

Supplemental Structural Calculations

PREPARED FOR:

Red Dot Corporation Puyallup Corporate Center East Main Avenue at Linden Lane

PROJECT:

Red Dot Corporation Environmental Chamber Framing Re-Use 2220760.20

PREPARED BY:

Andrew McEachern, P.E., S.E. Principal

DATE:

October 2023

Supplemental

Structural Calculations

Red Dot Corporation

Environmental Chamber Framing Re-Use

Project # 2220760.20

Project Principal

Andrew D. McEachern, P.E., S.E.

Design Criteria

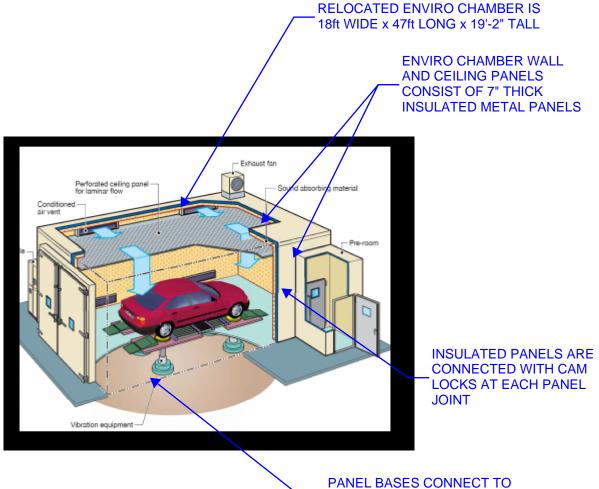
Design Codes and Standards

<u>Codes and Standards</u>: Structural design and construction shall be in accordance with the applicable sections of the following codes and standards as adopted and amended by the local building authority: International Building Code, 2018 Edition.

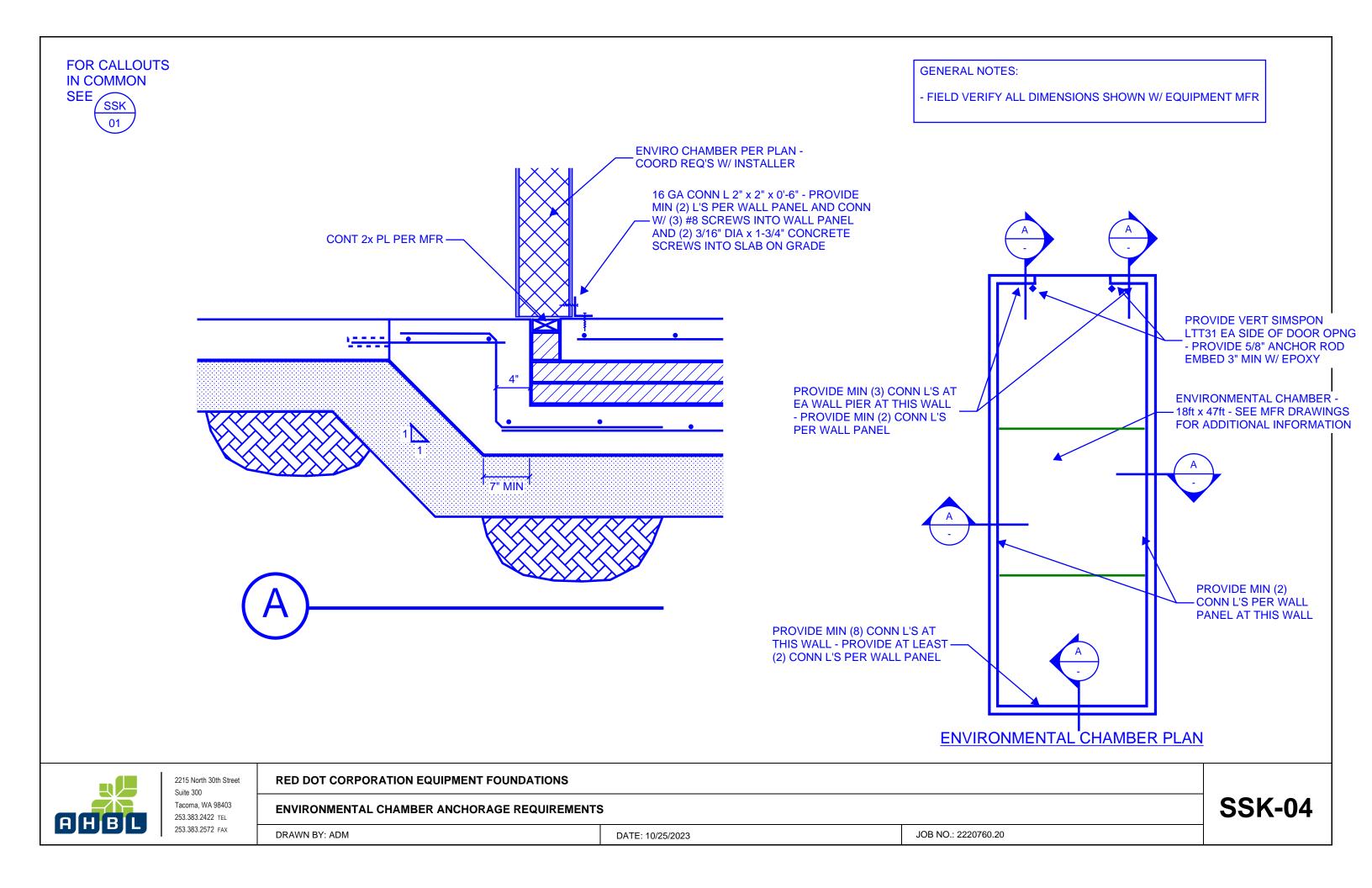
Structural Design Criteria:

Live Lo	Live Load Criteria:							
	Roof (Min Blanket Snow):		25 psf					
	Slab on Grade:		350 psf					
Wind L	oad Criteria:							
	Basic Wind Speed:		97 mph					
	Risk Category:		II					
	Wind Exposure:		В					
	Topographic Factor:		1.0					
<u>Seismi</u>	<u>c Criteria:</u>							
	Risk Category:		II					
	Seismic Importance Factor:		1.0					
	$S_s = 1.258$	S1 =	0.433					
	$S_{ds} = 1.006$	$S_{d1} =$	N/A					
	Site Class:		D					
	Seismic Design Category:		D					

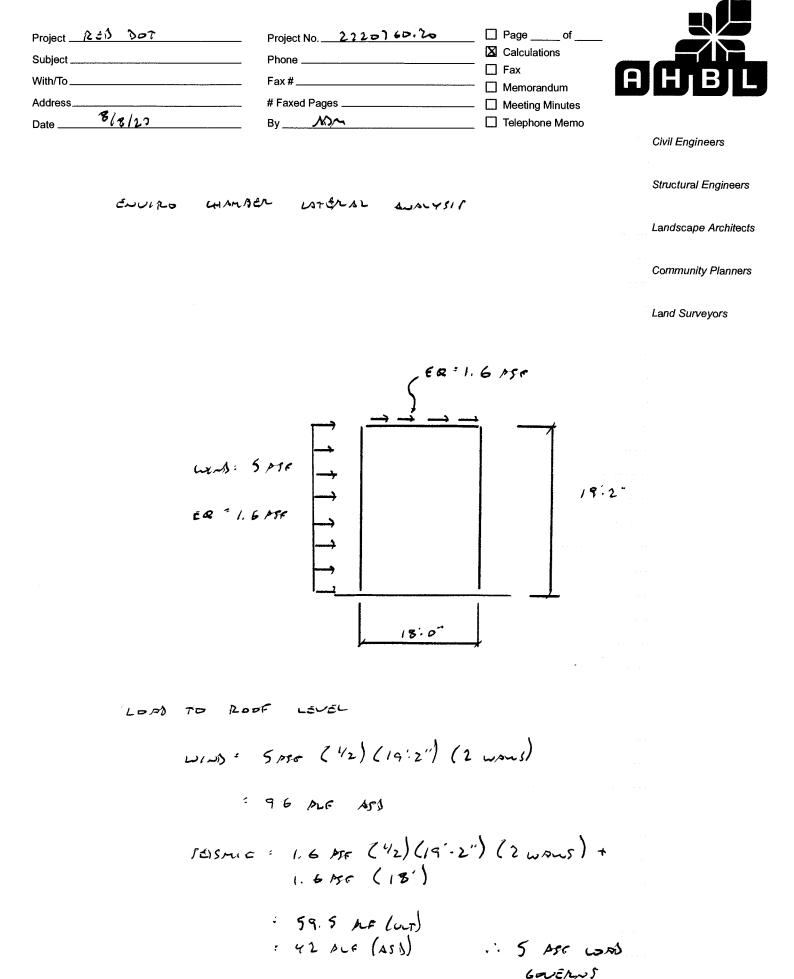
Soil Criteria:

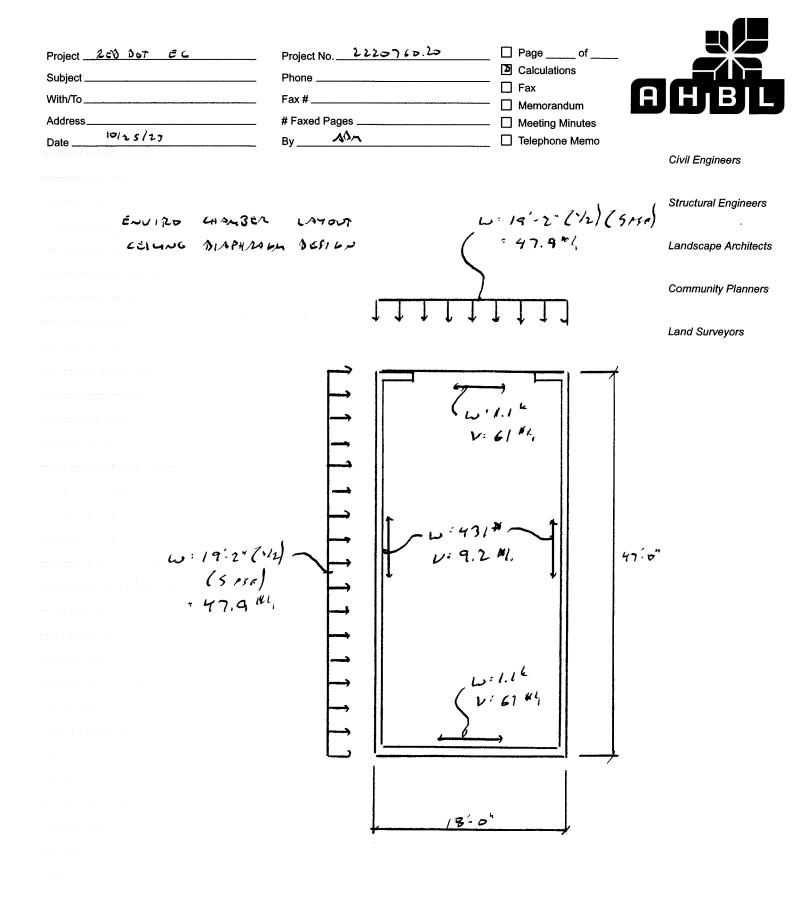

Based on Geotechnical Engineering Report by: Terra Associates Inc, dated September 2019.

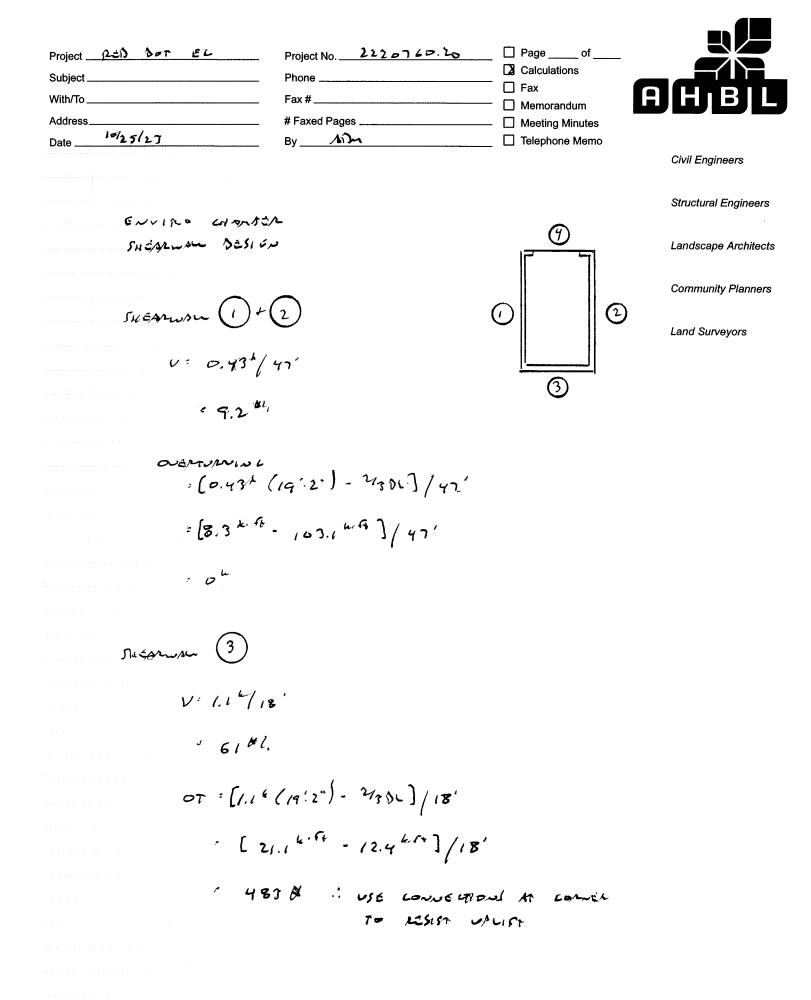
Soil Bearing Capacity: 2,500 psf when sitting on 2 feet of structural fill on the previously preloaded side. Allow 33% increase for loads from wind or seismic origin.


Project Description

This submittal includes supplemental information related to the structural evaluation of an existing Environmental Chamber to be relocated to a new facility. The Environmental Chamber is essentially a large walk-in cooler, which will be located within an existing building. This existing equipment was originally installed roughly 30 years ago.


This resubmittal is in response the plan review comments provided by the City of Puyallup.




- CONCRETE SLAB ON GRADE WITH L 2x2 MEMBERS

Project 23) 557 Subject With/To Address	Project No22 @7 6 @ 20 Phone Fax # # Faxed Pages	 Page of Calculations Fax Memorandum Meeting Minutes 	A H B L
Date8/8/23	ВуА	_ 🔲 Telephone Memo	Civil Engineers
Envito CHALGEL	LOTERSL ANALYSIS		Structural Engineers
			Landscape Architects
MINIMUM OUT	OF PLANE LODS		Community Planners
5 15	f for latingr partit	کر ده	Land Surveyors
SOSME ANA	LY5) S		
ר "	FORM JANDWICH PANEL	ſ	
	w= 4 psr (pppho	×)	
50151	nc cool won ses	CN FORCES	
	Fp: 6.4 (505)(Ie)	ωp	
	: 0.4 (1.006)(1.1	>)(4,000)	
	* 1.61 pre (unt)		
•	5 AJE GOUERAS A	iy inspeceron	

Project 2:13 3 or 0	ອີດ Project No. <u>122</u> ອາ 6 ວ. 2 ອ		
Subject	Phone	□ Calculations □ Fax	
With/To Address	Fax # # Faxed Pages	Memorandum Meeting Minutes	کا تکا سا ت
Date	ВуВу	Telephone Memo	
			Civil Engineers
THEAR WAL	(\mathcal{G})		Structural Engineers
THEALDA			Landscape Architects
V: 1	(1 * / (2)(3))		Community Planners
<pre></pre>	1 2 3 * ⁽ ,		Land Surveyors
<i>ं</i> त '	[(550#)(12:0") . 2130L]/	3 <	
	(6,6 K 0.3 4. F)/3.		
	2.1 k		
		•	
	مده ۲۶ عدد در می ترکن ۲۰۰ ۲۰ بر ۲ مراب ۲ ۲۰۱۶ می	AT COLLON TO	
		AME ABOUG Door	
	TO RESIST RACI	در ز	
^ .			
- በትር ትር አ	OPAG (MAX COPACITY :	2 7 4)	
	CARE CART	- · · J	

Project <u> </u>	Project No. 22207	67.2 F] Page of	
			Calculations	
	Phone] Fax	
With/To	Fax #	L	Memorandum	
Address Date10/25/23	# Faxed Pages By &) ^] Meeting Minutes] Telephone Memo	
Date	By	L		Civil Engineers
				Structural Engineers
ENVIRO CULANSOL	An color A 6E			
				Landscape Architects
TYPICAL SIL	L			Community Planners
				Land Surveyors
	\$ * 2" ¥ 2 " ∫T	éel L		Lanu Surveyors
· · · · · · · · · · · · · · · · · · ·	May (2) 6			
Provide	m_{in} (2) L	AT CA		
А. И	. 1			
2/16 ×	1 3/4" TAP LON	Andars	into shall	
		**	Satur	
			-16 GA L222	
·····				
		15		
		\sim	³ /16 م) که دی د ۲ دمشده	
			۲ در شکار ک	

Fastener Loads for Plywood – Screws

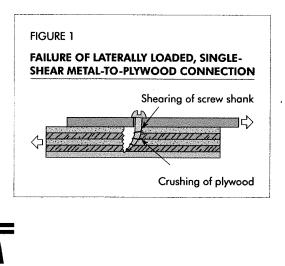
Number E830E • June 2011

INTRODUCTION

The integrity of a structure is frequently dependent upon the connections between its component elements. For maximum strength and stability, each joint requires a design adapted to the fastener type and to the strength properties of the individual structural members. Included in the following tables are ultimate withdrawal and lateral loads for plywood joints fastened with wood and sheet metal screws. These values are based upon tests conducted on plywood by *APA* – *The Engineered Wood Association*.

To calculate design withdrawal and lateral capacities for various sizes of wood screws, see Table 11.3.1A of AF&PA NDS-2005, and APA Technical Topic TT-051 and Section 4.4.7 of *Panel Design Specification*, APA Form D510. See also www.awc.org/calculators/index.html for online fastener calculators.

TEST RESULTS


Panel-and-Metal Connections

Self-drilling, self-tapping screws are commonly used to attach panels up to 1-1/8 inches thick to steel flanges up to 3/16 inch thick. However, since threads are usually provided on only a portion of the fastener shank, it is important to specify the appropriate fastener length for a given panel thickness. This precaution ensures that the threaded portion of the shank will engage in the steel framing. Several lengths and styles are available. Additional details for these types of screws may be obtained from specific fastener manufacturers. The following test data apply to wood screws and sheet metal screws. Little design data is available on sheet metal screws, but the primary difference between wood and sheet metal screws is that sheet metal screws are generally threaded their full length and wood screws are only threaded about two-thirds of their length.

Lateral Resistance:

Performance of panel-and-metal connections is dependent upon the strength properties of all three elements.

- **a)** Panel-critical joints are characterized by a shearing of the wood fibers oriented parallel to the direction of the applied force.
- **b)** Fastener-critical joints are characterized by a shear failure of the screw shank. As shown in Figure 1, once localized crushing of the wood has occurred, resistance of the metal to fastener-head embedment causes the screw to become

Fastener Loads for Plywood – Screws

USE 465LBS ULTIMATE LOAD AS BASIS OF DESIGN W/ FACTOR OF SAFETY OF 6 THEREFORE USE ALLOWABLE SHEAR LOAD OF 78LBS PER SCREW

a shear specimen and joint' behavior is dependent upon the shear strength of the fastener. Shear failure of the screw shank occurs at the wood-metal interface.

c) The metal-critical joint may fail in one of two ways. Failure occurs when the resistance of the screw head to embedment is greater than the resistance of the metal to lateral and/ or withdrawal load, and the screw tears through or away from the metal. Failure also occurs when thin metal in a metal-to-panel joint crushes or tears away from the screw.

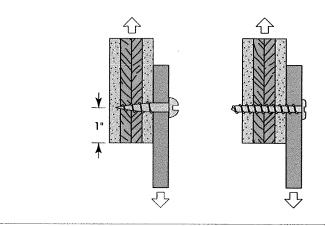
The following test data are presented for **plywood** only.

Tables 1 and 2 present average ultimate lateral loads for woodand sheet-metal-screw connections in plywood-and-metal joints. The end distance of the loaded-edge in these tests was one inch. Plywood face grain was parallel to the load since this direction yields the lowest lateral loads when the joint is plywood-critical. All wood-screw specimens were tested with a 3/16-inch-thick steel side plate, and values should be modified if thinner steel is used.

TABLE 1

3/4

SCREWS: MET	AL-TO-P	LYWOOD	CONNECTIO	ONS ^(a)		
Depth of Threaded Penetration		Avera	ge Ultimate	Lateral Load	(lbf) ^(b)	
	v	Vood Screv	vs	Shee	et Metal Sc	rews
(inch)	#8	#10	#12	#8	#10	#12
1/2	415	(500)	590	465	(565)	670
5/8			_	500	(600)	705

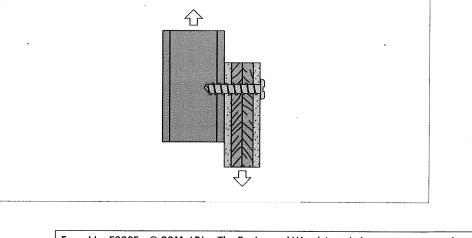

(a) Plywood was C-D grade with exterior glue (all plies Group 1), face grain parallel to load. Side plate was 3/16"-thick steel.

590

(655)

715

(b) Values are not design values. Values in parentheses are estimates based on other tests.


TABLE 2

SHEET METAL SCREWS: PLYWOOD-TO-METAL CONNECTIONS^(a)

	Diama a d	Average Ultimate Lateral Load (lbf) ^(b)							
	Plywood Performance		Screv	1/4"-20 Self					
Framing	Category	#8	#10	#10 #12		Tapping Screw			
0.000 :	1/4	330	360	390	410	590			
0.080-inch	1/2	630	850*	860	920	970			
Aluminum	3/4	910*	930*	1250	1330	1440			
0.078-inch	1/4	360	380	400	410	650			
Galvanized	1/2	700*	890*	900	920	970			
Steel (14 gage)	3/4	700*	950*	1300*	1390*	1500			

(a) Plywood was A-C EXT (all plies Group 1), face grain parallel to load.

(b) Values are **not** design values. Loads denoted by an asterisk(*) were limited by screw-to-framing strength; others were limited by plywood strength.

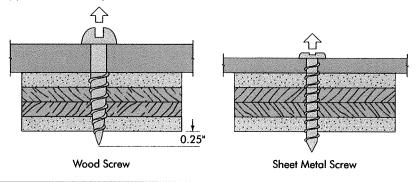
Form No. E830E = © 2011 APA – The Engineered Wood Association = www.apawood.org

2

Withdrawal:

Tables 3 and 4 present average ultimate withdrawal loads for wood and sheet metal screws in plywood-and-metal joints, based on analysis of test results. Wood screws are threaded for only 2/3 of their length. Sheet metal screws typically have higher ultimate load than wood screws in the smaller gages because of their full-length thread.

Values shown in Table 3 for wood screws are based on 1/4inch protrusion of the wood screw from the back of the panel. This was to assure measurable length of thread embedment in the wood, since the tip of the tapered wood screw may be smaller than the pilot hole. This was not a factor for sheet metal screws due to their uniform shank diameters.

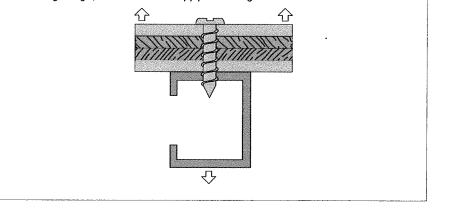

TABLE 3

WOOD AND SHEET METAL SCREWS: METAL-TO-PLYWOOD CONNECTIONS^(a,b)

Depth of		Average Ultimate Withdrawal Load (lbf)								
Threaded [–] Penetration	Screw Size									
(inch)	#6	#8	#10	#12	#14	#16				
3/8	150	180	205	_		_				
1/2	200	240	275	315	350					
5/8	250	295	345	390	440	_				
3/4	300	355	415	470	525	_				
1		_	-	625	700	775				
1-1/8	-	-		705	790	875				
2-1/4	-		-		1580					

(a) Plywood was C-D grade with exterior glue (all plies Group 1).

(b) Values are **not** design values.


TABLE 4

SHEET METAL SCREWS: PLYWOOD-TO-METAL CONNECTIONS(*)

		Average Ultimate Withdrawal Load (lbf) ^(b)						
	Plywood Performance		Screv	1/4"-20 Self				
Framing	Category	#8	#10	#12	#14	Tapping Screw		
0.000 . 1	1/4	130	150	170	180	220		
0.080-inch	1/2	350	470	500	520	500		
Aluminum	3/4	660	680	790	850*	790*		
0.078-inch	1/4	130	150	170	180	220		
Galvanized	1/2	350	470	500	520	500		
Steel (14 gage)	3/4	660	680	800	900	850		

(a) Plywood was A-C EXT (all plies Group 1).

(b) Values are not design values. Loads denoted by an asterisk(*) were limited by screw-to-metalframing strength; others were limited by plywood strength.

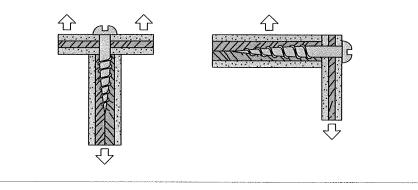
Form No. E830E = © 2011 APA - The Engineered Wood Association = www.apawood.org

Fastening Into Plywood Panel Edges

Fastening into plywood panel edges is not normally recommended. For some purposes, however, edge fastening may be necessary. Table 5 presents average ultimate lateral and withdrawal loads for various sizes of wood screws in this application.

ESTIMATING DESIGN LOADS

It is the responsibility of the designer to select a working load suitable for the particular application. A high degree of variability is inherent in individual


TABLE 5

WOOD SCREWS: PLYWOOD-TO-PLYWOOD EDGE CONNECTIONS^(a)

Depth of Threaded Penetration		orage Ultin oral Load (l		Average Ultimate Withdrawal Load (lbf			
(inch)	#8	#10	#12	#8	#10	#12	
1	180	(185)	195	360	(405)	450	
1-1/2	180	(185)	195	410	(455)	500	

(a) Plywood receiving screw thread was Performance Category 3/4 C-D grade with exterior glue (Group 2 inner plies).

(b) Values are **not** design values. Values in parentheses are estimates based on other tests.

fastener test results. Therefore, for screws in withdrawal or laterally loaded, a working load of about one-fifth of the ultimate load has traditionally been used for normal duration of load which contemplates fully stressing the connection for approximately ten years, either continuously or cumulatively. For practically all laterally loaded screw connections shown, the normal-duration working load will correspond to a joint slip of less than 0.01 inch.

Adjustments for shorter or longer duration of load apply to design values for mechanical fasteners where the strength of the wood (i.e., not the strength of the metal fastener) determines the load capacity. Calculations and adjustments of design values for varying combinations of materials and durations of load should be in accordance with the current AF&PA National Design Specification for Wood Construction.

Fastener Loads For Plywood – Screws

We have field representatives in many major U.S. cities and in Canada who can help answer questions involving APA trademarked products. For additional assistance in specifying engineered wood products, contact us:

APA HEADQUARTERS

7011 So. 19th St. Tacoma, Washington 98466 (253) 565-6600 = Fax: (253) 565-7265

PRODUCT SUPPORT HELP DESK

(253) 620-7400 = E-mail Address: help@apawood.org

DISCLAIMER

The information contained herein is based on APA – The Engineered Wood Association's continuing programs of laboratory testing, product research and comprehensive field experience. Neither APA, nor its members make any warranty, expressed or implied, or assume any legal liability or responsibility for the use, application of, and/ or reference to opinions, findings, conclusions or recommendations included in this publication. Consult your local jurisdiction or design professional to assure compliance with code, construction and performance requirements. Because APA has no control over quality of workmanship or the conditions under which engineered wood products are used, it cannot accept responsibility for product performance or designs as actually constructed.

Form No. E830E/Revised June 2011

www.apawood.org

REPRESENTING THE ENGINEERED WOOD INDUSTRY

Screw Capacities

Table Notes

- 1. Capacities based on AISI S100 Section E4.
- When connecting materials of different steel thicknesses or tensile strengths, use the lowest values. Tabulated values assume two sheets of equal thickness are connected.
- 3. Capacities are based on Allowable Strength Design (ASD) and include safety factor of 3.0.
- 4. Where multiple fasteners are used, screws are assumed to have a center-to-center spacing of at least 3 times the nominal diameter (d).
- Screws are assumed to have a center-of-screw to edge-of-steel dimension of at least 1.5 times the nominal diameter (d) of the screw.

- 6. Pull-out capacity is based on the lesser of pull-out capacity in sheet closest to screw tip or tension strength of screw.
- 7. Pull-over capacity is based on the lesser of pull-over capacity for sheet closest to screw header or tension strength of screw.
- 8. Values are for pure shear or tension loads. See AISI Section E4.5 for combined shear and pull-over.
- 9. Screw Shear (Pss), tension (Pts), diameter, and head diameter are from CFSEI Tech Note (F701-12).
- 10. Screw shear strength is the average value, and tension strength is the lowest value listed in CFSEI Tech Note (F701-12).
- 11. Higher values for screw strength (Pss, Pts), may be obtained by specifying screws from a specific manufacturer.

	Allowable Screw Connection Capacity (lbs)																	
					#6 Screw			#8 Screw			#10 Screw			#12 Screw	,		1/4" Screw	
Thickness	Design	Fy Yield	_ Fu_	(Pss = 64	43 lbs, Pts	= 419 lbs)	(Pss= 127	78 lbs, Pts	= 586 lbs)	(Pss= 164	4 lbs, Pts =	= 1158 lbs)	(Pss= 233	0 lbs, Pts =	= 2325 lbs)	(Pss= 3048 lbs, Pts = 3201 lbs)		
	Thickness	Yield (ksi)	Tensile (ksi)	0.138"	' dia, 0.272'	" Head	0.164"	dia, 0.272	" Head	0.190"	' dia, 0.340'	' Head	0.216"	' dia, 0.340	" Head	0.250" dia, 0.409" Head		
				Shear	Pull-Out	Pull-Over	Shear	Pull-Out	Pull-Over	Shear	Pull-Out	Pull-Over	Shear	Pull-Out	Pull-Over	Shear	Pull-Out	Pull-Over
18	0.0188	33	33	44	24	84	48	29	84	52	33	105	55	38	105	60	44	127
27	0.0283	33	33	82	37	127	89	43	127	96	50	159	102	57	159	110	66	191
30	0.0312	33	33	95	40	140	103	48	140	111	55	175	118	63	175	127	73	211
33	0.0346	33	45	151	61	140	164	72	195	177	84	265	188	95	265	203	110	318
43	0.0451	33	45	214	79	140	244	94	195	263	109	345	280	124	345	302	144	415
54	0.0566	33	45	214	100	140	344	118	195	370	137	386	394	156	433	424	180	521
68	0.0713	33	45	214	125	140	426	149	195	523	173	386	557	196	545	600	227	656
97	0.1017	33	45	214	140	140	426	195	195	548	246	386	777	280	775	1,016	324	936
118	0.1242	33	45	214	140	140	426	195	195	548	301	386	777	342	775	1,016	396	1,067
54	0.0566	50	65	214	140	140	426	171	195	534	198	386	569	225	625	613	261	752
68	0.0713	50	65	214	140	140	426	195	195	548	249	386	777	284	775	866	328	948
97	0.1017	50	65	214	140	140	426	195	195	548	356	386	777	405	775	1,016	468	1,067
118	0.1242	50	65	214	140	140	426	195	195	548	386	386	777	494	775	1,016	572	1,067

Weld Capacities

Table Notes

- 1. Capacities based on the AISI S100 Specification Sections E2.4 for fillet welds and E2.5 for flare groove welds.
- 2. When connecting materials of different steel thicknesses or tensile strengths, use the lowest values.
- 3. Capacities are based on Allowable Strength Design (ASD).
- 4. Weld capacities are based on E60 electrodes. For material thinner than 68 mil, 0.030" to 0.035" diameter wire electrodes may provide best results.
- 5. Longitudinal capacity is considered to be loading in the direction of the length of the weld.
- 6. Transverse capacity is loading in perpendicular direction of the length of the weld.
- For flare groove welds, the effective throat of weld is conservatively assumed to be less than 2t.
- 8. For longitudinal fillet welds, a minimum value of EQ E2.4-1, E2.4-2, and E2.4-4 was used.
- 9. For transverse fillet welds, a minimum value of EQ E2.4-3 and E2.4-4 was used.
- 10. For longitudinal flare groove welds, a minimum value of EQ E2.5-2 and E2.5-3 was used.

Allowable Weld Capacity (Ibs / in)								
Thickness Design Fy Fu Fillet Welds							ove Welds	
(Mils)	Thickness	Yield (ksi)	Tensile (ksi)	Longitudinal	Transverse	Longitudinal	Transverse	
43	0.0451	33	45	499	864	544	663	
54	0.0566	33	45	626	1084	682	832	
68	0.0713	33	45	789	1365	859	1048	
97	0.1017	33	45	1125	1269	_1	_1	
54	0.0566	50	65	905	1566	985	1202	
68	0.0713	50	65	1140	1972	1241	1514	
97	0.1017	50	65	1269	1269	_ 1	_ 1	

¹Weld capacity for material thickness greater than 0.10" requires engineering judgment to determine leg of welds, W1 and W2.

SIMPSON

Strong-I

Anchor Designer™ Software

Version 3.2.2309.2

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

2. Input Data & Anchor Parameters

General Design method:ACI 318-14 Units: Imperial units

Anchor Information:

Anchor type: Concrete screw Material: Carbon Steel Diameter (inch): 0.188 Nominal Embedment depth (inch): 1.750 Effective Embedment depth, hef (inch): 1.250 Code report: IAPMO UES ER-712 Anchor category: 1 Anchor ductility: No hmin (inch): 3.25 cac (inch): 3.00 Cmin (inch): 1.75 Smin (inch): 1.00

Recommended Anchor

Anchor Name: Titen Turbo™ - 3/16"Ø Titen Turbo, hnom:1.75" (44mm) Code Report: IAPMO UES ER-712

Company:	AHBL	Date:	10/25/2023				
Engineer:	ADM	Page:	1/5				
Project:	Red Dot Enviro Chamber Anchorage						
Address:	2215 North 30th, Suite 300						
Phone:	253.383.2422						
E-mail:	dmceachern@ahbl.com						

Project description: Location:

Fastening description: Anchorage Capacity of EnviroChamber Base L

Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 4.00 State: Uncracked Compressive strength, f'c (psi): 3000 $\Psi_{c,V}$: 1.4 Reinforcement condition: A tension, A shear Supplemental edge reinforcement: No Reinforcement provided at corners: No Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No Ignore 6do requirement: Not applicable Build-up grout pad: No

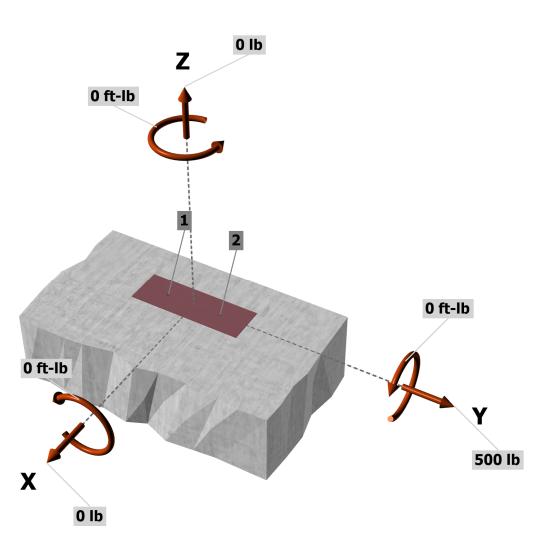
Base Plate

Length x Width x Thickness (inch): 2.00 x 6.00 x 0.04

SIMPSON

Strong-Tie

Anchor Designer™ Software Version 3.2.2309.2

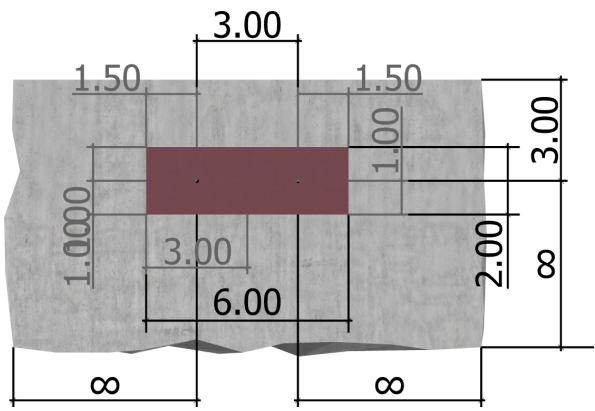

Company:	AHBL	Date:	10/25/2023	
Engineer:	ADM	2/5		
Project:	Red Dot Enviro Chamber Anchorage			
Address:	2215 North 30th, Suite 300			
Phone:	253.383.2422			
E-mail:	dmceachern@ahbl.com			

Load and Geometry Load factor source: ACI 318 Section 5.3 Load combination: not set Seismic design: No Anchors subjected to sustained tension: Not applicable Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Strength level loads:

N_{ua} [lb]: 0 V_{uax} [lb]: 0 V_{uay} [lb]: 500 M_{ux} [ft-lb]: 0 M_{uy} [ft-lb]: 0 Muz [ft-lb]: 0

<Figure 1>



SIMPSON Strong-Tie

Anchor Designer™ Software Version 3.2.2309.2

Company:	AHBL	Date:	10/25/2023		
Engineer:	ADM Page: 3/5				
Project:	Red Dot Enviro Chamber Anchorage				
Address:	2215 North 30th, Suite 300				
Phone:	253.383.2422				
E-mail:	dmceachern@ahbl.com				

<Figure 2>

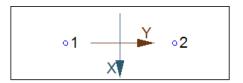
SIMPSON	N Anchor Designer	тм Со	ompany:	AHBL	Date:	10/25/2023	
		Er	ngineer:	ADM	Page:	4/5	
Strong-T	ie Software	Project:	oject:	Red Dot Enviro Chamber Anchorage			
	Version 3.2.2309.2	Ac	dress:	2215 North 30th, Suite	0th, Suite 300		
		Ph	none:	ne: 253.383.2422			
		E-	mail:	dmceachern@ahbl.co	m		
3. Resulting A	Anchor Forces						
Anchor	Tension load,	Shear load x,		Shear load y,	Shear load co	,	
	N _{ua} (Ib)	V _{uax} (lb)		V _{uay} (Ib)	√(V _{uax})²+(V _{uay})²	[:] (lb)	

			v uay (ID)	
1	0.0	0.0	250.0	250.0
2	0.0	0.0	250.0	250.0
Sum	0.0	0.0	500.0	500.0

Maximum concrete compression strain (‰): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 0


Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00

Eccentricity of resultant shear forces in x-axis, e'_{vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{vy} (inch): 0.00

<Figure 3>

8. Steel Strength of Anchor in Shear (Sec. 17.5.1)

V _{sa} (lb)	$\phi_{ ext{grout}}$	ϕ	$\phi_{ ext{grout}} \phi V_{ ext{sa}} ext{ (lb)}$
475	1.0	0.60	285

9. Concrete Breakout Strength of Anchor in Shear (Sec. 17.5.2)

Shear parallel to edge in x-direction: $V_{by} = \min[7(l_e/d_a)^{0.2}\sqrt{d_a\lambda_a}\sqrt{f_c}c_{a1}^{1.5}; 9\lambda_a\sqrt{f_c}c_{a1}^{1.5}]$ (Eq. 17.5.2.2a & Eq. 17.5.2.2b) le (in) da (in) λa f'c (psi) Ca1 (in) Vby (lb) 1.03 0.129 1.00 3000 3.00 1085 $\phi V_{cbgx} = \phi (2) (A_{Vc} / A_{Vco}) \Psi_{ec, V} \Psi_{ed, V} \Psi_{c, V} \Psi_{h, V} V_{by}$ (Sec. 17.3.1, 17.5.2.1(c) & Eq. 17.5.2.1b) $\psi_{\rm ec,V}$ $\psi_{\text{ed}, V}$ V_{by} (lb) A_{Vc} (in²) A_{Vco} (in²) $\Psi_{c,V}$ $\Psi_{h,V}$ ϕV_{cbgx} (lb) ф 1085 48.00 40.50 1.000 1.000 1.400 1.061 0.75 2863

10. Concrete Pryout Strength of Anchor in Shear (Sec. 17.5.3)

$\phi V_{cpg} = \phi k_{cp} N$	lcbg = ϕ Kcp(ANc/	$A_{Nco}) arphi_{ec,N} arphi_{ed,N}$	$\Psi_{c,N}\Psi_{cp,N}N_b$ (Se	ec. 17.3.1 & Ec	ι. 17.5.3.1b)				
Kcp	Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	Nb (lb)	ϕ	ϕV_{cpg} (lb)
1.0	25.31	14.06	1.000	1.000	1.000	1.000	1837	0.70	2315

11. Results

Interaction of Tensile and Shear Forces (Sec. 17.6)

Strong-Tie Sof	ong-Tie Software Version 3.2.2309.2		AHBL ADM Red Dot Enviro Cha 2215 North 30th, Su 253.383.2422 dmceachern@ahbl.	uite 300	10/25/2023 5/5
Shear Factored Load, Vua (Ib)		Design Strength, ø		Status	
Steel	250	285	0.88	Pass (G	ioverns)
Concrete breakout x-	500	2863	0.17	Pass	

0.22

Pass

2315

3/16"Ø Titen Turbo, hnom:1.75" (44mm) meets the selected design criteria.

500

12. Warnings

Pryout

- Designer must exercise own judgement to determine if this design is suitable.

- Refer to manufacturer's product literature for hole cleaning and installation instructions.