

2709 Jahn Ave NW, Suite H2, Gig Harbor WA 98335

Ph. (253) 853-7780- www.SprinxFire.com

Expires CI CI FI

WASHINGTON STATE CERTIFICATE OF COMPETENCY FIRE SPRINKLER SYSTEMS

City of Puyallup ment & Permitting Servi ISSUED PERMIT

Public Works

Building Engineering

Joseph G. Faulkner 9491-0699-CEG Level 3 Sprinx Fire Protection, Inc. SPRINFP011LS₁

Hydraulic Calculations

D haulfn 12/16/2024
Signature Date

SPRINX FIRE PROTECTION INC. 2709 JAHN AVE NW SUITE H2 GIG HARBOR, WA 98335 253-853-7780

Job Name : ETC Building G Area 1

Drawing : FP-3.0

Location : 2902 E PIONEER PUYALLUP, WA 98372

Remote Area : RA#1 Contract : 24-093CM

Data File : ETC Building G MAIN Area 1.WXF

HYDRAULIC CALCULATIONS for

JOB NAME East Town Crossing Building G

Location 2902 E PIONEER PUYALLUP, WA 98372

Drawing # FP-3.0 **Contract #** 24-093CM **Date** 12/03/2024

DESIGN

Remote area # RA#1

Remote area location UNIT 301 - LIVING ROOM **Occupancy classification** RESIDENTIAL NFPA 13R

Density 0.05 - Gpm/SqFt **Area of application** 256 - SqFt

Coverage/sprinkler 256 16'X16' - SqFt

Type of sprinkler calculated VIKING VK468 RESIDENTIAL PENDENT K=4.9

Sprinklers calculated 4 In-rack demand N/A - GPM Hose streams N/A - GPM

Total water required (including hose streams) 54.1676 - GPM @ 31.5888 - Psi

Type of system WET-CPVC

Volume of system (dry or pre-action) N/A - Gal

WATER SUPPLY INFORMATION

Test date 4/16/2024

Location 2902 E PIONEER

Source of info CITY OF PUYALLUP WATER DIVISON

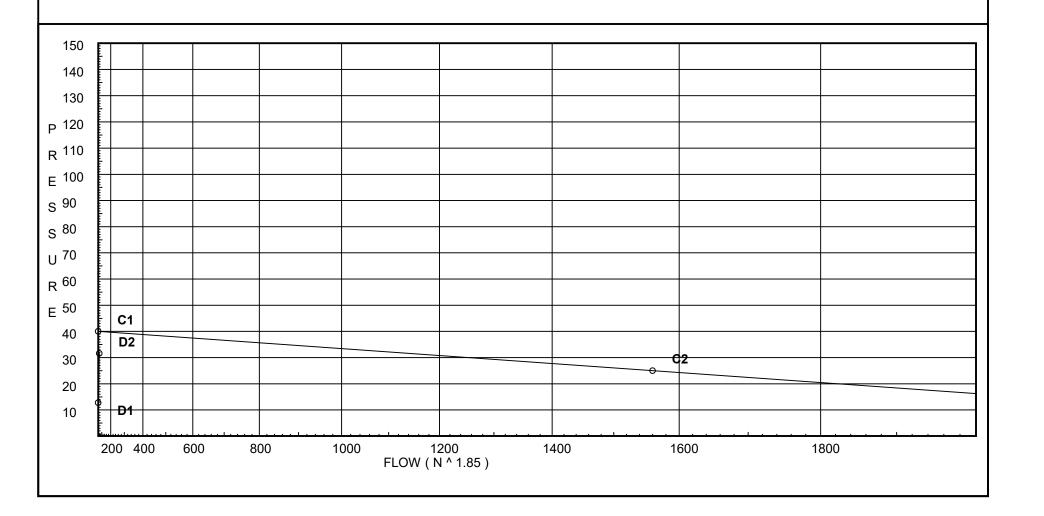
CONTRACTOR INFO SPRINX FIRE PROTECTION

Address 2709 JAHN AVE. / SUITE H2 / GIG HARBOR

Phone # 253-853-7780

Name of designer ALEXANDER J PARADIS
Authority having jurisdiction CITY OF PUYALLUP

NOTES:


City of Puyallup oment & Permitting Service ISSUED PERMIT Building

Page 2

Date 12/03/2024

City Water Supply: C1 - Static Pressure : 40 C2 - Residual Pressure: 25 C2 - Residual Flow : 1560 Demand:

D1 - Elevation : 12.776 D2 - System Flow : 54.168
D2 - System Pressure : 31.589
Hose (Demand) : 54.168
Safety Margin : 54.168

Flow Diagram

SPRINX FIRE PROTECTION INC. ETC Building G Area 1

Page 3

Date 12/03/2024

		FILE
	\leftarrow 9 \leftarrow 10 \leftarrow UP6 \leftarrow UP5 \leftarrow UP4 \leftarrow 90 \leftarrow 11A	25.7 54.2 54.2 54.2 54.2 \leftarrow 11B \leftarrow 92 \leftarrow 12 \leftarrow TOR \leftarrow BOR \leftarrow BKV \leftarrow WM1 \leftarrow WM2 \rightarrow TEST 42.2 54.2 54.2 54.2
13.3 15 ← 16 ← 4 13.3 26.3		
13.4 18 ← 19 ← 5 13.4		
14.5 22 ← 8		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	В	
11.6 9.7 $UP5 \leftarrow 80 \leftarrow 81 \leftarrow 82 \leftarrow UP2$ 9.7 11.6		
$\begin{array}{c} 1.8 \\ 82 \rightarrow 83 \rightarrow 84 \rightarrow 80 \\ 1.8 \end{array}$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
19 19 19 19 19 19 12 90 \leftarrow 91 \leftarrow 92 12		

Fittings Used Summary

	IX FIRE PROTECTION INC. uilding G Area 1											Develop	ISSUED PEI	tting Services RMIT Planning				_	ige 4 ate 1	 2/03/20	024
Fitting L Abbrev.	egend Name	1/2	3/4	1	11⁄4	1½	2	2½	3	3½	4	_	ire 6	Traffic 8	10	12	14	16	18	20	24
В	NFPA 13 Butterfly Valve	0	0	0	0	0	6	7	10	0	12	9	10	12	19	21	0	0	0	0	0
Е	NFPA 13 90' Standard Elbow	1	2	2	3	4	5	6	7	8	10	12	14	18	22	27	35	40	45	50	61
G	NFPA 13 Gate Valve	0	0	0	0	0	1	1	1	1	2	2	3	4	5	6	7	8	10	11	13
N *	CPVC 90'Ell Harvel-Spears		7	7	8	9	11	12	13	0	0	0	0	0	0	0	0	0	0	0	0
O *	CPVC Tee - Branch	3	3	5	6	8	10	12	15	0	0	0	0	0	0	0	0	0	0	0	0
R *	CPVC Coupling Tee - Run	1	1	1	1	1	1	2	2	0	0	0	0	0	0	0	0	0	0	0	0
S	NFPA 13 Swing Check	0	0	5	7	9	11	14	16	19	22	27	32	45	55	65					
T	NFPA 13 90' Flow thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101	121
Ziw	Wilkins 350AST	Fittin	ng gener	ates a F	ixed Los	s Based	d on Flo	W													

Units Summary

Diameter Units Inches Length Units Feet

Flow Units US Gallons per Minute Pressure Units Pounds per Square Inch

Note: Fitting Legend provides equivalent pipe lengths for fittings types of various diameters. Equivalent lengths shown are standard for actual diameters of Sched 40 pipe and CFactors of 120 except as noted with *. The fittings marked with a * show equivalent lengths values supplied by manufacturers based on specific pipe diameters and CFactors and they require no adjustment. All values for fittings not marked with a * will be adjusted in the calculation for CFactors of other than 120 and diameters other than Sched 40 per NFPA.

SUPPLY ANALYSIS

Node at Source	Static Pressure	Residual Pressure	Flow	Available Pressure	Total Demand	Required Pressure
TEST	40.0	25	1560.0	39.97	54.17	31.589

NODE ANALYSIS

Node Tag	Elevation	Node Type	Pressure at Node	Discharge at Node	۸	lotes	
1	106.5	4.9	7.04	13.0	0.05	256	
2	107.0		7.05				
3	107.0		7.53				
4	107.0		7.63				
5	107.0		7.7				
6	107.0		8.22				
7	107.0		8.25				
8	107.0		8.32				
9	107.0		8.44				
10	107.0		8.75				
UP6	107.0		8.85				
UP5	96.75		13.38				
UP4	86.5		17.89				
90	86.5		18.22				
11A	86.5		18.23				
11B	86.5		18.36				
92	86.5		18.78				
12	86.5		19.16				
TOR	86.5		20.44				
BOR	80.0		23.98				
BKV	77.0		31.58				
WM1	77.0		31.59				
WM2	77.0		31.59				
TEST	77.0		31.59				
15	106.5	4.9	7.35	13.29	0.05	256	
16	107.0		7.31				
18	106.5	4.9	7.48	13.4	0.05	256	
19	107.0		7.51				
22	105.5	4.9	8.73	14.48	0.05	256	
10A	107.0		9.11				
10B	107.0		9.16				
72	107.0		9.16				
UP3	107.0		9.19				
UP2	96.75		13.63				
UP1	86.5		18.13				
80	96.75		13.48				
81	96.75		13.5				
82	96.75		13.51				
83	96.75		13.5				
84	96.75		13.49				
41	107.0		9.12				
70	107.0		9.13				

Flow Summary - NFPA

SPRINX FIRE PROTECTION INC. ETC Building G Area 1

NODE ANALYSIS (cont.)

Node Tag	Elevation	Node Type	Pressure at Node	Discharge at Node	Notes	
71	107.0		9.14			
UP9	107.0		9.2			
UP8	96.75		13.68			
UP7	86.5		18.19			
91	86.5		18.5			

i illai O	alculation	JII3 . I Ia	ZCII-VVIII	iaiiis								
SPRINX ETC Buil		OTECTIO rea 1	N INC.								Davidn	
Node1	Elev1	K	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	****	Engineer Fire	Public Works Traffic Notes ******
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf			Notes
1	106.500	4.90	13.00	1	N	7.0	0.500	150	7.040			
to 2	107		13.0	1.101			7.000 7.500	0.0307	-0.217 0.230	Vel	= 4.3	8
2	107		0.0	1	0	5.0	10.500	150	7.053			-
to 3	107		13.0	1.101			5.000 15.500	0.0307	0.0 0.476	Val	= 4.3	Ω
3	107		0.0	1.25	R	1.0	9.640	150	7.529	vei	- 4.3	<u>o</u>
to							1.000		0.0			_
4	107 107		13.0 13.29	1.394 1.25	R	1.0	10.640	0.0097 150	0.103 7.632	Vel	= 2.7	3
to	107		13.29	1.20	N	1.0	1.000	150	0.0			
_5	107		26.29	1.394			2.000	0.0360	0.072	Vel	= 5.5	3
5 to	107		13.40	1.25	R	1.0	5.750 1.000	150	7.704 0.0			
6	107		39.69	1.394			6.750	0.0766	0.517	Vel	= 8.3	4
6	107		0.0	2	R	1.0	1.170	150	8.221			
to 7	107		39.69	2.003			1.000 2.170	0.0134	0.0 0.029	Vel	= 4.0	4
7	107		0.0	2	R	1.0	4.670	150	8.250			
to 8	107		39.69	2.003			1.000 5.670	0.0131	0.0 0.074	ام/\	= 4.0	1
8	107		14.48	2.000	2R	2.0	2.830	150	8.324	VCI	_ 4.0	*
to							2.000		0.0		5 5	•
9 9	107 107		54.17 0.0	2.003	0	10.0	4.830 3.580	0.0232 150	0.112 8.436	Vei	= 5.5	2
to	107		0.0	۷	O	10.0	10.000	100	0.0			
10	107		54.17	2.003			13.580	0.0233	0.317	Vel	= 5.5	2
10 to	107		-23.96	2	N	11.0	1.170 11.000	150	8.753 0.0			
UP6	107		30.21	2.003			12.170	0.0079	0.096	Vel	= 3.0	8
UP6 to	107		0.0	2	R	1.0	10.250 1.000	150	8.849 4.439			
UP5	96.750		30.21	2.003			11.250	0.0080	0.090	Vel	= 3.0	8
UP5	96.750		-11.55	2	N	11.0	10.250	150	13.378			
to UP4	86.500		18.66	2.003			11.000 21.250	0.0032	4.439 0.069	Vel	= 1.9	0
UP4	86.500		0.0	2	20	20.0	73.670	150	17.886			<u> </u>
to	96 500		10.66	2.002	9R	9.0	29.000	0.0022	0.0	Val	_ 10	0
90	86.500 86.500		18.66 -11.96	2.003	2R	2.0	102.670 11.580	0.0032 150	0.333 18.219	vei	= 1.9	<u> </u>
to					-1 \	2.0	2.000		0.0			_
11A	86.500		6.7	2.003		4.0	13.580	0.0005	0.007	Vel	= 0.6	8
11A to	86.500		18.98	2	R O	1.0 10.0	11.250 11.000	150	18.226 0.0			
_11B	86.500		25.68	2.003			22.250	0.0058	0.130	Vel	= 2.6	1
11B to	86.500		16.54	2	5R	5.0	23.500 5.000	150	18.356 0.0			
92	86.500		42.22	2.003			28.500	0.0147	0.419	Vel	= 4.3	0

i illai C	aicuiali	JIIS . I Ia	Z C I I- V V III	iaiiis						
SPRINX ETC Buil		OTECTIO	N INC.							City of Puyallup Deproprient & Pomitting Services HSSUED PERMIT DBuilding 12Planding 024
Node1	Elev1	K	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	Engineering Public Works Fire Traffic ******** Notes ******
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf	
92 to	86.500		11.95	2	0	10.0	6.420 10.000	150	18.775 0.0	_\
12	86.500 86.500		54.17 0.0	2.003	3R	3.0	16.420 19.010	0.0233 150	0.383 19.158	Vel = 5.52
to TOR	86.500		54.17	2.003	3N	33.0	36.000 55.010	0.0233	0.0 1.282	Vel = 5.52
TOR to	86.500		0.0	2	B S	8.183 15.003	9.500 23.186	120	20.440 2.815	
BOR	80		54.17	2.203			32.686	0.0222	0.725	Vel = 4.56
BOR to	80		0.0	6	T 3E	43.037 60.252	72.080 103.289	140	23.980 7.577	* * Fixed Loss = 6.278
BKV	77		54.17	6.16	Ziw	0.0	175.369	0.0001	0.019	Vel = 0.58
BKV to WM1	77 77		0.0 54.17	6 6.16	T G	43.037 4.304	40.000 47.341 87.341	140 0.0001	31.576 0.0 0.010	Vel = 0.58
WM1	77		0.0	8	Т	55.354	36.000	140	31.586	Vei - 0.30
to WM2	77		54.17	8.27			55.354 91.354	0	0.0 0.003	Vel = 0.32
WM2	77		0.0	8			6.000	140	31.589	VGI - 0.32
to TEST	77		54.17	8.27			6.000	0	0.0 0.0	Vel = 0.32
TEST			0.0 54.17	0.21			0.000		31.589	K Factor = 9.64
15	106.500	4.90	13.29	1	0	5.0	0.500	150	7.354	10 actor - 9.04
to 16	107		13.29	1.101			5.000 5.500	0.0320	-0.217 0.176	Vel = 4.48
16	107		0.0	1.101	0	5.0	5.000	150	7.313	VCI - 4.40
to					J	0.0	5.000		0.0	
4	107		13.29 0.0	1.101			10.000	0.0319	0.319	Vel = 4.48
4			13.29						7.632	K Factor = 4.81
18	106.500	4.90	13.40	1	N	7.0	0.500	150	7.479	
to 19	107		13.4	1.101			7.000 7.500	0.0325	-0.217 0.244	Vel = 4.52
19	107		0.0	1	0	5.0	1.100 5.000	150	7.506 0.0	
to 5	107		13.4	1.101			6.100	0.0325	0.198	Vel = 4.52
			0.0							
5			13.40						7.704	K Factor = 4.83
to	105.500	4.90	14.48	1	0	5.0	1.500 5.000	150	8.730 -0.650	V 1 400
8	107		14.48	1.101			6.500	0.0375	0.244	Vel = 4.88
8			0.0 14.48						8.324	K Factor = 5.02
10 to	107		23.95	2	9R O	9.0 10.0	49.670 19.000	150	8.753 0.0	
10A	107		23.95	2.003		10.0	68.670	0.0052	0.354	Vel = 2.44

SPRINX ETC Buil	FIRE PR	OTECTIO	ON INC.	iai ii o						City of Puyallup Discognization & Polyniting Services PISSUED PERMIT Discognization 27 27 27 27 27 27 27 27 27 27 27 27 27
Node1 to	Elev1	K	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	Engineering Public Works Fire Traffic **********************************
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf	
10A	107		-2.79	2	2R	2.0	11.580	150	9.107	
to					211	2.0	2.000		0.0	Val - 0.45
10B 10B	107 107		21.16 -18.97	2.003	2R	2.0	13.580 11.170	0.0041 150	0.055 9.162	Vel = 2.15
to					,		2.000		0.0	V-I 0.00
72 72	107 107		2.19 2.79	2.003	8R	8.0	13.170 50.830	0.0001 150	0.001 9.163	Vel = 0.22
to					20	20.0	39.000		0.0	
UP3 UP3	107 107		4.98 0.0	2.003	N R	11.0 1.0	89.830 10.250	0.0003 150	0.026 9.189	Vel = 0.51
to					IX	1.0	1.000		4.439	
UP2	96.750		4.98	2.003	N.I.	44.0	11.250	0.0003	0.003	Vel = 0.51
UP2 to	96.750		11.56	2	N	11.0	10.250 11.000	150	13.631 4.439	
UP1	86.500		16.54	2.003			21.250	0.0026	0.056	Vel = 1.68
UP1 to	86.500		0.0	2	8R 3O	8.0 30.0	50.830 38.000	150	18.126 0.0	
11B	86.500		16.54	2.003			88.830	0.0026	0.230	Vel = 1.68
11B			0.0 16.54						18.356	K Factor = 3.86
UP5	96.750		11.56	2	20	20.0	50.830	150	13.378	
to 80	96.750		11.56	2.003	9R	9.0	29.000 79.830	0.0013	0.0 0.107	Vel = 1.18
80	96.750		-1.84	2.003	2R	2.0	11.580	150	13.485	Vei - 1.10
to	06.750		0.70	2 002			2.000	0.0010	0.0	Val = 0.00
<u>81</u> 81	96.750 96.750		9.72 0.0	2.003	2R	2.0	13.580 11.250	0.0010 150	0.013 13.498	Vel = 0.99
to					211	2.0	2.000		0.0	
82 82	96.750 96.750		9.72 1.84	2.003	8R	8.0	13.250 51.000	0.0010 150	0.013 13.511	Vel = 0.99
to					20	20.0	39.000		0.0	
UP2	96.750		11.56	2.003	N	11.0	90.000	0.0013	0.120	Vel = 1.18
UP2			0.0 11.56						13.631	K Factor = 3.13
82	96.750		-1.84	1.25	4R	4.0	23.500	150	13.511	
to 83	96.750		-1.84	1.394	0	6.0	10.000 33.500	-0.0003	0.0 -0.009	Vel = 0.39
83	96.750		0.0	1.25	4R	4.0	22.830	150	13.502	1.0.00
to 84	96.750		-1.84	1.394	0	6.0	10.000 32.830	-0.0003	0.0 -0.009	Vel = 0.39
84	96.750		0.0	1.394	4R	4.0	23.500	150	13.493	v GI - U.JB
to					0	6.0	10.000		0.0	Val - 0.00
08	96.750		-1.84 0.0	1.394			33.500	-0.0002	-0.008	Vel = 0.39
80			-1.84						13.485	K Factor = -0.50
10A	107		2.79	1.25	4R	4.0	19.000	150	9.107	
to 41	107		2.79	1.394			4.000 23.000	0.0006	0.0 0.013	Vel = 0.59

Final Calculations: Hazen-Williams

i iiiai O	aioaiati	0110 . 110	2011 771111	iaiiio						
SPRINX ETC Buil		OTECTIC rea 1	ON INC.							City of Puyallup Divergement & Pefrifiting Services MSSUED PERMIT DBuilding 12/anong.024
Node1	Elev1	K	Qa	Nom	Fitting		Pipe	CFact	Pt	Engineering Public Works Fire Traffic
to					or		Ftngs		Pe	******* Notes ***
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf	
41	107		0.0	1.25	0	6.0	4.500	150	9.120	
to	107		2.70	1 204			6.000 10.500	0.0006	0.0	Val = 0.50
70			2.79	1.394	40	4.0		0.0006	0.006	Vel = 0.59
70 to	107		0.0	1.25	4R O	4.0 6.0	22.830 10.000	150	9.126 0.0	
71	107		2.79	1.394	Ü	0.0	32.830	0.0005	0.018	Vel = 0.59
71	107		0.0	1.25	4R	4.0	23.500	150	9.144	
to					0	6.0	10.000		0.0	
72	107		2.79	1.394			33.500	0.0006	0.019	Vel = 0.59
70			0.0						0.400	K 5 0.00
72	407		2.79		N.	11.0	0.070	450	9.163	K Factor = 0.92
10B to	107		18.97	2	N	11.0	0.670 11.000	150	9.162 0.0	
UP9	107		18.97	2.003			11.670	0.0034	0.040	Vel = 1.93
UP9	107		0.0	2	R	1.0	10.250	150	9.202	
to							1.000		4.439	
UP8	96.750		18.97	2.003			11.250	0.0033	0.037	Vel = 1.93
UP8	96.750		0.0	2	N	11.0	10.250	150	13.678	
to UP7	86.500		18.97	2.003			11.000 21.250	0.0034	4.439 0.072	Vel = 1.93
UP7	86.500		0.0	2.003	0	10.0	1.000	150	18.189	Vei = 1.95
to	00.500		0.0	۷	O	10.0	10.000	150	0.0	
11A	86.500		18.97	2.003			11.000	0.0034	0.037	Vel = 1.93
11A			0.0 18.97						18.226	K Factor = 4.44
90	86.500		11.95	1.25	4R	4.0	24.000	150	18.219	
to					0	6.0	10.000		0.0	
91	86.500		11.95	1.394			34.000	0.0083	0.283	Vel = 2.51
91	86.500		0.0	1.25	4R	4.0	22.830	150	18.502	
to 92	86.500		11.95	1.394	0	6.0	10.000 32.830	0.0083	0.0 0.273	Vel = 2.51
32	00.000		0.0	1.384			32.030	0.0003	0.213	vei = 2.01
92			11.95						18.775	K Factor = 2.76

City of Puyallup
Development & Permitting Services
ISSUED PERMIT
Building Planning
Engineering Public Works
Fire Traffic

2709 Jahn Ave NW, Suite H2, Gig Harbor WA 98335

Ph. (253) 853-7780- www.SprinxFire.com

Expires CERTIFICATE OF COMPETENCY FIRE SPRINKLER SYSTEMS

Joseph G. Faulkner 9491-0699-CEG Level 3 Sprinx Fire Protection, Inc. SPRINFP011LS₁

Hydraulic Calculations

Signature 12/16/2024

Signature Date

SPRINX FIRE PROTECTION INC. 2709 JAHN AVE NW SUITE H2 GIG HARBOR, WA 98335 253-853-7780

Job Name : ETC Building G Area 2

Drawing : FP-3.0

Location : 2902 E PIONEER PUYALLUP, WA 98372

Remote Area : RA#2 Contract : 24-093CM

Data File : ETC Building G MAIN Area 2.WXF

HYDRAULIC CALCULATIONS for

JOB NAME East Town Crossing Building G

Location 2902 E PIONEER PUYALLUP, WA 98372

Drawing # FP-3.0 **Contract #** 24-093CM **Date** 12/03/2024

DESIGN

Remote area # RA#2

Remote area location UNIT 301 - BEDROOM
Occupancy classification RESIDENTIAL NFPA 13R

Density 0.05 - Gpm/SqFt **Area of application** 324 - SqFt **Coverage/sprinkler** 324 - SqFt

Type of sprinkler calculated VIKING VK468 RESIDENTIAL PENDENT K=4.9

Sprinklers calculated 1 In-rack demand N/A - GPM Hose streams N/A - GPM

Total water required (including hose streams) 17.0024 - GPM @ 33.3715 - Psi

Type of system WET-CPVC

Volume of system (dry or pre-action) N/A - Gal

WATER SUPPLY INFORMATION

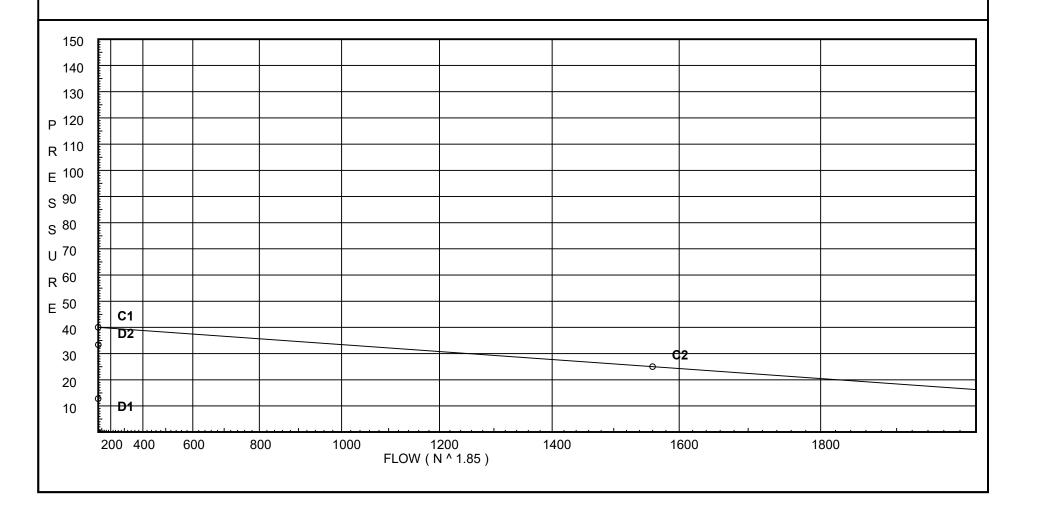
Test date 4/16/2024 Location 2902 E PIONEER

Source of info CITY OF PUYALLUP WATER DIVISON

CONTRACTOR INFO SPRINX FIRE PROTECTION

Address 2709 JAHN AVE. / SUITE H2 / GIG HARBOR

Phone # 253-853-7780


Name of designer ALEXANDER J PARADIS Authority having jurisdiction CITY OF PUYALLUP NOTES:

Page 2

Date 12/03/2024

City Water Supply: C1 - Static Pressure : 40 C2 - Residual Pressure: 25 C2 - Residual Flow : 1560 Demand:

D1 - Elevation : 12.776 D2 - System Flow : 17.002
D2 - System Pressure : 33.372
Hose (Demand) : 17.002
Safety Margin : 17.002

Flow Diagram

SPRINX FIRE PROTECTION INC. ETC Building G Area 2

City of Puyallup
Development & Permitting Services
ISSUED PERMIT
Building Planning
Engineering Public Works
Fire Traffic

Page 3

Date 12/03/2024

Fittings Used Summary

	IX FIRE PROTECTION INC. uilding G Area 2											Developr Buil	ding	tting Services RMIT Planning				_	ige 4 ate 1	 2/03/20	024
Fitting L Abbrev.	egend Name	1/2	3/4	1	11⁄4	1½	2	2½	3	3½	4	-	re 6	Traffic 8	10	12	14	16	18	20	24
В	NFPA 13 Butterfly Valve	0	0	0	0	0	6	7	10	0	12	9	10	12	19	21	0	0	0	0	0
E	NFPA 13 90' Standard Elbow	1	2	2	3	4	5	6	7	8	10	12	14	18	22	27	35	40	45	50	61
G	NFPA 13 Gate Valve	0	0	0	0	0	1	1	1	1	2	2	3	4	5	6	7	8	10	11	13
N *	CPVC 90'Ell Harvel-Spears		7	7	8	9	11	12	13	0	0	0	0	0	0	0	0	0	0	0	0
O *	CPVC Tee - Branch	3	3	5	6	8	10	12	15	0	0	0	0	0	0	0	0	0	0	0	0
R *	CPVC Coupling Tee - Run	1	1	1	1	1	1	2	2	0	0	0	0	0	0	0	0	0	0	0	0
S	NFPA 13 Swing Check	0	0	5	7	9	11	14	16	19	22	27	32	45	55	65					
T	NFPA 13 90' Flow thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101	121
Ziw	Wilkins 350AST	Fittin	ig gener	ates a F	ixed Los	s Based	d on Flo	W													

Units Summary

Diameter Units Inches Length Units Feet

Flow Units US Gallons per Minute Pressure Units Pounds per Square Inch

Note: Fitting Legend provides equivalent pipe lengths for fittings types of various diameters. Equivalent lengths shown are standard for actual diameters of Sched 40 pipe and CFactors of 120 except as noted with *. The fittings marked with a * show equivalent lengths values supplied by manufacturers based on specific pipe diameters and CFactors and they require no adjustment. All values for fittings not marked with a * will be adjusted in the calculation for CFactors of other than 120 and diameters other than Sched 40 per NFPA.

City of Puyallup Designant & Permitting Services SSUED PERMIT Designant Public Works Engineering Public Works

SUPPLY ANALYSIS

Node at Source	Static Pressure	Residual Pressure	Flow	Available Pressure	Total Demand	Required Pressure
TEST	40.0	25	1560.0	39.996	17.0	33.372

NODE ANALYSIS

Node Tag	Elevation	Node Type	Pressure at Node	Discharge at Node	,	Votes
25	106.5	4.9	12.04	17.0	0.05	324
31	107.0		12.1			
3	107.0		12.81			
4	107.0		12.98			
4 5 6 7	107.0		13.01			
6	107.0		13.12			
	107.0		13.12			
8	107.0		13.14			
9	107.0		13.15			
10	107.0		13.19			
UP6	107.0		13.2			
UP5	96.75		17.65			
UP4	86.5		22.1			
90	86.5		22.13			
11A	86.5		22.14			
11B	86.5		22.15			
92	86.5		22.2			
12	86.5		22.24			
TOR	86.5		22.4			
BOR	80.0		25.3			
BKV	77.0		33.37			
WM1	77.0		33.37			
WM2	77.0		33.37			
TEST	77.0		33.37			
10A	107.0		13.23			
10B	107.0		13.24			
72	107.0		13.24			
UP3	107.0		13.24			
UP2	96.75		17.68			
UP1	86.5		22.12			
80	96.75		17.66			
81 82	96.75		17.66 17.66			
83	96.75 96.75		17.66			
84	96.75 96.75		17.66			
41	107.0		13.23			
70	107.0		13.23			
70 71	107.0		13.23			
UP9	107.0		13.24			
UP8	96.75		17.68			
UP7	86.5		22.13			
91	86.5		22.17			
U 1	30.0					

Flow Summary - NFPA

SPRINX FIRE PROTECTION INC. ETC Building G Area 2

City of Puyallup
Discrepant & Promitting Services
SSUED PERMIT
Distriction
12-Anning 024
Engineering Public Works
Fire Traffic

NODE ANALYSIS (cont.)

Node Tag Elevation Node Type at Node at Node

Notes

				iaiiis						City of Puyallup
SPRINX ETC Buil		OTECTIOI rea 2	N INC.							Designment & Permitting Services SSUED PERMIT Designment & Permitting Services 12 Penning 024
Node1	Elev1	K	Qa	Nom	Fitting	J	Pipe	CFact	Pt	Engineering Public Works Fire Traffic
to Node2	Elev2	Fact	Qt	Act	or Eqiv	Len	Ftngs Total	Pf/Ft	Pe Pf	******* Notes ******
25 to	106.500	0 4.90	17.00	1	0	5.0	0.500 5.000	150	12.040 -0.217	
31	107		17.0	1.101			5.500	0.0505	0.278	Vel = 5.73
31	107		0.0	1	N	7.0	6.000	150	12.101	
to 3	107		17.0	1.101	R	1.0	8.000 14.000	0.0504	0.0 0.705	Vel = 5.73
3	107		0.0	1.25	R	1.0	9.640	150	12.806	
to 4	107		17.0	1.394			1.000 10.640	0.0160	0.0 0.170	Vel = 3.57
4	107		0.0	1.25	R	1.0	1.000	150	12.976	VCI - 0.01
to							1.000		0.0	0.57
5	107 107		17.0 0.0	1.394 1.25	R	1.0	2.000 5.750	0.0160 150	0.032 13.008	Vel = 3.57
5 to	107		0.0	1.25	ĸ	1.0	1.000	150	0.0	
6	107		17.0	1.394			6.750	0.0160	0.108	Vel = 3.57
6 to	107		0.0	2	R	1.0	1.170 1.000	150	13.116 0.0	
7	107		17.0	2.003			2.170	0.0028	0.006	Vel = 1.73
7	107		0.0	2	R	1.0	4.670	150	13.122	_
to 8	107		17.0	2.003			1.000 5.670	0.0026	0.0 0.015	Vel = 1.73
8	107		0.0	2	2R	2.0	2.830	150	13.137	VOI 1.70
to	407						2.000		0.0	V 1 4 70
9 9	107 107		17.0 0.0	2.003	0	10.0	4.830 3.580	0.0027 150	0.013 13.150	Vel = 1.73
to	107		0.0	2	O	10.0	10.000	150	0.0	
_10	107		17.0	2.003			13.580	0.0027	0.037	Vel = 1.73
10 to	107		-7.52	2	N	11.0	1.170 11.000	150	13.187 0.0	
UP6	107		9.48	2.003			12.170	0.0010	0.012	Vel = 0.97
UP6	107		0.0	2	R	1.0	10.250	150	13.199	
to UP5	96.750		9.48	2.003			1.000 11.250	0.0009	4.439 0.010	Vel = 0.97
UP5	96.750		-3.62	2	N	11.0	10.250	150	17.648	
to UP4	86.500		5.86	2.003			11.000 21.250	0.0004	4.439 0.009	Vel = 0.60
UP4	86.500		0.0	2.003	20	20.0	73.670	150	22.096	vei – 0.00
to					9R	9.0	29.000		0.0	
90	86.500		5.86	2.003	0.0		102.670	0.0004	0.039	Vel = 0.60
90 to	86.500		-3.76	2	2R	2.0	11.580 2.000	150	22.135 0.0	
11A	86.500		2.1	2.003			13.580	0.0001	0.001	Vel = 0.21
11A	86.500		5.96	2	R	1.0	11.250	150	22.136	
to 11B	86.500		8.06	2.003	0	10.0	11.000 22.250	0.0007	0.0 0.015	Vel = 0.82
11B	86.500		5.19	2	5R	5.0	23.500	150	22.151	
to 92	86.500		13.25	2.003			5.000 28.500	0.0017	0.0 0.049	Vel = 1.35

i illai O	aloulativ	0113 . 1 10		ams						
SPRINX ETC Buil			ON INC.							City of Puyallup Dipopropriat & Peinitting Services SSUED PERMIT Deutiding 12 Planding 024
Node1	Elev1	K	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	Engineering Public Works Fire Traffic ******** Notes ******
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf	
92 to	86.500		3.75	2	0	10.0	6.420 10.000	150	22.200 0.0	
_12	86.500		17.0	2.003			16.420	0.0027	0.045	Vel = 1.73
12 to	86.500		0.0	2	3R 3N	3.0 33.0	19.010 36.000	150	22.245 0.0	
TOR	86.500		17.0	2.003		0.400	55.010	0.0027	0.150	Vel = 1.73
TOR to	86.500		0.0	2	B S	8.183 15.003	9.500 23.186	120	22.395	Val - 4.40
BOR	80		17.0	2.203	т	42.027	32.686	0.0026	0.085	Vel = 1.43
BOR to BKV	80 77		0.0 17.0	6 6.16	T 3E Ziw	43.037 60.252 0.0	72.080 103.289 175.369	140 0	25.295 8.073 0.002	* * Fixed Loss = 6.773 Vel = 0.18
BKV to	77		0.0	6	T G	43.037 4.304	40.000 47.341	140	33.370 0.0	VCI - 0.10
WM1	77		17.0	6.16	G	4.304	87.341	0	0.001	Vel = 0.18
WM1	77		0.0	8	Т	55.354	36.000 55.354	140	33.371 0.0	
WM2	77		17.0	8.27			91.354	0	0.001	Vel = 0.10
WM2 to	77		0.0	8			6.000	140	33.372 0.0	
TEST	77		17.0	8.27			6.000	0	0.0	Vel = 0.10
TEST			0.0 17.00						33.372	K Factor = 2.94
10 to	107		7.52	2	9R O	9.0 10.0	49.670 19.000	150	13.187 0.0	
10A	107		7.52	2.003	O	10.0	68.670	0.0006	0.042	Vel = 0.77
10A to	107		-0.88	2	2R	2.0	11.580 2.000	150	13.229 0.0	
_10B	107		6.64	2.003			13.580	0.0004	0.006	Vel = 0.68
10B to	107		-5.95	2	2R	2.0	11.170 2.000	150	13.235 0.0	
72	107		0.69	2.003			13.170	0	0.0	Vel = 0.07
72 to	107		0.87	2	8R 2O	8.0 20.0	50.830 39.000	150	13.235	V. I
UP3	107		1.56	2.003	N	11.0	89.830	0	0.003	Vel = 0.16
UP3 to	107		0.0	2 2 2 2 2	R	1.0	10.250 1.000	150	13.238 4.439	Vol. = . 0.46
UP2	96.750		1.56	2.003	N.I.	11.0	11.250	0.0001	0.001	Vel = 0.16
UP2 to	96.750		3.63	2	N	11.0	10.250 11.000	150	17.678 4.439	V-I 0.50
UP1	86.500		5.19	2.003	00	0.0	21.250	0.0003	0.007	Vel = 0.53
UP1 to	86.500		0.0	2	8R 3O	8.0 30.0	50.830 38.000	150	22.124 0.0	Val = 0.52
_11B	86.500		5.19	2.003			88.830	0.0003	0.027	Vel = 0.53
11B			0.0 5.19						22.151	K Factor = 1.10
UP5	96.750		3.63	2	20	20.0	50.830	150	17.648	
to 80	96.750		3.63	2.003	9R	9.0	29.000 79.830	0.0002	0.0 0.013	Vel = 0.37

i illai C	aiculati	0115 . 1 10	12 6 11-771111	iaiiis						
SPRINX ETC Buil		OTECTIC rea 2	N INC.							City of Puyallup Discognization & Pagnitting Services MSSUED PERMIT Daurant 12/45/0/2024
Node1	Elev1	K	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	Engineering Public Works Fire Traffic ******** Notes ******
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf	
80 to 81	96.750 96.750		-0.58 3.05	2 2.003	2R	2.0	11.580 2.000 13.580	150 0.0001	17.661 0.0 0.001	Vel = 0.31
81	96.750		0.0	2	2R	2.0	11.250	150	17.662	VCI - 0.01
to 82	96.750		3.05	2.003			2.000 13.250	0.0002	0.0 0.002	Vel = 0.31
82 to	96.750		0.58	2	8R 20	8.0 20.0	51.000 39.000	150	17.664 0.0	
UP2	96.750		3.63	2.003		11.0	90.000	0.0002	0.014	Vel = 0.37
UP2			0.0 3.63						17.678	K Factor = 0.86
82 to	96.750		-0.58	1.25	4R O	4.0 6.0	23.500 10.000	150	17.664 0.0	
83	96.750		-0.58	1.394			33.500	0	-0.001	Vel = 0.12
83 to	96.750		0.0	1.25	4R O	4.0 6.0	22.830 10.000	150	17.663 0.0	
84 84	96.750 96.750		-0.58 0.0	1.394 1.25	4R	4.0	32.830 23.500	0 150	-0.001 17.662	Vel = 0.12
to 80	96.750		-0.58	1.394	0	6.0	10.000 33.500	0	0.0 -0.001	Vel = 0.12
	90.730		0.0	1.554			33.300	0		
80 10A	107		-0.58 0.88	1.25	4R	4.0	19.000	150	17.661 13.229	K Factor = -0.14
to					711	4.0	4.000		0.0	Val = 0.40
41	107 107		0.88	1.394 1.25	0	6.0	23.000 4.500	0 150	0.001 13.230	Vel = 0.18
to 70	107		0.88	1.394			6.000 10.500	0.0001	0.0 0.001	Vel = 0.18
70	107		0.0	1.25	4R	4.0	22.830	150	13.231	
to _71	107		0.88	1.394	0	6.0	10.000 32.830	0.0001	0.0 0.002	Vel = 0.18
71 to	107		0.0	1.25	4R O	4.0 6.0	23.500 10.000	150	13.233 0.0	
72	107		0.88	1.394		0.0	33.500	0.0001	0.002	Vel = 0.18
72			0.0 0.88						13.235	K Factor = 0.24
10B to	107		5.96	2	N	11.0	0.670 11.000	150	13.235 0.0	
UP9	107		5.96	2.003			11.670	0.0004	0.005	Vel = 0.61
UP9 to	107		0.0	2	R	1.0	10.250 1.000	150	13.240 4.439	
UP8 UP8	96.750 96.750		5.96 0.0	2.003	N	11.0	11.250 10.250	0.0004 150	0.005 17.684	Vel = 0.61
to					N	11.0	11.000		4.439	V.I. 0.64
UP7 UP7	86.500 86.500		5.96 0.0	2.003	0	10.0	21.250 1.000	0.0004 150	0.008 22.131	Vel = 0.61
to 11A	86.500		5.96	2.003	Č	. 5.0	10.000 11.000	0.0005	0.0 0.005	Vel = 0.61
	22.300		2.00					2.000	2.000	

Final Calculations: Hazen-Williams

SPRINX FIRE PROTECTION INC.

SPRINX ETC Buil		OTECTIC rea 2	ON INC.							City of Puyallup Despress & Petriliting Services SSUED PERMIT Desiration 12 Publish 2024
Node1	Elev1	K	Qa Ot	Nom	Fitting or	1	Pipe Ftngs	CFact	Pt Pe	Fire Traffic **********************************
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf	
_11A			0.0 5.96						22.136	K Factor = 1.27
90 to	86.500		3.75	1.25	4R O	4.0 6.0	24.000 10.000	150	22.135 0.0	
91	86.500		3.75	1.394			34.000	0.0010	0.033	Vel = 0.79
91	86.500		0.0	1.25	4R	4.0	22.830	150	22.168	
to					0	6.0	10.000		0.0	
92	86.500		3.75	1.394			32.830	0.0010	0.032	Vel = 0.79
			0.0							
92			3.75						22.200	K Factor = 0.80

City of Puyallup
Development & Permitting Services
ISSUED PERMIT
Building Planning
Engineering Public Works
Fire Traffic

2709 Jahn Ave NW, Suite H2, Gig Harbor WA 98335

Ph. (253) 853-7780- www.SprinxFire.com

Expires WASHINGTON STATE CERTIFICATE OF COMPETENCY FIRE SPRINKLER SYSTEMS

Joseph G. Faulkner 9491-0699-CEG Level 3 Sprinx Fire Protection, Inc. SPRINFP011LS₁

Signature

12/16/2020

Hydraulic Calculations

SPRINX FIRE PROTECTION INC. 2709 JAHN AVE NW SUITE H2 GIG HARBOR, WA 98335 253-853-7780

Job Name : ETC Building G Area 3

Drawing : FP-3.0

Location : 2902 E PIONEER PUYALLUP, WA 98372

Remote Area : RA#3 Contract : 24-093CM

Data File : ETC Building G MAIN Area 3.WXF

HYDRAULIC CALCULATIONS for

JOB NAME East Town Crossing Building G

Location 2902 E PIONEER PUYALLUP, WA 98372

Drawing # FP-3.0 **Contract #** 24-093CM **Date** 12/03/2024

DESIGN

Remote area # RA#3

Remote area location STAIRWELL

Occupancy classification LIGHT HAZARD

Density 0.10 - Gpm/SqFt **Area of application** 273 - SqFt **Coverage/sprinkler** 4 HEADS - SqFt

Type of sprinkler calculated VIKING VK178 QR CHROME DRY HORIZONTAL SIDEWALL

Sprinklers calculated 4 In-rack demand N/A - GPM Hose streams N/A - GPM

Total water required (including hose streams) 62.9428 - GPM @ 33.3041 - Psi

Type of system WET-CPVC

Volume of system (dry or pre-action) N/A - Gal

WATER SUPPLY INFORMATION

Test date 4/16/2024

Location 2902 E PIONEER

Source of info CITY OF PUYALLUP WATER DIVISON

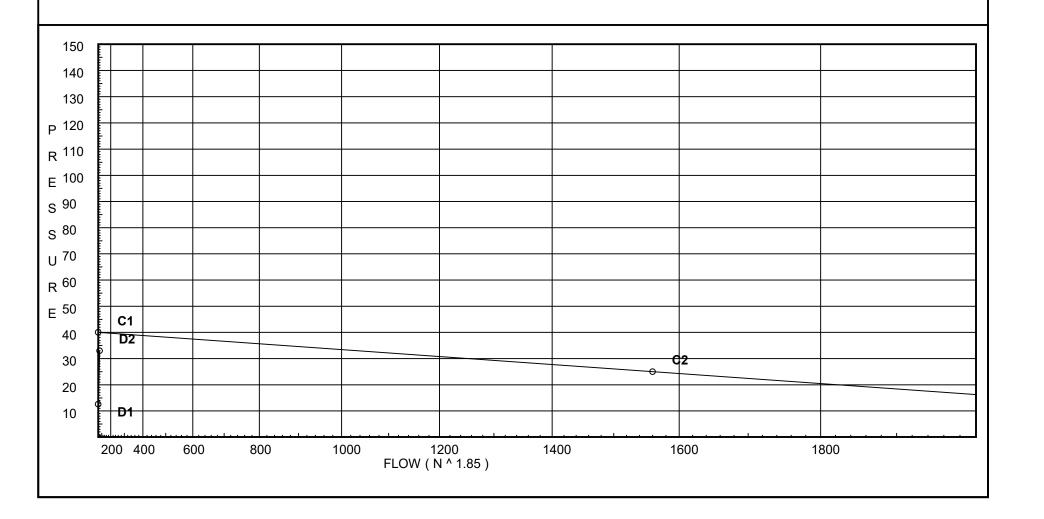
CONTRACTOR INFO SPRINX FIRE PROTECTION

Address 2709 JAHN AVE. / SUITE H2 / GIG HARBOR

Phone # 253-853-7780

Name of designer ALEXANDER J PARADIS
Authority having jurisdiction CITY OF PUYALLUP
NOTES:

Computer Programs by Hydratec Inc. Revision: 50.5520.727


City of Puyallup oment & Permitting Service ISSUED PERMIT Building

Page 2

Date 12/03/2024

City Water Supply: C1 - Static Pressure : 40 C2 - Residual Pressure: 25 C2 - Residual Flow : 1560 Demand:

D1 - Elevation : 12.560 D2 - System Flow : 62.943
D2 - System Pressure : 32.986
Hose (Demand) : 62.943
Safety Margin : 62.943

Flow Diagram

13.8 **90** ← **91** ← **92** 13.8

SPRINX FIRE PROTECTION INC. ETC Building G Area 3

46.4

29

18.8

29.7

62.9

62.9

62.9

City of Puyallup Development & Permitting Services ISSUED PERMIT Building Public Works Engineering

62.9

Page 3

Date 12/03/2024

```
14.8
                                     14.8
                                                         30.1
30 \leftarrow 31 \leftarrow 3 \quad \leftarrow 4 \quad \leftarrow 5 \quad \leftarrow 6 \quad \leftarrow 7 \quad \leftarrow 8 \quad \leftarrow 9 \quad \leftarrow 10 \quad \leftarrow UP6 \leftarrow UP5 \leftarrow UP4 \leftarrow 90 \quad \leftarrow 11A \leftarrow 11B \leftarrow 92 \quad \leftarrow 12 \quad \leftarrow TOR \leftarrow BOR \leftarrow BKV \leftarrow WM1 \leftarrow WM2 \leftarrow TEST
     14.8 14.8 30.1 30.1 29 18.8 5 49.1 62.9
    16.6
40 ← 41
    15.3
50 ← 6
    16.3
60 ← 9
    17.4 2.4 9.2 19.4
\textbf{10} \; \leftarrow \; \textbf{10A} \leftarrow \; \textbf{10B} \leftarrow \; \textbf{72} \; \leftarrow \; \textbf{UP3} \leftarrow \; \textbf{UP2} \leftarrow \; \textbf{UP1} \leftarrow \; \textbf{11B}
     27.2 9.2↑ 19.4
                               | 9.2
    10.2 8.6
UP5 \leftarrow 80 \leftarrow 81 \leftarrow 82 \leftarrow UP2
      8.6 10.2
    1.6 1.6
82 \rightarrow 83 \rightarrow 84 \rightarrow 80
          1.6
    9.8 6.7
\textbf{10A} \rightarrow \textbf{41} \ \leftarrow \textbf{70} \ \leftarrow \textbf{71} \ \leftarrow \textbf{72}
↑ 6.7 6.7
27.2
24.7 24.7
10B← UP9← UP8← UP7← 11A
   24.7
```

Fittings Used Summary

	RINX FIRE PROTECTION INC. C Building G Area 3											Develop	ding PE	tting Services RMIT Planning				Page 4 Date 12/03/2024			
	Legend /. Name	1/2	3/4	1	11⁄4	1½	2	2½	3	3½	4		eering P	Traffic	10	12	14	16	18	20	24
В	NFPA 13 Butterfly Valve	0	0	0	0	0	6	7	10	0	12	9	10	12	19	21	0	0	0	0	0
E	NFPA 13 90' Standard Elbow	1	2	2	3	4	5	6	7	8	10	12	14	18	22	27	35	40	45	50	61
G	NFPA 13 Gate Valve	0	0	0	0	0	1	1	1	1	2	2	3	4	5	6	7	8	10	11	13
N *	CPVC 90'Ell Harvel-Spears		7	7	8	9	11	12	13	0	0	0	0	0	0	0	0	0	0	0	0
O *	CPVC Tee - Branch	3	3	5	6	8	10	12	15	0	0	0	0	0	0	0	0	0	0	0	0
R *	CPVC Coupling Tee - Run	1	1	1	1	1	1	2	2	0	0	0	0	0	0	0	0	0	0	0	0
S	NFPA 13 Swing Check	0	0	5	7	9	11	14	16	19	22	27	32	45	55	65					
Т	NFPA 13 90' Flow thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101	121
Ziw	Wilkins 350AST	Fittin	ig gener	ates a F	ixed Los	s Based	on Flo	W													

Units Summary

Diameter Units Inches Length Units Feet

Flow Units US Gallons per Minute Pressure Units Pounds per Square Inch

Note: Fitting Legend provides equivalent pipe lengths for fittings types of various diameters. Equivalent lengths shown are standard for actual diameters of Sched 40 pipe and CFactors of 120 except as noted with *. The fittings marked with a * show equivalent lengths values supplied by manufacturers based on specific pipe diameters and CFactors and they require no adjustment. All values for fittings not marked with a * will be adjusted in the calculation for CFactors of other than 120 and diameters other than Sched 40 per NFPA.

SUPPLY ANALYSIS

Node at Source	Static Pressure	Residual Pressure	Flow	Available Pressure	Total Demand	Required Pressure
TEST	40.0	25	1560.0	39.96	62.94	32.986

NODE ANALYSIS

Node Tag	Elevation	Node Type	Pressure at Node	Discharge at Node	ı	Votes	
30 31 3 4 5 6 7 8 9 10 UP6 UP5 UP4 90 11A 11B 92 12 TOR BOR BKV WM1 WM2 TEST 40	106.0 107.0 107.0 107.0 107.0 107.0 107.0 107.0 107.0 107.0 96.75 86.5 86.5 86.5 86.5 86.5 86.5 86.5 86.	5.6	7.0 8.2 8.75 8.88 8.9 8.99 9.01 9.05 9.09 9.33 9.41 13.94 18.45 18.78 18.79 18.96 19.51 20.02 21.71 25.48 32.97 32.98 32.99 32.99 8.74	14.82	0.1	98	
50 60 10A 10B 72 UP3 UP2 UP1 80 81 82 83 84 41 70 71 UP9	106.0 106.0 107.0 107.0 107.0 107.0 96.75 86.5 96.75 96.75 96.75 96.75 107.0 107.0	5.6 5.6	7.44 8.47 9.52 9.61 9.69 14.14 18.65 14.02 14.03 14.04 14.03 9.39 9.42 9.51 9.67	15.27 16.3	0.1 0.1	140 98	

Flow Summary - NFPA

SPRINX FIRE PROTECTION INC. ETC Building G Area 3

NODE ANALYSIS (cont.)

Node Tag	Elevation	Node Type	Pressure at Node	Discharge at Node	Notes
UP8	96.75		14.17		
UP7	86.5		18.73		
91	86.5		19.16		

Final Calculations: Hazen-Williams

SPRINX FIRE PROTECTION INC.

ETC Building G Area 3

City of Puyallup
Development & Permitting Services
ISSUED PERMIT
Building Planning
Engineering Public Works

Node1	Elev1	K	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	****** Notes *****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf	110.00
30	106	5.60	14.82	1	4N	28.0	12.920	150	7.000	
to					R	1.0	29.000		-0.433	
31	107		14.82	1.101			41.920	0.0391	1.637	Vel = 4.99
31 to	107		0.0	1	N	7.0	5.920	150	8.204	
to 3	107		14.82	1.101	R	1.0	8.000 13.920	0.0391	0.0 0.544	Vel = 4.99
3	107		0.0	1.25	R	1.0	9.640	150	8.748	
to							1.000		0.0	
4	107		14.82	1.394			10.640	0.0124	0.132	Vel = 3.12
4 to	107		0.0	1.25	R	1.0	1.000 1.000	150	8.880 0.0	
to 5	107		14.82	1.394			2.000	0.0120	0.024	Vel = 3.12
5	107		0.0	1.25	R	1.0	5.750	150	8.904	
to							1.000		0.0	
6	107		14.82	1.394			6.750	0.0124	0.084	Vel = 3.12
6 to	107		15.27	2	R	1.0	1.170 1.000	150	8.988 0.0	
7	107		30.09	2.003			2.170	0.0078	0.017	Vel = 3.06
7	107		0.0	2	R	1.0	4.670	150	9.005	
to							1.000		0.0	
8	107		30.09	2.003			5.670	0.0079	0.045	Vel = 3.06
8 to	107		0.0	2	2R	2.0	2.830 2.000	150	9.050 0.0	
9	107		30.09	2.003			4.830	0.0079	0.038	Vel = 3.06
9	107		16.30	2	0	10.0	3.580	150	9.088	
to	407		40.00	0.000			10.000	0.0475	0.0	V 1 4 70
10	107		46.39	2.003	N.I.	44.0	13.580	0.0175	0.237	Vel = 4.72
10 to	107		-17.37	2	N	11.0	1.170 11.000	150	9.325 0.0	
UP6	107		29.02	2.003			12.170	0.0074	0.090	Vel = 2.95
UP6	107		0.0	2	R	1.0	10.250	150	9.415	
to UP5	96.750		20.02	2.003			1.000	0.0074	4.439	Vel = 2.95
UP5	96.750		29.02 -10.19	2.003	N	11.0	11.250 10.250	0.0074 150	0.083 13.937	Vei - 2.95
to	30.730		-10.13	2	IN	11.0	11.000	150	4.439	
UP4	86.500		18.83	2.003			21.250	0.0033	0.070	Vel = 1.92
UP4	86.500		0.0	2	20	20.0	73.670	150	18.446	
to 90	86.500		18.83	2.003	9R	9.0	29.000 102.670	0.0033	0.0 0.339	Vel = 1.92
90	86.500		-13.84	2.003	2R	2.0	11.580	150	18.785	v GI - 1.32
to	50.500		-10.04	_	211	2.0	2.000	100	0.0	
_11A	86.500		4.99	2.003			13.580	0.0003	0.004	Vel = 0.51
11A	86.500		24.74	2	R	1.0	11.250	150	18.789	
to 11B	86.500		29.73	2.003	0	10.0	11.000 22.250	0.0077	0.0 0.171	Vel = 3.03
11B	86.500		19.38	2.003	5R	5.0	23.500	150	18.960	V 01 0.00
to					0	0.0	5.000		0.0	
92	86.500		49.11	2.003			28.500	0.0194	0.554	Vel = 5.00

			Z C 11-VVIII	iaiiis						City of Puyallup
	FIRE PR ding G A	OTECTIO rea 3	N INC.							Debuggan & Ponitting Services SSUED PERMIT Debuggan 1 24 André 2024
Node1 to	Elev1	K	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	Engineering Public Works Fire Traffic ******** Notes *******
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf	
92	86.500		13.83	2	0	10.0	6.420	150	19.514	
to 12	86.500		62.94	2.003			10.000 16.420	0.0308	0.0 0.505	Vel = 6.41
12 :o	86.500		0.0	2	3R 3N	3.0 33.0	19.010 36.000	150	20.019 0.0	
TOR	86.500		62.94	2.003	JIN	33.0	55.010	0.0308	1.693	Vel = 6.41
TOR o	86.500		0.0	2	B S	8.183 15.003	9.500 23.186	120	21.712 2.815	
BOR	80		62.94	2.203			32.686	0.0293	0.957	Vel = 5.30
BOR o	80		0.0	6	T 3E	43.037 60.252	72.080 103.289	140	25.484 7.460	* * Fixed Loss = 6.161
BKV	77		62.94	6.16	Ziw	0.0	175.369	0.0001	0.026	Vel = 0.68
BKV to	77 77		0.0 62.94	6 6.16	T G	43.037 4.304	40.000 47.341	140 0.0001	32.970 0.0 0.012	Vel = 0.68
WM1 WM1	77		0.0	8	Т	55.354	87.341 36.000	140	32.982	vei – 0.00
o WM2	77		62.94	8.27			55.354 91.354	0	0.0 0.004	Vel = 0.38
WM2	77		0.0	8			6.000	140	32.986 0.0	VCI - 0.30
TEST	77		62.94	8.27			6.000	0	0.0	Vel = 0.38
TEST			0.0 62.94						32.986	K Factor = 10.96
40 o	106	5.60	16.56	1	2N O	14.0 5.0	3.500 19.000	150	8.741 -0.433	
41	107		16.56	1.101			22.500	0.0480	1.080	Vel = 5.58
41			0.0 16.56						9.388	K Factor = 5.40
50 o	106	5.60	15.27	1	4N 2R	28.0 2.0	13.080 35.000	150	7.435 -0.433	
6	107		15.27	1.101	0	5.0	48.080	0.0413	1.986	Vel = 5.15
6			0.0 15.27						8.988	K Factor = 5.09
60 o	106	5.60	16.30	1	2N O	14.0 5.0	3.500 19.000	150	8.472 -0.433	
9	107		16.3 0.0	1.101			22.500	0.0466	1.049	Vel = 5.49
9			16.30						9.088	K Factor = 5.41
10 o	107		17.36	2	9R O	9.0 10.0	49.670 19.000	150	9.325 0.0	
10A	107		17.36	2.003			68.670	0.0028	0.195	Vel = 1.77
10A to	107		9.81	2	2R	2.0	11.580 2.000	150	9.520 0.0	
10B	107		27.17	2.003			13.580	0.0066	0.089	Vel = 2.77
10B to	107		-24.73	2	2R	2.0	11.170 2.000	150	9.609 0.0	V 1 005
72	107		2.44	2.003			13.170	0.0001	0.001	Vel = 0.25

i iliai O	alculati	0113 . 1 10		iaiiis						City of Powellium
SPRINX ETC Buil		OTECTIC rea 3	ON INC.							City of Puyallup Discovery A Pointing Services ASSUED FERMIT Disting 12/4/6/02/24
Node1	Elev1	K	Qa	Nom	Fitting		Pipe	CFact	Pt	Engineering Public Works Fire Traffic
to Node2	Elev2	Fact	Qt	Act	or Eqiv	Len	Ftngs Total	Pf/Ft	Pe Pf	****** Notes ******
72 to	107		6.75	2	8R 2O	8.0 20.0	50.830 39.000	150	9.610 0.0	
UP3	107		9.19	2.003	N	11.0	89.830	0.0009	0.078	Vel = 0.94
UP3 to	107		0.0	2	R	1.0	10.250 1.000	150	9.688 4.439	
UP2	96.750		9.19	2.003			11.250	0.0009	0.010	Vel = 0.94
UP2	96.750		10.19	2	N	11.0	10.250 11.000	150	14.137 4.439	
UP1	86.500		19.38	2.003			21.250	0.0035	0.074	Vel = 1.97
UP1	86.500		0.0	2	8R	8.0	50.830	150	18.650	
to 11B	86.500		19.38	2.003	30	30.0	38.000 88.830	0.0035	0.0 0.310	Vel = 1.97
440			0.0							
11B	06.750		19.38	2	20	20.0	E0 020	150	18.960	K Factor = 4.45
UP5 to	96.750		10.19	2	20 9R	20.0 9.0	50.830 29.000	150	13.937 0.0	
80	96.750		10.19	2.003			79.830	0.0011	0.084	Vel = 1.04
80 to	96.750		-1.62	2	2R	2.0	11.580 2.000	150	14.021 0.0	
81	96.750		8.57	2.003			13.580	0.0008	0.011	Vel = 0.87
81 to	96.750		0.0	2	2R	2.0	11.250 2.000	150	14.032 0.0	
82	96.750		8.57	2.003			13.250	0.0008	0.010	Vel = 0.87
82 to	96.750		1.62	2	8R	8.0	51.000	150	14.042	
to UP2	96.750		10.19	2.003	20 N	20.0 11.0	39.000 90.000	0.0011	0.0 0.095	Vel = 1.04
LIDO			0.0						44.407	V.F. 1 0.74
UP2	00.750		10.19	4.05	4D	4.0	22.500	450	14.137	K Factor = 2.71
82 to	96.750		-1.62	1.25	4R O	4.0 6.0	23.500 10.000	150	14.042 0.0	
83	96.750		-1.62	1.394			33.500	-0.0002	-0.007	Vel = 0.34
83 to	96.750		0.0	1.25	4R O	4.0 6.0	22.830 10.000	150	14.035 0.0	
เช 84	96.750		-1.62	1.394	U	0.0	32.830	-0.0002	-0.007	Vel = 0.34
84	96.750		0.0	1.25	4R	4.0	23.500	150	14.028	
to _80	96.750		-1.62	1.394	0	6.0	10.000 33.500	-0.0002	0.0 -0.007	Vel = 0.34
80			0.0 -1.62						14.021	K Factor = -0.43
10A	107		-1.62 -9.81	1.25	4R	4.0	19.000	150	9.520	N I AUIUIU.43
to					411	4.0	4.000		0.0	
41	107		-9.81	1.394		0.0	23.000	-0.0057	-0.132	Vel = 2.06
41 to	107		16.56	1.25	0	6.0	4.500 6.000	150	9.388 0.0	
70	107		6.75	1.394			10.500	0.0029	0.030	Vel = 1.42
70 to	107		0.0	1.25	4R O	4.0 6.0	22.830 10.000	150	9.418 0.0	
71	107		6.75	1.394		-	32.830	0.0029	0.095	Vel = 1.42

Final Calculations: Hazen-Williams

SPRINX ETC Buil		OTECTIC rea 3	ON INC.							City of Puyallup Discontinuous A Petiniting Services MSSUED PERMIT Discontinuous 12 Planding 024
Node1 to	Elev1	K	Qa	Nom	Fitting	1	Pipe Ftngs	CFact	Pt Pe	Fire Traffic ******* Notes ******
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf	
71	107		0.0	1.25	4R	4.0	23.500	150	9.513	
to					0	6.0	10.000		0.0	
_72	107		6.75	1.394			33.500	0.0029	0.097	Vel = 1.42
72			0.0 6.75						9.610	K Factor = 2.18
10B	107		24.73	2	N	11.0	0.670	150	9.609	
to							11.000		0.0	
UP9	107		24.73	2.003			11.670	0.0054	0.063	Vel = 2.52
UP9	107		0.0	2	R	1.0	10.250	150	9.672	
to							1.000		4.439	
UP8	96.750		24.73	2.003			11.250	0.0055	0.062	Vel = 2.52
UP8	96.750		0.0	2	N	11.0	10.250	150	14.173	
to							11.000		4.439	
UP7	86.500		24.73	2.003			21.250	0.0055	0.117	Vel = 2.52
UP7	86.500		0.0	2	0	10.0	1.000	150	18.729	
to							10.000		0.0	
_11A	86.500		24.73	2.003			11.000	0.0055	0.060	Vel = 2.52
			0.0							
_11A			24.73						18.789	K Factor = 5.71
90	86.500		13.84	1.25	4R	4.0	24.000	150	18.785	
to					0	6.0	10.000		0.0	
_91	86.500		13.84	1.394			34.000	0.0109	0.371	Vel = 2.91
91	86.500		0.0	1.25	4R	4.0	22.830	150	19.156	
to					0	6.0	10.000		0.0	
92	86.500		13.84	1.394			32.830	0.0109	0.358	Vel = 2.91
			0.0							
92			13.84						19.514	K Factor = 3.13

MEMORANDUM

TO: BRIAN JOHNSON, WATER SYSTEM

SPECIALIST

FROM: KERRI SIDEBOTTOM, P.E.

DATE: APRIL 16, 2024

SUBJECT: EAST TOWN CROSSING ADDITIONAL

FIRE FLOW AVAILABILITY

CITY OF PUYALLUP, PIERCE COUNTY,

WASHINGTON G&O #21415.19

Per your request, I have analyzed the available fire flow at the proposed East Town Crossing development, in the central part of the City's water service area. Fire flow at this location was previously analyzed in a memo from Gray & Osborne, dated February 14, 2024. The Developer has proposed a Revised Water Piping Plan for the site, which has been analyzed in this memo. The setup of the hydraulic model and the assumptions used to determine the static pressure and available fire flow are noted as follows.

- The available fire flows and pressures are measured at 14 nodes, corresponding to the proposed hydrants within the development, as shown in the attached figure.
- Water system demands are based on projected 2038 demands and reservoirs are depleted of fire suppression and equalizing storage, as established in the 2019 Water System Plan (WSP), approved by the Department of Health (DOH). The City's water model was updated in 2021 to reflect additional system improvements since the WSP was developed.
- All pump stations are idle, and the Salmon Springs source is operating at 1,100 gallons per minute (gpm).

The development is located in Zone 1, which is supplied by Maplewood Springs and the 15th Avenue SE Reservoirs. The system was modeled as-is, with the proposed piping indicated on the attached figure. The model was run for two different scenarios, all of which include new 8-inch piping. The new piping for Scenario 1 includes the Phase 1 piping shown on the attached figure in pink. Scenario 2 includes additional piping for Phase 2 of the development is shown in orange on the attached figure.

The available pressure under 2038 peak hour demands at the hydrants is included in Table 1.

TABLE 1
Peak Hour Pressure

Node	Hydrant	Elevation, feet	Peak Hour Pressure, psi
J2238	J	71	41
J2240	L	72	41
J2242	M	72	40
J2244	N	76	39
J2246	Н	76	39
J2248	I	76	41
J2250	F	73	40
J2252	D	69	42
J2254	С	67	43
J2256	В	66	43
J2258	A	66	43
J2260	Е	72	41
J2274	G	75	39
J2276	K	71	41

The peak hour pressures within the development are essentially the same under either of the proposed scenarios, and the looping does not appreciably impact the pressures.

SCENARIO 1

Scenario 1 includes the piping planned for Phase 1, shown in pink on the attached figure. The piping includes 8-inch mains, mostly dead-ends, extending from the existing 8-inch main running from north to south through the site, as well as a connection to the 16-inch main on Shaw Road, to the west. Part of the existing 8-inch main will be replaced during construction of the development.

Available fire flow was modeled at 12 of the proposed hydrants in the development; Hydrants A through L. The hydrants are located on 8-inch pipes throughout the development, many of which are dead-ends. The results of this modeling are included in Table 2. The modeled fire flow is available at any hydrant individually, but not simultaneously.

TABLE 2

Modeled Fire Flow Availability, Scenario 1

		Avoilable Fine	Docidual Duagayna at	Minimum System Pressure at Available
Node	Hydrant	Available Fire Flow, gpm	Residual Pressure at Available Fire Flow, psi	Fire Flow, psi
J2238	J	2,140 ⁽¹⁾	25	25
J2240	L	1,560 ⁽¹⁾	23	23
J2246	Н	1,560 ⁽¹⁾	22	22
J2248	I	2,580 ⁽¹⁾	23	23
J2250	F	1,560 ⁽¹⁾	25	25
J2252	D	$2,170^{(1)}$	28	28
J2254	С	1,920 ⁽¹⁾	29	28
J2256	В	$2,230^{(1)}$	26	26
J2258	A	1,560 ⁽¹⁾	28	28
J2260	Е	1,560 ⁽¹⁾	23	23
J2274	G	1,560 ⁽¹⁾	25	25
J2276	K	1,560 ⁽¹⁾	27	27

⁽¹⁾ Limited by maximum system-wide velocity of 10 feet per second.

Fire flow to all of the hydrants is limited by the 10-fps maximum velocity through the existing and proposed 8-inch pipes in this scenario.

SCENARIO 2

Scenario 2 includes the piping indicated for Phases 1 and 2, shown in pink and orange on the attached figure. The piping includes 8-inch pipes extending from the existing 8-inch main running from north to south through the site, a connection to the existing 16-inch main on Shaw Road to the west, and improved looping as compared with Scenario 1.

Available fire flow was measured at the 14 proposed hydrants in the development; Hydrants A through N. The hydrants are located on 8-inch pipes throughout the development. The results of this modeling are included in Table. The modeled fire flow is available at any hydrant individually, but not simultaneously.

TABLE 3

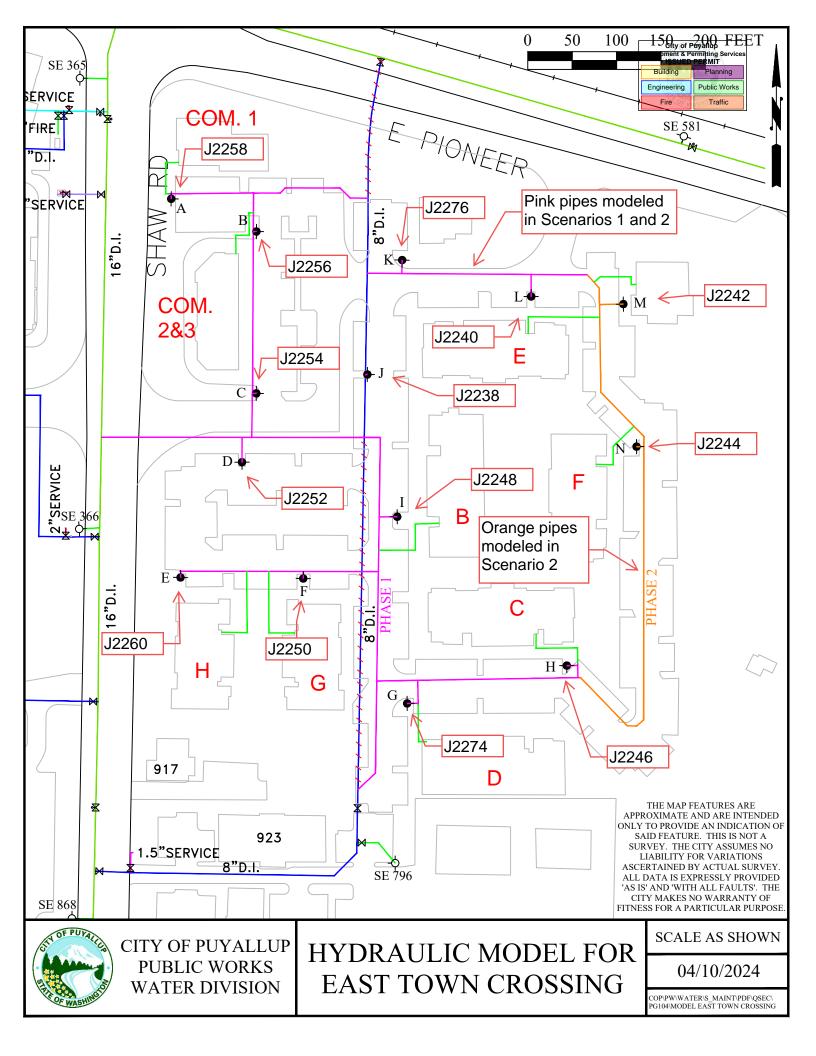
Modeled Fire Flow Availability, Scenario 2

		Available Fire	Residual Pressure at Available Fire	Minimum System Pressure at Available Fire
Node	Hydrant	Flow, gpm	Flow, psi	Flow, psi
J2238	J	2,430 ⁽¹⁾	25	25
J2240	L	$2,340^{(1)}$	21	21
J2242	M	$2,320^{(2)}$	20	20
J2244	N	2,120 ⁽²⁾	20	20
J2246	Н	2,330 ⁽¹⁾	20	20
J2248	I	$2,540^{(1)}$	24	24
J2250	F	1,560 ⁽¹⁾	26	26
J2252	D	$2,230^{(1)}$	28	28
J2254	С	1,980 ⁽¹⁾	29	28
J2256	В	2,340 ⁽¹⁾	26	26
J2258	A	1,560 ⁽¹⁾	38	38
J2260	Е	1,560 ⁽¹⁾	23	23
J2274	G	1,980 ⁽¹⁾	25	25
J2276	K	2,040 ⁽¹⁾	25	25

- (1) Limited by maximum system-wide velocity of 10 fps.
- (2) Limited by minimum system-wide pressure of 20 psi at all service locations.

Fire flow to the hydrants is limited by the 10-fps maximum velocity through the existing and proposed 8-inch pipes.

It should be noted that the dead-end 8-inch mains within the proposed site can only provide 1,560 gpm, due to the City's 10-fps velocity limitation considered for the fire flow analysis. Therefore, if 1,500 gpm is required at the hydrant, located on a dead-end main, there is essentially no additional flow available for the sprinkler system supplied by the same dead-end main. This impacts Hydrants A, E, and F in both scenarios, and additionally Hydrants G and H in Scenario 1 only.


The Department of Health and City Standards for water distribution systems are to meet the peak hourly demand of the system while providing a minimum pressure of 30 psi, system-wide. Under peak daily demand with a fire flow, the system is designed to maintain a minimum pressure of 20 psi, system-wide. Although the peak hourly demand pressure may currently be higher than these standards, the Developer must recognize that

City of Puyallup Development & Permitting Services ISSUED PERMIT		
Building	Planning	
Engineering	Public Works	
Fire OF W	Traffic	

the City may not provide pressure higher than 30 psi in the future. The flows and pressures determined in this memo are based on the approximate hydrant elevation at ground level. The Developer may design their sprinkler system for whatever pressure they wish, however they must recognize and be responsible for conditions when the pressure may be less than currently exists.

KS/sr

