

MEMORANDUM

TO:	BRIAN JOHNSON, WATER SYSTEM
	SPECIALIST
FROM:	KERRI SIDEBOTTOM, P.E.
DATE:	MAY 14, 2024
SUBJECT:	304 2 ND STREET NE, FIRE FLOW
	AVAILABILITY
	CITY OF PUYALLUP, PIERCE COUNTY,
	WASHINGTON
	G&O #21415.20

Per your request, I have analyzed the available fire flow at the proposed McDonald's development at 304 2nd Street NE, located in the central part of the City's water service area. The Developer has proposed to install a new dead-end 8-inch water main extending from the existing 12-inch main on 2nd Street NE to provide water to the site, which has been analyzed in this memo. The setup of the hydraulic model and the assumptions used to determine the static pressure and available fire flow are noted as follows.

- The available fire flows and pressures are measured at two nodes corresponding to one existing hydrant and one proposed hydrant within and near to the development, shown in the attached figure.
- Water system demands are based on projected 2038 demands and reservoirs are depleted of fire suppression and equalizing storage, as established in the *2019 Water System Plan* (WSP), approved by the Department of Health (DOH). The City's water model was updated in 2021 to reflect additional system improvements since the WSP was developed.
- All pump stations are idle, and the Salmon Springs source is operating at 1,100 gallons per minute (gpm).

The development is located in Zone 1, which is supplied by Maplewood Springs and the 15th Avenue SE Reservoirs. The system was modeled with the proposed piping indicated on the attached figure.

The available pressure under 2038 peak hour demands at the hydrants is included in Table 1.

May 14, 2024 Page 2

TABLE 1

Peak Hour Pressure

Node	Hydrant	Elevation, feet	Peak Hour Pressure, psi
J1330	NE002	44	51
J2284	Proposed	45	51

Available fire flow was modeled at one existing hydrant and at one proposed hydrant. The existing hydrant is located on the 12-inch pipe along 2nd Street NE, while the proposed hydrant will be located on a dead-end, 8-inch main extending from the 12-inch pipe. The results of this modeling are included in Table 2. The modeled fire flow is available at either hydrant individually, but not simultaneously.

TABLE 2

Modeled Fire Flow Availability

			Residual Pressure	Minimum System
N7 1	TT I (Modeled Fire	at Modeled Fire	Pressure at Available
Node	Hydrant	Flow, gpm	Flow, psi	Fire Flow, psi
J1330	NE002	6,870 ⁽¹⁾	20	20
J2284	Proposed	$1,560^{(2)}$	39	28

(1) Limited by minimum system-wide pressure at service locations of 20 psi.

(2) Limited by maximum system-wide velocity of 10 feet per second (fps).

Fire flow to the proposed hydrant is limited by the 10-fps maximum velocity through the proposed 8-inch pipe, while flow to the existing hydrant is limited by the 20-psi minimum pressure.

It should be noted that the dead-end, 8-inch main within the proposed site can only provide 1,560 gpm, due to the City's 10-fps velocity limitation considered for the fire flow analysis. Therefore, if 1,500 gpm is required at the hydrant located on a dead-end main, there is essentially no additional flow available for the sprinkler system supplied by the same dead-end main, unless a larger pipe is installed.

The Department of Health and City Standards for water distribution systems are to meet the peak hourly demand of the system while providing a minimum pressure of 30 psi, system-wide. Under peak daily demand with a fire flow, the system is designed to maintain a minimum pressure of 20-psi, system-wide. Although the peak hourly demand

May 14, 2024 Page 3

pressure may currently be higher than these standards, the Developer must recognize that the City may not provide pressure higher than 30 psi in the future. The flows and pressures determined in this memo are based on the approximate hydrant elevation at ground level. The Developer may design their sprinkler system for whatever pressure they wish; however, they must recognize and be responsible for conditions when the pressure may be less than currently exists.

KS/sr

Hydraulic Overview	Job Number: B080124 Report Description: Light Hazar
Job	Report Booonpaon. Eight hazare
Job Number B080124	Reliance Fire Protection
JOD Name: MCDONALDS PUYALLUP REMODEL	Phone FAX 206-682-6636
Address 1 304 2nd STREET NE. PUYALLUP. WA 98372	State Certification/License Number RELIAFP102L1
Address 2	
Address 3	Jos Sito/Building MCDONALDS PUYALLUP REMODEL
System	
Density 0.100gpm/ft²	Area of Application 1500.00ft ² (Actual 1568.10ft ²)
Most Demanding Sprinkler Data 5.6 K-Factor 14.82 at 7.000	Hose Streams 250.00
Coverage Per Sprinkler 121.00ft ²	Number Of Sprinklers Calculated 19
System Pressure Demand 42 480	System Flow Demand 337.38
Total Demand 587 38 @ 42 480	Pressure Result +6 551 (13.4%)
Supplies	Check Point Gauges
Node Name Flow(gpm) Hose Flow(gpm) Static(psi) Residual(psi)	Identifier Pressure(psi) K-Factor(K) Flow(qpm)
	Water Supply at Node 1 (1560.00, 250.00, 51.000, 39.000)
	400
S at Saches at the a to define a state of the sectors as at 1990 THE SACHES AT THE OF SOME POTATION OF SOME	90 90 90 90 90 90 90 90 90 90

Summary Of Outflowing Devices

						Report Descri	риоп. сідпі пазаги
		Actual Flow	Minimum Flow	K-Factor	Pressure		
	Device	(gpm)	(gpm)	(K)	(psi)		
Sprinkler	415	20.45	12.10	5.6	13.334		
Sprinkler	430	19.69	12.10	5.6	12.357		
Sprinkler	447	19.33	12.10	5.6	11.916		
Sprinkler	475	17.35	12.10	5.6	9.601		
Sprinkler	515	19.15	12.10	5.6	11.699		
Sprinkler	516	19.18	12.10	5.6	11.727		
Sprinkler	517	19.38	12.10	5.6	11.973		
Sprinkler	532	18.01	12.10	5.6	10.347		
Sprinkler	533	18.03	12.10	5.6	10.365		
Sprinkler	534	18.22	12.10	5.6	10.583		
Sprinkler	552	17.34	12.10	5.6	9.588		
Sprinkler	553	17.35	12.10	5.6	9.600		
Sprinkler	554	17.53	12.10	5.6	9.802		
Sprinkler	570	17.03	12.10	5.6	9.249		
Sprinkler	571	17.04	12.10	5.6	9.255		
Sprinkler	572	17.22	12.10	5.6	9.450		
🖒 Sprinkler	586	14.82	12.10	5.6	7.000		
Sprinkler	587	15.04	12.10	5.6	7.216		
Sprinkler	588	15.23	12.10	5.6	7.398		

➡ Most Demanding Sprinkler Data

Hydrau	lic Analysis	5				Job Ni Roport Description	umber: B080124
Pipe Type	Diameter	Flow	Velocity	HWC	Friction Loss	Length	
Downstream	Elevation	Discharge	K-Factor	Pt Pn	Fittings	Eq. Length	Summary
Upstream						Total Length	
e • • • • • Route 1	••••				0.074700		
BL 586	1.0490	14.82	5.50	7 000	Sprinkler	1'-/½ 7'-0	Pt 0.644
374	15'-6	14.02	5.0	7.911	E(2'-0), PO(5'-0)	8'-7½	Pv 0.207
BL	1.6820	14.82	2.14	120	0.007495	9'-81/2	Pf 0.110
374	15'-6			7.911	2E(2'-51/2)	4'-11½	Pe 1.228
570	12'-8			9.249	0.000074	14'-8	Pv
BL 570	1.6820	31.85	4.60	0.240	0.030871 Sprinkler	11'-0	Pf 0.340
552	12'-8	17.05	5.0	9.588	oprinker	11'-0	Pv
BL	1.6820	49.19	7.10	120	0.068994	11'-0	Pf 0.759
552	12'-8	17.34	5.6	9.588	Sprinkler		Pe
532	12'-8			10.347	0.400000	11'-0	Pv
BL	1.6820	67.20	9.70	120	0.122893	11'-0	Pf 1.352
515	12-8	18.01	0.0	10.347	Sprinkler	11'-0	Pe
BI	1 6820	86.36	12 47	120	0.195442	3'-10	Pf 3 169
515	12'-8	19.15	5.6	11.699	Sprinkler,	12'-4½	Pe 0.723
136	11'-0			15.591	E(2'-5½), PO(9'-11)	16'-2½	Pv
CM	3.2600	86.36	3.32	120	0.007788	6'-0	Pf 0.047
136	11'-0			15.591		6' 0	Pe
139 CM	3 2600	172 00	6.65	120	0.028160	11'-0	Pf 0.310
139	11'-0	86.64	0.00	15.638	Flow (g) from Route 2		Pe
144	11'-0			15.947		11'-0	Pv
СМ	3.2600	260.57	10.02	120	0.060080	11'-0	Pf 0.661
144	11'-0	87.57		15.947	Flow (q) from Route 3	1410	Pe
150 CM	2 2600	227.20	12.07	16.608	0.096897	11-0	PV Df 12.092
150	<u> </u>	76 82	12.97	16 608	Flow (g) from Route 4	48'-41/2	Pe 3468
4	3'-0	10.02		32.158	fT(20'-2), 3fE(9'-5)	124'-8	Pv
СМ	4.2600	337.38	7.59	120	0.026330	2'-0	Pf 5.185
4	3'-0			32.158	BFP(-5.132)		Pe 0.867
3	1'-0	007.00	7.74	38.210	0.000700	2'-0	Pv
UG 3	4.2200	337.38	1.74	<u>140</u> 38 210	2E(16'-8 ¹ ⁄ ₂) PIV(3'-4)	82'-5 36'-9'/	Pt 2.4/1
2	-3'-0			42.415	22(10 0/2), 110(0 4)	119'-2½	Pv
UG	8.3900	337.38	1.96	140	0.000730	51'-0	Pf 0.064
2	-3'-0			42.415	GV(6'-9½), S, E(30'-6½)	37'-4	Pe
1	-3'-0	050.00		42.480		88'-4	Pv
		250.00			Hose Allowance At Source		
1		587.38					
Deute 2							
	1.0400	15.04	5 59	120	0.076829	0' 71/	Df 0.421
587	16'-11/2	15.04	5.6	7.216	Sprinkler.		Pe 0.267
375	15'-6			7.914	PO(5'-0)	5'-7½	Pv
BL	1.6820	15.04	2.17	120	0.007708	9'-8½	Pf 0.113
375	15'-6			7.914	2E(2'-51/2)	4'-11½	Pe 1.228
571	12'-8	22.00	4.00	9.255	0.031280	14'-8	
571	1.6820	32.08	4.63	9 255	Sprinkler	11'-0	Po 0.344
553	12'-8	17.04	5.0	9.600	oprinker	11'-0	Pv
BL	1.6820	49.43	7.14	120	0.069624	11'-0	Pf 0.766
553	12'-8	17.35	5.6	9.600	Sprinkler		Pe
533	12'-8			10.365		11'-0	Pv
BL	1.6820	67.46	9.74	120	0.123768	11'-0	Pf 1.361
516	12-0	10.05	5.0	10.305	Spilikiei	11'-0	Pe
BI	1 6820	86 64	12 51	120	0.196619	3'-10	Pf 3 188
516	12'-8	19.18	5.6	11.727	Sprinkler,	12'-4½	Pe 0.723
139	11'-0			15.638	E(2'-5½), PO(9'-11)	16'-2½	Pv
e • • • • • Route 3	••••				0.07000 /		
BL	1.0490	15.23	5.65	120	0.078621	0'-7½	Pf 0.442
376	10-1/2 15'-6	10.23	0.0	1.590 8 106	PO(5'-0)	5'-0 5' 71/	PV
BL	1.6820	15 23	2,20	120	0.007888	<u> </u>	Pf 0.116
376	15'-6			8.106	2E(2'-5½)	4'-11½	Pe 1.228
572	12'-8			9.450	· · · ·	14'-8	Pv
BL	1.6820	32.45	4.68	120	0.031955	11'-0	Pf 0.352
572	12'-8	17.22	5.6	9.450	Sprinkier	141.0	Pe
004	i∠-ŏ			9.0UZ		11-0	r v

Pipe Type	Diameter	Flow	Velocity	HWC		Friction Lo	SS		Length	Pre	ssure
Downstream Upstream	m Elevation	Discharge	K-Factor	Pt	Pn	Fittings			Eq. Length Total Length	Sur	nmary
BL	1.6820	49.98	7.22	120		0.071061			11'-0	Pf	0.782
554	12'-8	17.53	5.6	9.802		Sprinkler				Pe	
534	12'-8			10.583					11'-0	Ρv	
BL	1.6820	68.20	9.85	120		0.126283			11'-0	Pf	1.389
534	12'-8	18.22	5.6	10.583		Sprinkler			7	Pe	
517	12'-8			11.973					11'-0	Ρv	
BL	1.6820	87.57	12.64	120		0.200572			3'-10	Pf	3.252
517	12'-8	19.38	5.6	11.973		Sprinkler,			12'-4½	Pe	0.723
144	11'-0			15.947		E(2'-5½), P	O(9'-11)		16'-2½	Ρv	
👄 • • • • Ro	ute 4 • • • • •								·		
BL	1.0490	17.35	6.44	120		0.100062			0'-7½	Pf	0.562
475	16'-1½	17.35	5.6	9.601		Sprinkler,			5'-0	Pe	0.267
359	15'-6			10.430		PO(5'-0)			5'-7½	Ρv	
BL	1.6820	17.35	2.51	120		0.010039			20'-8½	Pf	0.258
359	15'-6			10.430		2E(2'-51/2)			4'-11½	Pe	1.228
447	12'-8			11.916					25'-8	Ρv	
BL	1.6820	36.68	5.30	120		0.040099			11'-0	Pf	0.441
447	12'-8	19.33	5.6	11.916		Sprinkler			1	Pe	
430	12'-8			12.357					11'-0	Pv	
BL	1.6820	56.37	8.14	120		0.088776			11'-0	Pf	0.977
430	12'-8	19.69	5.6	12.357		Sprinkler			1	Pe	
415	12'-8			13.334					11'-0	Ρv	
BL	1.6820	76.82	11.09	120		0.157389			3'-10	Pf	2.552
415	12'-8	20.45	5.6	13.334		Sprinkler,			12'-4½	Pe	0.723
150	11'-0			16.608		E(2'-5½), P	O(9'-11)		16'-2½	Ρv	
Equivalent Pi	pe Lengths of Valves ar	nd Fittings (C=120	only)		C Valu	e Multiplier					
(_	Actual Inside	Diameter	4.87	ector	Value	e Of C	100	130	140		150
	Schedule 40 Steel Pip	be Inside Diameter	/ -''	actor	Multip	plying Factor	0.713	1.16	1.33		1.51

Hydraulic Analysis

Job Number: B080124

it z K		· · · · · · · · · · · · · · · · · · ·								Report Descripti	ion: Light Hazard		
Pipe	Туре	Diameter	Flow	Velocity	HWC		Friction Los	s		Length	Pressure		
Dov	wnstream	Elevation	Discharge	K-Factor	Pt	Pn	Fittings			Eq. Length	Summary		
Ups	stream							_		Total Length			
	Pipe Type Lege	end			Units Legen	b			Fittings Legend				
AC	Arm-Over	ĪĪ	Diameter In	ch				l	ALV	Alarm Valve	I		
BL	Branch Line		Elevation Fo	oot					AngV	Angle Valve			
	1 Cross Main		Flow gr	om					b	Bushing			
	Drain		Discharge gr	om					BalV	Ball Valve			
	Dunamia		Velocity fp	S					BFP	Backflow Prevente	er		
	Event Main		Pressure ps	SI a at					БV С	Cross Flow Turn	<u>مە</u>		
III FR	Feed Riser		Eriction Loss	ou Du					cola	Coupling			
MS	Miscellaneous	s	HWC H	azen_Williams (onstant				Cr	Cross Run			
OF	C Outrigger		Pt To	otal pressure at	a point in a r	ine			CV	Check Valve			
RN	Riser Nipple		Pn N	ormal pressure	at a point in a				DelV	Deluge Valve			
SP	Sprig		Pf P	ressure loss due	to friction be	etween point	ts		DPV	Dry Pipe Valve			
	Stand Pipe		Pe P	ressure due to e	levation diffe	rence betwe	een indicated po	oints	E_	90° Elbow			
	Underground		Pv V	elocity pressure	at a point in	a pipe			EE	45° Elbow			
		·L							Ee1	11/4° EIDOW			
									f	Flow Device			
									fd	Flex Drop			
									FDC	Fire Department C	Connection		
									fE	90° FireLock(TM)	Elbow		
									fEE	45° FireLock(TM)	Elbow		
									flg	Flange			
									FN	Floating Node			
										FireLock(TM) Tee	; []		
									19 GloV	Globe Valve			
									GV	Gate Valve			
									Ho	Hose			
									Hose	Hose			
									ΗV	Hose Valve			
									Hyd	Hydrant			
									LtE _	Long Turn Elbow			
									mecT	Mechanical Tee			
									NOZ	Nozzie Dump In			
										Pump Out			
									PIV	Post Indicating Va	lve		
									PO	Pipe Outlet			
									PRV	Pressure Reducin	ig Valve		
									PrV	Pressure Relief V	alve		
									red	Reducer/Adapter			
									S	Supply			
									sCV	Swing Check Valv	/e		
									Spr	Strainer			
									Т		•		
									Ι τ _r	Tee Run			
									lΰ	Union			
									WirF	Wirsbo			
									WMV	Water Meter Valve	e		
									Z	Сар			
									i				