

JOB #2023-LU 2514-2515 Puyallup SD

CALCULATED BY MCL DATE 5/30/2023
CHECKED BY DATE
SCALE

PO Box 110 • 9493 Porter Rd • Aumsville, OR 97325 **800.682.1422** ModernBuildingSystems.com

PRPF20241044

City of Puyallup Development & Permitting Services ISSUED PERMIT				
Building	Planning			
Engineering	Public Works			
Fire	Traffic			

STRUCTURAL FOUNDATION CALCULATIONS (PER 2021 IBC) FOR 28' X 64' MODULAR

MATERIAL SUMMARY MS-1

FOUNDATION ANALYSIS FDN-1 --> FDN-8

LOADING ANALYSIS L-1 --> L-6

REUSE OF DOCUMENTS: THIS
DOCUMENT AND THE IDEAS AND
DESIGNS INCORPORATED HEREIN
ARE THE PROPERTY OF MODERN
BUILDING SYSTEMS INC. AND ARE
NOT TO BE USED IN WHOLE OR IN
PART FOR ANY OTHER USE OR
PROJECT WITHOUT WRITTEN
AUTHORIZATION

JOB #2023-LU 2514-2515 Puyallup SD					
SHEET NO MS-1	OF MS-1				
CALCULATED BY MO	CL DATE	5/30/2023			
CHECKED BY	DATE				
SCALE					

MATERIAL SUMMARY FOR 28' X 64' MODULAR

FOUNDATION:

TYP EXT FTG	USE	USE +/- 16 in. SQ. PADS OR 2 x 12 x 24 in. P.T. PADS AT 6' O.C.	SEE FDN-1
TYP INTERIOR FTG	USE	USE +/- 16 in. SQ. PADS OR 2 x 12 x 24 in P.T. PADS AT 6' O.C.	SEE FDN-1
ENDWALL COLUMN FTG	USE	(2) (FLAT) P.T. HF #2, 6 x 8 x 4 ' L	SEE FDN-3,5
CNTR COLUMN FTG	USE	(5) (FLAT) P.T. HF #2, 4 x 8 x 4 ' L	SEE FDN-3,6
CNTR COLUMN FTG POST	USE	(2) DF #2, 6 x 10 x 3 ' L	SEE FDN-3,7
MOD TRANSVERSE ANCHORS	USE	USE MIN (4) HOLD DOWNS AT EA SIDEWALL	SEE FDN-4
MOD LONGITUDINAL ANCHORS	USE	USE MIN (3) HOLD DOWNS AT EA ENDWALL	SEE FDN-4

ModernBuildingSystems.com

800.682.1422

IOB # 2023-LU 2514-2515 Puyallup SD

SHEET NO FDN-1

OF FDN-

CALCULATED BY MCL

5/30/2023

CHECKED BY

DATE

FOUNDATION	DESIGN	MODULAR	
BUILDING LENGTH (L) =	64.00 '	SITE TYPE =	GRAVEL
BUILDING WIDTH (B) =	27.67 '	MAX BRG PRESSURE =	1800 psf
FRAME RAIL OFFSET =	N/A		
FLOOR TRIB WIDTH =	6.92 '		
ROOF OVERHANG =	0.50 '		
ROOF TRIB WIDTH =	7.42 '		
WALL PLATE HEIGHT =	8.00 '	(ABOVE F.F.)	
TRANSVERSE WIND/SEIS. =	7987 #		
LONGIT. WIND/SEIS. =	4778 #		
WIND UPLIFT =	18772 #		
SNOW LOAD =	25 psf		
BUILDING WEIGHT =	44363 #	(No solar or snow)	
F.F. HEIGHT	2.50 '	(ABOVE GRADE)	
AVG. ROOF HEIGHT	13.00 '	(ABOVE GRADE)	
PIER PAD AREA	1.78 ft^2		
AT EXTERIOR FTG			
LOAD TO SKIRTWALL	0 plf		
	DL =	7.42'(12 psf)+8'(10 psf)+6.92'/2(10 psf) =	204 plf
		6.92' / 2 X 50 psf =	173 plf
	SL =	7.42' X 25 psf =	185 plf
	D + L =	376 plf	
	D + S =	389 plf	
D + 0.75	L +0.75S =	472 plf	CONTROLS
PIER S	SPACING =		_
	q =	(472plf - 0plf) X (6') / 1.78 ft^2 =	1592 psf
		∴ <u>OK</u> on (GRAVEL

USE +/- 16 in. SQ. PADS OR 2 x 12 x 24 in. P.T. PADS AT 6' O.C. AT INTERIOR FTG - (U.N.O.)

DL = 6.92' (10 psf) =

69 plf

LL = 6.92' (50 psf) =

346 plf

D + L = 415 plf

CONTROLS

PIER SPACING = 6.00 '

 $q = 415plf X (6') / 1.78 ft^2 =$

1399 psf

.: OK on GRAVEL

USE +/- 16 in. SQ. PADS OR 2 x 12 x 24 in P.T. PADS AT 6' O.C.

IOB # 2023-LU 2514-2515 Puyallup SD

SHEET NO FDN-2	OF FDN-₿
CALCULATED BY MCL	5/30/2023
CHECKED BY	DATE
SCALE	

AT ENDWALL COLUMN FTG

COLUMN DL = 1992 # COLUMN SL = 4149 #

DL = [3' (10 psf) + 10.5' (10 psf)] X 6.92' = 934 # LL = 3' (50 psf) X 6.92' = 1037 #

D + L = 3963 #

D + S = 7075 # CONTROLS

D + 0.75L + 0.75S = 6815 #

<9000# Therefore OK. (See FDN- 3,5)

AT MIDSPAN COLUMN FTG

COLUMN DL = 6638 #

COLUMN SL = 13830 #

DL = 6.92' (10 psf) (6') = 415 # LL = 6.92' (50 psf) (6') = 2075 #

D + L = 9127 #

D + S = 20883 # CONTROLS

D + 0.75L + 0.75S = 18981 #

<21600# Therefore OK. (See FDN- 3,6,7)

IOB # 2023-LU 2514-2515 Puyallup SD

SHEET NO FDN-3	of FDN- 8	
CALCULATED BY MCL	5/30/2023	
CHECKED BY	DATE	
SCALE		

@ ENDWALL COLUMN FOOTING

TRY 2 (FLAT) P.T. HF #2, 6 x 8 x 4.00 ' UWidth (b) each = 0.63 '

Pmax = 1800psf X 2 X 0.63' X 4' = 9000 #

DL % = 41% SL % = 59%

w DL = 1800psf X 0.63' X 0.41 = 465 plf w SL = 1800psf X 0.63' X 0.59 = 660 plf

@ MIDSPAN COLUMN FOOTING

TRY 5 (FLAT) P.T. HF #2, 4 x 8 x 4.00 ' L Width (b) each = 0.60 '

Pmax = 1800psf X 5 X 0.6' X 4' = 21600 #

DL % = 34% SL % = 66%

 $W_{DL} = 1800psf X 0.6' X 0.34 = 365 plf$

W _{SL} = 1800psf X 0.6' X 0.66 = 715 plf

@ MIDSPAN INTERMEDIATE POST

TRY 2 DF #2, 6 x 10 x 3.00 ' L Width (b) each = 0.46 '

> w DL = 1800psf X 4' X 0.34 / 2 MEMBERS = 1216 plf w SL = 1800psf X 4' X 0.66 / 2 MEMBERS = 2384 plf

SHEET NO FDN-4	OF FDN-	
CALCULATED BY MCL	5/30/2023	
CHECKED BY	DATE	
SCALE		

4 ANCHORS

MOD TRANSVERSE LOADING ANCHORAGE

Sliding: N = 7987# /2094# =

Overturning:

Mot = 7987# / 2 X 13' + 7987# / 2 X 2.5' + 18772# X 27.67' / 2 = 322 k-ft

> Mr= 44363# X 27.67' / 2 = 614 k-ft

w/ ANCHORS = 4 X 2094# X 27.67' = 232 k-ft

TOTAL = $(614k-ft \times 0.6) + 232k-ft =$ 600 k-ft

> 322k-ft therefore OK

ANCHORS MIN NUMBER =

USE MIN (4) HOLD DOWNS AT EA SIDEWALL

MOD LONGITUDINAL LOADING ANCHORAGE

Sliding: N =4778# /2094# = 3 ANCHORS

Overturning:

Mot = 4778# / 2 X 13' + 4778# / 2 X 2.5 ' + 18772# X 64' / 2 = 638 k-ft

> 44363# X 64' / 2 = Mr =1420 k-ft

w/ ANCHORS = 3 X 2094# X 64' = 402 k-ft

 $(1420k-ft \times 0.6) + 402k-ft =$ TOTAL = 1254 k-ft

> 638k-ft therefore OK

MIN NUMBER =

USE MIN (3) HOLD DOWNS AT EA ENDWALL

MOBILE UNIT CONNECTION TO CHASSIS

(TRANSVERSE LOADING) $T = 322 \text{ k-ft} - (0.6) \times 614 \text{ k-ft} / 27.67 \text{ ft} / 2 = 0.00 \text{ ft}$ -843 #

PER STRAP

PER NAIL VALUE (SIMP C-2019 PG 263)

211# DF

N= 12 NAILS 12 (MIN)

N/A

Project Title: Engineer: Project ID: PUYALLUP SD MCL

Project ID: 2023-LU 2514-2515
Project Descr: 28 X 64 MODULAR CLASSROOM

14-5 OF PIN-0

Printed: 30 MAY 2023, 8:29AM

Wood Beam

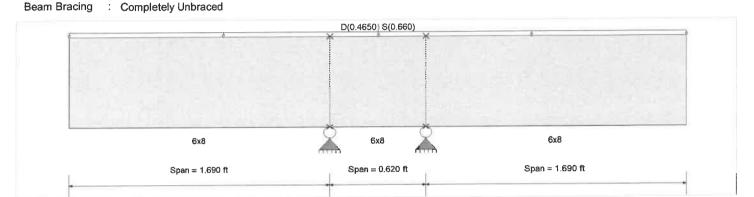
Project File: 2023-LU 2514-2515 2021 IBC Struct Calcs.ec6

LIC#: KW-06013980, Build:20.23.05.22

MODERN BUILDING SYSTEMS

(c) ENERCALC INC 1983-2023

DESCRIPTION: ENDWALL COLUMN FTG - 2023-LU 2514-2515


CODE REFERENCES

Calculations per NDS 2018, IBC 2021, ASCE 7-16

Load Combination Set: IBC 2021

Material Properties

Analysis Method :	Allowable Stress Design	Fb +	575.0 psi	E : Modulus of Elasi	ticity
Load Combination		Fb - Fc - Prll	575.0 psi 575.0 psi	Ebend- xx Eminbend - xx	1,100.0ksi 400.0ksi
Wood Species : Wood Grade :	Hem-Fir No.2	Fc - Perp Fv	405.0 psi 140.0 psi	Emmodia - XX	
wood Grade .	140.2	Ft	375.0 psi	Density	26.840 pcf

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Beam self weight NOT internally calculated and added Loads on all spans...

Uniform Load on ALL spans : D = 0.4650, S = 0.660 k/ft

DESIGN SUMMARY						Design OK
Maximum Bending Stress Ratio Section used for this span	=	0.771: 1 6x8		hear Stress Ratio used for this span	==	0.271 : 1 6x8
fb: Actual	=	509.85 psi		fv: Actual	=	43.64 psi
F'b	=	661.25 psi		F'v	=	161.00 psi
Load Combination Location of maximum on span Span # where maximum occurs	= =	+D+S 1.690ft Span # 1	Locatio	ombination n of maximum on span where maximum occurs	= =	+D+S 1.067 ft Span # 1
Maximum Deflection Max Downward Transient Deflecti Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection		0.017 in Ratio = 0 in Ratio = 0.030 in Ratio = -0.001 in Ratio =	2318 >=360 0 <360 1358 >=240 6490 >=240	Span: 3 : S Only n/a Span: 3 : +D+S Span: 2 : +D+S		

Sup	port notation : Far left is #1	Values in KIPS
Support 1 Support 2	Support 3 Support 4	
2.250	2.250	
2.250	2.250	
1.320	1.320	
0.930	0.930	
2.250	2.250	
1.920	1.920	
0.558	0.558	
1.320	1.320	
	Support 1 Support 2 3 2.250 2.250 1.320 0.930 2.250 1.920 0.558	2.250 2.250 1.320 1.320 0.930 0.930 2.250 2.250 1.920 1.920 0.558 0.558

L C. . . E - . I - #4

Project Title: Engineer: Project ID:

Project Descr:

PUYALLUP SD MCL

2023-LU 2514-2515 28 X 64 MODULAR CLASSROOM

> FDM-6 OF FDN-9 Printed: 30 MAY 2023, 8:30AM

Wood Beam

Project File: 2023-LU 2514-2515 2021 IBC Struct Calcs.ec6

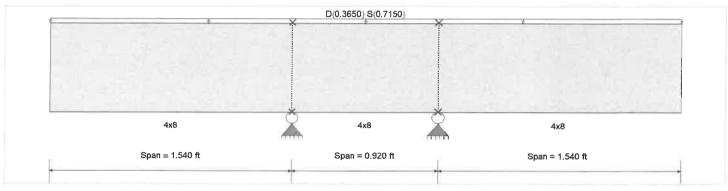
LIC#: KW-06013980, Build:20.23.05.22

MODERN BUILDING SYSTEMS

(c) ENERCALC INC 1983-2023

Design OK

DESCRIPTION: CNTR COLUMN FTG - 2023-LU 2514-2515


CODE REFERENCES

Calculations per NDS 2018, IBC 2021, ASCE 7-16

Load Combination Set: IBC 2021

Material Properties

Analysis Method: Allowable Stress Design E: Modulus of Elasticity Fb+ 850.0 psi Load Combination IBC 2021 Fb-850.0 psi Ebend- xx 1.300.0ksi Fc - Pril 1,300.0 psi Eminbend - xx 470.0ksi Fc - Perp 405.0 psi Wood Species : Hem-Fir Wood Grade Fν 150.0 psi : No.2 Ft 525.0 psi Density 26.840 pcf Beam Bracing : Completely Unbraced Repetitive Member Stress Increase

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Beam self weight NOT internally calculated and added Loads on all spans...

Uniform Load on ALL spans: D = 0.3650, S = 0.7150 k/ft

DESIGN	SUMMA	RY
Maximun	n Bending	Stre

V TO A PARTICULAR TO THE PARTI						
Maximum Bending Stress Ratio Section used for this span	=	0.846 1 4x8		Shear Stress Ration used for this span	=	0.434 : 1 4x8
fb: Actual	=	1,038.23psi		fv: Actual	=	59.87 psi
F'b	=	1,227.54psi	F'v		=	138.00 psi
Load Combination		+D+S	Load C	Combination		+D+S
Location of maximum on span	_	1.540ft	Locatio	on of maximum on span	=	0.938 ft
Span # where maximum occurs	=	Span # 1	Span # where maximum occurs		=	Span # 1
Maximum Deflection Max Downward Transient Deflect	ion	0.058 in Ratio =	638>=360	Span: 3 : S Only		
Max Upward Transient Deflection		-0.005 in Ratio =	2433>=360	Span: 2 : S Only		
Max Downward Total Deflection		0.087 in Ratio =	422 >=240	Span: 3 : +D+S		
Max Upward Total Deflection		-0.007 in Ratio =	1611 >=240	Span: 2 : +D+S		

Vertical Reactions

Supp	ort notation : Far left is #1	Values in KIPS	
Support 1 Support 2 S	upport 3 Support 4		
2.160	2.160		
2.160	2.160		
1.430	1.430		
0.730	0.730		
2.160	2.160		
1.803	1.803		
0.438	0.438		
1.430	1.430		
	Support 1 Support 2 S 2.160 2.160 1.430 0.730 2.160 1.803 0.438	2.160 2.160 1.430 1.430 0.730 0.730 2.160 2.160 1.803 1.803 0.438 0.438	Support 1 Support 2 Support 3 Support 4 2.160

Project Title: Engineer: Project ID:

Project Descr:

PUYALLUP SD MCL

2023-LU 2514-2515 28 X 64 MODULAR CLASSROOM

OF

Printed: 30 MAY 2023, 8:31AM

Wood Beam

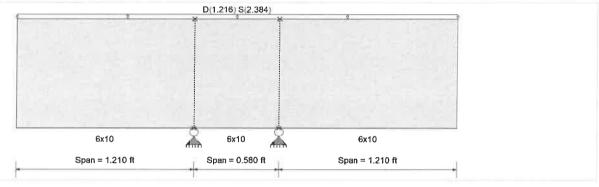
Project File: 2023-LU 2514-2515 2021 IBC Struct Calcs.ec6

LIC#: KW-06013980, Build:20.23.05.22

MODERN BUILDING SYSTEMS

(c) ENERCALC INC 1983-2023

DESCRIPTION: CNTR COLUMN FTG INTERMEDIATE POST- 2023-LU 2514-2515


CODE REFERENCES

Calculations per NDS 2018, IBC 2021, ASCE 7-16

Load Combination Set: IBC 2021

Material Properties

Analysis Method: Allowable Stress Design	Fb+	875.0 psi	E : Modulus of Elas	ticity
Load Combination IBC 2021	Fb -	875.0 psi	Ebend- xx	1,300.0ksi
	Fc - Prll	600.0 psi	Eminbend - xx	470.0ksi
Wood Species : Douglas Fir - Larch	Fc - Perp	625.0 psi		
Wood Grade : No.2	Fv	170.0 psi		
	Ft	425.0 psi	Density	31.210pcf
Beam Bracing : Completely Unbraced			·	- *

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Beam self weight NOT internally calculated and added Loads on all spans...

Uniform Load on ALL spans: D = 1.216, S = 2.384 k/ft

DESIGN SUMMARY						Design OK
Maximum Bending Stress Ratio Section used for this span	=	0.380: 1 6x10		hear Stress Ratio used for this span	=	0.422 : 1 6x10
fb: Actual	=	382.27psi		fv: Actual	=	82.44 psi
F'b	=	1,005.39psi		F'v	=	195.50 psi
Load Combination		+D+S	Load C	ombination		+D+S
Location of maximum on span	=	1.210ft	Locatio	n of maximum on span	=	0.798 ft
Span # where maximum occurs	=	Span # 1	Span #	where maximum occurs	=	Span # 1
Maximum Deflection Max Downward Transient Deflecti Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection		0.004 in Ratio = 0 in Ratio = 0.006 in Ratio = -0.000 in Ratio =	6978 >=360 0 < 360 4620 >=240 19282 >=240	Span: 3 : S Only n/a Span: 3 : +D+S Span: 2 : +D+S		

Support n	Values in KIPS		
Support 1 Support 2 Support	ort 3 Support 4		
5.400 5.	400		
5.400 5.	400		
3.576 3.	576		
1.824 1.	824		
5.400 5.	400		
4.506 4.	506		
1.094 1.	094		
3.576 3.	576		
	Support 1 Support 2 Support 5.400 5.5.400 5.3.576 3.1.824 1.5.400 5.4.506 4.1.094 1.	5.400 5.400 3.576 3.576 1.824 1.824 5.400 5.400 4.506 4.506 1.094 1.094	Support 1 Support 2 Support 3 Support 4 5.400

Project Title: Engineer: PUYALLUP SD MCL

Project ID: 2 Project Descr: 2

2023-LU 2514-2515 28 X 64 MODULAR CLASSROOM

FDH-8 OF FDH-8

Printed: 30 MAY 2023, 8:19AM

Project File: 2023-LU 2514-2515 2021 IBC Struct Calcs.ec6

Wood Beam

LIC#: KW-06013980, Build:20.23.05.22 MODERN BUILDING SYSTEMS

(c) ENERCALC INC 1983-2023

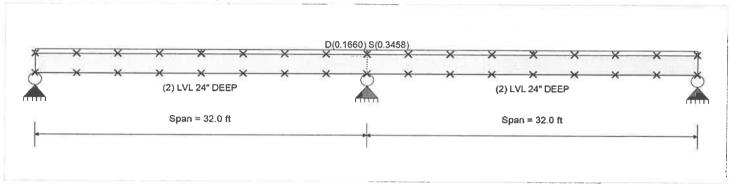
DESCRIPTION: (2) LVL RIDGE BEAM - 2023-LU 2514-2515

CODE REFERENCES

Calculations per NDS 2018, IBC 2021, ASCE 7-16

Load Combination Set: IBC 2021

Material Properties


Analysis Method: Allowable Stress Design	Fb+	2,736.0 psi	E : Modulus of Elas	ticity
Load Combination : IBC 2021	Fb -	2,736.0 psi	Ebend- xx	2,000.0 ksi
	Fc - Prll	3,200.0 psi	Eminbend - xx	1,800.0 ksi
Wood Species : Murphy LVL 3100Fb-2.0E x 24" Deep	Fc - Perp	750.0 psi		
Wood Grade : Manufactured	Fv	290.0 psi		
	Ft	2,100.0 psi	Density	35.0pcf

Beam Bracing : Beam bracing is defined as a set spacing over all spans

Unbraced Lengths

First Brace starts at ft from Left-Most support

Regular spacing of lateral supports on length of beam = 4.0 ft

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Beam self weight NOT internally calculated and added

Loads on all spans...

Uniform Load on ALL spans: D = 0.0120, S = 0.0250 ksf, Tributary Width = 13.830 ft

DESIGN SUMMARY						Design OK
Maximum Bending Stress Ratio	=	0.894: 1	Maximum S	hear Stress Ratio	=	0.576 : 1
Section used for this span	(2) LVL 24" DEEP	Section	used for this span	(2)	LVL 24" DEEP
fb: Actual	=	2,729.12psi		fv: Actual	-	192.25 psi
F'b	-	3,051.71 psi		F'v	=	333.50 psi
Load Combination		+D+S	Load C	ombination		+D+S
Location of maximum on span	=	32.000ft	Locatio	n of maximum on span	=	30.034 ft
Span # where maximum occurs	=	Span # 1	Span #	where maximum occurs	=	Span # 1
Maximum Deflection						
Max Downward Transient Deflect	ion	0.496 in Ratio =	773 >=360	Span: 2 : S Only		
Max Upward Transient Deflection		0 in Ratio =	0 < 360	n/a		
Max-Downward Total Deflection		0.734 in Ratio =	522 >=240	Span: 2 : +D+S		
Max Upward Total Deflection		0 in Ratio =	0 < 240	n/a		

/ertical Reactions		Supp	ort notation	n : Far le	eft is #1	Values in KIPS	
Load Combination	Support 1	Support 2 S	Support 3				
Max Upward from all Load Conditions	6.141	20.468	6.141	_			
Max Upward from Load Combinations	6.141	20.468	6.141				
Max Upward from Load Cases	4.149	13.830	4.149)			
D Only	1.992	6.638	1.992	2	DIE		
+D+S	6.141	20.468	6.141	2	KXTO		
+D+0.750S	5.103	17.011	5.103	1			
+0.60D	1.195	3.983	1.195)	OHLY		
S Only	4.149	13.830	4.149		- 1		

JOB#	2023-LU 2514-2515 Puyallup SD							
SHEET NO	L-1	OF	L-6					
CALCULATED BY	MCL	DATE	5/30/2023					
CHECKED BY		DATE						
SCALE								

WIND ANALYSIS FOR ENCLOSED SIMPLE DIAPHRAGM LOW-RISE BUILDINGS - BASED ON IBC 2021 / ASCE 7-16 CHAPTER 28, PART 2

INPUT DATA

В	Risk Category = Sasic Wind Speed =	RC Vult	II 120	Vasd =93	(Table 1.5-1) mph (3 sec gust)(Fig 26.5-1)
	posure Category =	EC	В		(Sec. 26.7)
То	pographic Factor =	Kzt	1.00		(Sec. 26.8 & 26.8-1)
Ad	djustment Factor = L	ambda	1.00		(Sec 28.6-1)
	Building Length = Building width =	L B	64.00 27.67	ft ft	8:23:07 AM
Buildin	g Height to Eave =	he	11.00	ft	
Building	g Height to Ridge =	hr	15.00	ft	
	Eave Overhang	oh	0.50	ft	
В	uilding End Zone =	а	3.00	ft	
	Roof Pitch =	RP	2.0	:12	
App	orox. Roof Angle =	RA	10	degrees	(Ref. Fig. 28.6-1)

OUTPUT

Wind Pressure, ps30 (Fig. 28.6-1)

Horizontal	A-ps30	25.80	psf
Horizontal	B-ps30	-10.70	psf
Horizontal	C-ps30	17.10	psf
Horizontal	D-ps30	-6.20	psf
Vertical	E-ps30	-27.40	psf
Vertical	F-ps30	-16.80	psf
Vertical	G-ps30	-19.10	psf
Vertical	H-ps30	-12.90	psf
O.H.	Eoh-ps30	-38.40	psf
O.H.	Goh-ps30	-30.10	psf

JOB#	2023-LU	2514-251	5 Puyallup SD
SHEET NO	L-2	OF	L-6
CALCULATED BY	MCL	DATE	5/30/2023
CHECKED BY		DATE	
SCALE			

Wind Pressure,	ps	5
ns = Lambd	a	4

Wind Pressure, ps				
ps = Lambda * Kzt * ps30				Min Loading
Horizontal	A-ps	25.80	psf	16.00
Horizontal	B-ps	-10.70	psf	8.00
Horizontal	C-ps	17.10	psf	16.00
Horizontal	D-ps	-6.20	psf	8.00
Vertical	E-ps	-27.40	psf	0.00
Vertical	F-ps	-16.80	psf	0.00
Vertical	G-ps	-19.10	psf	0.00
Vertical	H-ps	-12.90	psf	0.00
O.H.	Eoh-ps	-38.40	psf	
O.H.	Goh-ps	-30.10	psf	
CASE A - Transverse Wind				Min Loading
	A-tw	1703	lbs	1056 lbs
Set to 0	B-tw	-257	lbs	192 lbs
	C-tw	10910	lbs	10208 lbs
Set to 0	D-tw	-1438	lbs	1856 lbs
Total		12613	lbs (SD)	13312 lbs
Convert to ASD x		0.6		0.6
Total Force on building side L =		7568	lbs (ASD)	7987 lbs
CASE B - Longitudinal Wind				
	A-lw	890	lbs	552 lbs
	C-lw	5587	lbs	5227 lbs
Total		6477	lbs (SD)	5779 lbs
Convert to ASD x		0.6		0.6
Total Force on building end B =		3886	ibs (ASD)	3468 lbs
			-	
CASE A - Transverse Uplift				

Total Uplift Force =		-18772	lbs (ASD)
Convert to ASD x		0.6	
Total		-31287	lbs (SD)
sidewall eaves OH uplift	Goh-up	-1247	lbs
sidewall eaves OH uplift	Eoh-up	-166	lbs
w/ gable end OH uplift	H-up	-10441	lbs
w/ gable end OH uplift	G-up	-15459	lbs
w/ gable end OH uplift	F-up	-1511	lbs
w/ gable end OH uplift	E-up	-2464	lbs

JOB #2023-LU 2514-2515 Puyallup SD

SHEET NO L-3	OF	L-6
CALCULATED BY MCL	DATE	5/30/2023
CHECKED BY	DATE	
SCALE		

28' x 64' MODULAR

SEISMIC per IBC 2021 / ASC	E 7-16, Sec. 12.8 Equivalent Lateral For	ce Proced	ure	
ASCE 7-16 Table 1.5-1	Risk Category		11	
ASCE 7-16 Table 1.5-2	Seismic Importance Factor	Ie=	1.00	
ASCE 7-16 Table 12.2-1	Response Modification Factor	R =	6.50	
ASCE 7-16 11.4.3	Site Class		D	
USGS Data	Short Spectral Response Accel.	Ss =	1.500	
ASCE 7-16 Table 11.4-1 & Sec	11.4.4 Site Coefficient	Fa =	1.200	
ASCE 7-16 Eqn. 11.4-1	Sms = Ss * Fa	Sms =	1.800	
ASCE 7-16 Eqn 11.4-3	Sds = 2/3 * Sms	Sds =	1.200	
ASCE 7-16 Sec. 12.8.1.3	So	ds Max =	1.000	
USGS Data	Long Spectral Response Accel.	S1 =	0.600	
ASCE 7-16 Table 11.4-	2 Site Coefficient	Fv =	1.700	
ASCE 7-16 Eqn. 11.4-2	Sm1 = S1 * Fv	Sm1 =	1.020	
ASCE 7-16 Eqn 11.4-4	Sd1 = 2/3 * Sm1	Sd1 =	0.680	
Short Period Transition Sec	11.4.6 Ts = Sd1 / Sds	Ts=	0.680	
Building Period Eqn. 12.	8-7 Ta= Ct*hn^(x)= 0.02*13'^0.75	Ta=	0.137	
ACSE 7-16 Sec. 11.4.8	Check Ta <= 1.5*Ts, 0.137<=1.02		OK	
ASCE 7-16 Eqn. 12.8-2	Cs = Sds/(R/Ie)= 1.000/(6.50/1.00)	Cs =	0.154	
ASCE 7-16 Eqn. 12.8-3	Csmax: Not checked (conservative)		
ASCE 7-16 Eqn. 12.8-5	Csmin = $0.044*Sds*Ie >= 0.01$	Csmin =	0.044	
ASCE 7-16 Eqn. 12.8-6	If S1> 0.6 Csmin = 0.5*S1/(R/Ie)	Csmin =	N/A	
ASCE 7-16 Table 11.6-1	Seismic Design Cat.		D	
Ва	se Shear			
ASCE 7-16 Eqn 12.8-1	V = Cs * W * 0.7	V =	0.108	W
ASCE 7-16 Eqn 12.8-5	V = Csmin * W * 0.7	Vmin =	0.031	W
IBC 2021 1605.3.1	Note: 0.7 converts to ASD			

JOB #2023-LU 2514-2515 Puyallup SD

SHEET NO L-4	OF	L-6
CALCULATED BY MCL	DATE	5/30/2023
CHECKED BY	DATE	
SCALE		

Building Weight Estimate

	Roof (psf)		Exterior Wall (psf)
Comp	2.5	15/32 T1-11	1.7
7/16 Shtg	1.5	2x6 @ 16	1.7
2x10 @24	1.9	R-21U	1.3
R-42L	2.0	5/8 Gyp	2.8
Drp Grd	1.8		0
	0		0
	0		0
Total	9.7		7.5
=			
	Interior Wall (psf)		Floor (psf)
5/8 Gyp	Interior Wall (psf) 2.8	Misc	Floor (psf) 1.0
5/8 Gyp 2x4 @ 16		Misc 23/32 Shtg	•••
	2.8		1.0
2x4 @ 16	2.8 1.1	23/32 Shtg	1.0 2.5
2x4 @ 16	2.8 1.1 2.8	23/32 Shtg 2x8 @ 16	1.0 2.5 2.2
2x4 @ 16	2.8 1.1 2.8 0	23/32 Shtg 2x8 @ 16	1.0 2.5 2.2 1.6
2x4 @ 16	2.8 1.1 2.8 0	23/32 Shtg 2x8 @ 16	1.0 2.5 2.2 1.6 0
2x4 @ 16	2.8 1.1 2.8 0	23/32 Shtg 2x8 @ 16	1.0 2.5 2.2 1.6 0

JOB #2023-LU 2514-2515 Puyallup SD

SHEET NO L-5	OF	L-6	
CALCULATED BY	MCL	DATE	5/30/2023
CHECKED BY		DATE	
SCALE			

Building Weight (con't)

No Snow	28.67 '
Roof =	28.67 1
Ext. Wall =	8.00'
Int. Wall =	8.00'
Floor =	27.67 '
Chassis =	
Solar =	28.67 '

65.00 '	0.0 psf	=	0	lbs
65.00 '	9.7 psf	=	18076	lbs
183.34 '	7.5 psf	=	11000	lbs
44.00 '	6.7 psf	=	2358	lbs
64.00 '	7.3 psf	=	12927	lbs
		=	0	lbs
65.00 '	0.0 psf	x 40% =	0	lbs

Enter 0 or 5

Total

Includes snow and solar, if any ->

W=

44363 lbs

Wr = Total DL tributary to roof

24756 lbs

W1 = Total DL tributary to floor

19607 lbs

	Fx Story (She	arwall) Force	Table			
Story	Height	Weight		Story Force - k Fx= wx*hx/ (\(\sum \) wx*hx)*V	Fx Coef = V*hx/(∑ wx*hx)	Story Shea
	(hx)	(wx)	(wx*hx)			(Vx)
R	11.00 '	24.76 k	272 k-ft	4.05 k	0.164	4.05 k
1	2.50 '	19.61 k	49 k-ft	0.73 k	0.037	4.78 k
Grade	0.00 '					
Sum (∑)		44.36 k	321 k-ft	V= 4.78 k	= Base Shea	ar

Shear Value	ОК
Comparison	OK

▲ This is a beta release of the new ATC Hazards by Location website. Please contact us with feedback.

10 The ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why

Hazards by Location

Search Information

Address:

105 7th Ave SW, Puyaliup, WA 98371, USA

Coordinates:

47.186201, -122.2937556

Elevation:

39 ft

Timestamp:

2023-05-30T14:59:11.361Z

Hazard Type:

Seismic

Reference

ASCE7-16

Document:

Risk Category:

П

Site Class:

D-default

Exercise to F L-6 Exercise to SeaToo. 39 ft Proc. (2) Taton Sheltor

Google

Olympia

Mount Bairner NatMap data ©2023 Google

Basic Parameters

Name	Value	Description
SS	1.27	MCE _R ground motion (period=0.2s)
S ₁	0.437	MCE _R ground motion (period=1.0s)
S _{MS}	1,524	Site-modified spectral acceleration value
S _{M1}	* nuli	Site-modified spectral acceleration value
S _{DS}	1.016	Numeric seismic design value at 0.2s SA
S _{D1}	* null	Numeric seismic design value at 1.0s SA

≤ 0.600 : OK

= 1.000 PER ASCE 7-16 SEC 12-8-1-3

▼Additional Information

Name	Value	Description		
SDC	* null	Seismic design category		
Fa	1.2	Site amplification factor at 0.2s		
F _V .	* null	Site amplification factor at 1.0s)	
CRS	0.914	Coefficient of risk (0.2s)		
CR ₁	0.898	Coefficient of risk (1.0s)		
PGA	0.5	MCE _G peak ground acceleration		
F _{PGA}	1.2	Site amplification factor at PGA		
PGA _M	0.6	Site modified peak ground acceleration		

^{*} See Section 11.4.8

ULTIMATE FRICTION FACTORS AND ADHESION FOR DISSIMILAR MATERIALS (NAVFAC DM 7.2, Table 1, p7.2-63)

Interface Materials	Friction factor	Friction angle, degrees
Mass concrete on the following foundation materials:	0.70	35
Clean sound rock	0.55 to 0.60	29 to 31
Clean gravel, gravel-sand mixtures, coarse sand	0.45 to 0.55	24 to 29
Clean fine to medium sand, silty medium to coarse sand, silty or clayey gravel	1	19 to 24
Clean fine sand, silty or clayey fine to medium sand	0.35 to .045	
Fine sandy silt, non-plastic silt	0.30 to 0.35	17 to 19
Very stiff and hard residual or pre-consolidated clay	0.40 to 0.50	22 to 26
Medium stiff and stiff clay and silty clay	0.30 to 0.35	17 to 19
(Masonry on foundation materials has same friction factors.)		
Steel sheet piles against the following soils:		
Clean gravel, gravel-sand mixtures, well-graded rock fill with spalls	0.40	22
Clean sand, silty sand-gravel mixture, single size hard rock fill	0.30	17
Silty sand, gravel or sand mixed with silt or clay	0.25	14
Fine sandy silt, non-plastic silt	0.20	11
Formed concrete or concrete sheet piling against the following soils:		
Clean gravel, gravel-sand mixtures, well-graded rock fill with spalls	0.40 to 0.50	22 to 26
Clean sand, silty sand-gravel mixture, single size hard rock fill	0.30 to 0.40	17 to 22
Silty sand, gravel or sand mixed with silt or clay	0.30	17
Fine sandy silt, non-plastic silt	0.25	14
Various structural materials:		
Masonry on masonry, igneous and metamorphic rocks:		
Dressed soft rock on dressed soft rock	0.70	35
Dressed hard rock on dressed soft rock	0.65	33
Dressed hard rock on dressed hard rock	0.55	29
Masonry on wood (cross grain)	0.50	26
Steel on steel at sheet pile interlocks	0.30	17
Steet on steet at street bue interlocks		
Interface Materials (Cohesion)	Adhesion	C _a (psf)
Very soft cohesive soil (0 - 250 psf)	0 - 1	250
Soft cohesive soil (250 - 500 psf)	250 -	500
Medium stiff cohesive soil (500 - 1000 psf)	500 -	750
Stiff cohesive soil (1000 - 2000 psf)	750 -	950
Very stiff cohesive soil (2000 - 4000 psf)	950 -	1,300

Continental Supply NW, LLC

GENERAL NOTES

DISSIGN LOADS:

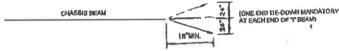
COMPLIES WITH

2018 IBC Valt = 115 MPH Exp C

* SOIL BEARING ---- 1000 PSF

* TIE DOWN STRAP --- 3160# WORKING LOAD

* SEISMIC ZONE ______ 2018 IBC Se=1.5 Fe=1.4 Soc1.41 Site Class D

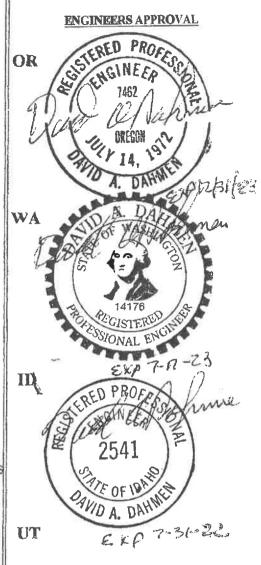

* TIE DOWN STRAPS TO BE MIN. 1 1/4" WIDE x 0.035 THICKNESS ZINC PLATED AND MEET ASTM D-3953-97 ALT. STRAP; 1 1/4" WIDE X 0.029" THICK ZINC PLATED F'ult' =5400 LBS

_____ 2962 # (TESTED TO 4760# MIN.) * EARTH AUGERS -

--- 2962 # (TESTED TO 4750# MIN.) * CROSS DRIVES -

* CONCRETE SLAB ANCHORS ——— 2962 # (CALCULATE!!!)

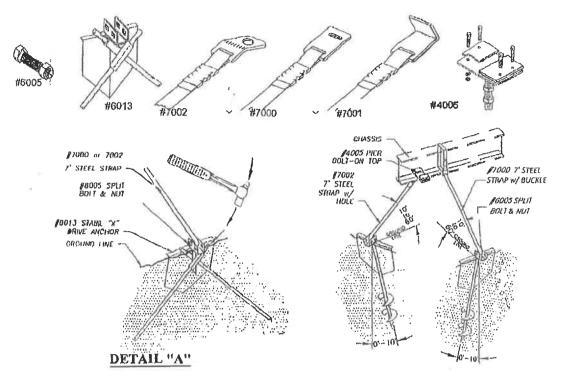
- 1. THE CHARTS SHOW THE REQUIRED NUMBER OF TIE DOWNS ON THE SIDES AND ENDS OF THE MANUFACTURED HOME.
- 2. COMBINATIONS OF THE DIFFERENT TYPES OF TIE DOWNS CAN BE USED.
- 3. FOR ALL TIE DOWN INSTALLATIONS, THE MANUFACTURED HOME CHASSIS MEMBERS ARE SHOWN AS "I" BEAMS, (FOR ILLUSTRATION PURPOSE ONLY) CHASSIS BEAMS
- 4. SIDE TIE DOWNS ARE REQUIRED ALONG THE OUTSIDE CHASSIS BEAMS. END TIE DOWNS ARE REQUIRED AT EACH END OF EACH TRANSPORTABLE SECTION OF THE MANUFACTURED HOME,
- 5. END TIE DOWNS CAN BE LOCATED WITHIN 18" OF EITHER SIDE OF CHASSIS BEAM


- 6. THE SIZES, TYPES, LENGTHS, ECT, OF MATERIALS SHOWN HEREON ARE MINIMUM. LARGER, LONGER, HEAVIER MATERIALS SUPPLIED BY SAC INDUSTRIES, INC. MAY BE USED AT THE SAME SPACING AND LOCATION SHOWN.
- 7. ALL PARTS ARE COATED WITH RUST RESISTANT INDUSTRIAL SHOP PRIMER

STATE APPROVA

Continental Supply NW, LLC 1570 Bishop Road Chehalis, WA 98532 888-265-8981

CA


PACIFIC CONSULTING ENGINEERS 9739 North Vista Drive Kineman, AZ 86401 PH 916-296-7376

AZ

NV

STABIL-X DRIVE TIE DOWN ANCHORS

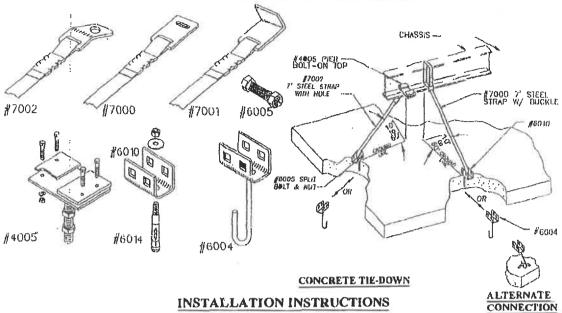
STABIL-X DRIVE TIE DOWN SEE DETAIL "A"

INSTALLATION INSTRUCTIONS

- 1. CONTRACTORS WARNING: CHECK FIRST FOR UNDERGROUND UTILITIES.
- 2. DRIVE STABILIZER PLATE INTO GROUND.
- 3. DRIVE CROSS RODS THROUGH HEAD TUBES INTO SOIL AS SHOWN.
- 4. ATTACH STRAPS TO CHASSIS BEAM IN MANNER SHOWN.
- 5. IF ANGLE OF SIDE STRAP IS GREATER THEN 60°, STRAP CONNECTION CAN BE MADE FROM ANCHOR TO OPPOSITE CHASSIS BEAM.
- 6. INSERT STRAP THROUGH SPLIT BOLT. CUT OFF EXCESS STRAP AND TIGHTEN BOLT UNTIL STRAP IS SNUG.
- 7. #6011 ANCHOR CAN BE USED WHERE HARD OR ROCKY SOIL OCCURS, IF THE GROUND SURFACE IS OTHER THAN ROCKY SOIL OR MINIMUM 2" ASPHALT, USE STABIL:-X ANCHOR OR ENCASE ANCHOR WITH 12"X12"X12" CUBE OF CONCRETE.
- 8. WHEN #6011 ANCHOR IS USED FOR ANY REQUIRED ANCHOR (2) ANCHORS MUST BE USED AT THAT LOCATION.

THE STATE OF THE S	
#6011 SEE NOTE #7 AND NOTE #8	1

EARTH	AUG	ERS	3	CROSS DI	RIVE	AN	CHORS	CONCRETE	SLA	B Al	VCHC	RS
MAN. LENGTH OF MEGIO HOME	36'	64	72'	MAX. LENGTH OF	36'	54'	72'	MAX, LENGTH OF NEGO HOME	36'	641	72'	1
MIN : NO, OF SIDE	2	3	4	MIN: NO. OF BIDE	2	3	4	MIN . NO. OF SIDE	2	3	4	


NOTE:

SIDE TIE-DOWNS: MUST BE WITHIN 24" OF THE END OF THE CHASSIS BEAM.

END TIE-DOWNS: CAN BE LOCATED WITHIN 24" OF EITHER SIDE OF CHASSIS BEAM ONE TIE-DOWN IS MANDATORY AT EACH END OF "I"BEAM (SEE PAGE #1 GENERAL NOTE #6).

IF SIDE WALL TIE-DOWN GROUND ANCHOR LOCATION IS SUCH THAT THE ANGLE BETWEEN THE GROUND AND STRAP EXCEEDS 60', CONNECT THE TIE STRAP TO THE INSIDE CHASSIS BEAM ON DOUBLE AND TRIPLE WIDES AND THE OPPOSITE CHASSIS BEAM ON SINGLE WIDES.

CONCRETE TIE DOWN ANCHORS

NEW CONCRETE - #6004

1. PLACE CONCRETE ANCHOR INTO WET CONCRETE, AND ALLOW TO PROPERLY CURE.

2. ALTERNATE CONNECTION REQUIRES #5 REBAR PROPERLY EMBEDDED IN CONCRETE.

EXSISTING CONCRETE - #6010

- 1. CONCRETE MUST BE A MINIMUM 3/5" THICK AND IN GOOD CONDITION. 2: MINIMUM SLAB AREA OF EACH ANCHOR IS 28 SQUARE FEET.
- 3. DRILL PROPER SIZE HOLE IN SLAB, A MINIMUM OF 12" FROM ANY SIDE,
- 4. EXPANSION BOLT IS %" x 3/2" WITH MINIMUM 23/4" EMBEDMENT AND 6,180 POUNDS PULL OUT. 7,160 POUNDS SHEAR.

CHASSIS CONNECTION

- 1. ATTACH STRAPS TO CHASSIS BEAM IN MANNER SHOWN.
- 2. IF ANGLE OF SIDE STRAP IS GREATER THAN 60°, STRAP CONNECTION CAN BE MADE FROM ANCHOR TO OPPOSITE CHASSIS BEAM.
- 3. INSERT STRAP THROUGH SPLIT BOLT, CUT OFF EXCESS STRAP AND TIGHTEN BOLT UNTIL STRAP IS SNUG.

NGTE: SIDE TIE DOWNS ARE REQUIRED ALONG THE OUTSIDE CHASSIS BEAMS, END TIE DOWNS ARE REQUIRED AT EACH END OF EACH TRANSPORTABLE SECTION OF THE MANUFACTURED HOME.

NOTE: A COMBINATION OF DIFFERENT TYPES OF TIE DOWNS CAN BE USED.

CONTRACTORS CERTIFICATION I CERTIFY THAT I HAVE INSTALLED THE ANCHORING SYSTEM AS PER THE INSTALLATION INSTRUCTIONS. I HAVE MADE NO MODIFICATIONS TO THE ANCHORING SYSTEM OR THE BUILDING STRUCTURE. COMPANY NAME: CONTRACTORS LIC.

PGM Inc.

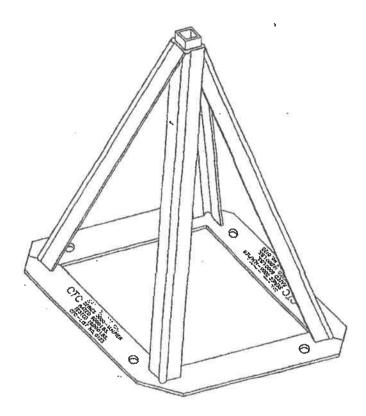
Soil Class	Soil Description	Test Probe Values (in lbs.)	Recommended PGM Part	PGM part description
_			# 6011	Cross Drive Anchor W/ 30" Rods
4	Hard Rock or Rocky	N/A	or # 6002	Cross Drive Anchor W/ 30" Rods
	Very Dense and or		# 6000	30" Auger Anchor W/2 4" Helix
(Cemented Sands, Coarse		9009#	12" Stabilizer Plate
1	Gravel, Cobbles and Clays	550+	# 6013	Stabil X - Drive
	Medium Dense Coarse			
~	Sands, Sandy Gravels, Very		Available Upon	
)	Very Stiff Silts & Clays	351 to 550	Request	
	Loose to Medium Dense			
Z	Sands, Firm to Stiff Clays &		Available Upon	
5	Silts, Alluvial Fill	276 to 350	Request	
	Very Loose Sands,			
1h	Ih Firm Clays & Silts		Available Upon	2
2 †	Alluvial Fill	175 to 275	Request	

Please Note: Each State, County or Municipality may require a specific anchor from the groups shown above for each soil classification.

Check local and stata regulations first.

CONTINENTAL SUPPLY NW, LLC

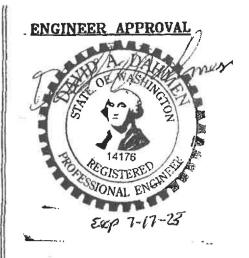
STEEL PIERS


ADJUSTABLE STEEL PIERS & TOPS

GENERAL NOTES

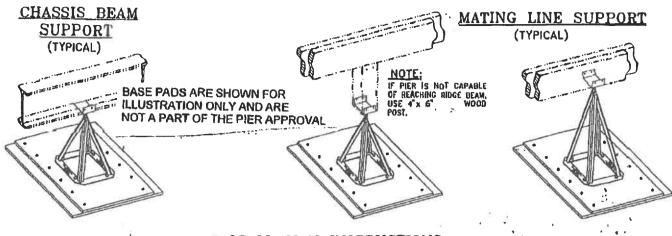
DESIGN LOADS:

* STEEL PIERS ----- 6,000 LB, RATED LOAD CAPACITY
18,000 LB. MINIMUM TESTED LOAD CAPACITY


* STEEL PIERS SHALL BE COATED WITH RUST RESISTANT COATING AND SHALL BE LISTED AND LABELED FOR THE FOLLOWING LOAD:
VERTICAL=6,000 POUNDS MAXIMUM

STATE APPROVAL

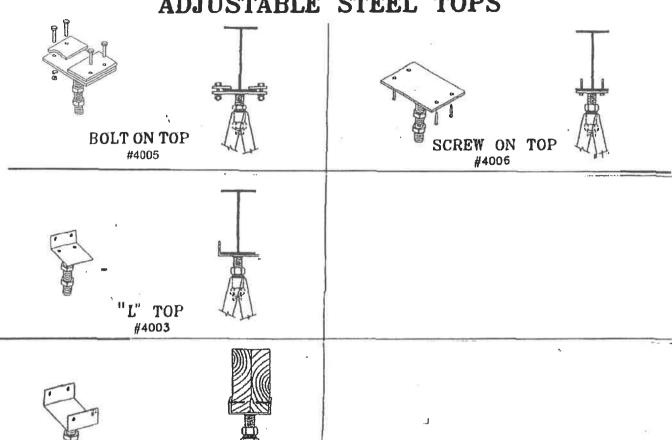
Continental Supply NW, LLC 1570 Bishop Road Chehalis, WA 98532 888-265-8981


PACIFIC CONSULTING ENGINEERS 9739 North Vista Drive Kingman, AZ 86401 PH 916-296-7376

ADJUSTABLE STEEL PIERS

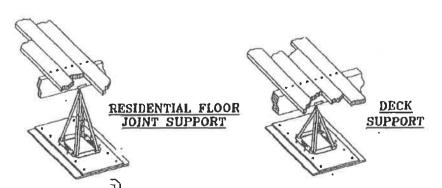
INSTALLATION INSTRUCTIONS

- 1. PREPARE A LEVEL SURFACE AT THE LOCATION OF EACH PIER TO INSURE A FULL CONTACT FOR THE FOOTING PAD. USE THE APPROPRIATE SIZE PAD FOR THE LOAD REQUIRED. REFER TO THE MANUFACTURERS SET UP MANUAL FOR SPECIFIC LOADS AND FOOTING SIZES.
- 2. SELECT THE APPROPRIATE SIZE PIERS FOR THE INSTALLATION BY DETERMINING THE PIER HEIGHT AT EACH SUPPORT LOCATION. MEASURE FROM THE TOP OF THE PAD TO THE BOTTOM OF THE CHASSIS BEAM TO INSURE THAT HEIGHT IS NO GREATER THAN 32".
- 3. SELECT THE APPROPRIATE TOP FOR THE CHASSIS BEAM OR MATING LINE, THE MAXIMUM ADJUSTMENT ON THE THREADED ROD ADJUSTER FOR CHASSIS BEAM SUPPORT IS 2". WHEN MORE HEIGHT IS NEEDED USE THE NEXT TALLER SIZE SUPPORT PIER.
- 4. PLACE THE PIER SUPPORT IN THE CENTER OF THE SUPPORT PAD. WHERE REQUIRED BY LOCAL CODE, ATTATCH THE SUPPORT PIER TO THE PAD USING APPROPRIATE FASTENERS. CAREFULLY ALIGN THE SUPPORT PIER AND TOP UNDER THE CHASSIS BEAM OR MATING LINE AND TIGHTEN UNTIL SNUG PLUS 1/2 TURN.
- 5. REPEAT THIS INSTALLATION PROCEDURE WITH EACH SUPPORT PIER. AFTER ALL THE SUPPORT PIERS HAVE BEEN INSTALLED, AND THE HOME SET UP HAS BEEN COMPLETED PER THE MANUFACTURERS SET UP INSTRUCTIONS, YOU MAY THEN REMOVE THE SAFTEY BLOCKING OF OTHER DEVICES USED TO LEVEL THE CHASSIS.


LABORATORY TESTING REPORT

PIER IDENTIFICATION STAMP

PART No.	STAND SIZE	SAMPLE #1	SAMPLE #2	SAMPLE #3
3008	8"	23,100 Lbs.	24,600 Lbs.	23,200 Lbs.
3010	10"	25,130 Lbs.	25,950 Lbs.	24,320 Lbs.
3012	12"	27,200 Lbs.	26,500 Lbs.	26,300 Lbs.
3014	14"	27,700 Lbs.	28,175 Lbs.	26,175 Lbs.
3016	16"	28,250 Lbs.	27,700 Lbs.	23,400 Lbs.
3018	15"	26,400 Lbs.	33,300 Lbs.	25,500 Lbs.
3020	20"	24,950 Lbs.	25,000 Lbs.	23,225 Lbs.
3022	22"	20,500 Lbs.	22,400 Lbs.	24,200 Lbs.
3024	24"	22,225 Lbs.	21,650 Lbs.	23,000 Lbs.
3026	26"	22,250 Lbs.	21,500 Lbs.	19,700 Lbs.
3028	28"	20,550 Lbs.	23,720 Lbs.	21,310 Lbs.
3030	30'	22,950 Lbs.	26,550 Lbs.	21,500 Lbs.


PGM lac.
SERIES 3000-M H PIER
RATED 6,000 LBS.
TESTED 18,000 LBS
C.T.C. LIST NO. 0123

ADJUSTABLE STEEL TOPS

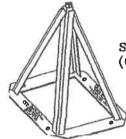
INSTALLATION INSTRUCTIONS

- #4002 PLACE SADDLE TOP FLUSH AGAINST MAIN CHASSIS BEAM AND OR MATING LINE MAXIMUM HEIGHT ADJUSTMENT OF TOP IS 2".
- #4004 5" LOCK TOP SLIDER ATTACH BOLT ON TOP TO "I" BEAM WITH (2) 3/8" BOLTS AND NUTS WITH 2ND 3/4" NUT, ATTACH BOLT ON TOP TO PIER MAXIMUM HEIGHT ADJUSTMENT OF TOP IS 2.
- #4005 ATTACH BOLT ON TOP TO "I" BEAM WITH (4) 3/8" BOLTS AND NUTS WITH 2nd 3/4" NUT, ATTACH BOLT ON TOP TO PIER MAXIMUM HEIGHT ADJUSTMENT OF TOP IS 2".
- #4003 PLACE "L" TOP FLUSH AGAINST MAIN BEAM ALTERNATE "L" TOP DIRECTION EVERY OTHER PIER MAXIMUM HEIGHT ADJUSTMENT OF TOP IS 2".
- #4006 ATTACH SCREW ON TOP TO MAIN CHASSIS BEAM WITH (4) #12 SMS TEK SCREWS. WHEN USED AT MATING LINE, ATTACH WITH NAILS OR SCREWS. MAXIMUM HEIGHT ADJUSTMENT OF TOP IS 2".

SADDLE TOP #4002

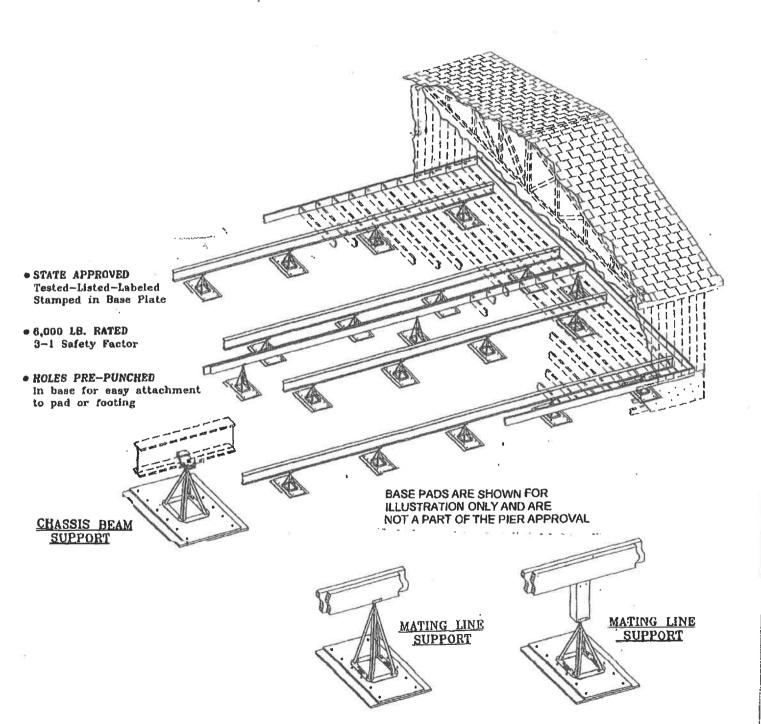
> BASE PADS ARE SHOWN FOR ILLUSTRATION ONLY AND ARE NOT A PART OF THE PIER APPROVAL

5" LOCK TOP SLIDER


#4004

CONTINENTAL SUPPLY NW LLC SYSTEM SET

BOLT-ON TOP


(TYPICAL)

STEEL PIER (6,000 LB RATED)

NOTES

CHECK MANUFACTURED HOME SET UP INSTRUCTIONS FOR LOADS AND LOCATIONS.

