## STORM DRAINAGE REPORT

#### **FOR**

# Best Parking Lot Cleaning Puyallup, Washington

Revised March 2024 September 2023

Prepared for: BPLC Properties LLC

Prepared by: Matthew Seawright, E.I.T., Project Designer

**Approved By:** 

Daniel Smith, P.E., Senior Project Manager

**REPORT #20083** 

"I hereby state that this Drainage and Erosion/Sediment Control Plan for the <u>Best Parking Lot Cleaning</u> project has been prepared by me or under my supervision and meets the standard of care and expertise which is usual and customary in this community of professional engineers. I understand that City of Puyallup does not and will not assume liability for the sufficiency, suitability or performance of drainage facilities prepared by me."

This analysis is based on data and records either supplied to, or obtained by, C.E.S. NW, Inc. These documents are referenced within the text of the analysis. The analysis has been prepared utilizing procedures and practices within the standard accepted practices of the industry.

#### **TABLE OF CONTENTS**

|       |          |                                | PAGE |
|-------|----------|--------------------------------|------|
| STOF  | RM DR    | AINAGE                         | 1    |
| 1.    | Proj     | ECT OVERVIEW                   |      |
| 2.    |          | TING CONDITIONS SUMMARY        |      |
| 3.    | OFF-     | SITE ANALYSIS REPORT           | 3    |
| 4.    | PERM     | MANENT STORMWATER CONTROL PLAN | 4    |
| 5.    | DISC     | USSION OF MINIMUM REQUIREMENTS | 6    |
|       |          | ER PERMITS                     | 10   |
| ,     | <b>1</b> |                                |      |
| Appen | idix A   | General Exhibits               |      |
|       |          | Vicinity Map                   |      |
|       |          | Soils Map                      | A-2  |
| Appen | ndix B   | Maps                           |      |
| 11    |          | Pre-Developed Bain Map         | B-1  |
|       |          | Developed Basin Map            |      |
|       |          | Conveyance Basin Map           | B-3  |
|       |          | FIRM Panel 53053C0334E         |      |
|       |          | Downstream Drainage Map        | B-3  |
| Appen | ndix C   | Computer Modelling Results     |      |
| Appen | ndix D   | Geotechnical Engineer's Report |      |

#### **STORM DRAINAGE**

#### 1. Project Overview

This report accompanies the civil engineering plans as submitted to the City of Puyallup for review and approval. This document provides site information, and the analysis used to prepare the storm drainage design. The *Washington State Department of Ecology Stormwater Management Manual for Western Washington, 2019 (Manual)*, and the City of Puyallup's modifications to that document establishes the methodology and design criteria used for this project.

The Best Parking Lot Cleaning project proposes the paving of an existing gravel parking lot and accompanying storm facilities on a 1.86-acre site comprised of four parcels (2105200320, 2105200350, 2105200340 and 2105200361) zoned Limited Manufacturing (ML). The site is accessed from Inter Ave with two commercial driveway approaches. The project is located in the Puyallup River Water Resources Inventory Area (WRIA 10). The Vicinity Map has been included in Appendix "A" of this report. A project summary is as follows:

**Permit Applied for** –Site Development

Address – 2412 Inter Ave Puyallup, WA 98372

**Parcel Numbers** – 2105200320, 2105200350, 2105200340 and 2105200361

**Legal description** – (Per Quit Claim Deed Filed Under Recording Number 200105070774)

Parcel A (2105200320):

East 100 Feet of Block 19, Ackerson's Second Addition to Puyallup, According to Plat Recorded in Book 8 of Plats, at Game 25, in Pierce County, Washington.

Parcel B (2105200350):

West 75 Feet if that Part of Block 20, Ackerson's Second Addition to Puyallup, Situated in the City of Puyallup, According to Plat Recorded in Book 8 of Plats, at Page 25, in Pierce County, Washington.

(Per Alta Commitment for Title Insurance Issued by Chicago Title Commitment Number 0012400-Tc Dated March 25, 2014)

Parcel #2105200361:

Block 20, Ackerson's Second Addition to Puyallup. According to Plat Recorded in Volume 8 of Plats, Page 25, Records of Pierce County Auditor.

Except the West 150 Feet Thereof.

(Per Real Estate Excise Tax Affidavit Filed Under Recording Number 4337181)

Parcel #2105200340:

The East 75 Feet of the West 150 Feet of Block 20, Ackerson's Second Addition to Puyallup, According to Plat Thereof Recorded in Volume 9 of Plats, at Page 25, Records of Pierce County Auditor.

All Situate in the City of Puyallup, County of Pierce, State of Washington.

The project site historically has been used as a gravel parking lot as depicted on the pre-developed basin map (Appendix "B"). The existing site is redeveloped with landscaping and repaving of the existing gravel with asphalt upon permit approval. The property has frontage with Inter Ave along its northern property line and access is provided with two commercial driveway approaches. The project proposes approximately 51,000 sq.ft. of asphalt paving across onsite and offsite improvements; therefore, according to Figure 1-3.1 and 1-3.2 of Volume I of the Manual, the project must evaluate all minimum requirements for the new and replaced surfaces. Section 5 of this report contains a detailed discussion of the minimum requirements. The project proposes a detention pond (BMP D.1) for flow control of the site improvements, and runoff treatment is provided by a combined wet pond (BMP T10.40) underneath the detention pond and two continuous inflow biofiltration swales (BMP T9.30) within the right-of-way. All disturbed areas which are not converted to impervious surface apply soil amendments in accordance with BMP T5.13.

#### 2. Existing Conditions Summary

The existing site is currently used as a gravel parking lot. The site is relatively flat between elevations 62-64 (NAVD 88) which gradually slopes towards Inter Avenue with a relative high spot south center of the parcels. Runoff sheet flows north across the gravel parking lot and is collected by the public closed conveyance system in Inter Ave. The public closed conveyance

system is comprised of 12-inch concrete pipes and flows west for approximately 1,500-feet towards an offsite wetland complex and Upper Deer Creek. The site is accessed by existing gravel driveway approaches from Inter Avenue.

Onsite soils have been identified as Briscot loam (6A a Type D soil) determined by the USDA SCS maps of Pierce County, Washington. A description of the USDA soils and a copy of the soil map for this portion of Pierce County have been included in Appendix "A" of this report. A draft geotechnical engineer's report has been prepared by Earth Solution NW LLC, dated February 12, 2019, with an addendum, dated August 3, 2021, where they documented groundwater table depths at a depth of 0.9 to 2.0-feet. A copy of the geotechnical report is included in Appendix "D".

There is an existing gravity sewer main in Inter Avenue which currently serves the property. There are no known aquifer recharge or wellhead protection areas that affect this property. There are no known well or septic systems onsite. If a septic system or well is discovered onsite during construction, it will be decommissioned per Tacoma-Pierce County Health Department standards. The parcel and all the proposed improvements are located within Zone X, which is considered outside of the 100-year floodplain, per FEMA Map # 53053C0334E. A copy of the FIRM Panel map can be found in Appendix 'B' of this report.

#### 3. Off-site Analysis Report

A quarter mile downstream analysis is required by the City of Puyallup. The project proposes a detention pond for flow control, and a wetpond for treatment of runoff directed towards the onsite conveyance system and two continuous inflow bio-filtration swales in the right-of-way. Based on a field survey and public GIS information, the runoff is conveyed west within Inter Avenue's closed conveyance system towards Upper Deer Creek. The ¼ mile drainage path ends at the outfall to Upper Deer Creek. Existing wetlands are located at the outfall to Upper Deer Creek. The runoff ultimately outfalls to the Puyallup River which is located approximately 0.9-miles downstream located northwest of the project site. A downstream map is included in Appendix "B". No adverse impacts are anticipated to the downstream system as a result of the development due to the proposed detention pond.

#### 4. Permanent Stormwater Control Plan

#### Existing Site Hydrology

The existing site sheet flows across the gravel parking lot and outfalls to the public storm system in Inter Avenue. The site is modeled under pre-developed conditions for the sake of calculating flow control requirements. The pre-developed basin is 1.987-acres C, Forest, Flat. The following is a summary of the pre-developed site flows:

2-year 0.045-cfs 10-year 0.083-cfs 50-year 0.108-cfs 100-year 0.116-cfs

Please refer to the Pre-Developed Basin Map in Appendix "B" and the WWHM computer results in Appendix "C".

#### Developed Site Hydrology

Under the developed condition, the project site proposes 44,578 sq.ft. of asphalt paving across onsite improvements and offsite driveway approach improvements. The landscape and yard areas can be modeled as "pasture" due to soil amendment per Ecology BMP T5.13. The post developed basin is summarized in the below:

| Sub-Basin  | Land-use                           | WWHM Description | Area (ac) |  |
|------------|------------------------------------|------------------|-----------|--|
| Post Dev A | Road (Inter Ave to Pond)           | Roads, Flat      | 0.066     |  |
| Post Dev B | Parking Lot (to Pond) Parking, Fla |                  | 1.008     |  |
| Post Dev C | Landscaping (to Pond)              | C, Pasture, Flat | 0.494     |  |
| Post Dev D | Detention Pond                     | Pond             | 0.240     |  |
| Bypass A   | Road (Inter Ave Bypass)            | Roads, Flat      | 0.105     |  |
| Bypass B   | Landscaping (Inter Ave Bypass)     | C, Pasture, Flat | 0.074     |  |
| Total      |                                    |                  |           |  |

**Table 1 – Post Developed Basin** 

The following is a summary of the unmitigated post developed site flows:

2-year 0.516-cfs 10-year 0.820-cfs 50-year 1.136-cfs 100-year 1.285-cfs

Please refer to the Post Developed Basin Map in Appendix 'B' and the WWHM computer results in Appendix "C".

#### **Pond Sizing**

The project proposes a detention pond for flow control and runoff treatment. As calculated by the WWHM computer program, a 3.5-foot deep detention pond with a bottom area of 9,352 sq.ft. and a volume at top of riser of 0.791 acre-feet is required. The project proposes a 3.5-foot deep pond with 9,374 sq.ft. bottom area and 0.799 acre-feet of volume. A copy of the computer modeling report is included in Appendix "C". The pond discharges to Inter Avenue with the use of a riser control structure to meter the post developed runoff. The riser schedule is summarized in Table 9.1 below.

| Elev. | Type    | Size.        |
|-------|---------|--------------|
| 55.50 | Orifice | 0.68-in      |
| 60.64 | Weir    | 1.25-in wide |

**Table 9.1 – Riser Schedule** 

#### Emergency Overflow Spillway

The outlet length of the proposed detention pond is determined by the following equation:

$$L = [Q_{100}/(3.21 H^{3/2})] \text{--}2.4 H$$

Where;

L = Length of weir outlet (ft)

 $Q_{100}$  = Peak 100-year flow rate (1.52 cfs)

H = Height of water over weir (0.5-ft)

H = Calculated at <0.2 using Hydraflow Express; therefore, assume 0.2 as minimum

$$L = [Q_{100}/(3.21 H^{3/2})] - 2.4 H = [1.52 \ cfs/(3.21*(0.5^{3/2}))] - 2.4*0.5 = 0.14 - feet; \ therefore, \ use \ \underline{\textbf{6-feet}}.$$

#### Runoff Treatment

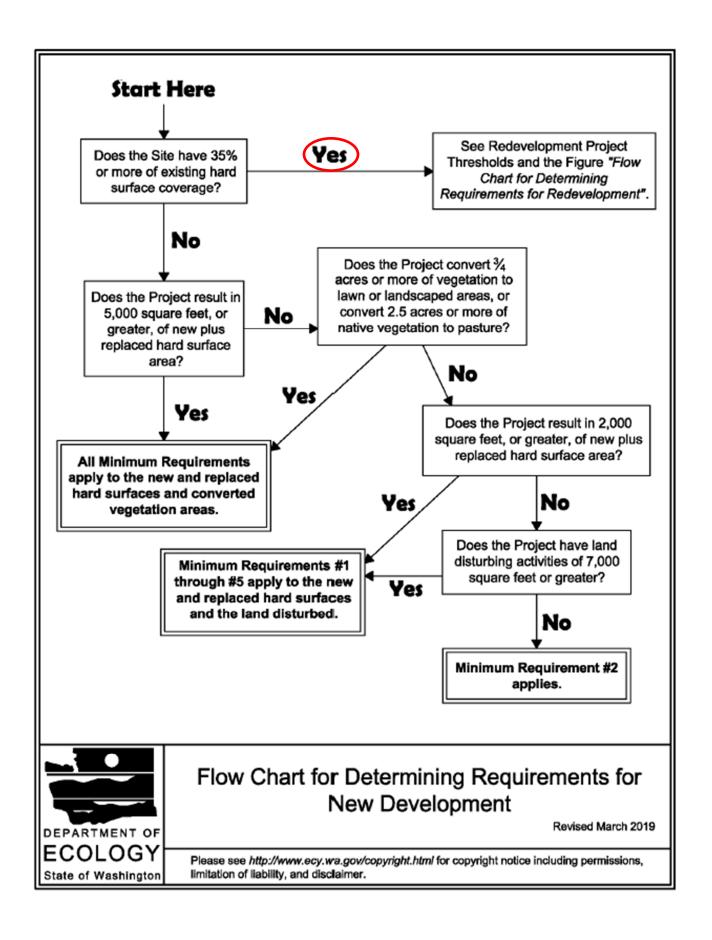
#### Combined Detention/Wet Pond (BMP T10.40)

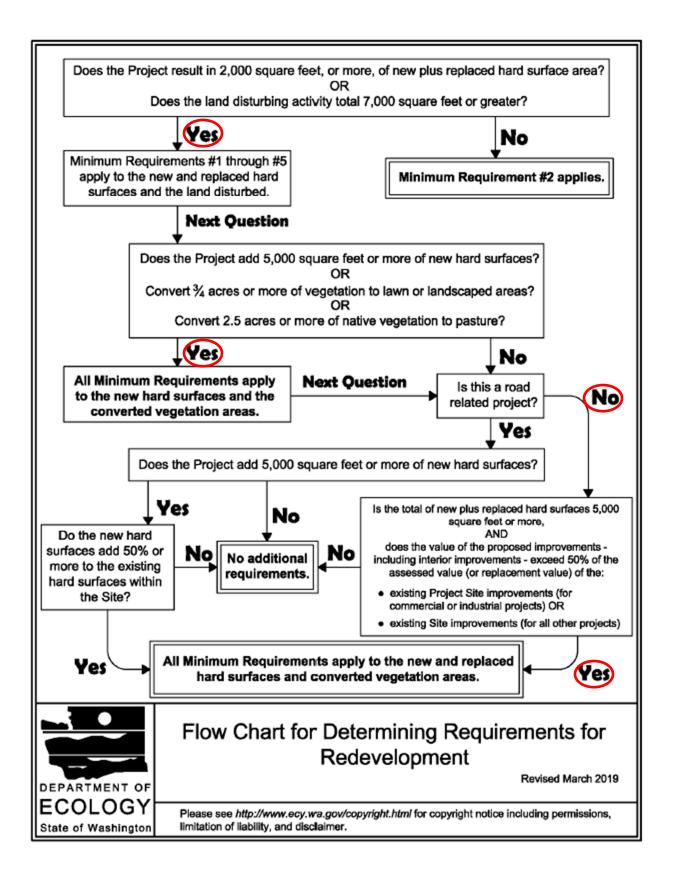
Runoff that is directed towards the onsite conveyance system is treated with a wetpond at the bottom of the detention pond. The required treatment volume is 6,660- cubic-feet (0.15 acre-feet) as calculated by the WWHM computer program. The wetpond provides 8,800 cubic-feet (0.202 acre-feet) of dead storage; therefore, sufficient treatment volume is provided. A copy of the computer modeling report is included in Appendix "C".

#### Continuous Inflow Biofiltration Swale (BMP T9.30)

Runoff that bypasses the pond in the right-of-way is treated with two 100-foot long continuous inflow biofiltration swales. The swales are 2-feet wide and 6-inches deep with a channel slope of 1.5%. The channel velocity is calculated using AutoDesk's Hydraflow Express at the water quality flow rate of 0.0157-cfs and a Manning's coefficient of 0.20. As calculated the channel velocity is 0.12-fps; therefore, the required bio-filtration swale length is 129.6-feet and 200-feet is provided. The swale length is calculated as follows:

 $L = 1080[sec] * V_{wq} = 1080[sec] * 0.12-fps = 129.6-feet required, and two 100-foot swales provided.$ 


A copy of the Hydraflow Express calculations is included in Appendix "C".


#### **Conveyance Calculations**

The project proposes an onsite closed conveyance system. This system is comprised of catch basins, PVC pipes and ductile iron pipe. The rational method is used to demonstrate that the system's ability to convey the site's overflow 100-year event as calculated using equations from the Manual on a Excel spreadsheet. The conveyance basin is provided in Appendix "B" and the rational method results are provided in Appendix "C".

#### 5. Discussion of Minimum Requirements

The project is the redevelopment of two parcels that proposes more than 5,000 sq.ft. of new plus replaced hard surfaces; therefore, as required by Figure 1-3.1 and 1-3.2 of Volume I of the Manual all minimum requirement applies to the new and replaced surfaces.





The following is a summary of the minimum requirements as described in Chapter 2 of Volume I of the Manual.

- 5.1 Minimum Requirement #1: Preparation of a Stormwater Site Plan
  The Stormwater Site Plan is prepared and is provided with this document.
- 5.2 Minimum Requirement #2: Construction Stormwater Pollution Prevention (SWPP)

  A SWPP Plan has been prepared. It is submitted alongside this report as the erosion control report.
- 5.3 Minimum Requirement #3: Source Control of Pollution

  Permanent source control BMPs are required for the development's daily operations as described in the Pollution Source Control Manual for Commercial/Industrial Activities included as a separate document.
- 5.4 Minimum Requirement #4: Preservation of Natural Drainage System and Outfalls Under existing conditions, stormwater runoff is collected onsite and discharged into the public conveyance system in Inter Avenue south of the site. The proposed improvements maintain the existing outfalls for the project site.
- 5.5 Minimum Requirement #5: Onsite Stormwater Management

This project must meet minimum requirements 1-9; therefore, this project must either evaluate List 2 for onsite stormwater management compliance or meet the LID Performance Standard. The project will evaluate List 2 for onsite stormwater management compliance. BMPs from List 2 were evaluated as follows:

#### Lawn and Landscape Areas

Soil Preservation and Amendment (Ecology BMP T5.13).
 All disturbed areas which are not converted to impervious areas shall apply soil amendment per Ecology BMP T5.13.

#### Roof Areas

• The Project does not propose this surface type.

#### Other Hard Surfaces

- 65/10 Dispersion is deemed infeasible due to limited site area.
- **Permeable pavement** and **bioretention** are deemed **infeasible** due to the shallow groundwater table.
- Sheet flow dispersion is deemed infeasible due to limited site area.

#### 5.6 Minimum Requirement #6: Runoff Treatment

The project exceeds runoff treatment thresholds and meets this requirement with a wetpond located below the detention pond, and two continuous inflow bio-filtration swales in the right-of-way. Sizing calculations is provided in Section 4 of this report.

#### 5.7 Minimum Requirement #7: Flow Control

The project meets the Flow Control Performance Standard with the use of an onsite detention pond.

#### 5.8 Minimum Requirement #8: Wetlands Protection

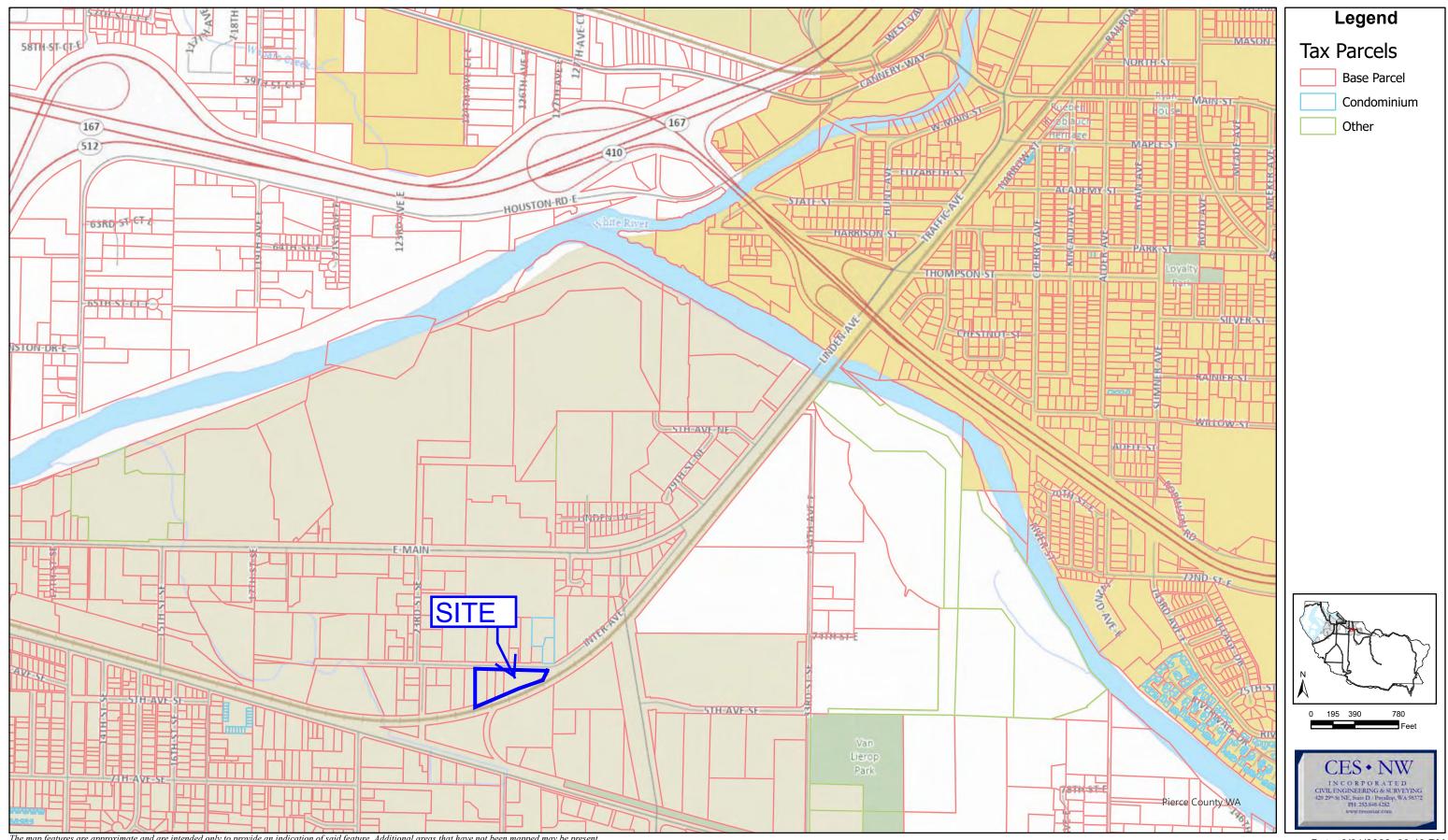
This requirement is not applicable to the project since the closest wetland is more than ¼ mile downstream of the site at Inter Ave's outfall to Upper Deer Creek.

#### 5.9 Minimum Requirement #9: Operation and Maintenance

An Operation and Maintenance Manual is submitted alongside this report.

#### 6. Other Permits

Other necessary permits and approvals include:


- Right of Way Permit
- Building Permits (Pond Walls)
- NPDES Permit

## **APPENDIX A**

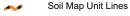
## **General Exhibits**

| Vicinity Map                     | A-1 |
|----------------------------------|-----|
| Soils Map and Description (NRCS) | A-2 |

## **VICINITY MAP**






#### MAP LEGEND

#### Area of Interest (AOI)

Area of Interest (AOI)

#### Soils

Soil Map Unit Polygons



Soil Map Unit Points

#### Special Point Features

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill

Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water

iviiscellarieous vvale

Perennial Water

Rock Outcrop

Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

#### \_

Spoil Area

Stony Spot

Wery Stony Spot

Wet Spot

Other

Special Line Features

#### Water Features

Δ

Streams and Canals

#### Transportation

Rails

Interstate Highways

US Routes

Major Roads

Local Roads

#### Background

Aerial Photography

#### MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

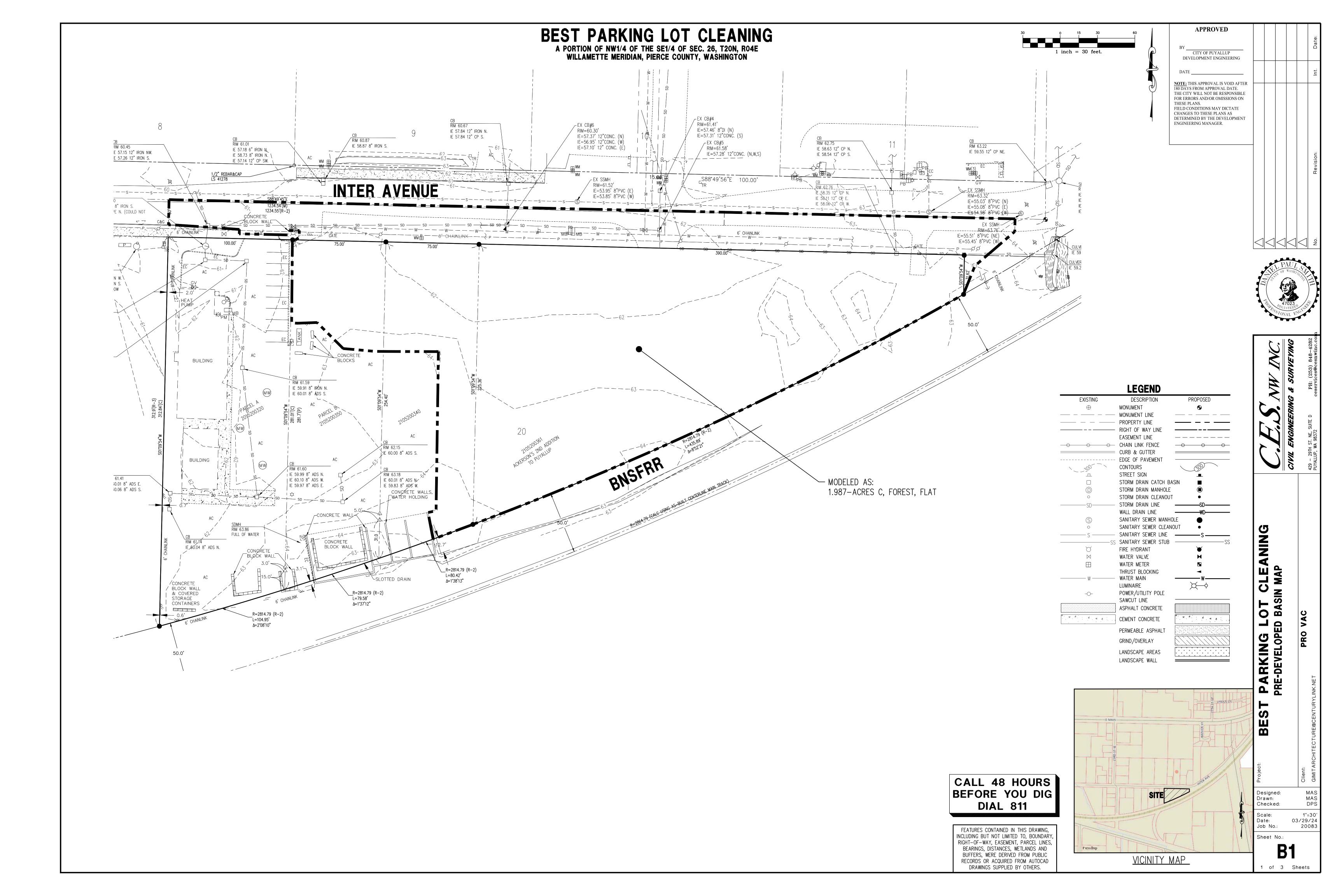
This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

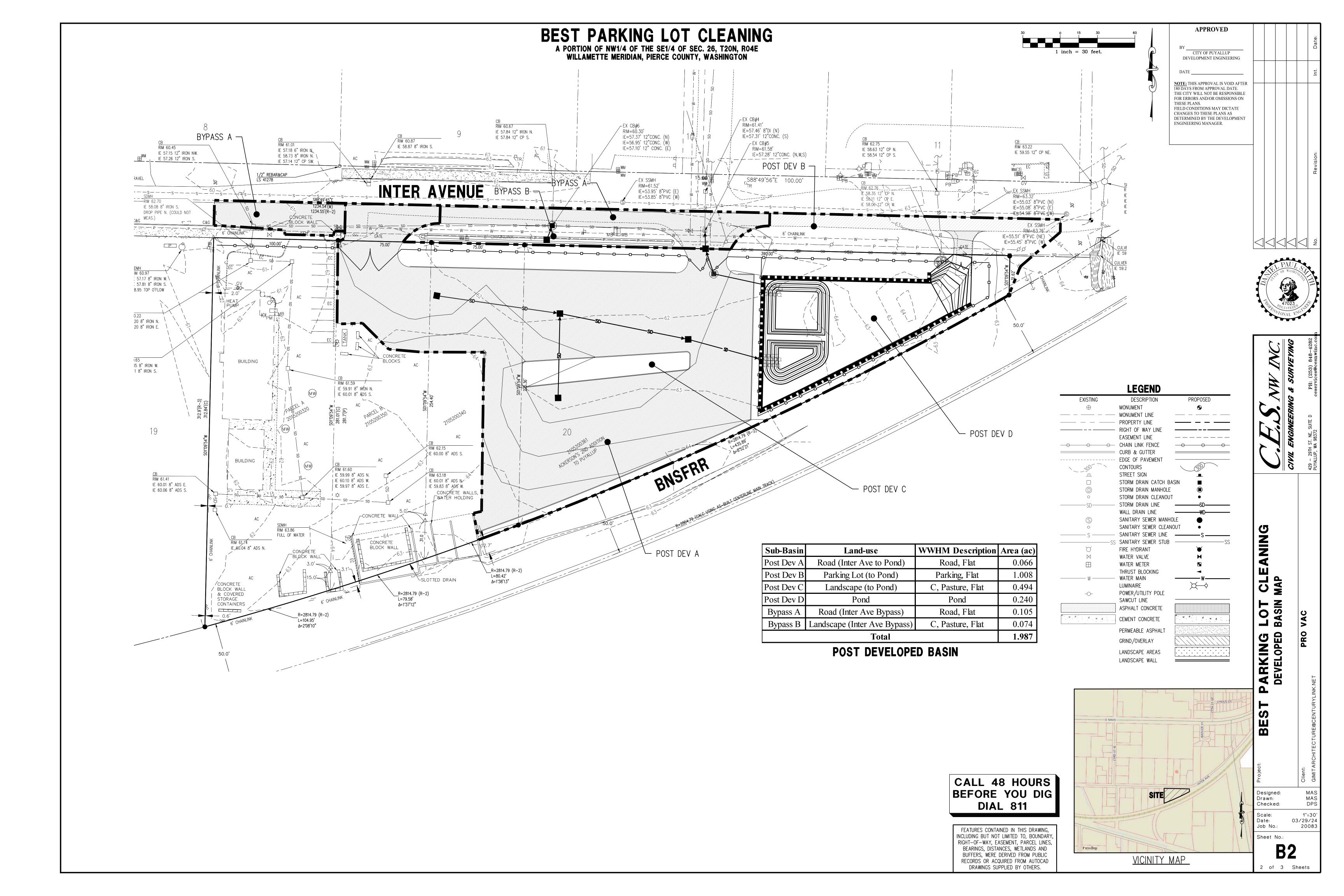
Soil Survey Area: Pierce County Area, Washington Survey Area Data: Version 18, Sep 8, 2022

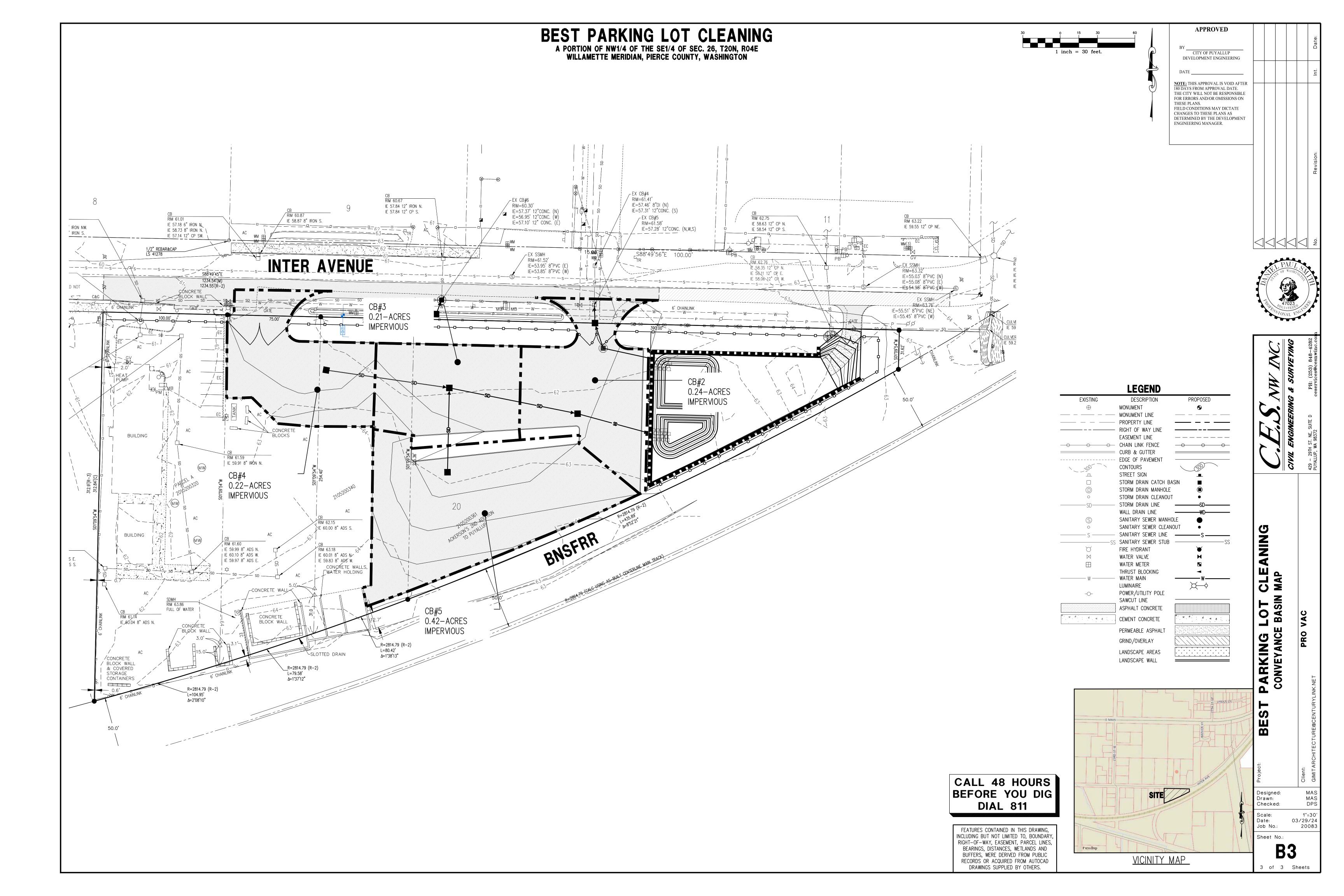
Soil map units are labeled (as space allows) for map scales 1:50.000 or larger.

Date(s) aerial images were photographed: Jul 31, 2022—Aug 8, 2022

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.


## **Map Unit Legend**


| Map Unit Symbol             | Map Unit Name | Acres in AOI | Percent of AOI |
|-----------------------------|---------------|--------------|----------------|
| 6A                          | Briscot loam  | 2.9          | 100.0%         |
| Totals for Area of Interest |               | 2.9          | 100.0%         |


## **APPENDIX B**

## **Basin Exhibits**

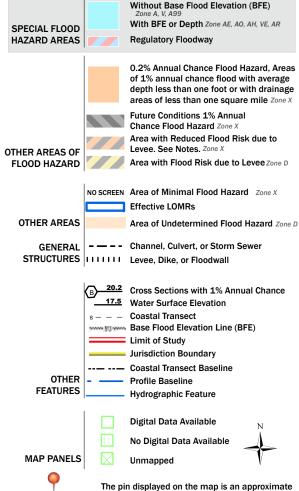
| Predeveloped Basin Map    | B-1 |
|---------------------------|-----|
| Developed Basin Map       | B-2 |
| Conveyance Basin Map      | B-3 |
| FIRM Panel (#53053C0334E) | B-4 |
| Downstream Drainage Map   | B-5 |







## National Flood Hazard Layer FIRMette




Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

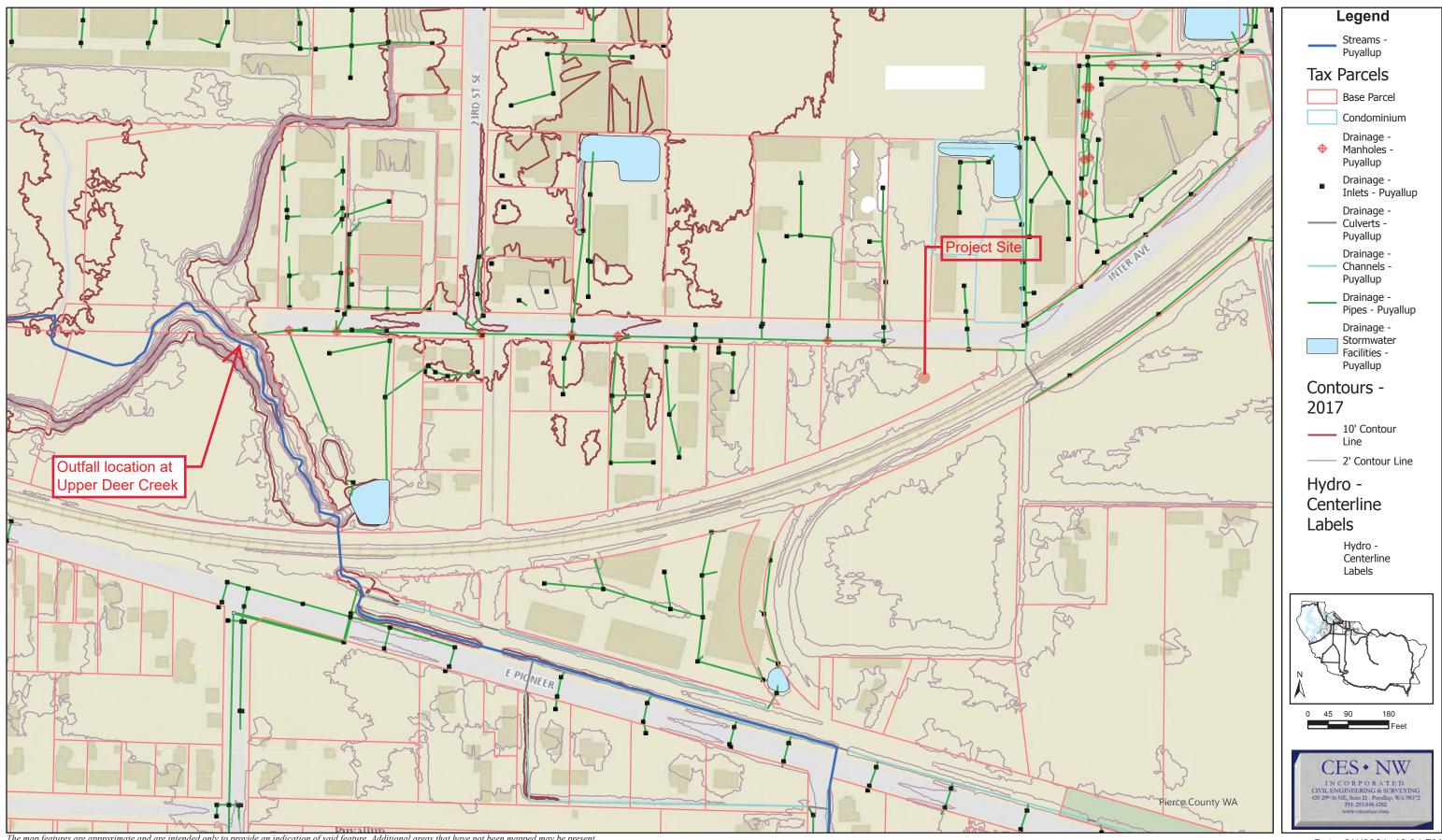


#### Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT



This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards


point selected by the user and does not represent

an authoritative property location.

The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 2/1/2021 at 1:21 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

## Downstream Map



## **APPENDIX C**

Computer Modelling Results

# WWHM2012 PROJECT REPORT

## General Model Information

WWHM2012 Project Name: 20083S

Site Name: BPLC

Site Address:

City: Puyallup, WA
Report Date: 3/25/2024
Gage: 40 IN EAST
Data Start: 10/01/1901
Data End: 09/30/2059
Timestep: 15 Minute

Precip Scale: 1.000

Version Date: 2023/01/27

Version: 4.2.19

#### **POC Thresholds**

Low Flow Threshold for POC1: 50 Percent of the 2 Year

High Flow Threshold for POC1: 50 Year

## Landuse Basin Data Predeveloped Land Use

#### **PreDev**

Bypass: No

GroundWater: No

Pervious Land Use acre C, Forest, Flat 1.987

Pervious Total 1.987

Impervious Land Use acre

Impervious Total 0

Basin Total 1.987

#### Mitigated Land Use

## PostDev to Pond

Bypass: No

GroundWater: No

Pervious Land Use acre C, Pasture, Flat 0.494

Pervious Total 0.494

Impervious Land Use ROADS FLAT 0.066
PARKING FLAT 1.008
POND 0.24

Impervious Total 1.314

Basin Total 1.808

**Bypass** 

Bypass: Yes

GroundWater: No

Pervious Land Use acre C, Pasture, Flat 0.074

Pervious Total 0.074

Impervious Land Use acre ROADS FLAT 0.105

Impervious Total 0.105

Basin Total 0.179

# Routing Elements Predeveloped Routing

#### Mitigated Routing

#### **Combined Detention Pond**

Bottom Length: 334.00 ft. Bottom Width: 28.00 ft. Depth: 4.5 ft.

Volume at riser head: 0.7908 acre-feet.

Side slope 1: 0 To 1 Side slope 2: 10 To 1 Side slope 3: 0 To 1 Side slope 4: 0 To 1

Discharge Structure

Riser Height: 3.5 ft. Riser Diameter: 18 in.

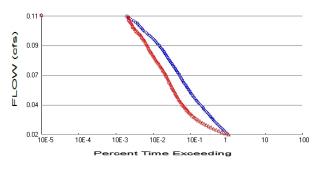
Notch Type: Rectangular Notch Width: 0.104 ft. Notch Height: 0.360 ft.

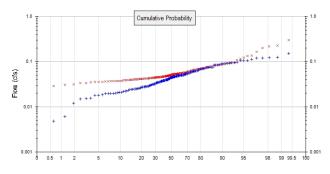
Orifice 1 Diameter: 0.677 in. Elevation:0 ft.

Element Flows To:

Outlet 1 Outlet 2

#### Pond Hydraulic Table


| Stage(feet)      | Area(ac.)      | Volume(ac-ft.) |                |                |
|------------------|----------------|----------------|----------------|----------------|
| 0.0000           | 0.214          | 0.000          | 0.000          | 0.000          |
| 0.0500           | 0.215          | 0.010          | 0.002          | 0.000          |
| 0.1000           | 0.215          | 0.021          | 0.003          | 0.000          |
| 0.1500           | 0.215          | 0.032          | 0.004          | 0.000          |
| 0.2000           | 0.216          | 0.043          | 0.005          | 0.000          |
| 0.2500           | 0.216          | 0.053          | 0.006          | 0.000          |
| 0.3000           | 0.216          | 0.064          | 0.006          | 0.000          |
| 0.3500           | 0.216          | 0.075          | 0.007          | 0.000          |
| 0.4000           | 0.217          | 0.086          | 0.007          | 0.000          |
| 0.4500           | 0.217          | 0.097          | 0.008          | 0.000          |
| 0.5000           | 0.217          | 0.108          | 0.008          | 0.000          |
| 0.5500           | 0.218          | 0.119          | 0.009          | 0.000          |
| 0.6000           | 0.218          | 0.130          | 0.009          | 0.000          |
| 0.6500           | 0.218          | 0.140          | 0.010          | 0.000          |
| 0.7000           | 0.219          | 0.151          | 0.010          | 0.000          |
| 0.7500           | 0.219          | 0.162          | 0.010          | 0.000          |
| 0.8000           | 0.219          | 0.173          | 0.011          | 0.000          |
| 0.8500           | 0.220          | 0.184          | 0.011          | 0.000          |
| 0.9000           | 0.220          | 0.195          | 0.011          | 0.000          |
| 0.9500           | 0.220<br>0.221 | 0.206          | 0.012<br>0.012 | 0.000          |
| 1.0000<br>1.0500 | 0.221          | 0.217<br>0.229 | 0.012          | 0.000<br>0.000 |
| 1.1000           | 0.221          | 0.229          | 0.012          | 0.000          |
| 1.1500           | 0.221          | 0.240          | 0.013          | 0.000          |
| 1.2000           | 0.222          | 0.262          | 0.013          | 0.000          |
| 1.2500           | 0.222          | 0.202          | 0.013          | 0.000          |
| 1.3000           | 0.223          | 0.284          | 0.013          | 0.000          |
| 1.3500           | 0.223          | 0.295          | 0.014          | 0.000          |
| 1.4000           | 0.223          | 0.306          | 0.014          | 0.000          |
| 1.4500           | 0.224          | 0.318          | 0.015          | 0.000          |
| 1.5000           | 0.224          | 0.329          | 0.015          | 0.000          |
| 1.5500           | 0.224          | 0.340          | 0.015          | 0.000          |
| 1.0000           | U.227          | 0.040          | 0.010          | 0.000          |


| 0.231<br>0.231<br>0.232<br>0.232<br>0.232<br>0.233<br>0.233<br>0.233<br>0.234<br>0.234<br>0.234<br>0.234<br>0.235<br>0.235<br>0.235<br>0.235<br>0.236<br>0.236<br>0.237<br>0.237<br>0.237<br>0.237<br>0.237<br>0.238<br>0.238<br>0.238<br>0.239<br>0.239<br>0.239<br>0.239 | 0.568<br>0.579<br>0.591<br>0.603<br>0.614<br>0.626<br>0.638<br>0.649<br>0.661<br>0.673<br>0.684<br>0.696<br>0.708<br>0.719<br>0.731<br>0.743<br>0.755<br>0.767<br>0.778<br>0.790<br>0.802<br>0.814<br>0.826<br>0.838<br>0.850<br>0.862<br>0.874<br>0.886<br>0.898                                                                                                    | 0.019 0.020 0.020 0.020 0.020 0.021 0.021 0.021 0.021 0.021 0.022 0.027 0.034 0.044 0.054 0.066 0.079 0.092 0.270 0.595 1.012 1.497 2.032 2.595 3.166 3.726 4.254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.239<br>0.240<br>0.240<br>0.240<br>0.241<br>0.241<br>0.241<br>0.242<br>0.242<br>0.242                                                                                                                                                                                     | 0.874<br>0.886<br>0.898<br>0.910<br>0.922<br>0.934<br>0.946<br>0.958<br>0.970<br>0.982<br>0.994<br>1.006                                                                                                                                                                                                                                                             | 3.166<br>3.726<br>4.254<br>4.733<br>5.149<br>5.495<br>5.771<br>5.987<br>6.166<br>6.433<br>6.629<br>6.818                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                            | 0.231<br>0.231<br>0.232<br>0.232<br>0.232<br>0.233<br>0.233<br>0.233<br>0.234<br>0.234<br>0.234<br>0.234<br>0.235<br>0.235<br>0.235<br>0.236<br>0.236<br>0.237<br>0.237<br>0.237<br>0.237<br>0.237<br>0.238<br>0.238<br>0.238<br>0.238<br>0.238<br>0.239<br>0.239<br>0.239<br>0.239<br>0.240<br>0.240<br>0.241<br>0.241<br>0.241<br>0.241<br>0.242<br>0.242<br>0.242 | 0.231       0.579         0.231       0.579         0.232       0.603         0.232       0.614         0.232       0.626         0.233       0.638         0.233       0.649         0.234       0.673         0.234       0.696         0.234       0.708         0.235       0.719         0.235       0.743         0.235       0.743         0.235       0.743         0.236       0.755         0.236       0.778         0.237       0.802         0.237       0.802         0.237       0.814         0.238       0.850         0.239       0.862         0.239       0.862         0.239       0.862         0.240       0.910         0.240       0.910         0.241       0.946         0.242       0.970         0.242       0.994         0.243       1.006 | 0.231       0.579       0.020         0.231       0.591       0.020         0.232       0.603       0.020         0.232       0.614       0.020         0.232       0.626       0.020         0.233       0.638       0.021         0.233       0.649       0.021         0.233       0.661       0.021         0.234       0.673       0.021         0.234       0.684       0.021         0.234       0.696       0.021         0.234       0.708       0.022         0.234       0.708       0.022         0.234       0.708       0.022         0.235       0.719       0.027         0.235       0.719       0.027         0.235       0.731       0.034         0.235       0.743       0.044         0.236       0.755       0.054         0.236       0.767       0.066         0.237       0.802       0.270         0.237       0.802       0.270         0.238       0.826       1.012         0.238       0.826       1.012         0.238       0.850       2.032 |

 4.5000
 0.243
 1.031
 7.182
 0.000

 4.5500
 0.243
 1.043
 7.357
 0.000

## Analysis Results POC 1





+ Predeveloped

x Mitigated

Predeveloped Landuse Totals for POC #1

Total Pervious Area: 1.987
Total Impervious Area: 0

Mitigated Landuse Totals for POC #1 Total Pervious Area: 0.568
Total Impervious Area: 1.419

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1

 Return Period
 Flow(cfs)

 2 year
 0.044895

 5 year
 0.069076

 10 year
 0.083053

 25 year
 0.098192

 50 year
 0.107931

 100 year
 0.116381

Flow Frequency Return Periods for Mitigated. POC #1

 Return Period
 Flow(cfs)

 2 year
 0.051334

 5 year
 0.073759

 10 year
 0.092765

 25 year
 0.122279

 50 year
 0.148818

 100 year
 0.179778

#### **Annual Peaks**

Annual Peaks for Predeveloped and Mitigated. POC #1

| Year | Predeveloped | Mitigated |
|------|--------------|-----------|
| 1902 | 0.036        | 0.051     |
| 1903 | 0.028        | 0.057     |
| 1904 | 0.047        | 0.070     |
| 1905 | 0.023        | 0.043     |
| 1906 | 0.012        | 0.037     |
| 1907 | 0.070        | 0.055     |
| 1908 | 0.050        | 0.044     |
| 1909 | 0.049        | 0.045     |
| 1910 | 0.069        | 0.052     |
| 1911 | 0.045        | 0.052     |
|      |              |           |

| 1912<br>1913<br>1914<br>1915<br>1916<br>1917<br>1918<br>1919<br>1920<br>1921<br>1922<br>1923<br>1924<br>1925<br>1926<br>1927<br>1928<br>1929<br>1930<br>1931<br>1932<br>1933<br>1934<br>1935<br>1937<br>1938<br>1940<br>1941<br>1942<br>1943<br>1944<br>1945<br>1946<br>1951<br>1952<br>1953<br>1954<br>1955<br>1956<br>1957<br>1958<br>1959<br>1960<br>1961<br>1962<br>1963 | 0.151 0.070 0.018 0.029 0.045 0.015 0.048 0.037 0.046 0.050 0.050 0.040 0.019 0.025 0.044 0.032 0.034 0.069 0.042 0.032 0.036 0.092 0.042 0.038 0.061 0.037 0.003 0.041 0.025 0.062 0.031 0.065 0.050 0.029 0.021 0.096 0.083 0.024 0.031 0.124 0.112 0.040 0.035 0.018 0.029 0.119 0.075 0.0020 0.075 0.0020 | 0.092<br>0.039<br>0.133<br>0.041<br>0.058<br>0.031<br>0.045<br>0.045<br>0.045<br>0.060<br>0.035<br>0.050<br>0.044<br>0.066<br>0.044<br>0.046<br>0.046<br>0.046<br>0.047<br>0.057<br>0.038<br>0.047<br>0.057<br>0.039<br>0.043<br>0.063<br>0.063<br>0.054<br>0.064<br>0.077<br>0.054<br>0.063<br>0.063<br>0.054<br>0.067<br>0.054<br>0.067<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1959                                                                                                                                                                                                                                                                                                                                                                         | 0.075                                                                                                                                                                                                                                                                                                         | 0.166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1960                                                                                                                                                                                                                                                                                                                                                                         | 0.022                                                                                                                                                                                                                                                                                                         | 0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1961                                                                                                                                                                                                                                                                                                                                                                         | 0.075                                                                                                                                                                                                                                                                                                         | 0.093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

# Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #1

Rank

Predeveloped Mitigated

| Rank | Predeveloped | Mitigated |
|------|--------------|-----------|
| 1    | 0.1510       | 0.2996    |
| 2    | 0.1237       | 0.2260    |
| 2 3  | 0.1218       | 0.2166    |
| 4    | 0.1204       | 0.1992    |
| 5    | 0.1194       | 0.1656    |
| 6    | 0.1123       | 0.1367    |
| 7    | 0.1059       | 0.1326    |
| 8    | 0.1048       | 0.1214    |
| 9    | 0.1043       | 0.1144    |
| 10   | 0.0968       | 0.1069    |
| 11   | 0.0956       | 0.0945    |
| 12   | 0.0939       | 0.0930    |
| 13   | 0.0920       | 0.0921    |
| 14   | 0.0915       | 0.0919    |
| 15   | 0.0889       | 0.0913    |
| 16   | 0.0886       | 0.0883    |
| 17   | 0.0884       | 0.0859    |
| 18   | 0.0855       | 0.0851    |
| 19   | 0.0839       | 0.0851    |
| 20   | 0.0831       | 0.0848    |
| 21   | 0.0825       | 0.0828    |
| 22   | 0.0753       | 0.0790    |
|      |              |           |

20083S 3/25/2024 3:14:43 PM Page 14

| 81<br>82<br>83<br>84<br>85<br>86<br>87<br>88<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>103<br>104<br>105<br>107<br>108<br>109<br>111<br>113<br>114<br>115<br>116<br>117<br>118<br>119<br>119<br>119<br>119<br>119<br>119<br>119<br>119<br>119 | 0.0436 0.0423 0.0422 0.0415 0.0415 0.0411 0.0405 0.0399 0.0398 0.0397 0.0395 0.0392 0.0382 0.0380 0.0376 0.0376 0.0373 0.0373 0.0373 0.0364 0.0358 0.0357 0.0349 0.0348 0.0349 0.0348 0.0343 0.0313 0.0313 0.0313 0.0313 0.0313 0.0313 0.0313 0.0313 0.0294 0.0294 0.0294 0.0294 0.0294 0.0294 0.0297 0.0277 0.0277 0.0277 0.0277 0.0277 0.0277 0.0277 0.0276 0.0256 0.0256 0.0256 0.0256 0.0251 0.0250 0.0245 0.0245 0.0245 | 0.0499 0.0497 0.0489 0.0489 0.0488 0.0486 0.0481 0.0479 0.0478 0.0477 0.0476 0.0471 0.0470 0.0468 0.0468 0.0468 0.0459 0.0456 0.0455 0.0454 0.0454 0.0447 0.0447 0.0447 0.0447 0.0447 0.0448 0.0449 0.0447 0.0440 0.0440 0.0441 0.0440 0.0425 0.0425 0.0425 0.0425 0.0425 0.0425 0.0425 0.0425 0.0425 0.0425 0.0425 0.0425 0.0426 0.0437 0.0433 0.0433 0.0431 0.0440 0.0440 0.0440 0.0440 0.0440 0.0440 0.0440 0.0440 0.0440 0.0440 0.0440 0.0437 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 130                                                                                                                                                                                                                                                                              | 0.0251                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0405                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 131                                                                                                                                                                                                                                                                              | 0.0250                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0405                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 132                                                                                                                                                                                                                                                                              | 0.0245                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0404                                                                                                                                                                                                                                                                                                                                                                                                                                            |

20083S 3/25/2024 3:14:43 PM Page 15

| 0222 | 0.0389                                                                                                                       |
|------|------------------------------------------------------------------------------------------------------------------------------|
| 0220 | 0.0384                                                                                                                       |
| 0210 | 0.0372                                                                                                                       |
| 0207 | 0.0372                                                                                                                       |
| 0205 | 0.0371                                                                                                                       |
| 0202 | 0.0369                                                                                                                       |
| 0198 | 0.0368                                                                                                                       |
| 0196 | 0.0368                                                                                                                       |
| 0195 | 0.0366                                                                                                                       |
| 0194 | 0.0364                                                                                                                       |
| 0184 | 0.0360                                                                                                                       |
| 0180 | 0.0353                                                                                                                       |
| 0179 | 0.0353                                                                                                                       |
| 0156 | 0.0345                                                                                                                       |
| 0153 | 0.0337                                                                                                                       |
| 0149 | 0.0332                                                                                                                       |
| 0120 | 0.0313                                                                                                                       |
| 0061 | 0.0309                                                                                                                       |
| 0049 | 0.0286                                                                                                                       |
|      | 0.0260                                                                                                                       |
|      | 0220<br>0210<br>0207<br>0205<br>0202<br>0198<br>0196<br>0195<br>0194<br>0180<br>0179<br>0156<br>0153<br>0149<br>0120<br>0061 |

# Duration Flows The Facility PASSED

| Elow(ofo)        | Predev         | Mit          | Doroontogo           | Dece/Feil    |
|------------------|----------------|--------------|----------------------|--------------|
| Flow(cfs)        |                |              | Percentage           | Pass/Fail    |
| 0.0224           | 56896          | 57173        | 100                  | Pass         |
| 0.0233           | 52415          | 45395        | 86                   | Pass         |
| 0.0242           | 48376          | 37423        | 77                   | Pass         |
| 0.0250           | 44642          | 31468        | 70                   | Pass         |
| 0.0259           | 41213          | 26709        | 64                   | Pass         |
| 0.0268           | 38243          | 22764        | 59                   | Pass         |
| 0.0276           | 35501          | 19484        | 54                   | Pass         |
| 0.0285           | 32952          | 16714        | 50                   | Pass         |
| 0.0294           | 30526          | 14437        | 47                   | Pass         |
| 0.0302           | 28443          | 12654        | 44                   | Pass         |
| 0.0311           | 26493<br>24747 | 11213        | 42                   | Pass         |
| 0.0319<br>0.0328 |                | 10000        | 40<br>38             | Pass         |
| 0.0326           | 23141<br>21678 | 8931<br>8022 | 36<br>37             | Pass         |
| 0.0337           | 20332          | 7302         | 37<br>35             | Pass         |
| 0.0354           | 19074          | 6643         | 34                   | Pass         |
| 0.0363           |                | 6055         | 3 <del>4</del><br>33 | Pass         |
|                  | 17856          |              |                      | Pass         |
| 0.0371           | 16720          | 5618         | 33                   | Pass         |
| 0.0380<br>0.0389 | 15617          | 5200         | 33<br>33             | Pass         |
| 0.0397           | 14620<br>13723 | 4870<br>4570 | 33                   | Pass         |
| 0.0397           | 12881          | 4280         | 33                   | Pass         |
| 0.0406           | 12099          | 4015         | 33                   | Pass<br>Pass |
| 0.0414           | 11385          | 3790         | 33                   | Pass         |
| 0.0423           | 10654          | 3560         | 33                   | Pass         |
| 0.0432           | 9989           | 3366         | 33                   | Pass         |
| 0.0449           | 9357           | 3191         | 34                   | Pass         |
| 0.0458           | 8753           | 3022         | 34                   | Pass         |
| 0.0466           | 8199           | 2869         | 34                   | Pass         |
| 0.0475           | 7728           | 2723         | 35                   | Pass         |
| 0.0484           | 7241           | 2595         | 35                   | Pass         |
| 0.0492           | 6792           | 2493         | 36                   | Pass         |
| 0.0501           | 6421           | 2386         | 37                   | Pass         |
| 0.0509           | 6111           | 2287         | 37                   | Pass         |
| 0.0518           | 5828           | 2197         | 37                   | Pass         |
| 0.0527           | 5557           | 2117         | 38                   | Pass         |
| 0.0535           | 5265           | 2034         | 38                   | Pass         |
| 0.0544           | 5004           | 1951         | 38                   | Pass         |
| 0.0553           | 4785           | 1875         | 39                   | Pass         |
| 0.0561           | 4531           | 1803         | 39                   | Pass         |
| 0.0570           | 4339           | 1739         | 40                   | Pass         |
| 0.0578           | 4156           | 1678         | 40                   | Pass         |
| 0.0587           | 3937           | 1617         | 41                   | Pass         |
| 0.0596           | 3713           | 1554         | 41                   | Pass         |
| 0.0604           | 3536           | 1480         | 41                   | Pass         |
| 0.0613           | 3360           | 1434         | 42                   | Pass         |
| 0.0622           | 3227           | 1389         | 43                   | Pass         |
| 0.0630           | 3083           | 1340         | 43                   | Pass         |
| 0.0639           | 2964           | 1295         | 43                   | Pass         |
| 0.0648           | 2851           | 1245         | 43                   | Pass         |
| 0.0656           | 2738           | 1197         | 43                   | Pass         |
| 0.0665           | 2600           | 1147         | 44                   | Pass         |
| 0.0673           | 2477           | 1099         | 44                   | Pass         |
|                  |                |              |                      |              |

| 0.0682<br>0.0691<br>0.0699<br>0.0708<br>0.0717<br>0.0725<br>0.0734<br>0.0743<br>0.0751<br>0.0760<br>0.0768<br>0.0777<br>0.0786<br>0.0794<br>0.0803<br>0.0812<br>0.0829<br>0.0838<br>0.0846<br>0.0855<br>0.0863<br>0.0872<br>0.0889<br>0.0889<br>0.0907<br>0.0915<br>0.09915<br>0.09915<br>0.0993<br>0.09950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0958<br>0.0967<br>0.0976<br>0.0993<br>0.1002<br>0.1010<br>0.1019<br>0.1028<br>0.1045<br>0.1053<br>0.1062 | 2355<br>2264<br>2159<br>2056<br>1947<br>1837<br>1748<br>1659<br>1578<br>1570<br>1442<br>1367<br>1296<br>1241<br>1182<br>1026<br>976<br>922<br>871<br>819<br>771<br>768<br>629<br>586<br>549<br>571<br>427<br>392<br>363<br>329<br>233<br>249<br>233<br>219<br>205<br>163<br>144<br>219<br>219<br>219<br>219<br>219<br>219<br>219<br>219<br>219<br>219 | 1044<br>997<br>951<br>909<br>861<br>826<br>785<br>733<br>695<br>662<br>628<br>604<br>577<br>550<br>531<br>473<br>454<br>421<br>405<br>391<br>375<br>362<br>346<br>331<br>313<br>294<br>280<br>264<br>253<br>217<br>204<br>188<br>179<br>157<br>153<br>149<br>142<br>136<br>130<br>142<br>143<br>143<br>143<br>143<br>143<br>143<br>143<br>144<br>145<br>146<br>147<br>147<br>147<br>147<br>147<br>147<br>147<br>147<br>147<br>147 | 44<br>44<br>44<br>44<br>44<br>44<br>44<br>44<br>44<br>44<br>44<br>44<br>44 | Pass Pass Pass Pass Pass Pass Pass Pass |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                            |                                         |

20083S 3/25/2024 3:14:44 PM Page 18

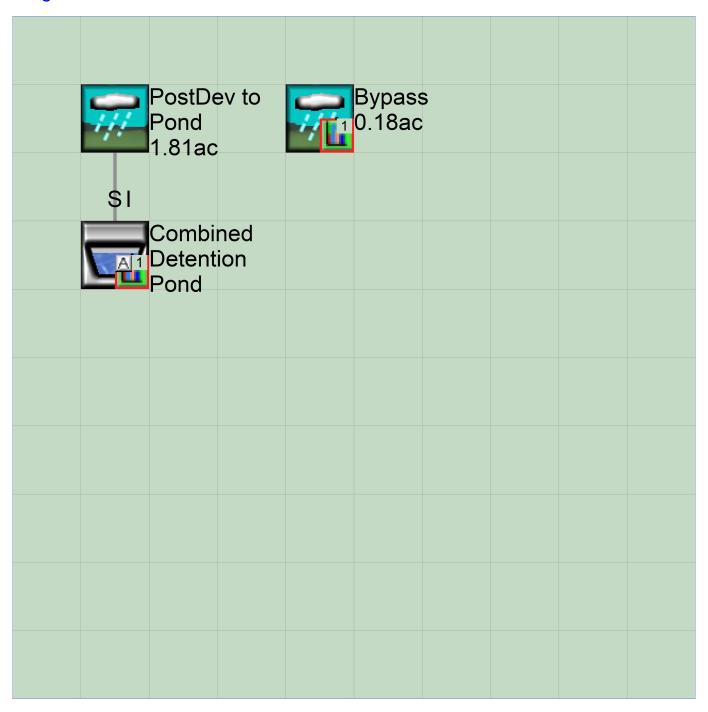
# Model Default Modifications

Total of 0 changes have been made.

# PERLND Changes

No PERLND changes have been made.

# **IMPLND Changes**


No IMPLND changes have been made.

20083S 3/25/2024 3:15:31 PM Page 21

# Appendix Predeveloped Schematic

| PreDev<br>1.99ac | V |  |  |
|------------------|---|--|--|
|                  |   |  |  |
|                  |   |  |  |
|                  |   |  |  |
|                  |   |  |  |
|                  |   |  |  |
|                  |   |  |  |
|                  |   |  |  |
|                  |   |  |  |

# Mitigated Schematic



## Predeveloped UCI File

```
RUN
```

```
GLOBAL
 WWHM4 model simulation
                    END
3 0
 START 1901 10 01
                            2059 09 30
 RUN INTERP OUTPUT LEVEL
 RESUME 0 RUN 1
                                 UNIT SYSTEM 1
END GLOBAL
FILES
<File> <Un#>
           <---->***
<-ID->
WDM
        26
           20083S.wdm
           Pre20083S.MES
MESSU
        25
        27
            Pre20083S.L61
        28
            Pre20083S.L62
        30 POC20083S1.dat
END FILES
OPN SEQUENCE
   INGRP
           10
                 INDELT 00:15
    PERLND
             501
    COPY
   DISPLY
   END INGRP
END OPN SEQUENCE
DISPLY
 DISPLY-INFO1
   # - #<-----Title---->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND
  1 PreDev
                                                 1 2 30
 END DISPLY-INFO1
END DISPLY
COPY
 TIMESERIES
 # - # NPT NMN ***
   1 1
)1 1
            1
 501
              1
 END TIMESERIES
END COPY
GENER
 OPCODE
 # # OPCD ***
 END OPCODE
 PARM
           K ***
  #
 END PARM
END GENER
PERLND
 GEN-INFO
   <PLS ><----Name---->NBLKS Unit-systems Printer ***
                          User t-series Engl Metr ***
                                in out
                          1
  10 C, Forest, Flat
 END GEN-INFO
 *** Section PWATER***
 ACTIVITY
  # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ***
10 0 0 1 0 0 0 0 0 0 0 0
 END ACTIVITY
 PRINT-INFO
   <PLS > ********** Print-flags ******************************* PIVL PYR
  END PRINT-INFO
```

```
PWAT-PARM1
   <PLS > PWATER variable monthly parameter value flags ***
  # - # CSNO RTOP UZFG VCS VUZ VNN VIFW VIRC VLE INFC HWT ***
10 0 0 0 0 0 0 0 0 0 0
 END PWAT-PARM1
 PWAT-PARM2
  END PWAT-PARM2
 PWAT-PARM3
  PWAT-PARM3

<PLS > PWATER input info: Part 3 ***

# - # ***PETMAX PETMIN INFEXP INFILD DEEPFR

10 0 0 2 2 0
                                                          BASETP
                                                0 0
 END PWAT-PARM3
 PWAT-PARM4
   <PLS > PWATER input info: Part 4
  # - # CEPSC UZSN NSUR INTFW IRC LZETP ***
10 0.2 0.5 0.35 6 0.5 0.7
 END PWAT-PARM4
 PWAT-STATE1
  <PLS > *** Initial conditions at start of simulation
    ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 ***
   # - # *** CEPS SURS UZS IFWS LZS AGWS LO 0 0 0 2.5 1
                                                                    GWVS
  10
 END PWAT-STATE1
END PERLND
IMPLND
 GEN-INFO
   <PLS ><----- Name----> Unit-systems Printer ***
  # - #
                           User t-series Engl Metr ***
                                  in out
 END GEN-INFO
 *** Section IWATER***
 ACTIVITY
   <PLS > ******** Active Sections **********************
   # - # ATMP SNOW IWAT SLD IWG IQAL ***
 END ACTIVITY
 PRINT-INFO
   <ILS > ******* Print-flags ******* PIVL PYR
   # - # ATMP SNOW IWAT SLD IWG IQAL *******
 END PRINT-INFO
  <PLS > IWATER variable monthly parameter value flags ***
   # - # CSNO RTOP VRS VNN RTLI ***
 END IWAT-PARM1
 IWAT-PARM2
   <PLS > IWATER input info: Part 2 ***
# - # *** LSUR SLSUR NSUR RETSC
 END IWAT-PARM2
 IWAT-PARM3
   <PLS > IWATER input info: Part 3
   # - # ***PETMAX PETMIN
 END IWAT-PARM3
   <PLS > *** Initial conditions at start of simulation
   # - # *** RETS SURS
 END IWAT-STATE1
```

```
SCHEMATIC
                  <--Area--> <-Target-> MBLK ***
<-factor-> <Name> # Tbl# ***
<-Source->
<Name>
PreDev***
                        1.987 COPY 501 12
1.987 COPY 501 13
PERLND 10
PERLND 10
*****Routing*****
END SCHEMATIC
NETWORK
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
END NETWORK
RCHRES
 GEN-INFO
  RCHRES Name Nexits Unit Systems Printer
  # - #<----- User T-series Engl Metr LKFG
                                                         * * *
                                                         * * *
                               in out
 END GEN-INFO
 *** Section RCHRES***
 ACTIVITY
  # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG ***
 END ACTIVITY
 PRINT-INFO
  <PLS > ******** Print-flags ******** PIVL PYR
   # - # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR *******
 END PRINT-INFO
 HYDR-PARM1
  RCHRES Flags for each HYDR Section
  # - # VC A1 A2 A3 ODFVFG for each *** ODGTFG for each FUNCT for each FG FG FG possible exit *** possible exit possible exit ***
 END HYDR-PARM1
 HYDR-PARM2
 # - # FTABNO LEN DELTH STCOR
                                         KS
                                               DB50
 <----><----><---->
                                                        * * *
 END HYDR-PARM2
  RCHRES Initial conditions for each HYDR section
  # *** ...
*** ac-ft
 <---->
                 <---><---><---> *** <---><---><--->
 END HYDR-INIT
END RCHRES
SPEC-ACTIONS
END SPEC-ACTIONS
FTABLES
END FTABLES
EXT SOURCES
<-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
<Name> # # ***
```

| WDM<br>WDM                  | 1 EVAP<br>1 EVAP           | ENGL<br>ENGL       | 1<br>1                                             |                                 | 999 EXTNL<br>999 EXTNL | PETINP<br>PETINP                                 |
|-----------------------------|----------------------------|--------------------|----------------------------------------------------|---------------------------------|------------------------|--------------------------------------------------|
| END EXT                     | SOURCES                    |                    |                                                    |                                 |                        |                                                  |
| <name></name>               |                            | <name> #</name>    | #<-factor->strg                                    | <name> #</name>                 | <name></name>          | Sys Tgap Amd ***<br>tem strg strg***<br>NGL REPL |
| <name> MASS-I PERLND</name> | > <-Grp>                   | <name> # 12</name> | > <mult><br/>#&lt;-factor-&gt;<br/>0.083333</mult> | <target> <name></name></target> | <-Grp>                 | <-Member->*** <name> # #*** MEAN</name>          |
| MASS-:<br>PERLND<br>END M   | LINK<br>PWATER<br>ASS-LINK | 13<br>IFWO<br>13   | 0.083333                                           | COPY                            | INPUT                  | MEAN                                             |

END MASS-LINK

END RUN

# Mitigated UCI File

RUN

```
GLOBAL
 WWHM4 model simulation
 START 1901 10 01 END 2059 09 30 RUN INTERP OUTPUT LEVEL 3 0
 RESUME 0 RUN 1
                                     UNIT SYSTEM 1
END GLOBAL
FILES
<File> <Un#> <----->***
<-ID->
         26 20083S.wdm
WDM
            Mit20083S.MES
MESSU
         25
         27
             Mit20083S.L61
         28
             Mit20083S.L62
            POC20083S1.dat
         30
END FILES
OPN SEOUENCE
   INGRP
                   INDELT 00:15
    NGRP
PERLND 13
              1
     IMPLND
     IMPLND
               11
     IMPLND
              1
1
     RCHRES
     COPY
           501
     COPY
     COPY
             601
    DISPLY
   END INGRP
END OPN SEQUENCE
DISPLY
 DISPLY-INFO1
   # - #<-----Title----->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND Combined Detention Pond MAX 1 2 30 9
 END DISPLY-INFO1
END DISPLY
 TIMESERIES
   # - # NPT NMN ***
      1 1
   1
 501
            1
                1
            1
 END TIMESERIES
END COPY
GENER
 OPCODE
  # # OPCD ***
 END OPCODE
 PARM
               K ***
 # #
 END PARM
END GENER
PERLND
 GEN-INFO
  <PLS ><-----Name----->NBLKS Unit-systems Printer ***
                             User t-series Engl Metr ***
                                    in out
  13 C, Pasture, Flat 1 1 1 27 0
 END GEN-INFO
 *** Section PWATER***
  # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ***
13 0 0 1 0 0 0 0 0 0 0 0 0
 END ACTIVITY
```

```
PRINT-INFO
  <PLS > *********** Print-flags ************************* PIVL PYR
  PWAT-PARM1
  <PLS > PWATER variable monthly parameter value flags ***
   # - # CSNO RTOP UZFG VCS VUZ VNN VIFW VIRC VLE INFC HWT ***
3 0 0 0 0 0 0 0 0 0 0 0
 END PWAT-PARM1
 PWAT-PARM2
  WAT-PARM2

<PLS > PWATER input info: Part 2 ***

# - # ***FOREST LZSN INFILT LSUR SLSUR KVARY AGWRC

13 0 4.5 0.06 400 0.05 0.5 0.996
 END PWAT-PARM2
 PWAT-PARM3
  <PLS > PWATER input info: Part 3 ***
  # - # ***PETMAX PETMIN INFEXP
13 0 0 2
                                     INFILD DEEPFR
                                                      BASETP
                                                              AGWETP
 END PWAT-PARM3
 PWAT-PARM4
  END PWAT-PARM4
 PWAT-STATE1
  <PLS > *** Initial conditions at start of simulation
          ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 ***
  # - # *** CEPS SURS UZS IFWS LZS AGWS 13 0 0 0 0 2.5 1
                                                                GWVS
                                                                0
 END PWAT-STATE1
END PERLND
IMPLND
 GEN-INFO
  <PLS ><----- Name----> Unit-systems Printer ***
                        User t-series Engl Metr ***
                               in out
  1 ROADS/FLAT
11 PARKING/FLAT
14 DOND
                              1
 END GEN-INFO
 *** Section IWATER***
  # - # ATMP SNOW IWAT SLD IWG IQAL
  1 0 0 1 0 0 0
11 0 0 1 0 0 0
14 0 0 1 0 0 0
 END ACTIVITY
 PRINT-INFO
  <ILS > ******* Print-flags ****** PIVL PYR
   # - # ATMP SNOW IWAT SLD IWG IQAL *******
       0 0 4 0 0 4 1 9
0 0 4 0 0 0 1 9
0 0 4 0 0 0 1 9
  11
  14
 END PRINT-INFO
 IWAT-PARM1
   <PLS > IWATER variable monthly parameter value flags ***
   # - # CSNO RTOP VRS VNN RTLI ***
1 0 0 0 0 0
```

```
0
                           Ω
 END IWAT-PARM1
 IWAT-PARM2
  <PLS >
            IWATER input info: Part 2
   # - # *** LSUR SLSUR NSUR RETSC
1 400 0.01 0.1 0.1
1 400 0.01 0.1 0.1
14 400 0.01 0.1 0.1
  1
  11
  14
 END IWAT-PARM2
 IWAT-PARM3
           IWATER input info: Part 3
                                       * * *
  <PLS >
   # - # ***PETMAX PETMIN
       0
                       Ω
  1
  11
              0
                       0
  14
               0
                      0
 END IWAT-PARM3
 IWAT-STATE1
  <PLS > *** Initial conditions at start of simulation
   # - # *** RETS SURS
               0
                       0
  11
               0
                       0
                       0
  14
               0
 END IWAT-STATE1
END IMPLND
SCHEMATIC
                                                  * * *
                      <--Area-->
                                 <-Target-> MBLK
<-Source->
<Name> #
                      <-factor->
                                  <Name> # Tbl#
                                                 * * *
PostDev to Pond***
                          0.494
                                               2
PERLND 13
                                  RCHRES 1
                                  RCHRES 1
PERLND 13
                          0.494
                                               3
                                         1
                          0.066
                                               5
IMPLND
      1
                                  RCHRES
IMPLND
                          1.008
                                  RCHRES
                                         1
                                               5
      11
                                        1
IMPLND 14
                          0.24
                                  RCHRES
                                              5
Bypass***
                          0.074 COPY 501 12
0.074 COPY 601 12
0.074 COPY 501 13
PERLND 13
PERLND 13
PERLND 13
                          0.074
                                COPY
                                      601
                                             13
PERLND 13
                                      501
                          0.105
                                  COPY
                                             15
IMPLND 1
IMPLND
      1
                          0.105
                                  COPY
                                      601
                                              15
*****Routing*****
                                        1
                                        1 12
1 15
                          0.494
                                  COPY
PERLND 13
                                  COPY
IMPLND
                          0.066
      1
IMPLND 11
                          1.008
                                  COPY
                                         1
                                             15
IMPLND 14
                          0.24
                                  COPY
                                             15
                                        1
                          0.494
                                  COPY
PERLND 13
                                        1
                                             13
RCHRES 1
                           1
                                  COPY 501
                                             16
END SCHEMATIC
NETWORK
<Name> # # ***
<-Volume-> <-Grp> <-Member-><-Mult-->Tran <-Target vols> <-Grp> <-Member->
END NETWORK
RCHRES
GEN-INFO
 RCHRES
            Name
                      Nexits Unit Systems Printer
```

```
# - #<----- User T-series Engl Metr LKFG
                                              in out
        END GEN-INFO
  *** Section RCHRES***
  ACTIVITY
    <PLS > ******** Active Sections *********************
    # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG ***
    1 \qquad \qquad 1 \qquad 0 \qquad 0
  END ACTIVITY
  PRINT-INFO
   <PLS > *********** Print-flags *********** PIVL PYR
    # - # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR ********
1 4 0 0 0 0 0 0 0 0 1 9
  END PRINT-INFO
  HYDR-PARM1
    RCHRES Flags for each HYDR Section
    END HYDR-PARM1
  HYDR-PARM2
  # - # FTABNO LEN DELTH STCOR KS DB50
  <----><----><---->
                                                                                    * * *
                 1 0.06 0.0 0.0 0.5
  END HYDR-PARM2
  HYDR-TNTT
   RCHRES Initial conditions for each HYDR section
    # - # *** VOL Initial value of COLIND Initial value of OUTDGT
*** ac-ft for each possible exit for each possible exit
                        <---><---> *** <---><--->
  <---->
                          4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  END HYDR-INIT
END RCHRES
SPEC-ACTIONS
END SPEC-ACTIONS
FTABLES
  FTABLE
   91 4
    Depth
              Area Volume Outflow1 Velocity Travel Time***
  (ft) (acres) (acre-ft) (cfs) (ft/sec) (Minutes)***

0.000000 0.214692 0.000000 0.000000

0.050000 0.215014 0.010743 0.002781
  0.100000 0.215335 0.021501 0.003933
  0.150000 0.215657 0.032276 0.004817
  0.200000 0.215978 0.043067 0.005562
  0.250000 0.216299 0.053874 0.006219
  0.300000 0.216621 0.064697 0.006812

      0.350000
      0.216942
      0.075536
      0.007358

      0.400000
      0.217264
      0.086391
      0.007866

      0.450000
      0.217585
      0.097262
      0.008343

      0.500000
      0.217906
      0.108150
      0.008795

      0.550000
      0.218228
      0.119053
      0.009224

  0.600000 0.218549 0.129972 0.009634
  0.650000 0.218871 0.140908 0.010028
  0.700000 0.219192 0.151860 0.010406
  0.750000 0.219513 0.162827 0.010771
  0.800000 \quad 0.219835 \quad 0.173811 \quad 0.011125
  \begin{array}{ccccc} 0.850000 & 0.220156 & 0.184811 & 0.011467 \\ 0.900000 & 0.220478 & 0.195826 & 0.011799 \\ 0.950000 & 0.220799 & 0.206858 & 0.012123 \end{array}
  1.000000 0.221120 0.217906 0.012438
  1.050000 0.221442 0.228970 0.012745
  1.100000 0.221763 0.240051 0.013045
```

| 1.150000                                                                                                                                                                                                                                                                                                                                              | 0.251147       0.013338         0.262259       0.013625         0.273387       0.013906         0.284532       0.014181         0.295692       0.014451         0.306869       0.014716         0.318061       0.014977         0.329270       0.015233         0.340495       0.015732         0.362992       0.015976         0.374265       0.016217         0.385554       0.016453         0.396860       0.016687         0.408181       0.017368         0.442241       0.017589         0.453626       0.017808         0.4453626       0.017808         0.4453626       0.017808         0.4453626       0.018237         0.4876445       0.018237         0.499329       0.018468         0.510794       0.018863         0.522276       0.019066         0.533774       0.019268         0.556818       0.019468         0.556818       0.019468         0.5568364       0.019861         0.579927       0.020437         0.614710       0.020427         0.649637       0.021362 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.500000 0.237190 3.550000 0.237511 3.600000 0.237833 3.650000 0.238154 3.700000 0.238476 3.750000 0.238797 3.800000 0.239118 3.850000 0.239440 3.900000 0.239761 3.950000 0.240083 4.000000 0.240404 4.050000 0.240404 4.150000 0.241047 4.150000 0.241368 4.200000 0.241690 4.250000 0.242332 4.350000 0.242332 4.350000 0.242975 4.450000 0.243297 | 0.7907940.0928010.8026620.2708180.8145450.5953090.8264451.0123690.8383611.4979210.8502932.0320480.8622412.5950390.8742053.1666130.8861853.7262960.8981814.2544190.9101934.7335000.9222215.1499370.9342655.4959370.9463265.7716620.9584025.9875560.9704956.1668500.9826036.4338320.9947286.6290581.0068696.8186251.0190257.002999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

20083S 3/25/2024 3:15:34 PM Page 32

| EXT SOURCES <-Volume-> <member <name=""> # <name> WDM 2 PREC WDM 2 PREC WDM 1 EVAP WDM 1 EVAP WDM 1 EVAP</name></member>                | r> SsysSgap <mult>Tran<br/># tem strg&lt;-factor-&gt;strg<br/>ENGL 1<br/>ENGL 1<br/>ENGL 1<br/>ENGL 1</mult> | <-Target vols> <name> # # PERLND 1 999 IMPLND 1 999 PERLND 1 999 IMPLND 1 999</name> | <pre></pre>                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|                                                                                                                                         |                                                                                                              |                                                                                      |                                                                                  |
| EXT TARGETS <-Volume-> <-Grp> <name> # COPY 1 OUTPUT COPY 501 OUTPUT COPY 601 OUTPUT RCHRES 1 HYDR RCHRES 1 HYDR END EXT TARGETS</name> | MEAN 1 1 48.4<br>MEAN 1 1 48.4                                                                               |                                                                                      | ne> tem strg strg*** N ENGL REPL |
| MASS-LINK <volume> &lt;-Grp&gt; <name> MASS-LINK</name></volume>                                                                        | <-Member-> <mult> <name> # #&lt;-factor-&gt; 2</name></mult>                                                 | <target> <name></name></target>                                                      | <-Grp> <-Member->***                                                             |
| PERLND PWATER<br>END MASS-LINK                                                                                                          | _                                                                                                            | RCHRES                                                                               | INFLOW IVOL                                                                      |
| MASS-LINK<br>PERLND PWATER<br>END MASS-LINK                                                                                             | 3<br>IFWO 0.083333<br>3                                                                                      | RCHRES                                                                               | INFLOW IVOL                                                                      |
| MASS-LINK<br>IMPLND IWATER<br>END MASS-LINK                                                                                             | 5<br>SURO 0.083333<br>5                                                                                      | RCHRES                                                                               | INFLOW IVOL                                                                      |
| MASS-LINK<br>PERLND PWATER<br>END MASS-LINK                                                                                             | 12<br>SURO 0.083333<br>12                                                                                    | СОРУ                                                                                 | INPUT MEAN                                                                       |
| MASS-LINK<br>PERLND PWATER<br>END MASS-LINK                                                                                             | 13<br>IFWO 0.083333<br>13                                                                                    | СОРУ                                                                                 | INPUT MEAN                                                                       |
| MASS-LINK<br>IMPLND IWATER<br>END MASS-LINK                                                                                             | 15<br>SURO 0.083333<br>15                                                                                    | СОРУ                                                                                 | INPUT MEAN                                                                       |
| MASS-LINK<br>RCHRES ROFLOW<br>END MASS-LINK                                                                                             | 16<br>16                                                                                                     | СОРУ                                                                                 | INPUT MEAN                                                                       |

END MASS-LINK

END RUN

# Predeveloped HSPF Message File

## Mitigated HSPF Message File

ERROR/WARNING ID: 238 1 The continuity error reported below is greater than 1 part in 1000 and is therefore considered high. Did you specify any "special actions"? If so, they could account for it. Relevant data are: DATE/TIME: 1913/ 7/31 24: 0 RCHRES : 1 RELERR STORS STOR MATIN MATDIF -2.527E-03 0.00000 0.0000E+00 0.00000 -6.136E-08 Where: RELERR is the relative error (ERROR/REFVAL). ERROR is (STOR-STORS) - MATDIF. REFVAL is the reference value (STORS+MATIN). is the storage of material in the processing unit (land-segment or reach/reservior) at the end of the present interval. STORS is the storage of material in the pu at the start of the present printout reporting period. MATIN is the total inflow of material to the pu during the present printout reporting period. MATDIF is the net inflow (inflow-outflow) of material to the pu during the present printout reporting period. ERROR/WARNING ID: 238 The continuity error reported below is greater than 1 part in 1000 and is therefore considered high. Did you specify any "special actions"? If so, they could account for it. Relevant data are: DATE/TIME: 1929/ 8/31 24: 0 RCHRES : 1 RELERR STORS STOR MATTN MATDIF -8.643E-02 0.00000 0.0000E+00 0.00000 -1.649E-09 Where: RELERR is the relative error (ERROR/REFVAL). ERROR is (STOR-STORS) - MATDIF. REFVAL is the reference value (STORS+MATIN). is the storage of material in the processing unit (land-segment or reach/reservior) at the end of the present interval. STORS is the storage of material in the pu at the start of the present printout reporting period. MATIN is the total inflow of material to the pu during the present printout reporting period. MATDIF is the net inflow (inflow-outflow) of material to the pu during the present printout reporting period. ERROR/WARNING ID: 238 1 The continuity error reported below is greater than 1 part in 1000 and is therefore considered high.

20083S 3/25/2024 3:15:34 PM Page 35

Did you specify any "special actions"? If so, they could account for it.

Relevant data are:

DATE/TIME: 1955/ 9/30 24: 0

RCHRES: 1

RELERR STORS STOR MATIN MATDIF
-5.486E-02 0.00000 0.0000E+00 0.00000 -2.692E-09

#### Where:

RELERR is the relative error (ERROR/REFVAL).

ERROR is (STOR-STORS) - MATDIF.

REFVAL is the reference value (STORS+MATIN).

STOR is the storage of material in the processing unit (land-segment or

reach/reservior) at the end of the present interval.

STORS is the storage of material in the pu at the start of the present printout reporting period.

printout reporting period.
MATIN is the total inflow of material to the pu during the present printout

reporting period.

MATRIE is the not inflow (inflow outflow) of material to the nu during the

MATDIF is the net inflow (inflow-outflow) of material to the pu during the present printout reporting period.

#### ERROR/WARNING ID: 238 1

The continuity error reported below is greater than 1 part in 1000 and is therefore considered high.

Did you specify any "special actions"? If so, they could account for it.

Relevant data are:

DATE/TIME: 1960/ 8/31 24: 0

RCHRES: 1

RELERR STORS STOR MATIN MATDIF -4.260E-02 0.00000 0.0000E+00 0.00000 -3.526E-09

#### Where:

RELERR is the relative error (ERROR/REFVAL).

ERROR is (STOR-STORS) - MATDIF.

REFVAL is the reference value (STORS+MATIN).

STOR is the storage of material in the processing unit (land-segment or reach/reservior) at the end of the present interval.

STORS is the storage of material in the pu at the start of the present printout reporting period.

MATIN is the total inflow of material to the pu during the present printout reporting period.

MATDIF is the net inflow (inflow-outflow) of material to the pu during the present printout reporting period.

#### ERROR/WARNING ID: 238 1

The continuity error reported below is greater than 1 part in 1000 and is therefore considered high.

Did you specify any "special actions"? If so, they could account for it.

Relevant data are:

DATE/TIME: 1974/ 8/31 24: 0

RCHRES: 1

RELERR STORS STOR MATIN MATDIF
-1.842E-03 0.00000 0.0000E+00 0.00000 -8.487E-08

#### Where:

RELERR is the relative error (ERROR/REFVAL). ERROR is (STOR-STORS) - MATDIF.

REFVAL is the reference value (STORS+MATIN).

STOR is the storage of material in the processing unit (land-segment or reach/reservior) at the end of the present interval.

STORS is the storage of material in the pu at the start of the present printout reporting period.

MATIN is the total inflow of material to the pu during the present printout reporting period.

MATDIF is the net inflow (inflow-outflow) of material to the pu during the present printout reporting period.

The count for the WARNING printed above has reached its maximum.

If the condition is encountered again the message will not be repeated.

20083S 3/25/2024 3:15:34 PM Page 37

# Disclaimer

## Legal Notice

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2024; All Rights Reserved.

Clear Creek Solutions, Inc. 6200 Capitol Blvd. Ste F Olympia, WA. 98501 Toll Free 1(866)943-0304 Local (360)943-0304

www.clearcreeksolutions.com

20083S 3/25/2024 3:15:34 PM Page 38

#### WWHM2012 PROJECT REPORT

\_\_\_\_\_\_

Project Name: 20083S WQ

Site Name: BPLC
Site Address:

City : Puyallup, WA
Report Date: 3/25/2024
Gage : 40 IN EAST
Data Start : 10/01/1901
Data End : 09/30/2059
Precip Scale: 1.00

**Version Date:** 2023/01/27

**Version** : 4.2.19

Low Flow Threshold for POC 1 : 50 Percent of the 2 Year

\_\_\_\_\_

High Flow Threshold for POC 1: 50 year

\_\_\_\_\_

#### PREDEVELOPED LAND USE

Name : PreDev

Bypass: No

**GroundWater:** No

Pervious Land Use acre
C, Forest, Flat 1.808

Pervious Total 1.808

Impervious Land Use acre

Impervious Total 0

Basin Total 1.808

\_\_\_\_\_

Element Flows To:

Surface Interflow Groundwater

\_\_\_\_\_

#### MITIGATED LAND USE

Name : PostDev to Pond

Bypass: No

GroundWater: No

| C, Pasture, Flat    | <u>acre</u><br>.494 |
|---------------------|---------------------|
| Pervious Total      | 0.494               |
| Impervious Land Use | acre                |
| ROADS FLAT          | 0.066               |
| PARKING FLAT        | 1.008               |
| POND                | 0.24                |
| Impervious Total    | 1.314               |
| Basin Total         | 1.808               |

\_\_\_\_\_

Element Flows To:

Surface Interflow Groundwater

\_\_\_\_\_

#### ANALYSIS RESULTS

#### Stream Protection Duration

\_\_\_\_\_\_

Predeveloped Landuse Totals for POC #1

Total Pervious Area:1.808 Total Impervious Area:0

\_\_\_\_\_\_

Mitigated Landuse Totals for POC #1

Total Pervious Area:0.494 Total Impervious Area:1.314

## Flow Frequency Return Periods for Predeveloped. POC #1

| Return Period | Flow(cfs) |
|---------------|-----------|
| 2 year        | 0.040851  |
| 5 year        | 0.062853  |
| 10 year       | 0.075571  |
| 25 year       | 0.089347  |
| 50 year       | 0.098208  |
| 100 year      | 0.105896  |

#### Flow Frequency Return Periods for Mitigated. POC #1

| Return Period | Flow(cfs) |
|---------------|-----------|
| 2 year        | 0.477474  |
| 5 year        | 0.640524  |
| 10 year       | 0.758972  |
| 25 year       | 0.921021  |
| 50 year       | 1.051032  |

\_\_\_\_\_

Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 0.1529 acre-feet On-line facility target flow: 0.1979 cfs. Adjusted for 15 min: 0.1979 cfs. Off-line facility target flow: 0.1143 cfs. Adjusted for 15 min: 0.1143 cfs.

#### Perlnd and Implnd Changes

No changes have been made.

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by: Clear Creek Solutions, Inc. 2005-2024; All Rights Reserved.

#### WWHM2012 PROJECT REPORT

\_\_\_\_\_

Project Name: 20083s Bypass Treatment

Site Name: BPLC
Site Address:

City : Puyallup, WA
Report Date: 3/25/2024
Gage : 40 IN EAST
Data Start : 10/01/1901
Data End : 09/30/2059
Precip Scale: 1.00

**Version Date:** 2023/01/27

**Version** : 4.2.19

Low Flow Threshold for POC 1 : 50 Percent of the 2 Year

\_\_\_\_\_

High Flow Threshold for POC 1: 50 year

\_\_\_\_\_

#### PREDEVELOPED LAND USE

Name : PreDev Bypass

Bypass: No

**GroundWater:** No

Pervious Land Use acre
C, Forest, Flat .179

Pervious Total 0.179

Impervious Land Use acre

Impervious Total 0

Basin Total 0.179

\_\_\_\_\_

Element Flows To:

Surface Interflow Groundwater

\_\_\_\_\_

#### MITIGATED LAND USE

Name : Bypass

Bypass: No

GroundWater: No

Pervious Land Use
C, Pasture, Flat
.074

Pervious Total 0.074

<u>Impervious Land Use</u> <u>acre</u> 0.105

Impervious Total 0.105

Basin Total 0.179

\_\_\_\_\_

Element Flows To:

Surface Interflow Groundwater

\_\_\_\_\_

\_\_\_\_\_

#### ANALYSIS RESULTS

#### Stream Protection Duration

\_\_\_\_\_

Predeveloped Landuse Totals for POC #1

Total Pervious Area:0.179
Total Impervious Area:0

\_\_\_\_\_\_

Mitigated Landuse Totals for POC #1

Total Pervious Area:0.074
Total Impervious Area:0.105

#### Flow Frequency Return Periods for Predeveloped. POC #1

| Return Period | Flow(cfs) |
|---------------|-----------|
| 2 year        | 0.004044  |
| 5 year        | 0.006223  |
| 10 year       | 0.007482  |
| 25 year       | 0.008846  |
| 50 year       | 0.009723  |
| 100 year      | 0 010484  |

#### Flow Frequency Return Periods for Mitigated. POC #1

| Return Period | Flow(cfs) |
|---------------|-----------|
| 2 year        | 0.038604  |
| 5 year        | 0.051817  |
| 10 year       | 0.061421  |
| 25 year       | 0.074564  |
| 50 year       | 0.085113  |
| 100 year      | 0.096331  |
|               |           |

Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 0.0129 acre-feet On-line facility target flow: 0.0157 cfs.
Adjusted for 15 min: 0.0157 cfs.
Off-line facility target flow: 0.009 cfs.
Adjusted for 15 min: 0.009 cfs.

\_\_\_\_\_

#### Perlnd and Implnd Changes

No changes have been made.

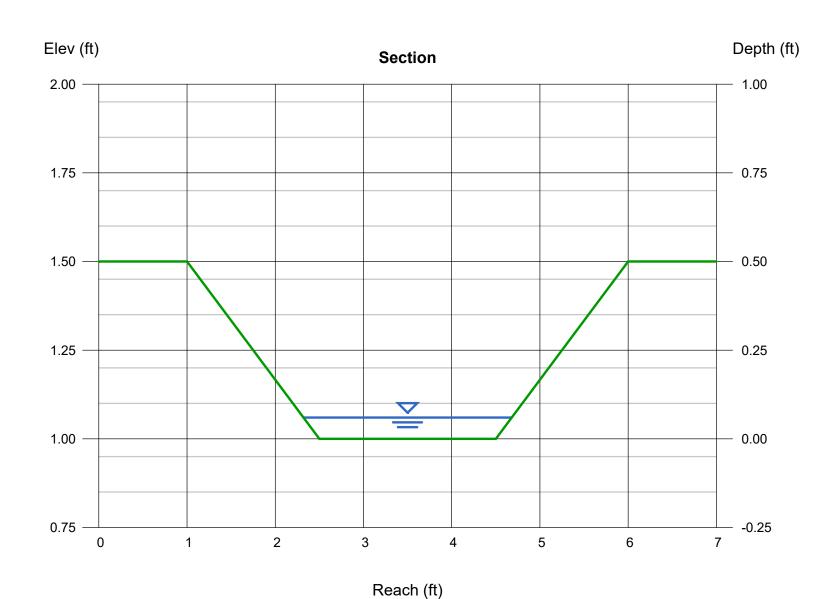
This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by: Clear Creek Solutions, Inc. 2005-2024; All Rights Reserved.

# **Channel Report**

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Mar 28 2024

# **Continuous Inflow Bio-filtration Swale WQ**


| Trapezoidal       |              |
|-------------------|--------------|
| Bottom Width (ft) | = 2.00       |
| Side Slopes (z:1) | = 3.00, 3.00 |
| Total Depth (ft)  | = 0.50       |
| Invert Elev (ft)  | = 1.00       |
| Slope (%)         | = 1.50       |
| N-Value           | = 0.200      |

Ca Compute by: Known Q Known Q (cfs) = 0.02

|                   |              | J J                 |         |
|-------------------|--------------|---------------------|---------|
| Bottom Width (ft) | = 2.00       | Depth (ft)          | = 0.06  |
| Side Slopes (z:1) | = 3.00, 3.00 | Q (cfs)             | = 0.016 |
| otal Depth (ft)   | = 0.50       | Area (sqft)         | = 0.13  |
| nvert Elev (ft)   | = 1.00       | Velocity (ft/s)     | = 0.12  |
| Slope (%)         | = 1.50       | Wetted Perim (ft)   | = 2.38  |
| I-Value           | = 0.200      | Crit Depth, Yc (ft) | = 0.02  |
|                   |              | Top Width (ft)      | = 2.36  |
| Calculations      |              | EGL (ft)            | = 0.06  |
|                   |              |                     |         |

Highlighted

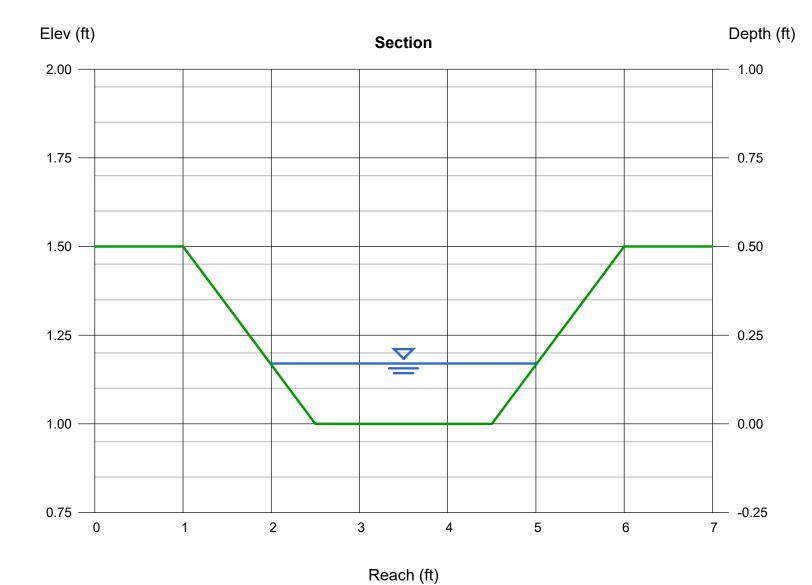
### L = 18 min\*60 sec/min\*0.12-fps = 129.6-ft required 200-ft provided



# **Channel Report**

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Mar 28 2024


# **Continuous Inflow Bio-filtration Swale 100-Year**

| Trapezoidal       |              |
|-------------------|--------------|
| Bottom Width (ft) | = 2.00       |
| Side Slopes (z:1) | = 3.00, 3.00 |
| Total Depth (ft)  | = 0.50       |
| Invert Elev (ft)  | = 1.00       |
| Slope (%)         | = 1.50       |
| N-Value           | = 0.200      |

# Calculations

Compute by: Known Q Known Q (cfs) = 0.10

| Highlighted         |         |
|---------------------|---------|
| Depth (ft)          | = 0.17  |
| Q (cfs)             | = 0.096 |
| Area (sqft)         | = 0.43  |
| Velocity (ft/s)     | = 0.22  |
| Wetted Perim (ft)   | = 3.08  |
| Crit Depth, Yc (ft) | = 0.05  |
| Top Width (ft)      | = 3.02  |
| EGL (ft)            | = 0.17  |



#### PIPE FLOW CALCULATOR

PIPE FLOW GALGULATOR
using the Rational Method & Manning Formula
100 YEAR STORM

JOB NAME: Olson Parking Lot 20083 JOB#: REVISED: 12/22/2023 0.012

A= Contributing Area (Ac) C= Runoff Coefficient Tc= Time of Concentration (min) I= Intensity at Tc (in/hr) d= Diameter of Pipe (in)
L= Length of Pipe (ft)
D= Water Depth at Qd (in)

Qd= Design Flow (cfs)
Qf= Full Capacity Flow (cfs)
Vd= Velocity at Design Flow (fps)
Vf= Velocity at Full Flow (fps) s= Slope of pipe (%)
n= Manning Roughness Coefficient
Tt= Travel Time at Vd (min)

COEFFICIENTS FOR THE RATIONAL METHOD "Ir"-EQUATION

| STORM | Ar   | Br   |         |      |
|-------|------|------|---------|------|
| 2YR   | 1.58 | 0.58 |         |      |
| 10YR  | 2.44 | 0.64 | PRECIP= | 4    |
| 25YR  | 2.66 | 0.65 | Ar=     | 2.61 |
| 50YR  | 2.75 | 0.65 | Br=     | 0.63 |
| 100YR | 2.61 | 0.63 |         |      |

Street Conveyance

| FROM                 | то                   | Α                    | s                    | L                | d             | Тс                | n                       | С                 | SUM A                   |                      | SUM A*C              | 1                    | Qd                   | Qf                   | Qd/Qf                   | D/d                     | D                    | Vf                   | Vd                   | Tt                   |
|----------------------|----------------------|----------------------|----------------------|------------------|---------------|-------------------|-------------------------|-------------------|-------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------------|-------------------------|----------------------|----------------------|----------------------|----------------------|
| CB-4<br>CB-5<br>CB-3 | CB-3<br>CB-3<br>CB-2 | 0.22<br>0.42<br>0.21 | 0.50<br>0.59<br>0.50 | 100<br>68<br>105 | 8<br>12<br>12 | 6.3<br>6.9<br>6.3 | 0.012<br>0.012<br>0.012 | 0.9<br>0.9<br>0.9 | 0.218<br>0.420<br>0.848 | 0.20<br>0.38<br>0.19 | 0.20<br>0.38<br>0.76 | 3.27<br>3.10<br>3.27 | 0.64<br>1.17<br>2.50 | 0.93<br>2.96<br>2.73 | 0.694<br>0.395<br>0.916 | 0.613<br>0.437<br>0.747 | 4.90<br>5.24<br>8.97 | 2.65<br>3.78<br>3.48 | 2.86<br>3.56<br>3.93 | 0.58<br>0.32<br>0.45 |
| CB-2                 | Pond                 | 0.24                 | 0.50                 | 75               | 14            | 6.7               | 0.012                   | 0.9               | 1.088                   | 0.22                 | 0.98                 | 3.14                 | 3.07                 | 4.12                 | 0.746                   | 0.644                   | 9.01                 | 3.85                 | 4.23                 | 0.50                 |
|                      |                      |                      |                      |                  |               |                   |                         |                   |                         |                      |                      |                      |                      |                      |                         |                         |                      |                      |                      |                      |
|                      |                      |                      |                      |                  |               |                   |                         |                   |                         |                      |                      |                      |                      |                      |                         |                         |                      |                      |                      |                      |
|                      |                      |                      |                      |                  |               |                   |                         |                   |                         |                      |                      |                      |                      |                      |                         |                         |                      |                      |                      |                      |
|                      |                      |                      |                      |                  |               |                   |                         |                   |                         |                      |                      |                      |                      |                      |                         |                         |                      |                      |                      |                      |
|                      |                      |                      |                      |                  |               |                   |                         |                   |                         |                      |                      |                      |                      |                      |                         |                         |                      |                      |                      |                      |
|                      |                      |                      |                      |                  |               |                   |                         |                   |                         |                      |                      |                      |                      |                      |                         |                         |                      |                      |                      |                      |
|                      |                      |                      |                      |                  |               |                   |                         |                   |                         |                      |                      |                      |                      |                      |                         |                         |                      |                      |                      |                      |
|                      |                      |                      |                      |                  |               |                   |                         |                   |                         |                      |                      |                      |                      |                      |                         |                         |                      |                      |                      |                      |
|                      |                      |                      |                      |                  |               |                   |                         |                   |                         |                      |                      |                      |                      |                      |                         |                         |                      |                      |                      |                      |
|                      |                      |                      |                      |                  |               |                   |                         |                   |                         |                      |                      |                      |                      |                      |                         |                         |                      |                      |                      |                      |
|                      |                      |                      |                      |                  |               |                   |                         |                   |                         |                      |                      |                      |                      |                      |                         |                         |                      |                      |                      |                      |
|                      |                      |                      |                      |                  |               |                   |                         |                   |                         |                      |                      |                      |                      |                      |                         |                         |                      |                      |                      |                      |
|                      |                      |                      |                      |                  |               |                   |                         |                   |                         |                      |                      | Pag                  | ge 1                 |                      |                         |                         |                      |                      |                      |                      |

# **APPENDIX D**

Geotechnical Engineer's Report



February 12, 2019 ES-6481

# Earth Solutions NW LLC

Geotechnical Engineering, Construction
Observation/Testing and Environmental Services

Best Parking Lot Cleaning, Inc. 2412 Inter Avenue Puyallup, Washington 98372

Attention:

Mr. Rich Hamilton

Subject:

**Geotechnical Evaluation** 

**Proposed Parking Lot Redevelopment** 

2512 Inter Avenue Puyallup, Washington

Reference:

Timothy J. Walsh

Geologic Map of the South Half of the Tacoma Quadrangle, Washington, 1987

CES NW, Inc.

Topographic Survey, dated May 30, 2018

United States Department of Agriculture Natural Resources Conservation Service Online Web Soil Survey (WSS) Resource

#### Dear Mr. Hamilton:

As requested, Earth Solutions NW, LLC (ESNW) has prepared this geotechnical evaluation for the subject site. We performed our work in general accordance with the scope of services outlined in our proposal dated December 18, 2018 and authorized by you on January 2, 2019. A summary of our subsurface exploration and pertinent geotechnical considerations are provided in this letter.

#### **Project Description**

We understand the existing gravel parking lot, in the eastern portion of the site, will be improved. The feasibility of using shallow infiltration facilities to accommodate stormwater runoff from new impervious surfaces was the primary focus of our investigation. Infiltration facilities would likely be installed in the northeastern portion of the site, where feasible.

This letter has been prepared for the exclusive use of Best Parking Lot Cleaning, Inc. and their representatives. A warranty is neither expressed nor implied. The recommendations and conclusions provided in this letter are professional opinions consistent with the level of care and skill that is typical of other members in the profession currently practicing under similar conditions in this area. Variations in the soil and groundwater conditions encountered at the test pit locations may exist and may not become evident until construction. ESNW should reevaluate the contents of this letter if variations are encountered.

#### **Surface Conditions**

The subject site is located on the south side of Inter Avenue, about 450 feet east of the intersection with 23<sup>rd</sup> Street Southeast, in Puyallup, Washington. The approximate location of the property is illustrated on Plate 1 (Vicinity Map). The property is comprised of four tax parcels (Pierce County Parcel Nos. 210520-0320, -0350, -0340, and -0361) totaling approximately 2.79 acres. Two commercial buildings, asphalt parking, gravel parking, and related infrastructure improvements currently occupy the site. The site is surrounded to the north by Inter Avenue, to the south and east by BNSF railroad tracks, and to the west by a commercial development. Site topography is relateively level, with little discernible elevation change across the property. Vegetation primarily consists of scattered trees and grass.

## **Subsurface Conditions**

An ESNW representative observed, logged, and sampled three test pits, excavated within accessible areas of the site, on January 30, 2019 using a trackhoe and operator provided by the client. The approximate locations of the test pits are depicted on Plate 2 (Test Pit Location Plan). Please refer to the attached test pit logs for a more detailed description of subsurface conditions. Representative soil samples collected at the test pit locations were analyzed in accordance with both Unified Soil Classification System (USCS) and United States Department of Agriculture (USDA) methods and procedures.

#### **Topsoil and Fill**

Topsoil was not encountered at the test pit locations. Given the existing level of site development, we do no anticipate topsoil will be consequential during the proposed construction.

Fill was encountered at the test pit locations to depths of approximately one to two and one-half feet below the existing ground surface (bgs). The fill was characterized as crushed rock or silty gravel with sand (USCS: GM) and was encountered in a medium dense and moist condition. Where encountered during construction, ESNW can evaluate fill deposits, as necessary.

#### **Native Soil**

Underlying fill, native soils at depth were characterized primarily as loose to medium dense silty sand (USCS: SM). The upper two feet was predominately silt (USCS:ML) with various amounts of sand and gravel. The native soils were observed primarily in a moist to wet condition. The maximum exploration depth was approximately 10 feet bgs.

### **Geologic Setting**

The referenced geologic map resource identifies alluvium (Qal) as the primary geologic unit underlying the subject site and surrounding areas. Alluvial deposits are dominant in the Puyallup Valley and typically consist of loose, stratified to massively bedded fluvial silt, sand, and gravel, and locally includes sandy to silty estuarine deposits.

The referenced WSS resource identifies Briscot loam (Map Unit Symbol: 6A) as the primary soil unit underlying the subject site. The Briscot series was formed in flood plains. Based on our field observations, native soils on the subject site are consistent with alluvium, as outlined in this section.

#### Groundwater

During our subsurface exploration completed on January 30, 2019, groundwater was encountered at the test pit locations between depths of roughly three to eight feet bgs. Our interpretation of field conditions is that groundwater seepage is present in the upper three to four feet bgs, and the groundwater table occurs at about seven to eight feet bgs. Even though our fieldwork occurred during the wet season, our observed groundwater elevations should not be considered representative of the seasonal high without confirmation by a seasonal groundwater monitoring program.

It is our opinion that the contractor should be prepared to manage groundwater during construction, especially within deeper site excavations. Temporary measures to control surface water runoff and groundwater during construction would likely involve interceptor trenches, sumps, and dewatering pumps. It should be noted seepage rates and elevations fluctuate depending on many factors, including precipitation duration and intensity, the time of year, and soil conditions. In general, groundwater flow rates are higher during the winter, spring, and early summer months.

### Stormwater Facility Considerations

We understand shallow infiltration facilities are proposed to accommodate stormwater runoff from new impervious surfaces. As indicated in the *Subsurface* section of this letter, native soils encountered during our fieldwork were characterized primarily as loose to medium dense alluvial deposits. Given the relatively high fines content and presence of a shallow groundwater table, it is our opinion infiltration is not feasible from a geotechnical standpoint.

Alternatively, we understand detention may be utilized for stormwater management. At the time of this letter, specific detention plans were not available for review; however, based on our field observations, in general, it is our opinion construction of a detention facility is feasible from a geotechnical standpoint. Design and installation of a detention facility must consider seasonal groundwater elevations, which were estimated at about seven feet bgs (in the northern site area) at the time of our January 2019 fieldwork. Perched groundwater seepage should be anticipated within detention facility excavations. Final detention facility designs must incorporate adequate buffer space from property boundaries such that temporary construction excavations may be successfully completed. ESNW can provide additional recommendations and design parameters to aid with detention facility design, if needed, as project plans develop.

ESNW should have an opportunity to review final project plans with respect to the geotechnical recommendations provided in this letter. ESNW should also be retained to observe the construction of detention facilities on site to provide supplementary testing and recommendations, where necessary.

We trust this letter meets your current needs. If you have questions regarding the content herein, or require additional information, please call.

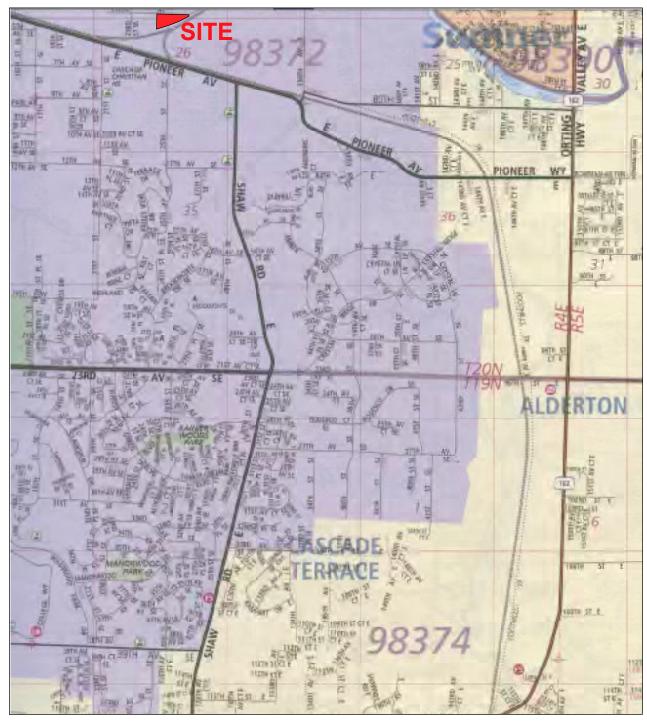
Sincerely,

**EARTH SOLUTIONS NW, LLC** 

Terry J. Dunn Staff Geologist

Attachments: Plate 1 – Vicinity Map

Plate 2 - Test Pit Location Plan


Test Pit Logs

Grain Size Distribution

OZ/12/2019

STONAL BUSINESS OF WASHINGTON OZ/12/2019

Keven D. Hoffmann, P.E. Senior Project Manager



Reference:
Pierce County, Washington
Map 835
By The Thomas Guide
Rand McNally
32nd Edition



NOTE: This plate may contain areas of color. ESNW cannot be responsible for any subsequent misinterpretation of the information resulting from black & white reproductions of this plate.



Vicinity Map Best Parking Puyallup, Washington

| Drwn. CAM   | Date 02/06/2019 | Proj. No. 6481 |
|-------------|-----------------|----------------|
| Checked TJD | Date Feb. 2019  | Plate 1        |

# **LEGEND**

Approximate Location of ESNW Test Pit, Proj. No. ES-6481, Jan. 2019

Subject Site

Existing Building

Existing Concrete Block Wall

NOTE: The graphics shown on this plate are not intended for design purposes or precise scale measurements, but only to illustrate the approximate test locations relative to the approximate locations of existing and / or proposed site features. The information illustrated is largely based on data provided by the client at the time of our study. ESNW cannot be responsible for subsequent design changes or interpretation of the data by others.

NOTE: This plate may contain areas of color. ESNW cannot be responsible for any subsequent misinterpretation of the information resulting from black & white reproductions of this plate.

Test Pit Location Plan Best Parking Puyallup, Washington

rth Solutions NWLL



Drwn. By CAM

Checked By TJD

Date 02/06/2019

Proj. No. 6481

Plate 2

# Earth Solutions NWLLC SOIL CLASSIFICATION CHART

|                                                                  | A 100 DIV (101                         | 0110                             | SYM                                       | BOLS   | TYPICAL                                                                                                                     |  |
|------------------------------------------------------------------|----------------------------------------|----------------------------------|-------------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------|--|
| IVI                                                              | AJOR DIVISI                            | ONS                              | GRAPH                                     | LETTER | DESCRIPTIONS                                                                                                                |  |
|                                                                  | GRAVEL<br>AND                          | CLEAN<br>GRAVELS                 |                                           | GW     | WELL-GRADED GRAVELS, GRAVEL<br>SAND MIXTURES, LITTLE OR NO<br>FINES                                                         |  |
|                                                                  | GRAVELLY<br>SOILS                      | (LITTLE OR NO FINES)             |                                           | GP     | POORLY-GRADED GRAVELS,<br>GRAVEL - SAND MIXTURES, LITTLE<br>OR NO FINES                                                     |  |
| COARSE<br>GRAINED<br>SOILS                                       | MORE THAN 50%<br>OF COARSE             | GRAVELS WITH<br>FINES            |                                           | GM     | SILTY GRAVELS, GRAVEL - SAND -<br>SILT MIXTURES                                                                             |  |
|                                                                  | FRACTION<br>RETAINED ON NO.<br>4 SIEVE | (APPRECIABLE<br>AMOUNT OF FINES) |                                           | GC     | CLAYEY GRAVELS, GRAVEL - SAND<br>CLAY MIXTURES                                                                              |  |
| MORE THAN 50%<br>OF MATERIAL IS                                  | SAND<br>AND                            | CLEAN SANDS                      |                                           | SW     | WELL-GRADED SANDS, GRAVELLY<br>SANDS, LITTLE OR NO FINES                                                                    |  |
| LARGER THAN<br>NO. 200 SIEVE<br>SIZE                             | SANDY<br>SOILS                         | (LITTLE OR NO FINES)             | $\times$                                  | SP     | POORLY-GRADED SANDS,<br>GRAVELLY SAND, LITTLE OR NO<br>FINES                                                                |  |
|                                                                  | MORE THAN 50%<br>OF COARSE<br>FRACTION | SANDS WITH<br>FINES              |                                           | SM     | SILTY SANDS, SAND - SILT<br>MIXTURES                                                                                        |  |
|                                                                  | PASSING ON NO.<br>4 SIEVE              | (APPRECIABLE<br>AMOUNT OF FINES) |                                           | sc     | CLAYEY SANDS, SAND - CLAY<br>MIXTURES                                                                                       |  |
|                                                                  |                                        |                                  |                                           | ML     | INORGANIC SILTS AND VERY FINE<br>SANDS, ROCK FLOUR, SILTY OR<br>CLAYEY FINE SANDS OR CLAYEY<br>SILTS WITH SLIGHT PLASTICITY |  |
| FINE<br>GRAINED<br>SOILS                                         | SILTS<br>AND<br>CLAYS                  | LIQUID LIMIT<br>LESS THAN 50     |                                           | CL     | INORGANIC CLAYS OF LOW TO<br>MEDIUM PLASTICITY, GRAVELLY<br>CLAYS, SANDY CLAYS, SILTY<br>CLAYS, LEAN CLAYS                  |  |
| COILO                                                            |                                        |                                  |                                           | OL     | ORGANIC SILTS AND ORGANIC<br>SILTY CLAYS OF LOW PLASTICITY                                                                  |  |
| MORE THAN 50%<br>OF MATERIAL IS<br>SMALLER THAN<br>NO. 200 SIEVE |                                        |                                  |                                           | МН     | INORGANIC SILTS, MICACEOUS OR<br>DIATOMACEOUS FINE SAND OR<br>SILTY SOILS                                                   |  |
| SIZE                                                             | SILTS<br>AND<br>CLAYS                  | LIQUID LIMIT<br>GREATER THAN 50  |                                           | СН     | INORGANIC CLAYS OF HIGH<br>PLASTICITY                                                                                       |  |
|                                                                  |                                        |                                  |                                           | ОН     | ORGANIC CLAYS OF MEDIUM TO<br>HIGH PLASTICITY, ORGANIC SILTS                                                                |  |
| Н                                                                | GHLY ORGANIC                           | SOILS                            | 77 77 77 77<br>77 77 77 77<br>70 77 77 77 | PT     | PEAT, HUMUS, SWAMP SOILS WITH<br>HIGH ORGANIC CONTENTS                                                                      |  |

DUAL SYMBOLS are used to indicate borderline soil classifications.

The discussion in the text of this report is necessary for a proper understanding of the nature of the material presented in the attached logs.



GENERAL BH / TP / WELL 6481, GPJ GINT US, GDT 2/7/19

Earth Solutions NW

1805 - 136th Place N.E., Suite 201 Bellevue, Washington 98005 Telephone: 425-449-4704 Fax: 425-449-4711

# TEST PIT NUMBER TP-1 PAGE 1 OF 1

| PROJECT NUMBER ES-6481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         | PROJECT NAME Best Parking                                                                                                                                                                                       |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| DATE STARTED 1/30/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | COMPLETED 1/30/19                       | GROUND ELEVATION 61 ft TEST PIT SIZE                                                                                                                                                                            |  |  |  |  |
| EXCAVATION CONTRACTOR Clie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ent Provided                            | GROUND WATER LEVELS:                                                                                                                                                                                            |  |  |  |  |
| EXCAVATION METHOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | ✓ AT TIME OF EXCAVATION 8.0 ft / Elev 53.0 ft                                                                                                                                                                   |  |  |  |  |
| LOGGED BY TJD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CHECKED BY KDH                          | AT END OF EXCAVATION —                                                                                                                                                                                          |  |  |  |  |
| NOTES Depth of Topsoil & Sod 6'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | : crushed rock minus                    | AFTER EXCAVATION                                                                                                                                                                                                |  |  |  |  |
| SAMPLE TYPE NUMBER SAMPLE TYPE NUMBER SAMPLE TYPE SAMP | U.S.C.S.<br>GRAPHIC<br>LOG              | MATERIAL DESCRIPTION                                                                                                                                                                                            |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FILL 0.5 Crushed roo                    | 00.0                                                                                                                                                                                                            |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GM increased o                          | RAVEL with sand, medium dense, moist (Fill)                                                                                                                                                                     |  |  |  |  |
| MC = 22.20%<br>Fines = 66.70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Gray gravell  [USDA Clas  -caving to 8' | y SILT, loose to medium dense, moist<br>sification: gravelly LOAM]                                                                                                                                              |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1 14.0                                | lwater seepage at 4' 57.0                                                                                                                                                                                       |  |  |  |  |
| MC = 28.80%  MC = 25.90%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -iron oxide s<br>-moderate to           | heavy groundwater seepage<br>and content<br>ack, wet                                                                                                                                                            |  |  |  |  |
| 10 10 00 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ILISDA Clas                             | sification: slightly gravelly SAND]                                                                                                                                                                             |  |  |  |  |
| MC = 26.80%<br>Fines = 12.60%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Test pit term<br>8.0 feet and           | sinated at 10.0 feet below existing grade. Groundwater table encountered at groundwater seepage encountered at 4.0 and 6.0 feet during excavation. eved from 3.0 to 8.0 feet.  Bottom of test pit at 10.0 feet. |  |  |  |  |



GENERAL BH / TP / WELL 6481.GPJ GINT US.GDT 2/7/19

Earth Solutions NW 1805 - 136th Place N.E., Suite 201 Bellevue, Washington 98005 Telephone: 425-449-4704 Fax: 425-449-4711

# TEST PIT NUMBER TP-2 PAGE 1 OF 1

| CAVATION                     |                               | ent Provid |                  | GROUND WATER LEVELS:                                                                                |      |  |  |
|------------------------------|-------------------------------|------------|------------------|-----------------------------------------------------------------------------------------------------|------|--|--|
|                              |                               |            | CKED BY KDH      |                                                                                                     |      |  |  |
| (#)<br>SAMPLE TYPE<br>NUMBER | TESTS                         | U.S.C.S.   | GRAPHIC<br>LOG   | MATERIAL DESCRIPTION                                                                                |      |  |  |
|                              |                               | FILL       | XXX U.5          | ock minus                                                                                           | 62.5 |  |  |
| -                            |                               | GM         | Gray slity       | GRAVEL with sand, medium dense, damp to moist (Fill)                                                |      |  |  |
|                              |                               |            | 2.5 Gray SILT    | with sand, loose to medium dense, moist to wet                                                      | 60.5 |  |  |
|                              | MC = 31.70%                   | ML         | -iron oxide      | staining                                                                                            |      |  |  |
| 4                            |                               | 1          | light grou       | ndwater seepage                                                                                     |      |  |  |
|                              | MC = 29.40%                   |            | Gray silty       | fine SAND, loose to medium dense, moist to wet m 4.5' to 8'                                         | 58.5 |  |  |
| -                            | MC = 28.80%<br>Fines = 37.30% | SM         | -moderate        | staining<br>sssification: very fine sandy LOAM]<br>groundwater seepage<br>black, wet                |      |  |  |
| 4                            | MC = 32.50%                   |            | 10.0 Test pit te | minated at 10.0 feet below existing grade. Groundwater seepage encountered                          | 53.0 |  |  |
|                              |                               |            | at 4.0 and       | 8.0 feet during excavation. Caving observed from 4.5 to 8.0 feet.  Bottom of test pit at 10.0 feet. |      |  |  |



Earth Solutions NW 1805 - 136th Place N.E., Suite 201 Bellevue, Washington 98005 Telephone: 425-449-4704 Fax: 425-449-4711

# TEST PIT NUMBER TP-3 PAGE 1 OF 1

| DATE<br>EXCA<br>EXCA<br>LOGG | STARTE<br>VATION (<br>VATION I<br>GED BY | WHER ES-6481  ED 1/30/19  CONTRACTOR Clie  METHOD  TJD  h of Topsoil & Sod 6"- | ent Prov | IECKED BY      | G<br>Y KDH                                                                 | GROUND ELEVATION 63 ft TEST PIT SIZE  GROUND WATER LEVELS:  AT TIME OF EXCAVATION 7.0 ft / Elev 56.0 ft  AT END OF EXCAVATION  AFTER EXCAVATION                                           |      |  |
|------------------------------|------------------------------------------|--------------------------------------------------------------------------------|----------|----------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|
| о ОЕРТН (#)                  | SAMPLE TYPE<br>NUMBER                    | TESTS                                                                          | U.S.C.S. | GRAPHIC<br>LOG |                                                                            | MATERIAL DESCRIPTION                                                                                                                                                                      |      |  |
|                              |                                          |                                                                                | FILL     | 0.9            | Quarry spalls<br>Crushed rock minus                                        |                                                                                                                                                                                           | 62.1 |  |
|                              |                                          | MC = 25.30%                                                                    | ML       |                |                                                                            | nd, loose to medium dense, moist to wet                                                                                                                                                   |      |  |
|                              |                                          | MC = 33.00%<br>Fines = 84.40%                                                  |          | 3.0            |                                                                            | seepage at 3', caving from 3' to 7' ID, loose to medium dense, wet on: LOAM]                                                                                                              | 60.0 |  |
| 5                            |                                          | MC = 32.10%                                                                    | SM       |                | -light groundwater s -iron oxide staining t -silt lens  -groundwater table | to 8'                                                                                                                                                                                     |      |  |
|                              |                                          | MC = 31.60%                                                                    |          | 9.5            | Test pit terminated a<br>7.0 feet and ground<br>Caving observed fro        | at 9.5 feet below existing grade. Groundwater table encountered at dwater seepage encountered at 3.0 and 5.0 feet during excavation. om 3.0 to 7.0 feet.  Bottom of test pit at 9.5 feet. | 53.5 |  |
|                              |                                          |                                                                                |          |                |                                                                            |                                                                                                                                                                                           |      |  |

# Earth Solutions NWas

Specimen Identification

2.5ft.

10.0ft.

7.5ft.

3.0ft.

**TP-01** 

**TP-01** 

**TP-02** 

**TP-03** 

M

D100

19

19

1.18

2

D60

0.309

0.117

D30

0.152

D10

LL

PL

ы

%Silt

66.7

12.6

37.3

84.4

%Clay

Earth Solutions NW, LLC 1805 - 136th PL N.E., Suite 201 Bellevue, WA 98005

Telephone: 425-449-4704 Fax: 425-449-4711

# **GRAIN SIZE DISTRIBUTION**





April 27, 2021 ES-6481.01

# Earth Solutions NW LLC

Geotechnical Engineering, Construction
Observation/Testing and Environmental Services

BPLC Properties, LLC 10615 – 438<sup>th</sup> Street Court East Eatonville, Washington 98328

Attention: Mr. Rich Hamilton

Subject: Groundwater Monitoring Program Summary

**Best Parking Lot Cleaning Site Improvements** 

2412 Inter Avenue Puyallup, Washington

Reference: Earth Solutions NW, LLC

Geotechnical Evaluation

Project No. ES-6481, dated February 19, 2019

City of Puyallup, Washington

E-20-0067 Civil Comments 1 Letter, dated March 16, 2020

#### Dear Mr. Hamilton:

As requested, Earth Solutions NW, LLC (ESNW) has prepared this letter summarizing the results of our seasonal groundwater monitoring program on site.

The monitoring program consisted of installing three groundwater monitoring wells at the approximate locations depicted on Plate 2 (Subsurface Exploration Plan). Since the installation of the groundwater wells on June 8, 2020, daily groundwater levels have been recorded using dataloggers. ESNW personnel visited the site biweekly to download the collected data and perform manual measurements at each borehole using a depth-to-water meter. The table on page 2 summarizes the groundwater data collected during our monitoring program.

| Borehole | Depth of<br>Borehole<br>(ft) | Ground<br>Elevation*<br>(ft) | Peak<br>GWT<br>Depth <sup>†</sup><br>(ft bgs) | Peak<br>GWT<br>Elevation*<br>(ft) | Peak Date  |
|----------|------------------------------|------------------------------|-----------------------------------------------|-----------------------------------|------------|
| B-1      | 21.5                         | 56                           | 0.9                                           | 55.1                              | 01/13/2021 |
| B-2      | 21.5                         | 56                           | 1.6                                           | 54.4                              | 01/13/2021 |
| B-3      | 21.5                         | 54                           | 2.0                                           | 52.0                              | 01/13/2021 |

<sup>\*</sup> Elevations are approximate, based on readily available topographic survey data; monitoring well locations have not been surveyed.

Monitoring charts are attached to letter, along with boring logs and laboratory analyses from the June 2020 fieldwork. The monitoring period extended before and after the minimum period requested by the City of Puyallup (December 21 to April 1), as outlined in the referenced comments letter. As anticipated, high groundwater readings corresponded with relatively high rainfall events. Based on the data collected during the monitoring period, it is our opinion the peak groundwater table depths listed in the table above are indicative of the seasonal high groundwater elevations.

<sup>†</sup> Depth measured from existing ground surface.

We trust this letter meets your current needs. Should you have any questions regarding the content herein, or require additional information, please call.

Sincerely,

## **EARTH SOLUTIONS NW, LLC**

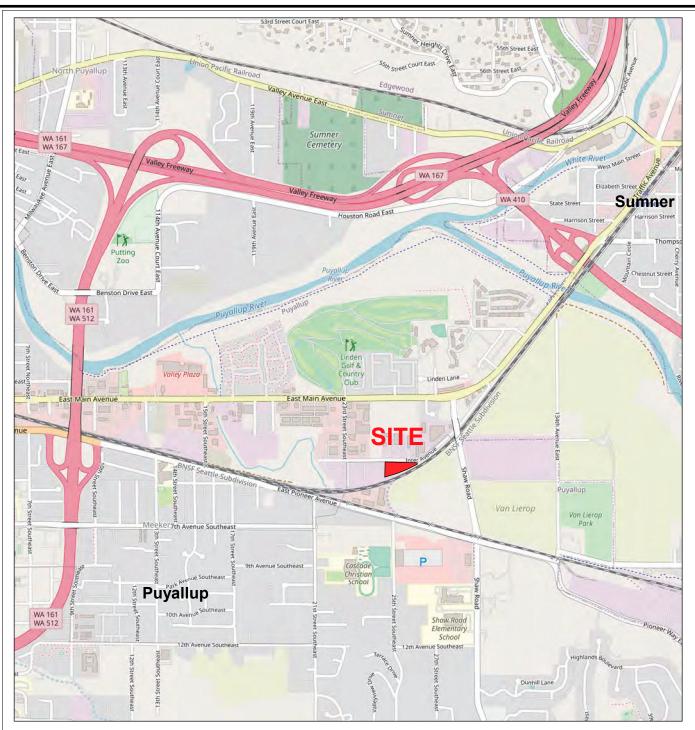
Adam Z. Shier, L.G. Project Geologist

D. HOFF OF WASHING 53724 53724 04/27/2021

Keven D. Hoffmann, P.E. Geotechnical Engineering Services Manager

Attachments: Plate 1 – Vicinity Map

Plate 2 – Subsurface Exploration Plan


**Boring Logs** 

**Grain Size Distribution** 

Seasonal Groundwater Monitoring Charts

cc: Barghausen Consulting Engineers, Inc.

Attention: Mr. Jason Hubbell, P.E. (Email only)



Reference: Pierce County, Washington OpenStreetMap.org



NOTE: This plate may contain areas of color. ESNW cannot be responsible for any subsequent misinterpretation of the information resulting from black & white reproductions of this plate.



Vicinity Map
Best Parking Lot Cleaning Site Improvements
Puyallup, Washington

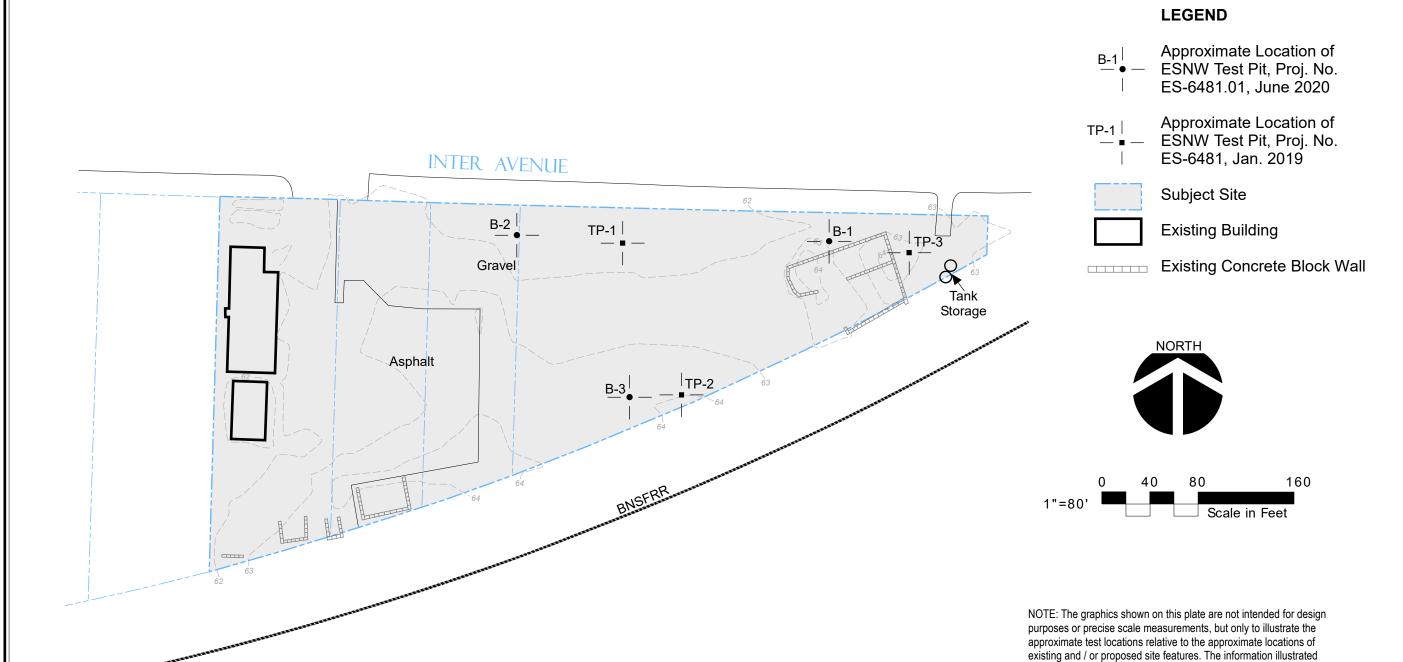
| Drwn. MRS   | Date 06/30/2020 | Proj. No. | 6481.01 |
|-------------|-----------------|-----------|---------|
| Checked KDH | Date June 2020  | Plate     | 1       |

is largely based on data provided by the client at the time of our study. ESNW cannot be responsible for subsequent design changes

NOTE: This plate may contain areas of color. ESNW cannot be

resulting from black & white reproductions of this plate.

responsible for any subsequent misinterpretation of the information


or interpretation of the data by others.

Checked By KDH

Date 06/30/2020

Proj. No. 6481.01

Plate 2



# Earth Solutions NW LLC SOIL CLASSIFICATION CHART

| M                                                                       | AJOR DIVISI                            | ONS                              | SYME<br>GRAPH                      | BOLS | TYPICAL<br>DESCRIPTIONS                                                                                                     |
|-------------------------------------------------------------------------|----------------------------------------|----------------------------------|------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------|
|                                                                         | GRAVEL<br>AND                          | CLEAN<br>GRAVELS                 |                                    | GW   | WELL-GRADED GRAVELS, GRAVEL -<br>SAND MIXTURES, LITTLE OR NO<br>FINES                                                       |
|                                                                         | GRAVELLY<br>SOILS                      | (LITTLE OR NO FINES)             |                                    | GP   | POORLY-GRADED GRAVELS,<br>GRAVEL - SAND MIXTURES, LITTLE<br>OR NO FINES                                                     |
| COARSE<br>GRAINED<br>SOILS                                              | MORE THAN 50%<br>OF COARSE<br>FRACTION | GRAVELS WITH<br>FINES            |                                    | GM   | SILTY GRAVELS, GRAVEL - SAND -<br>SILT MIXTURES                                                                             |
|                                                                         | RETAINED ON NO.<br>4 SIEVE             | (APPRECIABLE<br>AMOUNT OF FINES) |                                    | GC   | CLAYEY GRAVELS, GRAVEL - SAND -<br>CLAY MIXTURES                                                                            |
| MORE THAN 50%<br>OF MATERIAL IS<br>LARGER THAN<br>NO. 200 SIEVE<br>SIZE | SAND<br>AND                            | CLEAN SANDS                      |                                    | SW   | WELL-GRADED SANDS, GRAVELLY<br>SANDS, LITTLE OR NO FINES                                                                    |
|                                                                         | SANDY<br>SOILS                         | (LITTLE OR NO FINES)             |                                    | SP   | POORLY-GRADED SANDS,<br>GRAVELLY SAND, LITTLE OR NO<br>FINES                                                                |
|                                                                         | MORE THAN 50%<br>OF COARSE<br>FRACTION |                                  |                                    | SM   | SILTY SANDS, SAND - SILT<br>MIXTURES                                                                                        |
|                                                                         | PASSING ON NO.<br>4 SIEVE              | (APPRECIABLE<br>AMOUNT OF FINES) |                                    | sc   | CLAYEY SANDS, SAND - CLAY<br>MIXTURES                                                                                       |
|                                                                         |                                        |                                  |                                    | ML   | INORGANIC SILTS AND VERY FINE<br>SANDS, ROCK FLOUR, SILTY OR<br>CLAYEY FINE SANDS OR CLAYEY<br>SILTS WITH SLIGHT PLASTICITY |
| FINE<br>GRAINED<br>SOILS                                                | SILTS<br>AND<br>CLAYS                  | LIQUID LIMIT<br>LESS THAN 50     |                                    | CL   | INORGANIC CLAYS OF LOW TO<br>MEDIUM PLASTICITY, GRAVELLY<br>CLAYS, SANDY CLAYS, SILTY CLAYS,<br>LEAN CLAYS                  |
|                                                                         |                                        |                                  |                                    | OL   | ORGANIC SILTS AND ORGANIC<br>SILTY CLAYS OF LOW PLASTICITY                                                                  |
| MORE THAN 50%<br>OF MATERIAL IS<br>SMALLER THAN<br>NO. 200 SIEVE        |                                        |                                  |                                    | МН   | INORGANIC SILTS, MICACEOUS OR<br>DIATOMACEOUS FINE SAND OR<br>SILTY SOILS                                                   |
| SIZE                                                                    | SILTS<br>AND<br>CLAYS                  | LIQUID LIMIT<br>GREATER THAN 50  |                                    | СН   | INORGANIC CLAYS OF HIGH<br>PLASTICITY                                                                                       |
|                                                                         |                                        |                                  |                                    | ОН   | ORGANIC CLAYS OF MEDIUM TO<br>HIGH PLASTICITY, ORGANIC SILTS                                                                |
| HI                                                                      | GHLY ORGANIC S                         | SOILS                            | 77 77 77 77 77<br>7 77 77 77 77 77 | PT   | PEAT, HUMUS, SWAMP SOILS WITH<br>HIGH ORGANIC CONTENTS                                                                      |

DUAL SYMBOLS are used to indicate borderline soil classifications.

# Earth Solutions NWuc

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

# **BORING NUMBER B-1**

PAGE 1 OF 2

|              |                       |          | ES-6481.0<br>8/20           |                            | <b>ED</b> 6/ | 8/20     | PROJECT NAME Best Parking Lot Cleaning Site Improvements  GROUND ELEVATION 63 ft HOLE SIZE       | GROUND ELEVATION 63 ft HOLE SIZE |  |  |  |  |
|--------------|-----------------------|----------|-----------------------------|----------------------------|--------------|----------|--------------------------------------------------------------------------------------------------|----------------------------------|--|--|--|--|
| DRILL        | ING CO                | NTRAC    | CTOR Hold                   | ocene Drilling             |              |          | _ GROUND WATER LEVELS:                                                                           |                                  |  |  |  |  |
| DRILL        | ING ME                | THOD     | HSA                         |                            |              |          | $\underline{\underline{\hspace{0.5cm}}}$ at time of drilling $\underline{\hspace{0.5cm}}$ 7.0 ft | $ar{ar{ar{ar{ar{ar{ar{ar{ar{ar{$ |  |  |  |  |
| LOG          | SED BY                | AZS      |                             | CHECKED                    | BY K         | DH       | AT END OF DRILLING                                                                               |                                  |  |  |  |  |
| NOTE         | S Surfa               | ace Co   | nditions: ex                | posed soil                 |              |          | AFTER DRILLING                                                                                   |                                  |  |  |  |  |
| I            | rype<br>ER            | % X>     | v<br>TS<br>JE)              |                            | S)           | <b>⊇</b> |                                                                                                  |                                  |  |  |  |  |
| O DEPTH (ft) | SAMPLE TYPE<br>NUMBER | RECOVERY | BLOW<br>COUNTS<br>(N VALUE) | TESTS                      | U.S.C.S.     | GRAPHIC  | MATERIAL DESCRIPTION                                                                             |                                  |  |  |  |  |
|              |                       |          |                             |                            |              |          | Gray well-graded SAND with silt, medium dense, moist                                             |                                  |  |  |  |  |
| . <u>-</u>   | ss                    | 11       | 7-8-7<br>(15)               | MC = 10.6%                 | SW-          |          |                                                                                                  |                                  |  |  |  |  |
|              | ss                    | 17       | 1-4-4 (8)                   | MC = 8.1%<br>Fines = 11.1% |              |          | [USDA Classification: gravelly coarse SAND] -becomes loose                                       |                                  |  |  |  |  |
|              | ss                    | 50       | 4-2-5                       | MC = 40.5%                 |              |          | -groundwater table, becomes water bearing  Gray SILT, medium dense, water bearing                | 55.0                             |  |  |  |  |
| <br>10       |                       |          | (7)                         | 10.070                     |              |          |                                                                                                  |                                  |  |  |  |  |
|              | ss                    | 100      | 7-8-10<br>(18)              | MC = 29.8%                 |              |          |                                                                                                  |                                  |  |  |  |  |
|              |                       |          |                             |                            | ML           |          |                                                                                                  |                                  |  |  |  |  |
| _ 13         | ss                    | 67       | 3-5-6<br>(11)               | MC = 34.5%                 |              |          |                                                                                                  |                                  |  |  |  |  |
|              |                       |          |                             |                            |              |          |                                                                                                  |                                  |  |  |  |  |
| <br>20       | _                     |          |                             |                            |              |          |                                                                                                  | 43.0                             |  |  |  |  |



Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

# **BORING NUMBER B-1**

PAGE 2 OF 2

#### PROJECT NUMBER ES-6481.01

PROJECT NAME Best Parking Lot Cleaning Site Improvements

| OEPTH (ft) | SAMPLE TYPE<br>NUMBER | RECOVERY % | BLOW<br>COUNTS<br>(N VALUE) | TESTS      | U.S.C.S. | GRAPHIC<br>LOG | MATERIAL DESCRIPTION                      |
|------------|-----------------------|------------|-----------------------------|------------|----------|----------------|-------------------------------------------|
|            | ss                    | 67         | 2-3-5<br>(8)                | MC = 31.1% | ML       |                | Gray SILT, loose, water bearing 21.5 41.5 |

Boring terminated at 21.5 feet below existing grade. Groundwater table encountered at 7.0 feet during drilling. 2" PVC standpipe installed to bottom of boring. Lower 10.0 feet slotted. Well ID: BNF287. Boring backfilled with bentonite/sand.

GENERAL BH / TP / WELL - 6481-1.GPJ - GRAPHICS TEMPLATE.GDT - 4/27/21

# Earth Solutions NWuc

GENERAL BH / TP / WELL - 6481-1.GPJ - GRAPHICS TEMPLATE.GDT - 4/27/21

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

# **BORING NUMBER B-2**

PAGE 1 OF 2

| PROJ         | ECT NUN               | /IBER         | ES-6481.0                   | )1            |              |         | PRO                    | JECT NAME Best Parkin                                  | g Lot Cleaning Site Improvement | ts   |  |  |  |
|--------------|-----------------------|---------------|-----------------------------|---------------|--------------|---------|------------------------|--------------------------------------------------------|---------------------------------|------|--|--|--|
| DATE         | STARTE                | <b>D</b> _6/8 | 3/20                        | COMPLETE      | <b>D</b> _6/ | 8/20    | GRO                    | UND ELEVATION 62 ft                                    | HOLE SIZE                       |      |  |  |  |
| DRILL        | ING CON               | ITRAC         | TOR Holo                    | cene Drilling |              |         | GRO                    | GROUND WATER LEVELS:                                   |                                 |      |  |  |  |
| DRILL        | ING MET               | HOD           | HSA                         |               |              |         |                        | $\stackrel{'}{_{\sim}}$ at time of drilling $_{\perp}$ | 6.0 ft                          |      |  |  |  |
| LOGG         | ED BY _               | AZS           |                             | CHECKED I     | BY K         | DH      |                        | AT END OF DRILLING _                                   |                                 |      |  |  |  |
| NOTE         | S Surfa               | ce Co         | nditions: gra               | avel driveway |              |         |                        | AFTER DRILLING                                         |                                 |      |  |  |  |
|              | 111                   | . 0           |                             |               |              |         |                        |                                                        |                                 |      |  |  |  |
| O DEPTH (ft) | SAMPLE TYPE<br>NUMBER | RECOVERY %    | BLOW<br>COUNTS<br>(N VALUE) | TESTS         | U.S.C.S.     | GRAPHIC |                        | MATERIAL                                               | DESCRIPTION                     |      |  |  |  |
|              | \ /                   |               |                             |               | GM           |         | Gray sill              | ty GRAVEL with sand, loo                               | se, moist (Fill)                | 59.0 |  |  |  |
|              | ss                    | 6             | 1-2-5<br>(7)                | MC = 22.3%    | SP           |         |                        | orly graded SAND, loose,                               | moist                           | 58.0 |  |  |  |
| 5            | \/                    |               | 1-1-2                       | MC = 43.5%    |              |         | Brown S                | Classification: slightly grav                          |                                 |      |  |  |  |
|              | SS                    | 67            | (3)                         | Fines = 77.1% | ML           |         | ∑ -iron oxi<br>-ground | de staining<br>water table, becomes wate               | er bearing                      |      |  |  |  |
|              | ss                    | 100           | 2-6-7<br>(13)               | MC = 42.8%    |              |         | 8.5<br>Gray sill       | ty fine SAND, medium der                               | nse, water bearing              | 53.5 |  |  |  |
| 10           |                       |               |                             |               |              |         |                        |                                                        |                                 |      |  |  |  |
|              | ss                    | 100           | 3-11-16<br>(27)             | MC = 31.3%    |              |         | -4" wood               | d debris                                               |                                 |      |  |  |  |
| <br><br>15   | ss                    | 67            | 6-6-6<br>(12)               | MC = 29.5%    | SM           |         |                        |                                                        |                                 |      |  |  |  |
|              |                       |               |                             |               |              |         | 20.0                   |                                                        |                                 | 42.0 |  |  |  |



Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

# **BORING NUMBER B-2**

PAGE 2 OF 2

#### PROJECT NUMBER ES-6481.01

PROJECT NAME Best Parking Lot Cleaning Site Improvements

| © DEPTH<br>(ft) | SAMPLE TYPE<br>NUMBER | RECOVERY % | BLOW<br>COUNTS<br>(N VALUE) | TESTS      | U.S.C.S. | GRAPHIC<br>LOG | MATERIAL DESCRIPTION                   |              |
|-----------------|-----------------------|------------|-----------------------------|------------|----------|----------------|----------------------------------------|--------------|
|                 | ss                    | 100        | 2-4-8<br>(12)               | MC = 33.5% | SP<br>ML | 21.0           | Gray SILT, medium dense, water bearing | 41.0<br>40.5 |
|                 |                       | · ·        |                             |            |          |                | -wood debris                           |              |

Boring terminated at 21.5 feet below existing grade. Groundwater table encountered at 6.0 feet during drilling. 2" PVC standpipe installed to bottom of boring. Lower 10.0 feet slotted. Well ID: BNF288. Boring backfilled with bentonite/sand.

GENERAL BH / TP / WELL - 6481-1.GPJ - GRAPHICS TEMPLATE.GDT - 4/27/21

# Earth Solutions NWLLC

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

# **BORING NUMBER B-3**

PAGE 1 OF 2

| PROJECT NUMBER         ES-6481.01           DATE STARTED         6/8/20         COMPLETED         6/8/20 |                                       |            |                             |                             |          | 8/20    |                                                                                             | PROJECT NAME Best Parking Lot Cleaning Site Improvements  GROUND ELEVATION 64 ft HOLE SIZE |     |  |  |  |
|----------------------------------------------------------------------------------------------------------|---------------------------------------|------------|-----------------------------|-----------------------------|----------|---------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----|--|--|--|
| l .                                                                                                      | DRILLING CONTRACTOR Holocene Drilling |            |                             |                             |          |         |                                                                                             | <del></del>                                                                                |     |  |  |  |
| DRILL                                                                                                    | DRILLING METHOD HSA                   |            |                             |                             |          |         |                                                                                             | $\sqrt{2}$ AT TIME OF DRILLING 10.0 ft                                                     |     |  |  |  |
| l .                                                                                                      |                                       |            |                             | CHECKED                     |          |         |                                                                                             |                                                                                            |     |  |  |  |
| NOTE                                                                                                     | S Surfa                               | ice Co     | nditions: gra               | avel driveway               |          |         |                                                                                             | AFTER DRILLING                                                                             |     |  |  |  |
| O DEPTH                                                                                                  | SAMPLE TYPE<br>NUMBER                 | RECOVERY % | BLOW<br>COUNTS<br>(N VALUE) | TESTS                       | U.S.C.S. | GRAPHIC |                                                                                             | MATERIAL DESCRIPTION                                                                       |     |  |  |  |
|                                                                                                          |                                       |            |                             |                             | GM       |         | ×<br>×<br>×<br>×<br>×<br>×<br>×<br>×<br>×<br>×<br>×<br>×<br>×<br>×<br>×<br>×<br>×<br>×<br>× | Gray silty GRAVEL with sand, loose, moist (Fill)                                           | 61. |  |  |  |
|                                                                                                          | ss                                    | 67         | 4-3-4<br>(7)                | MC = 34.5%<br>Fines = 98.3% |          |         |                                                                                             | Gray SILT, loose, moist [USDA Classification: slightly gravelly LOAM] -iron oxide staining |     |  |  |  |
| 5                                                                                                        | ss                                    | 11         | 4-4-5<br>(9)                | MC = 25.2%<br>Fines = 60.4% | - ML     |         |                                                                                             | -becomes sandy silt [USDA Classification: slightly gravelly LOAM]                          |     |  |  |  |
|                                                                                                          | / \                                   |            | 2.4.6                       |                             |          |         | 7.5                                                                                         | Gray silty fine SAND with gravel, medium dense, moist to wet                               | 56. |  |  |  |
| <br>10                                                                                                   | ss                                    | 33         | 3-4-6<br>(10)               | MC = 21.8%                  | -        |         |                                                                                             |                                                                                            |     |  |  |  |
|                                                                                                          | ss                                    |            | 4-4-6<br>(10)               |                             | SM       |         | .] <u>⊻</u>                                                                                 | -groundwater table, becomes water bearing, no recovery                                     |     |  |  |  |
| <br>                                                                                                     |                                       |            |                             |                             |          |         |                                                                                             |                                                                                            |     |  |  |  |
|                                                                                                          | ss                                    | 67         | 2-4-7<br>(11)               | MC = 28.6%                  |          |         | 15.5                                                                                        | Gray poorly graded SAND, medium dense, water bearing                                       | 48. |  |  |  |
| -<br>                                                                                                    |                                       |            |                             |                             | SP       |         |                                                                                             |                                                                                            |     |  |  |  |
| <br>                                                                                                     |                                       |            |                             |                             |          |         | 20.0                                                                                        |                                                                                            | 44. |  |  |  |



Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

# **BORING NUMBER B-3**

PAGE 2 OF 2

#### PROJECT NUMBER ES-6481.01

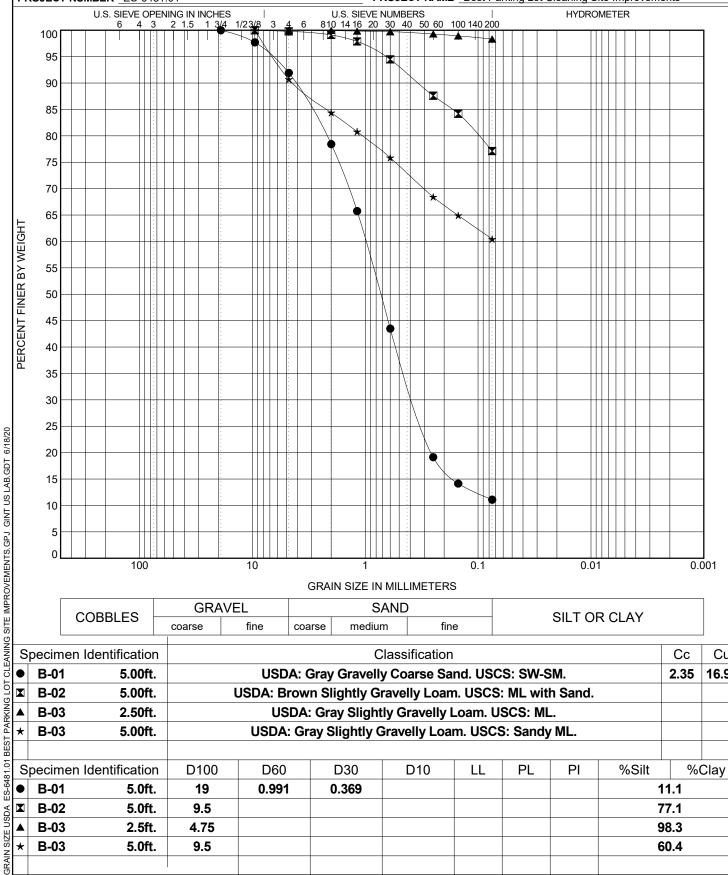
PROJECT NAME Best Parking Lot Cleaning Site Improvements

| 05 DEPTH | SAMPLE TYPE<br>NUMBER | RECOVERY % | BLOW<br>COUNTS<br>(N VALUE) | TESTS      | U.S.C.S. | GRAPHIC<br>LOG | MATERIAL DESCRIPTION                               |
|----------|-----------------------|------------|-----------------------------|------------|----------|----------------|----------------------------------------------------|
|          | ss                    | 67         | 4-4-3<br>(7)                | MC = 22.6% | SP       | 21.5           | Gray poorly graded SAND, loose, water bearing 42.5 |

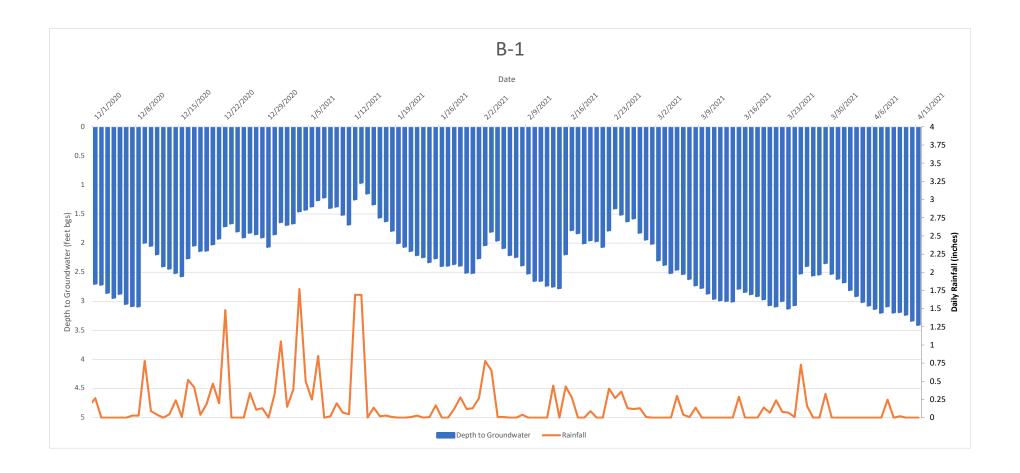
Boring terminated at 21.5 feet below existing grade. Groundwater table encountered at 10.0 feet during drilling. 2" PVC standpipe installed to bottom of boring. Lower 10.0 feet slotted. Well ID: BNF289. Boring backfilled with bentonite/sand.

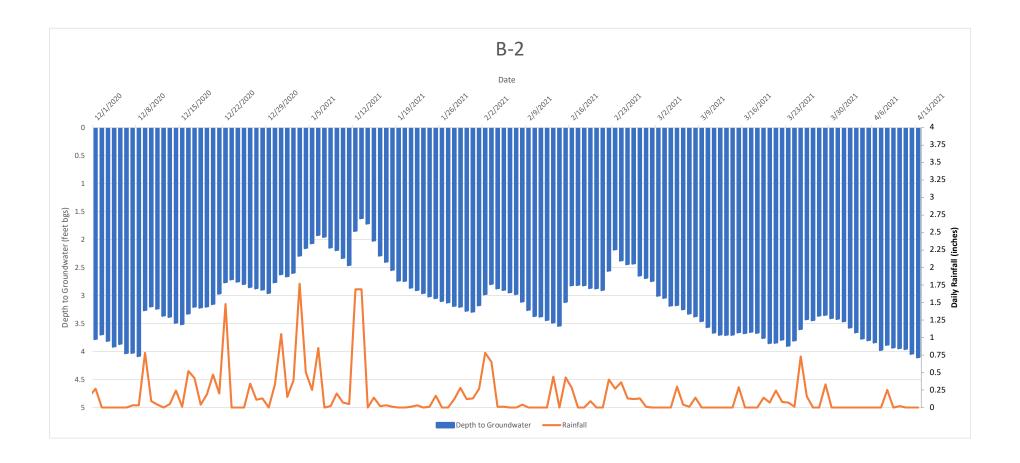
GENERAL BH / TP / WELL - 6481-1.GPJ - GRAPHICS TEMPLATE.GDT - 4/27/21

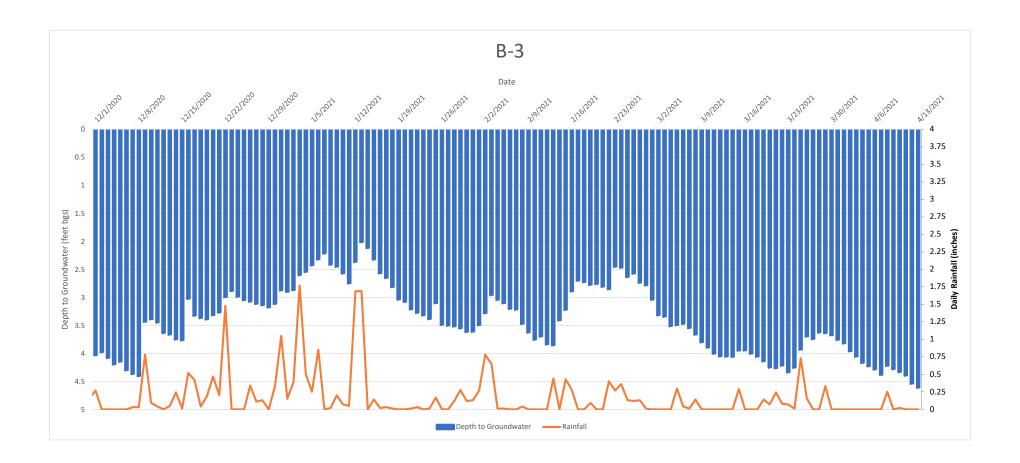
# Earth Solutions NW<sub>LLC</sub>


Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704

Fax: 425-449-4711


# **GRAIN SIZE DISTRIBUTION**





PROJECT NAME Best Parking Lot Cleaning Site Improvements



| S<br>● <b>X</b><br>★ | Specimen lo | dentification | Classification                                     |                                               |                                                         |       |     |    |    |    |       | Сс   | Cu    |
|----------------------|-------------|---------------|----------------------------------------------------|-----------------------------------------------|---------------------------------------------------------|-------|-----|----|----|----|-------|------|-------|
| •                    | B-01        | 5.00ft.       |                                                    | USDA: Gray Gravelly Coarse Sand. USCS: SW-SM. |                                                         |       |     |    |    |    |       |      | 16.92 |
| X                    | B-02        | 5.00ft.       |                                                    | USDA: B                                       | ISDA: Brown Slightly Gravelly Loam. USCS: ML with Sand. |       |     |    |    |    |       |      |       |
| <b>A</b>             | B-03        | 2.50ft.       | USDA: Gray Slightly Gravelly Loam. USCS: ML.       |                                               |                                                         |       |     |    |    |    |       |      |       |
| *                    | B-03        | 5.00ft.       | USDA: Gray Slightly Gravelly Loam. USCS: Sandy ML. |                                               |                                                         |       |     |    |    |    |       |      |       |
|                      |             |               |                                                    |                                               |                                                         |       |     |    |    |    |       |      |       |
| s                    | pecimen lo  | dentification | D100                                               | D60                                           |                                                         | D30   | D10 | LL | PL | PI | %Silt | %    | Clay  |
| s<br>•               | B-01        | 5.0ft.        | 19                                                 | 0.991                                         | 1 (                                                     | 0.369 |     |    |    |    |       | 11.1 |       |
| X                    | B-02        | 5.0ft.        | 9.5                                                |                                               |                                                         |       |     |    |    |    | 1     | 77.1 |       |
| ▲                    | B-03        | 2.5ft.        | 4.75                                               |                                               |                                                         |       |     |    |    |    |       | 98.3 |       |
| *                    | B-03        | 5.0ft.        | 9.5                                                |                                               |                                                         |       |     |    |    |    |       | 60.4 |       |
|                      |             |               |                                                    |                                               |                                                         |       |     |    |    |    |       |      |       |









August 3, 2021 ES-6481.01

# Earth Solutions NW LLC

Geotechnical Engineering, Construction
Observation/Testing and Environmental Services

BPLC Properties, LLC 10615 – 438<sup>th</sup> Street Court East Eatonville, Washington 98328

Attention: Mr. Rich Hamilton

Subject: Detention Pond Liner & Pavement Section Recommendations

**Best Parking Lot Cleaning Site Improvements** 

2512 Inter Avenue Puyallup, Washington

Reference: Earth Solutions NW, LLC

Geotechnical Evaluation

Project No. ES-6481, dated February 19, 2019

Earth Solutions NW. LLC

Groundwater Monitoring Program Summary Project No. ES-6481.01, dated April 27, 2021

Barghausen Consulting Engineers, Inc. Civil Plans, dated February 2020

### Greetings, Mr. Hamilton:

As requested by Barghausen Consulting Engineers, Inc., Earth Solutions NW, LLC (ESNW) has prepared this letter for the subject project. Recommendations provided herein concern lining the proposed detention pond and a pavement section for the heavier (truck) traffic anticipated on the new asphalt.

#### **Detention Pond Liner**

Per the referenced civil plans, a detention pond is proposed within the northeast site area. Because the detention pond will be constructed below the seasonal high groundwater table (GWT), a liner will be installed to resist hydrostatic uplift. Based on the pond sections depicted in the referenced plans as well as the results of our groundwater monitoring program through the 2020–2021 wet season (as summarized in the referenced letter), the following is a summary of the design parameters for the detention pond

| • | Top of pond elevation           | 64.5 feet |
|---|---------------------------------|-----------|
| • | Maximum water surface elevation | 63.5 feet |
| • | Static water surface elevation  | 57.5 feet |
| • | Bottom of pond elevation        | 57.0 feet |
| • | Seasonal high GWT elevation     | 62.2 feet |

The seasonal high GWT elevation was based on the monitoring completed at boring B-1, which was installed within the detention pond area. It is noted that the seasonal high GWT elevation obtained at B-1 was the shallowest groundwater level obtained across the site; readings at B-2 and B-3 were 0.7 feet and 1.1 feet deeper, respectively.

The design parameters outlined in this section were incorporated into an equation to determine the required liner thickness to resist hydrostatic uplift. A calculation sheet is attached to this letter. Based on the computation results, the following recommendations are offered for the detention pond liner:

- A 40-mil PVC or HDPE liner should be placed continuously over the pond bottom.
- Atop the liner, at least four-and-one-half feet of ballast should be placed. If desired and/or required, the upper 12 inches of the ballast may be substituted as amended soil.
- An ESNW representative should be contacted to observe and document installation of the pond liner. Supplementary recommendations may be provided at the time of construction, where necessary.

The above recommendations incorporate a safety factor of about 1.1 with respect to hydrostatic uplift resistance. In our opinion, this safety factor is appropriate for the pond liner design from a geotechnical standpoint.

#### **Pavement Section Recommendations**

The performance of site pavements is largely related to the condition of the underlying subgrade. To ensure adequate pavement performance, the subgrade should be in a firm and unyielding condition when subjected to proofrolling with a loaded dump truck. Soft, wet, or otherwise unsuitable subgrade areas may still exist after base grading activities. Areas of unsuitable or yielding subgrade conditions may require remedial measures, such as overexcavation and replacement with structural fill or thicker crushed rock sections, prior to pavement.

In our opinion, the following pavement sections for heavier traffic (occasional truck traffic) areas may be considered:

- Three inches of hot-mix asphalt (HMA) placed over six inches of crushed rock base (CRB).
- Three inches of HMA placed over four-and-one-half inches of asphalt-treated base (ATB).

The HMA, ATB, and CRB materials should conform to WSDOT and/or City of Puyallup specifications, where applicable. All soil base material should be compacted to a relative compaction of 95 percent, based on the laboratory maximum dry density as determined by ASTM D1557. Road standards utilized by the City of Puyallup may supersede the recommendations provided in this section.

We trust this letter meets your current needs. Please call if you have any questions about this letter or if we can be of further assistance.

Sincerely,

#### **EARTH SOLUTIONS NW, LLC**



Keven D. Hoffmann, P.E. Geotechnical Engineering Services Manager

Attachment: Calculation Sheet

cc: Barghausen Consulting Engineers, Inc.

Attention: Mr. Jason Hubbell, P.E. (Email only)



| Name:     | KDH                      |                        |
|-----------|--------------------------|------------------------|
| Date:     | 07/27/2                  | 120                    |
| Project N | Company and Company (1)  | 481.01                 |
| Project N | ame: <u> <b>₿₽</b>LC</u> | Improvements (Puyally) |

| Detention Pond Liner Evaluation:                                            |
|-----------------------------------------------------------------------------|
| Reald Amended Soil Thickness to resist Uplift                               |
|                                                                             |
| Assumptions / Design Parameters                                             |
| (ref. Barghausen Consulting Engr., Storm Drainage Plan/Sections, Feb. 2020) |
| Top of pand = E1. 64.5                                                      |
| Max. W.S. = El. 63.5                                                        |
| Static W.S. = 61 57.5                                                       |
| Bother of pond = B1. 57.0                                                   |
| Seasonal high GWE = E1. 62.2                                                |
| * NEED: Liner thickness/elevation reg'd to resist uplift * ("x")            |
| NOTE: Pond liner assumed as ballast + amended soil, 8= 135 pcf              |
| Solve the imbalance equation, need to resist uplift                         |
| Imbalance = [(Seasonal high GWE) - (Liner elevation)] (Unit wt. H20)        |
| Resistance to uplift = Dead Storage                                         |
| = [(Static W.S.)-(Bottom of pond)] (Unit wt. Hzo) +                         |
| ( Liner thickness) (Unit we. liner)                                         |
| where Imbalance = Resistance to uplift, FOS = 1.0. Solve equation           |
| (62.2-57.0+x)(62.4) = (57.5-57.0)(62.4) + (x)(135)                          |
| => x = 4.04', so 4.04' lines reg'd for resistance.                          |
| Use Min. FOS = 1.1 for design and round up: 4.04 (1.1) = 4.44 = 4.5'        |
| 2 I I co y liver the broom                                                  |