
DEMO NOTES

- 1. NOT ALL EXISTING CONDITIONS HAVE BEEN SHOWN. CONTRACTOR TO FIELD VERIFY ALL EXISTING CONDITIONS PRIOR TO DEMO.
- 2. CONTRACTOR SHALL PROTECT ALL WORK AND EXISTING CONDITIONS ASSOCIATED WITH THIS CONTRACT FROM DAMAGE, COVER ENDS OF PIPING AND DUCTWORK NOT ACTIVELY BEING WORKED ON. IT IS THE CONTRACTOR RESPONSIBILITY TO REPAIR OR REPLACE ANY DAMAGED ITEMS THAT OCCURS DURING THIS CONSTRUCTION PROJECT AT NO COST TO THE OWNER.
- 3. DEMOLISH ALL REQUIRED EQUIPMENT, DUCTWORK, PIPING, HANGERS, CONTROLS AND ALL ASSOCIATED EXISTING SYSTEMS AS REQUIRED. TO REPLACE EACH SYSTEM, CONTRACTOR SHALL COORDINATE DEMOLITION WITH EXISTING SYSTEMS AND COMPONENTS TO REMAIN PRIOR TO WORK COMMENCING.
- 4. IT IS THE CONTRACTOR RESPONSIBILITY TO CLEAN UP ALL DEBRIS FROM SITE AT THE END OF EACH WORK DAY AND DISPOSE OFF EITHER IN LAY DOWN RECYCLE BINS PROVIDED BY THE CONTRACTOR OR OFFSITE ALL TOGETHER.
- 5. ALL DEMOLISHED EQUIPMENT SHALL BE TURNED OVER TO THE OWNER UNLESS DIRECTED OTHERWISE. IF NOT REQUIRED BY OWNER, DISPOSE AS REQUIRED.

SCOPE OF WORK

1. THE MECHANICAL PLANS INCLUDE THE ADDITION OF (5) 500 TON AIR-COOLED CHILLERS, AND (6) 536 TON FLUID COOLERS. EACH OF THE (5) CHILLERS IS FED WITH A PRIMARY CHILLED WATER PUMP, COOLING TOWER ARE FED WITH (4) PUMPS, (2) FOR (4) CELLS, AND (2) FOR (2). CHILLED WATER SYSTEMS SERVE ONLY PROCESS LOADS FOR WATER COOLED SERVER EQUIPMENT FURNISHED BY THE OWNER. (4) 1500 GPM SECONDARY CHILLED WATER PUMPS. PROCESS EQUIPMENT BEING INSTALLED INCLUDE A FILTER PUMP, BASIN HEATERS AND HEAT TRACE. A BUILDING AUTOMATION CONTROL SYSTEM SHALL PROVIDE CONTROL AND MONITORING OF THE NEW SYSTEMS, AND BE INTERGRATED INTO THE EXISTING.

Approval of submitted plans is not an approval of omissions or oversights by this office or non compliance with any applicable regulations of local government. The contractor is responsible for making sure that the building complies with all applicable codes and regulations of the local government.

The approved construction plans, documents, and all engineering must be posted on the job at all inspections in a visible and readily accessible location.

Full sized legible color plans are required to be provided by the permitee on site for inspection.

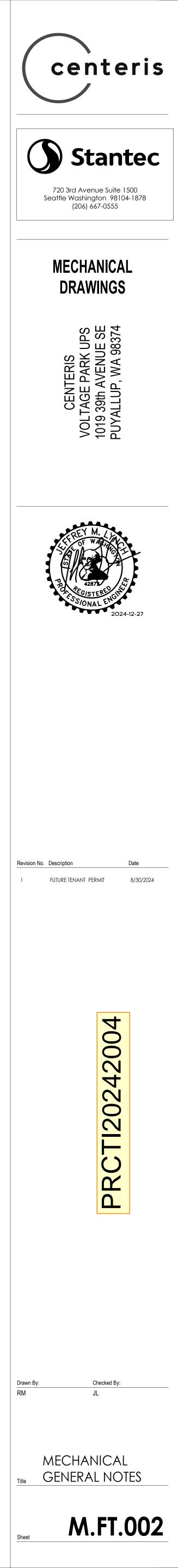
Separate Electrical Permit is required with the Washington State Department of Labor & Industries.

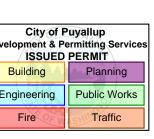
https://lni.wa.gov/licensing-permits/electrical/ electrical-permits-fees-and-inspections or call for Licensing Information: 1-800-647-0982

GENERAL NOTES

- 1. THE MECHANICAL PLANS ARE DIAGRAMMATIC IN NATURE AND ARE BASED ON ONE MANUFACTURER'S EQUIPMENT. THEY ARE NOT INTENDED TO SHOW EVERY ITEM IN ITS EXACT LOCATION, THE EXACT DIMENSIONS, OR ALL OF THE DETAILS FOR THE EQUIPMENT. THE MECHANICAL CONTRACTOR SHALL VERIFY THE ACTUAL DIMENSIONS OF THE EQUIPMENT AND ENSURE THAT IT WILL FIT IN THE AVAILABLE SPACE.
- 2. MECHANICAL CONTRACTOR RESPONSIBLE FOR INSTALLATION OF COMPLETED AND OPERATIONAL SYSTEMS WITH DUE RESPECT TO ALL APPLICABLE CODES AND AUTHORITIES HAVING JURISDICTION.
- 3. IT IS THE CONTRACTOR RESPONSIBILITY TO FIELD VERIFY ALL CONNECTION POINTS PRIOR TO INSTALL. NOT ALL CONNECTION SIZES ARE SHOWN, BUT THOSE THAT ARE APPROXIMATE AND TAKEN FROM EXISTING AS-BUILTS AND FIELD OBSERVATIONS.
- 4. COORDINATE PIPE ROUTING WITH DUCTWORK, SPRINKLER PIPING AND ELECTRICAL POWER/LIGHTING CIRCUITING AND STRUCTURAL MEMBERS PRIOR TO INSTALLATION.
- 5. CONTRACTORS TO VERIFY ALL GRADES, DIMENSIONS AND EXISTING CONDITIONS AT THE SITE BEFORE PROCEEDING WITH WORK. NOTIFY PRIME CONSULTANT OF ANY DISCREPANCIES BETWEEN DRAWINGS AND ACTUAL CONDITIONS BEFORE INSTALLATION.
- 6. EQUIPMENT AND SYSTEMS SHALL COMPLY WITH 2021 WASHINGTON STATE ENERGY AND MECHANICAL CODES. 7. COORDINATE INSTALLATION OF PIPING AND DUCTWORK WITH ELECTRICAL
- CONTRACTOR AND OTHER TRADES.
- 8. CONTRACTOR IS RESPONSIBLE FOR ALL PERMITS NEEDED TO CONSTRUCT WORK SHOULD IN THE CONSTRUCTION DOCUMENTS AND ACCOMPANYING SPECIFICATIONS.

9. IF THERE IS A CONFLICT BETWEEN THE CONSTRUCTION DOCUMENTS AND


- SPECIFICATIONS, THE MOST STRINGENT WILL APPLY. 10. ALL EQUIPMENT SHALL BE INSTALLED IN STRICT ACCORDANCE WITH THE EQUIPMENT MANUFACTURERS. CONTRACTOR TO PROVIDE ALL FITTINGS, TRANSITIONS, DAMPERS, VALVES, AND OTHER DEVICES REQUIRED FOR A
- COMPLETE WORKABLE INSTALLATION. 11. SYSTEMS ADHERE TO 2021 WSEC SECTION C403.2.4 VARIABLE FLOW CAPACITY: FOR FAN AND PUMP MOTORS 5 HP AND GREATER, INCLUDING MOTORS IN OR SERVING CUSTOM AND PACKAGED AIR HANDLERS SERVING VARIABLE AIR VOLUME SYSTEMS, CONSTANT VOLUME FANS, HEATING AND COOLING HYDRONIC PUMPING SYSTEMS, AND OTHER PUMP OR FAN MOTORS WHERE VARIABLE FLOWS ARE REQUIRED SHALL BE EQUIPPED
- 12. SYSTEMS ADHERE TO SECTION C403.3.2 HVAC EQUIPMENT PERFORMANCE REQUIREMENTS: EQUIPMENT SHALL MEET THE MINIMUM EFFICIENCY REQUIREMENTS OF TABLES C403.3.2(1) THROUGH C403.3.2(12) WHEN TESTED AND RATED IN ACCORDANCE WITH THE APPLICABLE TEST PROCEDURE.


WITH VARIABLE SPEED DRIVES.

- 13. SYSTEMS ADHERE TO C405.8 ELECTRIC MOTOR EFFICIENCY: A: ALL ELECTRIC MOTORS, FRACTIONAL OR OTHERWISE, SHALL MEET THE MINIMUM EFFICIENCY REQUIREMENTS OF TABLES C405.8(1) THOUGH C405.8(4) WHEN TESTED IN ACCORDANCE WITH DOE 10 CFR UNLESS OTHER EXCEPTIONS ARE QUALIFIED AND MET BY THIS SECTION. B: FRACTIONAL HP FAN MOTORS THAT ARE 1/12 HP OR GREATER AND LESS THAN 1 HP (BASED ON THE OUTPUT POWER) WHICH ARE NOT COVERED IN TABLES C405.8(3) AND C405.8(4) SHALL BE ELECTRONICALLY COMMUTATED MOTORS OR SHALL HAVE A MINIMUM MOTOR EFFICIENCY OF 70 PERCENT WHEN RATED IN ACCORDANCE WITH DOE 10 CFR 431.
- 14. PENETRATIONS OF DUCTS, PIPES, CONDUITS, ETC IN WALLS REQUIRING PROTECTED OPENINGS SHALL BE FIRE STOPPED, FIRE STOP MATERIAL, SHALL BE A UL/ULC-LISTED ASSEMBLY APPROPRIATE FOR FIRE OR SMOKE PENETRATIONS AS APPLICABLE AND AS APPROVED BY THE FIRE MARSHAL.
- 15. THE MECHANICAL CONTRACTOR SHALL PROVIDE FIRE RATED PENETRATIONS FOR PIPING TO COMMENSURATE WITH THE RATING OF THE WALL IN ALL PENETRATIONS OF FIRE WALLS, FIRE BARRIERS, FIRE PARTITIIONS, SMOKE BARRIERS AND SMOKE PARTITION IN ALL PIPING THAT PENETRATES A HORIZONTAL OR VERTICAL FIRE PARTITION, OR AS OTHERWISE SHOWN ON THE DRAWINGS.
- 16. ALL PIPE SHALL BE SUPPORTED FROM THE BUILDING STRUCTURE IN A NEAT AND WORKMANLIKE MANNER. THE USE OF WIRE OR METAL STRAPS TO SUPPORT PIPES WILL NOT BE PERMITTED. REFER TO SPECIFICATIONS FOR MINUMUM SPACING OF PIPE SUPPORTS.
- 17. ALL EQUIPMENT TO BE INSTALLED ON MIN 6" THICK CONCRETE HOUSEKEEPING PADS.
- 18. ALL EQUIPMENT, DUCTS PIPING, AND OTHER DEVICES AND MATERIALS INSTALLED OUTSIDE OF THE BUILDING OR OTHERWISE EXPOSED TO THE WEATHER SHALL BE COMPLETELY WEATHERPROOFED.
- 19. MECHANICAL EQUIPMENT, DUCTS AND PIPING ARE TO BE COORDINATED WITH STRUCTURAL JOISTS AND CROSS BRACING.
- 20. ALL EXPOSED PIPING IN OCCUPIED SPACES SUBJECT TO ARCHITECTURAL APPROVAL PRIOR TO INSTALLATION.
- 21. THE HVAC SYSTEMS SHALL BE TESTED AND BALANCED BY AN INDEPENDENT AGENCY, UNDER THE SUPERVISION OF A LICENSED PROFESSIONAL ENGINEER PRIOR TO COMMISSIONING. A SEALED TYPE WRITTEN REPORT SHALL BE SUBMITTED TO THE ARCHITECT/ENGINEER.
- 22. A BUILDING COMMISSIONING PROCESS AND FUNCTIONAL TESTING OF MECHANICAL SYSTEMS SHALL BE CARRIED OUT BY A CERTIFIED COMMISSIONING PROFESSIONAL IN ACCORDANCE WITH 2018 WSEC SECTION C408. THE MECHANICAL, ELECTRICAL, PLUMBING, AND CONTROL CONTRACTORS ARE REQUIRED TO PERFORM FUNCTIONAL PERFORMANCE TESTING OF ALL EQUIPMENT PRIOR TO TESTING BY THE COMMISSIONING AGENT. CONTRACTORS SHALL PROVIDE THE NECESSARY ASSISTANCE TO THE COMMISSIONING AGENT TO PERFORM COMMISSIONING DUTIES. THE CONTRACTOR SHALL BE RESPONSIBLE FOR TAKING CORRECTIVE ACTION IF

ANY DEFICIENCIES ARE FOUND DURING COMMISSIONING.

- 23. SYSTEMS ADHERE TO 2021 WSEC SECTION C408 SYSTEM COMMISSIONING: A. A CERTIFIED COMMISSIONING PROFESSIONAL (CCP) SHALL LEAD THE COMMISSIONING PROCESS. A CCP IS AN INDIVIDUAL WHO IS CERTIFIED BY AN ANSI/ISO/IEC 17024:2012 ACCREDITED ORGANIZATION TO LEAD, PLAN, COORDINATE, AND MANAGE COMMISSIONING TEAMS AND IMPLEMENT THE COMMISSIONING PROCESS.
- B. A CERTIFIED COMMISSIONING PROFESSIONAL SHALL PERFORM THE FOLLOWING: a. DEVELOP A COMMISSIONING PLAN. b. REVIEW BUILDING DOCUMENTATION AND CLOSE-OUT SUBMITTALS.
- c. PROVIDE A COMMISSIONING REPORT. d. LIST SPECIFIC EQUIPMENT, APPLIANCES AND SYSTEMS COMMISSIONED.
- C. FUNCTIONAL TESTING SHALL BE COMPLETED FOR THE FOLLOWING SYSTEMS AND THEIR ASSOCIATED CONTROL SYSTEMS: a. MECHANICAL SYSTEMS b. SERVICE WATER HEATING SYSTEMS
- c. CONTROLLED RECEPTACLE AND LIGHTING SYSTEMS d. EQUIPMENT APPLIANCE AND SYSTEMS
- e. ENERGY METERING f. REFRIGERATION SYSTEMS D. A COMMISSIONING REPORT SHALL BE DELIVERED TO THE BUILDING
- OWNER AND INCLUDE: a. RESULTS OF THE FUNCTIONAL PERFORMANCE TESTS b. LIST OF DEFICIENCIES AND CORRECTIVE MEASURES
- IMPLEMENTED OR PROPOSED. c. FUNCTIONAL PERFORMANCE TEST PROCEDURES.
- d. COMMISSIONING PLAN. e. TAB REPORT.
- 24. TESTING AND BALANCING: ALL HVAC SYSTEMS SHALL BE BALANCED BY A LICENSED CONTRACTOR IN ACCORDANCE WITH ACCEPTED ENGINEERING STANDARDS AND SPECIFICATIONS PRIOR TO COMMISSIONING.
- 25. OWNER TRAINING BY CONTRACTORS FOR EACH PIECE OF EQUIPMENT OR SYSTEM SHALL INCLUDE: SYSTEM/EQUIPMENT OVERVIEW (WHAT IT IS. WHAT IT DOES, AND WHICH OTHER SYSTEMS OR EQUIPMENT DOES IT INTERFACE WITH). REVIEW OF THE AVAILABLE O&M MATERIALS. REVIEW OF THE RECORD DRAWINGS ON THE SUBJECT SYSTEM/EQUIPMENT. HANDS-ON DEMONSTRATION OF ALL NORMAL MAINTENANCE PROCEDURES, NORMAL OPERATING MODES, AND ALL EMERGENCY SHUTDOWN AND START-UP PROCEDURES.
- 26. MECHANICAL DESIGN IS IN COMPLIANCE WITH WASHINGTON STATE ENERGY CODE FOR THE GENERAL PRESCRIPTIVE COMPLIANCE PATH. BUILDING SYTSTEMS FOR THIS PROJECT SERVE A DATA CENTER. PRESCRIPTIVE ENERGY CODE COMPLIANCE IS DEMONSTATED WITH MECHANICAL LOAD COEFFICIENT (MLC) CALCULATION SEE SHEET ON M.FT.012 PER C403.1.3 COMPLYING WITH SECTION 6 AND 8 OF ASHRAE STANDARD 90.4, AND ARE EXEMPT FROM SECTIONS C403.4 AND C403.5 PER EXCEPTION 2 TO C403.1. MINIMUM COMPLIANCE IS 0.14 FOR ZONE 4C, WHICH IS THE COMPLIANCE TARGET FOR THE MAXIMUM ANNUALIZED MLC. THIS PROJECT ATTAINS AN ANNUALIZED MLC OF 0.1354 WHICH USES LESS ENERGY AND THEREFORE COMPLIES.
- 27. NO ADDITIONAL C406 ENERGY EFFICIENCY CREDITS ARE REQUIRED FOR ALTERATIONS THAT DO NOT ADD MORE THAN 1,000 SQUARE FEET PER EXCEPTION 2 TO C401.3.3.

	UNIT IDENTI	FICATION			CAPACITY A	AND PERF	ORN
MARK	NUMBER	AREA/UNIT SERVED	UNIT CAPACITY (TONS)	EER	2018 WSCEC REQUIRED EER	IPLV	R
ACC-FT	1	CHILLED WATER	500.0	12.5	10.1	19.99	
ACC-FT	2	CHILLED WATER	500.0	12.5	10.1	19.99	
ACC-FT	3	CHILLED WATER	500.0	12.5	10.1	19.99	
ACC-FT	4	CHILLED WATER	500.0	12.5	10.1	19.99	
ACC-FT	5	CHILLED WATER	500.0	12.5	10.1	19.99	

PROVIDE SINGLE FORT ELLECTRICAL CONNECTION, AND 65 KA STORT CIRCOTT KATING.
 PROVIDE WITH BACNET MSTP CONNECTION, OPTIVIEW CONTROL PANEL AND DISPLAY, AND CONDENSER FAN MONITO PROVIDE WITH FLOW SWITCH.
 PROVIDE WITH NEOPRENE PADS AS REQUIRED FOR INSTALLATION BY CONTRACTOR, NOTE OFCI CHILLERS ARE FURN

									SUMP PUMF	P SCHEDU	LE		
UNI	FIDENTIFIC	ATION				PUMP				MINIMU	M VAULT DIN	IENSIONS	
MARK	NUMBER	LOCATION	TYPE	QUANTITY	FLOW (GPM)	HEAD (FT)	HP	SPEED (RPM)	DISCHARGE PIPE (IN)	WIDTH (IN)	LENGTH (IN)	HEIGHT (IN)	VOLTS
SP	1	SOUTH YARD	DUPLEX	1	100	32	2	1750	3	42"	42"	36"	460

	3							AIR	HANDLI	NG UNIT	CHILLEI	D WAT	ER COOL	ING COIL	SCHEDU	ILE
UNI	T IDENTIFIC	ATION			COIL						AI	R				
MARK	NUMBER	UNIT SERVED	TOTAL CAPACITY (MBH)	SENSIBLE CAPACITY (MBH)	NUMBER OF ROWS	FPI	FIN TYPE	TOTAL AIRFLOW (CFM)	EDB (F)	EWI (F)		_DB (F)	LWB (F)	FACE VELOCITY (FPM)	MAX APD (IN-WG)	FLUID TYPE
CW CW IOTES:	1 2	AHU-FT-1 AHU-FT-1	421.6 421.6	313.1 313.1	5	9 9	WAFFLE WAFFLE	10,000 10,000	81.4 81.4	66.5 66.5		52.3 52.3	52.0 52.0	359 359	0.38 0.38	CHW CHW
						A/	AIR HAI		JNIT CON	NPONEN	I SCHE	DULE		0014001		
MARK		NIT IDENTIFIC		AREA SERVED	AIRFLO MAX SUPPLY	UNIT	OPERATING WEIGHT	GENE 6 MA HEIGHT				SITION IMBER	POSITION NUMBER	COMPON POSITION NUMBER		
AHU-FT		L3			(CFM) S 20,000		(LBS) 14,627	(IN) 96	(IN) 120	(IN)		1 _ENUM	2 FILTERS	3 CHW COIL	ELECTRIC	
									IDLING U	NIT FAN	SCHED					
UNI		ATION		SYSTI	ΞM		F	AN WHEEL					IOTOR (EAC	CH)		
MARK	NUMBER	UNIT SERVED	MAX AIRFLOW (CFM)	TSP (IN-WG) (ESP IN-WG) CC			MAX IRFLOW (CFM)	FAN CLASS	FAN SPEED (RPM)	BHP	HP	SPEE (RPM			TO SYS
FWT	1							(- ,						<i>'</i>		- H
FWT OTES: FAN SHALL	2 HAVE INLET AI	AHU-FT-1 AHU-FT-1 RFLOW PROBE.	10,000 10,000	4.8 4.8) PER FAN) PER FAN	2 2	10,000 10,000		1,829 1,829	11.7 11.7	15	2,669			H 3 3
OTES: FAN SHALL	. HAVE INLET AI	AHU-FT-1 RFLOW PROBE.	10,000 10,000 ANS WIRED TO	4.8 A FACTORY INSTA	3.6 VFE	PER FAN	2 2	10,000 10,000 VE MANUAL M	III OTOR PROTE(1,829 1,829	11.7	_				3
OTES: FAN SHALL FAN ARRA	HAVE INLET AI	AHU-FT-1 RFLOW PROBE. S SHALL HAVE FA	10,000 10,000 ANS WIRED TO	4.8	3.6 VFE	PER FAN	2 2	10,000 10,000 VE MANUAL M	III OTOR PROTEC	1,829 1,829 CTION AND FU	11.7 Sing.	_				3
OTES: FAN SHALL FAN ARRA	. HAVE INLET AI	AHU-FT-1 RFLOW PROBE. S SHALL HAVE FA	10,000 10,000 ANS WIRED TO AIR HA TOTAL AIRFLOW	4.8 A FACTORY INSTA NDLING UN HEATING AIRFLOW	3.6 VFE	PER FAN	2 2 H FAN SHALL HA TING COII FACE VELOCITY	10,000 10,000 VE MANUAL M	III OTOR PROTE(1,829 1,829	11.7 Sing.	15 	2,669			3
OTES: FAN SHALL FAN ARRA		AHU-FT-1 RFLOW PROBE. S SHALL HAVE FA	10,000 10,000 ANS WIRED TO AIR HA	4.8 A FACTORY INSTA NDLING UN HEATING	3.6 VFE	PER FAN PANEL. EACH	2 2 H FAN SHALL HA TING COII FACE	10,000 10,000 VE MANUAL M	ULE	1,829 1,829 CTION AND FU	11.7 SING.	15 	2,669			3
OTES: FAN SHALL FAN ARRA UNIT	HAVE INLET AI	AHU-FT-1 RFLOW PROBE. S SHALL HAVE FA ATION UNIT SERVED	10,000 10,000 ANS WIRED TO ANS WIRED TO AIRFLOW (CFM)	4.8 A FACTORY INSTA NDLING UN HEATING AIRFLOW (CFM)	3.6 VFE ALLED CONTROL	PER FAN PANEL. EACH RIC HEA LDB (F)	2 2 H FAN SHALL HA TING COII FACE VELOCITY (FPM)	10,000 10,000 VE MANUAL M SCHED MAX APD (IN-WG)	III OTOR PROTEC ULE ELEMENT KW	1,829 1,829 CTION AND FU ELECT VOLTS	11.7 SING. TRICAL PHASE	15 	2,669			3
OTES: FAN SHALL FAN ARRA UNIT MARK HC HC	AVE INLET AI Y APPLICATIONS	AHU-FT-1 RFLOW PROBE. S SHALL HAVE FA ATION UNIT SERVED AHU-FT-1	10,000 10,000 ANS WIRED TO ANS WIRED TO ANS WIRED TO AIRFLOW (CFM) 10,000	4.8 A FACTORY INSTA NDLING UN HEATING AIRFLOW (CFM) 10,000	3.6 VFE	PER FAN PANEL. EACH RIC HEA LDB (F) 55.0	2 2 H FAN SHALL HA TING COII FACE VELOCITY (FPM) 498	10,000 10,000 VE MANUAL M - SCHED MAX APD (IN-WG) 0.01	III OTOR PROTEC ULE ELEMENT KW 10.0	1,829 1,829 CTION AND FU ELECT VOLTS 460	11.7 SING. TRICAL PHASE 3	15 	2,669			3
OTES: FAN SHALL FAN ARRA UNIT MARK HC HC	AVE INLET AI Y APPLICATIONS	AHU-FT-1 RFLOW PROBE. S SHALL HAVE FA ATION UNIT SERVED AHU-FT-1	10,000 10,000 ANS WIRED TO ANS WIRED TO ANS WIRED TO AIRFLOW (CFM) 10,000	4.8 A FACTORY INSTA NDLING UN HEATING AIRFLOW (CFM) 10,000	3.6 VFE	PER FAN PANEL. EACH RIC HEA LDB (F) 55.0 55.0	2 2 H FAN SHALL HA TING COII FACE VELOCITY (FPM) 498 498	10,000 10,000 VE MANUAL M - SCHED MAX APD (IN-WG) 0.01 0.01 0.01	III OTOR PROTEC ULE ELEMENT KW 10.0 10.0	1,829 1,829 1,829 CTION AND FU ELECT VOLTS 460 460	11.7 SING. RICAL PHASE 3 3 3	NOT	ES CT SYSTE		T 1.35	
OTES: FAN SHALL FAN ARRA UNIT MARK HC HC	AVE INLET AI Y APPLICATIONS	AHU-FT-1 RFLOW PROBE. S SHALL HAVE FA ATION UNIT SERVED AHU-FT-1	10,000 10,000 ANS WIRED TO ANS WIRED TO ANS WIRED TO AIRFLOW (CFM) 10,000	4.8 A FACTORY INSTA NDLING UN HEATING AIRFLOW (CFM) 10,000	3.6 VFE	PER FAN PANEL. EACH RIC HEA LDB (F) 55.0	2 2 H FAN SHALL HA TING COII FACE VELOCITY (FPM) 498 498	10,000 10,000 VE MANUAL M - SCHED MAX APD (IN-WG) 0.01	III OTOR PROTEC ULE ELEMENT KW 10.0 10.0	1,829 1,829 CTION AND FU ELECT VOLTS 460	11.7 SING. RICAL PHASE 3 3 3	NOT	ES CT SYSTE		T 1.35	

			MAX VE (FF	MAX FF (IN-WG	DESIGN	SEAL	MAX LEAK	SINGLE	DOUBLE M LIN	DOUBLE V LIN	G90 GAL STE	G90 PVC CC SHEET	16 GA CAR	ALUM	304 STAINL	316 STAINL	
		CONCEALED	1,000	0.10	2	А	6	Х			Х						
SUPPLY AIR	ALL	EXPOSED	1,000	0.10	2	А	6	Х			Х						
		MECHANICAL ROOM	1,200	0.10	6	А	6	X			X						
		CONCEALED	1,000	0.10	2	А	6	Х			X						
RETURN AND TRANSFER AIR	ALL	EXPOSED	1,000	0.10	2	А	6	X			Х						
		MECHANICAL ROOM	1,200	0.10	6	А	6	X			X						
		CONCEALED	1,000	0.10	2	А	6	X			Х						
GENERAL	ALL	EXPOSED	1,000	0.10	2	А	6	X			Х						
EXHAUST	ALL	LOUVER CAN	1,200	0.10	6	А	6	X			X						
		MECHANICAL ROOM	1,200	0.10	6	А	6	X			X						
OUTSIDE AIR	ALL	LOUVER CAN	1,200	0.10	6	Α	6	Х			X						
	ALL	MECHANICAL ROOM	1,200	0.10	6	А	6	X			X						

1. DUCT INSULATION THICKNESS BASED ON 2021 WSEC

		CHWP-FT CHWP-FT CHWP-FT CHWP-FT CHWP-FT CHWP-FT CHWP-FT CHWP-FT CHWP-FT CHWP-FT	NUMBER SY 1 SECONDA 2 SECONDA 3 SECONDA 4 SECONDA 5 PRIMARY 6 PRIMARY 7 PRIMARY 8 PRIMARY 9 PRIMARY 10 PRIMARY CH	YSTEM SERVED ARY CHILLED WATER ARY CHILLED WATER ARY CHILLED WATER ARY CHILLED WATER CHILLED WATER - CH CHILLED WATER - CH	LOOP N+ LOOP N+ LOOP N+ LOOP N+ ILLER N+ IILLER N+ ICLOP N+	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	END SUCTION END SUCTION END SUCTION END SUCTION IN-LINE IN-LINE IN-LINE IN-LINE IN-LINE IN-LINE		CLOSE CLOSE CLOSE CLOSE CLOSE SPLIT SPLIT SPLIT SPLIT SPLIT SPLIT	CONTROL FLU TY VFD WA VFD WA VFD WA VFD WA VFD WA VFD WA VFD WA VFD WA VFD WA	UID PE FLUID TEMP (F) TER 60	PERFORMANCI FLOW (GPM) 1,490.0 1,490.0 1,490.0 1,490.0 1,050.0 1,050.0 1,050.0 1,050.0 1,050.0 1,050.0 1,050.0	E PUMP HEAD EFF (FT) 151 151 151 151 151 151 45 45 45 45 45 45 45 45 45 45	FICIENCY F (%) 80 80 80 80	LOW (GPM) 34 34 34 34 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9	BHP 68.2 68.2 68.2 68.2 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0	HP SP (R 75 1, 75 1, 75 1, 75 1, 75 1, 75 1, 75 1, 20 1, 20 1, 20 1, 20 1, 20 1, 20 1, 20 1, 20 1,	EED PM) 760 460 760 460 760 460 760 460 760 460 760 460 760 460 760 460 760 460 760 460	TS PHAS	E WEIGHT (LBS.) 1520 1520 1520 1520 796 796 796 796 796 796 796 796 796	MANUF	TACO TACO TACO TACO TACO TACO TACO TACO	FI 6013D FI 6013D FI 6013D FI 6013D KV 6011D KV 6011D KV 6011D KV 6011D KV 6011D KV 6011D KV 6011D KV 6011D	1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 2
		CHWP-FT CHWP-FT FP-FT NOTES: 1. PROVIDE WITH INERTIA B/ 2. PROVIDE WITH TEFC MOT	12 PRIMARY CH 13 PRIMARY CH 1 FLUID ASE. OR.	IILLED WATER - FLUID IILLED WATER - FLUID	COOLER PER FLUID	COOLER COOLER A	IN-LINE IN-LINE SKID		SPLIT SPLIT CLOSE	VFD WA VFD WA VFD WA	TER 60 TER 60	670.0 670.0	45 45	80 83 83	3.4	8.7	<u>10</u> 1, 10 1, 10 1,	760 460 760 460	3	905	1	TACO TACO	KS 6011D KS 6011D	D 2 D 2
	18 CEC JIRED IPLV REQUIRED T		UID FLUID I	EWT LWT	MAX WPD FOL		COMPRESSOR NO OF NO C		F NO OF	AIRFLOW PER FAN	HP PER FAN	/BIENT MIN / GN TEMP T	ΓEMP \	VOLTS P			OPERAT P WEIGH	ING IT HEIGHT	DIMENSIO	LENGTH	MANUFAC	CTURER	MODEL NUME	BER NOTES
	D.1 19.99 14 R- D.1 19.99 14 R-	513A 353 WA 513A 353 WA 513A 353 WA 513A 353 WA 513A 353 WA	TER 1,002 ITER 1,002 ITER 1,002 ITER 1,002	72.0 60.0 72.0 60.0 72.0 60.0 72.0 60.0	10.1 0.0 10.1 0.0 10.1 0.0	0001 SCREW 0001 SCREW 0001 SCREW 0001 SCREW	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	VSD VSD VSD	26 26 26	12,866 12,866 12,866 12,866 12,866	4 4 4 4 4 4	95 95 95 95 95	4 4 4 4 4 4 4 4 4	460 460 460	3 87 3 87 3 87 3 87	72.0 1,20 72.0 1,20 72.0 1,20 72.0 1,20	0 31,665 0 31,665 0 31,665 0 31,665	94 94 94 94 94 94	90 90 90 90 90	600 600 600 600	YOF YOF YOF	RK Y RK Y RK Y	'VAA0523JPK46BH 'VAA0523JPK46BH 'VAA0523JPK46BH	HVTXX 1,2,3,4,5,6 HVTXX 1,2,3,4,5,6 HVTXX 1,2,3,4,5,6 HVTXX 1,2,3,4,5,6
		S.																						
	SIONS ELECTRICAL					IAM						NT AIR		i	JID COOLE	PUMP		HEATERS		UNIT SIZE				
	(IN) 36" 460 3 MODEL 2613-2" DUPLEX BCB REMOVAL SYSTE WITH 20 FT. CORD LENGHT, MODEL 8162 NEM	2 WEIL 2 WEIL EM WITH DISCHARGE FLOOR E IA 4 CONTROL PANEL, UL LISTI	LBOWS, BRONZE SLIDING B ED, DOUBLE DOOR DEAD FR	1 RACKET AND BCB RONT, LOCKABLE		FC-FT-1 EV/ FC-FT-2 EV/ FC-FT-3 EV/ FC-FT-3 EV/ FC-FT-5 EV/ FC-FT-6 EV/ NOTES:	JRER NUMBEI APCO ESW4 12-4401 APCO ESW4 12-4401	(TON) 18-SF 536 18-SF 536	NS) (GPN 36 670 36 670 36 670 36 670 36 670 36 670 36 670 36 670	M) (°F) (0 72 0 0 72 0 0 72 0 0 72 0 0 72 0 0 72 0 0 72 0 0 72 0 0 72 0	(°F) (CFM) 60 155,600 60 155,600 60 155,600 60 155,600 60 155,600 60 155,600 60 155,600 60 155,600 60 155,600	(°F) QT 53 1 53 1 53 1 53 1 53 1 53 1 53 1 53 1 53 1 53 1 53 1 53 1	50 50 50 50 50 50 50	460/3/60 460/3/60 460/3/60 460/3/60 460/3/60 460/3/60	2 2 2 2 2 2 2 2 2	IP (GPM) 5 506 5 506 5 506 5 506 5 506 5 506 5 506 5 506 5 506 5 506	V/2/112 460/3/60 460/3/60 460/3/60 460/3/60 460/3/60	QTY KW 2 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9	242 IN 242 IN 242 IN 242 IN 242 IN 242 IN	131 IN 131 IN 131 IN 131 IN 131 IN 131 IN	Image: NGTH (PS) 216 IN. 2.7 216 IN. 2.7	I) (GPM) 4.04 4.04 4.04 4.04 4.04	(LBS) 44,310 44,310 44,310 44,310 44,310	1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4
						2. MANUFACTURE 3. INSTALLATION	R SHALL FURNISH THE OF CONDUIT & WIRING	FOLLOWING ACC	CESSORIES: BA	SIN IMMERSION HEATI	ER COMPONENTS & (ROL ENCOSURE SHAI	CONTROLS; BASIN WA	ATER LEVEL CON THE EC: (2) BASIN	MPONENTS & CO N IMMERSION HE	ONTROLS; VIBRA EATERS, (2) PUMI	TION CUT-OUT S	WITCH; VFD'S; MAK	KE-UP WATER SOL	LENOID VALVES					
				······												AIR AND	DIRT SEP	ARATOR S	CHEDULE					
	TYMAX APDFLOIDFLOW(IN-WG)TYPEFLOW0.38CHW84.0	EWT LWT (F) (F) 45 55	(FPS) 4.2 0.000	NG MAX WPD OR (FT) 1 15.7	WEIGHT NOTE (LBS.) 757.0						MARK N AS-FT	IUMBER SYS	STEM SERVE	D		(IN)	DIAMETER H (IN) 28	(IN) (L	.BS) (GF	PM) (FT)	IVIANUE			
				yuuu	ununun																			
	ON ERPOSITION NUMBER 4POSITION NUMBER 5DILELECTRIC HEATFANS	NORTEK	OTES		IARK NUMBER	SYSTEM SERV		CONS	STRUCTION	TANK VOLUME (GAL)	ACCEPTANC VOLUME (GAL)	E DIAMETER (IN)	HEIGHT V	VEIGHT (LBS)	STIMATED SYSTEM VOLUME (GAL)	FLUID TYPE	PERATING TEI	MPERATURE MAX TEMP (F)	MIN PRESS (PSIG)	S MAX PRES (PSIG)	S			
	ND DUCTWORK TO BE ATTACHED PER ASCE	AS REFERENCED BY IBC.		E NOTE	ET-FT 2 ES:	CHILLED WATE							68				40							
				~~~~~			DESIGN (		DN			MATERIA					HEA	_	NSULATION	FACTOF	RY JACKET	FIE	LD JACKET	
	RIVE FEI SYSTEM VOL	TS PHASE FLA F	/ALL		SYSTEM		) 2TION 0') 3 TEMP PRESSUR	s) SSURE		LOCATION	COPPER TYPE K COPPER TYPE L	BS ERW SCH 40 33 BS ERW STD TYPE 316 STAINL	STEEL TYPE 304 STEEL HDPF	PEX.A	BRAZED	$\sim$ $\mid$ $\square$ $\mid$ $\downarrow$	GROO GROO	MIN WATTS PER LINEAR FT AL FIBER, PREFORME	EXIBLE ELASTOMERI THICKNESS (IN)	, SS	FSK VINYL	- PIT	PVC - TO 10 FEET AFF ALUMINUM	STAINLESS STEEL
	RECT 1.35 30 46	0 3 38	1,2			2 AND LESS 4	4.0 44-56 12	25 200 1	125 2.5 ME	XPOSED IECHANICAL ROOM	X X				x x x x				X 1	X X X X		X X X	X X X	1 1 1 1 12
						2-1/2 - 8 8	4.0 44-56 1:	25 200 1	UN CC EX 125 2.5 MI	NDERGROUND ONCEALED XPOSED ECHANICAL ROOM		X X				X X X X			X         1           X         1           X         1           X         1	X X X		X	X	X 1 1 1 1 1
				****	FLUID COOLER BASIN SWEEPER	0 10 8	4.0 44.56 1	25 200 1		NDERGROUND ONCEALED XPOSED		X X X X				~ ~ ~		8	X         1           X         1           X         1           X         1			X	X	
Image: Note:										UTDOOR NDERGROUND ONCEALED XPOSED		X				X X X X X X	1	10	X         1           X         1           X         1           X         1           X         1	X X X X X		X X X	X X X	1,2           X         1           1         1           1         1
	mannannan	mmmmmm	mmmmmm		NOTES: 1. PIPE INSULATION TH			25 200 1	OL	UTDOOR		X				~ ~	2	5	X 1	X		X		
VINCE       VINCE       VINCE       FACTORY JACKET       FIELD JACKET       NOTES         1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	LICATION SCHEDULE			2				D BY THE BAS.	<u> </u>															
6       5       1       1       2       7       1       1       2       7       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	STEEL STEEL SIEEL	(IN) FT ³ ) ANKET				RY JACKET			NOTES	F						BUI	FFER TANK	SCHEDUL	E					
b         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c	STAINLESS STAINLESS FABRIC FIBERGLA FLEXIBLE ELASTOME	THICKNESS DENSITY (LB	FIBERGLASS E FLEXIBLE ELASTOME FIRE RATED V	FIRE RATED E INSULATIC MINIMUM R-V. THICKNESS	DENSITY (LB ASJ ASJ-SS	FSK VINYL FABRIC	PVC ALUMINUI	STAINLESS S			MARK NUMB	ER SYSTEM	SERVED N	(GAL)	YES	(IN)	(IN) ARRAI 90 14" F		FLUID T	EMP (F) (LBS 60.0 TBE		EMLINE	V500CWB14-F-S	-SL-05-1 1, 2
Image: Second			X	R-3.3 1	2.25	X X			1 1 1 1	1.	BT-FT 2 BT-FT 3 DTES: PROVIDE TANK COA	CHILLED CHILLED	WATER	500	YES	42	90 14" F	LANGED	WATER	60.0 TBE	) C	EMLINE	V500CWB14-F-S	-SL-05-I 1, 2
			X	R-8 2	2.25	X X X X X X X X X X X X X X X X X X X			1 1 1 1	L														

 R-16
 5
 2.25

 R-8
 2
 2.25

R-16 5 2.25

R-8 2 2.25

X

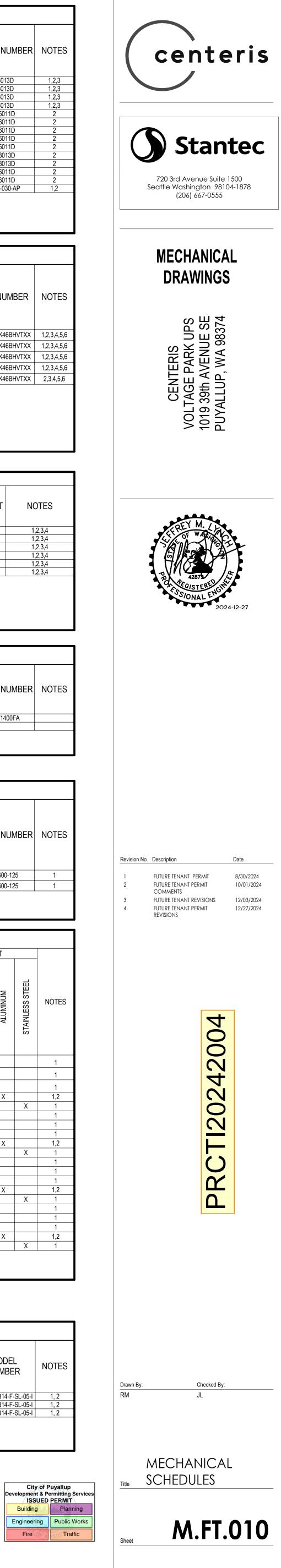
X

X

X

Х

X

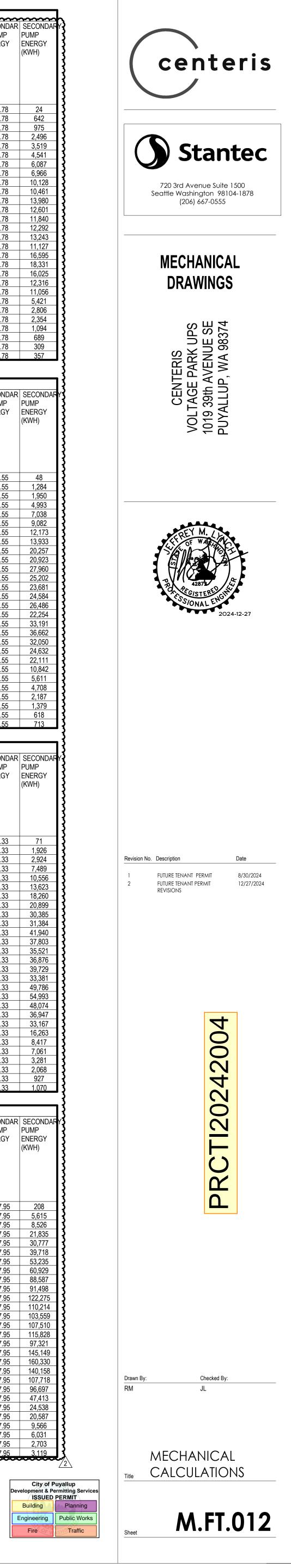

X

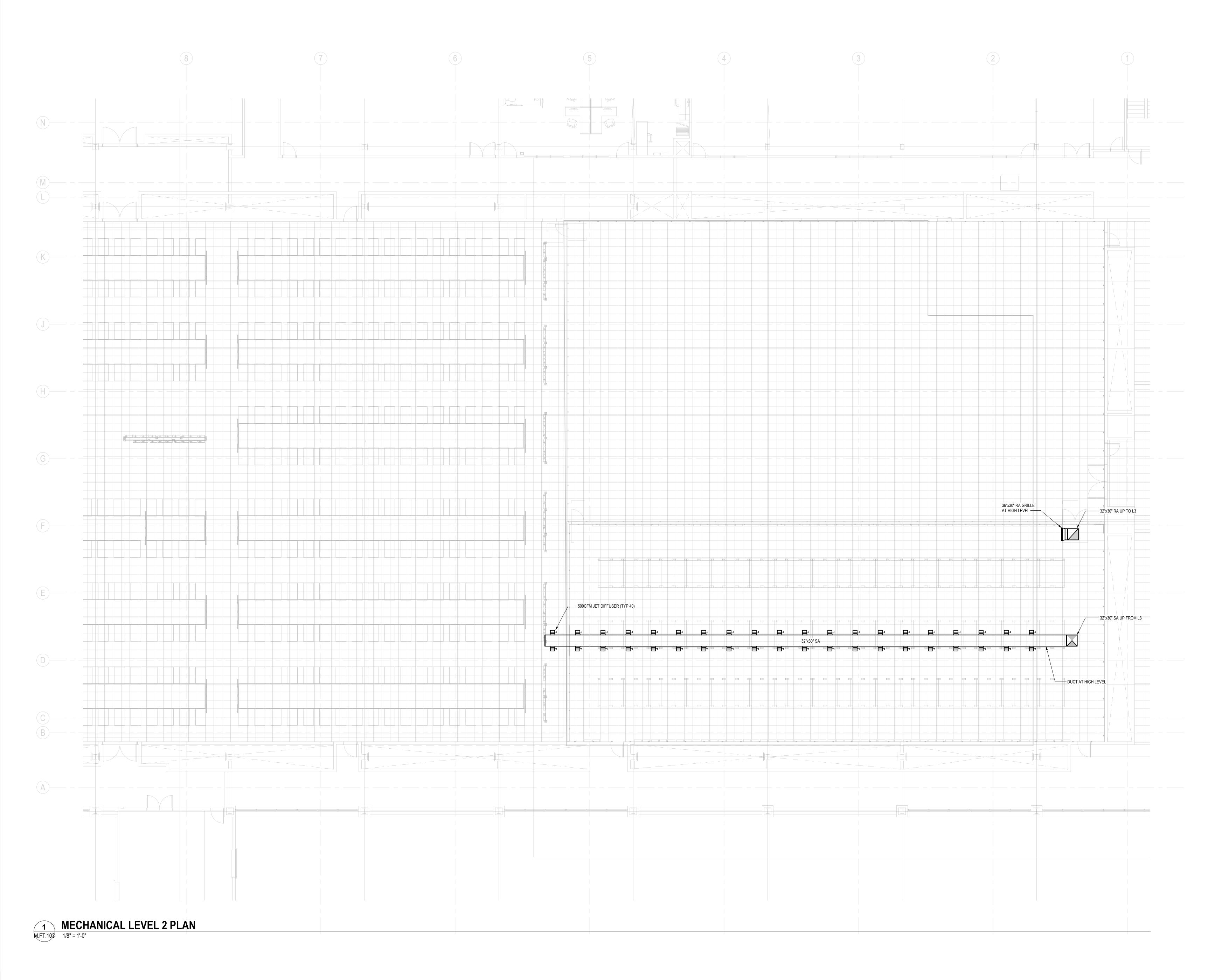
X

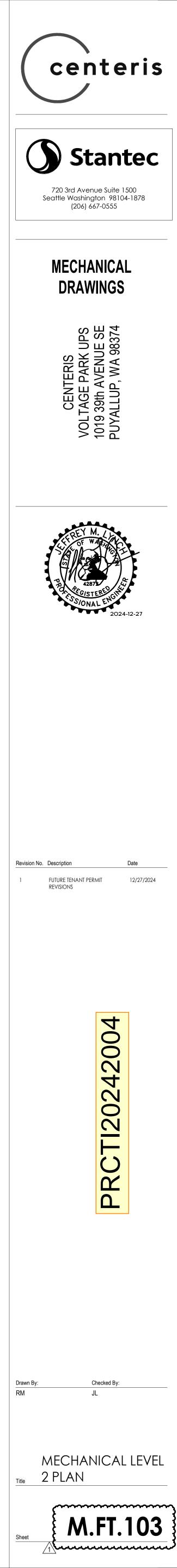
| 1

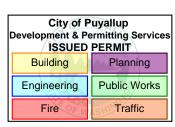
1

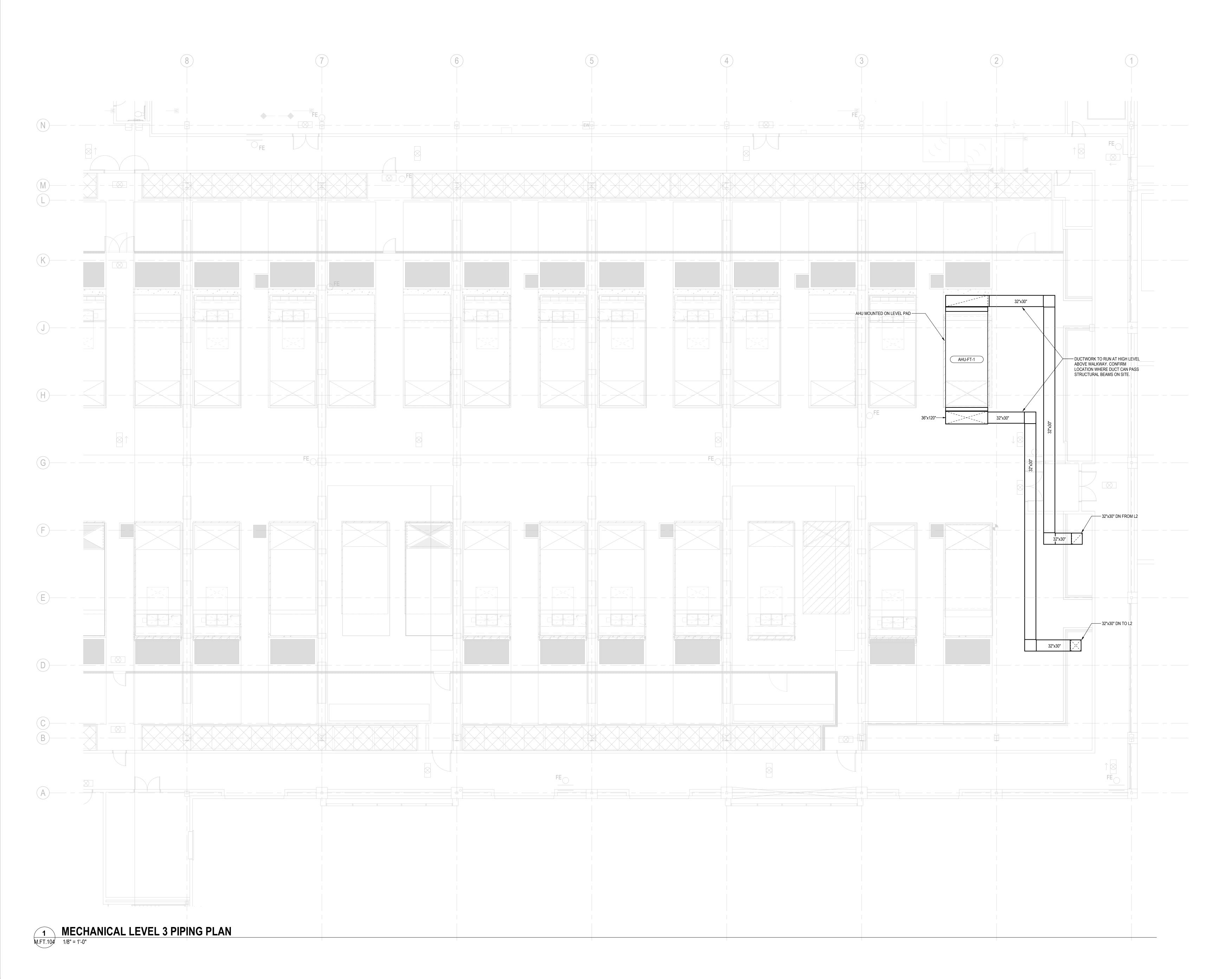
| 1

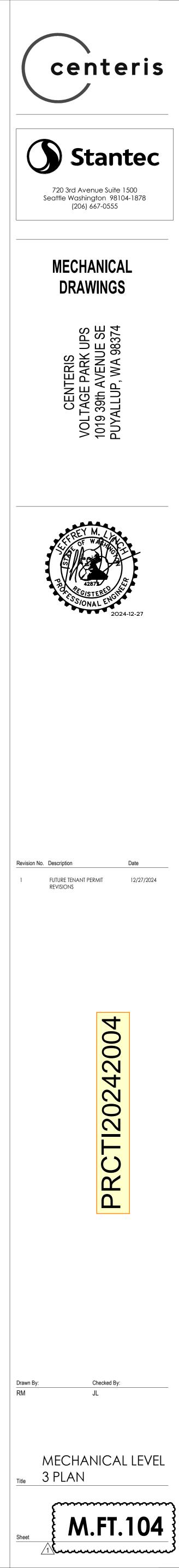


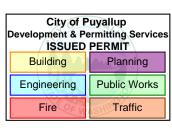


MECHANICAL	ENERGY	AT 25% l'	TE LOAD	CALCUL	ATION																																													~~~~~				
AMBIENT AMB	IENT AS			CHILLER	CHILLER	CHILLER	NUMBER	FLUID	FLUID	FLUID	FU	ID FI	םוח	FLUID	FLUID	FLUI	FLUIC	) NU		םוו ו	FLUID	FLUID	FLU				FLUID	FLUID	FLU	IID FI	םוו ו	FLUID	FLUID	TOTAL AIR		NUMBER	CHILLER	CHILLER	CHILLER	CHILLER	CHILLER	CHILLER	CHILLER	CHILL		FR SEC			SECONDAR	SECONDAR	SECONDAR	SECONDAR	SECONDAR	SECONDARY
TEMPERAT MEA	N TM	v lo		CAPACITY	ENERGY	ENERGY		COOLER		R COOLE		DLER C	DOLER	COOLER	COOLEF	R COOL	ER COOL				COOLER	R COOLE		DLER C	COOLER							COOLER	COOLER	HANDLER																				
				(TONS)	(KW)					P) FAN				FAN																		CHILLED		FAN	FAN	CHILLER						PUMP	PUMP	PUMP	RY OF SECON GY YPUMF				BRAKE					
(°F) T DE				(10103)	(KVV)	USAGE (KWH)	OPERATIN G FLUID										(HP) PUMF WATE		MPS N	'UMP 10tor	PUMP DRIVE	VARIAE		TAL (KW) T		CHILLED WATER	CHILLEI		PUN			WATER	WATER	ENERGY		PRIMARY			PUMP BRAKE	PUMP MOTOR	PUMP DRIVE	VARIABLE	E ENERGY	ENER						EFFICIENC			KW) (	
	)(Г)		, Chillers				COOLERS							(KW)											KWH)	PRIMARY								(KW)	(KWH)	PUMPS	PUMP CAPACITY (%)		POWER				(KW)			IPS (%)	(6				Y (%)	SPEED ( DRIVE		
			JUILLEKS				COOLERS			EFFICI				(NVV)			FLOW							()			PRIMAR					PRIMARI				PUMPS	(%)	(GPM)	POWER	EFFICIEN Y (%)			(NVV)		8			0	(ПР)	Y (%)				] }
								(%)		Y (%)			RIVE				(GPM	) [00	OLER Y	(%)	Y (%)	DRIVE				PUMP	PUMPS	EFFICI		FICIENC SI %) Di EI	PEED	PRIMARY PUMPS (KW)	PUMPS (KWH)	X		₹			(BHP)	Y (%)	Y (%)	DRIVE			K						E	EFFICIENC		7
																						EFFICIE	ENC			FLOW	(HP)	Y (%)	Y (%	%) D		(KVV)	(KVVH)	ξ		\$						EFFICIEN			ζ						(   )	r (%)		1
												ľ	(%)									Y (%)				(GPM)	(HP)			E	FFICIEN			Ω		3						Y (%)			Ω									
																																		۶ ۲		₹									R									
74 8	32.2	1	1	440	312.2	312																												8.337	8.337	1.0	100%	1,050	17	0.855	0.75	0.98	20.17	20	0 1	7	70%	1043	23.39	0.902	0.83	0.98	23.78	24
72 8	39.6	27	1	440	365.1	9,858																												8.337	225.099	1.0	100%	1,050	17	0.855	0.75	0.98	20.17	54	5 👌 1	7	70%	1043	23.39	0.902	0.83	0.98	23.78	642
	34.6	41	1	440	322.5	13,223																												8.337	341.817	1.0	100%	1,050	17	0.855	0.75	0.98	20.17	82	27 🥻 1		70%	1043	23.39	0.902	0.83	0.98	23.78	975
		105	1	440	312.2	32,781																												8.337	875.385	1.0	100%	1,050	17	0.855	0.75	0.98	20.17	2,1	18 🖌 1		70%	1043	23.39	0.902	0.83	0.98	23.78	2,496
		148	1	440	294	43,512																												8.337	1233.876	1.0	100%	1,050	17	0.855	0.75	0.98	20.17	2,9	86 🏅 1	7	70%	1043	23.39	0.902	0.83	0.98	23.78	3,519
		191	1	440	275	52,525																												8.337	1592.367	1.0	100%	1,050	17	0.855	0.75	0.98	20.17	3,8	53 🚺 1	7	70%	1043	23.39	0.902	0.83	0.98	23.78	4,541 🤰
62	71.9	256	1	440	266.5	68,224																												8.337	2134.272	1.0	100%	1,050	17	0.855	0.75	0.98	20.17	5,1	64 👌 1		70%	1043	23.39	0.902	0.83	0.98	23.78	6,087
60 6	67.8	293	1	440	251.3	73,631																												8.337	2442.741	1.0	100%	1,050	17	0.855	0.75	0.98	20.17	5,9	11 🧯 1	7	70%	1043	23.39	0.902	0.83	0.98	23.78	6,966 3
58 6	65.4	426	1	440	246.2	104,881																												8.337	3551.562	1.0	100%	1,050	17	0.855	0.75	0.98	20.17	8,5	93 👂 1	7	70%	1043	23.39	0.902	0.83	0.98	23.78	10,128
	62.4	440	1	440	239.4	105,336	6																											8.337	3668.28	1.0	100%	1,050	17	0.855	0.75	0.98	20.17	8,8	76 👌 1	7	70%	1043	23.39	0.902	0.83	0.98	23.78	10,461
54 6	60.6	588	1	440	237.1	139,415	5																											8.337	4902.156	1.0	100%	1,050	17	0.855	0.75	0.98	20.17	11,8	361 🙎 1	7	70%	1043	23.39	0.902	0.83	0.98	23.78	13,980
52	57.4	530					2	100%	50	0.94	45	0.97	0.97	83.87	44,44	9	5	05	2	0.875	0.97	0.97	7 1	18.12	9,601	670	8.7	0.8	34	0.83	0.98	18.99	20,130	8.337	4418.61	₹									<u>} 1</u>	7	70%	1043	23.39	0.902	0.83	0.98	23.78	12,601
50		498					2	100%		0.94	45	0.97	0.97	83.87	41,76	6	5	05	2	0.875	0.97	0.97	7 1	18.12	9,021	670	8.7	0.8	34	0.83	0.98	18.99	18,914	8.337	4151.826	5									<u> </u>	7	70%	1043	23.39	0.902	0.83	0.98	23.78	11,840
	2.0	517					2	100%		0.94		0.97	0.97	83.87	43,35	9	5	05	2	0.875	0.97	0.97	7   1	18.12	9,366	670	8.7	0.8	34	0.83	0.98	18.99	19,636	8.337	4310.229	₹									<u> </u>		70%	1043	23.39	0.902	0.83	0.98	23.78	12,292
		557					2	100%		0.94	45	0.97	0.97	83.87	46,71	4	5	05	2	0.875	0.97	0.97	7 1	18.12	10,090	670	8.7	0.8	34	0.83	0.98	18.99	21,155	8.337	4643.709	\$									<u> </u>		70%	1043	23.39	0.902	0.83	0.98	23.78	13,243
		468					2	100%		0.94	45	0.97	0.97	83.87	39,25	0	5	05	2	0.875	0.97	0.97	7   1	18.12	8,478	670	8.7	0.8	34	0.83	0.98	18.99	17,775	8.337	3901.716	}									<b>§</b> 1	7	70%	1043	23.39	0.902	0.83	0.98	23.78	11,127
		698					2	100%		0.94	45	0.97	0.97	83.87	58,53	9	5	05	2	0.875	0.97	0.97	7 1	18.12	12,644	670	8.7	0.8	34	0.83	0.98	18.99	26,510	8.337	5819.226	₹									<u>}</u> 1	- '	70%	1043	23.39	0.902	0.83	0.98	23.78	16,595
		771					2	100%	50	0.94	45	0.97	0.97	83.87	64,66	1	5	05	2	0.875	0.97	0.97	7   1	18.12	13,967	670	8.7	0.8	34	0.83	0.98	18.99	29,283	8.337	6427.827	\$									<u> </u>		70%	1043	23.39	0.902	0.83	0.98	23.78	18,331
38 4		674			_		2	100%	50	0.94	45	0.97	0.97	83.87	56,52	6	5	05	2	0.875	0.97	0.97	7   1	18.12	12,210	670	8.7	0.8	34	0.83	0.98	18.99	25,599	8.337	5619.138	₹									<b> 1</b>	7	70%	1043	23.39	0.902	0.83	0.98	23.78	16,025
36	39.3	518					2	100%	50	0.94	45	0.97	0.97	83.87	43,44	3	5	05	2	0.875	0.97	0.97	7 1	18.12	9,384	670	8.7	0.8	34	0.83	0.98	18.99	19,674	8.337	4318.566	\$									<u> </u>	7	70%	1043	23.39	0.902	0.83	0.98	23.78	12,316
		465			_		2	100%	50	0.94	45	0.97	0.97	83.87	38,99	8	5	05	2	0.875	0.97	0.97	7   1	18.12	8,424	670	8.7	0.8	34	0.83	0.98	18.99	17,661	8.337	3876.705	}									<u> </u>	7	70%	1043	23.39	0.902	0.83	0.98	23.78	11,056
		228					2	100%	50	0.94	45	0.97	0.97	83.87	19,12	2	5	05	2	0.875	0.97	0.97	7 1	18.12	4,130	670	8.7	0.8	34	0.83	0.98	18.99	8,660	8.337	1900.836	₹									<u>} 1</u>		70%	1043	23.39	0.902	0.83	0.98	23.78	5,421
		118					2	100%	50	0.94	45	0.97	0.97	83.87	9,890		5	05	2	0.875	0.97	0.97	7   1	18.12	2,138	670	8.7	0.8	34	0.83	0.98	18.99	4,482	8.337	983.766	1									<u> </u>		70%	1043	23.39	0.902	0.83	0.98	23.78	2,806
	31.6	99					2	100%	50	0.94	45	0.97	0.97	83.87	8,303		5	05	2	0.875	0.97	0.97	7   1	18.12	1,793	670	8.7	0.8	34	0.83	0.98	18.99	3,760	8.337	825.363	₹									<b>}</b> 1		70%	1043	23.39	0.902	0.83	0.98	23.78	2,354
	29.4	46					2	100%		0.94	45	0.97	0.97	83.87	3,858		5		2	0.875	0.97	0.97	7   1	18.12	833	670	8.7	0.8	34	0.83	0.98	18.99	1,747	8.337	383.502	\$									1		70%	1043	23.39	0.902	0.83	0.98	23.78	1,094
	27.6	29					2	100%		0.94	45	0.97	0.97	83.87	2,432	2		05	2	0.875	0.97	0.97	7   1	18.12	525	670	8.7	0.8	34	0.83	0.98	18.99	1,101	8.337	241.773	}								_	<b>§</b> 1		70%	1043	23.39	0.902	0.83	0.98	23.78	689
22	25.9	13					2	100%		0.94		0.97	0.97	83.87	1,090	) (		05	2	0.875	0.97	0.97	7   1	18.12	235	670	8.7	0.8		0.83	0.98	18.99	494	8.337	108.381	₹									<b>)</b> 1		70%	1043	23.39	0.902	0.83	0.98	23.78	309
20	24.2	15					2	100%	50	0.94	15	0.97	0.97	83.87	1,258	3	5	05	2	0.875	0.97	0.97	7   1	18.12	272	670	8.7	0.8	34	0.83	0.98	18.99	570	8.337	125.055	<u> </u>									<b>(</b> 1	7	70%	1043	23.39	0.902	0.83	0.98	23.78	357 3
																																				3									5									

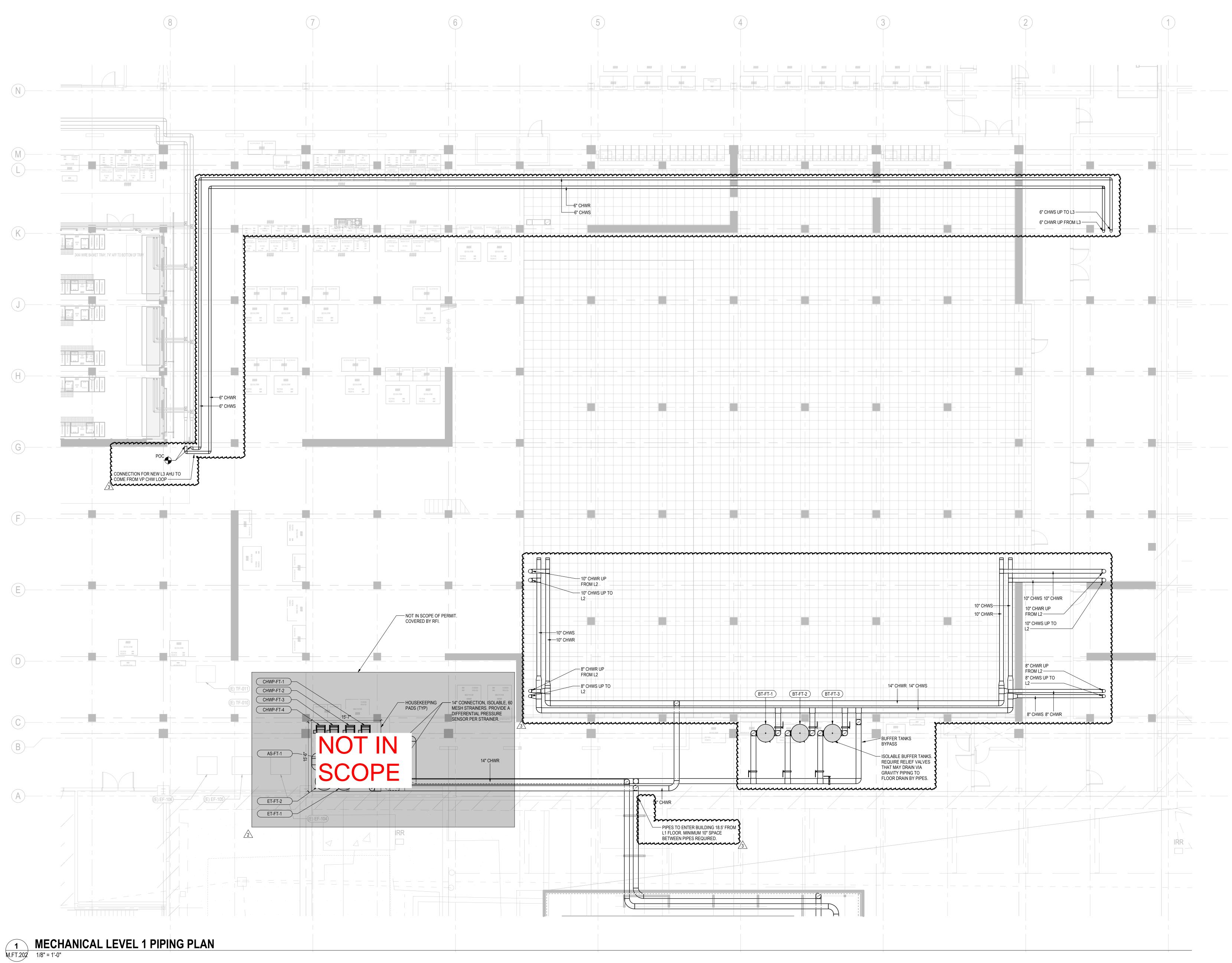

MECHAN	AL ENER	GY AT 50°	% ITE LOAD	CALCULA	TION																						5		\$								3							
AMBIENT	AMBIENT	ASHRAE	NUMBER	CHILLER	CHILLER C	HILLER N	UMBER FLUID	FLUID	FLUID F	FLUID FL	UID FLUI	D FLU	JID FLUID	FLUID	NUMBER	FLUID	FLUID	FLUID	FLUID	FLUID	FLUID	FLUID	FLUID	FLUID	FLUID F	LUID FLUID	TOTAL A	IR TOTAL AIR	NUMBER	CHILLER	CHILLER (	CHILLER C	HILLER CI	HILLER C	HILLER CH	HILLER CHIL	LLER NU	JMBER SEC	CONDAR SECON	IDAR SECON	IDAR SECONI	DARSECONDA	RSECONDAR	SECONDAR SECONDAR
TEMPERAT	MEAN	TMY	OF		ENERGY EN	NERGY 0	F COOLER		COOLER C	COOLER CO	DOLER COO	LER COO	DLER COOLI		OF FLUID	COOLER	COOLER	COOLER	COOLER	COOLER	COOLER	COOLER	COOLER	COOLER	COOLER C	OOLER COOLE	R CHANDLEI	R HANDLER	OF	PRIMARY	PRIMARY I	PRIMARY P	RIMARY PI	RIMARY PI	RIMARY PR	RIMARY PRIM	MARY 🖞 OF	=  YP	UMP Y PUM	P Y PUMF	P Y PUMP	Y PUMP	Y PUMP	
URE WB			OPERATIN	(TONS)	(KW) US	SAGE O	PERATIN OPERATIN	FAN (HP)	FAN F	AN DRIVE	N FAN	FAN	(KWH) PUMP	(HP) PUMP	COOLER	PUMP	PUMP	PUMP	PUMP	PUMP	CHILLED	CHILLED	PRIMARY	PRIMARY	PRIMARY C	HILLED CHILLEI	D SFAN	FAN	CHILLER	PUMP	PUMP I	PUMP P	UMP PU		JMP PU	JMP PUMI NERGY ENEF	IP SE	ECONDARCA	PACITY FLOW (GPM)	BRAKE	MOTOR	DRIVE	VARIABLE	
(°F)	T DB (°F)		G	( /		WH) G	FLUID G		MOTOR E		ARIABLE ENER	RGY		WATER	PUMPS	MOTOR	PUMP DRIVE	VARIABLE	TOTAL (KW	/) TOTAL	WATER	WATER	PUMP	PUMP	PUMP W	ATER WATER		ENERGY	PRIMARY	CAPACITY	PUMP   FLOW   (GPM)	PUMP P BRAKE M	UMP PU IOTOR DI	PUMP PUMP V	JMP PU Ariable en	NERGY ENER	RGY YF	PUMPS (%)	(GPM)	BRAKE	R EFFICIE		SPEED	(KW) (KWH)
<b>、</b> /			CHILLERS			í lo	OOLERS CAPACITY		EFFICIENC Y		PEED (KW)			FLOW	PER FLUID	EFFICIENC	EFFICIENC	SPEED	- (	(KWH)	PRIMARY	PRIMARY	MOTOR	DRIVE	VARIABLE P		RY (KW)	(KWH)	PUMPS	(%)	(GPM)	POWER E	FFICIENC EF		PEED (K)	W) (KWF		(,		(HP)	Y (%)	Y (%)	DRIVE	
							(%)		Y (%)		RIVE			(GPM)	-		Y (%)	DRIVE		()	PUMP	PUMPS	EFFICIENC	EFFICIENC	SPEED P	UMPS PUMPS	Ω Ω Π	()	5			(BHP)			RIVE		۰ <i>۲</i>			(,			EFFICIENC	
											FICIENC			(,				EFFICIENC	;		FLOW	POWER		Y (%)	DRIVE (H	(W) (KWH)	8		₹		ľ	()	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		FICIENC		K						Y (%)	
										Y (	(%)							Y (%)			(GPM)	(HP)	. (,,,,		EFFICIEN		5		5					Y	(%)		ł							
																					(,	()					Ş		3						(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		2							
				440	040.0	00.4																								4000/	4.050	47	0.055	0.75		10.04	<u> </u>		700/ 404				0.00	
74	82.2	1	2	440		624																					8.337		2.0	100%	1,050	17	0.855	0.75	0.98		40		70% 104				0.98	47.55 48
72	89.6	21	2	440	365.1	19,715																					8.337	225.099	2.0	100%	1,050	1/	0.855	0.75		40.34 1	1,089		70% 104			2 0.83	0.98	47.55 1,284
70	84.6	41	2	440		26,445																					8.337		2.0	100%	1,050	17	0.855	0.75			1,654		70% 104			2 0.83	0.98	47.55 1,950
68	81.9	105	2	440		65,562		_												_							8.337		2.0	100%	1,050	17	0.855	0.75			1,236 🛔	2	70% 104		9 0.902	0.00	0.98	47.55 4,993
66	78.2	148	2	440		87,024																					8.337	1233.876	2.0	100%	1,050	17	0.855	0.75			5,971	2	70% 104	3 23.3	9 0.902		0.98	47.55 7,038
64	74.7	191	2	440		105,050																					8.337	1592.367	2.0	100%	1,050	17	0.855	0.75		40.34 7	7,706	2	70% 104	3 23.3	89 0.902	2 0.83	0.98	47.55 9,082
62	71.9	256	2	440		136,448																					8.337		2.0	100%	1,050	17	0.855	0.75		40.34 10	0,328 🐧	2	70% 104			2 0.83	0.98	47.55 12,173
60	67.8	293	2	440	251.3	147,262																					8.337	2442.741	2.0	100%	1,050	17	0.855	0.75	0.98	40.34 11	1,821	2	70% 104	3 23.3	.902	2 0.83	0.98	47.55 13,933
58	65.4	426	2	440	246.2	209,762																					8.337		2.0	100%	1,050	17	0.855	0.75	0.98	40.34 17	7,187 🏅	2	70% 104	3 23.3	.902	2 0.83	0.98	47.55 20,257
56	62.4	440	2	440	239.4	210,672																					8.337	3668.28	2.0	100%	1,050	17	0.855	0.75	0.98	40.34 17	7,752 🐧	2	70% 104		0.902	2 0.83	0.98	47.55 20,923
54	60.6	588	2	440	237.1	278,830																					8.337	4902.156	2.0	100%	1,050	17	0.855	0.75	0.98	40.34 23	3,723	2	70% 104	3 23.3	89 0.902	2 0.83	0.98	47.55 27,960
52	57.4	530					3 100%	50	0.945	0.97	0.97 12	5.80 66	6,674 5	505	2	0.875	0.97	0.97	27.17	14,402	670	8.7	0.84	0.83	0.98	28.49 45,29		4418.61	5								ł	2	70% 104	3 23.3	.902	2 0.83	0.98	47.55 25,202
50	54.7	498					3 100%	50	0.945	0.97		5.80 62	2,648 5	505	2	0.875	0.97	0.97	27.17	13,532	670	8.7	0.84	0.83	0.98	28.49 42,55	57 8.337	4151.826	3								S	2	70% 104	3 23.3	.902	2 0.83	0.98	47.55 23,681
48	52.3	517					3 100%	50	0.945	0.97		5.80 65	5,039 5	505	2	0.875	0.97	0.97	27.17	14,048	670	8.7	0.84	0.83	0.98	28.49 44,18	81 8.337	4310.229	₹								K	2	70% 104	3 23.3	9 0.902	2 0.83	0.98	47.55 24,584
46	50.3	557					3 100%	50	0.945	0.97	0.97 12	5.80 70	0,071 5	505	2	0.875	0.97	0.97	27.17	15,135	670	8.7	0.84	0.83	0.98	28.49 47,59	99 8.337		5								۲ ۲	2	70% 104	3 23.3	.902	2 0.83	0.98	47.55 26,486
44	48.1	468					3 100%	50	0.945	0.97			8,874 5	505	2	0.875	0.97	0.97	27.17	12,717	670	8.7	0.84	0.83	0.98	28.49 39,99	93 8.337		3								3	2	70% 104	3 23.3	.902	2 0.83	0.98	47.55 22,254
42	45.7	698					3 100%	50	0.945	0.97			7,808 5	505	2	0.875	0.97	0.97	27.17	18,967	670	8.7	0.84	0.83	0.98	28.49 59,64			ł								5	2	70% 104	3 23.3	.902	2 0.83	0.98	47.55 33,191
40	43.3	771					3 100%	50	0.945	0.97		5.80 96	6,992 5	505	2	0.875	0.97	0.97	27.17	20,950	670	8.7	0.84	0.83	0.98	28.49 65,88			3								<u> </u>	2	70% 104	3 23.3	.902	2 0.83	0.98	47.55 36,662
38	41.2	674					3 100%	50	0.945	0.97	0.97 12	5.80 84	4.789 5	505	2	0.875	0.97	0.97	27.17	18.314	670	8.7	0.84	0.83	0.98	28.49 57.59	97 8.337		2								<u> </u>	2	70% 104	3 23.3	9 0.902	2 0.83	0.98	47.55 32,050
36	39.3	518					3 100%	50	0.945	0.97		5.80 65	5,164 5	505	2	0.875	0.97	0.97	27.17	14.075	670	8.7	0.84	0.83	0.98	28.49 44.26			<b>K</b>								5	2	70% 104		9 0.902	2 0.83	0.98	47.55 24,632
34	37.2	465					3 100%	50	0.945	0.97		5.80 58	8.497 5	505	2	0.875	0.97	0.97	27 17	12 635	670	87	0.84	0.83	0.98	28.49 39.73	37 8.337		3								2	2	70% 104		9 0.902	2 0.83	0.98	47.55 22,111
32	35.3	228					3 100%	50	0.945	0.97		5.80 28	8.682 5	505	2	0.875	0.97	0.97	27.17	6,195	670	8.7	0.84	0.83	0.98	28.49 19.48	84 8.337		{								<u> </u>	2	70% 104		9 0.902	2 0.83	0.98	47.55 10,842
30	33.3						3 100%	50	0.945	0.97	0.97 12	5 80 14	4 844 5	505	2	0.875	0.97	0.97	27 17	3 206	670	87	0.84	0.83	0.98	28 49 10 08	84 8.337		5									2	70% 104	3 23.3	9 0.902	2 0.83	0.98	47.55 5,611
28	31.6	90					3 100%	50	0.945	0.97	0.97 12	5 80 12	2 454 5	505	2	0.875	0.07	0.07	27.17	2 690	670	87	0.84	0.83	0.98	28 49 8 46			}	+ +							<u>ک</u>	2	70% 104	3 23.0		2 0.00	0.00	47.55 4,708
26	29.4	46					3 100%	50	0.945	0.97	0.97 12	5 80 5	5787 5	505	2	0.875	0.97	0.07	27.17	1 250	670	87	0.84	0.83	0.00	28.49 2.03	1 8.337		₹	+ +							<u> </u>	2	70% 10/	<u>3 20.0</u>		2 0.83	0.00	47.55 2,187
20	27.6	20					3 100%	50	0.945	0.07	0.07 12	5 80 3	3648 5	505	2	0.875	0.07	0.07	27.17	788	670	87	0.84	0.00	0.00	28.49 2.55	8 8.337		5	+ +							ţ	2	70% 104	<u> </u>		2 0.00	0.00	17 55 1 370
24	25.9	13					3 100%	50	0.945	0.97	0.37 12	5.00 5	1 635 5	505	2	0.075	0.97	0.37	27.17	253	670	87	0.04	0.00	0.30	20.43 2,47	1 8.337		}	+ +							<u> </u>	2	70% 104	<u>. 23.3</u> 3 23.3		2 0.03	0.30	47.55 618
22	20.9	15					3 100/0	50	0.343	0.37	0.07 12	5.80 1	1 887 5	505	2	0.075	0.97	0.97	27.17	/08	670	87	0.04	0.00	0.30	20.43 1,11	1  0.337		₹	+ +							<del>\</del>	2	70% 104	<u>ວ 20.0</u> ຊີ່ງຊີຊ		2 0.03	0.30	47.55 712
20	<u>24.</u> 2	L 10					3 100%	00	0.940	0.97	U.91    Z	. <u></u>	1,00 <i>1</i> ] 3	505	L	0.070	0.97	0.97	<u> </u>	400	0/0	0.1	0.04	0.03	0.90	20.49   I,20	<u>oz u 0.33/</u>	120.000	<del>《</del>								<del>{</del>	Ζ	10/0   104	J Z3.3	0.902	2   0.03	0.90	41.00   113


																												{	•	3	3									}							7
MECHA	CAL ENER	RGY AT 75	% ITE LOAD CA		N																							Š			₹									3							· '
AMBIENT TEMPER/	AMBIENT	ASHRAE TMY	NUMBER CHI	LLER CHI PACITY ENE	LLER CHI ERGY ENE	/H)  GF	COOL	ER COOLER ATIN FAN (HP)	FAN	FAN DRIVE F EFFICIENC V Y (%) E	FAN I VARIABLE I	FAN		PUMP (HP)	PUMP WATER FLOW	COOLER PUMPS PER FLUID	PUMP MOTOR EFFICIENC	EFFICIENC Y (%)	FLUID COOLER PUMP VARIABLE SPEED DRIVE EFFICIENC Y (%)	FLUID COOLER PUMP TOTAL (KW	(KWH)	PUMP FLOW	PRIMARY N PUMPS E	EFFICIENC	FLUID COOLER PRIMARY PUMP DRIVE EFFICIENC Y (%)	FLUID COOLER PRIMARY PUMP VARIABLE SPEED DRIVE EFFICIEN	FLUID COOLER CHILLED WATER PRIMARY PUMPS (KW)	CHILLED	FAN	FAN	OF	CHILLER PRIMARY PUMP CAPACITY (%)	PRIMARY PUMP FLOW (GPM)	CHILLER PRIMARY PUMP BRAKE POWER (BHP)	CHILLER C PRIMARY F PUMP F MOTOR C EFFICIENC E Y (%) Y	FFICIENC (%)	CHILLER PRIMARY PUMP VARIABLE SPEED DRIVE EFFICIENC Y (%)	CHILLER PRIMARY PUMP ENERGY (KW)	CHILLER PRIMARY PUMP ENERGY (KWH)	SECONDAR	SECONDAR S Y PUMP Y R CAPACITY F (%) ((	(GPM) F	SECONDAR S Y PUMP Y BRAKE M POWER E (HP) Y	EFFICIENC EF	ECONDAR SECC PUMP Y PUN PRIVE VARIA FFICIENC SPEE (%) DRIVE EFFIC Y (%)	ED (KW /E CIENC	CONDAR SECONDAFY PUMP ERGY ENERGY V) (KWH)
74	82.2	1				937									) 														12.5055	12.5055	3.0	100%	1,050	17	0.855	0.75	0.98	60.52	61	<b>§</b> 3	70%	1043	23.39	0.902		).98 7	71.33 71
72	89.6	27			365.1 2	29,573									·'													<b>č</b>	12.5055	337.6485	3.0	100%	1,050	17	0.855	0.75	0.98	60.52	1,634	3	70%	1043	23.39	0.902	0.83 0.	).98 7	71.33 1,926
70	84.6	41		440 3	322.5 3	39,668									·'														12.5055	512.7255	<u>3.0</u>	100%	1,050	1/	0.855	0.75	0.98	60.52	2,481		70%	1043	23.39	0.902	0.83 0.		71.33 2,924
68	81.9	105				98,343									·'														12.5055	1313.0775	0.0	100%	1,050	1/	0.855	0.75	0.98	60.52	6,354		70%	1043	23.39	0.902			71.33 7,489
66	78.2	148				30,536									·'														12.5055	1850.814	3.0	100%	1,050	17	0.855	0.75	0.98	60.52	8,957		70%	1043	23.39	0.902			<u>71.33</u> <u>10,556</u>
64	74.7	191				57,575									·'														12.5055	2388.5505	3.0	100%	1,050	17	0.855	0.75	0.98	60.52	11,559	$\frac{3}{2}$	70%	1043	23.39	0.902			71.33 13,623
62	71.9	256			266.5 20	04,672 20,893									·'													Ş	12.5055	3201.408	3.0	100%	1,050	17	0.800	0.75	0.98	00.52 60.52	15,492	$\begin{cases} 3 \\ 2 \end{cases}$	70%	1043 1043	23.39	0.902		).98 7 ).98 7	<u>71.33</u> <u>18,260</u>
<u>60</u>	67.8 65.4	293				20,693									·'														12.5055	5327 3/3	<b>3</b> .0	100%	1,050	17	0.855	0.75	0.96	60.52 60.52	25 700		70%	1043	23.39	0.902			71.3320,89971.3330,385
<u>58</u>	62.4	426				16,008									·'													<b>≩</b>	12.5055 12.5055	5502.42	3.0 3.0	100%	1,050	17	0.855	0.75	0.98	60.52 60.52	20,700		70%	1043	23.39	0.902			71.33         30,385           71.33         31,384
<u>56</u> 54	60.6	440 588		440 2	239.4 31 237.1 41	18,244									·'														12.5055		3.0	100 %	1,050	17	0.855	0.75	0.98	60.52	20,020		70%	1043	23.39	0.902			71.33         31,384           71.33         41,940
52	57.4	530	5	440 2	201.1 41	10,244	5 100	1% 50	0.945	0.97	0.97	209 67	111 123	5	505	2	0.875	0.97	0.97	15 29	24.003	670	87	0.8/	0.83	0.98	47.48	125,810	12.5055		<b>3</b> .0	100 /0	1,000	17	0.000	0.75	0.50	00.52	55,504	3	70%	1043	23.39	0.902			71.33 37,803
50	54.7	498					5 100		0.945	0.37	0.97	203.07	104 414	5	505	2	0.875	0.07	0.07	45.20	22 553	670	8.7	0.04	0.83	0.98	47.48	118,214	12.5055		<u>}</u>										70%	1043	23.30	0.902			71.33 35,521
48	52.3	517					5 100		0.945	0.97	0.97	203.07	104,414	5	505	2	0.875	0.07	0.07	45.20	22,000	670	8.7	0.04	0.00	0.30	47.48	122 724	12.5055	6465.3435	5										70%	1043	23.30	0.902			71.33 36,876
46	50.3	557					5 100		0.945	0.97	0.97	200.07	116 784	5	505	2	0.875	0.07	0.07	45.29	25,225	670	8.7	0.84	0.83	0.98	47.48	132,219	12.5055	6965.5635	}									8 3	70%	1043	23.39	0.902			71.33 39,729
44	48.1	468					5 100		0.945	0.97	0.97	209.67	98 124	5	505	2	0.875	0.97	0.97	45.29	21 195	670	87	0.84	0.83	0.98	47.48	111 093	12.5055	5852.574	₹								(	3	70%	1043	23.39	0.902			71.33 33,381
42	45.7	698					5 100		0.945	0.97	0.97	209.67	146 347	5	505	2	0.875	0.97	0.97	45.29	31 611	670	87	0.84	0.83	0.98	47.48	165,690	12.5055	8728.839	\$									<b>S</b> 3	70%	1043	23 39	0.902			71.33 49,786
40	43.3	771					5 100	0% 50	0.945	0.97	0.97	209.67	161.653	5	505	2	0.875	0.97	0.97	45.29	34.917	670	8.7	0.84	0.83	0.98	47.48	183,018	12.5055	9641.7405	₹									3	70%	1043	23.39	0.902			71.33 54,993
38	41.2	674					5 100	0% 50	0.945	0.97	0.97	209.67	141.315	5	505	2	0.875	0.97	0.97	45.29	30.524	670	8.7	0.84	0.83	0.98	47.48	159,993	12.5055	8428.707	5									<b>S</b> 3	70%	1043	23.39	0.902			71.33 48,074
36	39.3	518					5 100		0.945	0.97	0.97	209.67	108.607	5	505	2	0.875	0.97	0.97	45.29	23,459	670	8.7	0.84	0.83	0.98	47.48	122,962	12.5055	6477.849	ł									3	70%	1043	23.39	0.902			71.33 36,947
34	37.2	465					5 100		0.945	0.97	0.97	209.67	97,495	5	505	2	0.875	0.97	0.97	45.29	21,059	670	8.7	0.84	0.83	0.98	47.48	110,381	12.5055	5815.0575	5								(	3	70%	1043	23.39	0.902	0.83 0.		71.33 33,167
32	35.3	228					5 100		0.945	0.97	0.97	209.67	47,804	5	505	2	0.875	0.97	0.97	45.29	10,326	670	8.7	0.84	0.83	0.98	47.48	54,122	12.5055	2851.254	}									3	70%	1043	23.39	0.902	0.83 0.	).98 7	71.33 16,263
30	33.3	118					5 100		0.945	0.97	0.97	209.67	24,741	5	505	2	0.875	0.97	0.97	45.29	5,344	670	8.7	0.84	0.83	0.98	47.48	28,011	12.5055	1475.649	\$								(	3	70%	1043	23.39	0.902			71.33 8,417
30 28	31.6	99					5 100		0.945	0.97	0.97	209.67	20,757	5	505	2	0.875	0.97	0.97	45.29	4,484	670	8.7	0.84	0.83	0.98	47.48	23,500	12.5055	1238.0445	}									3	70%	1043	23.39	0.902			71.33 7,061
26	29.4	46					5 100		0.945	0.97	0.97	209.67	9,645	5	505	2	0.875	0.97	0.97	45.29	2,083	670	8.7	0.84	0.83	0.98	47.48	10,919	12.5055		{									3	70%	1043	23.39	0.902			71.33 3,281
24		29					5 100	)% 50	0.945	0.97	0.97	209.67	6,080	5	505	2	0.875	0.97	0.97	45.29	1,313	670	8.7	0.84	0.83	0.98	47.48	6,884	12.5055		5									3	70%	1043	23.39	0.902	0.83 0.		71.33 2,068
22	25.9						5 100	)% 50	0.945	0.97	0.97	209.67	2,726	5	505	2	0.875	0.97	0.97	45.29	589	670	8.7	0.84	0.83	0.98	47.48	3,086	12.5055		{									3	70%	1043	23.39	0.902	0.83 0.		71.33 927
20	24.2	15					5 100	0% 50	0.945	0.97	0.97	209.67	3,145	5	505	2	0.875	0.97	0.97	45.29	679	670	8.7	0.84	0.83	0.98	47.48	3,561	12.5055		<u>۲</u>									3	70%	1043	23.39	0.902			71.33 1.070

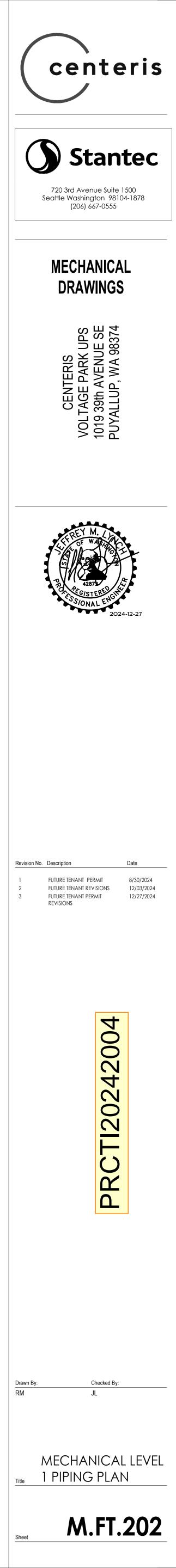

																											}		3								<b>}</b>								
MECHANICAL ENERGY AT 10	0% ITE LOAD	CALCULAT	ΓΙΟΝ																								7		1								}								
AMBIENT AMBIENT ASHRAE	NUMBER C	CHILLER C	HILLER CHILL	LER NUME	BER FLU	JID FLUID	FLUID	FLUID	FLUID	FLUID	FLUID	FLUID	FLUID	NUMBER	FLUID	FLUID	FLUID	FLUID	FLUID	FLUID	FLUID	FLUID	FLUID	FLUID	FLUID	FLUID	TOTAL	AIR TOTAL AI	R NUMBER		CHILLER	CHILLER	CHILLER	CHILLER C	HILLER CH	ILLER CHI	ILLER NUN	MBER SECON	NDAR SECON	DAR SECONE	DAR SECO		DAR SECOND	AR SECONDAR	SECONDARY
TEMPERAT MEAN TMY		CAPACITY E	NERGY ENER	GY OF						COOLER	COOLER	COOLER	COOLER	OF FLUID	COOLER	COOLER	COOLER	COOLER	COOLER	COOLER	COOLER	COOLER	COOLER	COOLER		R COOLER	HANDL		R OF	PRIMARY	PRIMARY	PRIMARY	PRIMARY	PRIMARY PI	RIMARY PR	MARY PRI	MARY OF	Y PUM		Y PUMP	Y PUM	IP Y PUMP	Y PUMP	Y PUMP	PUMP
URE WB COINCIDEN HOURS (°F) T DB (°F)	OPERATIN (1	(TONS) (K	KW) USAGI (KWH)			ERATIN FAN (H	IP) FAN MOTOR	FAN DRI	ive   Fan Nc   Variable		FAN (KWH)	PUMP (HP)	PUMP WATER	COOLER PUMPS	MOTOR	DRIVE	VARIABLE		PUMP W) TOTAL										PRIMARY	R PUMP Y CAPACITY		PUMP  BRAKE	PUMP MOTOR		UMP PU ARIABLE EN	MP PUM ERGY ENE		;ondar capac UMPS (%)	(GPM)	POWER			NC SPEED	E ENERGY (KW)	ENERGY (KWH)
	CHILLERS			/	LERS CAF			ENC Y (%)		(KW)					EFFICIENC				(KWH)									(KWH)	PUMPS		Y FLOW (GPM)	POWER	EFFICIENC		PEED (KV				(GPINI)	(HP)			DRIVE		
					(%)		Y (%)		DRIVE	(((())))					Y (%)		DRIVE			PUMP	PUMPS	EFFICIEN			PUMPS	PUMPS				(,,,,,		(BHP)	Y (%)	( (%)	RIVE		··/ 8					1 (70)	EFFICIEN	IC	
									EFFICIEN	IC							EFFICIENC	C		FLOW	POWER	Y (%)	Y (%)	NC SPEED DRIVE	(KW)	(KWH)	ξ		5			,		È	FFICIENC		ζ						Y (%)		
									Y (%)								Y (%)			(GPM)	(HP)			EFFICIEN	NC		8		₹.					Y	(%)		8								
																								Y (%)			\$		\$								Ş								
74 82.2 1	4	440	312.2 1,2	249																							16.67	74 16.674	4.0	100%	1,050	17	0.855	0.75	0.98	80.69	81	3 100	% 1490	68.20	0.90	02 0.83	0.98	207.95	208
72 89.6 27	4	440	365.1 39,4	431																							16.67				1,050	17	0.855	0.75	0.98	80.69 2	2,179	3 100	% 1490	68.20	) 0.90	02 0.83	0.98	207.95	5,615
70 84.6 41	4	440	322.5 52,8	890																							16.67			100%	1,050	17	0.855	0.75	0.98	80.69 3	3,308	3 100	% 1490	68.20	0.90	02 0.83	0.98	207.95	8,526
68 81.9 105	4	440	312.2 131,	,124																							16.67		<u>4.0</u>	100%	1,050	17	0.855	0.75	0.98		8,472	3 100		68.20	0.90	02 0.83	0.98	207.95	21,835
66 78.2 148	4	440	294 174	,048																							16.67		2 4.0	100%	1,050	17	0.855	0.75		80.69 1	1,942	3 100		68.20	0.90	02 0.83	0.98	207.95	30,777
64 (4./ 191	4	440	275 210,	,100																							16.67		<u>4 4.0</u>	100%	1,050	1/	0.855	0.75		80.69 1	5,412	<u>3 100</u> 2 100						207.95	39,/18
02 (1.9 250 60 67.8 203	4 /	440	<u>266.5</u> 272, 251.3 294	,896 ,524																							16.67 16.67		<u>4 <b>4</b>.0</u> 2 <b>4</b> .0	100%	1,050	17	0.855	0.75	0.98	80.69 2 80.69 2	<u>0,657</u>	3 100 3 100		68.20	0.90	U∠ U.83 02 0.83	0.98	207.95	53,235 60,929
58 65.4 426	4	440	<u>231.3</u> <u>294</u> 246.2 419	525																							16.67		<u>4.0</u> 4 <b>4</b> 40	100%	1 050	17	0.000	0.75			4,374	3 100		68.20	0.90	02 0.03	0.90	207.95	88 587
56 62.4 440	4	440	246.2         419           239.4         421	,344	<u> </u>																						16.67		6 4.0	100%	1,050	17	0.855	0.75			5,504	3 100		68.20	0.90	02 0.83	0.98	207.95	91.498
54 60.6 588	4		237.1 557	,659																							16.67	74 9804.312	2 4.0			17	0.855	0.75			7,446	3 100		68.20	0.90	02 0.83	0.98	207.95	122,275
52 57.4 530				(		100% 50	0.945	15 0.97	0.97	251.60	133,348	5	505	2	0.875	0.97	0.97	54.35	28,803	670	8.7	0.84	0.83	0.98	56.97	7 181,167	7 👌 16.67	74 8837.22	2								8	3 100		68.20	0.90	02 0.83	0.98	207.95	110,214
50 54.7 498	_				-	100% 50	) 0.945	5 0.97	0.97	251.60	125,297	5	505	2	0.875	0.97	0.97	54.35	27,064	670	8.7	0.84	0.83	0.98	56.97	7 170,228											\$	3 100		68.20	0.90	02 0.83	0.98	207.95	103,559
48 52.3 517	_				÷ .	100% 50	0.945	15 0.97	0.97	251.60	130,077	5	505	2	0.875	0.97	0.97	54.35	28,097	670	8.7	0.84	0.83	0.98	56.97	7 176,723	<u>3 8 16.67</u>										<b>}</b>	3 100		68.20	0.90		0.98	207.95	107,510
<u>46 50.3 557</u> 44 48.1 468	_					100% 50	0.945	15 0.97	0.97	251.60		5	<u> </u>	2	0.875	0.97	0.97	54.35	30,270	670	8.7	0.84	0.83	0.98	56.97	190,396	<u>6 16.67</u>										\$	<u>3 100</u>		68.20				207.95	115,828
<u>44 48.1 468</u> 42 45.7 698					-	100% 50 100% 50	0.945	15 0.97 15 0.97	0.97	251.60	117,749	5	505 505	2	0.875 0.875	0.97	0.97	54.35	25,434	670	<u> </u>	0.84	0.83	0.98	<u>56.97</u> 56.97	7 <u>159,974</u> 7 <u>238,593</u>											₹	3 100 3 100		68.20	0.90 0.90			<u>207.95</u> 207.95	97,321
<u>42</u> 43.7 698 40 43.3 771						100% 50 100% 50	) 0.940 ) 0.940	15 0.97	0.97	251.00	103 083	5	505	2	0.075	0.97	0.97	54.00	<u></u> <u></u> 	670	8.7	0.04	0.03	0.98			6 16.67											3 100			0.90		0.98	207.95	145,149
38 41.2 674				6		100% 50	) 0.945	5 0.97	0.97	251.60	169.578	5	505	2	0.875	0.97	0.97	54.35	36.629	670	8.7	0.84	0.83	0.98	56.97		9 16.67											3 100		68.20	0.90			207.95	140.158
36 39.3 518				(	-	100% 50	0.945	15 0.97	0.97	251.60	130,329	5	505	2	0.875	0.97	0.97	54.35	28,151	670	8.7	0.84	0.83	0.98	56.97	7 177,065			2								8	3 100		68.20				207.95	107,718
34 37.2 465				(	6 1	100% 50	0.945	15 0.97	0.97	251.60	116,994	5	505	2	0.875	0.97	0.97	54.35	25,271	670	8.7	0.84	0.83	0.98	56.97	7 158,948	8 16.67	74 7753.41	5								<u> </u>	3 100	% 1490	68.20	0.90	02 0.83	0.98	207.95	96,697
32 35.3 228				(		100% 50	0.945	15 0.97	0.97	251.60	57,365	5	505	2	0.875	0.97	0.97	54.35	12,391	670	8.7	0.84	0.83	0.98	56.97	7 77.936	6 16.67	74 3801.672	2								8	3 100	% 1490	68.20	0.90 0.90	02 0.83	0.98	207.95	47,413
30         33.3         118           28         31.6         99           26         29.4         46	_					<u>100%</u> 50	0.945	5 0.97	0.97		29,689	5	505	2	0.875	0.97	0.97	54.35	6,413	670	8.7	0.84	0.83	0.98	56.97	7 40,335 7 33,841	5 16.67	74 1967.532	2 5								\$	3 100	% 1490	68.20	0.90	02 0.83	0.98	207.95	24,538 20,587
28 31.6 99	_			(		100% 50	0.945	15 0.97	0.97	251.60	24,908	5		2	0.875	0.97	0.97	54.35	5,380	670	8.7	0.84	0.83	0.98	56.97	7 33,841	1 16.67	74 1650.726	6 <b>8</b>								<u> </u>	3 100	<u>% 1490</u>	68.20	0.90	02 0.83	0.98	207.95	20,587
20 20.4 40						100% 50 100% 50	0.945	15 0.97	0.97	251.60	11,574	5	505	2	0.875	0.97	0.97	54.35	2,500	670	8.7	0.84	0.83	0.98	<u>56.97</u> 56.97	7 15,724	1 👌 16.67										\$	<u>3 100</u> 3 100						207.95	9,566
<u>24 27.6 29</u> 22 25.9 13						100% 50 100% 50	0.945	15 0.97	0.97	251.00	2 271	5	505	2	0.875 0.875	0.97	0.97	5/ 35	1,5/0	670	0./	0.84	0.03	0.98	56.07	7 9,913	- A										₹	3 100 3 100		68.20 68.20			0.98	207.95	2 703
20 24.2 15					6 1	100% 50	) 0.945	15 0.97	0.97	251.00	3 774	5	505	2	0.875	0.97	0.97	54 35	815	670	87	0.04	0.03	0.98	56.97	7 5 127	∧ 16.67	74 250.11	· }									3 100	% 1490	68 20	0.90		0.98	207.95	3,119
	· ·	1	1	,	- 1		0.040					· · · · · · · · · · · · · · · · · · ·		. <u> </u>			0.07	01100				. 0.01	. 0.00	0.00			<u>~2</u>		<u>~~~</u> ~~~					<u> </u>	<u></u>	<u> </u>									
																												ł			ENERGY SL					HECK 100%									Z
																												Я		COC	DLING AIR-H	NDL HEAT		TOTAL	ITE LOAD	ITE LOAD	ANNUALIZED	PROJECT							City of Puy
																												<u>र</u> ्ष			RGY ER FA			(KWH)	(%)	(KW)		ANNUALIZE						De	velopment & Perm ISSUED PE
																												В		(KW	(H) ENER (KWH)	GY FAN ENERGY	(KWH)		050/		(KWH)	D MLC							Building
																												Я				(KWH)			25% 50%	1625.0 3250.0	14,235,000	- 11							Jac Market
																												25% ITE LOAD	MECH ENER	GY 64	43,697 73,0	032 523,66	3 609,289	1,849,682	75%	4875.0	28,470,000 42,705,000	-							
																													MECH ENER	CGY 1,2	287,395 73,0	)32 785,49	1,221,311	3,367,232	75% 100%	6500.0	56,940,000	-							Fire
																												75% ITE LOAD	MECH ENER		<u>31,092 109</u>	548 1,309,18	7 2,542,050	5,891,847	TOTALS:		142,350,000	0.1397889							
																														KGY   2,5	0/4,/89   146.	<u>004   1,570,98</u>	9 4,498,341	8,790,183	mm	mm									
																												<u> </u>																	



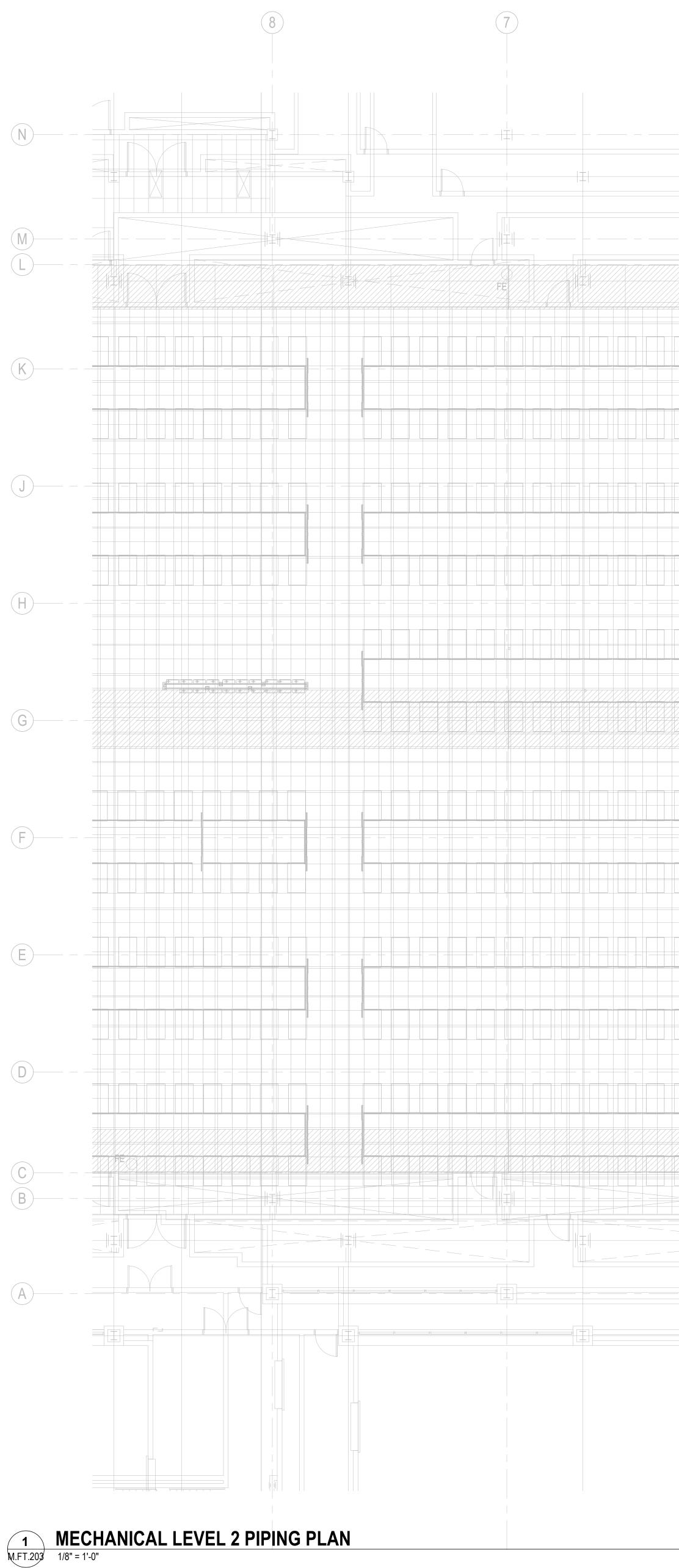



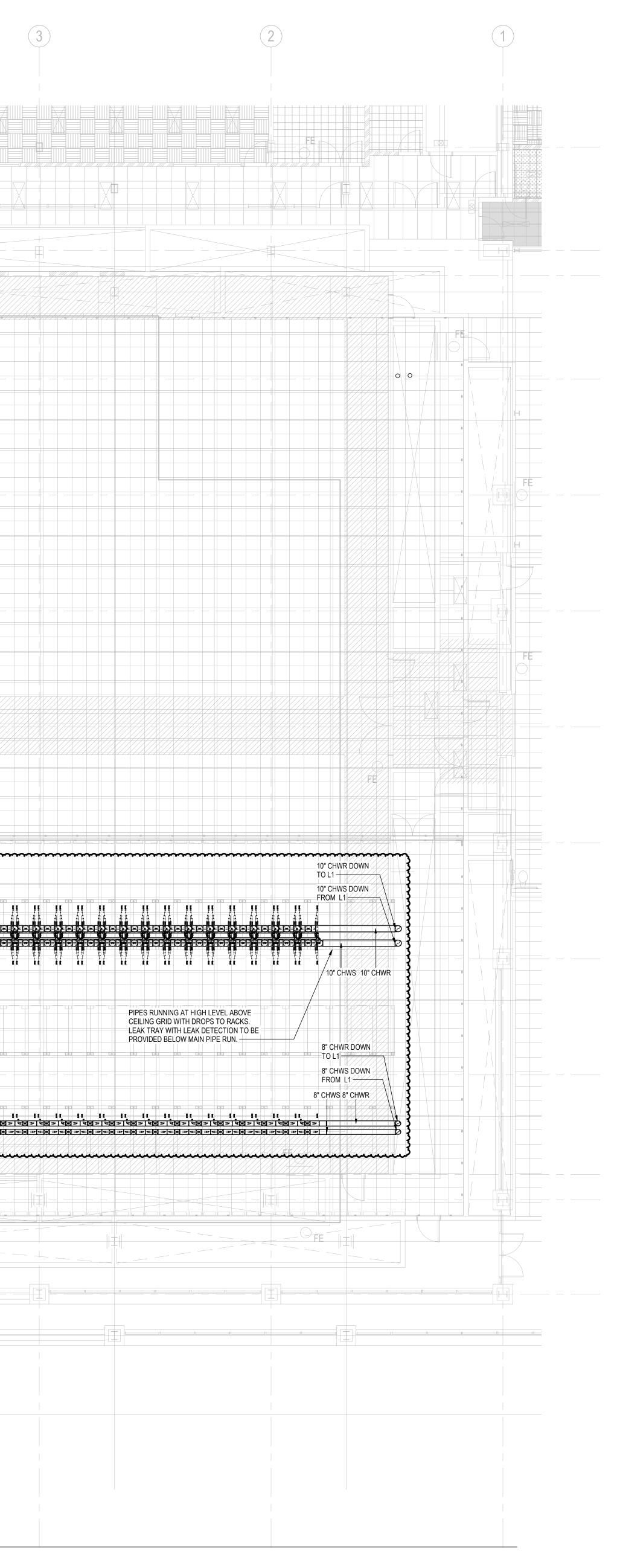


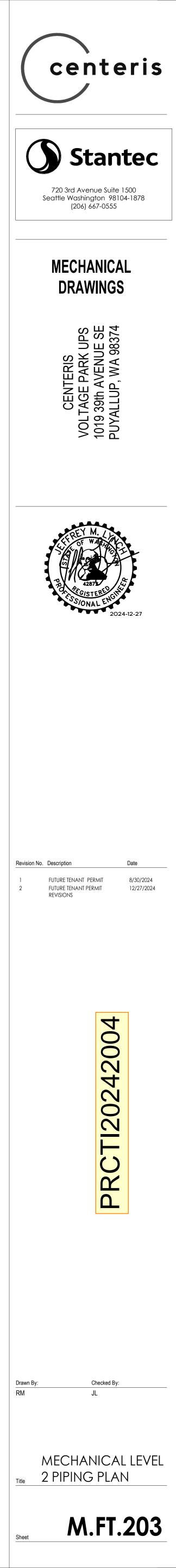


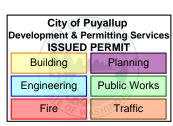



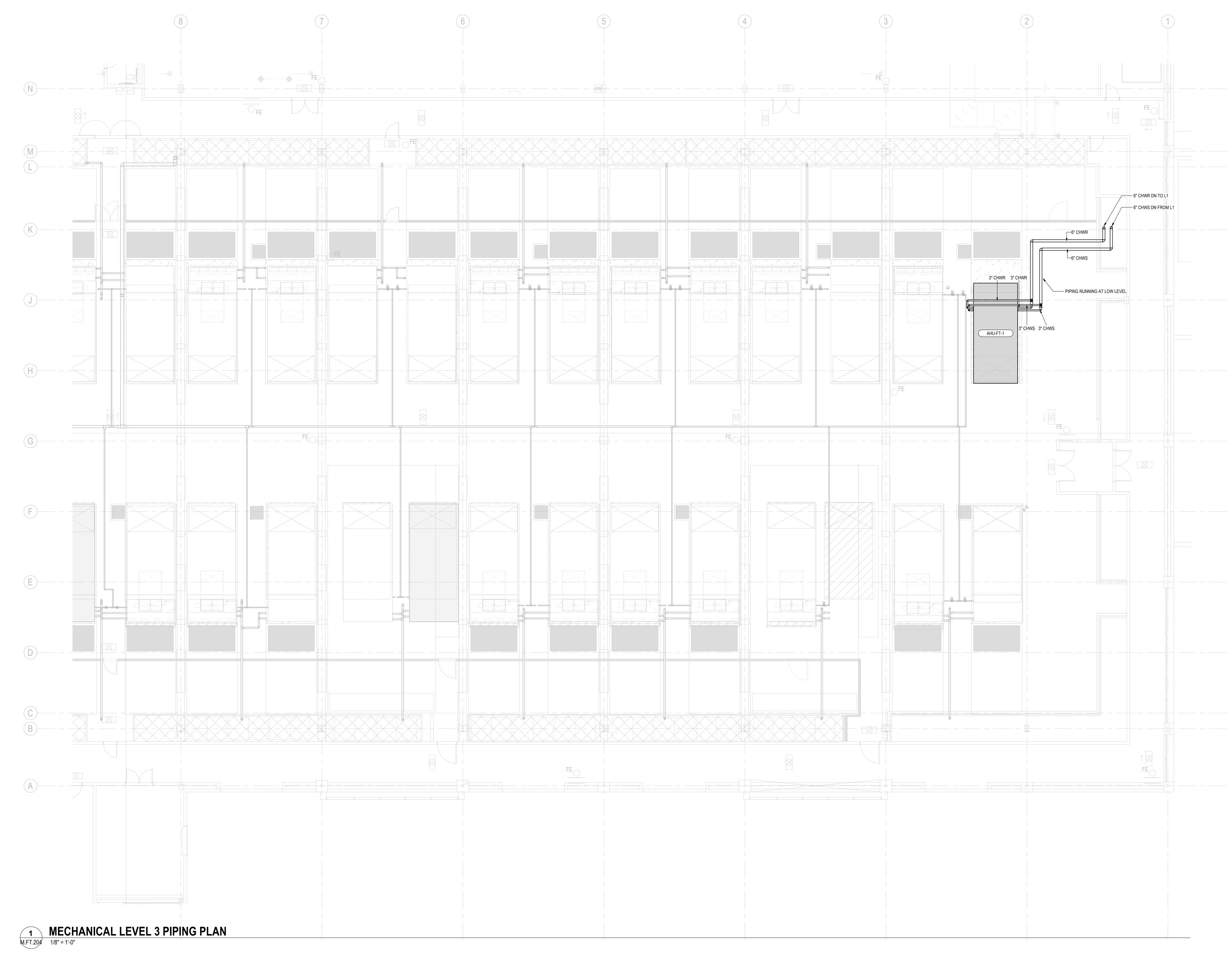


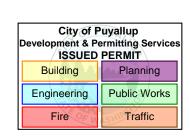



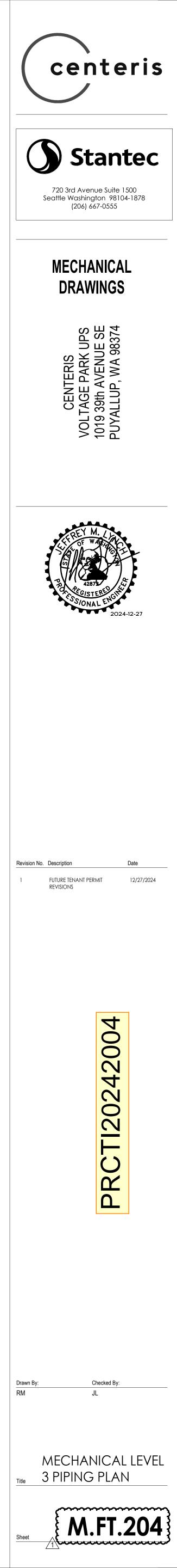


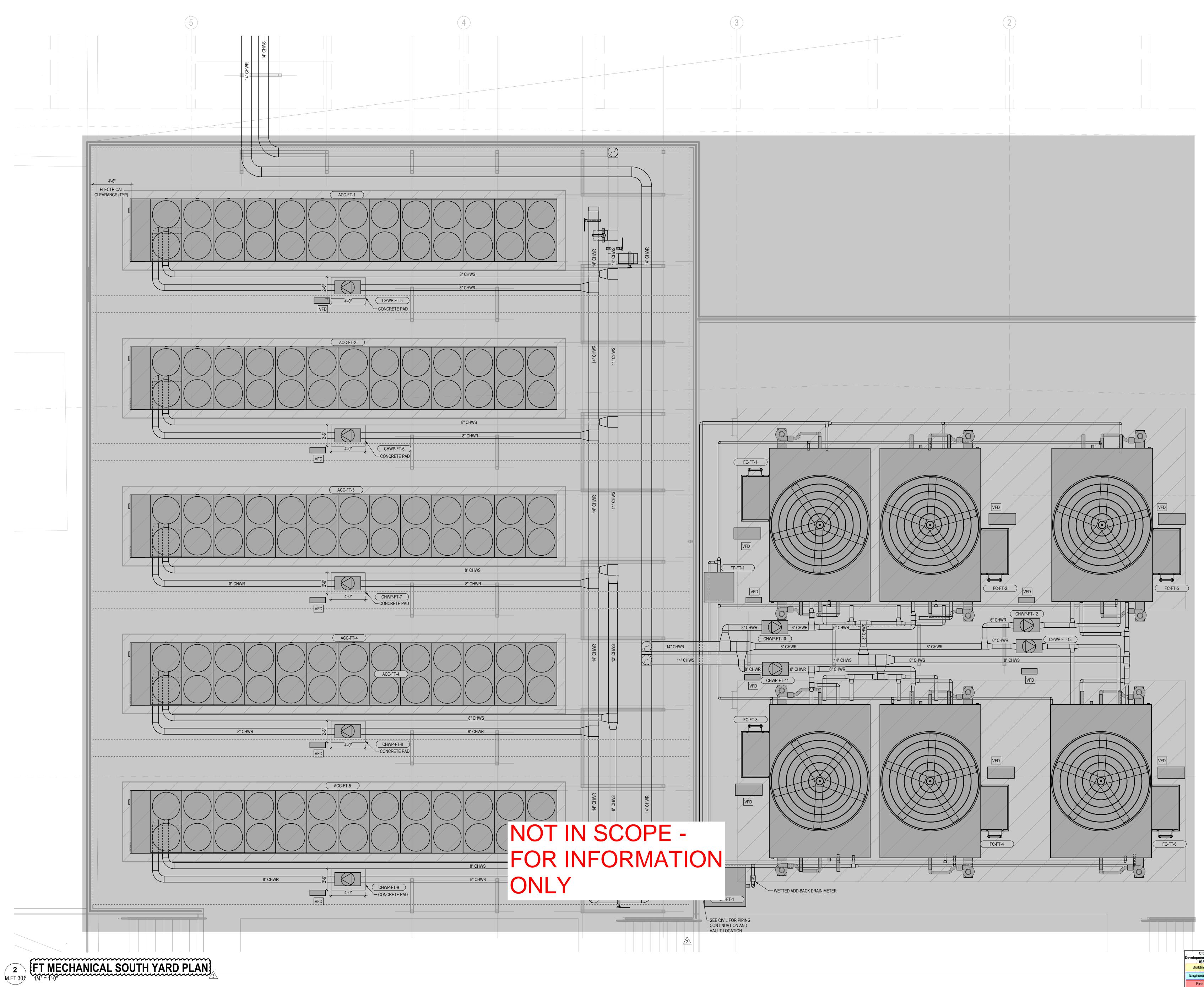



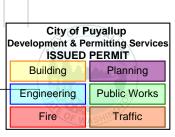


	6											5															4											
Ý																																						
					_								$\times$															0 										
																															III II II II II II II II II II II II II							
					ζ	г 1( Т г 1(		WR D WS D L1	AWO						- Karlik			- K-Y																				
									(		8 T.50					CON	NECT		(TYF	2 37)																		
							' CHW O L1- ' CHW ROM	S DO L1	WN	M.F	9 T.50									*1																		
					X			4				44	₽₽	₽	₽	┙┯┡	<b>∃</b> →  •	₽₽	₽₩		<b>₩</b>	4 4	•	₽₽	₽	₽₽	r <b>₩</b> E		₽⇒	₽		₽₩	₽₽	₽₩	3 <b>→</b> •	=	₽₩₽	╺┏╴

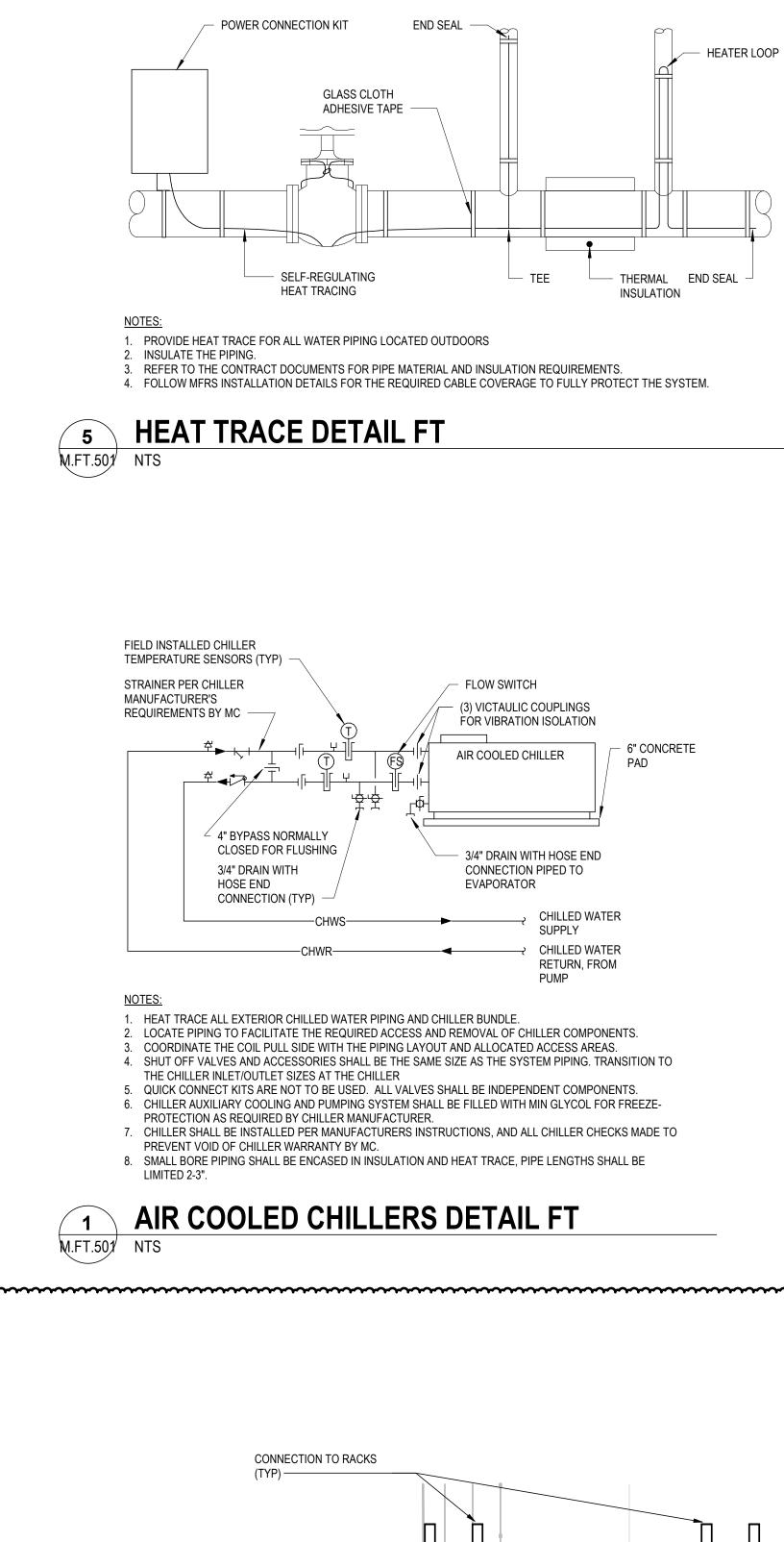


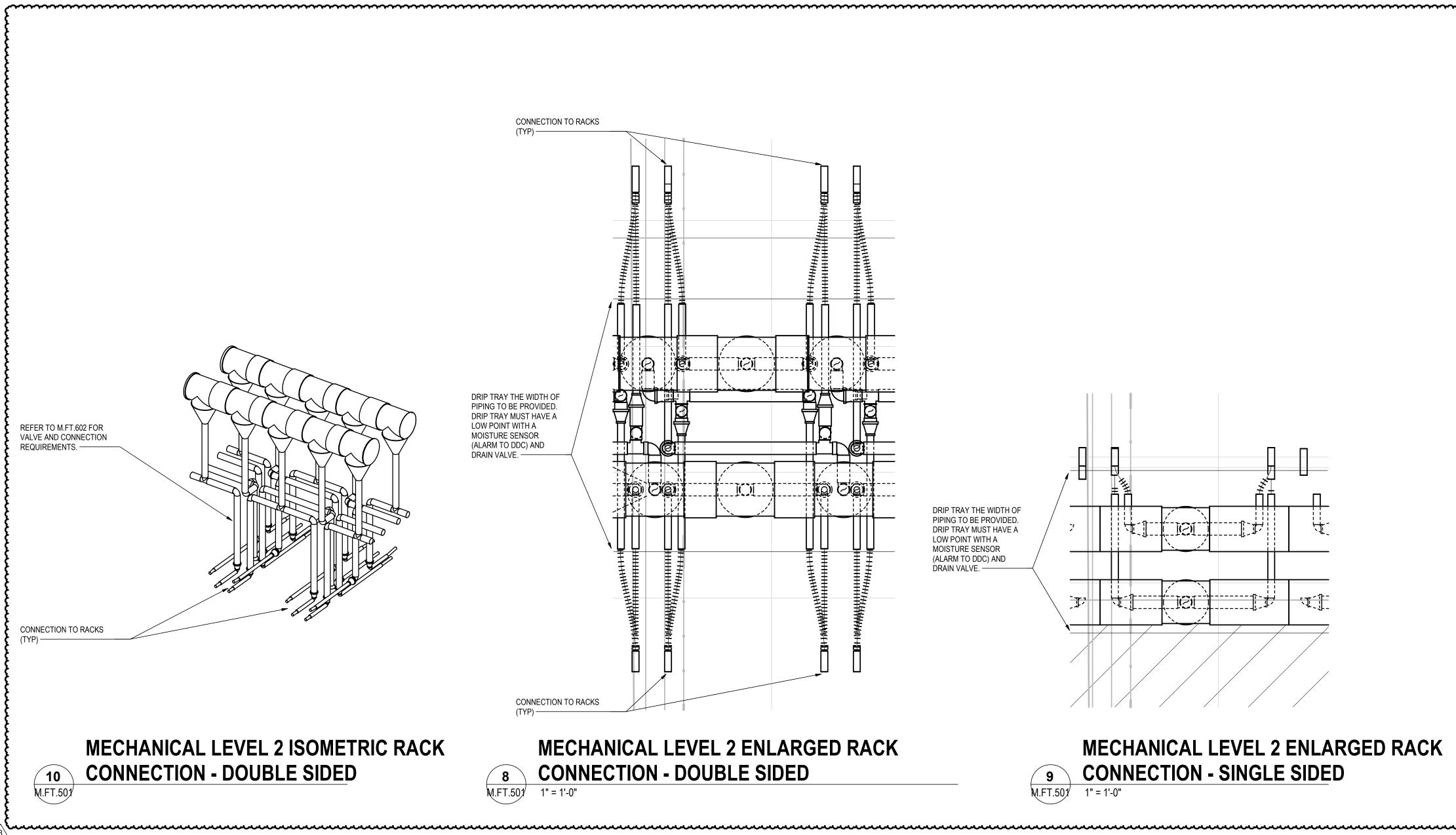



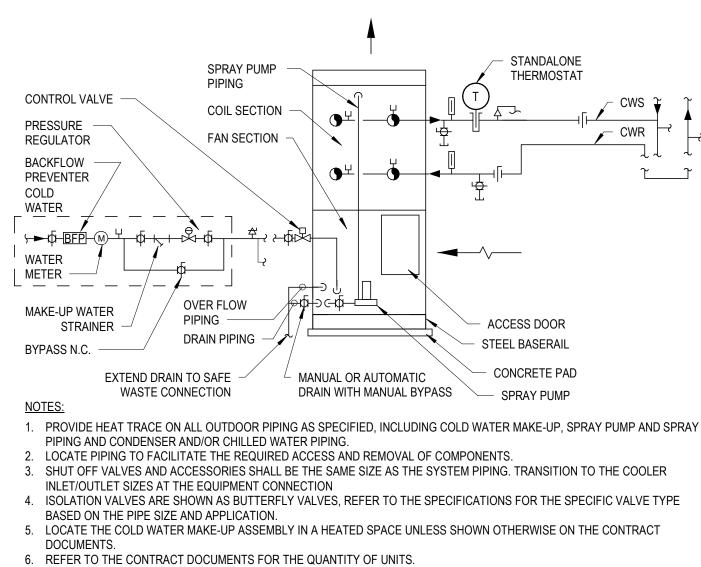





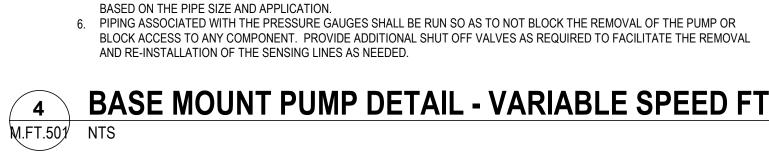



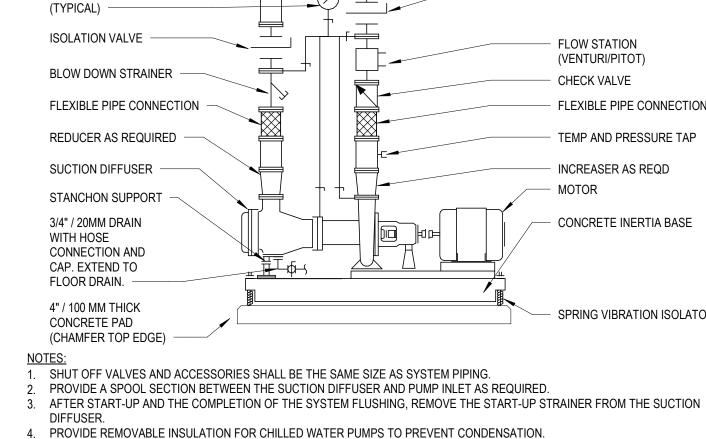



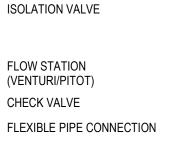








M.FT.501/NTS





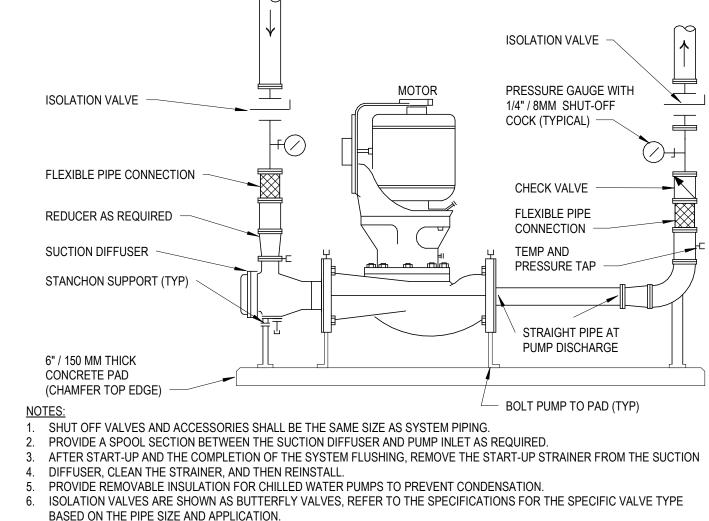
PRESSURE GAUGE WITH

1/4" / 8MM SHUT-OFF COCK



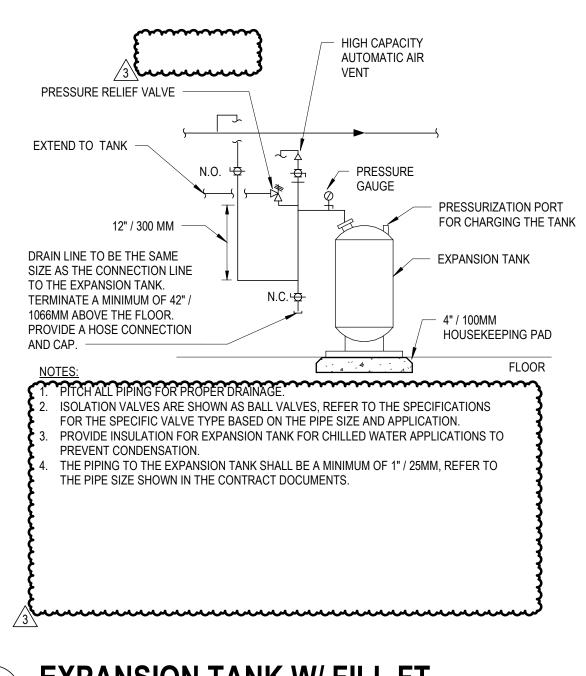
TEMP AND PRESSURE TAP INCREASER AS REQD MOTOR

- CONCRETE INERTIA BASE


SPRING VIBRATION ISOLATOR

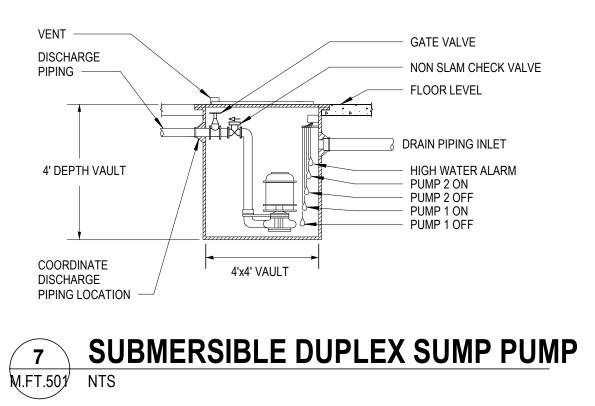
5. ISOLATION VALVES ARE SHOWN AS BUTTERFLY VALVES, REFER TO THE SPECIFICATIONS FOR THE SPECIFIC VALVE TYPE

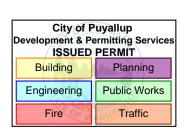


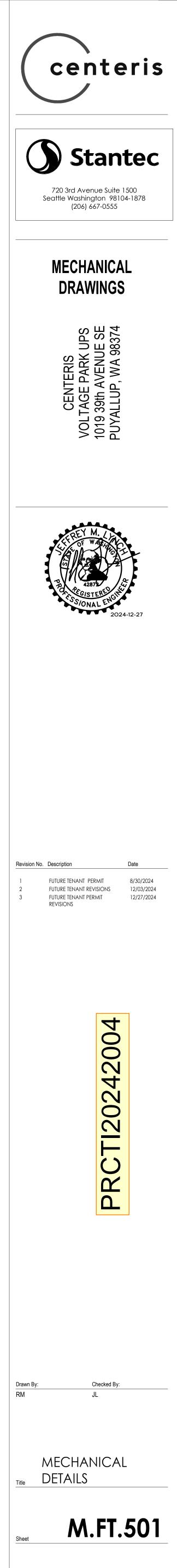

7. QUICK CONNECT KITS ARE NOT TO BE USED. ALL VALVES SHALL BE INDEPENDENT COMPONENTS.

# CLOSED CIRCUIT EVAPORATIVE COOLER DETAIL FT



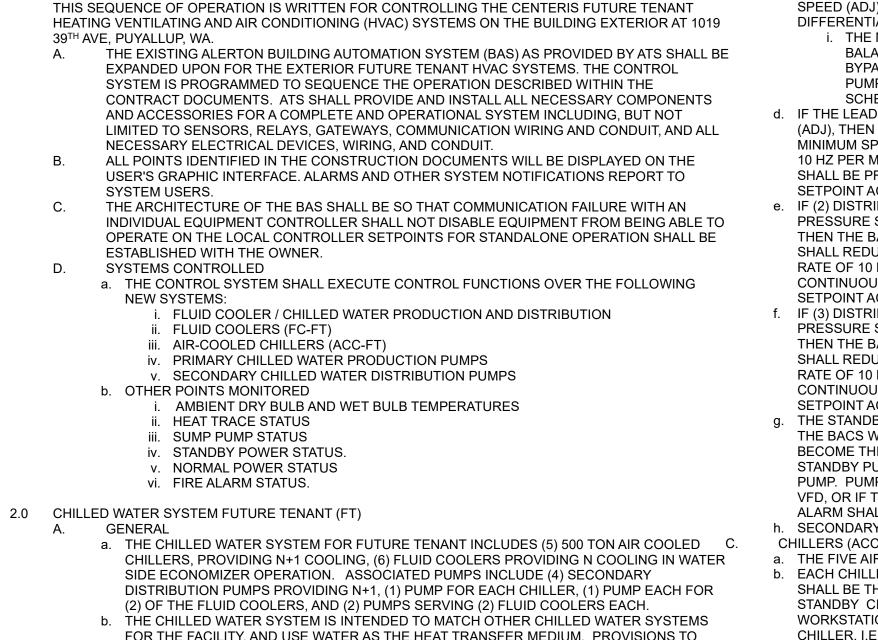

SMALL BORE PIPING SHALL BE ENCASED IN INSULATION AND HEAT TRACE, PIPE LENGTHS SHALL BE LIMITED 2-3". 8. PROVIDE MINIMUM LENGTH OF STRAIGHT PIPE AT PUMP DISCHARGE AS PER MANUFACTURER'S RECOMMENDATIONS.




6 M.FT.501 NTS

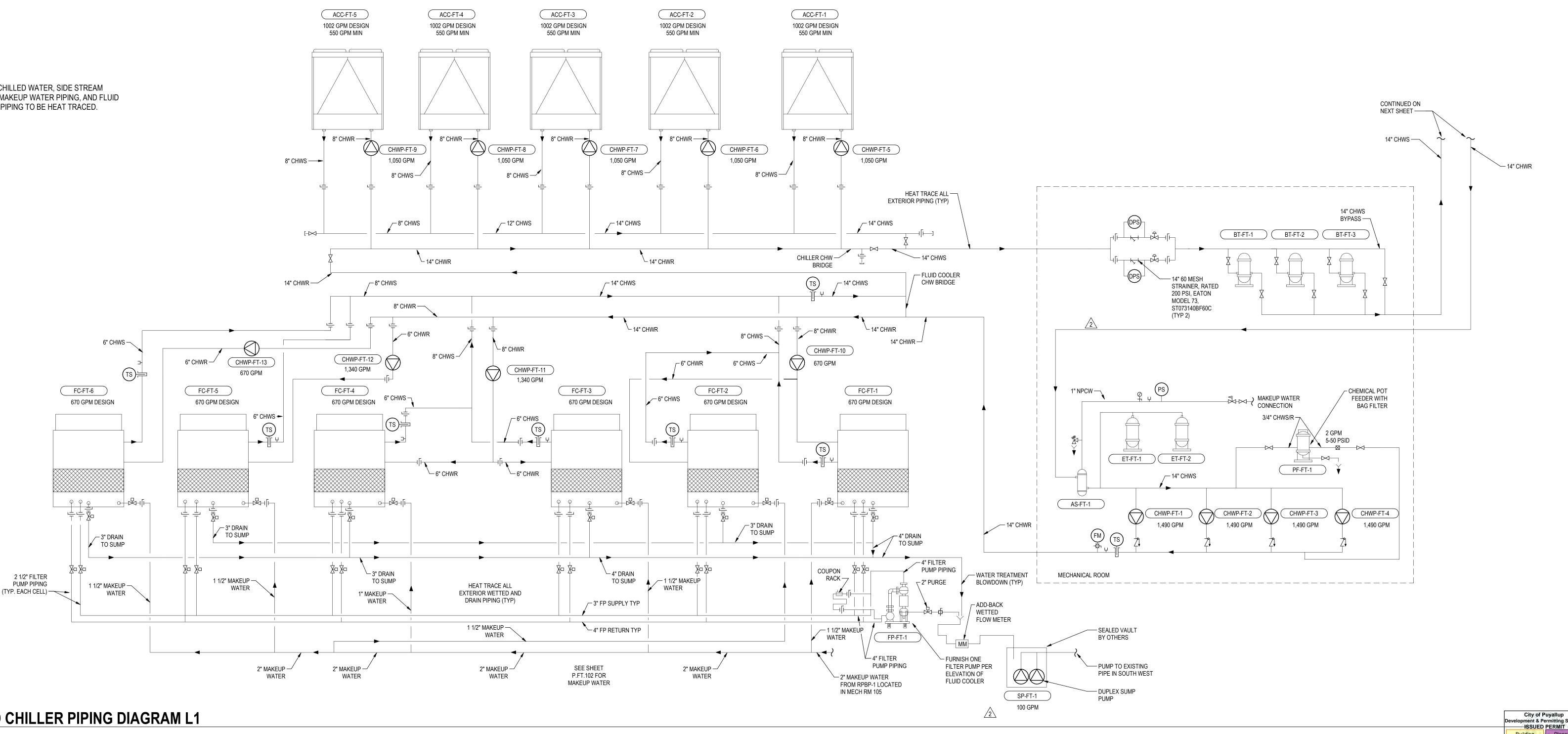
**EXPANSION TANK W/ FILL FT** 








### SEQUENCE OF OPERATIONS


1.0 CONTROLS GENERAL



- FOR THE FACILITY, AND USE WATER AS THE HEAT TRANSFER MEDIUM. PROVISIONS TO PROVIDE FREEZE PROTECTION SHALL BE INCORPORATED BY THE DESIGN, CONTRACTING AND CONTROLS TEAMS. SEE FREEZE PROTECTION SEQUENCES BELOW. CHILLED WATER DISTRIBUTION SYSTEM a. THE CHILLED WATER PRODUCED WILL BE DISTRIBUTED TO A FUTURE TENANT INCLUDING
- RACK COOLED EQUIPMENT. CHILLED WATER DISTRIBUTION PUMPS (CHWP-FT-1-1 THRU CHWP-FT-1-4) ARE PIPED IN A PARALLEL ARRANGEMENT DOWNSTREAM OF THE FLUID COOLERS. EACH MAIN DISTRIBUTION PUMP HAS THE SAME FLOW CAPACITY, AND THE ARRANGEMENT IS DESIGNED TO PROVIDE MAXIMUM FLOW CAPACITY TO THE BUILDING WITH (3) DISTRIBUTION PUMPS OPERATING IN A LEAD-LAG-STANDBY SEQUENCE. AT LEAST ONE PUMP SHALL OPERATE CONTINUOUSLY. b. THE SECONDARY DISTRIBUTION PUMPS ARE CONTROLLED BY THE BAS. THE BACS
- MODULATES THE SPEED OF THE LEAD SECONDARY PUMP TO MAINTAIN A CONSTANT DIFFERENTIAL PRESSURE SETPOINT INITIALLY 25 PSI (ADJ) ACROSS THE CHILLED WATER LOOP OR OPERATES AT MINIMUM SPEED PER BELOW.

**GENERAL NOTES:** 

1. ALL EXTERIOR CHILLED WATER, SIDE STREAM FILTER PIPING, MAKEUP WATER PIPING, AND FLUID COOLER DRAIN PIPING TO BE HEAT TRACED.



**FT AIR-COOLED CHILLER PIPING DIAGRAM L1** M.FT.601 NTS

i. THE DIFFERENTIAL PRESSURE SETPOINT SHALL BE ADJUSTABLE AND DETERMINED BY THE TEST AND BALANCE TECHNICIAN WITH A FULL FLOW TEST, AND THE BYPASS FULLY CLOSED.

- c. ONLY IF ONE SECONDARY DISTRIBUTION PUMP IS AT MINIMUM SPEED (30HZ) 50% FULL SPEED (ADJ), DOES THE BAS MODULATE THE BYPASS TO MAINTAIN THE PRIMARY DIFFERENTIAL PRESSURE SETPOINT ACROSS THE CHILLED WATER LOOP. i. THE MINIMUM PUMP SPEED SETPOINT SHALL BE DETERMINED BY THE TEST AND BALANCE TECHNICIAN BY CLOSING ALL SYSTEM VALVES AND OPERATING THE BYPASS VALVE TO MAINTAIN THE DIFFERENTIAL DETERMINED ABOVE. THE MINIMUM
- PUMP SPEED SETPOINT SHALL BE THE SPEED AT WHICH (1) PUMP MAINTAINS THE SCHEDULED MINIMUM PUMP FLOW AS TESTED IN THIS CONDITION. d. IF THE LEAD SECONDARY DISTRIBUTION PUMP IS AT (57HZ) 95% MAXIMUM SET SPEED (ADJ), THEN THE BAS ENABLES THE LAG PUMP. THE LAG PUMP SHALL START WITH THE MINIMUM SPEED COMMAND AND RAMP UP TO THE SPEED OF THE LEAD PUMP AT A RATE OF 10 HZ PER MINUTE. ONCE THE LAG PUMP IS WITHIN 1 HZ OF THE LEAD PUMP THE TWO
- SHALL BE PROVIDED THE SAME SPEED SIGNAL TO MAINTAIN THE DIFFERENTIAL PRESSURE SETPOINT ACROSS THE CHILLED WATER LOOP. E. IF (2) DISTRIBUTION PUMPS ARE COMMANDED TO OPERATE TO MAINTAIN DIFFERENTIAL PRESSURE SETPOINT AND BOTH ARE AT OR BELOW (42HZ) 70% MAXIMUM SET SPEED (ADJ), THEN THE BAS MODULATES OTHER PUMPS AND DISABLES ONE LAG PUMP. THE LAG PUMP SHALL REDUCE TO THE MINIMUM SPEED BY RAMPING DOWN TO THE MINIMUM SPEED AT A RATE OF 10 HZ PER MINUTE, AND THEN BE DISABLED. THE LEAD PUMP SHALL CONTINUOUSLY MODULATE TO MAINTAIN THE PRIMARY DIFFERENTIAL PRESSURE
- SETPOINT ACROSS THE CHILLED WATER LOOP. IF (3) DISTRIBUTION PUMPS ARE COMMANDED TO OPERATE TO MAINTAIN DIFFERENTIAL PRESSURE SETPOINT AND ALL ARE AT OR BELOW (48HZ) 80% MAXIMUM SET SPEED (ADJ), THEN THE BAS MODULATES OTHER PUMP AND DISABLES ONE LAG PUMP. THE LAG PUMP SHALL REDUCE TO THE MINIMUM SPEED BY RAMPING DOWN TO THE MINIMUM SPEED AT A RATE OF 10 HZ PER MINUTE, AND THEN BE DISABLED. THE LEAD PUMP SHALL CONTINUOUSLY MODULATE TO MAINTAIN THE PRIMARY DIFFERENTIAL PRESSURE
- SETPOINT ACROSS THE CHILLED WATER LOOP. g. THE STANDBY PUMP SHALL BE COMMANDED OFF IN THE BAS. IF THE LEAD PUMP FAILS THE BACS WILL ENABLE ONE LAG PUMP AS THE LEAD PUMP, AND THE FAILED PUMP SHALL BECOME THE STANDBY PUMP. IF THE LAG PUMP FAILS THE BACS WILL ENABLE THE STANDBY PUMP AS THE LAG PUMP, AND THE FAILED PUMP SHALL BECOME THE STANDBY PUMP. PUMP FAILURE SHALL BE DETERMINED BY THE PARAMETERS AND SIGNALS ON THE j. VFD. OR IF THE COMMANDED ON CONDITION DOES NOT MATCH STATUS. AN IN-HAND ALARM SHALL BE GENERATED IF NOT IN AUTO.
- n. SECONDARY WATER FLOW METER IS FOR MONITORING ONLY. CHILLERS (ACC-FT-1-1 THRU ACC-FT-1-5) a. THE FIVE AIR COOLED CHILLERS SHALL OPERATE IN LEAD-LAG-STANDBY OPERATION. ). EACH CHILLER SHALL BE ASSIGNED A STAGE (1 TO 5), THE CHILLER(S) ASSIGNED A STAGE 1 SHALL BE THE LEAD CHILLER, AND THE CHILLER ASSIGNED TO STAGE 5 SHALL BE THE STANDBY CHILLER. THE STAGES OF CHILLERS SHALL BE ADJUSTABLE AT THE OPERATOR WORKSTATION, EDITS SHALL NOT BE ALLOWED IF THERE IS NO STAGE 1 OR STAGE 5 CHILLER, I.E. THERE SHALL ALWAYS BE A LEAD CHILLER AND THERE SHALL ALWAYS BE A
- STANDBY CHILLER. c. TO PREVENT AN OVERLOADED POWER CONDITIONS A MAXIMUM OF FOUR CHILLERS SHALL BE ENABLED AT ANYTIME. ONCE PER WEEK THE ASSIGNMENT OF STAGES SHALL SWITCH. THE CHILLER ASSIGNED STAGE 4 SHALL BECOME THE CHILLER WITH THE MOST RUNTIME, AND AFTERWARDS THE STAGE 5 (STANDBY) CHILLER SHALL SWITCH TO BECOME THE STAGE 4 CHILLER. THIS SWITCH SHALL NOT OCCUR IF A GENERATOR IS OPERATING DURING THE TIME SCHEDULED FOR THE CHILLERS TO SWITCH. THE PUMP FOR THE STANDBY CHILLER SHALL OPERATE 2 MINUTES (ADJ) PRIOR TO DISABLING THE STAGE 4 CHILLER. DURING TESTING DETERMINE THE OPTIMUM DELAY BETWEEN SHUTDOWN TO. MINIMUM THE TIME BETWEEN DISABLING CHILLER 4 AND ENABLING CHILLER 5.
- d. IF A POWER OUTAGE OCCURS, ONCE POWER IS CONFIRMED ON AGAIN, THE BAS SHALL RETURN TO THE STAGE OF OPERATION THAT IT WAS IN PRIOR TO THE POWER OUTAGE (I.E. ALL STAGES 1-4 STAGES) SIMULTANEOUSLY WITHOUT ADDITIONAL DELAYS. e. IF ANY CHILLER HAS A CRITICAL FAILURE, INCLUDING THE STATUS DOES NOT MATCH THE COMMAND, OR THERE IS AN ASSOCIATED CHILLER PUMP FAILURE, BUT NOT LOSS OF COMMUNICATION, THEN THE FAILED CHILLER SHALL BE DISABLED, AND THE STANDBY

CHILLER SHALL AUTOMATICALLY BE ASSIGNED AS THE STAGE 4 CHILLER, AND ASSIGNMENTS SHALL BE MODIFIED WITHOUT STARTING OR STOPPING CHILLERS. A CHILLER FAILURE ALARM IS GENERATED. THE BAS SHALL NOT BE ABLE TO ASSIGN A CHILLER A STAGE OF 1 THOUGH 4 IF IT HAS HAD A CRITICAL FAILURE, 1 CHILLER SHALL ALWAYS BE ASSIGNED STAGE 5 AS A PRIORITY TO ANY OTHER ASSIGNMENTS... WHENEVER A CHILLER IS ENABLED THEN START THE ASSOCIATED PUMP 2 MINUTES (ADJ) PRIOR TO ENABLING THE CHILLER, AND CONTINUE OPERATION OF THE ASSOCIATED PUMP FOR 5 MINUTES (ADJ) AFTER DISABLING THE CHILLER. EACH CHILLER HAS TWO COMPRESSORS. THE STATUS OF THESE COMPRESSORS SHALL d. BE USED FOR CONTROL. BAS SHALL PROVIDE CURRENT SENSOR (FOR EACH AS APPLICABLE OR OTHER HARD-WIRED MEANS AS DIRECTED BY THE CHILLER MANUFACTURER TO DETECT STATUS, STATUS SHALL BE AVAILABLE BY OTHER MEANS IN ADDITION TO OVER THE BACNET CONNECTION. COORDINATE WITH CHILLER MANUFACTURER FOR INSTALLATION OF CURRENT SENSORS. THE BAS SHALL START THE LEAD (STAGE 1) CHILLER(S) IF ANY OF THE FOLLOWING ARE TRUE FOR 15 MINUTES (ADJ): i. IF THE SECONDARY CHILLED WATER TEMPERATURE DOWNSTREAM OF THE FLUID COOLERS IS GREATER THAN 65°F (ADJ).

ii. IF THE SECONDARY CHILLED WATER TEMPERATURE DOWNSTREAM OF THE FLUID a COOLERS IS GREATER THAN 62.5°F (ADJ), AND ALL OPERATIONAL FLUID COOLER FANS ARE ABOVE 57HZ/95% (ADJ). FAILURES OF ANY INDIVIDUAL FLUID COOLER SHALL BE NOT BE CONSIDERED OPERATIONAL. iii. IF THE MEASURED AMBIENT WET BULB TEMPERATURE IS GREATER THAN 56°F (ADJ). iv. IF A CRITICAL FAILURE ALARM HAS OCCURRED WITH THE FLUID COOLERS SYSTEM (ADJ). THERE SHALL BE NO DELAY ON THIS CONDITION, AND THE LEAD CHILLER SHALL START PER b. ABOVE. THE BAS SHALL STAGE ON A LAG CHILLER (STAGE 2-4) CHILLER(S) IF ANY OF THE FOLLOWING ARE TRUE FOR 15 MINUTES (ADJ):

i. IF THE SECONDARY CHILLED WATER SUPPLY TEMPERATURE DOWNSTREAM OF THE CHILLERS IS GREATER THAN 65°F (ADJ). ii. IF THE SECONDARY CHILLED WATER SUPPLY TEMPERATURE DOWNSTREAM OF THE CHILLERS IS GREATER THAN 62.5°F (ADJ), AND ALL (ADJ) AVAILABLE COMPRESSORS ON ENABLED CHILLERS ARE OPERATING. iii. IF THE CURRENT STATUS FOR THE HIGHEST STAGE OF OPERATING CHILLER IS NEAR MAXIMUM (95%). THE BAS SHALL STAGE OFF A LAG CHILLER (STAGES 2-4) IF ANY OF THE FOLLOWING ARE TRUE FOR 15 MINUTES (ADJ): i. IF THE TOTAL OPERATIONAL COMPRESSORS IS 2 (ADJ) LESS THAN THE TOTAL

AVAILABLE ON OPERATING CHILLERS, AND SECONDARY CHILLED WATER TEMPERATURE DOWNSTREAM OF THE CHILLERS IS LESS THAN 61°F (ADJ). ii. IF THE SECONDARY CHILLED WATER RETURN TEMPERATURE IS BELOW 65°F (ADJ), AND THE MEASURE CHILLED WATER TEMPERATURE WITH ALL OPERATING CHILLERS IS LESS THAN 65°F (ADJ). THE BAS SHALL ENABLE FLUID COOLERS (IMMEDIATE) AND STOP THE LEAD CHILLER AFTER A 15 MINUTE (ADJ) DELAY, IF NO CRITICAL FAILURE OF THE FLUID COOLER SYSTEM (INCLUDE NO THE NORMAL POWER FAILURES) EXISTS, AND ANY OF THE FOLLOWING ARE TRUE FOR 15 MINUTES (ADJ), AND:

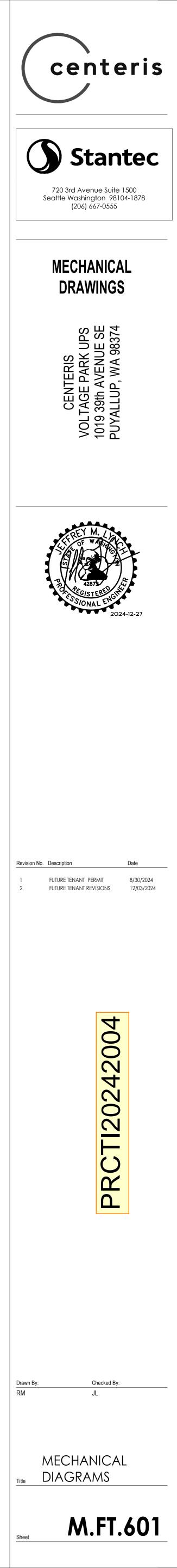
i. THE CHILLER(S) HAVE NOT OPERATED ANY COMPRESSORS FOR 30 MINUTES, AND THE CHILLED WATER SUPPLY TEMPERATURE IS WITHIN 1 °F (ADJ) OF SETPOINT. ii. IF THE MEASURED AMBIENT WET BULB TEMPERATURE IS BELOW THAN 53°F (ADJ), AND THERE IS NO ACTIVE FLUID COOLER SYSTEM ALARM. THE BAS SHALL OPERATE CHILLERS TO MAINTAIN THE SUPPLY WATER SETPOINT AT A CONSTANT CHILLED WATER TEMPERATURE OF 60°F (ADJ). m. THE BAS SHALL COMMUNICATE WITH EACH CHILLER, WITH AN BACNET MSTP CONNECTION. FLUID COOLER (FC-FT-1-1 THRU FC-FT-1-6)

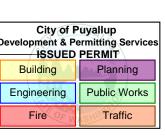
. THE FLUID COOLER SHALL HAVE STANDALONE CONTROLS THAT MONITOR WATER LEVEL AND FILL THE SYSTEM, AND ALSO OPEN A DRAIN VALVE UPON HIGH CONDUCTIVITY LEVEL. m THIS SYSTEM SHALL BE COORDINATED WITH THE CHEMICAL TREATMENT SYSTEM PROVIDED WITH THE FLUID COOLERS TO OPERATE WITHOUT BAS. THE BAS SHALL OPERATE THE (6) FLUID COOLERS IN LEAD LAG STAGES OF OPERATION (1- IS ABOVE 30 PSI (ADJ), THE BAS ACTIVATES A LOW OR HIGH LOOP PRESSURE ALARM. 4), AND TO START/STOP BASIN PUMPS AND MODULATE FLUID COOLER FAN SPEED TO

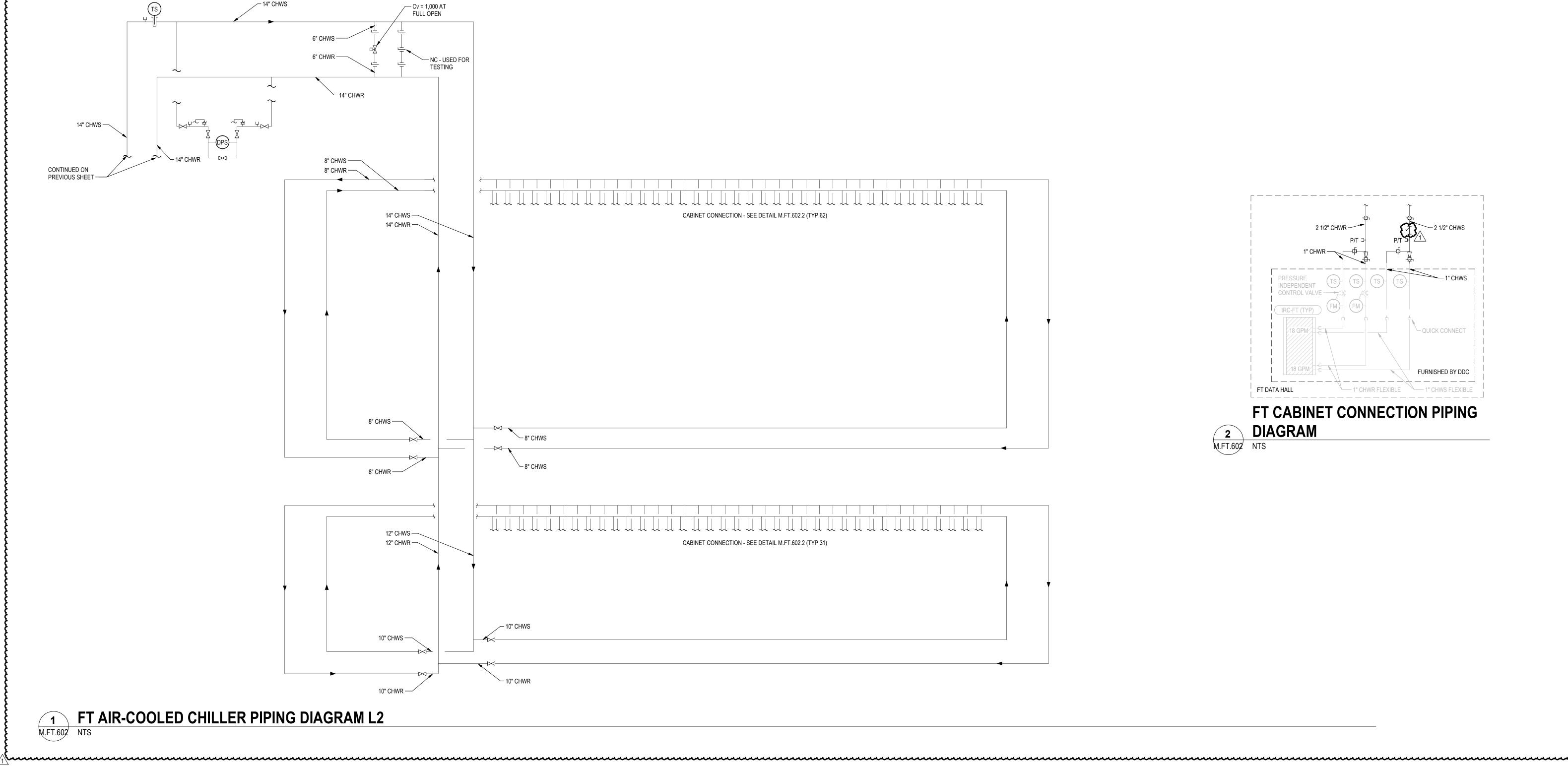
c. START AND STOP EACH PRIMARY PUMP AS SIMULTANEOUSLY WITH ENABLING THE FL PUMPS OPERATE AT A CONSTANT SPEED. OPERATED AS ONE (STAGE 2, INITIALLY). OPERATED AS ONE (STAGE 4, INITIALLY). OPERATING FLUID COOLERS. THE BAS SHALL START THE BASIN PUMPS e. THE BAS SHALL MONITOR LEAVING CHILLE AND BASIN WATER HIGH AND LOW LEVELS THE BAS SHALL START THE LEAD (STAGE TRUE FOR 15 MINUTES (ADJ), AND THE CH FC-FT-1-5 OR FC-FT-1-6 SHALL BE ASSIGNE IF THE SECONDARY RETURN CHILL FLUID COOLERS IS 5 °F (ADJ) GREA ii. IF THE MEASURED AMBIENT WET B

PUMPS IF ANY OF THE FOLLOWING ARE TF STAGE IS 3 OR LESS (ADJ), FLUID COOLER 2, INITIALLY. FLUID COOLERS FC-FT-1-6 (ST IF THE SECONDARY RETURN CHILL FLUID COOLERS IS ABOVE 55 °F (AD ABOVE 90% FULL SPEED. h. THE BAS SHALL STAGE UP TO STAGE 4 THE ANY OF THE FOLLOWING ARE TRUE FOR 1

CHILLER SEQUENCE THAT IS GREAT THE BAS SHALL STOP THE LEAD FLUID CO FOLLOWING ARE TRUE FOR 15 MINUTES (A i. IF THE MEASURED AMBIENT WET B AND BOTH CHILLERS DO NOT HAVE k. IF THERE IS AN ALARM THE BAS SHALL NO FLUID COOLERS AS SET UP IN COMMISSIO THE BAS SHALL OPERATE THE LEAD AND


CONNECTION THE BAS MONITORS SYSTEM PRESSURE. IF SYSTEM PRESSURE FALLS BELOW 20 PSI (ADJ) OR


MAINTAIN SECONDARY SUPPLY WATER TEMPERATURE DOWNSTREAM OF THE FLUID	F.
COOLERS.	
START AND STOP EACH PRIMARY PUMP ASSOCIATED WITH EACH FLUID COOLER	
SIMULTANEOUSLY WITH ENABLING THE FLUID COOLER FAN(S), AND BASIN PUMP. PRIMARY	G.
PUMPS OPERATE AT A CONSTANT SPEED. FLUID COOLERS FC-FT-1-1 & FC-FT-1-2 ARE	
OPERATED AS ONE (STAGE 2, INITIALLY). FLUID COOLERS FC-FT-1-3 & FC-FT-1-4 ARE	
OPERATED AS ONE (STAGE 4, INITIALLY). THE FAN SPEED SHALL BE THE SAME FOR ALL	
OPERATING FLUID COOLERS.	Η.
THE BAS SHALL START THE BASIN PUMPS AND MODULATE THE FLUID COOLER FAN(S)	
SPEED.	
THE BAS SHALL MONITOR LEAVING CHILLED WATER TEMPERATURE, BASIN TEMPERATURE	
AND BASIN WATER HIGH AND LOW LEVELS ON EACH FLUID COOLER.	
THE BAS SHALL START THE LEAD (STAGE 1) FLUID COOLER IF ANY OF THE FOLLOWING ARE	
TRUE FOR 15 MINUTES (ADJ), AND THE CHILLER STAGE IS 3 OR LESS (ADJ), FLUID COOLERS	
FC-FT-1-5 OR FC-FT-1-6 SHALL BE ASSIGNED AS STAGE 1:	
i. IF THE SECONDARY RETURN CHILLED WATER TEMPERATURE UPSTREAM OF THE	
FLUID COOLERS IS 5 °F (ADJ) GREATER THAN AMBIENT WETBULB TEMPERATURE.	
ii. IF THE MEASURED AMBIENT WET BULB TEMPERATURE IS LESS THAN 55⁰F (ADJ).	
THE BAS SHALL STAGE UP TO STAGES (2&3) THE LAG FLUID COOLERS AND ASSOCIATED	
PUMPS IF ANY OF THE FOLLOWING ARE TRUE FOR 15 MINUTES (ADJ) AND THE CHILLER	Ι.
STAGE IS 3 OR LESS (ADJ), FLUID COOLERS FC-FT-1-1 & FC-FT-1-2 ARE OPERATED AS STAGE	
2, INITIALLY. FLUID COOLERS FC-FT-1-6 (STAGE 3 INITIALLY):	
i. IF THE SECONDARY RETURN CHILLED WATER TEMPERATURE UPSTREAM OF THE	
FLUID COOLERS IS ABOVE 55 °F (ADJ) AND THE FLUID COOLER FAN SPEEDS ARE	
ABOVE 90% FULL SPEED.	
THE BAS SHALL STAGE UP TO STAGE 4 THE LAG FLUID COOLER AND ASSOCIATED PUMPS IF	
ANY OF THE FOLLOWING ARE TRUE FOR 15 MINUTES (ADJ) AND THE CHILLER STAGE IS 2	
OR LESS (ADJ), FLUID COOLERS FC-FT-1-3 & FC-FT-1-4 ARE OPERATED AS STAGE 4,	
INITIALLY.:	
i. IF THE SECONDARY RETURN CHILLED WATER TEMPERATURE UPSTREAM OF THE	
FLUID COOLERS IS ABOVE 55 °F (ADJ) AND THE FLUID COOLER FAN SPEEDS ARE	
ABOVE 90% FULL SPEED.	J.
THE BAS SHALL STAGE DOWN THE LAG FLUID COOLER AND ITS ASSOCIATED PUMP AFTER A	
15 MINUTE DELAY IF ANY OF THE FOLLOWING ARE TRUE	
i. AFTER A 15 MINUTES (ADJ) DELAY THE FAN SPEED OF FLUID COOLERS IS LESS THAN	
40% (ADJ), AND THE CHILLED WATER SUPPLY TEMPERATURE IS LESS THAN	
SETPOINT BY 1ºF.	
ii. WITHOUT DELAY, IF THE BAS REQUIRES THAT A CHILLER STAGE BE ENABLED IN THE	
CHILLER SEQUENCE THAT IS GREATER THAN 3 PER (g.) OR GREATER THAN 2 PER	
(h.).	
THE BAS SHALL STOP THE LEAD FLUID COOLER AFTER A 15 MINUTE DELAY IF ANY OF THE	
FOLLOWING ARE TRUE FOR 15 MINUTES (ADJ):	
i. IF THE MEASURED AMBIENT WET BULB TEMPERATURE IS ABOVE THAN 53°F (ADJ),	
AND BOTH CHILLERS DO NOT HAVE AN ACTIVE ALARM.	
IF THERE IS AN ALARM THE BAS SHALL NOT REVISE THE STAGE ASSIGNMENTS OF THE	
FLUID COOLERS AS SET UP IN COMMISSIONING.	
THE BAS SHALL OPERATE THE LEAD AND THE LAG FLUID COOLER USING EQUIVALENT	
SIGNALS TO MAINTAIN THE SECONDARY SUPPLY WATER SETPOINT DOWNSTREAM OF THE	
FLUID COOLERS AT A CONSTANT CHILLED WATER TEMPERATURE OF 60°F (ADJ) USING THE	
FOLLOWING STAGES:	
i. ENABLE THE BASIN WATER PUMP.	K.
ii. AFTER 5 MINUTE DELAY AND A CONTINUED RISE IN CHILLED WATER TEMPERATURE	
START FLUID COOLER FANS AT 6 HZ.	
iii. UTILIZE A PI LOOP TO FURTHER RAMP UP FANS WITH A CONTINUED RISE IN SUPPLY	
SECONDARY CHILLED WATER TEMPERATURE.	
iv. IF THE PI LOOP HAS THE FLUID COOLER FAN AT 6 HZ FOR 15 MINUTES, DISABLE FAN.	
THE BAS SHALL COMMUNICATE WITH EACH FLUID COOLER'S VFD OVER AN RS485 BACNET	

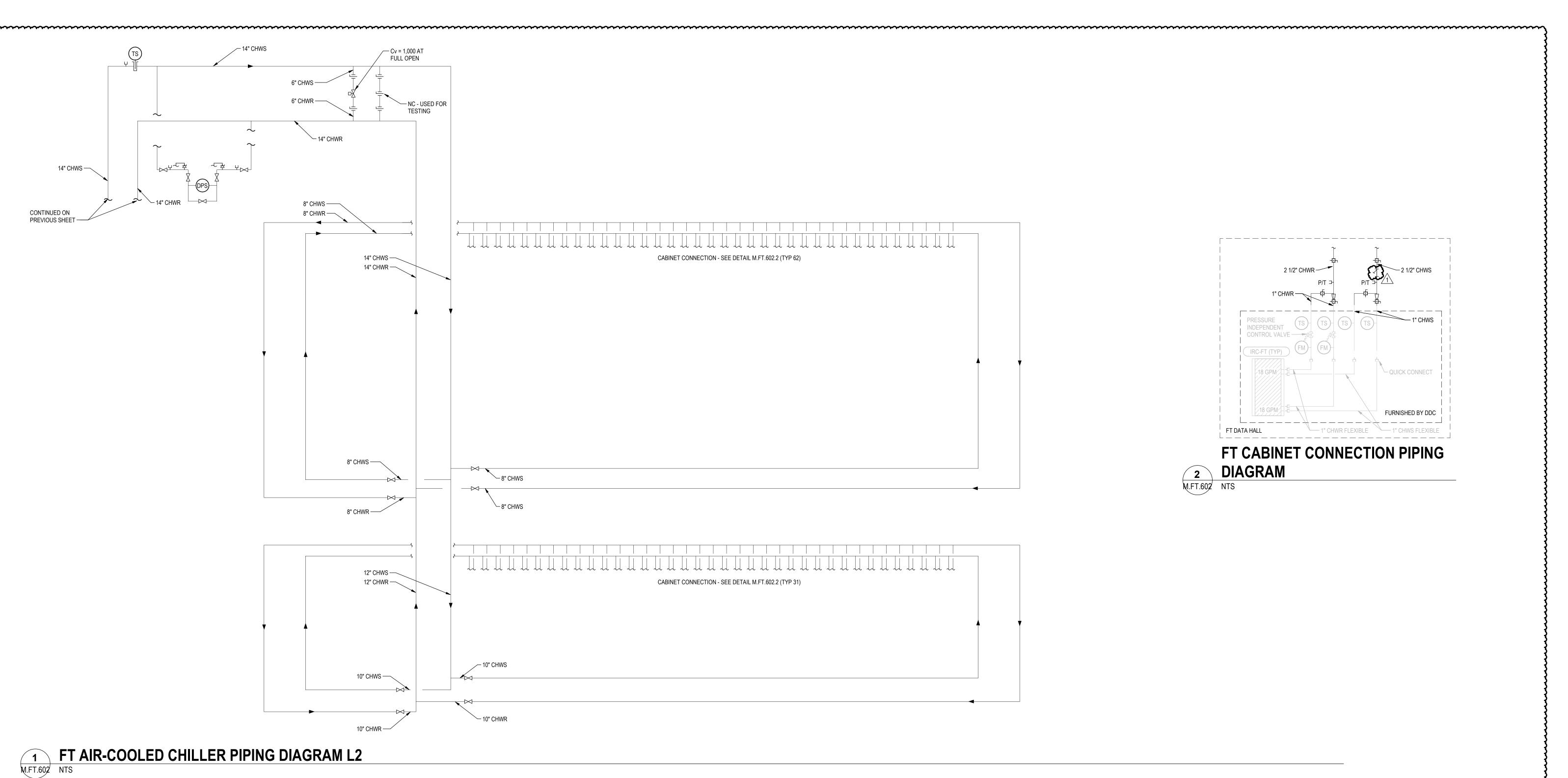

THE OPERATION OF THE SIDE STREAM FILTER PUMP AND PUMP SHALL OPERATE ON A TIMER INITIALLY CONTINUOUSLY. THE SYSTEM THAT WOULD OPEN THE DRAIN VALVE ON THE ASSOCIATED FILTER ASSEMBLY SHALL BE MANUAL. THE BAS SHALL OPEN SWEEPER SYSTEM CONTROL VALVES (TYPICAL OF 2 PER CELL) TO ONE

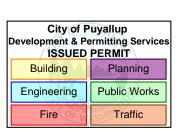
CELL AT A TIME, AND CYCLE THROUGH TOWERS EVERY 2 HOURS. IT SHALL OPEN THE NEXT CELL VALVES PRIOR TO CLOSING VALVES ON THE VALVES ON THE PREVIOUS CELL. CLOSE VALVES AFTER A DELAY OF INITIALLY ONE MINUTE. FREEZE PROTECTION SEQUENCE

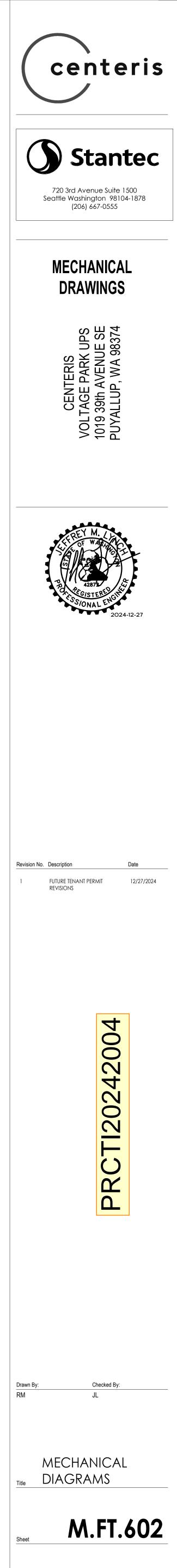
- a. IF THE OUTSIDE AIR TEMPERATURE IS BELOW 32°F (ADJ), THE BAS SHALL OPERATE ALL PUMPS EXCEPT FLUID COOLER SPRAY PUMPS THAT WERE TO BE CONTROLLED OFF PER ABOVE AT 30 HZ/50% (ADJ) FULL SPEED. ENABLE FILTER FEEDER PUMPS AT FULL SPEED. b. THE FLUID COOLER SHALL HAVE STANDALONE CONTROLS THAT MONITOR BASIN WATER TEMPERATURE, AND CONTROL THE STAGES AND SAFETIES ON THE ELECTRIC BASIN
- HEATERS. THIS SYSTEM SHALL OPERATE WITHOUT BAS. c. EACH HEAT TRACE SYSTEM CIRCUIT SHALL BE PROVIDED WITH A FAULT DETECTION
- MONITOR. IF A CURRENT SENSOR IS USED, IT SHALL BE CALIBRATED FOR A LINEAR RESPONSE IF ALSO AUTOREGULATING HEAT TRACE IS USED. AN ALARM AT LOW CURRENT SIGNAL SHALL BE GENERATED AT 32°F (ADJ) AT LOW SIGNAL AND AT A HIGHER LOW CURRENT SIGNAL AT 20°F (ADJ) AMBIENT FOR EACH CIRCUIT. STRAINER VALVE SEQUENCE
- a. ONE STRAINER CONTROL VALVE SHALL BE MANUALLY OPERATED AS THE ONE CLOSED AT THE WORKSTATION, IF MANUALLY ACTUATED CLOSED THE OTHER STRAINER VALVE SHALL OPERATE OPEN FIRST. THERE SHALL BE A POP-UP INDICATING ARE YOU SURE YOU WANT TO DO THIS. b. THE SYSTEM SHALL AUTOMATICALLY OPEN A SECOND STRAINER CONTROL VALVE IF THE
- OPEN STRAINER HAS A HIGH DIFFERENTIAL PRESSURE, 0.5 PSI OR ABOVE INITIALLY. THERE SHALL BE A MANUAL MAINTENANCE BYPASS THAT INHIBITS THE OPENING OR CLOSING OF ANY VALVES. DETERMINE WITH OPERATOR AND CLEANEST BEST OPERATION IF HAVING THE SYSTEM WITH THE HIGH DIFFERENTIAL PRESSURE CLOSE AFTER OPENING THE SECOND VALVE IS NECESSARY OR MANUAL OPERATION FROM THE WORKSTATION IS BEST.
- CHILLED WATER SYSTEM ALARM LIST a. HIGH SUPPLY CHILLED WATER TEMPERATURE b. HIGH RETURN CHILLED WATER TEMPERATURE
- c. LOW FLUID COOLER BASIN TEMPERATURE d. HIGH CHILLED WATER FILL PRESSURE
- e. LOW CHILLED WATER FILL PRESSURE f. HIGH FLUID COOLER BASIN WATER LEVEL
- g. LOW FLUID COOLER BASIN WATER LEVEL h. HEAT TRACE FAILURE ALARM
- i. PUMP FAILURE ALARM CHILLER FAILURE ALARM k. CHILLER COMPRESSOR FAILURE ALARM
- I. CHILLER LOW FLOW ALARM m. CHILLER CONDENSER FAN FAILURE ALARM
- n. FLUID COOLER FAN ALARM
- o. DIFFERENTIAL PRESSURE OUT OF RANGE ALARM p. DISTRIBUTION WATER FLOW OUT OF RANGE ALARM q. HIGH STRAINER DIFFERENTIAL PRESSURE
- r. DISTRIBUTION WATER FLOW OUT OF RANGE ALARM AIR HANDLING UNIT (AHU-FT-1)
- a. THE NEW AIR HANDLING UNIT SERVES THE L2 FUTURE TENANT SPACE. THE UNIT IS SIZED FOR N CAPACITY WITH TWO EQUAL INDEPENDENT SIDES FOR REDUDANCY. THE UNIT HAS A CHILLED WATER COIL AND ELECTRIC REHEAT COIL PER SIDE.
- b. THE AIR HANDLING UNIT SHALL BE COMMANDED ON BY THE BAS CONTINUOUSLY. WHEN THE UNIT IS SHUTDOWN THE FANS ARE OFF AND VALVES ARE CLOSED. CONDENSATE PUMPS AND CONDENSATE DETECTION SYSTEMS SHALL NOT BE DISABLED. SHUTDOWN CAN OCCUR FOR ANY OF THE FOLLOWING, AND GENERATES AN ALARM: i. MANUAL SHUTDOWN.
- ii. SCHEDULED MAINTENANCE. c. UPON ENABLING THE AIR HANDLING UNIT THE FAN MAXIMUM SPEED SHALL BE 67% (ADJ) TO PROVIDE 10,000 CFM EACH PER AHU SIDE. FAN MINIMUM SPEED WITH THE VFD'S SHALL
- BE 12% (ADJ) OF FULL FLOW. d. THE BAS SHALL DEVELOP A COOLING DEMAND SIGNAL USED TO MODULATE THE CHILLED WATER VALVE TO MAINTAIN THE TEMPERATURE OF THE SPACE HIGHEST ABOVE SETPOINT AT 75°F (OR AS INDIVIDUALLY SET AT THE BAS, ADJ) IN THE SERVER ROOM. e. DISCHARGE AIR TEMPERATURE IS FOR MONITORING ONLY.
- f. LEAVING WATER TEMPERATURE IS FOR MONITORING ONLY. g. THE BAS SHALL CONNECT TO THE AHU WITH A RS485 MODBUS RTU CONNECTION.









- 1. ALL EXTERIOR CHILLED WATER, SIDE STREAM FILTER PIPING, MAKEUP WATER PIPING, AND FLUID COOLER DRAIN PIPING TO BE HEAT TRACED.
- GENERAL NOTES:


id did	 t dd	, dd	dd	તેતે તે	 rt drt		AA AA BINET CC				പപ			th th	. dd	નેને તે	. dd	તત	dd a	નન ન	~		
						CAE	SINET CC	JNNECT	1011 - 31		.002.2	(110)	2)										
																							Y
HWS	 				 					 							 						
HWS																							

١	Λ	/;	S	,	
			_		

CABINET CONNECTION - SEE DETAIL M.FT.602.2 (TYP 31)	





