

REVIEW COMMENTS ON SHEETS 4, 5 AND 13 AND RESUBMIT THROUGH THE PERMIT CENTER WITH REVISION APPLICATION COMPLETED WITH REVISION FORM

Structural Calculations

PREPARED FOR:

Red Dot Corporation Puyallup Corporate Center East Main Avenue at Linden Lane

PROJECT:

Red Dot Corporation Environmental Chamber Framing Re-Use 2220760.20

PREPARED BY:

Andrew McEachern, P.E., S.E. Principal

DATE:

August 8, 2023

Structural Calculations

For

Red Dot Corporation

Environmental Chamber Framing Re-Use

Project # 2220760.20

Project Principal

Andrew D. McEachern, P.E., S.E.

Design Criteria

Design Codes and Standards

<u>Codes and Standards</u>: Structural design and construction shall be in accordance with the applicable sections of the following codes and standards as adopted and amended by the local building authority: International Building Code, 2018 Edition.

Structural Design Criteria:

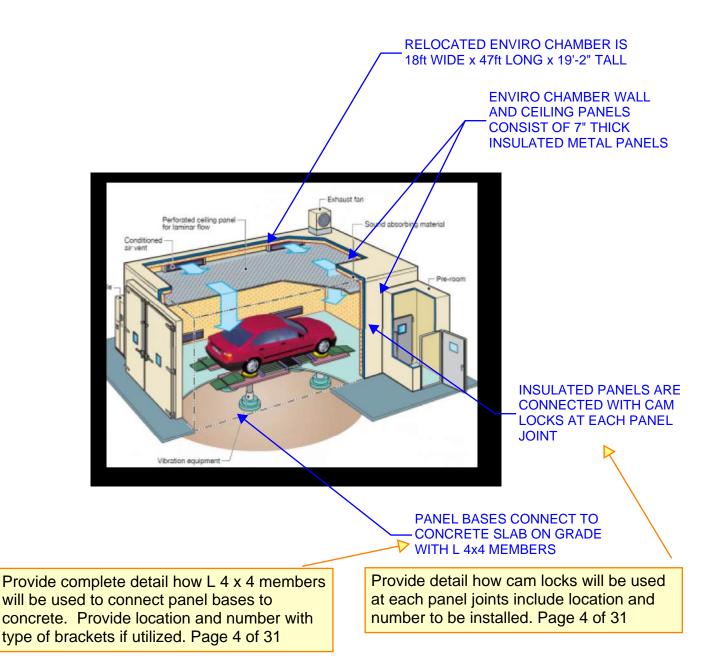
Live Load Criteria:					
	Roof (Min Blanket Snow):		25 psf		
	Slab on Grade:			350 psf	
Wind L	oad Criteria:				
	Basic Wind Speed:			97 mph	
	Risk Category:			II	
	Wind Exposure:				
	Topographic Factor:			1.0	
<u>Seismi</u>	<u>c Criteria:</u>				
	Risk Category:			II	
	Seismic Importance Factor:			1.0	
	$S_s = 1.258$	S1	=	0.433	
	$S_{ds} = 1.006$	S_{d1}	=	N/A	
	Site Class:			D	
	Seismic Design Category:			D	

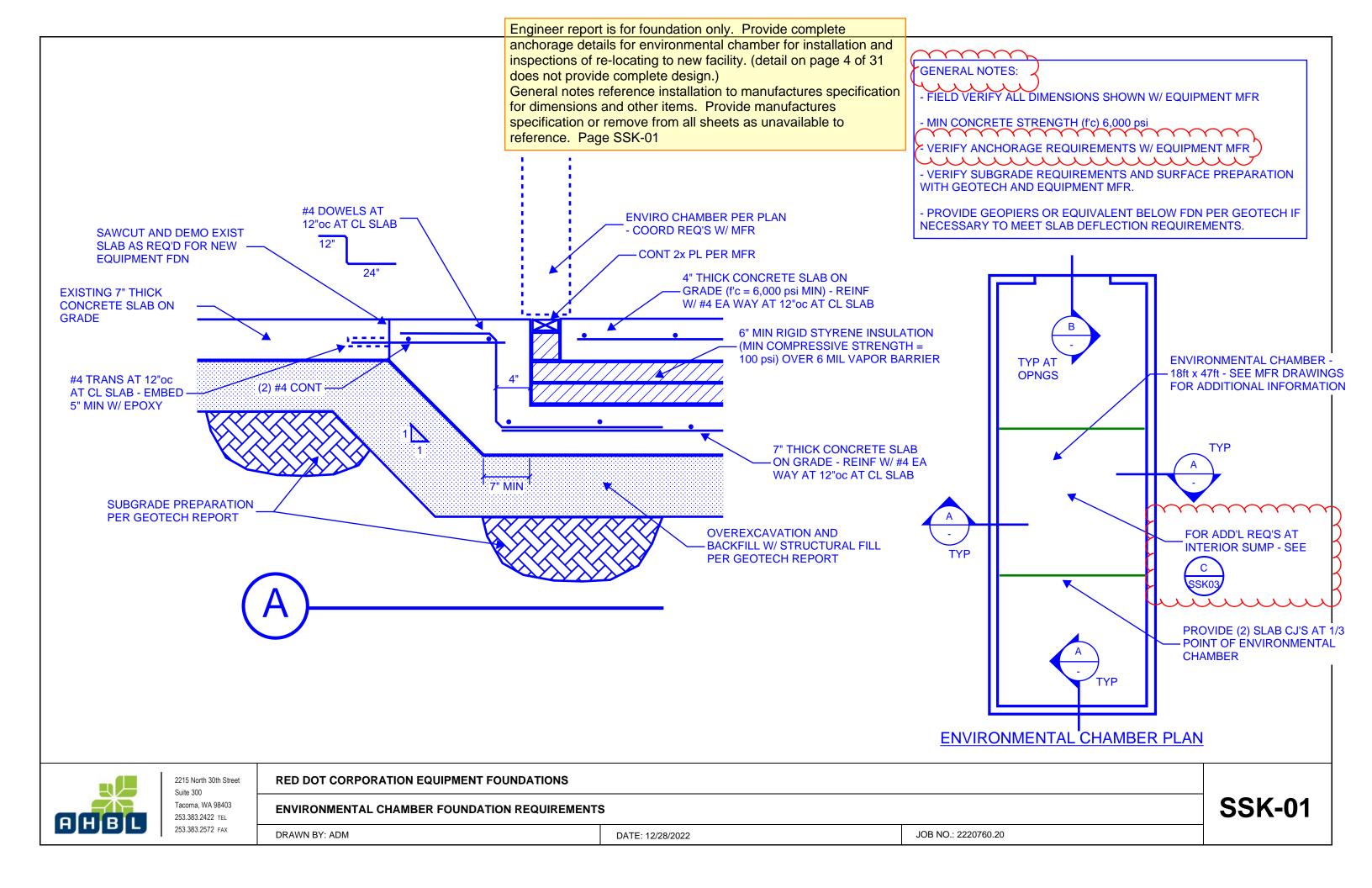
Soil Criteria:

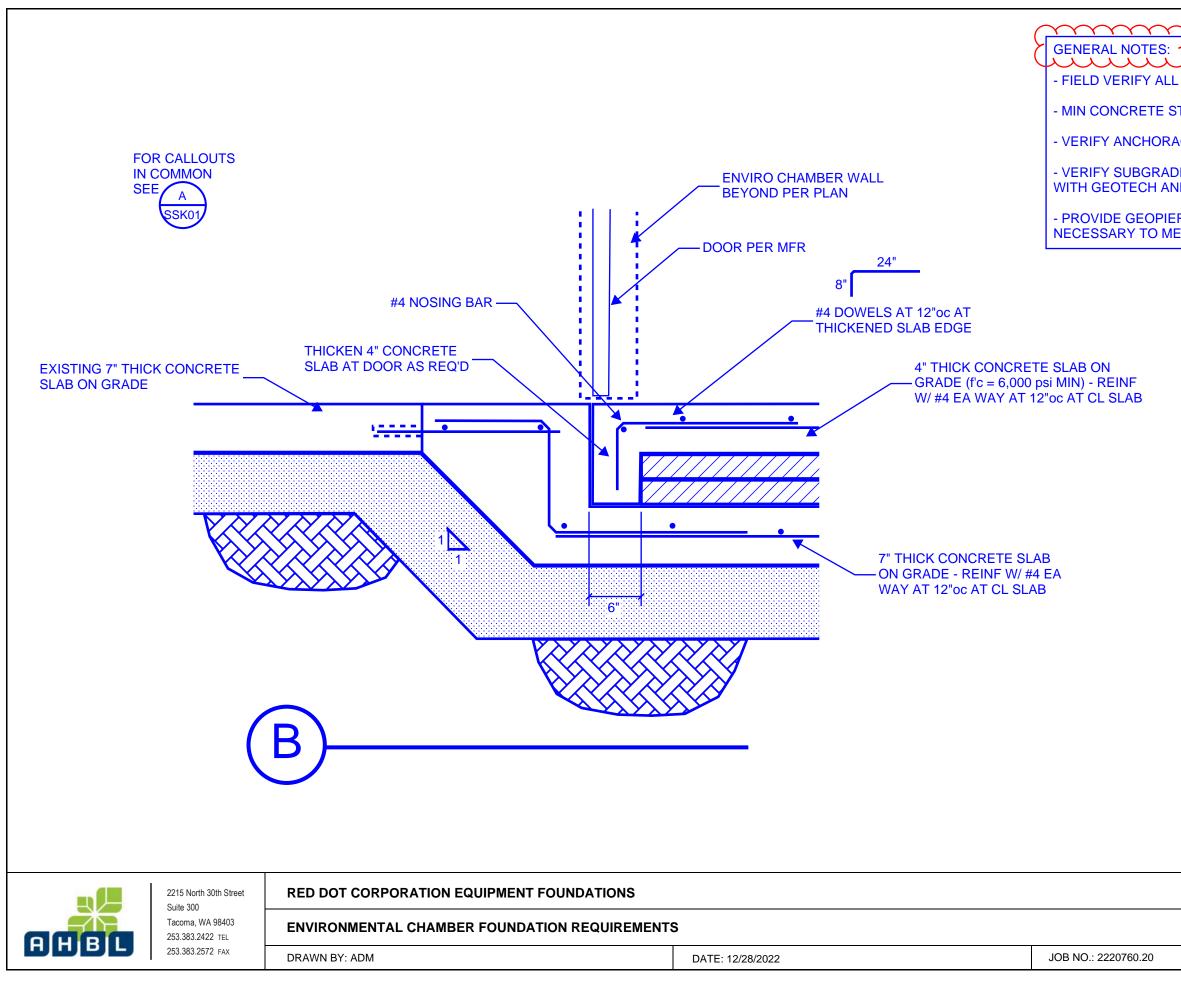
Based on Geotechnical Engineering Report by: Terra Associates Inc, dated September 2019.

Soil Bearing Capacity: 2,500 psf when sitting on 2 feet of structural fill on the previously preloaded side. Allow 33% increase for loads from wind or seismic origin.

Project Description


The scope of work for this project involves the structural evaluation of an existing Environmental Chamber to be relocated to a new facility. The Environmental Chamber is essentially a large walk-in cooler, which will be located within an existing building. This existing equipment was originally installed roughly 30 years ago.

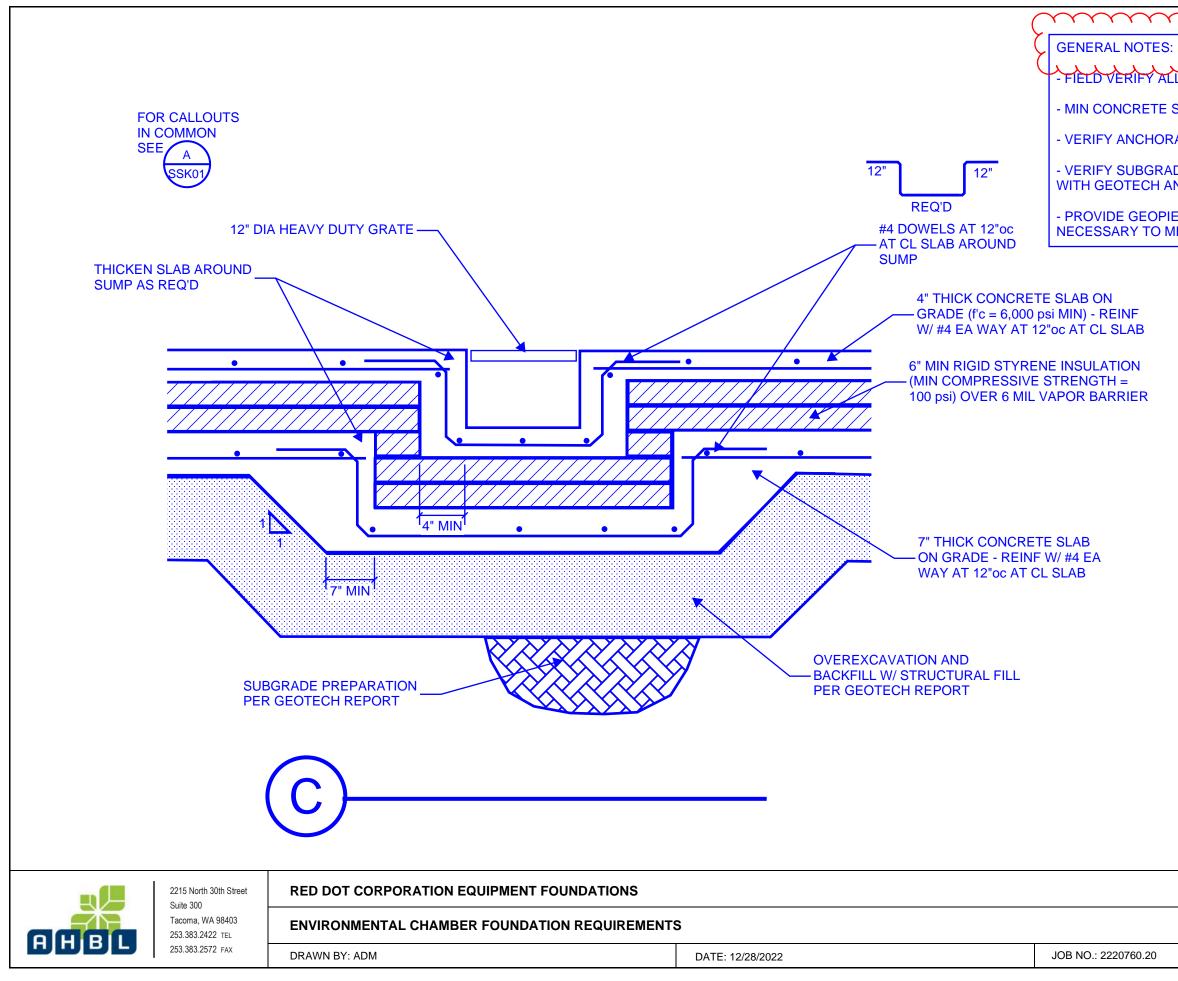

The proposed Environmental Chamber is a relatively lightweight system of insulated wall and ceiling panels. The anticipated loads will fall within the minimum 350 psf uniform load specified for the original 7" thick concrete slab on grade. Equipment anchorage will be provided to meet the manufacturer's original recommendations. The Environmental Chamber is a self-supporting / freestanding element, which will be internally braced. Loads from the new Chamber will not be braced into the existing building structure. All Environmental Chamber loads will be delivered directly into the building slab on grade.


It is the intention of the structural design to satisfy the force levels of the IBC 2018.

Based upon our review of the design requirements for the Environmental Chamber, the anticipated vertical design loads and lateral design loads will be equivalent to the building code used for the original installation. The lid of the Environmental Chamber will be treated as a conventional accessible ceiling, which will be limited to a 200-pound live load. The lateral design of the Chamber will be governed by a minimum 5 psf wall load required by section IBC 1607.15.

Both the 200-pound live load and 5 psf wall load are requirements that were in place when the existing Environmental Chamber was originally designed and constructed. As the original design loads meet or exceed the current IBC design loads, it is structurally acceptable to reinstall the existing equipment in the new facility.

- FIELD VERIFY ALL DIMENSIONS SHOWN W/ EQUIPMENT MFR


- MIN CONCRETE STRENGTH (f'c) 6,000 psi

- VERIFY ANCHORAGE REQUIREMENTS W/ EQUIPMENT MFR

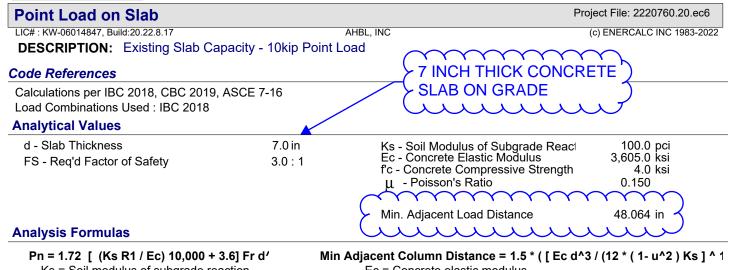
- VERIFY SUBGRADE REQUIREMENTS AND SURFACE PREPARATION WITH GEOTECH AND EQUIPMENT MFR.

- PROVIDE GEOPIERS OR EQUIVALENT BELOW FDN PER GEOTECH IF NECESSARY TO MEET SLAB DEFLECTION REQUIREMENTS.

5	6SK-02
---	--------

- FIELD VERIFY ALL DIMENSIONS SHOWN W/ EQUIPMENT MFR

- MIN CONCRETE STRENGTH (f'c) 6,000 psi


- VERIFY ANCHORAGE REQUIREMENTS W/ EQUIPMENT MFR

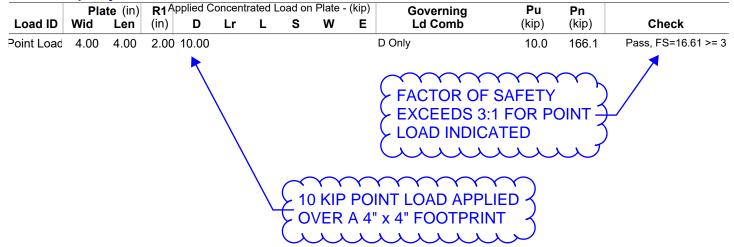
- VERIFY SUBGRADE REQUIREMENTS AND SURFACE PREPARATION WITH GEOTECH AND EQUIPMENT MFR.

- PROVIDE GEOPIERS OR EQUIVALENT BELOW FDN PER GEOTECH IF NECESSARY TO MEET SLAB DEFLECTION REQUIREMENTS.

SSK-03

Ks = Soil modulus of subgrade reaction R1 = 50% plate average dimension = sgrt(PlWid * PlLer

R1 = 50% plate average dimens

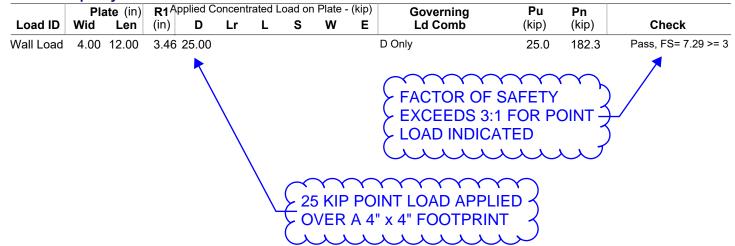

Ec = Concrete elastic modulus

- Fr Concrete modulus of rupture = 7.5 * sqrt(fc) d - Slab Thickness
- Ec = Concrete elastic modulus d - Slab Thickness

u - Poisson's ratio

Ks = Soil modulus of subgrade reaction

Load & Capacity Table


Point Load on Slab		Р	roject File: 2220760.20.ec6
LIC# : KW-06014847, Build:20.22.8.17		AHBL, INC	(c) ENERCALC INC 1983-2022
DESCRIPTION: Existing Slab Capa Code References	acity - Typical Wa	II Load	RETE
Calculations per IBC 2018, CBC 2019, A Load Combinations Used : IBC 2018	SCE 7-16	SLAB ON GRADE	
Analytical Values			
d - Slab Thickness FS - Req'd Factor of Safety	7.0 in 3.0 : 1	Ks - Soil Modulus of Subgrade React Ec - Concrete Elastic Modulus f'c - Concrete Compressive Strength μ - Poisson's Ratio	100.0 pci 3,605.0 ksi 4.0 ksi 0.150
		Min. Adjacent Load Distance	48.064 in \prec
Analysis Formulas		uuuuu	un
Pn = 1.72 [(Ks R1 / Ec) 10,000 + 3. Ks = Soil modulus of subgrade read		n Adjacent Column Distance = 1.5 * ([Ec d' Ec = Concrete elastic modulus	^3 / (12 * (1- u^2) Ks] ^ /

R1 = 50% plate average dimension = sqrt(PlWid * PlLer Ec = Concrete elastic modulus u - Poisson's ratio

Fr - Concrete modulus of rupture = 7.5 * sqrt(fc)

d - Slab Thickness

Load & Capacity Table

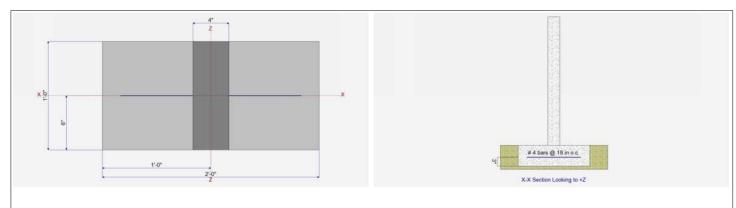
Ks = Soil modulus of subgrade reaction

Wall Footing

LIC# : KW-06014847, Build:20.22.8.17 DESCRIPTION: Enviro Chamber Wall Load AHBL, INC

Project File: 2220760.20.ec6

(c) ENERCALC INC 1983-2022


Code References

Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16 Load Combinations Used : IBC 2018

General Information

Footing Width	=	2 0 ft	Footing Th	ickness	=	7 0 in	Bars along X-X A	vie	
Dimensions							Reinforcing		
				Adjus	ted Allowal	le Bearing	Pressure	=	2.50 ksf
AutoCalc Footing Wei	AutoCalc Footing Weight as DL :		Yes	when footing is wider than		=	ft		
Min. Sliding Safety Fa	ctor	=	1.0:1	Increases based on footing Width Allow. Pressure Increase per foot of width		=	ksf		
Min. Overturning Safe	ty Factor	=	1.0:1						
Min Allow % Temp Re	Min Allow % Temp Reinf.		0.0	Allow. Pressure Increase per foot of depth when base footing is below		=	ft		
Analysis Settings		=				=	ksf		
				Reference Depth below Surface			=	ft	
Shear		=	0.750			on footing D			
		=	0.90						
Concrete Density		=	145.0 pcf			Friction Co		=	0.30
Éc : Concrete Elastic	Modulus	=	3,122.0 ksi			Resistance (=	250.0 pcf
fv : Rebar Yield	a origin	=	60.0 ksi			aring By Foot	ina Weiaht	=	No
f'c : Concrete 28 day s	strength	=	4.0 ksi		Allowable Sc			=	2.50 ksf
Material Properties				Soil D	esign Value	e			

7.0 in Footing Width = 2.0 ft Footing Thickness = Bars along X-X Axis Rebar Centerline to Edge of Concrete... 18.00 Wall Thickness = 4.0 in Bar spacing = Wall center offset at Bottom of footing = 3.0 in Reinforcing Bar Size # = 4 0 in from center of footing =

Applied Loads

		D	Lr	L	S	W	E	н
P : Column Load	=	2.0		1.0				k
OB : Overburden	=							ksf
V-x	=							k
V-x M-zz	=							k-ft
Vx applied	=	in	above top of fo	ooting				

Project File: 2220760.20.ec6

(c) ENERCALC INC 1983-2022

Wall Footing

LIC# : KW-06014847, Build:20.22.8.17

DESCRIPTION: Enviro Chamber Wall Load

IGN SUI	MMARY				Design OK
Fa	ctor of Safety	ltem	Applied	Capacity	Governing Load Combination
PASS	n/a	Overturning - Z-Z	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Sliding - X-X	0.0 k	0.0 k	No Sliding
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
Ut	ilization Ratio	Item	Applied	Capacity	Governing Load Combinatior
PASS	0.6338	Soil Bearing	1.585 ksf	2.50 ksf	+D+L
PASS	0.3117	Z Flexure (+X)	0.7297 k-ft	2.341 k-ft	+1.20D+1.60L
PASS	0.1448	Z Flexure (-X)	0.3389 k-ft	2.341 k-ft	+0.90D
PASS	0.240	1-way Shear (+X)	22.766 psi	94.868 psi	+1.20D+1.60L
PASS	0.2215	1-way Shear (-X)	21.015 psi	94.868 psi	+1.20D+1.60L

AHBL, INC

Detailed Results

Soil Bearing					
Rotation Axis &			Actual Soil B	earing Stress	Actual / Allowable
Load Combination	Gross Allowable	Xecc	-X	+X	Ratio
, D Only	2.50 ksf	0.0 in	1.085 ksf	1.085 ksf	0.434
, +D+L	2.50 ksf	0.0 in	1.585 ksf	1.585 ksf	0.634
, +D+0.750L	2.50 ksf	0.0 in	1.460 ksf	1.460 ksf	0.584
, +0.60D	2.50 ksf	0.0 in	0.6508 ksf	0.6508 ksf	0.260
Overturning Stability					Units : k-ft
Rotation Axis &					
Load Combination	Overturning Moment	Res	sisting Moment	Stability Ratio	Status
Footing Has NO Overturning					
Sliding Stability					
Force Application Axis					
Load Combination	Sliding Force	R	esisting Force	Sliding SafetyRat	tio Status
Footing Has NO Sliding					

Footing Flexure

Flexure Axis & Load Combination	Mu	Which	Tension @ Bot.	As Req'd	Gvrn. As	Actual As	Phi*Mn	
Flexure Axis & Load Combination	k-ft	Side ?	or Top ?	in^2	in^2	in^2	k-ft	Status
, +1.40D	0.5272	-X	Bottom	0.0294	Min for Bending	0.1333	2.341	Oł
, +1.40D	0.5272	+X	Bottom	0.0294	Min for Bending	0.1333	2.341	Oł
, +1.20D+1.60L	0.7297	-X	Bottom	0.0408	Min for Bending	0.1333	2.341	Oł
, +1.20D+1.60L	0.7297	+X	Bottom	0.0408	Min for Bending	0.1333	2.341	Oł
, +1.20D+0.50L	0.5387	-X	Bottom	0.0301	Min for Bending	0.1333	2.341	Oł
, +1.20D+0.50L	0.5387	+X	Bottom	0.0301	Min for Bending	0.1333	2.341	Oł
, +1.20D	0.4519	-X	Bottom	0.0252	Min for Bending	0.1333	2.341	Oł
, +1.20D	0.4519	+X	Bottom	0.0252	Min for Bending	0.1333	2.341	Oł
, +0.90D	0.3389	-X	Bottom	0.0189	Min for Bending	0.1333	2.341	Oł
, +0.90D	0.3389	+X	Bottom	0.0189	Min for Bending	0.1333	2.341	O
One Way Shear					-		Units : k	
Load Combination	/u @ -X	Vu @	+X	Vu:Max	Phi Vn	Vu / Phi*Vn	Sta	atus
+1.40D	15.184	psi	16.45 psi	16.45	psi 94.868 psi	0.1734		OK
+1.20D+1.60L	21.015	psi 2	22.766 psi	22.766	psi 94.868 psi	0.24		OK
+1.20D+0.50L	15.515	psi ´	16.808 psi	16.808	psi 94.868 psi	0.1772		OK
+1.20D	13.015	psi	14.1 psi	14.1	, psi 94.868 psi	0.1486		OK
+0.90D	9.761	, psi ´	10.575 psi	10.575	, psi 94.868 psi	0.1115		OK

- 1. STRUCTURAL NOTES
- 1.1. ANY DISCREPANCY FOUND AMONG THE DRAWINGS, SPECIFICATIONS, THESE NOTES, AND THE SITE CONDITIONS SHALL BE REPORTED TO THE ARCHITECT AND THE STRUCTURAL ENGINEER, WHO SHALL CORRECT SUCH DISCREPANCY IN WRITING. ANY WORK DONE BY THE CONTRACTOR AFTER DISCOVERY OF SUCH DISCREPANCY SHALL BE DONE AT THE CONTRACTOR'S RISK. THE CONTRACTOR SHALL VERIFY AND COORDINATE THE DIMENSIONS AMONG ALL DRAWINGS PRIOR TO PROCEEDING WITH ANY WORK OR FABRICATION. THE CONTRACTOR IS RESPONSIBLE FOR ALL ERECTION BRACING, FORMWORK AND TEMPORARY CONSTRUCTION SHORING.
- 1.1.1. THE CONTRACTOR SHALL NOT SCALE THE ARCHITECTURAL AND STRUCTURAL DRAWINGS FOR LOCATIONS OF ELEMENTS NOTED ABOVE.
- 1.1.2. ELECTRONIC COPIES OF THE STRUCTURAL DRAWINGS (PDF'S, CAD DRAWINGS OR BIM MODELS) MAY BE PROVIDED TO THE CONTRACTOR FOR THEIR USE. THESE FILES MAY BE PROVIDED AT THE REQUEST OF THE CONTRACTOR FOR THEIR CONVENIENCE ONLY. THE CONTRACTOR AGREES THAT THESE FILES SHALL NOT SUPERSEDE INFORMATION SHOWN ON THE ORIGINAL BID/ CONSTRUCTION DOCUMENTS. THE CONTRACTOR AGREES TO HOLD THE STRUCTURAL ENGINEER HARMLESS FOR ANY ERRORS OR DISCREPANCIES CONTAINED WITHIN THESE ELECTRONIC FILES.
- 1.2. CODES
- 1.2.1. ALL METHODS, MATERIALS AND WORKMANSHIP SHALL CONFORM TO THE 2015 INTERNATIONAL BUILDING CODE (IBC) AS AMENDED AND ADOPTED BY THE LOCAL BUILDING AUTHORITY.
- ALL REFERENCES TO OTHER CODES, STANDARDS AND 1.2.2. SPECIFICATIONS, (ACI, ASTM, ETC.), SHALL BE FOR THE EDITION CURRENTLY REFERENCED BY IBC AS AMENDED AND ADOPTED BY THE LOCAL BUILDING AUTHORITY.
- 1.3. DESIGN CRITERIA

1.3.1. UNIFORM LOADS:

LOCATION	LIVE LOAD	DEAD LOAD
ROOF	25 PSF (SNOW*)	ACTUAL
SLAB ON GRADE (STRUCTURAL)	7" SLAB = 350PSF	ACTUAL

* THIS IS NOT A GROUND SNOW LOAD

- 1.3.2. CONCENTRATED LOADS: ALL MANUFACTURERS OF PRE-ENGINEERED COMPONENTS OR SYSTEMS SHALL LOCATE, COORDINATE, VERIFY WEIGHTS, ETC., OF MECHANICAL UNITS OR OTHER CONCENTRATED LOADS AND DESIGN THEIR SYSTEM FOR THESE LOADS.
- WIND LOADS (PER IBC SECTION 1609 AND ASCE 7 CHAPTERS 26 THRU 1.3.3.

SEISMIC FORC	E- RESPONSE	OVERSTRENGTH
ANALYSIS PI	ROCEDURE USED:	EQUIVALENT LATERAL FORCI PROCEDURE
SEISMIC RES	PONSE COEFFICIENT (Cs)	0.168
SEISMIC DES	SIGN CATEGORY:	D
S _{D1} :		0.452
S _{DS} :		0.838
SITE CLASS:		D
S ₁ :		0.433
S _s :		1.257
SEISMIC IMP	ORTANCE FACTOR (I _e):	1.0
RISK CATEG	ORY:	II
SEISMIC LOAD THRU 13):	S (PER IBC SECTION 1613 /	AND ASCE 7 CHAPTERS 11
ZONE:5	+/- 28 PSF (10 SQ FT)	
ZONE:4	+/- 23 PSF (10 SQ FT)	
ZONE:3	+/- 59 PSF (10 SQ FT)	
ZONE:2	+/- 39 PSF (10 SQ FT)	
ZONE:1	+/- 23 PSF (10 SQ FT)	
TO BE USED FO	AND CLADDING: ULTIMATE DR THE DESIGN OF EXTER TERIALS IS AS FOLLOWS:	E DESIGN WIND PRESSURE
TOPOGRAPH	IIC FACTOR (K _{zt})	1.0 (FLAT)
APPLICABLE PRESSURE (INTERNAL COEFFICIENT:	+/-0.18
WIND EXPOS	SURE:	В
RISK CATEG	ORY	I
ULTIMATE D	ESIGN WIND SPEED (V _{ult}):	110 MPH

SEISMIC FORCE-	RESPONSE	OVERSTRENGTH
RESISTING SYSTEM	MODIFICATION	FACTOR, Ω_0
	COEFFICIENT, R	

1. SPECIAL REINFORCED CONCRETE SHEAR WALLS

5 NOTE: TABULATED OVERSTRENGTH FACTOR HAS BEEN REDUCED IN ACCORDANCE WITH ASCE 7 TABLE 12.2-1 FOOTNOTE G FOR STRUCTURES WITH FLEXIBLE DIAPHRAGMS.

1.4. STATEMENT OF SPECIAL INSPECTIONS

SEE STATEMENT OF SPECIAL INSPECTION AND TESTING SHEET S0.2.

1.5. SHOP DRAWINGS

1.3.4.

- 1.5.1. SUBMIT SHOP DRAWINGS TO THE ARCHITECT/ENGINEER FOR THE FOLLOWING:
 - A. CONCRETE MIX DESIGN SUBMITTALS
 - B. REINFORCING STEEL
 - C. STRUCTURAL AND MISCELLANEOUS STEEL INCLUDING WELD INSERTS AND ANCHORS
- D. PRE-ENGINEERED STEEL JOISTS AND JOIST GIRDERS *
- E. TILT UP WALLS
- F. PRE-ENGINEERED STEEL STAIRS & CANOPIES *
- * DEFERRED SUBMITTALS: PRE-ENGINEERED ITEMS SHALL BE SUBMITTED TO THE BUILDING OFFICIAL AFTER REVIEW BY THE ENGINEER OF RECORD AS A DEFERRED SUBMITTAL.

	1.5.2.	SHOP DRAWING REVIEW NOTES			ADMIXTU		5.	MET			
		A. ENGINEER OF RECORD SHALL REVIEW SHOP DRAWINGS FOR GENERAL CONFORMANCE WITH THE PROJECT CONSTRUCTION			3.4.1.	WATER REDUCING ADMIXTURE: ASTM C494. ADMIXTURES SHALL BE USED IN EXACT ACCORDANCE WITH MANUFACTURER'S		5.1.	12010000000	TURAL STEEL GENERAL REQUIREMENTS	
		DOCUMENTS (PLANS AND SPECIFICATIONS).				INSTRUCTIONS.			5.1.1.	ALL DETAILING, FABRICATION, AND ERECTION S AISC 360-10 "SPECIFICATION FOR STRUCTURAL	
		B. ENGINEER OF RECORD REVIEW OF SHOP DRAWINGS SHALL NOT			3.4.2.	WATER REDUCING ADMIXTURES SHALL BE USED AT ALL HEAVILY				AISC 341-10 "SEISMIC PROVISIONS FOR STRUCT	URAL STEEL
		RELIEVE THE GENERAL CONTRACTOR OF THEIR RESPONSIBILITY FOR REVIEW OF THE SHOP DRAWINGS FOR COMPLIANCE WITH THE				CONGESTED AREAS (I.E. CONCRETE WALLS WITH REINFORCING SPACING OF 4" OR LESS)				BUILDINGS" AND AISC 303-10 "CODE OF STANDA STEEL BUILDINGS AND BRIDGES" EXCEPT AS AN	
		PROJECT REQUIREMENTS.			3.4.3.	CONCRETE USING ADMIXTURES TO PRODUCE FLOWABLE CONCRETE				STRUCTURAL NOTES.	
		C. APPROVAL OF THE SHOP DRAWINGS BY THE ENGINEER OF				MAY BE USED SUBJECT TO ENGINEER'S APPROVAL.		5.2.	STRUC	TURAL STEEL	
		RECORD SHALL NOT BE CONSIDERED AS A GUARANTEE BY THE ENGINEER THAT THE SHOP DRAWINGS COMPLY WITH ALL PROJECT			3.4.4.	AIR ENTRAINMENT: ASTM C260 AND ASTM C494 ENTRAIN 5%			5.2.1.	STEEL W SHAPES SHALL BE ASTM A992 Fy=50 KS	I. OTHER SHAPES
		REQUIREMENTS.				PLUS/MINUS 1.5% BY VOLUME IN ALL CONCRETE EXPOSED TO WEATHER.				AND PLATES SHALL BE ASTM A36 F _y =36 KSI.	
		D. CONCURRENT SHOP DRAWING REVIEW SHALL ONLY BE PERMITTED			3.4.5.	NO OTHER ADMIXTURES PERMITTED UNLESS APPROVED BY THE			5.2.2.	RECTANGULAR HOLLOW STEEL SECTIONS (HSS SECTIONS (TS) SHALL BE ASTM A500, GRADE B,	
		IF APPROVED BY THE ARCHITECT/ENGINEER OF RECORD PRIOR TO THE START OF SHOP DRAWING REVIEW.				ENGINEER.				FOR ROUND SECTIONS)	, y
1.6.	MISCEL	LANEOUS		3.5.	FORMW	DRK AND SHORING			5.2.3.	BOLTS	
	1.6.1.	VERIFY ALL DIMENSIONS AND CONDITIONS IN THE FIELD.			3.5.1.	FOLLOW RECOMMENDED PRACTICE FOR CONCRETE FORMWORK (ACI-347).				A. MACHINE BOLTS NOT SPECIFIED AS HIGH STF ASTM A-307 GRADE A.	ENGTH SHALL BE
	1.6.2.	VERIFY SIZE AND LOCATION OF ALL OPENINGS IN THE FLOORS, ROOF			3.5.2.	(ACI-347). ALL SHORING SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR.				B. HIGH STRENGTH BOLTS SHALL BE ASTM F312	
		AND WALLS WITH ARCHITECTURAL, MECHANICAL AND ELECTRICAL DRAWINGS.			3. 3 .Z.	FORMWORK SUPPORTS SHALL BE DESIGNED TO PROVIDE FINISHED				GRADE A490 AS INDICATED ON STRUCTURAL	DRAWINGS. ALL
	1.6.3.	CONSTRUCTION DETAILS NOT SPECIFICALLY SHOWN ON THE				CONCRETE SURFACES AT ALL FACES LEVEL, PLUMB AND TRUE TO THE DIMENSIONS AND ELEVATIONS SHOWN. TOLERANCES AND				BOLTS SHALL BE CONSIDERED BEARING TYPE INCLUDED IN SHEAR PLANE (CONNECTION TY	
	1.0.0.	DRAWINGS SHALL FOLLOW SIMILAR DETAILS OF SECTIONS OF THIS				VARIATIONS SHALL BE AS SPECIFIED. A SHORING PLAN, STAMPED BY				OTHERWISE. ALL HIGH STRENGTH BOLTED C	ONNECTIONS SHALL
		PROJECT AS APPROVED BY THE ARCHITECT/ ENGINEER.				A LICENSED PROFESSIONAL ENGINEER SHALL BE SUBMITTED TO THE ENGINEER FOR APPROVAL.				BE INSTALLED WITH NUTS CONFORMING TO A HARDENED WASHERS CONFORMING TO ASTM	
	1.6.4.	SEE ARCHITECTURAL, MECHANICAL AND ELECTRICAL DRAWINGS FOR DIMENSIONS AND LOCATIONS OF OPENINGS NOT DIMENSIONED OR		3.6.	REINFOR	RCING STEEL:				C. ALL HIGH STRENGTH BOLTS SHALL BE INSTAL	
		SHOWN ON STRUCTURAL PLANS.			3.6.1.	DETAIL, FABRICATE, AND PLACE PER ACI-315 AND ACI-318. SUPPORT				SPECIFICATION FOR STRUCTURAL JOINTS US	ING HIGH-STRENGTH
	1.6.5.	SEE ARCHITECTURAL, MECHANICAL AND ELECTRICAL DRAWINGS FOR				REINFORCEMENT WITH APPROVED CHAIRS, SPACERS, OR TIES.				BOLTS (LATEST EDITION) BY THE RESEARCH (STRUCTURAL CONNECTIONS (WWW.BOLTCOL	
		LOCATIONS AND WEIGHTS OF ALL MECHANICAL AND ELECTRICAL EQUIPMENT INCLUDING HOUSEKEEPING PADS.			3.6.2.	DEFORMED BAR REINFORCEMENT: ASTM A615 GR 60			5.2.4.	STEEL ANCHORAGE ELEMENTS:	0
	1.6.6.	FOR PIPES, CONDUITS, DUCTS AND MECHANICAL EQUIPMENT			3.6.3.	WELDABLE DEFORMED BAR REINFORCEMENT: ASTM A706 GR 60				A. THREADED RODS SHALL BE ALL-THREAD. (F,=	36 KSI) U.N.O.
		SUPPORTED OR BRACED FROM STRUCTURE: CONFORM TO SHEET METAL AND AIR CONDITIONING CONTRACTORS NATIONAL			0.0.4	WHERE NOTED ON STRUCTURAL DRAWINGS				B. WELDED HEADED STUDS: "NELSON STUDS" SI	·
		ASSOCIATION, INC., PUBLICATION "APPENDIX E: SEISMIC RESTRAINT			3.6.4.	WELDED WIRE FABRIC: ASTM A-185 & ASTM A-82 Fy=65 KSI				STUD WELDING, INC. OR APPROVED EQUIVAL ASTM A108. STUDS SHALL HAVE A MINIMUM F,	
		MANUAL GUIDELINES FOR MECHANICAL SYSTEMS." ALL BRACING AND SUPPORTS SHALL BE DESIGNED FOR SEISMIC HAZARD LEVEL			3.6.5.	DEFORMED BAR ANCHORS: ASTM A-496				C. ANCHOR RODS: ANCHOR RODS SHALL BE AS	
		(SHL) B. SPRINKLER LINE ATTACHMENTS SHALL CONFORM TO NFPA			3.6.6.	EXCEPT AS NOTED SPECIFICALLY ON THE DRAWINGS, ALL CONCRETE REINFORCEMENT SHALL BE LAP-SPLICED AS FOLLOWS:				D. EXPANSION ANCHORS SHALL BE CARBON STE	
		PAMPHLET 13.				#6 AND SMALLER 48 X BAR DIAMETER				FOLLOWING TABLE. ANCHORS IN CONCRETE	
	1.6.7.	THE STRUCTURE HAS BEEN DESIGNED TO RESIST CODE REQUIRED VERTICAL AND LATERAL FORCES AFTER THE CONSTRUCTION OF ALL				NO MORE THAN 50% HORIZONTAL OR VERTICAL BARS SHALL BE SPLICED AT ONE LOCATION				TESTED IN ACCORDANCE WITH ACI 355.2 AND CRACKED CONCRETE AND SEISMIC APPLICAT	
		STRUCTURAL ELEMENTS HAS BEEN COMPLETED. STABILITY OF THE			3.6.7.	EXCEPT AS NOTED SPECIFICALLY ON THE DRAWINGS, PROVIDE				SHALL HAVE A CURRENT CODE REPORT THAT	COMPLIES WITH THE
		STRUCTURE PRIOR TO COMPLETION IS THE SOLE RESPONSIBILITY OF THE GENERAL CONTRACTOR. THIS RESPONSIBILITY INCLUDES BUT IS			0.0.7.	CORNER BARS TO MATCH QUANTITY AND DIAMETER OF HORIZONTAL				CURRENT EDITION OF THE IBC AND SHALL BE THE SEISMIC DESIGN CATEGORY NOTED IN TH	
		NOT LIMITED TO JOB SITE SAFETY: ERECTION MEANS, METHODS,				REINFORCEMENT AND LAP WITH HORIZONTAL REINFORCEMENT AS FOLLOWS:				SECTION OF THESE NOTES.	
		AND SEQUENCES; TEMPORARY SHORING, FORMWORK, AND BRACING; USE OF EQUIPMENT AND CONSTRUCTION PROCEDURES.				#6 AND SMALLER 48 X BAR DIAMETER					
		WHERE SHORING IS REQUIRED, A SHORING PLAN, STAMPED BY A				THESE CORNER BARS SHALL BE PLACED AT ALL CORNERS AND				EXPANSION ANCHORS	CODE
		LICENSED PROFESSIONAL/STRUCTURAL ENGINEER SHALL BE SUBMITTED TO THE ENGINEER FOR APPROVAL.				INTERSECTIONS IN CONCRETE FOOTINGS AND WALLS.				IN CONCRETE	REPORT
\sim	\sim	mmmmm	\cap		3.6.8.	LAP WELDED WIRE FABRIC 12" OR ONE SPACING PLUS 2", WHICHEVER IS MORE.					100 505 4047
2. SITE	E PREPAR	RATION/SOIL REMEDIATION	3	3.7.	CONCRE	TE COVER ON REINFORCING SHALL BE AS FOLLOWS (UNLESS SHOWN				HILTI KWIK BOLT TZ	ICC ESR-1917
2.1.	SOIL DA	ATA	3		OTHERV					SIMPSON STRONG-BOLT 2	ICC ESR-3037
		ABLE SOIL PRESSURE 2500 PSF WHEN SITTING ON 2' OF STRUCTURAL	2			BOTTOM OF FOOTINGS 3" FORMED EARTH FACE 2"				DEWALT/POWERS POWER-STUD+ SD2	ICC ESR-2502
		ID PRELOADED SITE. ALLOW 33-1/3% INCREASE FOR LOADS FROM WIND SMIC ORIGIN. SEE GEOTECHNICAL ENGINEERING REPORT BY TERRA	く			FORMED EARTH FACE2"WALLS, WEATHER FACE1-1/2"				E. ADHESIVE ANCHORS SHALL BE THREADED A	
	ASSOC	IATES INC DATED SEPTEMBER 2019. SEE GEOTECH REPORT FOR ALL	4			WALLS, INSIDE FACE 1"				REBAR DOWELS USING AN INJECTABLE ADHE	
		ADE PREPARATION REQUIREMENTS AS WELL AS CAPILLARY BREAK AND BARRIER RECOMMENDATIONS.	3	3.8.	CONSTR	UCTION AND CONTROL JOINTS				THE FOLLOWING TABLE. ANCHORS IN CONCR BEEN TESTED IN ACCORDANCE WITH ACI 355.	
L.			3		3.8.1.	UNLESS NOTED OTHERWISE, LOCATION OF THE CONSTRUCTION OR				308 FOR CRACKED CONCRETE AND SEISMIC A	
L.L.	2/(0/(1)	ATE TO DEPTH SHOWN AND TO FIRM UNDISTURBED MATERIAL. OVER-				CONTROL JOINTS IN SLAB ON GRADE SHALL NOT EXCEED THE DISTANCES NOTED BELOW. JOINTS SHALL BE LOCATED ON COLUMN				ANCHORS SHALL HAVE A CURRENT CODE REI WITH THE CURRENT EDITION OF THE IBC AND	
	EXCAV	ATIONS SHALL BE BACKFILLED WITH LEAN CONCRETE (f = 500-1200 PSI)				GRIDS OR UNDER PERMANENT PARTITIONS TO THE GREATEST				USE IN THE SEISMIC DESIGN CATEGORY NOT	
		RUCTURAL FILL AT THE CONTRACTOR'S EXPENSE. EXERCISE EXTREME DURING EXCAVATION TO AVOID DAMAGE TO BURIED LINES, TANKS, AND				EXTENT POSSIBLE. ADDITIONAL JOINTS SHALL BE REQUIRED AT REENTRANT CORNERS AND CORNERS OF SLAB DEPRESSIONS OR				CRITERIA SECTION OF THESE NOTES.	
	OTHER	CONCEALED ITEMS. UPON DISCOVERY, DO NOT PROCEED WITH WORK				PENETRATIONS. SEE ARCHITECTURAL DRAWINGS FOR JOINT					
		RECEIVING WRITTEN INSTRUCTIONS FROM THE ARCHITECT. A				LAYOUT AT EXPOSED CONCRETE CONDITIONS. PROVIDE JOINT SEALANT PER SPECIFICATIONS - INSTALL PER MANUFACTURER				ADHESIVE ANCHORS IN CONCRETE	CODE REPORT
		ATIONS FOR SUITABILITY OF BEARING SURFACES PRIOR TO PLACEMENT				RECOMMENDATIONS.					
		NFORCING STEEL. PROVIDE DRAINAGE AS NECESSARY TO AVOID -SOFTENED SUBGRADE.				7" SLAB ON GRADE 20'-0" O.C. MAX				HILTI HIT HY-200 SAFE SET	ICC ESR-3187
2.3.	FILL, BA	ACKFILL AND COMPACTION		3.9.	CONDUI	AND PIPING EMBEDDED IN CONCRETE				SIMPSON AT-XP *	IAPMO ER-263
		LL AGAINST WALLS SHALL NOT BE PLACED UNTIL AFTER THE REMOVAL			3.9.1.	ELECTRICAL CONDUIT SHALL NOT BE PLACED WITHIN A SLAB ON GRADE. BUT PLACED BELOW THE SLAB IN THE SUB-BASE.				DEWALT/POWERS PURE 110+	ICC ESR-3298
		MATERIAL SUBJECT TO ROT OR CORROSION. ALL FILL PLACED AGAINST IING WALLS OR BASEMENT WALLS SHALL BE FREE DRAINING GRANULAR		3 10	GROUT	FOR BEARING PLACED BELOW THE SLAB IN THE SUB-BASE.					1.00001001002020100000000000000000000
	MATER	IAL. STRUCTURAL FILL OTHER THAN PEA GRAVEL SHALL BE GRANULAR				N-SHRINK GROUT SHALL MEET ASTM C1107 GRADE B OR EQUIVALENT				* SIMPSON SET-XP MAY BE USED WHERE BAS	
		D IN 6-INCH LIFTS AND COMPACTED TO AT LEAST 95% OF ITS MAXIMUM ENSITY AS DETERMINED BY ASTM D-1557 (MOD PROCTOR). PEA GRAVEL			(MASTER	RFLOW 928 BY BASF OR APPROVED EQUIVALENT). GROUT SHALL BE A				TEMPERATURE IS ABOVE 50 DEGREES FAHRE EMBEDMENT GREATER THAN 12-INCHES FOR	
		ALL HAVE A MAXIMUM PARTICLE SIZE OF 3/8" DIAMETER.				CKAGED HYDRAULIC CEMENT BASED MINERAL AGGREGATE GROUT, PLACED AND CURED AS RECOMMENDED BY THE MANUFACTURER.				SEE ICC ESR-2508 (CONC) AND IAPMO ER-265	
					2000 C C C C C C C C C C C C C C C C C C	SSIVE STRENGTH SHALL EXCEED 6000 PSI AT 28 DAYS.				F. POWDER ACTUATED FASTENERS: PDF'S OR F	
3. STR	UCTURAL	L CONCRETE		3.11.	TILT-UP	CONCRETE WALLS				MINIMUM 0.157" DIA KNURLED SHANK FASTEN FOLLOWING TABLE, UNLESS NOTED OTHERW	
3.1.	GENER				3.11.1.	TYPICAL AND SPECIAL REINFORCEMENT SHOWN ON PANEL ELEVATIONS IS DESIGNED FOR FORCES OCCURRING AFTER PANEL IS				DRIVEN INTO STEEL SHALL BE DRIVEN SO THAT FASTENER COMPLETELY PENETRATES THE S	AT THE POINT OF THE
		NCRETE SHALL BE HARD ROCK CONCRETE MEETING THE REMENTS OF ACI-301, "SPECIFICATIONS FOR STRUCTURAL CONCRETE				IN PLACE AND TIED TO ROOF AND FLOOR DIAPHRAGMS. USE				AT TOPPING SLABS, PT SLABS OR SLABS WIT	
	FOR BU	JILDINGS." PROPORTIONING OF INGREDIENTS FOR EACH CONCRETE MIX				STRONGBACKS AND EXTRA REINFORCEMENT AS REQUIRED AND DIRECTED BY PANEL LIFT INSERT MANUFACTURER/SUPPLIER FOR				TUBES EMBEDDED WITHIN THE SLAB, LIMIT TH TO 3/4" MAXIMUM AND COORDINATE WITH TEN	
		BE BY METHOD 2 OR THE ALTERNATE PROCEDURE GIVEN IN ACI-301. CONCRETE PER ACI-304 AND CONFORM TO ACI-604 (306) FOR WINTER				ERECTION PURPOSES. LIFT INSERT MANUFACTURER/SUPPLIER				PLACEMENT AND COVER.	DONTOBE
	CONCR	ETING AND ACI-605 (305) FOR HOT WEATHER CONCRETING. USE				SHALL ANALYZE PANELS FOR ADEQUACY DURING COMPLETE LIFTING OPERATION FROM HORIZONTAL TO VERTICAL, INCLUDING LATERAL					
		OR MECHANICAL VIBRATORS WITH 7,000 RPM MINIMUM FREQUENCY. DO /ER-VIBRATE. CONCRETE SHALL BE PLACED MONOLITHICALLY BETWEEN				TRANSPORT (WALKING) OF PANELS.				POWDER ACTUATED FASTENERS	CODE REPORT
		RUCTION OR CONTROL JOINTS. PROTECT ALL CONCRETE FROM			3.11.2.	ALL PANEL DIMENSIONS ON FOUNDATION PLANS ARE TO CENTER					
		TURE DRYING, EXCESSIVE HOT OR COLD TEMPERATURE FOR SEVEN FTER PLACING.				LINES OF CONNECTIONS UNLESS NOTED OTHERWISE. DO NOT SCALE PANEL ELEVATIONS.				HILTI X-U	ICC ESR-2269
3.2.	STRENG	GTH			3.11.3.	DO NOT CUT OR DRILL PANELS WITHOUT APPROVAL OF ENGINEER				SIMPSON PDPA	ICC ESR-2138
	TWENT	Y-EIGHT DAY COMPRESSIVE STRENGTHS SHALL BE AS FOLLOWS:				UNLESS SHOWN OR INDICATED ON STRUCTURAL DRAWINGS.				DEWALT/POWERS CSI PIN	ICC ESR-2024
		SLABS ON GRADE 4000 PSI			3.11.4.	SEE ARCH FOR FINISHES, CURING, ETC.					<u>_</u>
		FOOTINGS 3000 PSI			3.11.5.	GROUT UNDER PANEL WITH A 9-SACK PEA GRAVEL CONCRETE GROUT MIX (f'c=5000 PSI AT 28 DAYS).			5.2.5.	METAL PROTECTION: ALL STEEL EXPOSED TO V	
		VERTICALLY FORMED WALLS 4000 PSI			3.11.6.	PANELS DRAWN SHOW TYPICAL LOCATIONS OF PANEL CONNECTIONS			J.2.5.	SOIL, OR AS NOTED SHALL BE GALVANIZED PER	ASTM A-123 OR A153
		TILT UP WALL PANELS 4000 PSI				AND ADDITIONAL REINFORCING FOR MOST PANEL OPENINGS. NOT				AS APPLICABLE. ALL OTHER STEEL SURFACES PRIMED AFTER FABRICATION.	SHALL BE SHOP
		ETE SUPPLIER TO PROVIDE TEST RECORDS PER SECTION 26.4 OF ACI				ALL EMBEDDED ITEMS AND MECHANICAL AND ELECTRICAL PENETRATIONS ARE SHOWN. CONTRACTOR SHALL COORDINATE				REPAIR ALL DAMAGED AREAS OF GALVANIZED F	ARTS SUCH AS FIELD
0.0	318. MATERI					PENETRATIONS WITH MECHANICAL AND ELECTRICAL AND				WELDS, ETC. APPLY REPAIR COATING THICKNE	SS GREATER THAN
3.3.	MATERI				0.44 -	REINFORCING PER PLANS.				OR EQUAL TO ORIGINAL ZINC COATING THICKNE	
	3.3.1.	CEMENT: ASTM C150, TYPE I OR TYPE II. ENGINEER'S APPROVAL IS NEEDED FOR USE OF TYPE III CEMENT.			3.11.7.	GENERAL CONTRACTOR SHALL INCLUDE AN ALLOWANCE FOR STACKING OF PANELS OR RAT SLABS AS REQUIRED WHERE			5.2.6.	STEEL COLUMNS: ALL VERTICAL LOAD CARRYIN BEEN NOTED AS "COLUMNS" ON THE STRUCTUR	
	3.3.2.	COARSE AND FINE AGGREGATE: ASTM C33.				ADEQUATE CASTING AREA IS NOT AVAILABLE AT INTERIOR BUILDING SLAB ON GRADE AREAS.				NOTATION DOES NOT IDENTIFY THESE MEMBER	S AS "POSTS" OR
	3.3.3.	WATER SHALL BE CLEAN AND POTABLE.								"COLUMNS" AS DEFINED BY THE LATEST OSHA F COLUMN ANCHORAGE REQUIREMENTS (OSHA 2	9 CFR PARTS 1926.751
	3.3.4.	FLYASH: ASTM C618 CLASS C OR CLASS F								AND 1926.755). THE GENERAL CONTRACTOR, ST STEEL ERECTOR SHALL BE RESPONSIBLE TO DE	EEL DETAILER, AND
	3.3.5.	GROUND GRANULATED BLAST FURNACE SLAG (GGBFS): SHALL NOT								CORRECT OSHA DESIGNATION OF EACH MEMBE	R REGARDLESS OF
		BE PERMITTED.								THE NOTATION SHOWN ON THE STRUCTURAL D	
									527	PRE-ENGINEERED STEEL STAIRS AND CANOPIE	S THE

2

- BE PERMITTED.

5.2.7. PRE-ENGINEERED STEEL STAIRS AND CANOPIES: THE MANUFACTURER SHALL SUBMIT SHOP DRAWINGS AND CALCULATIONS SEALED BY A PROFESSIONAL ENGINEER LICENSED IN THE STATE OF THE PROJECT.

- 5.3. WELDING
- 5.3.1. ALL WELDING SHALL BE IN ACCORDANCE WITH THE "STRUCTURAL WELDING CODE," AWS D1.1, AWS D1.4 AND AWS D1.8 AS APPROPRIATE.
- 5.3.2. ALL WELDING SHALL BE BY CERTIFIED WELDERS; USE 70 KSI LOW HYDROGEN FILLER METAL, AND SHALL BE PROTECTED PER AWS D1.1 UNTIL USE. FOR ALL FULL PENETRATION WELDS, FILLER METAL SHALL BE NOTCH TOUGH TO MEET CHARPY V-NOTCH OF 20 FOOT-POUND AT -20°F.
- 5.3.3. NO WELDING OF REINFORCING STEEL SHALL BE ALLOWED EXCEPT WHERE SHOWN. ALL WELDING OF REINFORCEMENT SHALL BE PER ANSI/AWS D1.4. THE FOLLOWING FILLER METAL SHALL BE USED WHEN WELDING REINFORCEMENT:
 - A. FOR WELDING OF ASTM A706 GR 60 REBAR, 80 KSI FILLER METAL.
 - B. FOR WELDING OF ASTM A615 GR 60 REBAR, NOT PERMITTED.
 - C. FOR WELDING OF ASTM A615 GR 40 REBAR, NOT PERMITTED.
- 5.3.4. ALL FULL PENETRATION FIELD AND SHOP WELDS SHALL BE FULL TIME INSPECTED AND TESTED BY NON-DESTRUCTIVE PROCEDURES. RESULTS OF TESTS SHALL BE SUBMITTED FOR REVIEW BY THE STRUCTURAL ENGINEER.
- 5.4. WELDING PROCEDURE SPECIFICATION (WPS)
- 5.4.1. FOR ALL WELDING OF REINFORCING STEEL AND NON PREQUALIFIED WELDS CONTRACTOR SHALL SUBMIT A WELDING PROCEDURE SPECIFICATION (WPS) TO ENGINEER FOR APPROVAL. PRIOR TO WELDING, EACH WPS SHALL INCLUDE ALL NECESSARY INFORMATION REQUIRED BY AWS D1.1, AWS D1.4 AND AWS D1.8 AND AS FOLLOWS:
 - A. APPLICABLE BASE METAL TYPES AND THICKNESSES.
 - B. SKETCH OF JOINT INDICATING APPLICABLE DIMENSIONS. INDIVIDUAL PASSES SHALL BE IDENTIFIED AND NUMBERED TO IDENTIFY THE SEQUENCE. THE SKETCH SHALL IDENTIFY THE MAXIMUM THICKNESS AND BEAD WIDTH. IN NO CASE SHALL THE LAYER THICKNESS EXCEED 1/4" NOR THE BEAD WIDTH EXCEED 5/8." C. PREHEAT REQUIREMENTS.

 - D. ELECTRICAL CHARACTERISTICS (I.E., CURRENT, VOLTAGE, TRAVEL SPEED, ETC.).
 - E. ELECTRODE REQUIREMENTS SHALL MEET THE REQUIREMENTS OF AWS A5.1, AWS A5.5, AWS A5.17, AWS A5.23, AWS A5.18, AWS A5.20, AWS A5.28, AND AWS A5.29, AS APPLICABLE FOR WELDING METHOD USED.

5.5. STEEL JOISTS AND JOIST GIRDERS

- 5.5.1. DESIGN LOADS SHALL BE AS STATED IN THE DESIGN CRITERIA SECTION OF THESE NOTES PLUS ANY SPECIAL LOADS INDICATED ON THE DRAWINGS. UNLESS OTHERWISE NOTED, MINIMUM DESIGN LOADS SHALL INCLUDE:
 - A. WHERE PRIMARY ROOF MEMBERS ARE EXPOSED TO A WORK FLOOR A SINGLE NON-CONCURRENT CONCENTRATED LIVE LOAD OF 2000 LBS SHALL BE LOCATED AT ANY PANEL POINT ALONG THE TRUSS BOTTOM CHORD.
 - B. AT ROOF JOISTS AND JOIST GIRDERS, A MINIMUM NET UPLIFT LOAD OF 10 PSF.
- STEEL JOISTS AND JOIST GIRDERS SHALL BE MANUFACTURED PER 5.5.2. THE LATEST EDITION OF THE STANDARD SPECIFICATIONS FOR STEEL JOISTS AND JOIST GIRDERS PUBLISHED BY THE STEEL JOIST INSTITUTE.
- 5.5.3. ALL STEEL JOISTS AND JOISTS GIRDERS SHALL BE MANUFACTURED BY A FABRICATOR CURRENTLY APPROVED BY ICC (INTERNATIONAL CODE COUNCIL). MANUFACTURER SHALL BE A MEMBER OF SJI, AND ALL STEEL JOISTS AND JOIST GIRDERS SHALL BE SJI APPROVED.
- 5.5.4. THE MANUFACTURER SHALL SUBMIT SHOP DRAWINGS AND CALCULATIONS SEALED BY A PROFESSIONAL ENGINEER LICENSED IN THE STATE OF THE PROJECT.
- 5.5.5. IT SHALL BE THE RESPONSIBILITY OF THE MANUFACTURER, THE GENERAL CONTRACTOR, AND THE ERECTOR TO MANUFACTURE AND INSTALL ALL STEEL JOISTS AND JOIST GIRDERS IN CONFORMANCE WITH THE MOST CURRENT OSHA RULES (OSHA 29 CFR PART 1926.757).
- 5.5.6. LIMIT LIVE LOAD AND/OR SNOW LOAD DEFLECTION TO L/240 FOR ROOF FRAMING MEMBERS.
- 5.5.7. THE JOIST MANUFACTURER SHALL DESIGN THE JOISTS FOR UNIFORM LOADS INDICATED ON THE STRUCTURAL DRAWINGS AS WELL AS ALL SPECIAL LOADS NOTED ON THE STRUCTURAL PLANS AND DETAILS. SPECIAL LOADS SHALL INCLUDE POINT LOADS FOR SUPPORT OF SECONDARY FRAMING, OVERFRAMING AND SUPPORTED EQUIPMENT (MECHANICAL UNITS, SUSPENDED EQUIPMENT, ETC.).
- 5.5.8. THE JOIST MANUFACTURER SHALL COORDINATE JOIST BRIDGING AT EXPOSED LOCATIONS FOR ARCHITECTURAL APPEARANCE. BRIDGING LOCATIONS SHALL ALSO BE COORDINATED TO AVOID CONFLICTS WITH MECHANICAL DUCTWORK, SKYLIGHTS AND OTHER BUILDING SYSTEMS.

6. CARPENTRY

DIMENSION LUMBER SHALL BE DF.#2 SAWN LUMBER BEAMS, HEADERS AND COLUMNS SHALL BE DF#2 OR AS SHOWN ON THE DRAWINGS. ALL 2" NOMINAL LUMBER SHALL BE KILN DRIED (KD). EACH PIECE OF LUMBER SHALL BEAR STAMP OF WEST COAST LUMBER INSPECTION BUREAU (WCLIB) AND/OR WESTERN WOOD PRODUCTS ASSOCIATION (WWPA) SHOWING GRADE MARK.

- 6.1. PRESSURE-PRESERVATIVE TREATMENT IN ACCORDANCE WITH AMERICAN WOOD PROTECTION ASSOCIATION (AWPA) STANDARD U1, LATEST EDITION TO THE USE CATEGORY AS FOLLOWS:
- 6.1.1. TREAT ALL WOOD IN CONTACT WITH CONCRETE, MORTAR, GROUT, MASONRY AND WITHIN 12" OF EARTH TO THE REQUIREMENTS OF USE CATEGORY UC2 (INTERIOR/DAMP).

6.2. CARPENTRY HARDWARE

- 6.2.1. MACHINE BOLTS SHALL BE ASTM A-307.
- 6.2.2. PROVIDE MALLEABLE IRON WASHERS (MIW) OR HEAVY PLATE CUT WASHERS WHERE BOLT HEADS, NUTS OR LAG SCREWS BEAR ON WOOD.
- 6.2.3. NAILS SHALL BE COMMON, AMERICAN OR CANADIAN MANUFACTURER ONLY WITH MIN. DIAMETERS AS FOLLOWS:

NAIL	MINIMUM	MINIMUM
SIZE	NAIL SHANK	NAIL
	DIAMETER	LENGTH
8d	0.131"	2 1/2"
10d	0.148"	3"
12d	0.148"	3 1/4"
16d SINKER	0.148"	3 1/4"
16d	0.162"	3 1/2"
20d	0.192"	4"

NELSON

Nelco Architecture, Inc.

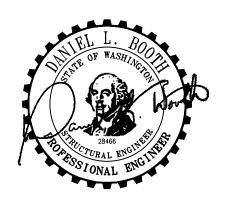
1200 Fifth Ave. Suite 1300 Seattle, WA 98101 Phone: (206) 408-8500 WWW.NELSONWORLDWIDE.COM

PANATTONI[®]

PANATTONI DEVELOPMENT 1821 DOCK ST SUITE 100 TACOMA, WA 98402

PUYALLUP CORPORATE CENTER

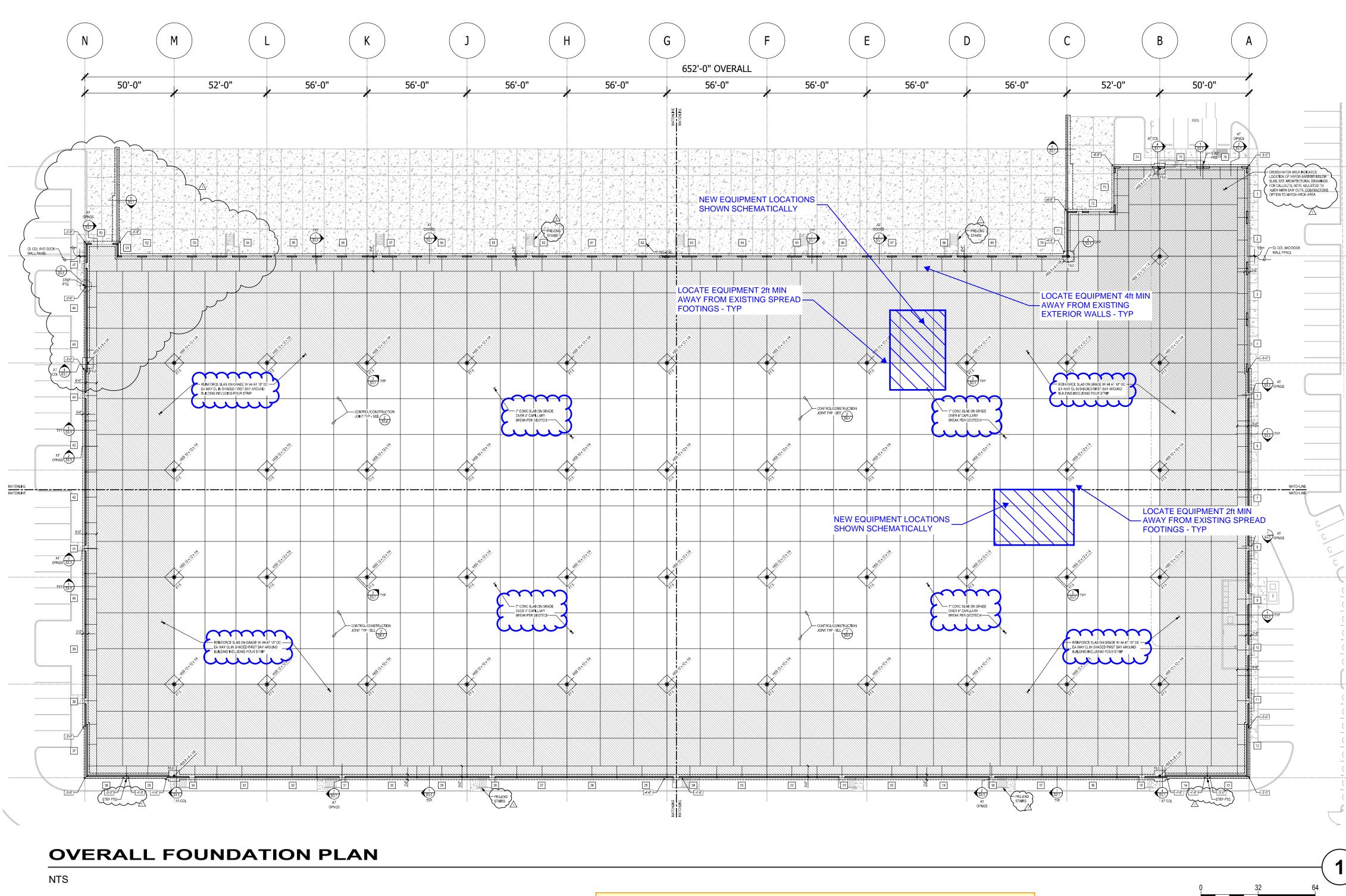
EAST MAIN AVENUE AT LINDEN LANE PUYALLUP, WASHINGTON


1

Description.	Г
PERMIT SUBMITTAL	
PRICING SET	
PERMIT RESUBMITTAL	_

Date 04/03/2020 07/21/2020 08/24/2020

2215 North 30th Street, Suite 300 Tacoma, WA 98403 253.383.2422 TEL 253.383.2572 FAX www.ahbl.com WEB



STRUCTURAL NOTES

Proj. No: 2190390.20 Reviewed By: LAH/CLR

FOOTING SCHEDULE				
MARK	SIZE	REINFORCING	REMARKS	
F6.0	6'-0" x 6'-0" x 1'-2"	(7) #5 EACH WAY AT BOTTOM OF FOOTING		
F7.5	7'-6" x 7'-6" x 1'-4"	(7) #6 EACH WAY AT BOTTOM OF FOOTING		

Provide location of placement of the Environmental Chamber on foundation plan to indicate where it will be installed. Page S1.0

FOOTINGS SCHEDULE NOTES:

1. TOP OF FOOTING ELEVATION = -1'-0" UNLESS NOTED OTHERWISE ON PLAN.

2. FOOTING DESIGN BASED ON 2500 PSF ALLOWABLE SOIL BEARING PRESSURE.

3. EQUALLY SPACE REINFORCING IN EACH DIRECTION.

4. PROVIDE 3" CLEAR TO REINFORCING AT BOTTOM OF FOOTING.

FOUNDATION NOTES:

- 1. SEE SHEET S0.1 AND S0.2 FOR GENERAL NOTES. SEE SHEET S0.4 FOR TYPICAL DETAILS. SEE SHEET S0.3 FOR TESTING AND INSPECTION NOTES.
- 2. SEE GEOTECHNICAL ENGINEERING REPORT FOR ALL FOUNDATION AND SLAB SUPPORT REQUIREMENTS. THIS INCLUDES ALL EXCAVATION, FILL AND FILL PLACEMENT REQUIREMENTS.
- 3. SEE ARCHITECTURAL/MECHANICAL DRAWINGS FOR DRAINS, SLOPES, AND OTHER FLOOR DEPRESSIONS NOT SHOWN.
- 4. SEE ARCHITECTURAL DRAWINGS FOR DIMENSIONS, ELEVATIONS, AND WALLS NOT SHOWN.
- 5. VERIFY ALL WINDOW AND DOOR WIDTH AND HEIGHTS WITH ARCHITECTURAL DRAWINGS. 6. SEE ARCHITECTURAL DRAWINGS FOR STUD SIZE, SPACING, AND CALLOUTS AT
- NON-STRUCTURAL WALLS. 7. FOR TYPICAL CONNECTION OF NON-LOAD BEARING WALLS TO SLAB, USE POWER
- ACTUATED FASTENERS AT 16" O.C. 8. PANEL DIMENSIONS SHOWN ARE TO CENTERLINE OF PANEL JOINT. SEE ARCHITECTURAL DRAWINGS FOR ADDITIONAL PANEL DIMENSIONS.
- 9. ELEVATIONS OF PANELS ARE SHOWN STARTING ON SHEET S5.1 THROUGH S5.6.
- 10. UNLESS NOTED OTHERWISE, TILT-UP PANEL ELEVATIONS SHOW PANELS VIEWED FROM INSIDE OF BUILDING LOOKING TOWARDS BUILDING EXTERIOR.
- 11. POUR STRIP CONTROL JOINTS, LOCATE AT PANEL JOINTS AND MIDWAY BETWEEN. AT TURNS IN POUR STRIP ADD JOINTS FROM MAIN SLAB TO OUTSIDE WALL.
- 12. SEE 1/S3.2 FOR TRASH ENCLOSURE. SEE ARCHITECTURAL SITE PLAN FOR LOCATION.

LEGEND:

TILT-UP CONCRETE WALL. FOR REINFORCING REQUIREMENTS AND JOINT LOCATIONS, SEE TILT-UP CONCRETE PANEL ELEVATIONS ON SHEETS S5.1 THRU S5.6.

PANEL JOINT BETWEEN TILT-UP CONCRETE WALL PANELS.

Nelco Architecture, Inc.

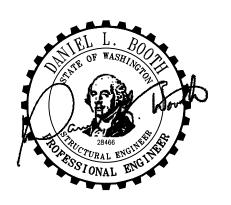
NELSON

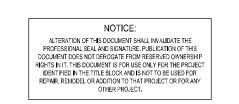
1200 Fifth Ave. Suite 1300 Seattle, WA 98101 Phone: (206) 408-8500 WWW.NELSONWORLDWIDE.COM

PANATTONI DEVELOPMENT 1821 DOCK ST SUITE 100 TACOMA, WA 98402

PUYALLUP CORPORATE CENTER

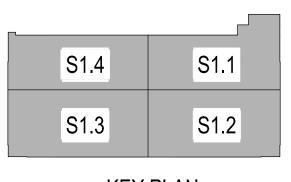
EAST MAIN AVENUE AT LINDEN LANE PUYALLUP, WASHINGTON

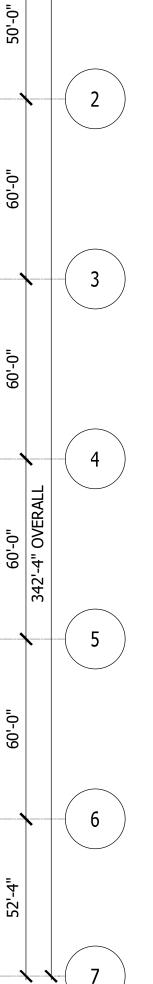

 Δ


Description:	N
PERMIT SUBMITTAL	
PRICING SET	
PERMIT RESUBMITTAI	L

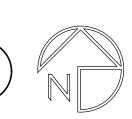
Date 04/03/2020 07/21/2020 08/24/2020

2215 North 30th Street, Suite 300 Tacoma, WA 98403 253.383.2422 TEL 253.383.2572 FAX www.ahbl.com WEB




OVERALL FOUNDATION PLAN

Proj. No: 2190390.20 Reviewed By: LAH/CLR


S1.0

 \mathbf{N} (1

SCALE IN FEET

TABLE 1607.1 MINIMUM UNIFORMLY DISTRIBUTED LIVE LOADS, Lo, AND MINIMUM CONCENTRATED LIVE LOADS⁹

	AND MINIMUM CONCEN		
	OCCUPANCY OR USE	UNIFORM (psf)	CONCENTRATED (pounds)
F	1. Apartments (see residential)	_	_
Ē	2. Access floor systems		
	Office use	50	2,000
	Computer use	100	2,000
	3. Armories and drill rooms	150 ⁿ	—
	4. Assembly areas Fixed seats (fastened to floor) Follow spot, projections and	60 ^m	
	control rooms Lobbies Movable seats Stage floors	$50 \\ 100^{m} \\ 100^{m} \\ 150^{n}$	_
	Platforms (assembly) Other assembly areas	100 ^m 100 ^m	
	5. Balconies and decks ^h	1.5 times the live load for the area served, not required to exceed 100	_
_ T	6. Catwalks	40	300
ŀ	7. Cornices	60	
	8. Corridors First floor Other floors	100 Same as occupancy served except as indicated	
Г	9. Dining rooms and restaurants	100 ^m	—
Γ	10. Dwellings (see residential)	—	—
	 Elevator machine room and controlroom grating (on area of 2 inches by 2 inches) 	_	300
	12. Finish light floor plate construction (on area of 1 inch by 1 inch)	_	200
	13. Fire escapes On single-family dwellings only	100 40	—
	14. Garages (passenger vehicles only) Trucks and buses	40° See Sect	Note a ion 1607.7
	15. Handrails, guards and grab bars	See Sect	ion 1607.8
Γ	16. Helipads	See Sect	ion 1607.6
	17. Hospitals Corridors above first floor Operating rooms, laboratories Patient rooms	80 60 40	1,000 1,000 1,000
	18. Hotels (see residential)		
	19. Libraries Corridors above first floor Reading rooms Stack rooms	80 60 150 ^{b, n}	1,000 1,000 1,000
	20. Manufacturing Heavy Light	250 ⁿ 125 ⁿ	3,000 2,000
	21. Marquees, except one- and two-family dwellings	75	_
	22. Office buildings Corridors above first floor File and computer rooms shall be designed for heavier loads based on anticipated occupancy	80	2,000
	Lobbies and first-floor corridors Offices	100 50	2,000 2,000

TABLE 1607.1—continued MINIMUM UNIFORMLY DISTRIBUTED LIVE LOADS, L_{o} , AND MINIMUM CONCENTRATED LIVE LOADS⁹

AND MINIMUM CONCENTR		LUADS [®]
OCCUPANCY OR USE	UNIFORM (psf)	CONCENTRATED (pounds)
23. Penal institutions		
Cell blocks	40	
Corridors	100	
24. Recreational uses: Bowling alleys, poolrooms and		
similar uses	75 ^m	
Dance halls and ballrooms	100 ^m	
Gymnasiums	100 ^m	
Ice skating rink	250 ⁿ	—
Reviewing stands, grandstands	1000 0	
and bleachers	100 ^{c, m}	
Roller skating rink Stadiums and arenas with fixed	100 ^m	
seats (fastened to floor)	60 ^{c, m}	
25. Residential		
One- and two-family dwellings		
Uninhabitable attics without	10	
storagei	10	
Uninhabitable attics with storage ^{i, j, k} Habitable attics and sleeping areas ^k	20 30	
Canopies, including marquees	30 20	_
All other areas	20 40	
Hotels and multifamily dwellings	-	
Private rooms and corridors		
serving them	40	
Public roomsm and corridors	100	
serving them	100	
26. Roofs		
All roof surfaces subject to main-		
tenance workers		300
Awnings and canopies:	5 ^m	
Fabric construction supported by a skeleton structure	5	
All other construction, except one-		
and two-family dwellings	20	
Ordinary flat, pitched, and curved		
roofs (that are not occupiable)	20	
Primary roof members exposed to a		
work floor		
Single panel point of lower chord		
of roof trusses or any point along primary structural members		
supporting roofs over manufac-		
turing, storage warehouses, and		
repair garages		2,000
All other primary roof members		300
Occupiable roofs:		
Roof gardens	100	
Assembly areas All other similar areas	100 ^m Note 1	Note 1
	Note 1	Note 1
27. Schools Classrooms	40	1,000
Corridors above first floor	80	1,000
TITS THEORY OD THE S		1,000
28. Scuttles, skylight ribs and accessible	_	200
ceilings 29 Sidewiks, vehicula, develops, and d		
yards, subject to trucking	250***	8,000
30. Stairs and exits		
		apof
One- and two-family dwellings All other	40 100	300 ^f 300 ^f

(continued)

2018 INTERNATIONAL BUILDING CODE®

INTERNATIONAL CODE COUNCIL®

368

Copyright © 2017 ICC. ALL RIGHTS RESERVED. Accessed by Eric Fitch on Mar 21, 2018 8:11:26 AM pursuant to License Agreement with ICC. No further reproduction or distribution authorized. ANY UNAUTHORIZED REPRODUCTION OR DISTRIBUTION IS A VIOLATION OF THE FEDERAL COPYRIGHT ACT AND THE LICENSE AGREEMENT, AND SUBJECT TO CIVIL AND CRIMINAL PENALTIES THEREUNDER.

A This is a beta release of the new ATC Hazards by Location website. Please contact us with feedback.

1 The ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

ATC Hazards by Location

Search Information

Coordinates:	47.19119836700967, -122.2611706795929
Elevation:	55 ft
Timestamp:	2022-10-05T02:44:43.491Z
Hazard Type:	Wind

Man chta ©2022 Imagery ©2022 , Maxar Technologies, U.S. Geological Survey, USDA/FPAC/GEO

ASCE 7-16	ASCE 7-10	ASCE 7-05
MRI 10-Year 67 mph	MRI 10-Year 72 mph	ASCE 7-05 Wind Speed 85 mph
MRI 25-Year 73 mph	MRI 25-Year 79 mph	
MRI 50-Year 78 mph	MRI 50-Year 85 mph	
MRI 100-Year	MRI 100-Year 91 mph	
Risk Category I 92 mph	Risk Category I 100 mph	
Risk Category II 97 mph	Risk Category II 110 mph	
Risk Category III	Risk Category III-IV 115 mph	
Risk Category IV 108 mph		

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Please note that the ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

Disclaimer

Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer. Per ASCE 7, islands and coastal areas outside the last contour should use the last wind speed contour of the coastal area – in some cases, this website will extrapolate past the last wind speed contour and therefore, provide a wind speed that is slightly higher. NOTE: For queries near wind-borne debris region boundaries, the resulting determination is sensitive to rounding which may affect whether or not it is considered to be within a wind-borne debris region.

Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind conditions.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

1607.13.5.1 Roof live load. Roof structures that support photovoltaic panel systems shall be designed to resist each of the following conditions:

1. Applicable uniform and concentrated roof loads with the photovoltaic panel system dead loads.

Exception: Roof live loads need not be applied to the area covered by photovoltaic panels where the clear space between the panels and the roof surface is 24 inches (610 mm) or less.

2. Applicable uniform and concentrated roof loads without the photovoltaic panel system present.

1607.13.5.2 Photovoltaic panels or modules. The structure of a roof that supports solar photovoltaic panels or modules shall be designed to accommodate the full solar photovoltaic panels or modules and ballast dead load, including concentrated loads from support frames in combination with the loads from Section 1607.13.5.1 and other applicable loads. Where applicable, snow drift loads created by the photovoltaic panels or modules shall be included.

1607.13.5.2.1 Photovoltaic panels installed on open grid roof structures. Structures with open grid framing and without a roof deck or sheathing supporting photovoltaic panel systems shall be designed to support the uniform and concentrated roof live loads specified in Section 1607.13.5.1, except that the uniform roof live load shall be permitted to be reduced to 12 psf (0.57 kN/m²).

1607.13.5.3 Photovoltaic panels or modules installed as an independent structure. Solar photovoltaic panels or modules that are independent structures and do not have accessible/occupied space underneath are not required to accommodate a roof photovoltaic live load, provided that the area under the structure is restricted to keep the public away. Other loads and combinations in accordance with Section 1605 shall be accommodated.

Solar photovoltaic panels or modules that are designed to be the roof, span to structural supports and have accessible/occupied space underneath shall have the panels or modules and all supporting structures designed to support a roof photovoltaic live load, as defined in Section 1607.13.5.1 in combination with other applicable loads. Solar photovoltaic panels or modules in this application are not permitted to be classified as "not accessible" in accordance with Section 1607.13.5.1.

1607.13.5.4 Ballasted photovoltaic panel systems. Roof structures that provide support for ballasted *pho-tovoltaic panel systems* shall be designed, or analyzed, in accordance with Section 1604.4; checked in accordance with Section 1604.3.6 for deflections; and checked in accordance with Section 1611 for ponding.

1607.14 Crane loads. The crane live load shall be the rated capacity of the crane. Design loads for the runway beams, including connections and support brackets, of moving bridge cranes and monorail cranes shall include the maximum wheel loads of the crane and the vertical impact, lateral and longitudinal forces induced by the moving crane.

1607.14.1 Maximum wheel load. The maximum wheel loads shall be the wheel loads produced by the weight of the bridge, as applicable, plus the sum of the rated capacity and the weight of the trolley with the trolley positioned on its runway at the location where the resulting load effect is maximum.

1607.14.2 Vertical impact force. The maximum wheel loads of the crane shall be increased by the following percentages to determine the induced vertical impact or vibration force:

1607.14.3 Lateral force. The lateral force on crane runway beams with electrically powered trolleys shall be calculated as 20 percent of the sum of the rated capacity of the crane and the weight of the hoist and trolley. The lateral force shall be assumed to act horizontally at the traction surface of a runway beam, in either direction perpendicular to the beam, and shall be distributed with due regard to the lateral stiffness of the runway beam and supporting structure.

1607.14.4 Longitudinal force. The longitudinal force on crane runway beams, except for bridge cranes with hand-geared bridges, shall be calculated as 10 percent of the maximum wheel loads of the crane. The longitudinal force shall be assumed to act horizontally at the traction surface of programs in cither direction parallel to the beam.

1607.15 Interior walls and partitions. Interior walls and partitions that exceed 6 feet (1829 mm) in height, including their finish materials, shall have adequate strength and stiffness to resist the loads to which they are subjected but not less than a horizontal load of 5 psf (0.240 kN/m²).

160% 1A1 Rabric partitions Fabrid partitions had exceed

6 feet (1829 mm) in height, including their finish materials, shall have adequate strength and stiffness to resist the following load conditions:

- 1. The horizontal distributed load need only be applied to the partition framing. The total area used to determine the distributed load shall be the area of the fabric face between the framing members to which the fabric is attached. The total distributed load shall be uniformly applied to such framing members in proportion to the length of each member.
- 2. A concentrated load of 40 pounds (0.176 kN) applied to an 8-inch-diameter (203 mm) area [50.3 square inches (32 452 mm²)] of the fabric face at a height of 54 inches (1372 mm) above the floor.

1607.15.2 Fire walls. In order to meet the structural stability requirements of Section 706.2 where the structure on either side of the wall has collapsed, fire walls and their supports shall be designed to withstand a minimum horizontal allowable stress load of 5 psf (0.240 kN/m²).

2018 INTERNATIONAL BUILDING CODE®

INTERNATIONAL **CODE COUNCIL**®

Copyright © 2017 ICC. ALL RIGHTS RESERVED. Accessed by Eric Fitch on Mar 21, 2018 8:11:26 AM pursuant to License Agreement with ICC. No further reproduction or distribution authorized. ANY UNAUTHORIZED REPRODUCTION OR DISTRIBUTION IS A VIOLATION OF THE FEDERAL COPYRIGHT ACT AND THE LICENSE AGREEMENT, AND SUBJECT TO CIVIL AND CRIMINAL PENALTIES THEREUNDER.

A This is a beta release of the new ATC Hazards by Location website. Please <u>contact us</u> with feedback.

1 The ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

Search Information

Coordinates:	47.19119836700967, -122.2611706795929
Elevation:	55 ft
Timestamp:	2022-10-05T02:47:09.267Z
Hazard Type:	Seismic
Reference Document:	ASCE7-16
Risk Category:	II
Site Class:	D-default

Basic Parameters

Name	Value	Description
S _S	1.258	MCE _R ground motion (period=0.2s)
S ₁	0.433	MCE _R ground motion (period=1.0s)
S _{MS}	1.509	Site-modified spectral acceleration value
S _{M1}	* null	Site-modified spectral acceleration value
S _{DS}	1.006	Numeric seismic design value at 0.2s SA
S _{D1}	* null	Numeric seismic design value at 1.0s SA

* See Section 11.4.8

Additional Information

Name	Value	Description
SDC	* null	Seismic design category
Fa	1.2	Site amplification factor at 0.2s
Fv	* null	Site amplification factor at 1.0s
CR _S	0.914	Coefficient of risk (0.2s)
CR ₁	0.898	Coefficient of risk (1.0s)
PGA	0.5	MCE _G peak ground acceleration
F _{PGA}	1.2	Site amplification factor at PGA

https://hazards.atcouncil.org/#/seismic?lat=47.19119836700967&lng=-122.2611706795929&address=

	PGA _M	0.6	Site modified peak ground acceleration
	ΤL	6	Long-period transition period (s)
	SsRT	1.258	Probabilistic risk-targeted ground motion (0.2s)
	SsUH	1.376	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
	SsD	1.5	Factored deterministic acceleration value (0.2s)
	S1RT	0.433	Probabilistic risk-targeted ground motion (1.0s)
	S1UH	0.482	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
	S1D	0.6	Factored deterministic acceleration value (1.0s)
	PGAd	0.5	Factored deterministic acceleration value (PGA)

* See Section 11.4.8

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Please note that the ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

AHBL Inc. JOB TITLE Red Dot - Equipment 2215 N. 30th St. Tacoma, WA 98403 JOB NO. 2220760.20 SHEET NO. 253-383-2422 CALCULATED BY DATE CHECKED BY ADM 8/8/23 DATE Seismic Loads: **IBC 2018** Strength Level Forces **Risk Category :** Ш Importance Factor (I) : 1.00 Site Class : D - code default Ss (0.2 sec) = 125.80 %g S1 (1.0 sec) = 43.30 %g A site specific ground motion analysis is required for seismically isolated structures or with damping systems, see ASCE7 11.4.8 S_{DS} = Fa = 1.200 Sms = 1.510 1.006 Design Category = D 1.867 0.808 D Fv = Sm1 = S_{D1} = 0.539 Design Category = Seismic Design Category = D Redundancy Coefficient ρ = 1.00 Code exception must be met for p to equal 1.0 Number of Stories: 1 Structure Type: All other building systems Horizontal Struct Irregularities:No plan Irregularity Vertical Structural Irregularities:No vertical Irregularity Flexible Diaphragms: No Building System: Bearing Wall Systems Seismic resisting system: Light frame walls with shear panels - all other materials System Structural Height Limit: 35 ft Actual Structural Height (hn) = 16.9 ft See ASCE7 Section 12.2.5 for exceptions and other system limitations **DESIGN COEFFICIENTS AND FACTORS** Response Modification Coefficient (R) = 2 Over-Strength Factor (Ωo) = 2.5 Deflection Amplification Factor (Cd) : 2 S_{DS} = 1.000 (Sds modified for Cs & Ev calculation since $S_{D1} =$ 0.539 meets ASCE 7 section 12.8.1.3 Seismic Load Effect (E) = Eh +/-Ev = ρC_E +/- 0.2S_{DS} D Q_F = horizontal seismic force = Qe +/- 0.200D Special Seismic Load Effect (Em) : Emh +/- Ev = Ωo C_E +/- 0.2S_{DS} D = 2.5Qe +/- 0.201D D = dead loac PERMITTED ANALYTICAL PROCEDURES Simplified Analysis - Use Equivalent Lateral Force Analysis Equivalent Lateral-Force Analysis - Permittec Building period coef. $(C_T) =$ Cu = 1.40 0.020 Approx fundamental period (Ta) : $C_T h_n^{-} =$ 0.167 sec x= 0.75 Tmax = CuTa = 0.233 User calculated fundamental period (T) = Use T = 0.167 sec Long Period Transition Period (TL) = 6 ASCE7 map = Seismic response coef. (Cs) = Sdsl/R = 0.500 ASCE7 11.4.8 exception 2 equations used but not less than Cs = 0.044Sdsl = 0.044 USE Cs = 0.500 Design Base Shear V = 0.500W Model & Seismic Response Analysis - Permitted (see code for procedure) ALLOWABLE STORY DRIFT Structure Type: All other structures

Allowable story drift $\Delta a = 0.020$ hsx where hsx is the story height below level x

3.3 Groundwater

We observed light to moderate groundwater seepage in 6 of the 14 test pits at depths ranging from 7.5 to 10 feet below existing site grades. Additionally, we observed wet soil from 7.5 to 10 feet in 8 of the test pits. We performed two pore water dissipation tests. One at CPT-1 and one at CPT-5. Based on the test results, the static groundwater level was indicated to be at a depth of four to seven feet below current site grades. Fluctuations in the static groundwater level will occur seasonally. Based on the time of year of our testing, we expect the groundwater levels indicated to be near their seasonal lows. Typically, groundwater will reach maximum levels during the wet winter months.

3.4 Seismic

Liquefaction is a phenomenon where there is a reduction or complete loss of soil strength due to an increase in water pressure induced by vibrations. Liquefaction mainly affects geologically recent deposits of fine-grained sands underlying the groundwater table. Soils of this nature derive their strength from intergranular friction. The generated water pressure or pore pressure essentially separates the soil grains and eliminates this intergranular friction; thus, eliminating the soil's strength.

We completed a liquefaction analysis using the computer program LiquefyPro published by CivilTech Corporation. The analysis was completed using a ground acceleration value of 0.55g, which is the ASCE 7-16 site-modified peak ground acceleration value (PGA_M) determined using the map-based online ground motion parameter calculator at https://seismicmaps.org/ for Latitude 47.191033°N and Longitude 122.261465°W. The results of the liquefaction analysis are attached in Appendix B.

The results of our analysis indicate soil liquefaction could occur during the design earthquake event. Analysis indicates that liquefaction of the alluvial soil layers could result in total settlements between three and three and one half inches, half of which could be differential. If unmitigated, these settlements would result in some cracking of building walls and floor slabs, as well as distortion of doors and windows, but would not structurally impair the building's use, in our opinion. If the Owner is not willing to accept the risk associated with the potential settlements due to liquefaction of the site soils, the building should be supported on densified aggregate piers.

Based on the soil conditions encountered and the local geology, the 2018 International Building Code (IBC) indicates that site class "D" should be used in structural design.

4.0 DISCUSSION AND RECOMMENDATIONS

4.1 General

Based on our study, in our opinion, development of the site as proposed is feasible from a geotechnical engineering standpoint. The primary geotechnical concern at the site is the presence of compressible soil strata susceptible to consolidation under the planned fill placement and building loads. If unmitigated, compression of these soft soils under project loads would result in unacceptable levels of differential settlement.

4.4 Foundations

Spread Footings

The industrial building may be supported on conventional spread footing foundations bearing on foundation subgrade prepared as recommended in Section 4.2 of this report. Perimeter foundations exposed to the weather should bear at a minimum depth of 1.5 feet below final exterior grades for frost protection. Interior foundations can be constructed at any convenient depth below the floor slab.

Following the completion of a successful surcharge program, we recommend designing foundations for a net allowable bearing capacity of 2,500 pounds per square foot (psf). For short-term loads, such as wind and seismic, a one-third increase in this allowable capacity can be used in design. Following successful completion of the surcharge program, with structural loading as anticipated and this bearing stress applied, estimated immediate foundation settlements of about 1-inch and differential settlement of ½-inch should be expected.

For designing foundations to resist lateral loads, a base friction coefficient of 0.35 can be used. Passive earth pressures acting on the sides of the footings can also be considered. We recommend calculating this lateral resistance using an equivalent fluid weight of 300 pounds per cubic foot (pcf). We recommend not including the upper 12 inches of soil in this computation because it can be affected by weather or disturbed by future grading activity. This value assumes the foundations will be backfilled with structural fill, as described in Section 4.2 of this report. The values recommended include a safety factor of 1.5.

Ground Improvement

As discussed above, as a foundation support alternative in lieu of implementing a surcharge fill program, we recommend using ground improvement techniques to establish support for conventional spread footing designs. Methods that could be considered include vibrated stone columns or aggregate rammed piers. Both of these methods create highly densified columns of graded aggregate that would extend through the upper softer soils into the underlying medium dense soils.

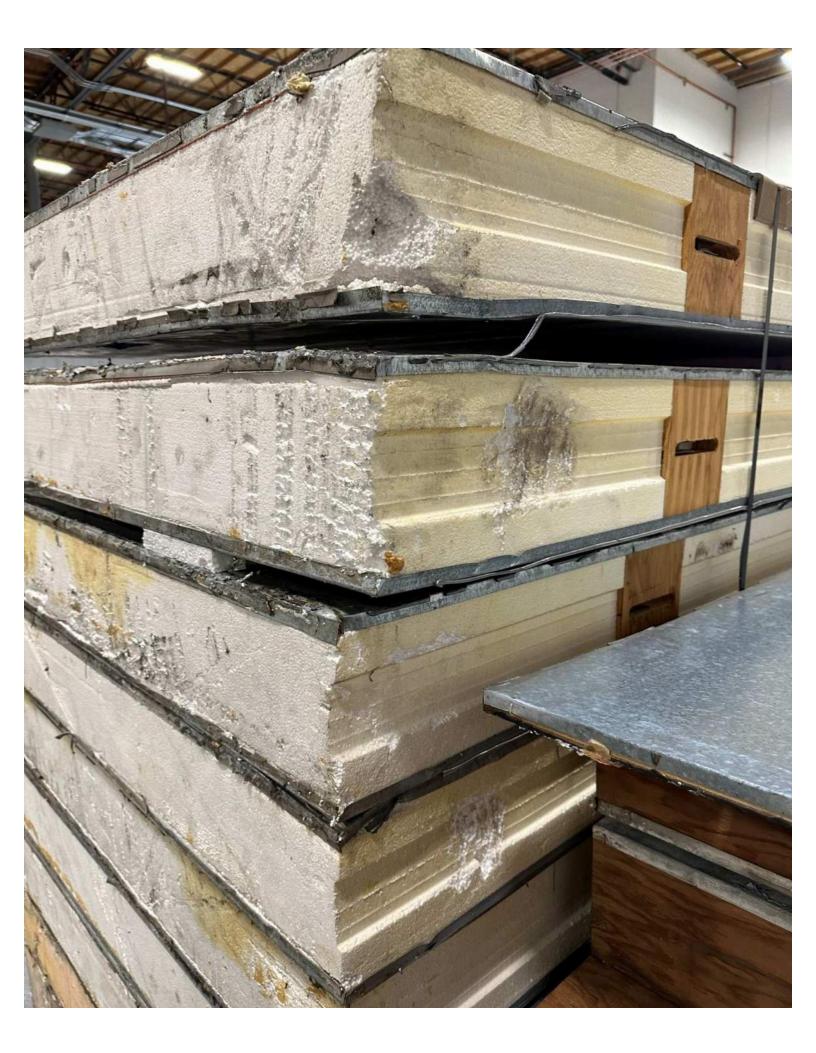
Because of the methods used to construct the columns, some improvement of the adjacent soils is also realized. Moreover, these methods can provide liquefaction mitigation by providing drainage paths and reduced pore pressures during ground shaking, and by constructing relatively high strength, non-liquefiable inclusions in the soils. Once constructed, conventional spread footing foundations can be designed to bear immediately above the stone column/aggregate pier locations.

These ground improvement techniques are typically completed on a design/build approach with both design and construction completed by a specialty contractor. We can assist in selecting the specialty contractor, if desired.

4.5 Slab-on-Grade Floors

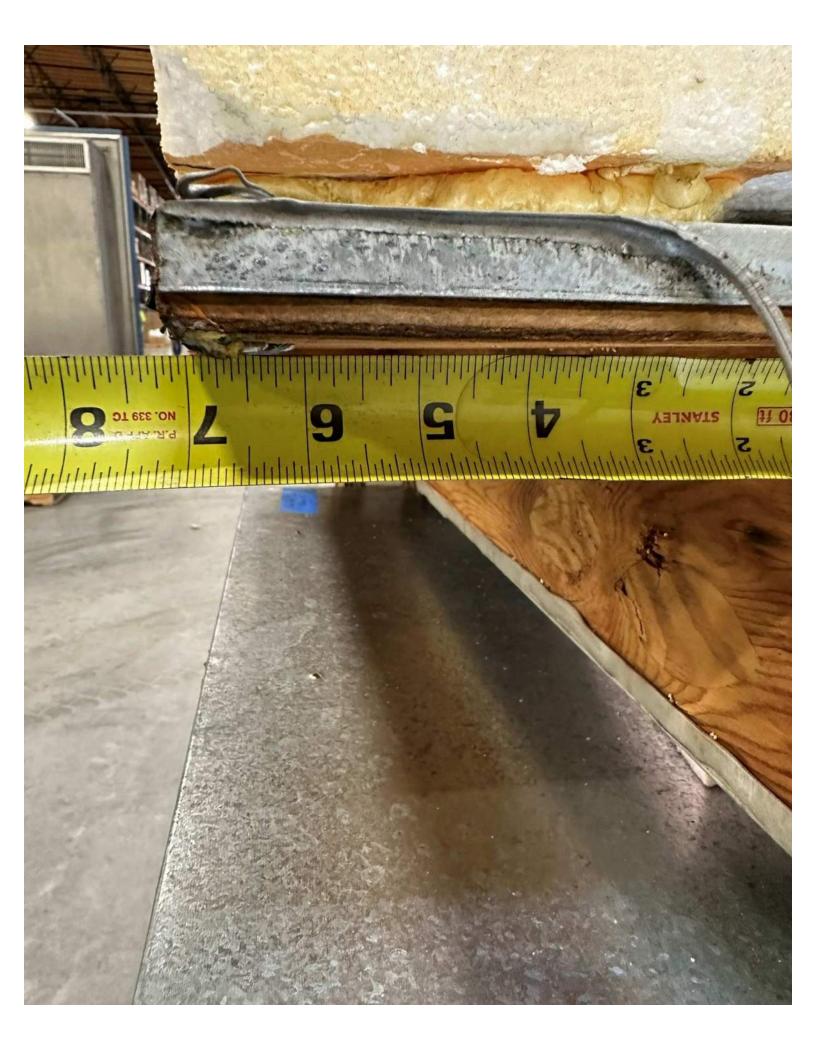
Slab-on-grade floors may be supported on a subgrade as recommended in Section 4.2. Immediately below the floor slab, we recommend placing a four-inch thick capillary break layer composed of clean, coarse sand or fine gravel that has less than three percent passing the No. 200 sieve. This material will reduce the potential for upward capillary movement of water through the underlying soil and subsequent wetting of the floor slab.

The capillary break layer will not prevent moisture intrusion through the slab caused by water vapor transmission. Where moisture by vapor transmission is undesirable, such as covered floor areas, a common practice is to place a durable plastic membrane on the capillary break layer and then cover the membrane with a layer of clean sand or fine gravel to protect it from damage during construction, and to aid in uniform curing of the concrete slab. It should be noted that if the sand or gravel layer overlying the membrane is saturated prior to pouring the slab, it will not be effective in assisting uniform curing of the slab and can actually serve as a water supply for moisture bleeding through the slab, potentially affecting floor coverings. Therefore, in our opinion, covering the membrane with a layer of sand or gravel should be avoided if floor slab construction occurs during the wet winter months and the layer cannot be effectively drained. We recommend floor designers and contractors refer to the current American Concrete Institute (ACI) Manual of Concrete Practice for further information regarding vapor barrier installation below slab-on-grade floors.

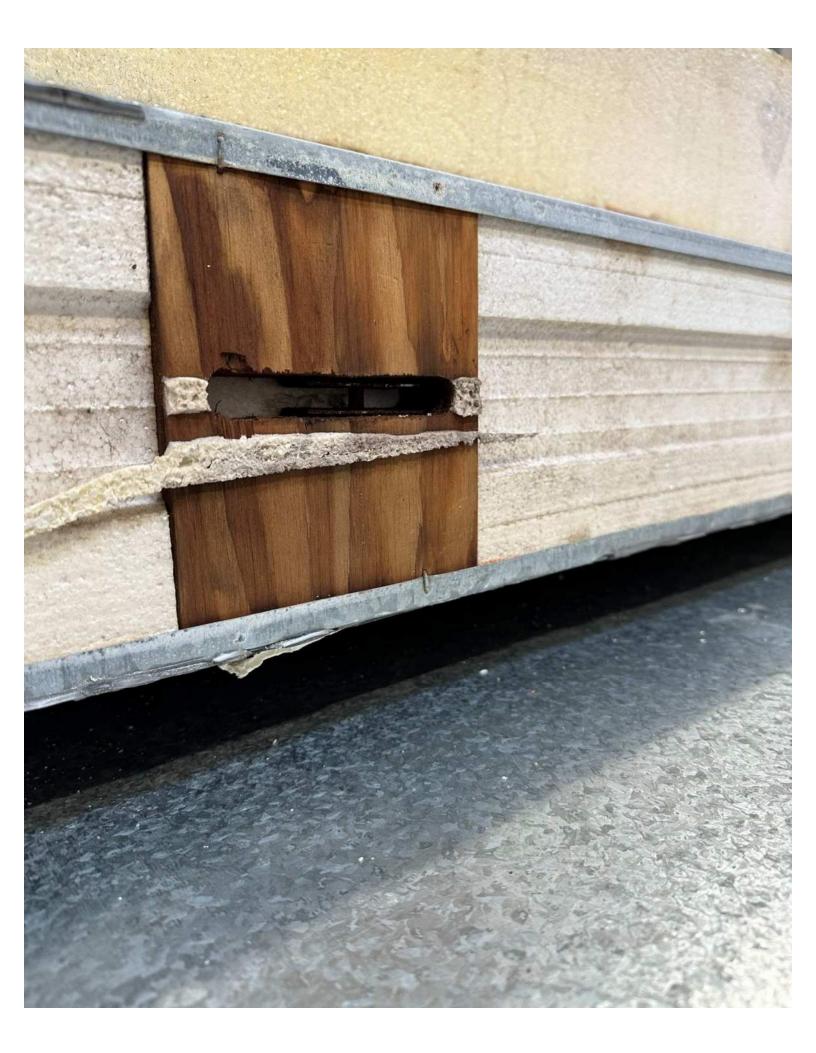

4.6 Infiltration Feasibility

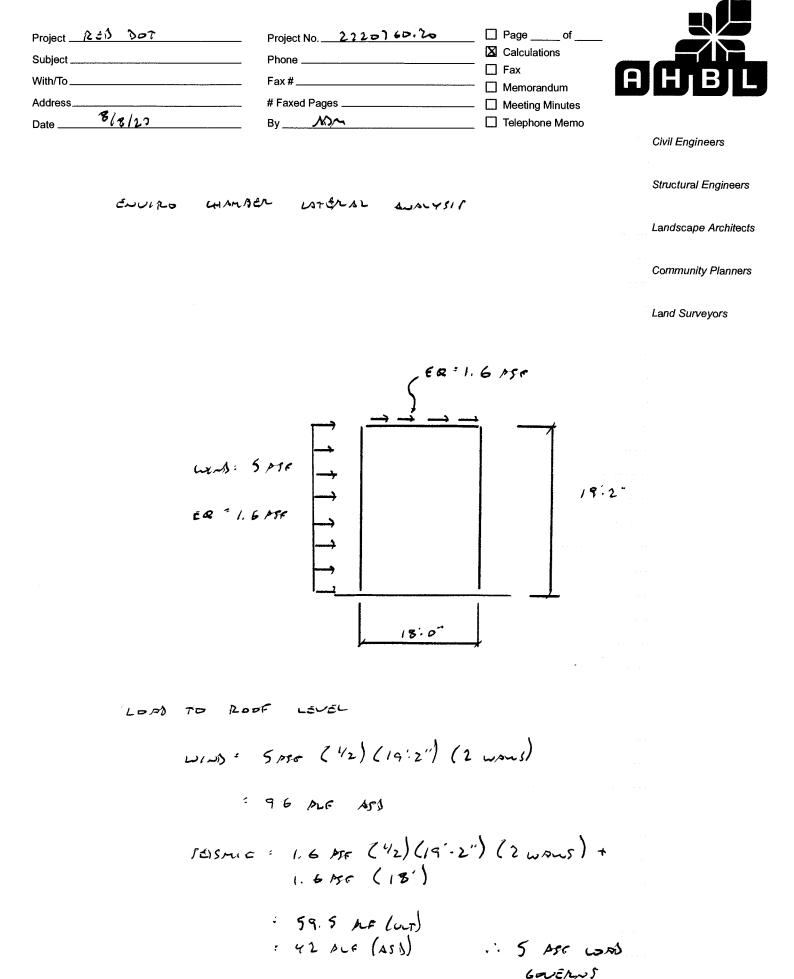
Based on our study, it is our opinion that subsurface conditions are generally not favorable for infiltration of site stormwater. The native soils observed at the site contain a high percentage of soil fines that would impede any downward migration of site stormwater. Additionally, mottling was observed that indicates a shallow groundwater table develops at the site that would further impede any stormwater migration. Even low impact development (LID) techniques would likely fill up and overtop during rain events and cause minor local flooding. The USDA Natural Resources Conservation Service (NRSC) categorizes the soils at the lower southern portion of the site as Briscot loam. These soils fall into Hydrologic Group C as outlined in Table B.5 in Appendix III-B of the 2015 Pierce County Stormwater and Site Development Manual (PCSSDM) and are classified as having low infiltration rates when wetted. Based on these soil conditions, it is our opinion that the stormwater should be managed using a conventional system.

4.7 Lateral Earth Pressures


The magnitude of earth pressure development on retaining walls will partly depend on the quality of wall backfill. Where fill is placed behind retaining walls, we recommend placing and compacting it as structural fill as described in Section 4.2. To guard against the build-up of hydrostatic pressure, wall drainage must also be installed. We recommend that wall drainage consist of a minimum 12-inch thick layer of washed gravel placed adjacent to the wall. Alternatively, a composite drainage panel such as Mirafi G100N or equal can be used. A four-inch diameter perforated pipe should be placed on a bed of gravel along the base of the wall footing and directed to a suitable outlet. A typical wall drainage detail is attached as Figure 4.

With granular backfill placed and compacted as recommended and drainage properly installed, we recommend designing restrained (not free to deflect) retaining walls for an at-rest earth pressure equivalent to a fluid weighing 50 pcf. A value of 35 pcf may be used for the case where the wall is unrestrained. These values do not include other surcharge loading such as from fill backslopes or adjacent footings that may act on the wall. If such conditions will exist, then the imposed loading must be included in wall design. Values of friction at the base of wall foundations and passive earth pressure that are used in design to resist lateral loads are provided in Section 5.4 of this report.





Project 23) 557 Subject	Project No. <u>222 0760.20</u> Phone Fax #		анвц		
Address Date8/8/13	# Faxed Pages By	 Meeting Minutes Telephone Memo 	Civil Engineers		
Envito CHALGEL	LOTERSL ANALYSIS		Structural Engineers		
			Landscape Architects		
MINIMUM OUT	. or PULTE LODS		Community Planners		
5 15	5 MFF FOR INTÉRIOR PARTITIONS				
Selsmic Ana	SOSMAC ANALYSIS				
" ٦	FORM JANDWICH PANEL	ſ			
	w: 4 psq CAPPRO	×)			
56151	nc cool won ses	GN FORCES			
	ωp				
	: 0.4 (1.006)(1.2	>)(4,55)			
	* 1.61 pre (unt)				
· .	5 ASE GOVERNOS B	iy Insteamon			

If this does not meet with your understanding, please contact us in writing within seven days. THANK YOU.