

PRCTI20240784

uyallup

Planni

Public Works

ISSUED PERMIT Building

Engineering

CENTERIS VOLTAGE PARK 1023 39th Avenue South East Puyallup, WA 98374

Scale Matrix Battery Room Structural Calculations w/<u>A</u>Permit Revisions

Project Number 24201.4 June 14, 2024

Calculations required to be provided by the Permittee on site for all Inspections

<u>Index</u>

INFILL STUD WALLS DESIGN CRITERIA	Page	03
ANCHOR AND CONNECTOR DESIGN	Page	10
BEARING CFS WALL DESIGNS	Page	21
JOIST DESIGN	Page	27
LATERAL DESIGN	Page	33

INFILL STUD WALLS DESIGN CRITERIA

Design Codes

/1	Design Codes:	International Building Code, 2021
/	2	ASCE 7-16
		AISI Standards
		AISI S100-16(2020) w/ S2-20
		AISI S202-20
		AISI S220-20
		AISI S240-20
		AISI \$400-20
	•	

Vertical Loads on Ceiling Framing

Dead Load = 20 psf total

(includes weight of (4) layers of Gyp for 2-hour fire rating,

CFS joist weight, plywood wearing surface, and 5psf for MEP) Live Load = 40 psf

(Access similar to Catwalks or Maintenance spaces)

	2.5 psF	PLYWOOD (3/4" ATTACHED W/ #	10 SREWS @ 12"o.c.)
Zpic/zft =	= 1.0 ps=	8" STUPS, 43-mil min 24" o.c.	W/ SCREWS@12"O.C
	2.5 PSF	5/8" Gyp (1st Layer)	
	2.5 pst	5/8" Gyp (200 layer)	
	2.5 psF	5/8" Gyp (Sed Layer)	
1/2 pt / 24	= 1/4 PSF	HAT - SHAPED FURTING PERP.T.	o Joists
1	2.5 psF	5/8" Gyp (4th Layer)	
	5 pof	MEP	
	\$ 3/4 psF	GIRDERS	
	19.5 psf		
	We 2005F DEL	ID LOAD	EILING HEIGHT, Z= 12.FL
		S	TRUCTURE HEIGHT H=

Seismic Parameters

I.

ווצווי הטכבי דיטו עבושטוומו שש טווואי מוו ווצוווא וכשבו עבעי

Site Class = D (Assumed) $S_{DS} = 1.006$ Values per ASCE Hazards Report (See following pages)

Seismic Coefficients from Table 13.5-1 (ASCE 7-16)

Table 13.5-1 Coefficients for Architectural Component	ts
---	----

Architectural Component	a_p^{a}	R_p	Ω_0^{L}
Interior nonstructural walls and partitions ^c			
Plain (unreinforced) masonry walls	1	11/2	11/2
All other walls and partitions	1	21⁄2	2
Cantilever elements (unbraced or braced to structural			
frame below its center of mass)			
Parapets and cantilever interior nonstructural walls	21/2	21/2	2
Chimneys where laterally braced or supported by	21/2	21/2	2
the structural frame			
Cantilever elements (braced to structural frame above			
its center of mass)			
Parapets	1	21/2	2
Chimneys	1	21/2	2
Exterior nonstructural walls ^c	1^b	21/2	2
Exterior nonstructural wall elements and			
connections ^b			
Wall element	1	21/2	NA
Body of wall panel connections	1	21/2	NA
Fasteners of the connecting system	11⁄4	1	1
Veneer			
Limited deformability elements and attachments	1	21/2	2
Low-deformability elements and attachments	1	11/2	2
Penthouses (except where framed by an extension of	21⁄2	31⁄2	2
the building frame)			
Ceilings			
All	1	$2\frac{1}{2}$	2

^{*a*}A lower value for a_p shall not be used unless justified by detailed dynamic analysis. The value for a_p shall not be less than 1. The value of $a_p = 1$ is for rigid components and rigidly attached components. The value of $a_p = 2\frac{1}{2}$ is for flexible components and flexibly attached components. ^{*b*}Overstrength where required for nonductile anchorage to concrete and masonry. See Section 12.4.3 for seismic load effects including overstrength. ^{*c*}Where flexible diaphragms provide lateral support for concrete or masonry walks and partitions the design forces for anchorage to the diaphragm shall be

walls and partitions, the design forces for anchorage to the diaphragm shall be as specified in Section 12.11.2.

Wall Design Criteria

Ceiling height ≤ 12'-0" Internal Pressure = 5 psf (ASD) Maximum Deflection = L/240 (Flexible Finishes)

Bearing Walls have Flexural and Axial Bracing at 72" oc (mid-ht) max

Joist and Girder Design Criteria

See earlier page of Design Criteria for Loading Maximum Live Load Deflection = L/360 Maximum Total Deflection = L/240

Address: 1023 39th Ave SE Puyallup, Washington 98374

ASCE Hazards Report

Standard: ASCE/SEI 7-16

Risk Category: II Soil Class: D

: II D - Default (see

Section 11.4.3)

Latitude: 47.160853 Longitude: -122.279318 Elevation: 482.88472036372787 ft (NAVD 88)

Wind

Results:

Wind Speed	98 Vmph
10-year MRI	67 Vmph
25-year MRI	73 Vmph
50-year MRI	78 Vmph
100-year MRI	83 Vmph

Data Source:	ASCE/SEI 7-16, Fig. 26.5-1B and Figs.	CC.2-1-CC.2-4, and Section 26.5.2
Date Accessed:	Mon Feb 05 2024	

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is not in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2.

Site Soil Class: Results:	D - Default (se	ee Section 11.4.3)	
S _s :	1.257	S _{D1} :	N/A
S ₁ :	0.434	T _L :	6
F _a :	1.2	PGA :	0.5
F _v :	N/A	PGA M:	0.6
S _{MS} :	1.509	F _{PGA} :	1.2
S _{M1} :	N/A	l _e :	1
S _{DS} :	1.006	C _v :	1.351
Ground motion hazard ar	alysis may be required.	See ASCE/SEI 7-16 Se	ection 11.4.8.
Data Accessed:	Mon Feb 05 2	024	

Date Source: USGS Seismic Design Maps

The ASCE Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE Hazard Tool.

BSE B rienen S tructural E ngineers, P.S.

Seismic Forces

Wall Type Infill Walls

Wall Seismic Weight, W

<u>PSF</u>

- Metal Stud Framing
- (4) Layers 5/8" Gypsum Wall Board (Multiply weight by actual layers of GWB.)
- Acoustic Insulation

	1.5	
	10	
1	-	

Total =	14 PSF

Wall & Fastener Seismic Force

ASD	
Force =	4.6 PSF

Fastener - Anchorage to Concrete

ASD	
Force =	11.4 PSF

ANCHOR AND CONNECTOR DESIGN INFORMATION

Track Connection Distances - Based on Connector Capacities

PRESSURE MAX HEIGHT

For 5.0 psf (GWB finishes) Max Considered Height

13.50	Track De

L3.50	Track Demand =	(Ht)/2*5psf =	33.8 plf				
	Connection to Concrete**	MIN SHOTPIN CAP	ACITY v =	120lbs/anchor	spacing ≤	18.7 in	@ (11.4psf)
	Connection to Steel	MIN SCREW CAPAG	CITY v =	230lbs/anchor	spacing ≤	30.0 in	

** Where seismic forces control anchorage, Fastener spacing calculated includes Overstrength Reduction

Project: CENTERIS

Brienen Structural **E**ngineers, P.S.

CHECK TRACK FOR MAX FASTENEE SPACING Smax must meet MA 4007125-33 = 3.97 Kin VA 4007125-33 = 940# Uniform LOAD (DEMAND) = 5psF *(12'-0")/2 = 30plf $\int \partial x = 36'' \circ x = SpAcING, \quad MDEMAND \leq WL^{2} = (30plf)(36')^{2} = 4.86 \times 10^{1} \times 10^{1}$ Check Shear = VDEMAND = 30plf * 30000 + 14. = 37.5 - = 940= OK

TABLE 2—ALLOWABLE LOADS FOR FASTENERS DRIVEN INTO STEEL^{1,2,3,4}

FASTENER	SHANK DIAMETER (INCH)		ALLOWABLE LOADS (lbf)										
Steel Thick	ness (inch):	1	/8	3/	16	1	14	3	8	1	2	3	4
Load D	irection:	Tension	Shear	Tension	Shear	Tension	Shear	Tension	Shear	Tension	Shear	Tension	Shear
X-S13 THP	0.145	140 ¹⁰	300	300 ¹⁰	450	300 ¹⁰	450	300 ¹⁰	450				
X-S16P8TH	0.145			225 ¹⁰	420	225 ¹⁰	430	225 ¹⁰	430	225 ¹⁰	430		
X-EGN14 X-S 14 B3 X-S 14 G3	0.118	140	230	220	245	225	290	280 ⁶	330 ⁶	280 ⁶	330 ⁶	280 ⁶	330 ⁶
X-EGN14⁵ X-S 14 B3⁵ X-S 14 G3⁵	0.118			220	295	260	355	280 ⁶	385 ⁶	280 ⁶	385 ⁶	280 ⁶	385 ⁶
X-GHP## X-P ## G3 X-P ## B3	0.118	125 ¹⁰	230	170 ¹⁰	245	20010	230	250 ¹⁰	255				
X-P 17 G2 ⁷ X-P 20 G2 ⁷	0.118			140 ¹⁰	220	180 ⁸	200 ⁸	225 ⁶	220 ⁶				
X-P 14 G2 ⁷	0.118					2158	290 ⁸	150 ⁹	195 ⁹	130 ⁹	150 ⁹	130 ⁹	150 ⁹
For SI: 1 inch - 2	25 4 mm 1 kci - 6	90 MDo 1	lbf _ 4 4 1	NI.			1 2						1

For SI: 1 inch = 25.4 mm, 1 ksi = 6.89 MPa, 1 lbf = 4.4 N.

X-GHP/X-P B3 EMBED CAPACITY TO SIEEL

¹Unless otherwise noted, fasteners must be driven to where the full length of the point of the fastener penetrates through the steekbase material. ²Unless otherwise noted, steel base material must have minimum yield and tensile strengths (F_y and F_u) equal to 36 ksi and 58 ksi, respectively.

³Unless otherwise noted, allowable loads are applicable to static loads and seismic loads in accordance with Section 4.1.

⁴Fastener spacing must be a minimum of 1.0 inch and edge distance must be a minimum of 0.50 inch.

⁶Steel base material must have minimum yield and tensile strengths (F_{y} and F_{y}) equal to 50 ksi and 65 ksi, respectively. ⁶Fastener point penetration through the steel is not necessary, provided a minimum embedment of 0.320 inch is achieved.

⁷Tabulated loads for this fastener apply to static load conditions only. For seismic loading, allowable loads must be limited in accordance with Section 4.1.5, Item 3. ⁸Full fastener point penetration through the steel is not necessary, provided a minimum point penetration of 0.08 inch is achieved.

⁹Fastener point penetration through the steel is not necessary, provided a minimum embedment of 0.25 inch is achieved.

¹⁰For steel-to-steel connections designed in accordance with Section 4.1.4, the tabulated allowable load may be increased by a factor of 1.25, and the design strength may be taken as the tabulated allowable load multiplied by a factor of 2.0.

TABLE 3—ALLOWABLE LOADS FOR FASTENERS DRIVEN INTO NORMALWEIGHT CONCRETE^{1,2,3}

FASTENER	SHANK DIAMETER (inch)	MINIMUM EMBEDMENT DEPTH (inches)	ALLOWABLE LOADS (lbf)									
Concrete Con	npressive Stre	ength:	2,00	0 psi	4,00	0 psi	6,000 psi					
Load	Direction:		Tension	Shear	Tension	Shear	Tension	Shear				
		³ / ₄	45	75	65	105	95	195				
X-C ## (Black Collated Strip or	0.138	1	85	150	160	200	105	270				
Guidance Washer)	0.100	1 ¹ / ₄	130	210	270	290	165	325				
		1 ¹ / ₂	175	260	270	360						
X-C ##		³ / ₄	45	75	60	105						
(White Collated Strip or	0.138	1	85	150	90	200						
Guidance Washer)		1 ¹ / ₄	130	210	130	290						
X-C22 P8TH (Black Collated Strip or Guidance Washer)	0.138	3/4	55	130	90	170	100	200				
X-C22 P8TH (White Collated Strip or Guidance Washer)	0.138	3/4	55	130	90	170						
X-GN	0.110	³ / ₄	95	120	95	120						
(except for X-GN 39)	0.110	1	115	220	115	220						
X-GN39 X-C 39 G2	0 101	⁵ / ₈	50	80	50	80						
X-C 39 G3	0.101	1	60	100	60	100						
X-GHP## X-P 17 G2, X-P 20 G2	0.119	⁵ /8			50	120	50	90				
X-P ## G3 X-P ## B3	0.118	³ / ₄	80	120								
X-C ## G2 (except for X-C 39 G2) X-C 36 B3	0.108	3/4	110	190	110	190	110	190				
X-C ## G3 (except for X-C 39 G3) X-C ## B3 (except for X-C 36 B3)	X-C ## G3 xcept for X-C 39 G3) X-C ## B3 xcept for X-C 36 B3) 0.118		110	190	110	190	110	190				

For SI: 1 inch = 25.4 mm, 1 psi = 6.89 kPa, 1 lbf = 4.4 N.

¹Fasteners must not be driven until the concrete has reached the designated minimum compressive strength, or the minimum compressive strength specified in

the applicable code, whichever is greater. Concrete thickness must be a minimum of 3 times the embedment depth of the fastener. Fastener spacing must be a minimum of 4 inches and edge distance must be a minimum of 3 inches.

³The fasteners listed in the table above may be used for static load conditions and for the seismic load conditions described in Section 4.1.5, as applicable. The tabulated allowable loads apply to static load conditions. For seismic load conditions, the allowable loads must be limited in accordance with Section 4.1.5, Items 2 and 4, as applicable.

/······
3(5/8") = 1 7/8" < 2 1/2" OK
£`

X-GHP/X-P B3 EMBED CAPACITY TO CONCRETE

SHOTPINS - HILTI X-U

X-U EMBED CAPACITY

TO STEEL

TABLE 1—FASTENER DESCRIPTION AND APPLICATIONS

FASTENER ¹	FASTENER DESCRIPTION	SHANK TYPE	SHANK DIAMETER [inch (mm)]	HEAD DIAMETER [inch (mm)]	MAXIMUM POINT LENGTH [inch (mm)]	MINIMUM EFFECTIVE SHANK LENGTH [inch (mm)]	FASTENER COATING	APPLICABLE BASE MATERIAL	APPLICABLE LOAD TABLES
								Steel	2, 7
	Universal	Knurlod			0 433	Soo		Concrete	3, 4
X-U ##	Powder Actuated Fastener	straight	0.157 (4.0)	0.323 (8.2)	(11.0)	Footnote 2	SC1, Type III	Concfilled deck	5
								CMU	6
X-U 15	Powder Actuated Fastener	Knurled, stepped	0.145 (3.7)	0.323 (8.2)	0.413 (10.5)	0.61 (15.5)	ASTM B633, SC1, Type III	Steel	2
								Concrete	3
X-P ##	Powder Actuated Fastener	Smooth straight	0.157 (4.0)	0.323 (8.2)	0.524 (13.3)	See Footnote 3	ASTM B633, SC1, Type III	Concfilled deck	5
								CMU	6

For SI: 1 inch = 25.4 mm.

¹## denotes numbers used in fastener designation to represent nominal fastener length in mm, e.g. X-U 27 has a nominal shank length of 27 mm. ²For fastener length of 16 mm, the minimum effective shank length is 14.8 mm (0.58 inch). For longer fasteners, the minimum effective shank length can be calculated in terms of the designated length as (##-0.5) in mm and (##-0.5)/25.4 in inches.

³The minimum effective shank length can be calculated in terms of the designated length as (##-1) in mm and (##-1)/25.4 in inches.

TABLE 2—ALLOWABLE LOADS FOR FASTENERS DRIVEN INTO STEEL^{1,2,6}

FASTENER DESCRIPTION	FASTENER	SHANK DIAMETER (inch)		ALLOWABLE LOADS (lbf)								
Steel T	hickness (in	ch):	³ / ₁₆		1	4	3	8	1	2	<u>></u> ³ / ₄	
Loa	d Direction:		Tension	Shear	Tension	Shear	Tension	Shear	Tension	Shear	Tension	Shear
Universal	X-11	0 157	500 ⁷	720	775 ⁷	720	935	720	900	720	350 ⁴	3754
Knurled Shank	7-0	0.137	500	120	115	120	555	720	500	720	275 ³	350 ³
Universal Knurled Shank	X-U 15	0.145	155 400 230 395 420 450 365 ⁵ 500 ⁵ 365 ⁵								400 ⁵	
For SI: 1 inch = 25.4 mm, 1 lbf = 4.4 N; 1 ksi = 6.9 MPa.												
¹ Allowable load ca ² The fasteners mu	pacities are ba	used on base s where the poir	teel with a n nt of the fast	ninimum yie ener penet	eld strength (rates throug	F _y) of 36 ks	si and a mini base materia	mum tensil al, unless o	e strength (<i>H</i>	⁼ _u) of 58 ksi ed.		

³Based upon a minimum point penetration of ³/₈ inch.

⁴Based upon a minimum point penetration of ¹/₂ inch.

⁵Based upon a minimum point penetration of ¹⁵/₃₂ inch.

⁶Allowable loads are applicable to static and seismic loads in accordance with Section 4.1.

For steel-to-steel connections designed in accordance with Section 4.1.6 for static loads only, the tabulated allowable to the increased by a factor of 1.25, and the design strength maybe taken as the tabulated allowable load multiplied by a factor of 2.0.

SHOTPINS - HILTI X-U

TABLE 3—ALLOWABLE LOADS FOR FASTENERS DRIVEN INTO NORMAL-WEIGHT CONCRETE^{1,2,4}

FASTENER DESCRIPTION	FASTENER	SHANK DIAMETER (inch)	MINIMUM EMBEDMENT DEPTH (inches)	ALLOWABLE LOADS (lbf)							
Cond	crete Compre	essive Stren	gth:	2500) psi	40	00 psi	6000) psi	8000	psi
	Tension	Shear c	Tensio	n Shear	Tension	Shear	Tension	Shear			
		0.457	³ / ₄	100	125	100	125	105	205	-	-
Universal	X II		1	165	190	170	225	110 ³	280 ³	-	-
Knurled Shank	X-U	0.157	1 ¹ / ₄	240	310	280	310	180	425	-	-
			1 ¹ / ₂	275	420	325	420	Ι	Ι	-	-
			³ /4 ⁵	100	155	100	175	105	205	135	205
Smooth Shank	V D	0 157	1 ⁵	165	220	180	225	150	300	150	215
Smooth Shank X-P	A-P	0.157	1 ¹ / ₄ ⁵	240	310	280	310	180	425	-	_
			1 ¹ / ₂ ⁵	310	420	-	_	-	-	_	-

For SI: 1 inch = 25.4 mm, 1 lbf = 4.4 N, 1 psi = 6895 Pa.

¹Unless otherwise noted, values apply to normal weight cast-in-place concrete. Fasteners must not be driven until the concrete has reached the designated minimum compressive strength. ²Unless otherwise noted, concrete thickness must be a minimum of 3 times the embedment depth ³This allowable load value for the X-U fastener also applies to normal weight hollow core concrete

fastener

abs with r_c of 6600 psi and minimum dimensions shown in Figure 7, when installed in accordance with Section 4.2.4.

⁴The fasteners listed in the table above may be used for static load conditions and for the seismic load conditions described in Section 4.1.6, as applicable. The tabulated allowable loads apply to static load conditions. For seismic load conditions, the allowable loads must be limited in accordance with Section 4.1.6, Items 2 and 3, as applicable.

⁵Applies to fastening of cold-formed steel up to 54 mil thick using the X-P 22, X-P 27, X-P 34 and X-P 40 fasteners, respectively, for the ³/₄, 1, 1¹/₄ and 1¹/₂ inch embedment depths.

X-U/X-P EMBED CAPACITY TO CONCRETE

......

TABLE 4—ALLOWABLE LOADS FOR FASTENERS DRIVEN INTO NORMAL-WEIGHT CONCRETE USING DX-KWIK^{1,2,3,4}

FASTENER DESCRIPTION	FASTENER	SHANK DIAMETER (inch)	MINIMUM EMBEDMENT (inches)	ALLOWABLE LOADS (lbf)						
	Concrete Com	pressive Strer	igth:	4,000 psi 6,000 psi						
	Load	Direction:		Tension	Shear	Tension	Shear			
Universal Knurled Shank	X-U 47 P8 w/ DX-KWIK	0.157	1 ¹ / ₂	395	405	360	570			

For SI: 1 inch = 25.4 mm, 1 lbf = 4.4 N, 1 psi = 6895 Pa.

¹X-U Fastener is installed using the DX-KWIK drilled pilot hole installation procedure described in Section 4.2.5.

²Pilot holes must not be drilled until the concrete has reached the designated minimum compressive strength.

³Concrete thickness must be a minimum of 3 times the embedment depth of the fastener.

⁴The fasteners listed in the table above may be used for static load conditions and for the seismic load conditions described in Section 4.1.6, as applicable. The tabulated allowable loads apply to static load conditions. For seismic load conditions, the allowable loads must be limited in accordance with Section 4.1.6, Items 2 and 3, as applicable.

Screw Capacities

Table Notes

- 1. Capacities based on AISI S100 Section E4.
- 2. When connecting materials of different steel thicknesses or tensile strengths, use the lowest values. Tabulated values assume two sheets of equal thickness are connected.
- 3. Capacities are based on Allowable Strength Design (ASD) and include safety factor of 3.0.
- 4. Where multiple fasteners are used, screws are assumed to have a center-to-center spacing of at least 3 times the nominal diameter (d).
- Screws are assumed to have a center-of-screw to edge-of-steel dimension of at least 1.5 times the nominal diameter (d) of the screw.

- 6. Pull-out capacity is based on the lesser of pull-out capacity in sheet closest to screw tip or tension strength of screw.
- 7. Pull-over capacity is based on the lesser of pull-over capacity for sheet closest to screw header or tension strength of screw.
- 8. Values are for pure shear or tension loads. See AISI Section E4.5 for combined shear and pull-over.
- 9. Screw Shear (Pss), tension (Pts), diameter, and head diameter are from CFSEI Tech Note (F701-12).
- 10. Screw shear strength is the average value, and tension strength is the lowest value listed in CFSEI Tech Note (F701-12).
- 11. Higher values for screw strength (Pss, Pts), may be obtained by specifying screws from a specific manufacturer.

						Allo	wable \$	Screw (Connec	tion C	apacity	(lbs)				、		
					#6 Screw			#8 Screw #10 Screw					#12 Screw	,	1/4" Screw			
Thickness	Design	Fy	Fu	(Pss = 64	(Pss = 643 lbs, Pts = 419 lbs)			s) (Pss= 1278 lbs, Pts = 586 lbs) (Pss= 1644 lbs, Pts = 1				= 1158 lbs)	(Pss= 233	80 lbs, Pts	= 2325 lbs)	P ss= 304	8 lbs, Pts :	= 3201 lbs)
(Mils)	Thickness	(ksi)	(ksi)	0.138" dia, 0.272" Head			0.164" dia, 0.272" Head 0.190" dia, 0.340" Head			0.216" dia, 0.340" Head			0.250" dia, 0.409" Head					
				Shear	Pull-Out	Pull-Over	Shear	Pull-Out	Pull-Over	Shear	Pull-Out	Pull-Over	Shear	Pull-Out	Pull-Over	Shear	Pull-Out	Pull-Over
18	0.0188	33	33	44	24	84	48	29	84	52	33	105	55	38	105	60	44	127
27	0.0283	33	33	82	37	127	89	43	127	96	50	159	102	57	159	3 110	66	191
30	0.0312	33	33	95	40	140	103	48	140	111	55	175	118	63	175	3 127	73	211
33	0.0346	33	45	151	61	140	164	72	195	177	84	265	188	95	265	203	110	318
43	0.0451	33	45	214	79	140	244	94	195	263	109	345	280	124	345	302	144	415
54	0.0566	- 33	45	214	100	140	344	118	195	370	137	386	394	156	433	4 424	180	521
68	0.0713	33	45	214	125	140	426	149	195	523	173	386	557	196	545	4 600	227	656
07	0.1017	22	45	214	140	140	126	105	105	548	246	386	777	280	775	1 010	324	036
110	0.1017	22	45	214	140	140	426	105	105	540	240	200	777	240	775	1,010	206	1.067
110	0.1242	55	43	214	140	140	420	195	195	540	301	300		J4Z	115	1,010	390	1,007
54	0.0566	50	65	214	140	140	426	171	195	534	198	386	569	225	625	3 613	261	752
68	0.0713	50	65	214	140	140	426	195	195	548	249	386	777	284	775	3 866	328	948
97	0.1017	50	65	214	140	140	426	195	195	548	356	386	777	405	775	3 1,016	468	1,067
118	0.1242	50	65	214	140	140	426	195	195	548	386	386	777	494	775	1,016	572	1,067

SCREW ALLOWABLE LOADS & UL ASSEMBLIES

SCREW ALLOWABLE LOADS (LBS.)

MODEL	DESIGN	MIN.		FU TENSU E	#6 SC (0.138 0.25"	REW " dia; head)	#8 SCREW (0.164" Dia; 0.3125" Head)		#10 SCREW (0.190" Dia; 0.340" Head)		#12 SCREW (0.216" Dia; 0.340" Head)	
NO.	(in)	(in)	(ksi)	(ksi)	SHEAR	TENSION	SHEAR	TENSION	SHEAR	TENSION	SHEAR	TENSION
VIPER-X-18	0.0188	0.0179	57	65	142 ¹	48	150 ¹	57	164 ¹	66	109	75
VIPER-X-22	0.0235	0.0223	57	65	174 ¹	60	184 ¹	71	236 ¹	82	152	93

Notes:

1 Shear values are tested per AISI S100-12 and S905 procedure.

2. Capacities are based on section E4 of the AISI S100-12 Specification.

3. Capacities are based on Allowable Strength Design (ASD).

4. Screw pull-out capacities are based on listed head diameter.

5. Two sheets of equal thickness and tensile strength are assumed in tabulated values.

6. When materials of different steel thickness and tensile strength are connected, use the lowest value for shear capacity (tilting and bearing), for pull-out capacity use sheet closest to screw tip and for pull-over capacity use sheet closest to screw head.

- Where multiple fasteners are used, screws are assumed to have a center-to-center spacing of at least 3 times the nominal diameter.
- Screws are assumed to have a center-of-screw to edge-of-steel dimension of at least 1.5 times the nominal diameter of the screw.
- 9. When screws are subjected to combination of shear and tension forces, interaction equation of AISI S100-12 Specification section E4.5 shall be used.

UL ASSEMBLIES – VIPER-X FIRE TESTING DATA (ASTM E119)

UL DESIGN NO.	VIPER-X (DESIGN THICKNESS)	WALL RATING					
U411	18 MIL	2 HR					
U412	18 MIL	2 HR					
U419	18 MIL	1, 2, 3 or 4 HR					
U435	18 MIL	3 or 4 HR					
U465	18 MIL	1 HR Chase					
V417	18 MIL	1 HR					
V435	18 MIL	1 HR					
V448	18 MIL	1 HR					
V469	18 MIL	1 or 2 HR Chase					
V486	18 MIL	1, 2, or 2-1/2 HR					
V489	18 MIL	1, 2, 3 or 4 HR					
V496	18 MIL	1 or 2 HR Chase					
V498	18 MIL	1, 2, 3 or 4 HR					
W411	18 MIL	1/2 or 1 HR					
W424	18 MIL	1/2 or 1 HR					
W433	18 MIL	1/2 HR					
W440	18 MIL	1, 2, 3 or 4 HR					

5/8" GYP	TAL SCREW AI BOARD BETW	LOWABLE	STRENG	ths for Ces.	R STEEL	to steel	. Conne(CTIONS W	/ITH TWO	LAYERS	OF
				F/	STENER	SIZE	10		0		
F	MI	NU.	14 0 IN	<u>NU</u> . 0.21	<u>. 12</u> 16 IN	0.190 IN		0 164 IN		0.138 IN	
(KSI)	(STEEL GA)		TENSION	SHFAR	TENSION			SHFAR	TENSION	SHFAR	
		(LB)	(LB)	(LB)	(LB)	(LB)	(LB)	(LB)	(LB)	(LB)	(LB)
50	97 (12)	166	275	130	205						
	68 (14)	166	275	130	205	100	159				
	54 (16)	166	261	130	205	100	159	80	118		
33	43 (18)	166	144	130	124	100	109	80	94	50	79
	33 (20)					70	84	50	72	40	61
<u>able 4</u> - Heet Me ⁻ Ayers of	- prying coi Tal screw ai 5/8" gyp e	<u>NDITION (</u> LOWABLE 30ARD BI	SEE DET	AILS BEL THS FOR STEEL SU	OW - S STEEL IRFACES	TRUT CAN TO STEEL AND MAX	<u>I BE HOI</u> CONNEC	RIZONTAL CTIONS W LYING MO	<u>or ver</u> /ITH one Ment Ar	<u>TICAL)</u> Or Two M OF 1) <u>5/8".</u>
F.	мі	NO	14	F A NO	12	SIZE NO	10	NO	. 8	NO	. 6
(KSI)	(STEEL GA)	0.25	O IN C	5 0.21	16 IN	0.19	IO IN	0.16	4 IN	0.13	58 IN
	ľ /	SHEAR	TENSION	SHEAR	TENSION	SHEAR	TENSION	SHEAR	TENSION	SHEAR	TENSION
	07 (10)		(LB)-	U(UB)⊥·	(LB)	(LB)	(LB) 2		(LB)	(LB)	(LB)
50	97 (12)	40	275	70	205	'25	150	<u>.</u>			
	00 (14)	40	R X SIV	30 <u>R</u>	2005		159	00	110		
	54 (16)	40	201	30	205	25	159	20	118	10	70
33	43 (18)	40	DA44E	: 0.007_	⊥⊥ ,/2⊈ ()	⊥ Z0	109	20	94 72	10	<u>/9</u> 61
	33 (20)	P			÷	<u> 15</u>	04	15	12	10	
 SEE GENERAL NOTES ON STLOG FOR MORE INFORMATION. THE ALLOWABLE STRENGTH VALUES LISTED IN TABLE 4 ARE BASED UPON A LIMITED TEST ASSEMBLY WHERE THE ORIGIN AND DIRECTIV OF THE LOAD RESULTS IN PRYING UPON THE FASTENER. THE MACNITUDE OF THIS PRYING EFFECT SHALL BE LIMITED TO A MOMENT A OF 1 5/8" FROM THE FASTENER. METAL STUD UDAD APPLIED PERPENDICULAR TO AXIS OF STRUT THROUGH STRUT UP TO A MAXIMUM OF 1 5/8" FROM PARTITION WALL (2) LAYERS OF 5/8" CYP BOARD MAX WALL ELEY WITH LOAD APPLIED THROUGH STRUT											
			Ì	MALL ELE		OF STI OF STRUT OF 1 PARTITI (2) LA GYP B	NDICULAR 1 RUT THROU UP TO A 5/8" FROM ON WALL YERS OF 5 OARD MAX	io axis Gh Maximum I /8"	PLAN		AXIS OF S MAXIMUM OF 1 5/8 PARTITION METAL ST
	PARTITIC			→ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓		PERPE OF STI STRUT OF 1 PARTIT (2) LA GYP B	NDICULAR 1 RUT THROU UP TO A 5/8" FROM ON WALL YERS OF 5 OARD MAX	io axis Gh Maximum /8"	PLAN		AXIS OF S MAXIMUM OF 1 5/8 PARTITION METAL ST
DARD	PARTITIC	<u></u>		WALL ELE PLIED TH	V WITH LC	OF STIUT OF 1 PARTITI (2) LA (2) LA GYP B	NDICULAR 1 RUT THROU UP TO A 5/8" FROM ON WALL YERS OF 5 OARD MAX	io axis gh maximum /8"	PLAN		AXIS OF S MAXIMUM OF 1 5/8 PARTITION METAL ST

c) The metal-critical joint may fail in one of two ways. Failure occurs when the resistance of the screw head to embedment is greater than the resistance of the metal to lateral and/or withdrawal load, and the screw tears away from the metal framing. Failure also occurs when thin metal in a metal-to-plywood joint crushes or tears away from the screw.

Tables 1 and 2 present ultimate lateral loads for wood- and sheetmetal-screw connections in plywood-and-metal joints. Loaded end distance in these tests was one inch. Plywood face grain was parallel to the load since this direction yields the lowest lateral loads when the joint is plywoodcritical. All wood-screw specimens were tested with a 3/16-in.-thick steel side plate, and values should be modified if thinner steel is used.

				FACTOR FO	R ALLOW	ABLE		
TABLE 1				Ennin		······3		
SCREWS: META	L-TO-PLY	wood co	ONNECTI	ONS ^(a)				
Depth of		U	ltimate La	ateral Load (lbf)	b			
Threaded Penetration	V	Wood Screws Sheet				Metal Screws		
(in.)	#8	#10	#12	#8	#10	#12		
1/2	415	(500)	590	465	(565)	670		
5/8	-	-	-	~ <u>500</u>	(800)			
2/1				500	((= =)	775		

٤

(a) Plywood was C-D grade with exterior glue (all plies Group 1), face grain parallel to load. Side plate was 3/16"-thick steel.

(b) Values in parentheses are estimates based on other tests.

TABLE 2

SHEET METAL SCREWS: PLYWOOD-TO-METAL CONNECTIONS(a)

	Diama ad	Ultimate Lateral Load (lbf) ^(b)								
	Thickness		Screw	/ Size		1/4"-20 Self				
Framing	(in.)	#8	#10	#12	#14	Tapping Screw				
).080-in. Aluminum	1/4 1/2 3/4	330 630 910*	360 850* 930*	390 860 1250	410 920 1330	590 970 1440				
).078-in. Galvanized	1/4 1/2	360 700*	380 890*	400 900	410 920	650 970				
Steel (14 gage)	3/4	700*	950*	1300*	1390*	1500				

(a) Plywood was A-C EXT (all plies Group 1), face grain parallel to load.

(b) Loads denoted by an asterisk(*) were limited by screw-to-framing strength; others were limited by plywood strength.

 IF ALLOWABLE IS A FOS = 5, THEN

 $\frac{#8}{140}$ $\frac{#12}{260}$

 LBS

Form No. E830D . © 2005 APA - The Engineered Wood Association . www.apawood.org

3

BEARING CFS WALL DESIGNS

BEARING WALL 6" STUDS

Page 1 of 2 Date: 06/14/2024 Simpson Strong-Tie® CFS Designer™ 5.2.4.0

Stacked Wall Summary Report

<u>Model lı</u> Level	<u>nputs</u> Wall Height (ft)	Stud Spacing (ii	Suppor Memb Tributa n) Length	rted ber Grav ary Load (ft) (in	vity Flexu Ecc. Brac a) (in	ural Axi ing Kyl ı) (in	ial Axi ∟y KtL ı) (in	al K _t Fle) (Ib·	-Phi xure in/in)	Dist. K Axi (Ib-in	(-Phi al Lm /in) (in)
1	12	24	8	Stu Dept	id 72 h/2	2 7	2 72		 3	0	None
Level	Wall D (psf)	Roof or Floor D F (psf)	Floor or Roof L or Lr (psf)	L Reduction Factor	MWFRS Windward W (psf)	MWFRS Leeward W (psf)	C&C Windward W (psf)	C&C Leeward W (psf)	Sei I Coet E	ismic fficient h/D	Seismic Coefficient Ev/D
1	14	20	40	1	5	5	5	5		0.3	0.14

Load Combi	<u>nations</u>				MWFRS	MWFRS	C&C	C&C		
LC Number	D	L	Max Roof (Lr or S)	S	Windward (W)	Leeward (W)	Windward (W)	Leeward (W)	Roof Uplift (W)	Seismic (Eh or Ev)
1	1	1	0	0	0	0	0	0	0	0

Project Name: Centeris

Page 2 of 2 Date: 06/14/2024

Model: 6" BRG WALL Code: AISI S100-16w/S2-20

1

Simpson Strong-Tie® CFS Designer™ 5.2.4.0

Load Combi	inations				MWERS	MWEDS	CRC	CRC		
LC Number	D	L	Max Roof (Lr or S)	S	Windward (W)	Leeward (W)	Windward (W)	Leeward (W)	Roof Uplift (W)	Seismic (Eh or Ev)
2	1	0	1	0	0	0	0	0	0	0
3	1	0.75	0.75	0	0.75	0	0	0	0	0
4	1	0.75	0.75	0	0	0.75	0	0	0	0
5	1	0	0	0	0	0	1	0	0	0
6	1	0	0	0	0	0	0	1	0	0
7	1	0	0	0	0	0	0	0	0	1
8	1	0.75	0	0.75	0	0	0	0	0	0.75
9	0.6	0	0	0	0	0	0	0	1	0
10	0.6	0	0	0	0	0	0	0	1	0

Member S	election					Ma-Fy	Ma-Dist	Ma-Brc	A	xial
Level	Secti	on	Fy (ksi)	Configura	ation	(ft-lb)	(ft-lb)	(ft-lb)	Pa (lb)	Pa-Dist (lb)
1	600S16	2-43	33	Single	e	1271	1088	983	2471.9	4787
	Bending an	d Axial Ir	nteractions		<u>Shear a</u>	nd Web C	rippling		3	
Level	Control LC	M(LC) (ft-lb)	P(LC) (lb)	Max Intr	Rmax (I	Cont b) LC	trol C Va (Ib) Rmax/Va	a Pa (lb)	Stiffener Req'd
1	1	240	960	0.645	67	6	1416	0.047	259	No

Deflection

Deflection Multiplier for C&C Wind Load : 1.0

Level	D(Unif) (in)	L/	Control LC	D(Total) (in)	L/	Control LC	
1	0.068	L/2109	6	0.098	L/1470	4	

BEARING CFS WALL OPENING DESIGNS

Project Name: Centeris

Model: 6" BRG WALL HDR @ TYP DRWY

Code: AISI S100-16w/S2-20

TYP SINGLE DOOR OPN'G BEARING WALL 6" STUDS

Page 1 of 2 Date: 06/14/2024

Simpson Strong-Tie® CFS Designer™ 5.2.4.0

Brace Settings

Component(s)	Members(s)	Flexural Bracing	Axial KyLy	Axial KtLt	Distortional K-Phi(lb-in/in)	Distortional Lm	Interconnection Spacing		
Jamb Studs	600S162-43(33), Single	60 in	60 in	60 in	0	None	N/A		
Vertical Header	400S125-33(33), Boxed	Full	N/A	N/A	0	None	N/A		
Lateral Header	600T125-33(33), Single	Full	N/A	N/A	0	None	N/A		
Analysis Results									

Component(s)	Members(s)	Axial Load (Ib)	Max KL/r	Max. Moment (ft-lb)	Max. Shear (Ib)	Bottom Reaction (Ib)	Top or End Reaction (lb)
Jamb Studs	600S162-43(33), Single	612.5	104	247.5	82.5	82.5	60.6
Vertical Header	400S125-33(33), Boxed	N/A	N/A	535.9	612.5	N/A	612.5
Lateral Header	600T125-33(33), Single	N/A	N/A	19.1	21.9	N/A	21.9
Design Results							

<u></u>		Defl	ection	A + M	V + M			
Component(s)	Members(s)	Span	Parapet	Interaction	Interaction	Web Stiffners	Design OK	ļ
Jamb Studs	600S162-43(33), Single	L/1582	L/0	0.439	0.19	No	Yes	Ę
Vertical Header	400S125-33(33), Boxed	L/1099	NA	0.80	0.80	R1, R2	Yes	ļ
Lateral Header	600T125-33(33), Single	L/36920	NA	0.04	0.04	No	Yes	ł
						5	£	į.

Simpson Strong-Tie® Connectors @ Jambs

Support	Rx(lb)	Ry(lb)	Simpson Strong-Tie® Connector	Connector Interaction	Anchor Interaction
R2	60.63	0.00	By Others & Anchorage Designed by Engineer	NA	NA
R1	82.50	878.50	600T125-33 (33) & (1) .157", 3/4" embed SST PDPAPAT to 4000 nw concrete	40.24 %	61.11 %

* Reference catalog for connector and anchorrequirement notes as well as screw placements requirement

Model: 6" BRG WALL HDR @ TYP DRWY

Code: AISI S100-16w/S2-20

Simpson Strong-Tie® CFS Designer™ 5.2.4.0

Simpson Strong-Tie® Wall Stud Bridging Connectors @ Jambs

Span/Parapet	Bracing Length(in.)	Design Number of Braces	Pn(lb.)	LSUBH (Min)¹	LSUBH (Max)¹	SUBH (Min)¹	SUBH (Max)¹	MSUBH (Min)¹	MSUBH (Max) ¹
Span	60	3	5402.7	OK (0.28)	OK (0.17)	OK (0.23)	OK (0.14)	No Soln	No Soln

Notes:

1) Values in parentheses are stress ratios.

2) Bridging connectors are not designed for back-back, box, or built-up sections.

3) Reference <u>www.strongtie.com</u> for latest load data, important information, and general notes.

4) CFS Designer will not select bridging connectors unless all flexural and axial bracing settings are the same.

5) If the bracing length is larger than the span length, bridging connectors are not designed.

CFS JOIST FRAMING DESIGN

JOIST BRACING REQUIREMENTS, CONTINUED

B2.6 Bracing Design

Bracing members shall be designed either on the basis of discretely braced design or on the basis of continuously braced design, in accordance with the following:

- (a) Discretely Braced Design. For discretely braced design, *bracing* members shall be designed in accordance with Section C2.2 of AISI S100 [CSA S136].
- (b) Continuously Braced Design. For continuously braced design, *bracing* members shall be designed in accordance with Section C2.2 of AISI S100 [CSA S136], unless the following requirements, as applicable, are met:
 - (1) Members are spaced no greater than 24 inches (610 mm) on center.
 - (2) The sheathing or deck shall consist of a minimum of 3/8 inch (9.5 mm) wood structural sheathing that complies with DOC PS 1, DOC PS 2, CSA O437 or CSA O325, or steel deck with a minimum profile depth of 9/16 in. (14.3 mm) and a minimum thickness of 0.0269 in. (0.683 mm). The sheathing or deck shall be attached with minimum No. 8 screws at a maximum 12 inches (305 mm) on center.
 - (3) Floor joists and ceiling joists with simple or continuous spans that exceed 8 feet (2.44 m) shall have the tension *flanges* laterally braced. Each intermediate brace shall be spaced at 8 feet (2.44 m) maximum and shall be designed to resist a required lateral force, P_L, determined in accordance with the following:

For uniform *loads*: $P_L = 1.5(m/d) F$

(Eq. B2.6-1)

where

- m = Distance from shear center to mid-plane of web
- d = Depth of *C-shape* section
- F = wa
- w = Uniform design load [factored load]
- a = Distance between center line of braces

FOR OUR 10" DEEP JOISTS PL = 1.5*(1.14"/10")*(1.2*20psf + 1.6*40psf)*(2ft oc) * (8ft) PL = 240 lbs

YIELD STRENGTH OF 33MIL x 1 1/2" STRAP φ Tn = (0.9)*(1.5")*(0.035")*(33ksi) = 1560 lbs

JOIST BRACING REQUIREMENTS

B1.2 Design Basis

The proportioning, designing and detailing of *cold-formed steel light-frame lateral forceresisting systems, trusses, structural members, connections* and *connectors* shall be in accordance with AISI S100 [CSA S136], and the reference documents except as modified or supplemented by the requirements of this Standard.

B1.2.1 Floor Joists, Ceiling Joists and Roof Rafters

B1.2.1.1 *Floor joists, ceiling joists* and *roof rafters* shall be designed either on the basis of discretely braced design or on the basis of continuously braced design, in accordance with the following:

(a) Discretely Braced Design. Floor and roof assemblies using discretely braced design shall be designed neglecting the structural *bracing* and composite-action contribution of attached sheathing or deck. The discretely braced design requirements of the Standard shall be applied to assemblies where the

This document is copyrighted by AISI. Any redistribution is prohibited.

20

AISI S240-20

sheathing or deck is not attached directly to structural members.

(b) Continuously Braced Design. Unless noted otherwise in Section B2 or B4, the continuously braced design requirements of this Standard shall be limited to assemblies where *structural sheathing* or *steel deck* is attached directly to *floor joists, ceiling joists* and *roof rafters* that comply with all of the following conditions:

- (1) Maximum web depth = 14 inches (356 mm)
- (2) Maximum design thickness = 0.1242 inches (3.155 mm)
- (3) Minimum design yield strength, F_y = 33 ksi (230 MPa)
- (4) Maximum design yield strength, $F_y = 50$ ksi (345 MPa)

APPLICABLE SECTION FOR BRACING USING PW WEAR SURFACE TOP AND GYP BOT

TYP CFS CEILING JOISTS 10" STUDS, 24" OC.

Project Name: Centeris

Page 1 of 1 Date: 06/14/2024

Section :	1000S2	200-54 (5	0 ksi) @ 24	in" o.c. S	ingle C St	<mark>ud (pu</mark> nched	d)			
Maxo =	4254.2	ft-lb	Va =	: 1660.8 I	b I=	10.769 in^4				
Deflection	Limits:	Total I	Load - 240		Live L	oad - 360		~		
Load Comb: Joist Flexural and I		1. DL + LL All spans 2. DL + LL Even spans 3. DL + LL Odd spans			4. LL All spans 5. LL Even spans 6. LL Odd spans				CLIP CONNECTIC STIFFENS J	DN OIST
Joist Flexural and Deflection										
		Mmax (ft-lb)	K-phi (Ib-in/in)	Lm (in)	Ma-dist (ft-lb)	Mmax/ Ma min	Load Comb.	TL Defl	Load Comb.	LL Load Defl Comb.
Span		3840	0.0	192.0	3770.5	1.018	1	L/345	1	L/517 4
Joist Bend	ling and	Web Crip	opling							\backslash
Support	Load (Ib)		Load Comb.	Bea (in)	ring	Pa (lb)	Pn (Ib)	Max Intr.	Load Comb.	Stiffeners Required
R1	960.0	1	1	1.00)	553.2	968.1	0.90	1	YES
R2	960.0	3	1	1.00)	553.2	968.1	0.90 ع	1	YES
Joist Bend	Joist Bending and Shear									

Support	Vmax (Ib)	Load Comb.	Va Factor	V/Va	M/Ma	Intr. Unstiffened	Load Comb.	Intr. Stiffened	Load Comb.
R1	960.0	1	1.000	0.58	0.00	0.58	1	N/A	N/A
R2	960.0	1	1.000	0.58	0.00	0.58	1	N/A	N/A
						C			

Joist React	<u>tion and Co</u>	nnections							
Support	Rx(lb)	Ry(lb)	Simpson Strong-Tie Connector	Connector Interaction	Anchor Interaction				
R1	0.0	960.0	S/DHUTF (3)#10 Joist & (6)#10 top,(8)#14 x 2" face to 14ga top plate	56.47 %	56.47 %				
R2	0.0	960.0	S/DHUTF (3)#10 Joist & (6)#10 top,(8)#14 x 2" face to 14ga top plate	56.47 %	56.47 %				

* Reference catalog for connector and anchor requirement notes as well as screw placement requirements

S/DHUTF Drywall Hangers

C-CF-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

The S/DHUTF top-mount hanger is designed to carry joist loads to a CFS stud wall through two layers of %" gypsum board (drywall). This hanger installs after the drywall is in place and comes in sizes that accommodate most typical joists used in multi-family and commercial construction.

Material: 97 mil (12 ga.)

Finish: Galvanized (G90)

Installation:

- Use all specified fasteners; see General Notes
- Hanger to be framed in-line with vertical wall stud
- Drywall is installed first
- Wall top track must be restrained to counteract load eccentricity from hanger

Codes: See p. 13 for Code Reference Key Chart

US Patent: 9,394,680

Model	Dimensions (in.)							
No.	W	н						
S/DHU1.68/8TF		8						
S/DHU1.68/10TF	1 11/16	10						
S/DHU1.68/12TF		12						
S/DHU2.1/8TF		8						
S/DHU2.1/10TF	21⁄8	10						
S/DHU2.1/12TF		12						
S/DHU2.56/8TF		8						
S/DHU2.56/10TF	2%16	10						
S/DHU2.56/12TF		12						

S/DHUTF Allowable Loads (lb.)

Model		Fasteners ⁶		Allowable	Code	
Wouer	Тор	Face	Joist	Uplift	Down	Ref.
S/DHUTF	(6) #10	(8) #14 x 2"	(3) #10	1,230	1,700	_

1. Designer shall ensure that the joist member adequately transfers load to the hanger. 2. Tabulated loads assume (2) 5%" Type X downall attached per IFC.

3. Wall studs designed per designer specifications. At a minimum, the assembly must consist of 600T350-68, Gr. 50 ksi top track and 600S162-43, Gr. 33 ksi wall studs spaced at a maximum of 24" o.c.

4. Tabilated loads are based on testing with full bearing of 3 % "hanger top flange..... The minimum joist gauge is 54 mil (16 ga.).

5. S/DHUTF hanger can be installed ^{9,4} max. from the center of the vertical stud per the in-line framing specifications of the AISI General Provisions without load adjustment.

6. See the current *Fastening Systems* catalog at **strongtie.com** for more information on Simpson Strong-Tie fasteners.

LATERAL DESIGN

Project: CENTERS SM Date: 05/01/2024

Brienen Structural **E**ngineers, P.S.

Phone: (206) 397-0000

1316 Central Avenue South, Suite 200, Kent, WA 98032

www.bse-ps.com

Project: CENTERIS SM

Brienen **S**tructural **E**ngineers, P.S.

Phone: (206) 397-0000

1316 Central Avenue South, Suite 200, Kent, WA 98032

www.bse-ps.com

Diaphragm Shear Provisions from AISI 400-20, Section F2.4

F2.4 Shear Strength

F2.4.1 Nominal Strengt

The nominal strength of diaphragms sheathed with wood structural panels is permitted to be etermined in accordance with Eq. F2.4.1-1 subject to the requirements in Section F2.4.1.1. $V_n = v_n L$ (Ea. F2.4.1-1)

where

- $v_n = Diaphragm$ resistance length, in ft (m) $v_n = Nominal shear strength$ per unit length as specified in Table F2.4-1, lb/ft (kN/m)

F2.4.1.1 Requirements for Tabulated Systems

The following requirements shall apply to diaphragms sheathed with wood structural vanels:

- (a) The aspect ratio (length:width) of the diaphragm does not exceed 4:1 for blocked diaphragms and 3:1 for unblocked diaphragms.
- (b) Joists and tracks are ASTM A1003 Structural Grade 33 (Grade 230) Type H steel for members with a designation thickness of 33 and 43 mils, and ASTM A1003 Structural Grade 50 (Grade 340) Type H steel for members with a designation thickness equal to or greater than 54 mils.
- (c) The minimum designation thickness of structural members is 33 mils.
- (d) Joists are C-shape members with a minimum flange width of 1-5/8 in. (41.3 mm), minimum web depth of 3-1/2 in. (89 mm) and minimum edge stiffener of 3/8 in. (9.5 mm).
- (e) Track has a minimum flange width of 1-1/4 in. (31.8 mm) and a minimum web depth of 3-1/2 in. (89 mm).
- (f) Screws for structural members are a minimum No. 8 and are in accordance with ASTM C1513.
- (g) Wood structural panel sheathing is manufactured using exterior glue and complies with DOC PS-1 and DOC PS-2.
- (h) Screws used to attach wood structural panels are minimum No. 8 where structural members have a designation thickness of 54 mils or less and No. 10 where structural members have a designation thickness greater than 54 mils and comply with ASTM C1513.
- (i) Screws in the field of the panel are attached to intermediate supports at a maximum 12-in. (305 mm) spacing along the structural members.
- (j) Panels less than 12-in. (305-mm) wide are not used.
- (k) Maximum joist spacing is 24 in. (610 mm) on center.
- (1) Where diaphragms are designed as blocked, all panel edges are attached to structural members or panel blocking.
- (m)Where used as blocking, flat strap is a minimum thickness of 33 mils with a minimum width of 1-1/2 in. (38.1 mm) and is installed below the sheathing.
- (n) Where diaphragms are designed as blocked, the screws are installed through the sheathing to the blocking.
- (o) Fasteners along the edges in shear panels are placed from panel edges not less than

F2.4.2 Available Strength

The available strength ($\phi_v V_n$ or V_n/Ω_v) shall be determined from the nominal strength using the applicable safety factors and resistance factors given in this section in accordance with the applicable design method - ASD or LRFD as follows:

 $\Omega_v = 2.50$ (ASD)

 $\phi_v = 0.60$ (LRFD)

F2.4.3 Design Deflection

The deflection of a diaphragm with wood structural panel sheathing shown in Table F2.4-1 shall be determined by principles of mechanics considering the deformation of the sheathing and its attachment, chords and collectors.

Table F2.4-1
Nominal Shear Strength (vn) per Unit Length for Diaphragms Sheathed
With Wood Structural Panel Sheathing 1, 2
United States and Mexico (lb/ft)

			Bloc	ked		Unblocked			
	Thick	Screv bou conti	v spacing ndary edį nuous pa	; at diaph ges and a nel edge:	ragm t all s (in.)	Screws spaced maximum of 6 in. on all supported edges			
Sheathing	ness	6	4	2.5	2	Load			
	(in.)	ot	Screw spa her panel	icing at a I edges (i	ll 1.)	edges and	All other configurations		
		6	6	4	з	panel joints			
	3/8	768	1022	1660	2045	685	510		
Structural I	7/16	768	1127	1800	2255	755	565		
	15/32	925	1232	1970	2465	825	615		
C-D, C-C and	3/8	690	920	1470	1840	615	460		
other graded wood structural	7/16	760	1015	1620	2030	680	505		
panels	15/32	832	1110	1770	2215	740	555		

For SI: 1" = 25.4 mm, 1 ft = 0.305 m, 1 lb = 4.45 N

For diaphragms sheathed with wood structural panels, tabulated Rn values are applicable for short-term load 2. duration (seismic loads).

RCA-C Rigid Connector Angle for Concrete

Our lineup of rigid connector angles (RCA) has a new addition with the RCA-C. The RCA-C is an ideal solution for attaching stud framing to concrete supports. This connector provides the most anchor options for attaching to concrete in comparison to other similar connectors on the market. The connector's design includes holes for a ½"-diameter anchor, or two ¼"-diameter concrete screws, accompanied by a wide array of fastening options — thus saving the installer the time and cost of drilling connector holes at the jobsite. In addition, the RCA connectors have been rigorously tested and load rated, giving you the confidence of quality and performance for your job.

Features:

- 2" x 2" legs provide plenty of room to make attachments to structure and stud framing.
- Multiple screw pattern options to stud framing for different load ratings.
- Can be used as either a heavy-duty shear and tension connector or light-duty moment connection.
- Prepunched holes for screws to stud framing and attachment to concrete. Prepunched holes on anchor leg provide options for (1) ½"-diameter anchor, (2) ¼"-diameter anchors, or (2) ¼"-diameter concrete screws.
- Attachment to concrete or masonry can be achieved with ½"-diameter Titen HD[®], ½"-diameter Strong-Bolt[®] 2, ¼"-diameter Titen HD, or ¼"-diameter Titen Turbo™.

Material: RCA-C - 97 mil (12 ga.), 50 ksi

Finish: Galvanized (G90)

Installation:

• Use all specified anchors/fasteners.

Codes: Tested per ICC-ES AC261 and calculations per AISI RP18-4, AISI S100 or generally accepted industry standards. Visit **strongtie.com** for the latest load values and testing information.

Ordering Information: RCA-C225/97-R55 (55 connectors per bucket)

Simpson Strong-Tie[®] Anchors for RCA-C Attachment to Concrete or Masonry

Anchor Type	Anchor Diameter
Titen HD Heavy-Duty Screw Anchor	1⁄2" or 1⁄4"
Strong-Bolt 2 Wedge Anchor	1⁄2"
Titen Turbo Concrete and Masonry Screw Anchor	1⁄4"

SIMPSON

Strong-Tie

RCA-C225/97

RCA-C Installation at Post

Connectors for Cold-Formed Steel Construction

RCA-C Rigid Connector Angle for Concrete

SIMPSON Strong-Tie

F₂ Bearing pressure

Figure A F₄ Loading (one anchor shown)

Figure C Anchor Tension, T, Created from F₂ (two anchors shown)

Table 1: RCA-C Allowable Connector Loads (lb.)

					Connector	А	llowable Loa	d	Anchor Tension, T		
Model No.	Anchor Type	Fastener Pattern	No. of #10 Fasteners to Stud	Framing Member Thickness mil (ga.)	Rotational Stiffness β (inkip/rad.)	Moment M (inlb.)	Tension F ₂ (lb.)	Shear F ₄ (lb.)	At Allowable Moment, M (lb.) f'c = 4.000 psi	At Allowable Tension Load, F_2 (lb.) f'c = 4.000 psi	
				33 (20)	130	845	660	425	345	705	
		4A	4	43 (18)	160	1,500	1,020	550	615	1,105	
	(1) 1/4 diamatar			54 (16)	165	1,900	1,050	1,050	785	1,140	
	Titen HD®			33 (20)	155	1,830	1,050	845	755	1,140	
	or	8A	8	43 (18)	160	3,215	1,050	1,105	1,355	1,140	
	(1) 1/2"-diameter			54 (16)	175	4,075	1,050	2,100	1,745	1,140	
	Strong-Bolt [®] 2	10A	10	33 (20)	155	3,430	1,050	845	1,455	1,140	
				43 (18)	160	4,905	1,050	1,105	2,140	1,140	
				54 (16)	175	7.640	1,050	2,100	3 540	1,140	
	(2) ¼"-diameter Titen HD		4	33 (20)	155	1,100	660	480	295	705	
Ę		4B		43 (18)	200	1,770	1,020	625	480	1,105	
Ę				54 (16)	220	2,005	1,050	1,185	545	1,140	
Ę		8B	8	33 (20)	170	2,375	1,050	960	645	1,140	
RCA-C225/97				43 (18)	220	3,795	1,050	1,250	1,040	1,140	
Ę				54 (16)	240	4,300	1,050	2,375	1,180	1,140	
Ę				33 (20)	170	4,450	1,050	960	1,225	1,140	
		10B	10	43 (18)	220	5,790	1,050	1,250	1,610	1,140	
ξ				54 (16)	240	8,060	1,050	2,375	2,285	1,140	
				33 (20)	190	1,100	660	480	250	705	
		4C	4	43 (18)	250	1,770	1,020	625	405	1,105	
				54 (16)	310	2,005	1,050	1,185	460	1,140	
	(2) 1//"-diameter			33 (20)	200	2,375	1,050	960	545	1,140	
	Titen Turbo™	8C	8	43 (18)	260	3,795	1,050	1,250	880	1,140	
				54 (16)	320	4,300	1,050	2,375	995	1,140	
				33 (20)	200	4,450	1,050	960	1,035	1,140	
		10C	10	43 (18)	260	5,790	1,050	1,250	1,355	1,140	
				54 (16)	320	8,060	1,050	2,375	1,910	1,140	

1. For additional important information, see General Information and Notes on p. 26.

2. The designer is responsible for anchorage design. Reference Table 2 on p. 114 for anchorage solutions.

3. See illustrations for fastener pattern placement.

Tabulated values are based on framing members with track and stud of the same thickness and (1) #10 screw into each stud flange unless otherwise noted.
 Tabulated moment values correspond to maximum connector strength without consideration of serviceability. The designer must check out-of-plane deflections using tabulated rotational stiffness.

Tabulated connector rotational stiffness may be used for any wall heights. The designer must consider member deflection due to bending in the stud member.
 Per IBC 2021, 2018, 2015, 2012 Table 1604.3 footnote f, wind load is permitted to be taken as 0.42 times "component and cladding loads" for deflection checks.

For IBC 2009 and earlier, the factor is 0.7 instead of 0.42. Tabulated values have not been adjusted. 8. Allowable loads are based on cold-formed steel members with a minimum F_V of 33 ksi and F_U of 45 ksi for 43 mil (18 ga.) and thinner and a minimum

Fy of 50 ksi and F_u of 65 ksi for 54 mil (16 ga.) and thicker.

 Connectors subjected to tension, shear and moment loads: F₂/F_{2all} + F₄/F_{4all} + M/M_{all} ≤ 1.0. F₄ interaction with Moment not required to be checked for walls 2'-0" or taller. Where: F₂, F₄ and M are the applied ASD tension, shear and moment, respectively. F_{2all}, F_{4all}, M_{all} are the allowable tension, shear and moment from Table 1, respectively.

10. Anchor tension, T, is the force in the anchor, or both anchors for two-anchor solutions, at maximum allowable, M, or maximum allowable tension, F₂. See Table 2 on p. 114 for pre-engineered anchorage solutions that incorporate anchor T into the solution.

11. Anchor tension is calculated using AISC Steel Design Guide 1. The Anchor Bolt Design illustration (Figure B) shows the anchor tension, T, based on an applied moment, M. An illustration for the anchor tension, T, based on a vertical tension load, F₂, shown in Figure C.

12. Anchor tension, T, may be interpolated. Examples:

• M_{req} = 3,312 in.-lb. (given), fastener pattern 10C, 54 mil studs. Anchor tension, T, at allowable moment = (3,312/8,060) x 1,910 = 785 lb.

• T_{req} = 525 lb. (given), fastener pattern 4A, 33 mil studs. Anchor tension, T, at allowable tension load, F₂ = (525/660) x 755 = 601 lb.

13. Tabulated anchor tension, T, is based on $f'_{C} = 4,000$ psi. For $f'_{C} = 3,000$ psi, use an increase factor of 1.05.

Rigid Connectors

C-CF-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

Connectors for Cold-Formed Steel Construction

Edae

RCA-C Rigid Connector Angle for Concrete

Figure B Two Anchors

SIMPSOI

<u>Strong</u>-Tie

Table 2: RCA-C Allowable Anchorage Loads (lb.)

One Anchor

						Uncracked	d 4,000 psi	Concrete	Cracked 4,000 psi Concrete						
Model	Type of Concrete	Anchor	Nominal Embedment	Min. Concrete	Min. Anchor Edge Distance (in.)	Wind ar	Wind and Seismic in SDC A and B			Wind and Seismic in SDC A and B			Seismic in SDC C and D		
No.		Type	Depth,	Thickness,		Allowable			Allowable			Allowable			
			(in.)	(in.)		Moment M (inlb.)	Tension F ₂ (lb.)	Shear F ₄ (lb.)	Moment M (inlb.)	Tension F ₂ (lb.)	Shear F ₄ (lb.)	Moment M (inlb.)	Tension F ₂ (lb.)	Shear F4 (lb.)	
		(1) 1/2"-diameter	31⁄4	5	3	3,015	1,165	885	2,190	845	635	785	305	295	
		Titen HD®			12	3,425	1,320	1,560	2,465	950	1,105	885	340	515	
		(1) 1/2"-diameter	23/	6	4	2,185	845	975	2,315	895	965	830	320	450	
	SLWC	Strong-Bolt [®] 2	۲4 ک	0	12	2,890	1,115	1,465	2,315	895	1,035	830	320	485	
		(2) 1/4"-diameter	15%	31/4	1½	1,265	565	445	1,205	540	315	425	190	150	
		Titen HD	1 /0	074	6	2,410	1,025	1,070	1,375	595	680	485	210	315	
		(2) 1/4"-diameter	13/ 3	31⁄4	1¾	1,360	590	495	—	_	_	—	_	_	
BCA-C225/97		Titen Turbo™	174	0/4	3	1,955	835	520	—	—	—	—	—	—	
		(1) 1/2"-diameter	31⁄4	5	3	4,330	1,670	1,305	3,165	1,225	930	1,150	445	435	
		Liten HD			12	4,895	1,890	2,295	3,555	1,375	1,625	1,295	500	760	
		(1) 1/2"-diameter	23/4	6	4	3,160	1,220	1,435	3,345	1,290	1,420	1,215	470	665	
	NWC C	Strong-Bolt 2			12	4,150	1.605	2,150	3.345	1.290	1.525	1,215	470	710	
	1110	(2) 1/4"-diameter	15%	31/4	11/2	1,855	825	655	1,765	785	465	625	280	220	
	E E	l iten HD	170		6	3,515	1,475	1,455	2,010	860	995	710	310	465	
		(2) 1/4"-diameter	13⁄4	31⁄4	13⁄4	1,990	855	520	—	—		—	—	_	
		Liten Turbo	. / 4	0/4	3	2,860	1,205	520	—	—	—	—	—	_	

 Anchor allowable loads have been determined using ACI 314-14 Chapter 17 anchorage calculations with the minimum concrete compressive strength, f[']_C, and slab thickness listed. Sand-Lightweight Concrete is abbreviated as SLWC, Normal Weight Concrete is abbreviated as NWC.

- 2. Load values are for anchor based on ACI 318-14, condition B, load factors from ACI 318 Section 5.3, no supplemental edge reinforcement, $\Psi_{C,V}$ = 1.0 for cracked concrete and periodic special inspection. Reference ICC-ES or IAPMO-UES evaluation reports for further information.
- 3. Allowable Stress Design (ASD) values were determined by multiplying calculated strength design values by a conversion factor, Alpha (α), of 0.7 for seismic loads and 0.6 for wind loads. ASD values for other load combinations may be determined using alternate conversion factors.
- 4. End distances are assumed as N/A perpendicular to load.
- Tabulated allowable ASD loads for Wind and Seismic in SDC A and B are based on using wind conversion factors and may be increased by 1.17 for seismic SDC A and B only.
- 6. Allowable loads have been divided by an Omega (Ω) seismic factor of 2.5 for brittle failure as required by ACI 318-14 Chapter 17.
- 7. Tabulated capacities are based on maximum allowable anchorage loads only. The capacity of the connection system shall be the minimum of the tabulated value and the RCA-C allowable load value listed on Table 1 on p. 113.
- 8. Tabulated loads in Table 2 are based on $f'_c = 4,000$ psi. For $f'_c = 3,000$ psi, use an adjustment factor of 0.86.
- 9. For anchor subjected to tension, shear and moment loads:

When $(F_4/F_{4all}) \le 0.2$	$F_2/F_{2all} + M/M_{all} \le 1.0$
When $(F_2/F_{2all} + M/M_{all}) \le 0.2$	$F_4/F_{4all} \le 1.0$
When $(F_4/F_{4all}) > 0.2$ and $(F_2/F_{2all} + M/M_{all}) > 0.2$	$(F_2/F_{2all} + M/M_{all}) + (F_4/F_{4all}) \le 1.2$
Where: F ₂ , F ₄ and M are the applied ASD tensio	n, shear and moment, respectively.

F2all, F4all, Mall are the allowable tension, shear and moment from Table 2, respectively.

RCA-C Fastener Patterns

114