Calculations required to be provided by the Permittee on site for all Inspections

PRMH20241062

Prepared Date: 6-22-2024 Revised Date: 7-16-2024

City of Puyallup

Building **REVIEWED**

FOR

COMPLIANCE BSnowden 07/19/2024 10:02:17 AM

PROJECT NAME: TRACTOR SUPPLY NO. 1886 STORE NO: #1886 PUYALLUP, WA LOCATION: 621 RIVER ROAD

PUYALLUP, WA 9837

CHECKED BY: KENNETH TANG, P.E.

ENGINEERING CALCULATIONS AND ANALYSIS REPORT FOR ROOF TOP MECHANICAL CURBS AND ADAPTER SUPPORTING NEW HVAC UNITS

FOR TRACTOR SUPPLY NO. 1886 PUYALLUP, WA 9837

DESIGN CRITERIA:

DESIGNED USING INTERNATIONAL BUILDING CODE (IBC) 2021 IBC

ASCE 7-16/7-22

DEAD AND LIVE LOADS:

ROOF DEAD LOAD:	20 <i>psf</i>
ROOF LIVE LOAD (IBC):	20 psf
GROUND SNOW LOAD:	20 psf

SEISMIC PARAMETERS:

SHORT PERIOD:	$S_S =$	1.278	G
ONE SECOND PERIOD:	$S_1 =$	0.440	G
DESIGN SPECTRAL ACCELERATION:	$S_{DS} =$	1.022	G
DESIGN ONE SECOND PERIOD:	$S_{D1} =$	null	G
TAB 11.4-1 SITE COEFFICIENT AT ONE SECOND PERIOD	$F_v =$	1.700	
Eq. 11.4-1 MCE ONE SECOND ADJUSTED SITE CLASS EFFECTS	$S_{M1} =$	0.748	G
Eq. 11.4-4 DESIGN ONE SECOND PERIOD (CALCULATED):	$S_{D1} =$	0.499	G

D-Default SEISMIC DESIGN CATEGORY: **STIFF**

WIND PARAMETERS (RISK CATEGORY III):

ULTIMATE DESIGN WIND SPEED (VULT):		104	MPH
EXPOSURE:	C		

PROJECT NAME: STORE NO:

TRACTOR SUPPLY NO. 1886 #1886 PUYALLUP, WA

TABLE OF CONTENTS

to 3	PROJECT INFORMATION & SCOPE OF WORK	3
4	JURISDICTIONAL INFORMATION	4
5	SEISMIC ANALYSIS	5
6	STRUCTURAL ENGINEERING CALCULATIONS	7
7	DESIGN DATA	8
8	CHECK JOISTS WITH GRAVITY INCRESES FOR (N) RTUs	9
9	CHECK LIVE LOAD DEFLECTION	10
10	CHECK JOISTS WITH (N) RTUs	11
11	LATERAL ANALYSIS	12
12	RTU DESIGN DIMENSIONS AND LOAD DIAGRAMS	13
13	INSTALLATION OF HOLD DOWN BRACKETS	14
14	SUMMARY	17
15	LINE OF SIGHT	17
16	DESIGN AIDS	18
17	ENERCALC OUTPUT	20

TRACTOR SUPPLY NO. 1886 **PROJECT NAME:** STORE NO:

#1886 PUYALLUP, WA

1 **PROJECT INFORMATION**

Store: TRACTOR SUPPLY NO. 1886

Location: 621 RIVER ROAD

PUYALLUP, WA 9837

Contact: Bernard Adebayo-Ige, P.E. (bernard@p2eg.com) Phone: 951-283-7085 Engineer: Kenneth Tang, P.E. (kenneth.tang@p2eg.com) Phone: 323-816-4011

2 **PROJECT SCOPE**

Relacement of Existing Roof Top Equipment

3 **KEY PROJECT DATA / SPECIFICATIONS**

New (N) Unit(s)

Make	AC#	Model	Tonnage	Qty	EER	Weights (LBS)
LENNOX	1-3	See (a)	15.0	3	12.0	2,801
LENNOX	7	See (b)	7.5	1	NA	345
				To	tal Weight:	8,748

(a) LGT180H4M-G 15T CONF E=12.0 (2,351#)

Curb Adapter

(b) EL090XCSST1G AC/7.5TON/460-3 (345#)

AC 1-3 AC / YK05 / LN03 (450#)

Existing (E) Unit(s)

Make	AC#	Model	Tonnage	Qty	EER	Weights (LBS)
YORK	1-3	See (f)	15.0	3	10.1	2,351
TRANE	7	See (g)	7.5	1	NA	345
				То	tal Weight:	7,398

(f) DJ180N24S4VFH2E (15T) (2,351#)

(g) TTA090A400DA (7.5T) (345#) Total Weight (N) RTUs (LBS): 8,748 7,398 Total Weight (E) RTUs (LBS): 1,350 Total Additional Weight (LBS):

PROJECT NAME: TRACTOR SUPPLY NO. 1886

STORE NO: #1886 PUYALLUP, WA

4 <u>JURISDITIONAL INFORMATION</u>

Local Jurisdiction (City or County):	PUYALLUP, WA 9837
---	-------------------

Enforced Code Used: ASCE 7-16/7-22 2021 IBC

Seismic Design Information:

Eq. 12.8-2 Seismic Coefficient Force Factor, Cs: **0.170** G

Seismic Design Category:

Response Modification Factor, Rp:

Building Site Class:

D-Default

6.0

D

Wind Design Information:

Basic Wind Speed (3-Second Gust): 104 MPH

Wind Exposure Type: C

Horizontal Wind Pressure: 29.72 psf (RTU)
Vertical Wind Pressure: 28.66 psf (RTU)

Check Seismic Response Coefficient:

S1 > 0.6G Seismic Coefficient Force Factor, C_{s1} :

 C_{s1} < C_{s} 1 [Satisfactory]

Cs Must Be Greater Than 0.01

0.01 < Cs 1 [Satisfactory]

Eq. 12.8-3 Cs < Cs $(T <= T_I)$

 $C_{ii} =$ 1.400 Coefficient for Upper Limit on Calc Period **28.0** ft Structure Median Height $h_n =$ 0.020 Values of ~Period Parameters $C_t =$ 0.750 Values of ~Period Parameters $\mathbf{x} =$ Long-period transition Period (California) $T_L =$ 16 The ~ Fundamental Period of Structure $T_a =$ 0.243 The Fundamental Period of Structure T < 0.341 2.500 The response modification factor R = $Cs (T \leq TL)$ $Cs (T \leq TL) =$ 0.585

 $Cs (T \le TL) > Cs$ 1 [Satisfactory]

PROJECT NAME: TRACTOR SUPPLY NO. 1886 **STORE NO:** #1886 PUYALLUP, WA

PROJECT NAME: STORE NO:

TRACTOR SUPPLY NO. 1886 #1886 PUYALLUP, WA

Basic Parameters

Name	Value	Description
SS	1.278	MCE _R ground motion (period=0.2s)
S ₁	0.44	MCE _R ground motion (period=1.0s)
S _{MS}	1.533	Site-modified spectral acceleration value
S _{M1}	* null	Site-modified spectral acceleration value
S _{DS}	1.022	Numeric seismic design value at 0.2s SA
S _{D1}	* null	Numeric seismic design value at 1.0s SA

^{*} See Section 11.4.8

Additional Information

Name	Value	Description
SDC	* null	Seismic design category
Fa	1.2	Site amplification factor at 0.2s
F _v	* null	Site amplification factor at 1.0s
CRS	0.914	Coefficient of risk (0.2s)
CR ₁	0.899	Coefficient of risk (1.0s)
PGA	0.5	MCE _G peak ground acceleration
F _{PGA}	1.2	Site amplification factor at PGA
PGA_{M}	0.6	Site modified peak ground acceleration
T_L	6	Long-period transition period (s)
SsRT	1.278	Probabilistic risk-targeted ground motion (0.2s)
SsUH	1.398	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	1.5	Factored deterministic acceleration value (0.2s)
S1RT	0.44	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.489	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	0.6	Factored deterministic acceleration value (1.0s)
PGAd	0.5	Factored deterministic acceleration value (PGA)

^{*} See Section 11.4.8

PROJECT NAME: TRACTOR SUPPLY NO. 1886 STORE NO:

#1886 PUYALLUP, WA

STRUCTURAL ENGINEERING CALCULATIONS 6

DESIGN LOADS AND VALUES

GRAVITY LO	OADS		1	ABBREVIATIONS	
AC#	1-3	7			
$\mathrm{DL}_{\mathrm{roof}}$ =	20	20 psf	((N) = New	
$LL_{roof} =$	20	20 psf	((E) = Existing	
$SL_{roof} =$	20	20 psf	(OK = 1	[Satisfactory]
			1	NG = 0 (No Good)	[Unsatisfactory]
ROOF TOP U	NIT WIND P	ARAMETER	<u>2S</u>		
$V_{wind} =$	104	104	1	Design Wind Velocity,	MPH
$\mathbf{I}_{\mathrm{Factor}} =$	1.0	1.0]	Importance Factor Secti	on 13.1.3
C				Wind Exposure	
$K_d =$	0.85	0.85		Directional Coefficient	
$\mathbf{K}_{\mathrm{zt}} =$	1.00	1.00	-	Topographic Factor Sec	tion 26.8.2
$K_z =$	0.90	0.90	•	Velocity Pressure Expos	sure Coeff. T29.3-1
$GC_r =$	1.40	1.00	(Gust Effect Factor Secti	on 26.9.1 (RTU Horiz)
$GC_r =$	1.35	1.00	(Gust Effect Factor Secti	on 26.9.1 (RTU Vert)
WIND EQUAT					
$q_z =$	21.23	21.23 <i>psf</i>		Velocity Pressure	
$F_z =$	29.72	21.23 <i>psf</i>		Wind Pressure	
$WL_{RTU-H} =$	29.72	21.23 <i>psf</i>		Wind Pressure - (RTU I	·
$WL_{RTU-V} =$	28.66	21.23 <i>psf</i>	•	Wind Pressure - (RTU V	Vert)
anva. 47a n. n					
SEISMIC PAR		1.022		D ' C . 1 . 1 . 1	
$S_{DS} =$	1.022	1.022		Design Spectral Analysis	
$F_a =$	1.2			Seismic Design Categot	•
$R_p =$	6.0	6.0		Response Modification	Factor
$A_p =$	2.5	2.5		Amplification Factor	
$I_{Factor} =$	1.0	1.0]	Importance Factor	
a	2021 TD	a			
Seismic Loadi				DTU'41	
Fpmax =	1,201	176 lbf		RTU unit only	
Fpmax =	1,431	176 lbf		RTU + curb adapter	on[v)
FpmaxASD =	841	123 <i>lbf</i>	Į.	FpmaxASD (RTU unit o	omy)

FpmaxASD =

1,002

123 *lbf*

FpmaxASD (RTU + curb adapter)

PROJECT NAME: TRACTOR SUPPLY NO. 1886 **STORE NO:** #1886 PUYALLUP, WA

7 ROOF TOP UNIT (S) DESIGN DATA

RTUs DESIGN DIMENSIONS AND LOAD DIAGRAM:

Note: The pictures show here are not an actual RTU. It's used to help performing calculation only.

RTU 1 DESIGN DATA

KIUIDES	IUN DATA			
AC#	1-3	7		
$H_{curb} =$	12.00	12.00	in	RTU Curb Height
H =	4.521	4.063	ft	RTU Height
Hcm =	2.260	2.031	ft	Height to center of mass
$L_{RTU1} =$	11.052	4.032	ft	RTU Length
$D_{RTU1} =$	7.593	3.323	ft	RTU Depth
$\mathbf{W}_{\mathrm{RTU1}} =$	2,801	345	lbf	RTU Weight
Wtmax =	636	97	lbf	Maximum corner weight
Wtmin =	435	66	lbf	Minimum corner weight

Curb Loading

Transverse:

$C_{SEISMIC} =$	1,752	297 <i>lbf</i>	Compression SEISMIC
$T_{SEISMIC} =$	-646	-97 <i>lbf</i>	Tension SEISMIC

^{---&}gt; Negative values indicate opposite load.

 $\begin{aligned} & \text{Compression}_{\text{SEISMIC}} = & = [\text{FpmaxASD*Hcm+2*(1+0.14S}_{DS})*Wtmax*wcurb]/wcurb} \\ & \text{Tension}_{\text{SFISMIC}} = & = [\text{FpmaxASD*Hcm-2*(0.6-0.14S}_{DS})*Wtmin*wcurb]/wcurb} \end{aligned}$

Longitudinal:

$C_{SEISMIC} =$	1,659	284 <i>lbf</i>	Compression SEISMIC
$T_{SEISMIC} =$	-442	-36 <i>lbf</i>	Tension SEISMIC

^{---&}gt; Negative values indicate opposite load.

 $\begin{aligned} \text{Compression}_{\text{SEISMIC}} = & = [\text{FpmaxASD*Hcm+2*(1+0.14*S}_{DS})*Wtmax*Lcurb]/Lcurb \\ & \text{Tension}_{\text{SEISMIC}} = & = [\text{FpmaxASD*Hcm-2*(0.6-0.14S}_{DS})*Wtmin*Lcurb]/Lcurb \end{aligned}$

TRACTOR SUPPLY NO. 1886 **PROJECT NAME:** STORE NO:

#1886 PUYALLUP, WA

Governing Reactions:

Transverse:

297 *lbf* Compression SEISMIC $C_{SEISMIC} =$ 1,752

Longitudinal:

 $C_{SEISMIC} =$ 1,659 284 *lbf* Compression SEISMIC

8 CHECK (E) JOISTS W/ GRAVITY INCREASES AND **TOTAL LOAD FOR (N) RTUs**

GRAVITY INCREASES CHECK PER THE 2021 IBC:

$\mathbf{W}_{ ext{RTU}} =$	2,35	<mark>1</mark> lbf	Weight of	f (E)RTU
$W_{increase} =$	45	0 <i>lbf</i>	Total Wei	ight of RTUs increase
$G_{increase} =$	0.19	1 <i>psf</i>	Gravity Ir	ncreases
$G_{allowable\ increase} =$	10.00	0 psf	Allowable	e Typ. (E) Building G _{increases}
$\%_{\text{increase}} =$	1.919	%	% G _{increase}	es
$G_{allowable\ increase}$	>	$G_{increase}$	1	[Satisfactory]
% increase	<	10.00%	1	[Satisfactory]

TRUSS TOTAL LOAD CHECK:

AC#	1-3	7	
$W_{dist load RTUs} =$	33.38	25.75	psf
$A_{tributar\ RTU} =$	83.92	13.40	s f
$W_{RTU} =$	2,801	345	lbf
$TL_{allowable} =$	467	467	plf
$L_{beam} =$	32.0	32.0	lf
$W_{allowable\ beam} =$	14,944	14,944	lbf
$\mathbf{W}_{ ext{allowable beam}}$	>	$\mathbf{W}_{\mathbf{RTU}}$	

Note: Refer to Beam Table

Distribution Load RTUs Tributary Area at RTUs **Gravity Weight RTUs** Allowable Total Load Truss Length of Beam Allowable Total Weight [Satisfactory] 1

(E) Open-Web Truss Joists (D28") 28K6 @ 4' OC TYP UON

7 (D28") 28K6 @ 4' OC TYP UON

RESULT: The (N) RTUs replacements are acceptable

1-3

PROJECT NAME: TRACTOR SUPPLY NO. 1886 STORE NO:

#1886 PUYALLUP, WA

9 **CHECK LIVE LOAD DEFLECTION:**

FOR JOIST OPEN WEB TRUSS (D28") 28K6 @ 4' OC TYP UON

 $\mathbf{E} =$ 29,000 *ksi*

Given (E) 32'-0" X 32'-0" bay. Joists spaced on 4'-0" centers

AC#	1-3	7	
$\mathrm{DL}_{\mathrm{roof}}$ =	20	20 psf	(Included the approximate
$LL_{roof} =$	20	20 <i>psf</i>	Joist weight)
$\mathrm{SL}_{\mathrm{roof}} =$	20	20 <i>psf</i>	
Total DL+LL+SL =	60	60 psf	
d =	28	28 in	Joist Depth
$L_1=$	32.0	32.0 ft	Top Span
$L_2=$	32.0	32.0 ft	Joist Span
N=	2	2	Number of actual joist spaces (N)
Spacing =	4	4 ft	Joists spacing on centers
Total Load =	240	240 plf	
Total Allowable Load =	467	467 <i>plf</i>	See Table 26K7/26K10 Truss
P =	14.94	14.944 <i>kips</i>	Allowable Concentrated load at
	14,944	14,944 <i>lbs</i>	top chord panel points
	4.200	1.000 10	
Total Live Load =	1,280	1,280 <i>plf</i>	Joist Span
I =	1,123	1,123 <i>in</i> ⁴	Joist Moment of Inertia
			$Ij = 26.767(W_{LL})(L^3)(10^{-6}),$
$D_{allowable} =$	2.13	2.13 in	Allowable deflection L/180
$D_{LL} =$	0.37	0.37 in	Live Load Deflection
$\mathbf{D}_{ ext{allowable beam}}$	$>$ \mathbf{D}_{1}	LL	1 [Satisfactory]

Summary: Live load deflection rarely governs because of the relatively small span-depth ratios of joist girders.

PROJECT NAME: STORE NO:

TRACTOR SUPPLY NO. 1886

#1886 PUYALLUP, WA

10 CHECK (E) JOISTS W/ (N) RTUs

AC#	1-3	7	
L =	32.00	32.00	f
$W_{trib} =$	4.0	4.0	j
N =	2	2	
$L_{RTU1} =$	11.052	4.032	
$D_{RTU1} =$	7.593	3.323	
$\mathbf{W}_{\mathrm{RTU1}} =$	2,801	345	
A =	5.0	0.0	
B =	12.59	3.32	

STRUCTURAL ANALYSIS

$A_{RTU1} =$	83.919	13.399ft^2	Area of RTU
$W_{RTU \text{ reduced}} =$	1,122.62	77.03 <i>lbf</i>	Reduced RTU Wt. From LL Subtracted
$P_{LL} =$	280.655	19.257 <i>lbf</i>	Point Load From RTU and LL
$w_{DL roof} =$	80.000	80.000 <i>lbf</i>	Roof DL
$W_{LL+SL\ roof} =$	160.000	160.000 <i>lbf</i>	Roof LL+SL
$w_{TL roof} =$	240.000	240.000 <i>lbf</i>	Roof Total Load
$M_{\text{max all roof}} =$	30,720	30,720 <i>lbf-ft</i>	Max Allowable Moment Roof Total Load
$M_{\text{manufacturer}} =$	100,500	100,500 <i>lbf-ft</i>	Max Allowable Moment (Manufacturer)
$\mathbf{M}_{\mathrm{actual}} =$	27,753	28,263 <i>lbf-ft</i>	Actual Moment (Calculated Enercalc)
$V_{\text{max all roof}} =$	3,840	3,840 <i>lbf</i>	Max Allowable Shear Roof Total Load
$V_{\text{manufacturer}} =$	8,500	8,500 <i>lbf</i>	Max Allowable Shear (Manufacturer)
$V_{actual} =$	3,573	3,606 <i>lbf</i>	Actual Shear (Calculated Enercale)

M _{actual} 27,753	< <	1.05*M _{max all} 32,256	1	[Satisfactory]
V _{actual} 3,573	< <	$1.05*V_{maxall}$ $4,032$	1	[Satisfactory]

RESULT:

The new M_{actual} and V_{actual} are less than the allowable M_{max} and V_{max} with the addition weight of the (N) RTU.

PROJECT NAME: STORE NO:

TRACTOR SUPPLY NO. 1886 #1886 PUYALLUP, WA

11 RTU(S) LATERAL ANALYSIS

RTU 1 DESIGN DATA (WORST CASE)

AC#	1-3	7	
H =	4.52	4.06 ft	RTU Height
$H_{curb} =$	12.00	12.00 <i>in</i>	RTU Curb Height
$L_{RTU1} =$	11.052	4.032 <i>ft</i>	RTU Length
$D_{RTU1} =$	7.593	3.323 <i>ft</i>	RTU Depth
$\mathbf{W}_{\mathrm{RTU1}} =$	2,801	345 <i>lbf</i>	RTU Weight
h =	28.0	28.0 ft	Roof Height of Structure
z =	28.0	28.0 ft	Height of Attachment
$F_{p \text{ calc}} =$	1,431	176 <i>lbf</i>	Seismic Design Force (Eq.13.3-1)

F_n MINIMUM AND MAXIMUM

$F_{p max} =$	4,58	564 <i>lbf</i>	F _p Maxim	um (Eq.13.3-2)
$F_{p\;min} =$	85	59 106 <i>lbf</i>	F _p Minimu	ım (Eq. 13.3-3)
_				
Fp max	>	Fp calc	1	[Satisfactory]
4,580	>	1,431		
Fp min	<	Fp calc	1	[Satisfactory]
859	<	1,431		

[Fp Calc Otherwise]

$$F_p = F_{p \text{ calc}} =$$
 1,431 176 *lbf* Seismic Design Force

$\frac{\text{LOAD COMBINATION (0.7E-0.6DL)}}{\text{F}_{\text{seismic}}} = 1002 \qquad 123 \text{ lbf}$

$\frac{\text{LOAD COMBINATION (0.6E-0.6DL)}}{\text{F}_{\text{wind}}} = 612 \qquad 172 \, \textit{lbf}$

MAXIMUM DESIGN FORCE

$$F_{lateral} = 1002$$
 172 *lbf*

PROJECT NAME: STORE NO:

TRACTOR SUPPLY NO. 1886 #1886 PUYALLUP, WA

12 RTU(S) DESIGN DIMENSIONS AND LOAD DIAGRAM

OVERTURNING FORCES

AC#	1-3	7
$M_{OT} =$	2,765.71	435.30
$M_{res} =$	15,477.86	695.46
$T_{OT} =$	-1,150.25	-64.53
$T_{OT dist} =$	-151.48	-19.42

UPLIFT FORCES

$F_{uplift seis} =$	572.52	70.52 <i>lbf</i>	Uplift Force from Sesmic
$F_{uplift \ wind} =$	2,494.14	284.44 <i>lbf</i>	Uplift Force from Wind
$F_{uplift} =$	2,494.14	284.44 <i>lbf</i>	Design Uplift Force from Uplift
$T_{ m uplift} =$	813.54	77.44 <i>lbf</i>	Total Tension Force from Uplift
$T_{uplift dist} =$	21.82	5.26 <i>lb/f</i>	Distributed Tension Force from Uplift

SHEAR FORCES

$V_{max} = F_{lateral} =$	1,001.92	171.97 <i>lbf</i>	Total Shear Force
$V_{\text{max dist}} =$	26.87	11.69 <i>lb/f</i>	Distributed Shear Force

PROJECT NAME: STORE NO: TRACTOR SUPPLY NO. 1886

#1886 PUYALLUP, WA

KCS JOIST LOAD TABLE

(U.S. CUSTOMARY)

JOIST DESIGNATION	DEPTH (inches)	MOMENT CAPACITY* (inch-kips)	SHEAR CAPACITY* (lbs)	APPROX. WEIGHT** (lbs/ft)	GROSS MOMENT OF INERTIA (in^4)	BRIDG. TABLE SECT. NO.
24KCS2	24	534	6300	10.0	232	6
24KCS3	24	720	7200	12.5	301	9
24KCS4	24	1108	8400	16.5	453	12
24KCS5	24	1448	8900	20.5	584	12
26KCS2	26	580	6600	10.0	274	6
26KCS3	26	783	7800	12.5	355	9
26KCS4	26	1206	8500	16.5	536	12
26KCS5	26	1576	9200	20.5	691	12
28KCS2	28	626	6900	10.5	320	6
28KCS3	28	846	8000	12.5	414	9
28KCS4	28	1303	8500	16.5	626	12
28KCS5	28	1704	9200	20.5	808	12
30KCS3	30	908	8000	13.0	478	9
30KCS4	30	1400	8500	16.5	722	12
30KCS5	30	1833	9200	21.0	934	12

^{*}MAXIMUM UNIFORMLY DISTRIBUTED LOAD CAPACITY IS 550 PLF AND SINGLE CONCENTRATED LOAD CANNOT EXCEED SHEAR CAPACITY.

**DOES NOT INCLUDE ACCESSORIES

13 <u>Installation of Hold Down Brackets</u>

ALLOWABLE SCREW CAPACITIES (TEK SCREW)

	AC#	1-3	7		
	Tek Screw	#14-16 Ga	#14-16 Ga		Tek Screw - Metal Ga
T_a	llowable screw =	180	180	lbf	Allowable Tension Capacity of #10 Tek Sc
V_a	llowable screw =	424	424	lbf	Allowable Shear Capacity of #10 Tek Scre
	$S_{\text{weld spa}} =$	12	12	in	Spacing of Screws Around Perimeter

UPLIFT FORCES

$T_{uplift} =$	813.54	77.44 <i>lbf</i>	Total Tension Force from Uplift
$T_{uplift\;dist} =$	21.82	5.26 <i>lb/f</i>	Distributed Tension Force from Uplift

SHEAR FORCES

$V_{max} = F_{lateral} =$	1,001.92	171.97 <i>lbf</i>	Total Shear Force
$V_{\text{max dist}} =$	26.87	11.69 <i>lb/f</i>	Distributed Shear Force

PROJECT NAME: STORE NO: TRACTOR SUPPLY NO. 1886 #1886 PUYALLUP, WA

EQUATIONS (Determine No. Screws to (N) Curb Adaptor)

AC#	1-3	7		
$T_{max} =$	21.82	5.26	lb/f	<i>lb/f</i> Maximum Tension f
$V_{max} =$	26.87	11.69	lb/f	<i>lb/f</i> Maximun Shear
$S_{req tension} =$	99.01	410.30	in	in Spacing of Screw du
$S_{req shear} =$	189.37	435.22	in	in Spacing of Screw du
T =	24	11		Total screws require
No. of Screw $(L) =$	6	0		Long Side (Adjusted
No. of Screw $(S) =$	2	0		Short Side (Adjusted
No. of Screw $(C) =$	2	2		Corner Anchors
W/Screw (uplift) =	147	180	lbf	<i>lbf</i> Tension per screw
V/Screw =	42	16	lbf	<i>lbf</i> Shear per screw

PROJECT NAME: TRACTOR SUPPLY NO. 1886 **STORE NO:** #1886 PUYALLUP, WA

EQUATIONS (Determine No. of Hold Down (No. of Clips)

Tek Screw #14-16 Ga #14-16 Ga

Tek Screw - Metal Ga

AC#	1-3	7			
$T_{allowable\ screw} =$	180	180	lbf/screw	Allowable	Tension Capacity of Tek Screw
$V_{allowable\ screw} =$	424	424	lbf/screw	Allowable	Shear Capacity of Tek Screw
UPLIFT CLIPS	(T):			Screws/Clip	
Uplift =	814	77	lbf	4	@2" OC
Total No. Clip =	3	0		Long Side	(Adjusted)
Total No. Clip =	2	0	per side	Each side	
SHORTSIDE CLIE	PS (V):				
Shear =	1,002	172	lbf/Side	4	@2" OC

No. Clip =

0 *per side* Short Side (Adjusted)

PROJECT NAME:

STORE NO:

TRACTOR SUPPLY NO. 1886

#1886 PUYALLUP, WA

Connection Unit to Curb Clip

t1 =	0.0713 <i>in</i>	
t2 =	0.1017 <i>in</i>	Unit Base Rail Thickness
d =	0.1900 <i>in</i>	Screw Diameter
t2/t1 =	1.4	
$\Omega =$	3.0	TEK Screw
Fu1 =	65 <i>ksi</i>	
Fu2 =	65 <i>ksi</i>	
dw =	0.375 <i>in</i>	Nom. Washer Diameter

Check Block shear rupture: O.K.

Thinnest part = 0.0713 AISI BSR applies

Fy = 50 ksi

Agv = 0.463

$$\Omega$$
 = 2.22 Bolt/Screw Connection

Anv = 0.443 in²

Ant = 0.042 in²

Rn1 = 16.62 k

Rn2 = 20.01 k

Rn/ Ω = 9.01 k

Rn1 16.62 < 20.01 Rn2

BSR OK

(AISI Sect. E5.3)

Proscap Engineering & Energy Group

TRACTOR SUPPLY NO. 1886 **PROJECT NAME: STORE NO:**

#1886 PUYALLUP, WA

ANCHORAGE DETAILS TO ROOF

HOLD DOWN DETAIL

Contractor to install 4 hold down brackets. 2 Brackets at each side Note: of the (E)Curb.

14 **SUMMARY:**

NOT TO SCALE

BASED ON THE ANALYSIS, THE NEW ROOF CURB ADAPTERS HAVE ADEQUATE CAPACITY TO SUPPORT THE NEW RTUS.

15 **Line of Sight Calcs**

SUMMARY:

The (N) RTUs will not be visible.

PROJECT NAME: STORE NO:

TRACTOR SUPPLY NO. 1886 #1886 PUYALLUP, WA

16 <u>Design Aids</u>

		:3201 lbs)		Pull-Over	127	<u>19</u>	211	318	415	521	929	936	1,067	752	948	1,067	1,067
	1," Screw	8lbs, Pts	0.250" dia, 0.409" Head	Pull:Out	#	99	23	9#	144	88	227	324	396	197	328	468	572
		(Pss=304	0.250"	Shear	98		127	203	302	424	009	1,016	1,016	613	998	1,016	1,016
		2325 lbs)	Head	Pull-Over	99	120	175	265	345	433	545	775	775	625	775	775	775
	#12 Screw	lbs, Pts=	0.216" dia, 0.340" Head	Pull-Out Pull-Over	88	25	83	98	124	156	96	780	342	225	284	405	494
		(Pss=233)	0.216"	Shear	ಜ	102	138	88	780	394	292	111	111	699	111	111	111
SQI		(1158 lbs)	Head	Pull-Over	Q	159	175	592	345	386	386	386	386	386	386	386	386
Allowable Screw Connection Capacity (lbs)	#10 Screw	(Pss=1278 lbs, Pts = 586 lbs) (Pss=1644 lbs, Pts = 1158 lbs) (Pss=2330 lbs, Pts = 2325 lbs) (Pss=3048 lbs, Pts = 3201 lbs)	0.190" dia, 0.340" Head	Pull-Out	æ	22	92	84	109	137	173	246	301	198	249	326	386
tion Ca		(Pss=164	0100	Shear	25	88	Ħ	111	263	370	523	248	548	534	948	548	548
onnec.		:586 lbs)	Head	Pull-Over	\$	127	140	199	195	195	195	195	195	195	195	195	195
)crew (#8 Screw	8 lbs, Pts	0.164" dia, 0.272" Head	Pull-Out Pull-Over	53	43	48	72	94	#	149	195	195	171	195	195	195
vable S		(Pss=127	0.164"	Shear	89	8	103	164	244	344	426	426	426	426	426	426	426
₩ W		419 lbs)	Head	Pull-Over	\$	127	140	140	140	140	140	46	140	140	140	140	140
	#6 Screw	(Pss = 643 lbs, Pts = 419 lbs)	0.138" dia, 0.272" Head	Pull-Out	74	37	40	99	6/	9	125	140	140	140	140	140	140
		(Pss=64	0.138"	Shear	44	8.	38	15 2	214	214	214	214	214	214	214	214	214
		고	(ksi)		æ	33	33	45	45	45	45	45	45	99	99	99	65
		<u>ج</u> ج 1	(ks)		æ	æ	æ	æ	æ	æ	æ	æ	æ	S	S	S	S
		Design	Nickness		0.0188	0.0283	0.0312	0.0346	0.0451	0.0566	0.0713	0.1017	0.1242	0.0566	0.0713	0.1017	0.1242
		Thickness	(Wils)		e	11	30	33	43	25	88	6	#	24	88	97	#

PROJECT NAME: STORE NO:

TRACTOR SUPPLY NO. 1886 #1886 PUYALLUP, WA

Based on a Maximum Allowable Tensile Stress of 30,000 psi

STANDARD LOAD TABLE / OPEN WEB STEEL JOISTS, K-SERIES

	24K7 24K8	8 24K9	24K10	24K12	26K5	26K6	26K7	26K8	26K9	26K10	26K12
	24 24	24	24	24	26	26	26	26	26	26	26
	10.1	12.0	13.1	16.0	8.8	10.6	10.9	12.1	12.2	13.8	16.6
ı	<u> </u>										
4,	920 550	0 550	920	920	542	920	920	920	920	220	920
4	499 499	9 499	499	499	535	541	541	541	541	541	541
5	920 920	0 550	920	220	505	547	920	920	920	220	920
4	479 479	9 479	479	479	477	519	522	522	522	522	522
Š	521 550	0 550	920	220	466	208	550	220	920	920	920
436	96 456	6 456	456	456	427	464	501	501	501	501	501
485	536	9	920	220	434	473	527	920	920	220	920
392	2 429		436	436	384	417	463	479	479	479	479
4	453 500	0 544	920	220	405	441	492	544	220	220	920
353	3 387	7 419	422	422	346	377	417	457	459	459	459
7	424 468	8 510	099	099	379	413	460	609	099	920	920
3	320 350	0 379	410	410	314	341	378	413	444	444	444
3	397 439		549	549	356	387	432	477	519	549	549
7			393	393	285	309	343	375	407	431	431
3	373 413	3 449	532	532	334	364	406	448	488	532	532

PROJECT NAME: TRACTOR SUPPLY NO. 1886 **STORE NO:** #1886 PUYALLUP, WA

EnerCalc Output AC# 1-3 (D28") 28K6 @ 4' OC TYP UON **General Beam Analysis** 32.0 ft Calculations 2D 3D Diagram Summary Results Max. Combinations M-V-D Summary Support Reactions **Maximum Moment** 27.753 k-ft Load Combination +D+0.750L+0.750S Location of maximum on span 16,480 ft Span # where maximum occurs Span #1 **Maximum Shear** 3.573 k Load Combination +D+0.750L+0.750S Location of maximum on span 32,000 ft Span # where maximum occurs Span #1 **Deflection Ratios** Transient Load Deflection Max Downward 0.109 in Ratio = 3528 >=0 S Only Max Upward 0.001 in Ratio = 347462 >=0 L Only Total Deflection Max Downward 0.233 in Ratio = 1650 >=0 Overall MAXimum Envelope 0.001 in Max Upward Ratio = 413702 >=0 +0.60D Extreme Reactions (service, kips) D <u>Lr</u> W Ē Н Support #1 0.97 1.46 1.51 Support #2 1.35 1.19 1.78