PRCTI20240722

STRUCTURAL CALCULATIONS

Steel Storage Shelving By Mobile Media Storage Solutions

E N G I N E E R I N G

JD Sports - Store #1315

South Hill Mall - Space #530 3500 South Meridian Street Puyallup, Washington 98373

Prepared For:

Mobile Media Storage Solutions 45 Turner Drive - Suite #2A Middletown, NY 10941

Please note: the calculations contained within justify the seismic resistance of the shelving systems for both vertical and lateral forces as required by the 2021 WSBC, ASCE 7-16, and ANSI/RMI-MH16.1 (2012). These storage shelves are not accessible to the general public

ment & Permitting S ISSUED PERMIT

Public Works

Building

Engineering

Calculations required to be provided by the Permittee on site for all Inspections

Design Inputs:

10'H Mobile Shelf Units

MOBILE MEDIA STORAGE SOLUTIONS

STEEL STORAGE SHELVING - LIGHT RETAIL

CODES: Current Editions of the: IBC & CBC & ASCE 7 & RMI

Steel Storage Shelving:

Shahing Coornetty					
Sneiving Geometry -	10.0	τ.		22	lua:
Height of Sheiving Unit =	10.0	π	Steel Yield Stress =	33	KSI
Width of Shelving Unit =	4.0	ft G	Modulus of Elast. =	29000	KSI
Depth of Shelving Unit =	2.0	ft		4 -	
Number of Shelves/Unit =	6		Eff. Length Factor =	1./	
Vertical Shelf Spacing =	23.4	in	Unbraced Length,x =	23.4	in
Back to Back Units?	NO		Unbraced Length,y =	23.4	in
Are There Mobile Units?	YES		Type of Post?	9 14ga Upri	ight Posts
# of Units Per Anti-Tip?	1.5		Type of Beam?	DRL Low I	Profile
Shelving Loading -					
Live Load per Shelf =	9.4	psf	Display On Plaque Nea	ar Shelving	Units
Maximum Weight per Shelf =	75	lbs	Per 2ft Deep Shelf	U	
Dead Load per Shelf =	2.0	psf	Wire Grid Shelf Mater	ial	
Weight of Each Post =	7.5	Ibs			
Weight of Mobile Carriage =	50	lbs			
Floor Load Calculations:					
Total Load on Each "I" Post =	144	lhs			
Total Load On Each Unit =	627	lbs			
Seismic Information -					
Importance Factor -	1.0	Not Op	pen to the Public	SDC:	D
Site Class -	D - De	efault			
Mapped Accel. Parameters:					
$S_s = 1.264$	Fa =	1.200	$S_{ms} = 1.517$	S _{ds} =	1.011
$S_1 = 0.436$	F _v =	1.864	$S_{m1} = 0.813$	S _{d1} =	0.542
					1
Structural System - ASCE 7 Section 15	5.5.3				
Steel Storage Shelving:	R =	4	$a_p = 2.5$	I _p =	: 1.0
Average Roof Height =	20	ft	0'-0" For Ground Floo	r Location	
Height of Base Attachment =	0	ft	Ground Floor		
Shear Coeff Boundaries =	V _{min} =	0.044			
	V _{max} =	0.253			
Design Base Shear Coeff =	V _t =	0.177	Adjusted For ASD		

Cumulative Moment:

26337 in-lbs

Lateral Force Distribution: per ASCE 7 Section 15.5.3.3

Total Dead Load per Shelf =	21.0	lbs
Total Live Load per Shelf =	75.2	Ibs
Lateral DL Force per Shelf =	3.7	lbs
Lateral LL Force per Shelf =	13.3	lbs
67% of LL Force per Shelf =	8.9	lbs
Total DL Base Shear =	22.3	lbs
Total LL Base Shear =	79.8	Ibs

LC1: Each Shelf is Loaded to 67% of its Live Weight

	Total Ba	ase Shear =	75.8	lbs	Controlling Load	Case By	/ Inspecti	ion
Heig	ht:	Load:	% Pe	er Level:		Latera	al Force/I	_evel:
h1 =	3 in	75 lbs).8%		F1 =	0.6	lbs
h2 =	26 in	75 lbs	7	7.2%		F2 =	5.4	lbs
h3 =	50 in	75 lbs	1	3.5%		F3 =	10.2	lbs
h4 =	73 in	75 lbs	1	9.8%		F4 =	15.0	lbs
h5 =	97 in	75 lbs	2	6.2%		F5 =	19.8	lbs
h6 =	120 in	75 lbs	3	2.5%		F6 =	24.6	lbs
h7 =	0 in	0 lbs	C).0%		F7 =	0.0	lbs
h8 =	0 in	0 lbs	C	0.0%		F8 =	0.0	lbs
h9 =	0 in	0 lbs	C).0%		F9 =	0.0	lbs
h10 =	0 in	0 lbs	C).0%	F	[:] 10 =	0.0	lbs
h11 =	0 in	0 lbs	C).0%	F	[:] 11 =	0.0	lbs
h12 =	0 in	0 lbs	C).0%	F	[:] 12 =	0.0	lbs
h13 =	0 in	0 lbs	C).0%	F	13 =	0.0	lbs
h14 =	0 in	0 lbs	C).0%	F	14 =	0.0	lbs
h15 =	0 in	0 lbs	C	0.0%	F	15 =	0.0	lbs
			Sum = 10	0%			75.8	lbs

LC 2: Top Shelf Only is Loaded to 100% of its Live Weight

Total Base Shear = 35.6 lbs Does Not Control

By inspection, the force distribution for intermediate shelves without live load (case 2) is negligible. Calculate the moment for each column based on the total seismic base shear for each shelf being loaded to 67% of it's allowable live weight. The column at the center of the shelving system is the worst case for this condition.

Column Calculations - Combined Bending and Axial						
Post Type: Double Riv	vet "L" or '	'T" Post				
Width =	1.5	in	r _x = 0.470 in			
Depth =	1.5	in	S _x = 0.040 in3			
Thickness =	0.075	in	$I_x = 0.060$ in4			
E =	29000	ksi	$A_p = 0.220$ in2			
			A _e = 0.157 in2			
Column Bending Calculations -						
Max Column Moment =	18.3	ft-lbs	For L Post			
Allowable Bending Stress =	19.8	ksi				
Bending Stress on Column =	5.5	ksi	Bending Stress OK			
Column Deflection Calculations -						
Max Deflection =	0 306	in	At Top of Unit			
Deflection Batio =	392					
Allowable Deflection =	6	in	Max Deflection = 5% of Height			
	c		Deflection OK			
Shelf Rivet Connection -						
Diameter of Rivet =	0.25	in				
Shear on Each Rivet =	293.2	lbs				
Brg Capacity of Rivet =	787.5	lbs	Brg Stress OK			
Allowable Shear Stress =	13.2	ksi				
Shear Stress on Rivet =	6.0	ksi	Shear Stress OK			
Column Axial Calculations -	Per "L" Po	ost				
DL + PL =	144	lbs	RMI Load Combination #1			
DL + PL + EQ =	252	lbs	RMI Load Combination #6			
Column Conseity Coloulations						
Controlling Puckling Stress	22 ⊑	kci				
Allowable Comp. Stress =	23.5 10.2	KSI				
Factor of Safety for Comp	1 20.5	KSI				
	1.80					
Nominal Column Capacity =	2878	lbs				
Allowable Column Capacity =	1599	lbs				
Static Axial Load on Column =	144	lbs	Axial Load OK			
Combined Bending And Axial Force	<u>es -</u>					
Critical Buckling Load =	10852	lbs				
Axial Stress Unity =	0.158		Magnification Factor = 0.976			
Bending Stress Unity =	0.242		C _m = 0.85			
Combined Stress Unity =	0.400		Column is Adequate			

Overturning and Anti-Tip Ca	Iculatio	ns	
Overturning Forces -			
 Total Weight =	428	lbs	Load Case 1: Dead Load + 67% Live Load
Total Lateral Force =	76	lbs	
Overturning Force =	552	ft*lbs	Controlling Overturning Force
Total Weight =	201	lbs	Load Case 2: Dead Load + 100% Top Shelf
Total Lateral Force =	36	lbs	
Overturning Force =	288	ft*lbs	Does Not Control
	170	lha	
Shoar Force per Anchor =	20	IDS Ibc	
	50	105	
USE: 'Hilti' HUS-EZ	(or equiv	alent) PC	DST INSTALLED ANCHOR BOLTS
Allowable Tension Force =	736	lbs	For Concrete Slab on Grade
Allowable Shear Force =	1056	lbs	3/8" Diameter x 2.5" Embedment
Vartical Saismic Earca -	20.2	lbc	
Overstrength Factor -	30.3 2	105	For Anchoring to Concrete
	Z	-	
Combined Loading =	0.484	J	Floor Anchors are Adequate
			1.11.
Mobile Carriage OR Baseplate Conn	Mobile C	r Static L	JNITS - OP 14ga Bacoplata at Static Units
		annage	On 14ga basepiate at Static Onits
Tension per Side =	267	lbs	
Capacity of (1) Tek Screw =	394	lbs	(2) #12 Screws Are Adequate
Tension Cap. of Baseplate Leg =	2030	lbs	Baseplate Thickness OK
			(Yielding in Net / Fracture in Gross)
Anti-Tip Arm and Track Design -			
Anti-Tip Yield Stress =	16	ksi	6063-T5
Thickness Anti-Tip =	0.12	in	
Width of Anti-Tip =	0.43	in	
Section Modulus of Leg =	0.0092	in3	
Allowable Stress on Leg =	12.61	ksi	
Bending Stress on Leg =	9.32	ksi	
Anti-Tip Stress Unity =	0.739	J	Bending Stress OK
	0.000		
Section Modulus of Track =	0.090	in3	
Spacing of Track A.B's =	24	IN	
Allowable Alumn. Stress =	12.61	ksi	6063-T5
Bending Stress on Track =	8.90	ksi	
Track Stress Unity =	0.706	1	Bending Stress OK

Shelf Beam Calculations

Shelf Beam Calculations:	DRL Low I	Profile				
Steel Yield Stress =	33	ksi	Sh	elf DL =	2.0	psf
Modulus of Elast. =	29000	ksi	Sł	nelf LL =	9.40	psf
		DDU	550			
Beam Type:	DRL	DRH	DRC	_		
Area of Beam =	0.168	0.277	0.445 in	2		
Section Modulus of Beam =	0.020	0.219	0.346 in	3		
Moment of Inertia of Beam =	0.014	0.220	0.477 in	4		
Shelf Width = 4.0	ft	Allo	wable Bending	Stress =	19.3	ksi
Shelf Depth = 2.0	ft	А	llowable Shear	Stress =	13.2	ksi
Total Load/Shelf = 91	lbs					
Distributed Load = 11.4	plf					
Beam Type:	DRI	DRH	DRC			
Maximum Design Moment =	22.8	<u></u>	ft-	lbs		
Maximum Design Shear =	22.8		lh	с.		
Beam Bending Stresses -	12.0		ks	i		
Deam Cheer Stresses -	0.14		K3	:		
Beam Shear Stresses =	0.14		KS	1		
Bending Stress Unity =	0.720		Bending Stres	s OK		
Shear Stress Unity =	0.010		Shear Stress C	Ж		
Max Allowable Deflection =	0.267	in	L/180			
Maximum Beam Deflection =	0.163	in	Deflection OK	·		

Shelf Beam Rivet Check:

Diameter of Rivet =	0.25	in
Post Moment Shear on Rivet =	293.2	lbs
Beam Shear on Rivet =	22.8	lbs
Resultant Shear =	294.0	lbs
Brg Capacity of Rivet =	787.5	lbs
Allowable Shear Stress = Shear Stress on Rivet =	13.2 6.0	ksi ksi

Brg Stress OK

Shear Stress OK

Slab Bearing & Uplift Calculations

Slab Design Properties -

Minimum Concrete Strength =	2500	psi	Assumed
Thickness of Concrete Slab =	4	in	Assumed
Weight of Concrete Slab =	50	psf	
Allowable Bearing Pressure =	500	psf	Assumed
Bearing Loads On Post =	80	lbs	Dead Load
	226	lbs	Live Load
	276	lbs	EQ Load
Uplift Loads on Post =	178	lbs	Resultant Uplift
Slab Bearing Capacity -			
Depth of Post on Slab =	1.5	in	
Factored Bearing Load =	852	lbs	
Required Bearing Area =	167.70	in2	12.95 inches per side
Critical Section =	3.72	in	For Bending
Soil Pressure on Crit. Section =	731.7	plf	Along Critical Length
Section Modulus =	32.0	in3	Plain Concrete per Foot
Shear Area =	22	in	
Conc. Shear Stress =	9.7	psi	
Allowable Shear Stress =	73.2	psi	Shear Stress OK

Conc. Bending Stress = 13.2 psi Allowable Bending Stress = 137.5 psi

ОК

Bending Stress OK

Slab Uplift Capacity -

Required Area to Resist Uplift =	5.93	ft2
Length of Slab Req'd =	1.48	ft
Worst Case Length of Slab =	4.00	ft
Distance to Anchor Bolt =	2.00	ft
Shear Force on 1ft Strip =	140.0	lbs
Allowable Shear Force =	1760.0	lbs
Bending Moment on 1ft Strip =	140.0	ft-lbs
Allowable Bending Moment =	366.7	ft-lbs

Assume Full Shelf Width x Req'd Length Maximum of Width or Length Req'd

Shear OK

Bending OK

MOBILE MEDIA STORAGE SOLUTIONS

STEEL STORAGE SHELVING - LIGHT RETAIL

CODES: Current Editions of the: IBC & CBC & ASCE 7 & RMI

Design Inputs: Steel Storage Shelving:			12'H Freestandin	g Units		
Shelving Geometry -						
Height of She	elving Unit =	12.0	ft	Steel Yield Stress =	33	ksi
Width of She	elving Unit =	5.0	ft	Modulus of Elast. =	29000	ksi
Depth of She	elving Unit =	2.0	ft (MAX)			
Number of Sh	elves/Unit =	7		Eff. Length Factor =	1.7	
Vertical She	elf Spacing =	23.5	in	Unbraced Length,x =	23.5	in
Back to	Back Units?	NO		Unbraced Length,y =	23.5	in
Are There N	lobile Units?	NO		Type of Post?	14ga Upri	ight Posts
# of Units	Per Anti-Tip?	NA		Type of Beam?	DRL Low I	Profile
Shelving Loading -						
Live Load	d per Shelf =	7.5	psf	Display On Plaque Nea	ar Shelving	Units
Maximum Weigh	t per Shelf =	75	lbs	Per 2ft (MAX) Deep Shelf		
Dead Load	d per Shelf =	2.0	psf	Wire Grid Shelf Mater	ial	
Weight of	Each Post =	9.0	lbs			
Weight of Mobil	le Carriage =	0	lbs			
Floor Load	Calculations:					
Total Load on Ead	ch "L" Post =	175	lbs			
Total Load On	Each Unit =	701	lbs			
Seismic Information -	- .					_
Importa	ince Factor -	1.0	Not Open	to the Public	SDC:	D
	Site Class -	D - De	efault			
Mapped Accel. Parame	eters:					
S _s :	= 1.264	F _a =	1.200	$S_{ms} = 1.517$	S _{ds} =	1.011
S ₁ :	= 0.436	F _v =	1.864	$S_{m1} = 0.813$	S _{d1} =	0.542
Structural System - AS	CE 7 Section 15	.5.3				

20	ft	0'-0" For Ground Floor Location
0	ft	Ground Floor
V _{min} =	0.044	
V _{max} =	0.253	

Adjusted For ASD

 $a_p = 2.5$

 $I_p = 1.0$

Design Base Shear Coeff = Vt = 0.177

R = 4

Steel Storage Shelving:

Average Roof Height =

Height of Base Attachment =

Shear Coeff Boundaries =

Cumulative Moment:

38785 in-lbs

Lateral Force Distribution: per ASCE 7 Section 15.5.3.3

Total Dead Load per Shelf =	25.1	lbs
Total Live Load per Shelf =	75	lbs
Lateral DL Force per Shelf =	4.4	lbs
Lateral LL Force per Shelf =	13.3	lbs
67% of LL Force per Shelf =	8.9	lbs
Total DL Base Shear =	31.1	lbs
Total LL Base Shear =	92.9	lbs

LC1: Each Shelf is Loaded to 67% of its Live Weight

	Total E	Base Shear =	93.4	lbs	Controlling Load	Case By	/ Inspect	ion
Heig	ht:	Load:	% Pe	er Level:		Latera	al Force/	Level:
h1 =	3 in	75 lbs	(0.6%		F1 =	0.5	lbs
h2 =	27 in	75 lbs	5	5.2%		F2 =	4.8	lbs
h3 =	50 in	75 lbs	9	9.7%		F3 =	9.1	lbs
h4 =	74 in	75 lbs	1	4.3%		F4 =	13.3	lbs
h5 =	97 in	75 lbs	1	8.9%		F5 =	17.6	lbs
h6 =	121 in	75 lbs	2	3.4%		F6 =	21.9	lbs
h7 =	144 in	75 lbs	2	8.0%		F7 =	26.1	lbs
h8 =	0 in	0 lbs	(0.0%		F8 =	0.0	lbs
h9 =	0 in	0 lbs	(0.0%		F9 =	0.0	lbs
h10 =	0 in	0 lbs	(0.0%	I	F10 =	0.0	lbs
h11 =	0 in	0 lbs	(0.0%	I	F11 =	0.0	lbs
h12 =	0 in	0 lbs	(0.0%	I	F12 =	0.0	lbs
h13 =	0 in	0 lbs	(0.0%	I	F13 =	0.0	lbs
h14 =	0 in	0 lbs	(0.0%	I	F14 =	0.0	lbs
h15 =	0 in	0 lbs	(0.0%	I	F15 =	0.0	lbs
			Sum = 10	0%	Тс	otal =	93.4	lbs

LC 2: Top Shelf Only is Loaded to 100% of its Live Weight

Total Base Shear = 44.4 lbs Does Not Control

By inspection, the force distribution for intermediate shelves without live load (case 2) is negligible. Calculate the moment for each column based on the total seismic base shear for each shelf being loaded to 67% of it's allowable live weight. The column at the center of the shelving system is the worst case for this condition.

Column Calculations - Com	bined Be	ending	and Axial
Post Type: Double Ri	vet "L" or '	'T" Post	
Width =	1.5	in	$r_x = 0.470$ in
Depth =	1.5	in	S _x = 0.040 in3
Thickness =	0.075	in	$I_x = 0.060$ in4
E =	29000	ksi	$A_p = 0.220$ in 2
			A _e = 0.157 in2
Column Bending Calculations -			
Max Column Moment =	22.7	ft-lbs	For L Post
Allowable Bending Stress =	19.8	ksi	
Bending Stress on Column =	6.8	ksi	Bending Stress OK
Column Deflection Calculations -			
Max Deflection =	በ ፈጓጾ	in	At Top of Unit
Deflection Batio =	329		
Allowable Deflection =	7.2	in	Max Deflection = 5% of Height
			Deflection OK
Shelf Rivet Connection -			
Diameter of Rivet =	0.25	in	
Shear on Each Rivet =	363.6	lbs	
Brg Capacity of Rivet =	787.5	lbs	Brg Stress OK
Allowable Shear Stress =	13.2	ksi	
Shear Stress on Rivet =	7.4	ksi	Shear Stress OK
Column Axial Calculations -	Per "L" Po	ost	
 DL + PL =	175	lbs	RMI Load Combination #1
DL + PL + EQ =	343	lbs	RMI Load Combination #6
Column Conseity Coloulations			
Controlling Puckling Stross -	7 2 /	kci	
Allowable Comp. Stress -	23.4 18 3	ksi	
Factor of Safety for Comp. =	1 80	KJI	
	1.80		
Nominal Column Capacity =	2871	lbs	
Allowable Column Capacity =	1595	lbs	
Static Axial Load on Column =	175	lbs	Axial Load OK
Combined Bending And Axial Force	es -		
Critical Buckling Load =	10760	lbs	
Axial Stress Unity =	0.215		Magnification Factor = 0.971
Bending Stress Unity =	0.302		C _m = 0.85
Combined Stress Unity =	0.516		Column is Adequate

Overturning and Anti-Tip Ca			
Overturning Forces -			
Total Weight =	528	lbs	Load Case 1: Dead Load + 67% Live Load
Total Lateral Force =	93	lbs	
Overturning Force =	806	ft*lbs	Controlling Overturning Force
	251	lha	Land Case 2: Deed Land : 100% Tay Shelf
I otal Weight =	251	IDS	Load Case 2: Dead Load + 100% Top Shelf
Total Lateral Force =	44	IDS	
Overturning Force =	407	ft*lbs	Does Not Control
Tension Force per Anchor =	282	lbs	
Shear Force per Anchor =	47	lbs	
USE: 'Hilti' HUS-EZ	(or equiv	alent) PO	ST INSTALLED ANCHOR BOLTS
Allowable Tension Force =	736	lbs	For Concrete Slab on Grade
Allowable Shear Force =	1056	lbs	3/8" Diameter x 2.5" Embedment
Vertical Seismic Force =	37.4	lbs	
Overstrength Factor =	2		For Anchoring to Concrete
Combined Loading =	0.766]	Floor Anchors are Adequate
Mobile Carriage OP Basenlate Conr	oction Eo	r Static II	nite -
Type of Connection =	NONE		OR 14ga Baseplate at Static Units
Tansian nor Sida –	202	lba	Static Decembers Connection
Consister of (1) Tale Server	282	IDS	(2) #12 Service Are Adocusto
Capacity of (1) Tek Screw =	394	IDS	(2) #12 Screws Are Adequate
Tension Cap. of Baseplate Leg =	2030	lbs	Baseplate Thickness OK
			(Yielding in Net / Fracture in Gross)
Anti-Tip Arm and Track Design -			
Anti-Tip Yield Stress =			
	16	ksi	6063-T5
Thickness Anti-Tip =	16 0.12	ksi in	6063-T5
Thickness Anti-Tip = Width of Anti-Tip =	16 0.12 0.43	ksi in in	6063-T5
Thickness Anti-Tip = Width of Anti-Tip = Section Modulus of Leg =	16 0.12 0.43 0.0092	ksi in in in3	6063-T5
Thickness Anti-Tip = Width of Anti-Tip = Section Modulus of Leg = Allowable Stress on Leg =	16 0.12 0.43 0.0092 N/A	ksi in in3 ksi	6063-T5
Thickness Anti-Tip = Width of Anti-Tip = Section Modulus of Leg = Allowable Stress on Leg = Bending Stress on Leg =	16 0.12 0.43 0.0092 N/A N/A	ksi in in3 ksi ksi	6063-T5
Thickness Anti-Tip = Width of Anti-Tip = Section Modulus of Leg = Allowable Stress on Leg = Bending Stress on Leg = Anti-Tip Stress Unity =	16 0.12 0.43 0.0092 N/A N/A N/A	ksi in in3 ksi ksi	6063-T5
Thickness Anti-Tip = Width of Anti-Tip = Section Modulus of Leg = Allowable Stress on Leg = Bending Stress on Leg = Anti-Tip Stress Unity =	16 0.12 0.43 0.0092 N/A N/A N/A	ksi in in3 ksi ksi	6063-T5
Thickness Anti-Tip = Width of Anti-Tip = Section Modulus of Leg = Allowable Stress on Leg = Bending Stress on Leg = Anti-Tip Stress Unity = Section Modulus of Track =	16 0.12 0.43 0.0092 N/A N/A N/A 0.090	ksi in in3 ksi ksi]	6063-T5
Thickness Anti-Tip = Width of Anti-Tip = Section Modulus of Leg = Allowable Stress on Leg = Bending Stress on Leg = Anti-Tip Stress Unity = Section Modulus of Track = Spacing of Track A.B's =	16 0.12 0.43 0.0092 N/A N/A 0.090 N/A	ksi in in3 ksi ksi in3 in3	6063-T5
Thickness Anti-Tip = Width of Anti-Tip = Section Modulus of Leg = Allowable Stress on Leg = Bending Stress on Leg = Anti-Tip Stress Unity = Section Modulus of Track = Spacing of Track A.B's = Allowable Alumn. Stress =	16 0.12 0.43 0.0092 N/A N/A 0.090 N/A N/A	ksi in in3 ksi ksi in3 in3 ksi	6063-T5
Thickness Anti-Tip = Width of Anti-Tip = Section Modulus of Leg = Allowable Stress on Leg = Bending Stress on Leg = Anti-Tip Stress Unity = Section Modulus of Track = Spacing of Track A.B's = Allowable Alumn. Stress = Bending Stress on Track =	16 0.12 0.43 0.0092 N/A N/A 0.090 N/A N/A N/A	ksi in in3 ksi ksi in3 in ksi ksi	6063-T5

Shelf Beam Calculations

Shelf Beam Calculations:	DRL Low I	Profile				
Steel Yield Stress =	33	ksi		Shelf DL =	2.0	psf
Modulus of Elast. =	29000	ksi		Shelf LL =	7.50	psf
Description Transmission		DDU	DDC			
Beam Type:			DRC			
Area of Beam =	0.168	0.277	0.445	in2		
Section Modulus of Beam =	0.020	0.219	0.346	in3		
Moment of Inertia of Beam =	0.014	0.220	0.477	in4		
Shelf Width = 5.0	ft	Allo	wable Bendi	ing Stress =	19.8	ksi
Shelf Depth = 2.0	ft	А	llowable She	ear Stress =	13.2	ksi
Total Load/Shelf = 95	lbs					
Distributed Load = 9.5	plf					
Beam Type:	DRI	DRH	DRC			
Maximum Design Moment =	29.7	<u></u>	<u></u>	ft-lbs		
Maximum Design Shear =	23.8			lbs		
Beam Bending Stresses -	10 1			kci		
	10.1			KSI kai		
Beam Shear Stresses =	0.14			KSI		
Bending Stress Unity =	0.913		Bending St	ress OK		
Shear Stress Unity =	0.011		Shear Stre	ss OK		
Max Allowable Deflection =	0.333	in	L/180			
Maximum Beam Deflection =	0.331	in	Deflection	ОК		

Shelf Beam Rivet Check:

Diameter of Rivet =	0.25	in
Post Moment Shear on Rivet =	363.6	lbs
Beam Shear on Rivet =	23.8	lbs
Resultant Shear =	364.4	lbs
Brg Capacity of Rivet =	787.5	lbs
Allowable Shear Stress = Shear Stress on Rivet =	13.2 7.4	ksi ksi

Brg Stress OK

Shear Stress OK

Wall Supported Unit Calculations

Seismic Force at Top of Units -			
Average Roof Height =	20.0	ft	
Height of Attachment =	12.0	ft	
Shear Coeff Boundaries =	V _{min} =	0.303	
	V _{max} =	1.618	
Design Base Shear Coeff =	V _t =	0.397	Adjusted For ASD
Total Weight per Unit =	470	lbs	
Lateral Force at Top/Bottom =	93	lbs	
Standard Stud Spacing =	16	in	
Wall Connections per Unit =	2	(to neare	est stud each side of T post)
Tek Screw Capacity =	84	lbs	Tension Cap. for #10 Screw in 20ga Stud
Force Per Connection =	47	lbs	Screw Capacity OK

Light Gage Steel Stud Wall Framing

Stud Design Data -

Height of Wall Studs =	16.0	ft
Location of Point Load =	12.0	ft
Design Lateral Load =	46.6	lbs
Additional Lateral Load =	5.0	psf
Design Axial Load =	85.3	lbs
Spacing of Studs =	16.0	in

Int. Non-Brg - Worst Case Ht Assumed

From Shelving Unit Interior Seismic Force Dead Load of Wall Framing

TRY: 3-5/8" x 1-5/8" x 20ga Studs @ 16" o.c. (Worst Case Assumed)

Width =	3.625	in	rx =	1.450	in	
Depth =	1.625	in	ry =	0.616	in	
Thickness =	0.035	in	Sx =	0.268	in3	
Fy =	33	ksi	Ix =	0.551	in4	
E =	29000	ksi	Ap =	0.262	in2	
К =	1.0		Unbraced Length X =	16	ft	
			Unbraced Length Y =	4	ft	

Stud Capacity -

Buckling Stress, X =	16.32	ksi
Buckling Stress, Y =	47.14	ksi
Allowable Buckling Stress =	16.32	ksi
Nominal Axial Strength =	4277	lbs
Factor of Safety =	1.92	
Allowable Axial Load =	2228	lbs
Maximum Design Moment =	353.3	ft-lbs
Maximum Design Shear =	88.3	lbs
Allowable Bending Stress =	21.78	ksi
Actual Bending Stress =	15.82	ksi
Allowable Shear Stress =	13.20	ksi
Actual Shear Stress =	0.34	ksi
Allowable Axial Stress =	8.50	ksi
Actual Axial Stress =	0.33	ksi
		_
Combined Stress Unity =	0.76	

Bending Stress OK

Shear Stress OK

Axial Stress OK

Combined Stress OK

Slab Bearing & Uplift Calculations

Slab Design Properties -

Minimum Concrete Strength =	2500	psi	Assumed
Thickness of Concrete Slab =	4	in	Assumed
Weight of Concrete Slab =	50	psf	
Allowable Bearing Pressure =	500	psf	Assumed
	70		
Bearing Loads On Post =	79	lbs	Dead Load
	263	lbs	Live Load
	403	lbs	EQ Load
Uplift Loads on Post =	282	lbs	Resultant Uplift

Slab Bearing Capacity -

Depth of Post on Slab =	1.5	in
Factored Bearing Load =	1090	lbs
Required Bearing Area =	214.38	in2
Critical Section =	4 57	in
Soil Pressure on Crit Section =	732 4	nlf
Section Modulus =	32.4	in3
Shear Area =	22.0	in
Shear Area	22	
Conc. Shear Stress =	12.4	psi
Allowable Shear Stress =	73.2	psi
Conc. Bending Stress =	19.9	psi
Allowable Bending Stress =	137.5	psi

For Bending
Along Critical Length
Plain Concrete per Foot

inches per side

14.64

Shear Stress OK

Bending Stress OK

Slab Uplift Capacity -

Required Area to Resist Uplift =	9.40	ft2
Length of Slab Req'd =	1.88	ft
Worst Case Length of Slab =	5.00	ft
Distance to Anchor Bolt =	2.50	ft
Shear Force on 1ft Strip =	175.0	lbs
Allowable Shear Force =	1760.0	lbs
Bending Moment on 1ft Strip =	218.8	ft-lbs
Allowable Bending Moment =	366.7	ft-lbs

Assume Full Shelf Width x Req'd Length Maximum of Width or Length Req'd

Shear OK

Bending OK

Hilti PROFIS Engineering 3.0.85

www.hilti.com

Company: Address: Phone I Fax: Design: Fastening point: Eclipse Engineering, PC | 3/8" HUS-EZ Page: Specifier: E-Mail: Date:

Specifier's comments:

Anchor type and diameter:

Effective embedment depth:

1 Input data

Item number:

Material:

Evaluation Service Report:	ESR-3027
Proof:	Design Method ACI 318
Stand-off installation:	
Profile:	
Base material:	cracked concrete, 2500, f_c ' = 2,500 psi; h = 4.000 in.
Installation:	hammer drilled hole, Installation condition: Dry
Reinforcement:	tension: not present, shear: not present; no supplemental splitting reinforcement present
	edge reinforcement: none or < No. 4 bar
Seismic loads (cat. C, D, E, or F)	Tension load: yes (17.10.5.3 (d))
	Shear load: yes (17.10.6.3 (c))

KWIK HUS-EZ (KH-EZ) 3/8 (2 1/2)

 $h_{ef,act}$ = 1.860 in., h_{nom} = 2.500 in.

418057 KH-EZ 3/8"x3"

Carbon Steel

Geometry [in.] & Loading [lb, in.lb]

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2023 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

Hilti PROFIS Engineering 3.0.85

www.hilti.com

Company:	Eclipse Engineering, PC	Page:	
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	3/8" HUS-EZ	Date:	
Fastening point:			

2 Proof I Utilization (Governing Cases)

			Design values [lb]		Utilization	
Loading	Proof		Load	Capacity	β _N / β _V [%]	Status
Tension	Concrete Breakout Failure		300	1,051	29 / -	OK
Shear	Pryout Strength		100	1,509	- / 7	OK
Loading		β _N	βν	ζ	Utilization β _{N,V} [%]	Status
Combined tension and shear loads Convert to ASD Multiply by 0.7		0.285 D =	0.066	5/3	14	ОК

3 Warnings

• Please consider all details and hints/warnings given in the detailed report!

Fastening meets the design criteria!

A This is a beta release of the new ATC Hazards by Location website. Please <u>contact us</u> with feedback.

1 The ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

Diemerton

Renton

ATC Hazards by Location

Search Information

Search Infor	mation		SeaTac	90
Address:	3500 S Meridian, Puyallup, WA 98373, USA	est	431 ft	
Coordinates:	47.1580315, -122.2973003	Shelton	Puy Jup	
Elevation:	431 ft	Lakewoo	odo	
Timestamp:	2023-12-11T12:20:46.900Z	Olympia		
Hazard Type:	Seismic			Mount Rainier
Reference Document:	ASCE7-16	Google	Map data ©2023	Soogle Report a map error
Risk Category:	II			
Site Class:	D-default			

Basic Parameters

Name	Value	Description
S _S	1.264	MCE _R ground motion (period=0.2s)
S ₁	0.436	MCE _R ground motion (period=1.0s)
S _{MS}	1.517	Site-modified spectral acceleration value
S _{M1}	* null	Site-modified spectral acceleration value
S _{DS}	1.011	Numeric seismic design value at 0.2s SA
S _{D1}	* null	Numeric seismic design value at 1.0s SA

* See Section 11.4.8

Additional Information

Name	Value	Description
SDC	* null	Seismic design category
F _a	1.2	Site amplification factor at 0.2s
F _v	* null	Site amplification factor at 1.0s
CR _S	0.914	Coefficient of risk (0.2s)
CR ₁	0.898	Coefficient of risk (1.0s)

