

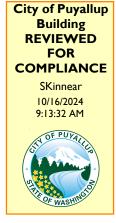
PO Box 110 • 9493 Porter Rd • Aumsville, OR 97325 800.682.1422 ModernBuildingSystems.com

JOB #2023-LU 2514-2515 Puyallup SD

CALCULATED BY N	ACL DATE	5/30/2023
CHECKED BY	DATE	
SCALE		

STRUCTURAL FOUNDATION CALCULATIONS (PER 2021 IBC) FOR 28' X 64' MODULAR MS-1

FDN-1 --> FDN-8


L-1 --> L-6

MATERIAL SUMMARY

FOUNDATION ANALYSIS

LOADING ANALYSIS

Calculations required to be provided by the Permittee on site for all Inspections

REUSE OF DOCUMENTS: THIS DOCUMENT AND THE IDEAS AND DESIGNS INCORPORATED HEREIN ARE THE PROPERTY OF MODERN **BUILDING SYSTEMS INC. AND ARE** NOT TO BE USED IN WHOLE OR IN PART FOR ANY OTHER USE OR **PROJECT WITHOUT WRITTEN AUTHORIZATION**

JOB #2023-LU 2514-2515 Puyallup SD

SHEET NO MS-1	OF MS-1	
CALCULATED BY M	CL DATE	5/30/2023
CHECKED BY	DATE	
SCALE		

MATERIAL SUMMARY FOR 28' X 64' MODULAR

ModernBuildingSystems.com

FOUNDATION:

800.682.1422

TYP EXT FTG	USE	USE +/- 16 in. SQ. PADS OR 2 x 12 x 24 in. P.T. PADS AT 6' O.C.	SEE FDN-1
TYP INTERIOR FTG	USE	USE +/- 16 in. SQ. PADS OR 2 x 12 x 24 in P.T. PADS AT 6' O.C.	SEE FDN-1
ENDWALL COLUMN FTG	USE	(2) (FLAT) P.T. HF #2, 6 x 8 x 4 ' L	SEE FDN-3,5
CNTR COLUMN FTG	USE	(5) (FLAT) P.T. HF #2, 4 x 8 x 4 ' L	SEE FDN-3,6
CNTR COLUMN FTG POST	USE	(2) DF #2, 6 x 10 x 3 ' L	SEE FDN-3,7
MOD TRANSVERSE ANCHORS	USE	USE MIN (4) HOLD DOWNS AT EA SIDEWALL	SEE FDN-4
MOD LONGITUDINAL ANCHORS	USE	USE MIN (3) HOLD DOWNS AT EA ENDWALL	SEE FDN-4

ModernBuildingSystems.com

800.682.1422

IOB # 2023-LU 2514-2515 Puyallup SD

SHEET NO FDN-1OF FDN-3CALCULATED BY MCL5/30/2023CHECKED BYDATE

FOUNDATION	I DESIGN	MODULAR	
BUILDING LENGTH (L) =	64.00 '	SITE TYPE =	GRAVEL
BUILDING WIDTH (B) =	27.67 '	MAX BRG PRESSURE =	1800 psf
FRAME RAIL OFFSET =	N/A		
FLOOR TRIB WIDTH =	6.92 '		
ROOF OVERHANG =	0.50 '		
ROOF TRIB WIDTH =	7.42 '		
WALL PLATE HEIGHT =	8.00 '	(ABOVE F.F.)	
TRANSVERSE WIND/SEIS. =	7987 #		
LONGIT. WIND/SEIS. =	4778 #		
WIND UPLIFT =	18772 #		
SNOW LOAD =	25 psf		
BUILDING WEIGHT =	44363 #	(No solar or snow)	
F.F. HEIGHT	2.50 '	(ABOVE GRADE)	
AVG. ROOF HEIGHT	13.00 '	(ABOVE GRADE)	
PIER PAD AREA	1.78 ft^2		
AT EXTERIOR FTG			
LOAD TO SKIRTWALL	0 plf		
	DL =	7.42'(12 psf)+8'(10 psf)+6.92'/2(10 psf) =	204 plf
	LL =	6.92' / 2 X 50 psf =	173 plf
	SL =	7.42' X 25 psf =	185 plf
	D + L =	376 plf	
	D + S =	389 plf	
D + 0.75	L +0.75S =	472 plf	CONTROLS
PIERS	SPACING =		
	q =	(472plf - 0plf) X (6') / 1.78 ft^2 =	1592 psf
		∴ <u>OK</u> on (
		ADS OR 2 x 12 x 24 in. P.T. PADS AT 6' O.C	
AT INTERIOR FTG - (U.N			
		6.92' (10 psf) =	69 plf
	LL =	6.92' (50 psf) =	346 plf
		11E alf	CONTROLS
	U+L=	415 plf	CONTROLS
PIERS	SPACING =	6.00 '	
	q =	415plf X (6') / 1.78 ft^2 =	1399 psf
		∴ <u>OK</u> on (GRAVEL
USE +/-	16 in. SQ. F	PADS OR 2 x 12 x 24 in P.T. PADS AT 6' O.C	

IOB # 2023-LU 2514-2515 Puyallup SD

SHEET NO FDN-2	OF FDN-🔗
CALCULATED BY MCL	5/30/2023
CHECKED BY	DATE
SCALE	

AT ENDWALL COLUMN FTG

COLUMN DL = 1992 # COLUMN SL = 4149 #	
$DL = [3' (10 \text{ psf}) + 10.5' (10 \text{ psf})] \times 6.92' =$	934 #
$LL = 3' (50 \text{ psf}) \times 6.92' =$	1037 #
	1007 #
D + L = 3963 #	
D + S = 7075 #	CONTROLS
D + 0.75L +0.75S = 6815 #	
<9000# Therefore OK. (See FDN-	3,5)
AT MIDSPAN COLUMN FTG	
COLUMN DL = 6638 #	
COLUMN SL = 13830 #	
DL = 6.92' (10 psf) (6') =	415 #
LL = 6.92' (50 psf) (6') =	2075 #
D + L = 9127 #	
D + S = 20883 #	CONTROLS
D + 0.75L +0.75S = 18981 #	
<21600# Therefore OK. (See FDN-	3,6,7)

IOB # 2023-LU 2514-2515 Puyallup SD

SHEET NO FDN-3	OF FDN- 8
CALCULATED BY MCL	5/30/2023
CHECKED BY	DATE
SCALE	

@ ENDWALL COLUMN FOOTING

TRY 2	(FLAT) P.T. HF #2, 6 x 8 x 4	.00'L
	Width (b) each =	0.63 '
Pmax =	1800psf X 2 X 0.63' X 4' = <u>9</u>	<u>000 #</u>
DL % = 41	%	
SL % = 59	%	
W DL =	1800psf X 0.63' X 0.41 = <u>4</u>	<u>65 plf</u>
W SL =	1800psf X 0.63' X 0.59 = <u>6</u>	<u>60 plf</u>

@ MIDSPAN COLUMN FOOTING

TRY 5		(FLAT) P.T. HF #2,	4 x 8 x 4.00 ' L
		Width (b)	each = 0.60 '
Pmax =		1800psf X 5 X 0.6' X 4' =	<u>21600 #</u>
DL % =	34%		
SL % =	66%		
W DL =		1800psf X 0.6' X 0.34 =	<u>365 plf</u>
W sL =		1800psf X 0.6' X 0.66 =	<u>715 plf</u>

@ MIDSPAN INTERMEDIATE POST

TRY 2	2	DF #2, 6:	x 10 x 3.00 '	L
		Width (b) e	ach = 0.46 '	
W D	L= 1800psf	X 4' X 0.34 / 2 MEMBER	S = <u>1216 plf</u>	
W S	L= 1800psf	X 4' X 0.66 / 2 MEMBER	S = <u>2384 plf</u>	

_			IOB # 2023-LU 2514-2515 F	Puyallup SD
N		KN	SHEET NO FDN-4	OF FDN-
	BUILDING S	YSTEMS	CALCULATED BY MCL	5/30/2023
	PO Box 110 • 9493 Porter Rd • Aums 800.682.1422 ModernBuildin		CHECKED BY	DATE
		80,510110100111	SCALE	
	MOD TRANSVERSE	LOADING	ANCHORAGE	
Sliding Overturni			7987#/2094# =	4 ANCHORS
Mot =	7987# / 2 X 13'	+ 7987# / 2	X 2.5' + 18772# X 27.67' / 2 =	322 k-ft
	Mr =		44363# X 27.67' / 2 =	614 k-ft
	w/ ANCHORS =		4 X 2094# X 27.67' =	232 k-ft
	TOTAL =		.4k-ft X 0.6) + 232k-ft = 22k-ft therefore OK	600 k-ft
	MIN NUMBER =		HORS	
		USE MIN (4) HOLD DOWNS AT EA SIDEWAI	-L
	MOD LONGITUDIN	al loadin		
Sliding: Verturnii			4778#/2094# =	3 ANCHORS
Mot =	-	+ 4778# / 2	X 2.5 ' + 18772# X 64' / 2 =	638 k-ft
	Mr =		44363# X 64' / 2 =	1420 k-ft
	w/ ANCHORS =		3 X 2094# X 64' =	402 k-ft
	TOTAL =	•	20k-ft X 0.6) + 402k-ft = 38k-ft therefore OK	1254 k-ft
	MIN NUMBER =	3		
) HOLD DOWNS AT EA ENDWAL	L
(TI	MOBILE UNIT CONNEC RANSVERSE LOADING)		ASSIS x-ft - (0.6) X 614 k-ft / 27.67 ft /2	
		PER NAIL	VALUE (SIMP C-2019 PG 263)	PER STRAP 211 # DF
				N= 12 NAILS 12
-			N/A	(MIN)

PO Box 110 / 9493 Porter Rd Aumsville, OR 97325

Project Title:
Engineer:
Project ID:
Project Descr:

PUYALLUP SD MCL 2023-LU 2514-2515 28 X 64 MODULAR CLASSROOM

Project File: 2023-LU 2514-2515 2021 IBC Struct Calcs.ec6

FDH-5OF FU Printed: 30 MAY 2023, 8:29AM

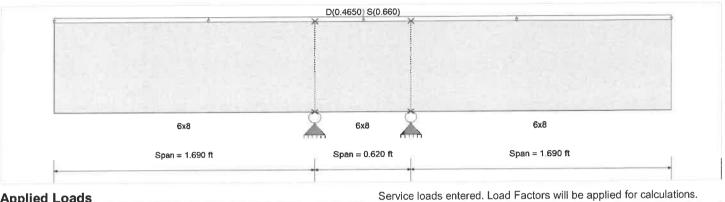
Wood Beam

LIC# : KW-06013980, Build:20.23.05.22

MODERN BUILDING SYSTEMS

(c) ENERCALC INC 1983-2023

DESCRIPTION: ENDWALL COLUMN FTG - 2023-LU 2514-2515


CODE REFERENCES

Calculations per NDS 2018, IBC 2021, ASCE 7-16 Load Combination Set : IBC 2021

Material Properties

Analysis Method :	Allowable Stress Design	Fb +	575.0 psi	E : Modulus of Elasi	ticity
Load Combination		Fb -	575.0 psi	Ebend- xx	1,100.0ksi
	100 2021	Fc - Prll	575.0 psi	Eminbend - xx	400.0ksi
Wood Species :	Hem-Fir	Fc - Perp	405.0 psi		
Wood Grade :	No.2	Fv	140.0 psi		
wood Glade .	140.2	Ft	375.0 psi	Density	26.840 pcf

Beam Bracing : Completely Unbraced

Applied Loads

Beam self weight NOT internally calculated and added Loads on all spans...

Uniform Load on ALL spans : D = 0.4650, S = 0.660 k/ft

Section used for this span 6x8 Section used for this span fb: Actual = 509.85 psi fv: Actual = 44 F'b = 661.25 psi F'v = 16 Load Combination +D+S Load Combination + + Location of maximum on span = 1.690 ft Location of maximum on span = 1 Span # where maximum occurs = Span # 1 Span # where maximum occurs = Spar Maximum Deflection 0.017 in Ratio = 2318 >=360 Span: 3 : S Only Spar Max Upward Transient Deflection 0 in Ratio = 0 <360 n/a 1	DESIGN SUMMARY		0 4	Maulanum C	harr Ctrees Datio	=	0.271 : 1
F'b = 661.25 psi F'v = 16' Load Combination +D+S Load Combination + Location of maximum on span = 1.690 ft Location of maximum on span = 16' Span # where maximum occurs = Span # 1 Span # where maximum occurs = Span # Maximum Deflection 0.017 in Ratio = 2318 >=360 Span: 3 : S Only Span # Max Upward Transient Deflection 0 in Ratio = 0 <360		=	•••••			-	6x8
Load Combination +D+S Load Combination + Location of maximum on span = 1.690 ft Location of maximum on span = 1 Span # where maximum occurs = Span # 1 Span # where maximum occurs = Span Maximum Deflection 0.017 in Ratio = 2318 >= 360 Span: 3 : S Only Span # where maximum occurs = Max Upward Transient Deflection 0 in Ratio = 0 < 360	fb: Actual	=	509.85 psi		fv: Actual	=	43.64 psi
Location of maximum on span = 1.690 ft Location of maximum on span = 1 Span # where maximum occurs = Span # 1 Span # where maximum occurs = Span Maximum Deflection Max Downward Transient Deflection 0.017 in Ratio = 2318 >=360 Span: 3 : S Only Max Upward Transient Deflection 0 in Ratio = 0 <360	F'b	=	661.25psi		F'v	=	161.00 psi
Span # where maximum occurs = Span # 1 Span # where maximum occurs = Span # 1 Maximum Deflection Max Downward Transient Deflection 0.017 in Ratio = 2318 >= 360 Span: 3 : S Only Max Upward Transient Deflection 0 in Ratio = 0 <360 n/a	Load Combination		+D+S				+D+S
Maximum Deflection 0.017 in Ratio = 2318 >= 360 Span: 3 : S Only Max Upward Transient Deflection 0 in Ratio = 0 < 360	Location of maximum on span	=	1.690ft	Locatio	n of maximum on span	=	1.067 ft
Max Downward Transient Deflection0.017 in Ratio =2318 >= 360Span: 3 : S OnlyMax Upward Transient Deflection0 in Ratio =0 <360	Span # where maximum occurs	=	Span # 1	Span #	where maximum occurs	=	Span # 1
Max Downward Total Deflection -0.001 in Ratio = 6490 >=240 Span: 2 : +D+S	Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection	on	0 in Ratio = 0.030 in Ratio =	0 <360 1358 >=240	n/a Span: 3 : +D+S		

vertical Reactions		pportinetal		
Load Combination	Support 1 Support 2	Support 3	Support 4	
Max Upward from all Load Conditions	2.250	2.250		
Max Upward from Load Combinations	2.250	2.250		
Max Upward from Load Cases	1.320	1.320		
D Only	0.930	0.930		
+D+S	2.250	2.250		
+D+0.750S	1.920	1.920		
+0.60D	0.558	0.558		
S Only	1.320	1.320		

Project Title:
Engineer:
Project ID:
Project Descr:

PUYALLUP SD MCL 2023-LU 2514-2515 28 X 64 MODULAR CLASSROOM

FDM-6 OF FDN-9 Printed: 30 MAY 2023, 8:30AM Wood Beam Project File: 2023-LU 2514-2515 2021 IBC Struct Calcs.ec6 LIC# : KW-06013980, Build:20.23.05.22 MODERN BUILDING SYSTEMS (c) ENERCALC INC 1983-2023 DESCRIPTION: CNTR COLUMN FTG - 2023-LU 2514-2515 **CODE REFERENCES** Calculations per NDS 2018, IBC 2021, ASCE 7-16 Load Combination Set : IBC 2021 **Material Properties** Analysis Method : Allowable Stress Design E : Modulus of Elasticity Fb+ 850.0 psi Load Combination | IBC 2021 1,300.0 ksi Fb -850.0 psi Ebend- xx Fc - Pril 1,300.0 psi Eminbend - xx 470.0ksi Fc - Perp 405.0 psi : Hem-Fir Wood Species 150.0 psi : No.2 Fv Wood Grade Ft 525.0 psi 26.840 pcf Density Beam Bracing : Completely Unbraced **Repetitive Member Stress Increase** D(0.3650) S(0.7150) 4x8 4x8 4x8 Span = 1.540 ft Span = 0.920 ft Span = 1.540 ft **Applied Loads** Service loads entered. Load Factors will be applied for calculations. Beam self weight NOT internally calculated and added Loads on all spans... Uniform Load on ALL spans : D = 0.3650. S = 0.7150 k/ft DESIGN SUMMARY Design OK Maximum Bending Stress Ratio 0.846 1 Maximum Shear Stress Ratio 0.434:1 = = Section used for this span Section used for this span 4x8 4x8 fb: Actual = 1,038.23psi fv: Actual 59.87 psi = F'b F'v = 1,227.54psi = 138.00 psi Load Combination +D+S Load Combination +D+S Location of maximum on span 1.540ft 0.938 ft Location of maximum on span = = Span # where maximum occurs = Span # 1 Span # where maximum occurs = Span # 1 Maximum Deflection Max Downward Transient Deflection 0.058 in Ratio = 638>=360 Span: 3 : S Only Max Upward Transient Deflection -0.005 in Ratio = 2433>=360 Span: 2 : S Only Max Downward Total Deflection 0.087 in Ratio = 422 >=240 Span: 3 : +D+S Max Upward Total Deflection -0.007 in Ratio = 1611>=240 Span: 2 : +D+S Support notation : Far left is #1 Vertical Reactions Values in KIPS Load Combination Support 1 Support 2 Support 3 Support 4 Max Upward from all Load Conditions 2.160 2.160 Max Upward from Load Combinations 2.160 2.160 Max Upward from Load Cases 1.430 1.430 D Only 0.730 0.730 +D+S 2.160 2.160 +D+0.750S 1.803 1.803 +0.60D 0.438 0.438 S Only 1.430 1.430

PO Box 110 / 9493 Porter Rd Aumsville, OR 97325

Project Title:
Engineer:
Project ID:
Project Descr:

MCL 2023-LU 2514-2515 28 X 64 MODULAR CLASSROOM

FDH-7 OF HV Printed: 30 MAY 2023, 8:31AM

Wood Beam

LIC# : KW-06013980, Build:20.23.05.22

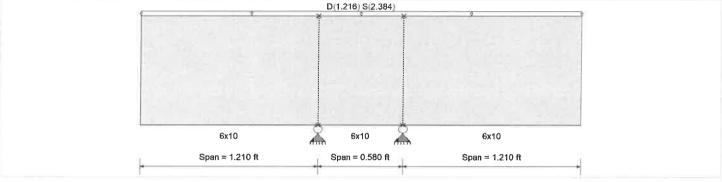
Project File: 2023-LU 2514-2515 2021 IBC Struct Calcs.ec6

Service loads entered. Load Factors will be applied for calculations.

PUYALLUP SD

MODERN BUILDING SYSTEMS

(c) ENERCALC INC 1983-2023


DESCRIPTION: CNTR COLUMN FTG INTERMEDIATE POST- 2023-LU 2514-2515

CODE REFERENCES

Calculations per NDS 2018, IBC 2021, ASCE 7-16 Load Combination Set : IBC 2021

Material Properties

Analysis Method : Allowable Stress Design	Fb +	875.0 psi	E : Modulus of Elas	ticity
Load Combination IBC 2021	Fb - Fc - Pril	875.0 psi 600.0 psi	Ebend- xx Eminbend - xx	1,300.0ksi 470.0ksi
Wood Species : Douglas Fir - Larch Wood Grade : No.2	Fc - Perp Fv Ft	625.0 psi 170.0 psi 425.0 psi	Density	31.210pcf
Beam Bracing : Completely Unbraced		12010 001	Density	01.21000

Applied Loads

Beam self weight NOT internally calculated and added Loads on all spans...

Uniform Load on ALL spans : D = 1.216, S = 2.384 k/ft

DESIGN SUMMARY					and the second se	Design OK
Maximum Bending Stress Ratio Section used for this span	=	0.380: 1 6x10		Shear Stress Ratio	=	0.422 : 1 6x10
fb: Actual	=	382.27 psi		fv: Actual	=	82.44 psi
F'b	=	1,005.39psi		F'v	=	195.50 psi
Load Combination Location of maximum on span	=	+D+S 1.210ft		combination on of maximum on span	=	+D+S 0.798 ft
Span # where maximum occurs	=	Span # 1		where maximum occurs	=	Span # 1
Maximum Deflection Max Downward Transient Deflect Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection		0.004 in Ratio = 0 in Ratio = 0.006 in Ratio = -0.000 in Ratio =	6978 >=360 0 <360 4620 >=240 19282 >=240	Span: 3 : S Only n/a Span: 3 : +D+S Span: 2 : +D+S		
Vertical Reactions			Support notation	n : Far left is #1	Values in KIPS	

	.,	
Load Combination	Support 1 Support 2 Support 3 Support 4	
Max Upward from all Load Conditions	5.400 5.400	
Max Upward from Load Combinations	5.400 5.400	
Max Upward from Load Cases	3.576 3.576	
D Only	1.824 1.824	
+D+S	5.400 5.400	
+D+0.750S	4.506 4.506	
+0.60D	1.094 1.094	
S Only	3.576 3.576	
-		

PO Box 110 / 9493 Porter Rd Aumsville, OR 97325

Project Title:
Engineer:
Project ID:
Project Descr

PUYALLUP SD MCL 2023-LU 2514-2515 28 X 64 MODULAR CLASSROOM

Project File: 2023-LU 2514-2515 2021 IBC Struct Calcs.ec6

OF FDAL-P) FDH-8 Printed: 30 MAY 2023, 8:19AM

Wood Beam LIC# : KW-06013980, Build:20.23.05.22 MODERN BUILDING SYSTEMS

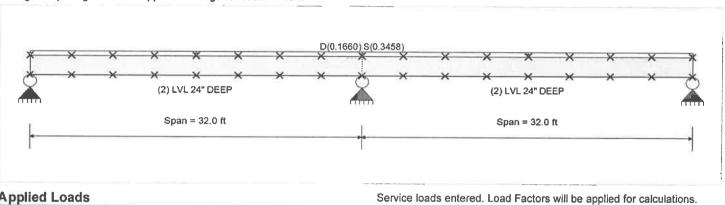
(c) ENERCALC INC 1983-2023

Design OK

DESCRIPTION: (2) LVL RIDGE BEAM - 2023-LU 2514-2515

CODE REFERENCES

Calculations per NDS 2018, IBC 2021, ASCE 7-16 Load Combination Set : IBC 2021


Material Properties

Analysis Method : Allowable Stress Design	Fb +	2,736.0 psi	E : Modulus of Elas	ticity
Load Combination : IBC 2021	Fb -	2,736.0 psi	Ebend- xx	2,000.0 ksi
	Fc - Prll	3,200.0 psi	Eminbend - xx	1,800.0 ksi
Wood Species : Murphy LVL 3100Fb-2.0E x 24" Deep	Fc - Perp	750.0 psi		
Wood Grade : Manufactured	Fv	290.0 psi		
	Ft	2,100.0 psi	Density	35.0pcf
Ream Bracing	allanana			

: Beam bracing is defined as a set spacing over all spans Beam Bracing

Unbraced Lengths

First Brace starts at ft from Left-Most support Regular spacing of lateral supports on length of beam = 4.0 ft

Applied Loads

Beam self weight NOT internally calculated and added Loads on all spans...

Uniform Load on ALL spans : D = 0.0120, S = 0.0250 ksf, Tributary Width = 13.830 ft

DESIGN SUMMARY

			Design UK	6 - F
0.894 1				
	Sectio	п used for this span	(2) LVL 24" DEEP	
2,729.12psi		fv: Actual		
3,051,71 psi		F'v		
+D+S	Load C	Combination		-
32,000 ft				
Span # 1			= Span # 1	
0.496 in Ratio =	773>=360	Span: 2 : S Only		
0 in Ratio =	0 < 360	n/a		
0.734 in Ratio =	522 >=240	Span: 2 : +D+S		
0 in Ratio =	0 <240	n/a		
:	Support notation	n : Far left is #1	Values in KIPS	
Support 1 Support	t 2 Support 3			
6.141 20.4	68 6.141	_		
6.141 20.4	68 6.141			
4.149 13.8	30 4.149)		
1.992 6.63	38 1.992	4 DI-K		
6.141 20.4	68 6.141	2 KXTD		
5.103 17.0				
0.100 17.0				
1.195 3.96		OHLY		
	2) LVL 24" DEEP 2,729.12psi 3,051.71psi +D+S 32.000ft Span # 1 0.496 in Ratio = 0 in Ratio = 0.734 in Ratio = 0 in Ratio = 0 in Ratio = 0 in Ratio = 1.734 in Ratio = 0 in	2) LVL 24" DEEP Section 2,729.12 psi 3,051.71 psi +D+S Load O 32.000 ft Location Span # 1 Span # 0.496 in Ratio = $773 >=360$ 0 in Ratio = $0 <360$ 0.734 in Ratio = $522 >=240$ 0 in Ratio = $0 <240$ Support notation Support 1 Support 2 Support 3 6.141 20.468 6.141 6.141 20.468 6.141 4.149 13.830 4.149 1.992 6.638 1.992 6.141 20.468 6.141	2) LVL 24" DEEP Section used for this span 2,729.12 psi fv: Actual 3,051.71 psi Fv +D+S Load Combination 32.000ft Location of maximum on span Span # 1 Span # where maximum occurs 0.496 in Ratio = 773 >= 360 Span: 2 : S Only 0 in Ratio = 0 < 360	2) LVL 24" DEEP Section used for this span (2) LVL 24" DEEP 2,729.12 psi fv: Actual = 192.25 3,051.71 psi F'v = 333.50 +D+S Load Combination +D+S 32.000ft Location of maximum on span = 30.034 Span # 1 Span # where maximum occurs = Span # 1 0.496 in Ratio = 773 >=360 Span: 2 : S Only 0 in Ratio = 0 <360 n/a 0.734 in Ratio = $522 >=240$ Span: 2 : +D+S 0 in Ratio = $0 <240$ n/a Support notation : Far left is #1 Values in KIPS Support 1 Support 2 Support 3 6.141 20.468 6.141 4.149 13.830 4.149 1.992 6.638 1.992 6.141 20.468 6.141 20.468 6.141 $20.468 6.14120.468 6.141$ $20.468 6.141$

800.682.1422 ModernBuildingSystems.com

JOB #	2023-LU	2514-25	15 Puyallup SD
SHEET NO	L-1	OF	L-6
CALCULATED BY	MCL	DATE	5/30/2023
CHECKED BY		DATE	
SCALE			

WIND ANALYSIS FOR ENCLOSED SIMPLE DIAPHRAGM LOW-RISE BUILDINGS - BASED ON IBC 2021 / ASCE 7-16 CHAPTER 28, PART 2

INPUT DATA

Risk Category = Basic Wind Speed =	RC Vult	 120	Vasd =93	(Table 1.5-1) mph (3 sec gust)(Fig 26.5-1)
Exposure Category =	EC	В		(Sec. 26.7)
Topographic Factor =	Kzt	1.00		(Sec. 26.8 & 26.8-1)
Adjustment Factor = L	ambda	1.00		(Sec 28.6-1)
Building Length = Building width =	L B	64.00 27.67	ft ft	8:23:07 AM
Building Height to Eave =	he	11.00	ft	
Building Height to Ridge =	hr	15.00	ft	
Eave Overhang	oh	0.50	ft	
Building End Zone =	а	3.00	ft	
Roof Pitch =	RP	2.0	:12	
Approx. Roof Angle =	RA	10	degrees	(Ref. Fig. 28.6-1)

OUTPUT

Wind Pressure, ps30 (Fig. 28.6-1)

Horizontal	A-ps30	25.80	psf
Horizontal	B-ps30	-10.70	psf
Horizontal	C-ps30	17.10	psf
Horizontal	D-ps30	-6.20	psf
Vertical	E-ps30	-27.40	psf
Vertical	F-ps30	-16.80	psf
Vertical	G-ps30	-19.10	psf
Vertical	H-ps30	-12.90	psf
О.Н.	Eoh-ps30	-38.40	psf
O.H.	Goh-ps30	-30.10	psf

ModernBuildingSystems.com

A-ps

B-ps

C-ps

D-ps

E-ps

F-ps

G-ps

H-ps

Eoh-ps

Goh-ps

A-tw

B-tw

C-tw

D-tw

Set to 0

Set to 0

Convert to ASD x

Total

25.80

-10.70

17.10

-6.20

-27.40

-16.80

-19.10

-12.90

-38.40

-30.10

0.6

800.682.1422

ps = Lambda * Kzt * ps30

Horizontal

Horizontal

Horizontal

Horizontal

Vertical

Vertical

Vertical

Vertical

O.H.

O.H.

CASE A - Transverse Wind

Wind Pressure, ps

JOB # 2023-LU 2514-2515 Puyallup SD OF L-6 L-2 SHEET NO 5/30/2023 MCL DATE CALCULATED BY DATE CHECKED BY SCALE Min Loading 16.00 psf 8.00 psf 16.00 psf psf 8.00 0.00 psf 0.00 psf 0.00 psf 0.00 psf psf psf **Min Loading** 1703 lbs 1056 lbs 192 lbs -257 lbs 10208 lbs 10910 lbs -1438 lbs 1856 lbs 12613 lbs (SD) 13312 lbs 0.6 7568 lbs (ASD) 7987 lbs

CASE	В-	Longitudinal	Wind
------	----	--------------	------

Total Force on building side L =

	0.0	0.0
Convert to ASD x	0.6	0.6
Total	6477 lbs	(SD) 5779 lbs
C·	lw 5587 lbs	5227 lbs
A·	lw 890 lbs	552 lbs

CASE A	۱ -	Transverse	Uplift
--------	-----	------------	--------

Total Uplift Force =		-18772	lbs (ASD)	
Convert to ASD x		0.6		
Total		-31287	lbs (SD)	
sidewall eaves OH uplift	Goh-up	-1247	lbs	
sidewall eaves OH uplift	Eoh-up	-166	lbs	
w/ gable end OH uplift	H-up	-10441	lbs	
w/ gable end OH uplift	G-up	-15459	lbs	
w/ gable end OH uplift	F-up	-1511	lbs	
w/ gable end OH uplift	E-up	-2464	lbs	

PO Box 110 • 9493 Porter Rd • Aumsville, OR 97325 800.682.1422 ModernBuildingSystems.com

JOB #2023-LU 2514-2515 Puyallup SD					
SHEET NO L-3	OF	L-6			
CALCULATED BY MCL	DATE	5/30/2023			
CHECKED BY	DATE				
SCALE					

28' x 64' MODULAR

ASCE 7-16 Table 1.5-1Risk CategoryASCE 7-16 Table 1.5-2Seismic Importance FactorIe =ASCE 7-16 Table 12.2-1Response Modification FactorR =ASCE 7-16 Table 11.4-3Site ClassUSGS DataShort Spectral Response Accel.Ss =ASCE 7-16 Table 11.4-1 & Sec 11.4.4Site CoefficientFa =ASCE 7-16 Eqn. 11.4-1Sms = Ss * FaSms =ASCE 7-16 Eqn 11.4-3Sds = 2/3 * SmsSds =ASCE 7-16 Sec. 12.8.1.3Sds = 2/3 * SmsSds =USGS DataLong Spectral Response Accel.S1 =ASCE 7-16 Eqn. 11.4-2Site CoefficientFv =ASCE 7-16 Eqn. 11.4-2Site CoefficientFv =ASCE 7-16 Eqn. 11.4-2Sm1 = S1 * FvSm1 =ASCE 7-16 Eqn 11.4-4Sd1 = 2/3 * Sm1Sd1 =Short Period Transition Sec 11.4.6Ts = Sd1 / SdsTs=Building Period Eqn. 12.8-7Ta= Ct*hn^{(x)}= 0.02*13'^0.75Ta=ACSE 7-16 Sec. 11.4.8Check Ta <= 1.5*Ts, 0.137<1.02ASCE 7-16 Eqn. 12.8-2Cs = Sds/(R/le)= 1.000/(6.50/1.00)Cs =	II 1.00 6.50 D 1.500 1.200	
ASCE 7-16 Table 12.2-1 ASCE 7-16 Table 12.2-1 ASCE 7-16 11.4.3 USGS Data ASCE 7-16 11.4.3 USGS Data ASCE 7-16 Eqn. 11.4-1 ASCE 7-16 Eqn. 11.4-1 ASCE 7-16 Eqn. 11.4-1 Sms = Ss * Fa ASCE 7-16 Eqn. 11.4-3 ASCE 7-16 Eqn. 11.4-3 ASCE 7-16 Sec. 12.8.1.3 USGS Data Long Spectral Response Accel. ASCE 7-16 Eqn. 11.4-2 ASCE 7-16 Eqn. 12.8-7 ASCE 7-16 Eqn. 12.	6.50 D 1.500 1.200	
ASCE 7-1611.4.3Site ClassUSGS DataShort Spectral Response Accel.Ss =ASCE 7-16Table 11.4-1 & Sec 11.4.4Site CoefficientFa =ASCE 7-16Eqn. 11.4-1Sms = Ss * FaSms =ASCE 7-16Eqn 11.4-3Sds = 2/3 * SmsSds =ASCE 7-16Sec. 12.8.1.3Sds = 2/3 * SmsSds =USGS DataLong Spectral Response Accel.S1 =ASCE 7-16Table 11.4-2Site CoefficientFv =ASCE 7-16Table 11.4-2Sm1 = S1 * FvSm1 =ASCE 7-16Eqn 11.4-4Sd1 = 2/3 * Sm1Sd1 =Short Period Transition Sec 11.4.6Ts = Sd1 / SdsTs =Building Period Eqn. 12.8-7Ta = Ct*hn^(x) = 0.02*13'^0.75Ta =ACSE 7-16Sec. 11.4.8Check Ta <= 1.5*Ts, 0.137<	D 1.500 1.200	
USGS Data Short Spectral Response Accel. Ss = ASCE 7-16 Table 11.4-1 & Sec 11.4.4 Site Coefficient Fa = ASCE 7-16 Eqn. 11.4-1 Sms = Ss * Fa Sms = ASCE 7-16 Eqn 11.4-3 Sds = 2/3 * Sms Sds = ASCE 7-16 Sec. 12.8.1.3 Sds = 2/3 * Sms Sds = USGS Data Long Spectral Response Accel. S1 = ASCE 7-16 Table 11.4-2 Site Coefficient Fv = ASCE 7-16 Eqn. 11.4-2 Sm1 = S1 * Fv Sm1 = ASCE 7-16 Eqn. 11.4-2 Sm1 = S1 * Fv Sm1 = ASCE 7-16 Eqn 11.4-4 Sd1 = 2/3 * Sm1 Sd1 = Short Period Transition Sec 11.4.6 Ts = Sd1 / Sds Ts= Building Period Eqn. 12.8-7 Ta= Ct*hn^(x)= 0.02*13'^0.75 Ta= ACSE 7-16 Sec. 11.4.8 Check Ta <= 1.5*Ts, 0.137<=1.02	1.500 1.200	
ASCE 7-16 Table 11.4-1 & Sec 11.4.4 Site Coefficient Fa = ASCE 7-16 Eqn. 11.4-1 Sms = Ss * Fa Sms = ASCE 7-16 Eqn 11.4-3 Sds = 2/3 * Sms Sds = ASCE 7-16 Eqn 11.4-3 Sds = 2/3 * Sms Sds = ASCE 7-16 Sec. 12.8.1.3 Sds = 2/3 * Sms Sds = USGS Data Long Spectral Response Accel. S1 = ASCE 7-16 Table 11.4-2 Site Coefficient Fv = ASCE 7-16 Eqn. 11.4-2 Sm1 = S1 * Fv Sm1 = ASCE 7-16 Eqn 11.4-4 Sd1 = 2/3 * Sm1 Sd1 = Short Period Transition Sec 11.4.6 Ts = Sd1 / Sds Ts = Building Period Eqn. 12.8-7 Ta = Ct*hn^(x) = 0.02*13'^0.75 Ta = ACSE 7-16 Sec. 11.4.8 Check Ta <= 1.5*Ts, 0.137<	1.200	
ASCE 7-16 Eqn. 11.4-1Sms = Ss * FaSms =ASCE 7-16 Eqn 11.4-3Sds = $2/3$ * SmsSds =ASCE 7-16 Sec. 12.8.1.3Sds = $2/3$ * SmsSds =USGS DataLong Spectral Response Accel.S1 =ASCE 7-16 Table 11.4-2Site CoefficientFv =ASCE 7-16 Eqn. 11.4-2Sm1 = S1 * FvSm1 =ASCE 7-16 Eqn 11.4-4Sd1 = $2/3$ * Sm1Sd1 =Short Period Transition Sec 11.4.6Ts = Sd1 / SdsTs=Building Period Eqn. 12.8-7Ta= Ct*hn^(x)= 0.02*13'^0.75Ta=ACSE 7-16 Sec. 11.4.8Check Ta <= 1.5*Ts, 0.137<=1.02		
ASCE 7-16 Eqn 11.4-3Sds = $2/3 * Sms$ Sds =ASCE 7-16 Sec. 12.8.1.3Sds = $2/3 * Sms$ Sds =USGS DataLong Spectral Response Accel.S1 =ASCE 7-16 Table 11.4-2Site CoefficientFv =ASCE 7-16 Eqn. 11.4-2Sm1 = S1 * FvSm1 =ASCE 7-16 Eqn 11.4-4Sd1 = $2/3 * Sm1$ Sd1 =Short Period Transition Sec 11.4.6Ts = Sd1 / SdsTs =Building Period Eqn. 12.8-7Ta = Ct*hn^(x) = 0.02*13'^0.75Ta =ACSE 7-16 Sec. 11.4.8Check Ta <= 1.5*Ts, 0.137<=1.02	4 000	
ASCE 7-16 Sec. 12.8.1.3 USGS Data Long Spectral Response Accel. S1 = ASCE 7-16 Table 11.4-2 Site Coefficient Fv = ASCE 7-16 Eqn. 11.4-2 Sm1 = S1 * Fv Sm1 = ASCE 7-16 Eqn 11.4-4 Sd1 = 2/3 * Sm1 Sd1 = Short Period Transition Sec 11.4.6 Ts = Sd1 / Sds Ts = Building Period Eqn. 12.8-7 Ta = Ct*hn^(x) = 0.02*13'^0.75 Ta = ACSE 7-16 Sec. 11.4.8 Check Ta <= 1.5*Ts, 0.137<=1.02	1.800	
USGS Data Long Spectral Response Accel. S1 = ASCE 7-16 Table 11.4-2 Site Coefficient Fv = ASCE 7-16 Eqn. 11.4-2 Sm1 = S1 * Fv Sm1 = ASCE 7-16 Eqn 11.4-4 Sd1 = 2/3 * Sm1 Sd1 = Short Period Transition Sec 11.4.6 Ts = Sd1 / Sds Ts= Building Period Eqn. 12.8-7 Ta= Ct*hn^(x)= 0.02*13'^0.75 Ta= ACSE 7-16 Sec. 11.4.8 Check Ta <= 1.5*Ts, 0.137<=1.02	1.200	
ASCE 7-16 Table 11.4-2 Site Coefficient Fv = ASCE 7-16 Eqn. 11.4-2 Sm1 = S1 * Fv Sm1 = ASCE 7-16 Eqn 11.4-4 Sd1 = 2/3 * Sm1 Sd1 = Short Period Transition Sec 11.4.6 Ts = Sd1 / Sds Ts = Building Period Eqn. 12.8-7 Ta = Ct*hn^(x) = 0.02*13'^0.75 Ta = ACSE 7-16 Sec. 11.4.8 Check Ta <= 1.5*Ts, 0.137	1.000	
ASCE 7-16 Eqn. 11.4-2 Sm1 = S1 * Fv Sm1 = S1 * Fv ASCE 7-16 Eqn 11.4-4 Sd1 = 2/3 * Sm1 Sd1 = Short Period Transition Sec 11.4.6 Ts = Sd1 / Sds Ts = Building Period Eqn. 12.8-7 Ta= Ct*hn^(x)= 0.02*13'^0.75 Ta= ACSE 7-16 Sec. 11.4.8 Check Ta <= 1.5*Ts, 0.137<=1.02	0.600	
ASCE 7-16 Eqn 11.4-4 Sd1 = 2/3 * Sm1 Sd1 = Short Period Transition Sec 11.4.6 Ts = Sd1 / Sds Ts = Building Period Eqn. 12.8-7 Ta= Ct*hn^(x)= 0.02*13'^0.75 Ta= ACSE 7-16 Sec. 11.4.8 Check Ta <= 1.5*Ts, 0.137<=1.02	1.700	
Short Period Transition Sec 11.4.6 Ts = Sd1 / Sds Ts = Building Period Eqn. 12.8-7 Ta= Ct*hn^(x)= 0.02*13'^0.75 Ta= ACSE 7-16 Sec. 11.4.8 Check Ta <= 1.5*Ts, 0.137<=1.02	1.020	
Building Period Eqn. 12.8-7 Ta= Ct*hn^(x)= 0.02*13'^0.75 Ta= ACSE 7-16 Sec. 11.4.8 Check Ta <= 1.5*Ts, 0.137<=1.02	0.680	
ACSE 7-16 Sec. 11.4.8 Check Ta <= 1.5*Ts, 0.137<=1.02	0.680	
	0.137	
ASCE 7 16 Eqn 12.8.2 $C_{\rm f} = Sd_{\rm f}/(R/l_{\rm f}) = 1.000/(6.50/1.00)$ $C_{\rm f} =$	OK	
•	0.154	
ASCE 7-16 Eqn. 12.8-3 Csmax: Not checked (conservative)		
ASCE 7-16 Eqn. 12.8-5 Csmin = 0.044*Sds*le >= 0.01 Csmin =		
ASCE 7-16 Eqn. 12.8-6 If S1> 0.6 Csmin = 0.5*S1/(R/Ie) Csmin =	N/A	
ASCE 7-16 Table 11.6-1 Seismic Design Cat.	D	
Base Shear ASCE 7-16 Eqn 12.8-1 V = Cs * W * 0.7 V =	0.108	w
	0.108	W
ASCE 7-16 Eqn 12.8-5 V = Csmin * W * 0.7 Vmin = IBC 2021 1605.3.1 Note: 0.7 converts to ASD	0.051	

800.682.1422 ModernBuildingSystems.com

JOB #2023-LU 2514-2515 Puyallup SD

SHEET NO L-4	OF	L-6
CALCULATED BY MCL	DATE	5/30/2023
CHECKED BY	DATE	
SCALE		

Building Weight Estimate

	Roof (psf)		Exterior Wall (psf)
Comp	2.5	15/32 T1-11	1.7
7/16 Shtg	1.5	2x6 @ 16	1.7
2x10 @24	1.9	R-21U	1.3
R-42L	2.0	5/8 Gyp	2.8
Drp Grd	1.8		0
	0		0
	0		0
Total	9.7		7.5
=			
	Interior Wall (psf)		Floor (psf)
5/8 Gyp	2.8	Misc	1.0
2x4 @ 16	1.1	23/32 Shtg	2.5
5/8 Gyp	2.8	2x8 @ 16	2.2
	0	R-30U	1.6
	0		0
	0		0
Total	67		7.3
TOtal	6.7		7.5

No Snow

Ext. Wall =

Int. Wall = Floor =

> Chassis = Solar =

> > Total

Roof =

JOB #2023-LU 2514-2515 Puvallup SD

1			JOD #2023-LO 2314-2313 T uyunup 30				
			SHEET NO L-5	OF	L-6		
	BL	ILDING SYSTEMS	CALCULATED BY	MCL	DATE	5/30/2023	
PO Bo	ox 110 • 949	93 Porter Rd • Aumsville, OR 97325	CHECKED BY		DATE		
800	.682.1422	2 ModernBuildingSystems.com	SCALE				
Buil	ding We	ight (con't)					
v 2	8.67 '	65.00 '	0.0 psf	=	0	lbs	
= 2	8.67 '	65.00 '	9.7 psf	=	18076	lbs	
- 1	8.00 '	183.34 '	7.5 psf	=	11000	lbs	
- 1	8.00 '	44.00 '	6.7 psf	=	2358	lbs	
= 2	7.67 '	64.00 '	7.3 psf	=	12927	lbs	
				=	0	lbs	
= 2	8.67 '	65.00 '	0.0 psf	x 40% =	0	lbs	
			Enter 0 or 5				
I		Includes snow and solar, if	any ->	W=	44363	lbs	

Wr = Total DL tributary to roof	24756	lbs
W1 = Total DL tributary to floor	19607	lbs

	Fx Story (She	arwall) Force	Table			
				Story Force - k	Fx Coef =	
Story	Height	Weight		Fx= wx*hx/ (∑	V*hx/(∑	Story Shear
		_		wx*hx)*V	wx*hx)	
	(hx)	(wx)	(wx*hx)			(Vx)
R	11.00 '	24.76 k	272 k-ft	4.05 k	0.164	4.05 k
1	2.50 '	19.61 k	49 k-ft	0.73 k	0.037	4.78 k
Grade	0.00 '					
Sum (∑)		44.36 k	321 k-ft	V= 4.78 k	= Base She	ar

Shear Value	ОК
Comparison	UK

Address:

Elevation:

Timestamp:

Hazard Type:

Reference

Document:

Site Class:

Risk Category:

Coordinates:

A This is a beta release of the new ATC Hazards by Location website. Please contact us with feedback.

The ATC Hazards by Location website will not be updated to support ASCE 7-22. Find eat why

Hazards by Location

39 ft

Seismic

П

ASCE7-16

D-default

105 7th Ave SW, Puyallup, WA 98371, USA

47.186201, -122.2937556

2023-05-30T14:59:11.361Z

Search Information

OF L-Bremerton Renton 673 90 SeaTecs Cred 39 ft 🗮 Tacom (101) Shelton Olympia Mount Baimer Google Map data ©2023 Google

Basic Parameters

Name	Value	Description
SS	1.27	MCE _R ground motion (period=0.2s)
s ₁	0.437	$MCE_{R} \text{ ground motion (period=1.0s)} \leq 0.600 \stackrel{\circ}{,} OK$
S _{MS}	1.524	Site-modified spectral acceleration value
S _{M1}	* nuli	Site-modified spectral acceleration value
S _{DS}	1.016	Numeric seismic design value at 0.2s SA = 1.000 PLP ASCE 7-16 SEC 12 8-1-3
S _{D1}	* null	Numeric seismic design value at 1.0s SA

* See Section 11.4.8

Additional Information

Name	Value	Description		
SDC	* null	Seismic design category		
Fa	1.2	Site amplification factor at 0.2s		
F _v	* null	Site amplification factor at 1.0s	ja kon	
CRS	0.914	Coefficient of risk (0.2s)		
CR1	0.898	Coefficient of risk (1.0s)		176
PGA	0.5	MCE _G peak ground acceleration		
F _{PGA}	1.2	Site amplification factor at PGA		
PGAM	0.6	Site modified peak ground acceleration		

Interface Materials	Friction factor	Friction angle, degrees	
Mass concrete on the following foundation materials:	0.70	35	
Clean sound rock	0.70 0.55 to 0.60	29 to 31	
Clean gravel, gravel-sand mixtures, coarse sand		29 to 31 24 to 29	
Clean fine to medium sand, silty medium to coarse sand, silty or clayey gravel	0.45 to 0.55		
Clean fine sand, silty or clayey fine to medium sand	0.35 to .045	19 to 24	
Fine sandy silt, non-plastic silt	0.30 to 0.35	17 to 19	
Very stiff and hard residual or pre-consolidated clay	0.40 to 0.50	22 to 26	
Medium stiff and stiff clay and silty clay	0.30 to 0.35	17 to 19	
(Masonry on foundation materials has same friction factors.)			
Steel sheet piles against the following soils:			
Clean gravel, gravel-sand mixtures, well-graded rock fill with spalls	0.40	22	
Clean sand, silty sand-gravel mixture, single size hard rock fill	0.30	17	
Silty sand, gravel or sand mixed with silt or clay	0.25	14	
Fine sandy silt, non-plastic silt	0.20	11	
Formed concrete or concrete sheet piling against the following soils:			
Clean gravel, gravel-sand mixtures, well-graded rock fill with spalls	0.40 to 0.50	22 to 26	
Clean sand, silty sand-gravel mixture, single size hard rock fill	0.30 to 0.40	17 to 22	
Silty sand, gravel or sand mixed with silt or clay	0.30	17	
Fine sandy silt, non-plastic silt	0.25	14	
Various structural materials:			
Masonry on masonry, igneous and metamorphic rocks:			
Dressed soft rock on dressed soft rock	0.70	35	
Dressed hard rock on dressed soft rock	0.65	33	
Dressed hard rock on dressed hard rock	0.55	29	
Masonry on wood (cross grain)	0.50	26	
Steel on steel at sheet pile interlocks	0.30	17	
Interface Materials (Cohesion)	Adhesion	n C _a (psf)	
Very soft cohesive soil (0 - 250 psf)	0 - 1	250	
Soft cohesive soil (250 - 500 psf)	250 -	- 500	
Medium stiff cohesive soil (500 - 1000 psf)	500 -	- 750	
Stiff cohesive soil (1000 - 2000 psf)	750 -	950	
Very stiff cohesive soil (2000 - 4000 psf)	950 - 1,300		

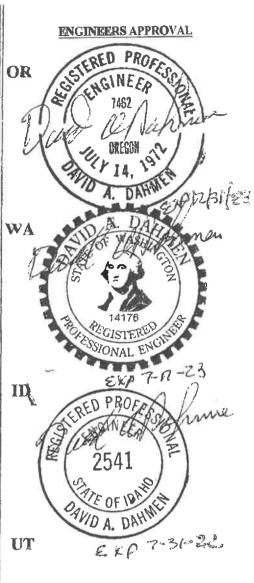
ULTIMATE FRICTION FACTORS AND ADHESION FOR DISSIMILAR MATERIALS (NAVFAC DM 7.2, Table 1, p7.2-63)

Continental Supply NW, LLC

GENERAL NOTES

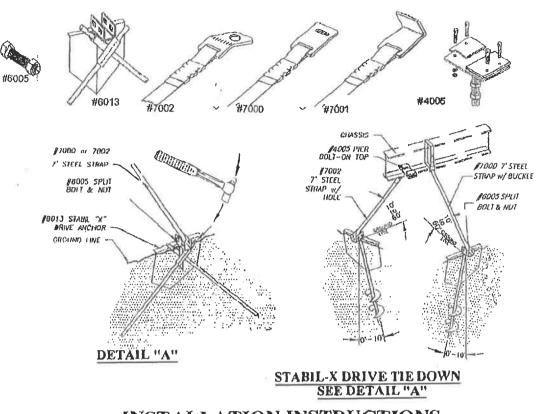
DISIGN LOADS:

- WIND ----- COMPLIES WITH . 2018 IBC Vult = 115 MPH Exp C
- * SOIL BEARING ------ 1000 PSF
- * TIE DOWN STRAP ------ 3160# WORKING LOAD
- * SEISMIC ZONE ------ 2018 IBC Se=1.5 Fa=1.4 Soc 1.41 Site Class_D_
- * TIE DOWN STRAPS TO BE MIN. 1 1/4" WIDE x 0.035 THICKNESS ZINC PLATED AND MEET ASTM D-3953-97 ALT. STRAP; 1 1/4" WIDE X 0.029" THICK ZINC PLATED Fult =5400 LBS
- * CROSS DRIVES _____ 2962 # (TESTED TO 4750# MIN.)
- * CONCRETE SLAB ANCHORS ----- 2962 # (CALCULATED)
- 1. THE CHARTS SHOW THE REQUIRED NUMBER OF TIE DOWNS ON THE SIDES AND ENDS OF THE MANUFACTURED HOME.
- 2. COMBINATIONS OF THE DIFFERENT TYPES OF TIE DOWNS CAN BE USED.
- 3. FOR ALL TIE DOWN INSTALLATIONS, THE MANUFACTURED HOME CHASSIS MEMBERS ARE SHOWN AS "I" BEAMS, (FOR ILLUSTRATION PURPOSE ONLY) CHASSIS BEAMS
- 4. SIDE TIE DOWNS ARE REQUIRED ALONG THE OUTSIDE CHASSIS BEAMS. END TIE DOWNS ARE REQUIRED AT EACH END OF EACH TRANSPORTABLE SECTION OF THE MANUFACTURED HOME.
- 5. END THE DOWNS CAN BE LOCATED WITHIN 18" OF EITHER SIDE OF CHASSIS BEAM



- 6. THE SIZES, TYPES, LENGTHS, ECT, OF MATERIALS SHOWN HEREON ARE MINIMUM, LARGER, LONGER, HEAVIER MATERIALS SUPPLIED BY SAC INDUSTRIES, INC. MAY BE USED AT THE SAME SPACING AND LOCATION SHOWN.
- 7. ALL PARTS ARE COATED WITH RUST RESISTANT INDUSTRIAL SHOP PRIMER

 STATE APPROVAL
 Continental Supply NW, LLC
 1570 Bishop Road
 Chehalis, WA 98532
 888-265-8981


CA

PACIFIC CONSULTING ENGINEERS 9739 North Vista Drive Kingman, AZ 86401 PH 916-296-7376

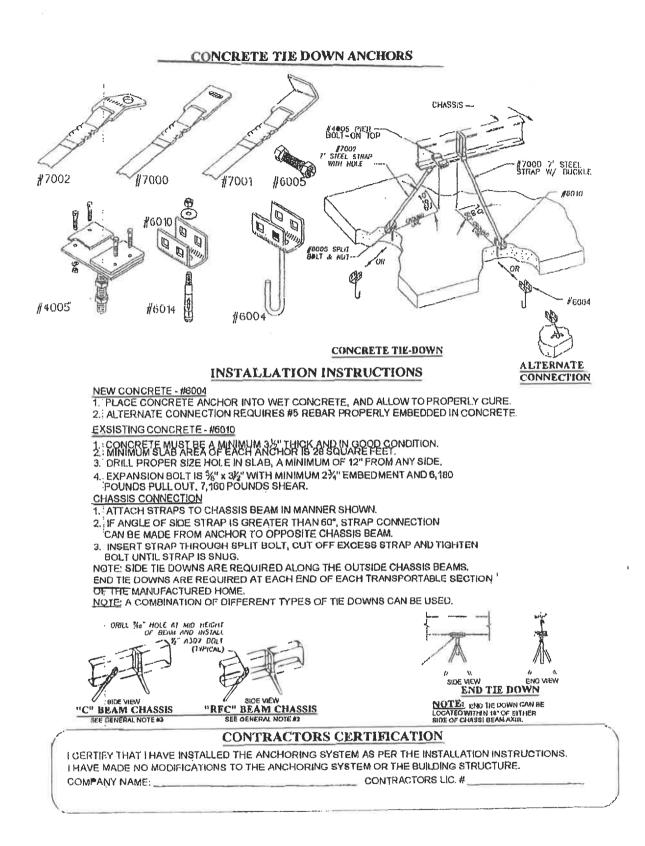
AZ

STABIL-X DRIVE TIE DOWN ANCHORS

INSTALLATION INSTRUCTIONS

- 1. CONTRACTORS WARNING; CHECK FIRST FOR UNDERGROUND UTILITIES.
- 2. DRIVE STABILIZER PLATE INTO GROUND.
- 3. DRIVE CROSS RODS THROUGH HEAD TUBES INTO SOIL AS SHOWN.
- 4. ATTACH STRAPS TO CHASSIS BEAM IN MANNER SHOWN.
- 5. IF ANGLE OF SIDE STRAP IS GREATER THEN 60°, STRAP CONNECTION CAN BE MADE FROM ANCHOR TO OPPOSITE CHASSIS BEAM.
- 6, INSERT STRAP THROUGH SPLIT BOLT. CUT OFF EXCESS STRAP AND TIGHTEN BOLT UNTIL STRAP IS SNUG.
- 7. #6011 ANCHOR CAN BE USED WHERE HARD OR ROCKY SOLL OCCURS. IF THE GROUND SURFACE IS OTHER THAN ROCKY SOLL OR MINIMUM 2" ASPHALT, USE STABIL-X ANCHOR OR ENCASE ANCHOR WITH 12"x12"x12" CUBE OF CONCRETE.

8. WHEN #6011 ANCHOR IS USED FOR ANY REQUIRED ANCHOR - (2) ANCHORS MUST BE USED AT THAT LOCATION.

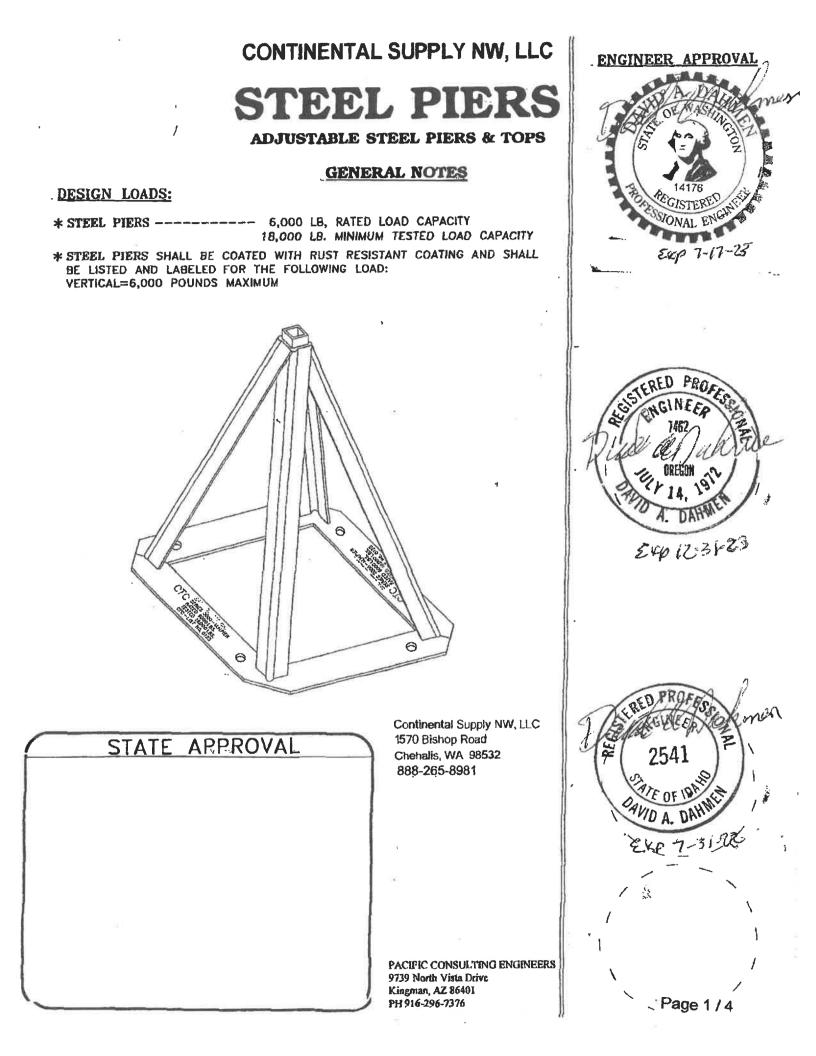

EARTH AUGERS		CROSS DI	CROSS DRIVE ANCHORS			CONCRETE	CONCRETE SLAB ANCHORS					
MAN. LENGTH OF	36'	64'	72'	MAX. LENDTH OF	36'	84	72'	MAX, LENGTH OF NFGO HOME	36'	64'	72'	+
MIN , NO, OF SIDE THE ODWNB	2	3	4	MIN: NO. OF BIDE TIE DOWNB	2	3	4	MIN . ND. OF SIDE	2	3	4	

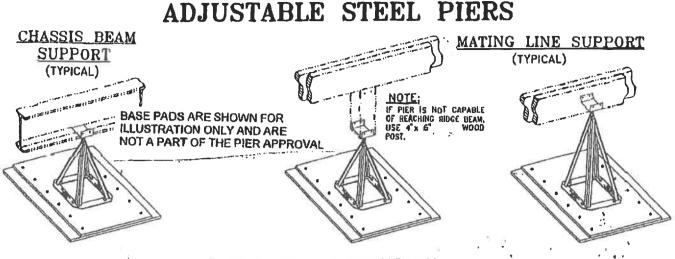
NOTE:

SIDE TIE-DOWNS: MUST BE WITHIN 24" OF THE END OF THE CHASSIS BEAM.

END TIE-DOWNS: CAN BE LOCATED WITHIN 24" OF EITHER SIDE OF CHASSIS BEAM ONE TIE-DOWN IS MANDATORY AT EACH END OF "I"BEAM (SEE PACE #1 GENERAL NOTE #5).

IF SIDE WALL TIE-DOWN GROUND ANCHOR LOCATION IS SUCH THAT THE ANGLE BETWEEN THE GROUND AND STRAP EXCEEDS 60', CONNECT THE TIE STRAP TO THE INSIDE CHASSIS BEAM ON DOUBLE AND TRIPLE WIDES AND THE OPPOSITE CHASSIS BEAM ON SINGLE WIDES.



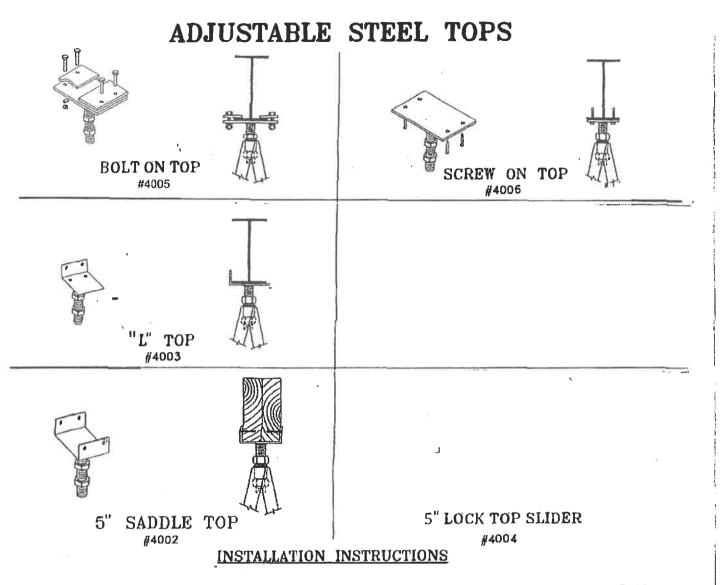

U
5
J
Ā

•

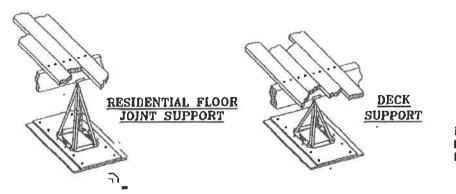
Soil Class	Soil Description	Test Probe Values (in lbs.)	Recommended PGM Part	PGM part description
				E
~			# 6011	Cross Drive Anchor W/ 30" Rods
•	Hard Rock or Rocky	N/A	or # 6002	Cross Drive Anchor W/ 30" Rods
	Very Dense and or		# 6000	30" Auger Anchor W/2 4" Helix
0	Cemented Sands, Coarse		# 6006	12" Stabilizer Plate
J	Gravel, Cobbles and Clays	550+	# 6013	Stabil X - Drive
	Medium Dense Coarse			
3	Sands, Sandy Gravels, Very		Available Upon	
)	Very Stiff Silts & Clays	351 to 550	Request	
	Loose to Medium Dense			
τ	Sands, Firm to Stiff Clays &		Available Upon	
5	Silts, Alluvial Fill	276 to 350	Request	
	Very Loose Sands,			
4P	Firm Clays & Silts		Available Upon	2
2	Alluvial Fill	175 to 275	Request	

Please Note : Each State, County or Municipality may require a specific anchor from the groups shown above for each soil classification. Check local and stata regulations first.

INSTALLATION INSTRUCTIONS

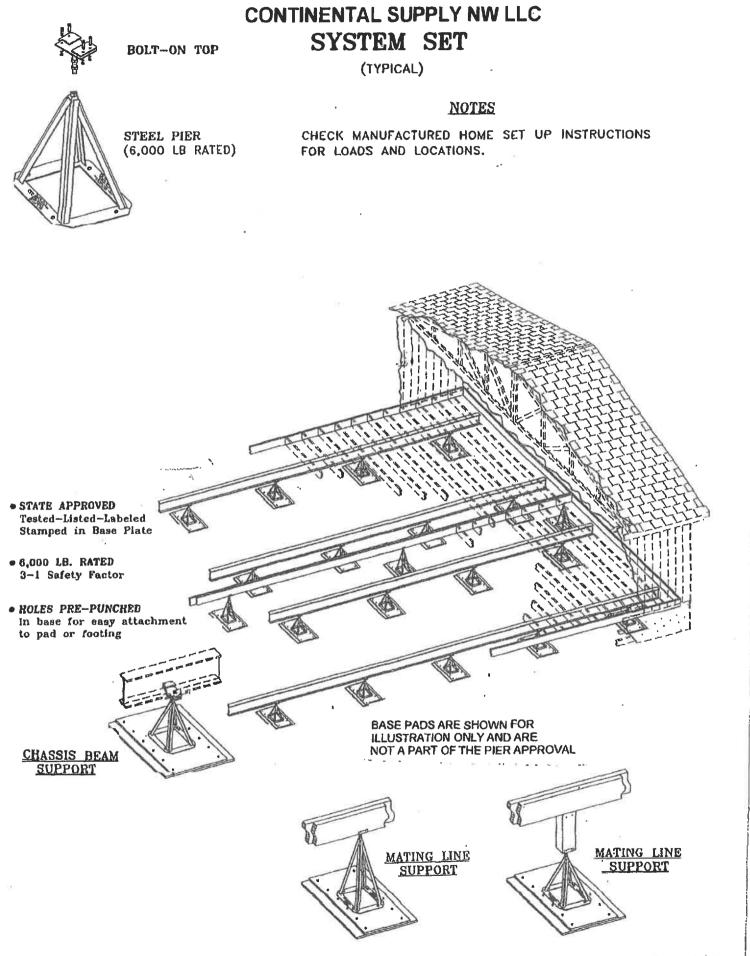

- 1. PREPARE A LEVEL SURFACE AT THE LOCATION OF EACH PIER TO INSURE A FULL CONTACT FOR THE FOOTING PAD. USE THE APPROPRIATE SIZE PAD FOR THE LOAD REQUIRED. REFER TO THE MANUFACTURERS SET UP MANUAL FOR SPECIFIC LOADS AND FOOTING SIZES.
- 2. SELECT THE APPROPRIATE SIZE PIERS FOR THE INSTALLATION BY DETERMINING THE PIER HEIGHT AT EACH SUPPORT LOCATION. MEASURE FROM THE TOP OF THE PAD TO THE BOTTOM OF THE CHASSIS BEAM TO INSURE THAT HEIGHT IS NO GREATER THAN 32".
- 3. SELECT THE APPROPRIATE TOP FOR THE CHASSIS BEAM OR MATING LINE, THE MAXIMUM ADJUSTMENT ON THE THREADED ROD ADJUSTER FOR CHASSIS BEAM SUPPORT IS 2". WHEN MORE HEIGHT IS NEEDED USE THE NEXT TALLER SIZE SUPPORT PIER.
- 4. PLACE THE PIER SUPPORT IN THE CENTER OF THE SUPPORT PAD. WHERE REQUIRED BY LOCAL CODE, ATTATCH THE SUPPORT PIER TO THE PAD USING APPROPRIATE FASTENERS. CAREFULLY ALIGN THE SUPPORT PIER AND TOP UNDER THE CHASSIS BEAM OR MATING LINE AND TIGHTEN UNTIL SNUG PLUS 1/2 TURN.
- 5. REPEAT THIS INSTALLATION PROCEDURE WITH EACH SUPPORT PIER. AFTER ALL THE SUPPORT PIERS HAVE BEEN INSTALLED, AND THE HOME SET UP HAS BEEN COMPLETED PER THE MANUFACTURERS SET UP INSTRUCTIONS, YOU MAY THEN REMOVE THE SAFTEY BLOCKING OF OTHER DEVICES USED TO LEVEL THE CHASSIS.

LABORATORY TESTING REPORT


PIER IDENTIFICATION STAMP

PART No.	STAND SIZE	SAMPLE #1	SAMPLE #2	SAMPLE #3	PGM lac.
3008	8"	23,100 Lbs.	24,600 Lbs.	23,200 Lbs.	SERIES 3000-M H PIER RATED 6,000 LBS.
3010	10"	25,130 Lbs.	25,950 Lbs.	24,320 Lbs.	TESTED 18,000 LBS
3012	12"	27,200 Lbs.	26,500 Lbs.	26,300 Lbs.	C.T.C. LIST NO. 0123
3014	14"	27,700 Lbs.	28,175 Lbs.	26,175 Lbs.	
3016	16"	28,250 Lbs.	27,700 Lbs.	23,400 Lbs.	
3018	16"	26,400 Lbs.	33,300 Lbs.	25,500 Lbs.	
3020	20"	24,950 Lbs.	25,000 Lbs.	23,225 Lbs.	
3022	22"	20,500 Lbs.	22,400 Lbs.	24,200 Lbs.	
3024	24"	22,225 Lbs.	21,650 Lbs.	23,000 Lbs.	
3026	26"	22,250 Lbs.	21,500 Lbs.	19,700 Lbs.	
3028	28"	20,550 Lbs.	23,720 Lbs.	21,310 Lbs.	
3030	30'	22,950 Lbs.	26,550 Lbs.	21,500 Lbs.	

.



- #4002 PLACE SADDLE TOP FLUSH AGAINST MAIN CHASSIS BEAM AND OR MATING LINE MAXIMUM HEIGHT ADJUSTMENT OF TOP IS 2".
- #4004 5" LOCK TOP SLIDER ATTACH BOLT ON TOP TO "I" BEAM WITH (2) 3/8" BOLTS AND NUTS WITH 2ND 3/4" NUT, ATTACH BOLT ON TOP TO PIER - MAXIMUM HEIGHT ADJUSTMENT OF TOP IS 2.
- #4005 ATTACH BOLT ON TOP TO "I" BEAM WITH (4) 3/8" BOLTS AND NUTS WITH 2nd 3/4" NUT, ATTACH BOLT ON TOP TO PIER - MAXIMUM HEIGHT ADJUSTMENT OF TOP IS 2".
- #4003 PLACE "L" TOP FLUSH AGAINST MAIN BEAM ALTERNATE "L" TOP DIRECTION EVERY OTHER PIER MAXIMUM HEIGHT ADJUSTMENT OF TOP IS 2".
- #4006 ATTACH SCREW ON TOP TO MAIN CHASSIS BEAM WITH (4) #12 SMS TEK SCREWS. WHEN USED AT MATING LINE, ATTACH WITH NAILS OR SCREWS. MAXIMUM HEIGHT ADJUSTMENT OF TOP IS 2".

BASE PADS ARE SHOWN FOR ILLUSTRATION ONLY AND ARE NOT A PART OF THE PIER APPROVAL
