind: ASCE 7-16; Vult- zone and C-C Corner(3 Lumber DOL=1.60 plate Truss designed for wind applicable, or consult quitors of the second provide adequate drains: TCLL: ASCE 7-16; Pf=2 Provide adequate drains: Truss to be fully sheath Gable studs spaced at 1 This truss has been des This truss has been des This truss has been des This truss is designed i This truss is designed i This truss has been de from 0-0-0 to 1-8-1 for 3) Graphical purlin repres All dimensions given in 	loads in the plane of the truss only laified building designer as per AN: 5.0 psf (Lum DOL=1.15 Plate DOL- age to prevent water ponding. ad from one face or securely bracec -4-0 oc. igned for a 10.0 psf bottom chord lin- signed for a live load of 23.0psf on mbers. nection (by others) of truss to bearil condition. Review required. In accordance with the 2018 Interna signed for a total drag load of 250 p 250.0 plf. entation does not depict the size or feet-inches-sixteenths (FFIISS) for	SI/TPI 1. =1.15); Is=1.0; Rough Cat B; Partially E I against lateral movement (i.e. diagon ve load nonconcurrent with any other li the bottom chord in all areas where a ing plate capable of withstanding 100 lt titional Residential Code sections R502 If. Lumber DOL=(1.60) Plate grip DOL the orientation of the purlin along the f mat.	5 the face), see Standard Industry Gable End Details as Exp.; Ce=1.0; Cs=1.00; Ct=1.10 al web). ive loads. rectangle 3-6-0 tall by 2-0-0 wide will fit between the bott o uplift at joint(s) except (jt=lb) 4=839, 3=839. 2.11.1 and R802.10.2 and referenced standard ANSI/TPI .=(1.60) Connect truss to resist drag loads along bottom top and/or bottom chord.	om 1. chord
 Wind: ASCE 7-16; Vult- zone and C-C Corner(3 Lumber DOL=1.60 plate Truss designed for wind applicable, or consult qu TCLL: ASCE 7-16; Pf=2 Provide adequate drain: Truss to be fully sheathen Gable studs spaced at 1 This truss has been des * This truss has been des * This truss has been des * This truss is designed i Provide mechanical con Non Standard bearing This truss has been de from 0-0-0 to 1-8-1 for Graphical purlin repres All dimensions given in 	loads in the plane of the truss only ualified building designer as per AN: 5.0 psf (Lum DOL=1.15 Plate DOL- age to prevent water ponding. ad from one face or securely bracec -4-0 oc. igned for a 10.0 psf bottom chord lin isigned for a live load of 23.0psf on mbers. nection (by others) of truss to bearin condition. Review required. in accordance with the 2018 Interna signed for a total drag load of 250 p 250.0 pf. entation does not depict the size or feet-inches-sixteenths (FFIISS) for	SI/TPI 1. =1.15); Is=1.0; Rough Cat B; Partially E I against lateral movement (i.e. diagona we load nonconcurrent with any other li the bottom chord in all areas where a ing plate capable of withstanding 100 lb attional Residential Code sections R502 off. Lumber DOL=(1.60) Plate grip DOL the orientation of the purlin along the f mat.	5 the face), see Standard Industry Gable End Details as Exp.; Ce=1.0; Cs=1.00; Ct=1.10 al web). ive loads. rectangle 3-6-0 tall by 2-0-0 wide will fit between the bott o uplift at joint(s) except (jt=lb) 4=839, 3=839. 2.11.1 and R802.10.2 and referenced standard ANSI/TPI .=(1.60) Connect truss to resist drag loads along bottom top and/or bottom chord.	om 1. chord
) Wind: ASCE 7-16; Vult- zone and C-C Corner(3 Lumber DOL=1.60 plate) Truss designed for wind applicable, or consult qu) TCLL: ASCE 7-16; Pf=2) Provide adequate drain;) Truss to be fully sheath () Gable studs spaced at 1) This truss has been des)* This truss has been des ()* This truss has been des ()* This truss has been des () This truss has been des 2) This truss has been des () This truss has been des () This truss has been de from 0-0-0 to 1-8-1 for 3) Graphical purlin repres () All dimensions given in CAD CASE(S) Standard	loads in the plane of the truss only laified building designer as per AN: 5.0 psf (Lum DOL=1.15 Plate DOL- age to prevent water ponding. ad from one face or securely bracec -4-0 oc. igned for a 10.0 psf bottom chord lin signed for a live load of 23.0psf on mbers. nection (by others) of truss to bearli condition. Review required. in accordance with the 2018 Interna signed for a total drag load of 250 p 250.0 plf. entation does not depict the size or feet-inches-sixteenths (FFIISS) for	SI/TPI 1. =1.15); Is=1.0; Rough Cat B; Partially E I against lateral movement (i.e. diagon ve load nonconcurrent with any other li the bottom chord in all areas where a ing plate capable of withstanding 100 lt titional Residential Code sections R502 If. Lumber DOL=(1.60) Plate grip DOL the orientation of the purlin along the f mat.	5 the face), see Standard Industry Gable End Details as Exp.; Ce=1.0; Cs=1.00; Ct=1.10 al web). ive loads. rectangle 3-6-0 tall by 2-0-0 wide will fit between the both to uplift at joint(s) except (jt=lb) 4=839, 3=839. 2.11.1 and R802.10.2 and referenced standard ANSI/TPI .=(1.60) Connect truss to resist drag loads along bottom top and/or bottom chord.	om 1. chord
) Wind: ASCE 7-16; Vult- zone and C-C Corner(3 Lumber DOL=1.60 plate) Truss designed for wino applicable, or consult qu) TCLL: ASCE 7-16; Pf=2) Provide adequate drain:) Truss to be fully sheathen () Gable studs spaced at 1) Truss to be fully sheathen () Gable studs spaced at 1) This truss has been des () * This truss has been des () * This truss has been des () Non Standard bearing 1) This truss is designed 2) This truss has been de from 0-0-0 to 18-1 for 3) Graphical purlin repres 4) All dimensions given in 	loads in the plane of the truss only ualified building designer as per AN: 5.0 psf (Lum DOL=1.15 Plate DOL- age to prevent water ponding. ad from one face or securely bracec -4-0 oc. igned for a 10.0 psf bottom chord lin isigned for a live load of 23.0psf on mbers. nection (by others) of truss to beari condition. Review required. in accordance with the 2018 Interna signed for a total drag load of 250 p 250.0 pf. entation does not depict the size or feet-inches-sixteenths (FFIISS) for	SI/TPI 1. =1.15); Is=1.0; Rough Cat B; Partially E I against lateral movement (i.e. diagon- ve load nonconcurrent with any other li the bottom chord in all areas where a ing plate capable of withstanding 100 lb titional Residential Code sections R502 olf. Lumber DOL=(1.60) Plate grip DOL the orientation of the purlin along the l mat.	5 the face), see Standard Industry Gable End Details as Exp.; Ce=1.0; Cs=1.00; Ct=1.10 al web). ive loads. rectangle 3-6-0 tall by 2-0-0 wide will fit between the bott o uplift at joint(s) except (jt=lb) 4=839, 3=839. 2.11.1 and R802.10.2 and referenced standard ANSI/TPI =(1.60) Connect truss to resist drag loads along bottom top and/or bottom chord.	om 1. chord
) Wind: ASCE 7-16; Vultazone and C-C Correr(3 Lumber DOL=1.60 plate c) Truss designed for winc applicable, or consult quitable c) Truss designed for winc applicable, or consult quitable c) Truss to be fully sheath j) Truss to be fully sheath j) Truss to be fully sheath j) Table studs spaced at 1 j) This truss has been des j)* This truss has been des j)* This truss has been des j)* This truss is designed j) This truss is designed j) This truss has been de from 0-0-0 to 1-8-1 for j) Graphical purlin represe j) All dimensions given in 	loads in the plane of the truss only laified building designer as per AN: 5.0 psf (Lum DOL=1.15 Plate DOL- age to prevent water ponding. ad from one face or securely bracec -4-0 oc. igned for a 10.0 psf bottom chord lin signed for a live load of 23.0psf on mbers. nection (by others) of truss to bearli condition. Review required. in accordance with the 2018 Interna signed for a total drag load of 250 p 250.0 plf. entation does not depict the size or feet-inches-sixteenths (FFIISS) for	SI/TPI 1. =1.15); Is=1.0; Rough Cat B; Partially E I against lateral movement (i.e. diagona we load nonconcurrent with any other li the bottom chord in all areas where a ing plate capable of withstanding 100 lb titional Residential Code sections R502 If. Lumber DOL=(1.60) Plate grip DOL the orientation of the purlin along the mat.	5 the face), see Standard Industry Gable End Details as Exp.; Ce=1.0; Cs=1.00; Ct=1.10 al web). ive loads. rectangle 3-6-0 tall by 2-0-0 wide will fit between the both to uplift at joint(s) except (jt=lb) 4=839, 3=839. 2.11.1 and R802.10.2 and referenced standard ANSI/TPI .=(1.60) Connect truss to resist drag loads along bottom top and/or bottom chord.	om 1. chord
 Wind: ASCE 7-16; Vult- zone and C-C Corner(3 Lumber DOL=1.60 plate Truss designed for winc applicable, or consult quito) TCLL: ASCE 7-16; Pf=2 Provide adequate drain: Truss to be fully sheaththey Gable studs spaced at 1 This truss has been des * This truss has been des * This truss is abseen de chord and any other me Provide mechanical con Non Standard bearing This truss has been de from 0-0-0 to 1-8-1 for Graphical purlin repres All dimensions given in 	loads in the plane of the truss only laified building designer as per AN: 5.0 psf (Lum DOL=1.15 Plate DOL- age to prevent water ponding. ad from one face or securely bracec -4-0 oc. igned for a 10.0 psf bottom chord lin- signed for a live load of 23.0psf on mbers. nection (by others) of truss to bearil condition. Review required. in accordance with the 2018 Interme signed for a total drag load of 250 p 250.0 plf. entation does not depict the size or feet-inches-sixteenths (FFIISS) for	SI/TPI 1. =1.15); Is=1.0; Rough Cat B; Partially E I against lateral movement (i.e. diagon- ve load nonconcurrent with any other li the bottom chord in all areas where a ing plate capable of withstanding 100 lk tional Residential Code sections R502 If. Lumber DOL=(1.60) Plate grip DOL the orientation of the purlin along the l mat.	5 the face), see Standard Industry Gable End Details as Exp.; Ce=1.0; Cs=1.00; Ct=1.10 al web). ive loads. rectangle 3-6-0 tall by 2-0-0 wide will fit between the bott b uplift at joint(s) except (jt=lb) 4=839, 3=839. 2.11.1 and R802.10.2 and referenced standard ANSI/TPI .=(1.60) Connect truss to resist drag loads along bottom top and/or bottom chord.	2m 1. chord
) Wind: ASCE 7-16; Vultazone and C-C Corner(3) Lumber DOL=1.60 plate) Truss designed for winc applicable, or consult quitable) TCLL: ASCE 7-16; Pf=2) Provide adequate draina) Truss to be fully sheaththe (Gable studs spaced at 1)) This truss has been des) * This truss has been des) This truss has been de from 0-0 to 1-8-1 for 3) Graphical purlin represe 4) All dimensions given in 	I loads in the plane of the truss only ialified building designer as per AN: 5.0 psf (Lum DOL=1.15 Plate DOL- age to prevent water ponding. ad from one face or securely bracec -4-0 oc. igned for a 10.0 psf bottom chord lin isigned for a live load of 23.0psf on mbers. nection (by others) of truss to bearli condition. Review required. in accordance with the 2018 Interna signed for a total drag load of 250 p 250.0 plf. entation does not depict the size or i feet-inches-sixteenths (FFIISS) for	SI/TPI 1. =1.15); Is=1.0; Rough Cat B; Partially E I against lateral movement (i.e. diagona ve load nonconcurrent with any other li the bottom chord in all areas where a ing plate capable of withstanding 100 lb attional Residential Code sections R502 off. Lumber DOL=(1.60) Plate grip DOL the orientation of the purlin along the f mat.	5 the face), see Standard Industry Gable End Details as Exp.; Ce=1.0; Cs=1.00; Ct=1.10 al web). ive loads. rectangle 3-6-0 tall by 2-0-0 wide will fit between the both to uplift at joint(s) except (jt=lb) 4=839, 3=839. 2.11.1 and R802.10.2 and referenced standard ANSI/TPI .=(1.60) Connect truss to resist drag loads along bottom top and/or bottom chord.	norm 1. chord 1. chor
) Wind: ASCE 7-16; Vult- zone and C-C Corner(3 Lumber DOL=1.60 plate) Truss designed for winc applicable, or consult quito) TCLL: ASCE 7-16; Pf=2) Provide adequate draina;) Truss to be fully sheath) This truss has been des) This truss has been des) This truss has been des) This truss has been de form 0-0 to 1-8-1 for 3) Graphical purlin repres 4) All dimensions given in OAD CASE(S) Standard 	loads in the plane of the truss only laified building designer as per AN: 5.0 psf (Lum DOL=1.15 Plate DOL- age to prevent water ponding. ad from one face or securely bracec -4-0 oc. igned for a 10.0 psf bottom chord lin signed for a live load of 23.0psf on mbers. nection (by others) of truss to bearli condition. Review required. in accordance with the 2018 Interme signed for a total drag load of 250 p 250.0 plf. entation does not depict the size or i feet-inches-sixteenths (FFIISS) for	SI/TPI 1. =1.15); Is=1.0; Rough Cat B; Partially E I against lateral movement (i.e. diagon ve load nonconcurrent with any other li the bottom chord in all areas where a ng plate capable of withstanding 100 lt tional Residential Code sections R502 lf. Lumber DOL=(1.60) Plate grip DOL the orientation of the purlin along the f mat.	5 the face), see Standard Industry Gable End Details as Exp.; Ce=1.0; Cs=1.00; Ct=1.10 al web). ive loads. rectangle 3-6-0 tall by 2-0-0 wide will fit between the bott b uplift at joint(s) except (jt=lb) 4=839, 3=839. 2.11.1 and R802.10.2 and referenced standard ANSI/TPI .=(1.60) Connect truss to resist drag loads along bottom top and/or bottom chord.	2m 1. chord 1. cho

Design valid for use only with MITek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult **ANSUTPI Quality Criteria**, **DSB-89** and **BCS11 Building Component Safety Information** available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719. the TRUSS CO. INC.

2x4 DF Stud WEBS

OTHERS 2x4 DF Stud SLIDER Left 2x4 DF No.1&Btr 4-3-14

REACTIONS. (lb/size) 5=168/Mechanical, 2=314/0-3-8 (min. 0-1-8)

Max Horz 2=56(LC 9) Max Uplift5=-13(LC 12), 2=-26(LC 12)

Max Grav 5=239(LC 19), 2=463(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(12-13)

- 1) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.8psf; BCDL=4.2psf; h=12ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -1-6-0 to 1-6-0, Exterior(2N) 1-6-0 to 1-9-12, Corner(3E) 1-9-12 to 4-9-12 zone; cantilever left and right exposed ; end vertical left and
- right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

- 4) Unbalanced snow loads have been considered for this design.
 5) This truss has been designed for greater of min roof live load of 16.0 psf or 1.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 23.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom
- chord and any other members.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) All dimensions given in feet-inches-sixteenths (FFIISS) format.

13) Notch 4-0-0 o.c.

LOAD CASE(S) Standard

ONA April 17,2023

MiTek recommends that Stabilizers and required cross bracing be installed

during truss erection, in accordance with Stabilizer Installation guide.

Max Uplift 4=-12(LC 12), 2=-26(LC 12) Max Grav 4=230(LC 19), 2=470(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (10)

- 1) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.8psf; BCDL=4.2psf; h=12ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 1-9-12, Exterior(2E) 1-9-12 to 4-9-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

Unbalanced snow loads have been considered for this design.

- 4) This truss has been designed for greater of min roof live load of 16.0 psf or 1.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live
- loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 6) * This truss has been designed for a live load of 23.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom
- chord and any other members.

7) Refer to girder(s) for truss to truss connections.

- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) All dimensions given in feet-inches-sixteenths (FFIISS) format.

LOAD CASE(S) Standard

			<u>2-11-8</u> 2-11-8	
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL 8.0 BCLL 0.0 * BCDL 7.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.18 BC 0.06 WB 0.00 Matrix-P	DEFL. in (loc) l/defl L/d Vert(LL) -0.00 2-5 >999 360 Vert(CT) -0.01 2-5 >999 240 Horz(CT) 0.00 5 n/a n/a	PLATES GRIP MT20 185/148 Weight: 14 lb FT = 20%
LUMBER- TOP CHORD 2x4 DF No.18	kBtr		BRACING- TOP CHORD Structural wood sheathing direct	y applied or 2-11-8 oc purlins, except end verticals.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed

during truss erection, in accordance with Stabilizer Installation guide.

TOP CHORD 2x4 DF No.1&Btr BOT CHORD 2x4 HF No.2 WEBS 2x4 DF Stud

Left 2x4 DF No.1&Btr 2-1-14 SLIDER

REACTIONS. (lb/size) 5=73/Mechanical, 2=249/0-3-8 (min. 0-1-8) Max Horz 2=36(LC 9) Max Uplift 5=-3(LC 12), 2=-29(LC 8) Max Grav 5=100(LC 19), 2=363(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(10)

1) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.8psf; BCDL=4.2psf; h=12ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 16.0 psf or 1.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live

loads

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 23.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom 6)

chord and any other members.

7) Refer to girder(s) for truss to truss connections.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2.
 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) All dimensions given in feet-inches-sixteenths (FFIISS) format.

LOAD CASE(S) Standard

the**TRUSS**CO. INC.

	<u>4-0-0</u> <u>4-0-0</u>	8-0-0 4-0-0	
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL 8.0 BCLL 0.0 * BCDL 7.0	SPACING- 2-0-0 CSI. Plate Grip DOL 1.15 TC 0.30 Lumber DOL 1.15 BC 0.13 Rep Stress Incr YES WB 0.05 Code IRC2018/TPI2014 Matrix-P	DEFL. in (loc) //defl L/d Vert(LL) -0.01 2-6 >999 360 Vert(CT) -0.01 2-6 >999 240 Horz(CT) 0.00 4 n/a n/a	PLATES GRIP MT20 185/148 Weight: 25 lb FT = 20%
LUMBER- TOP CHORD 2x4 HF No.2 BOT CHORD 2x4 HF No.2 WEBS 2x4 DF Stud		BRACING- TOP CHORD Structural wood sheathing dired BOT CHORD Rigid ceiling directly applied or MiTek recommends that Stab during truss erection, in accor	tly applied or 6-0-0 oc purlins. 10-0-0 oc bracing. ilizers and required cross bracing be installed dance with Stabilizer Installation guide.

REACTIONS. (lb/size) 2=416/0-5-8 (min. 0-1-8), 4=416/0-5-8 (min. 0-1-8) Max Horz 2=22(LC 16) Max Uplift 2=-26(LC 12), 4=-26(LC 13)

Max Grav 2=555(LC 19), 4=555(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-7=-408/60, 3-7=-314/72, 3-8=-314/72, 4-8=-408/60

BOT CHORD 2-6=0/286, 4-6=0/286

NOTES-(9)

1) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.8psf; BCDL=4.2psf; h=12ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Exterior(2R) 1-6-0 to 6-6-0, Exterior(2E) 6-6-0 to 9-6-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

 3) Unbalanced snow loads have been considered for this design.
 4) This truss has been designed for greater of min roof live load of 16.0 psf or 1.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 23.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) All dimensions given in feet-inches-sixteenths (FFIISS) format.

LOAD CASE(S) Standard

			<u>8-0-0</u> 8-0-0		
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL TCDL 8.0 BCLL 0.0 * BCDL 7.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.33 BC 0.12 WB 0.04 Matrix-P	DEFL. i Vert(LL) -0.0 Vert(CT) 0.0 Horz(CT) 0.0	n (loc) l/defl L/d 0 5 n/r 120 0 5 n/r 90 0 4 n/a n/a	PLATES GRIP MT20 185/148 Weight: 25 lb FT = 20%
LUMBER- TOP CHORD 2x4 HF No.2 BOT CHORD 2x4 HF No.2 OTHERS 2x4 DF Stud			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing direct Rigid ceiling directly applied or 6 MiTek recommends that Stabil during truss erection, in accord	ly applied or 6-0-0 oc purlins. -0-0 oc bracing. izers and required cross bracing be installed lance with Stabilizer Installation guide.

REACTIONS. (lb/size) 2=276/8-0-0 (min. 0-1-8), 4=276/8-0-0 (min. 0-1-8), 6=287/8-0-0 (min. 0-1-8) Max Horz 2=22(LC 16) Max Uplift 2=-33(LC 12), 4=-37(LC 13) Max Grav 2=407(LC 19), 4=407(LC 20), 6=287(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(12)

- 1) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.8psf; BCDL=4.2psf; h=12ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -1-6-0 to 1-6-0, Corner(3R) 1-6-0 to 6-6-0, Corner(3E) 6-6-0 to 9-6-0 zone; cantilever left and right exposed; end vertical left and right
- exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as
- applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design
- 5) This truss has been designed for greater of min roof live load of 16.0 psf or 1.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live
- loads 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- s) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 23.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom
- chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 12) All dimensions given in feet-inches-sixteenths (FFIISS) format.

LOAD CASE(S) Standard

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (10)

- Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.8psf; BCDL=4.2psf; h=12ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

- 4) This truss has been designed for greater of min roof live load of 16.0 psf or 1.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live
- loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 23.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom
- chord and any other members.

7) Refer to girder(s) for truss to truss connections.

- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) All dimensions given in feet-inches-sixteenths (FFIISS) format.

LOAD CASE(S) Standard

