

Calculations required to be provided by the Permittee on site for all Inspections

MiTek, Inc.

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571

Re: 3907862

MKM LEGACY EAST TOWN CROSSING BLD G

The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Builders FirstSource (Arlington, WA).

Pages or sheets covered by this seal: R81482205 thru R81482267

My license renewal date for the state of Washington is September 28, 2025.

March 26,2024

Zhao, Xiaoming

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	A01	Common	12	1	R81482205 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:44 Page: 1 ID:8NsSnh4PRCeCOTunK_MfWLzZ3bk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f PRMU20240404

	8-1-0	15	-7-8	23-8-8	
	8-1-0	7-	-6-8	8-1-0	
le = 1:47					
,					

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.54	Vert(LL)	-0.14	8-10	>999	240	MT20	185/148
TCDL	15.0	Lumber DOL	1.15	BC	0.78	Vert(CT)	-0.30	6-8	>942	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.16	Horz(CT)	0.07	6	n/a	n/a		
BCDL	10.0	Code	IBC2018/TPI2014	Matrix-SH							Weight: 85 lb	FT = 10%

LL	JN	ΛE	ЗE	ER

Sca

TOP CHORD	2x4 HF N	0.2				
BOT CHORD	2x4 HF N	0.2				
WEBS	2x4 HF N	0.2				
BRACING						
TOP CHORD	Structura	l wood sheathing directly applied or				
	3-3-7 oc j	ourlins.				
BOT CHORD	RD Rigid ceiling directly applied or 10-0-0 oc					
	bracing.					
REACTIONS	(size)	2=0-3-8, 6=0-3-8				
	Max Horiz	2=-73 (LC 13)				
	Max Uplift	2=-43 (LC 12), 6=-43 (LC 13)				
	Max Grav	2=1296 (LC 2), 6=1296 (LC 2)				
FORCES	(lb) - Max	imum Compression/Maximum				
	Tension					
TOP CHORD	1-2=0/34,	2-3=-2098/105, 3-4=-1895/116,				
	4-5=-189	5/116, 5-6=-2098/105, 6-7=0/34				
BOT CHORD	2-10=-66/	/1812, 8-10=0/1205, 6-8=-39/1812				

39/1812 4-8=-29/764, 5-8=-462/138, 4-10=-29/764, WFBS 3-10=-462/138 NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=110mph (3-second gust) 2) Vasd=87mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 11-10-4, Exterior(2R) 11-10-4 to 14-10-4, Interior (1) 14-10-4 to 24-8-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

- 5) All bearings are assumed to be HF No.2 crushing
 - capacity of 405 psi.
- Provide mechanical connection (by others) of truss to 6) bearing plate capable of withstanding 43 lb uplift at joint 2 and 43 lb uplift at joint 6.
- This truss is designed in accordance with the 2018 7) International Building Code section 2306.1 and
- referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

400 Sunrise Ave., Suite 270 Roseville CA 95661 916.755.3571 / MiTek-US.com

Job	Truss	Truss Type Qt Common Supported Gable 4		Ply	MKM LEGACY EAST TOWN CROSSING B	LD G
3907862	A02			1	Job Reference (optional)	R81482206
Builders FirstSource (Arlington, V	VA), Arlington, WA - 98223,	Run: 8.63 S Nov 1 20	Page: 1			

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:45 ID:NNRHEaOjJBvWWStnsSqlZqzZ3bK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f PRMU20240404

-1-0-0 1-0-0 24-8-8 11-10-4 23-8-8 1-0-0 11-10-4 11-10-4 4x5 ≠ 8 7 9 1<u>2</u> 6 [6 10 5 11 6-3-5 6-9-1 4 12 3 13 14 2 0-4-3 15 26 25 24 23 22 21 20 19 17 16 18 3x4 = 3x4 = 5x6 =

23-8-8	
--------	--

Scale = 1:47

Plate Offsets (X, Y): [20:0-3-0,0-3-0]

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		25.0	Plate Grip DOL	1.15		тс	0.08	Vert(LL)	n/a	-	n/a	999	MT20	185/148	
TCDL		15.0	Lumber DOL	1.15		BC	0.03	Vert(CT)	n/a	-	n/a	999			
BCLL		0.0*	Rep Stress Incr	YES		WB	0.09	Horz(CT)	0.00	14	n/a	n/a			
BCDI		10.0	Code	IBC201	8/TPI2014	Matrix-SH		()					Weight [,] 100 lb	FT = 10%	
BODE		10.0	0000	10020	0/11/12/0111	Maank Off			-				Wolght. Too lb	11 - 1070	—
L UMBER TOP CHORD BOT CHORD	2x4 HF N 2x4 HF N	o.2 o.2		В	OT CHORD	2-26=-34/78, 25-26= 23-24=-34/78, 22-23 19-21=-35/79, 18-19	=-34/78 3=-34/7 9=-35/7	6, 24-25=-34/7 8, 21-22=-34/ 9, 17-18=-35/	'8, '78, '79,	10) Pro- bea 2, 2	vide meo ring plat 5 lb uplif	chanica e capa t at joi	al connection (by ble of withstandir nt 20, 26 lb uplift	others) of truss to g 11 lb uplift at joint at joint 22, 25 lb	:
OTHERS	2x4 HF N	0.2				16-17=-35/79, 14-16	3=-35/7	9		upli	It at joint	23, 24	I b uplift at joint 2	4, 26 lb uplift at join	t
BRACING				V	/EBS	8-21=-138/16, 7-22=	=-172/5	5, 6-23=-158/	'57,	25,	21 lb up	lift at jo	oint 26, 27 lb uplif	t at joint 19, 24 lb	
TOP CHORD	Structura	I wood shea	athing directly applied	d or		5-24=-160/55, 4-25=	=-162/5	7, 3-26=-149/	63,	upin	it at joint	18, 26	b uplift at joint 1	7, 20 lb uplift at joint	t
	6-0-0 oc	ourlins.				9-20=-174/55, 10-19	9=-159	57,		108	and 1 ID	uplint a	t joint 14.		
BOT CHORD	Rigid ceil bracing.	Structural wood sheating directly applied of 0-0 oc purlins. NOTES Rigid ceiling directly applied or 10-0-0 oc bracing. 17=23-8-8, 14=23-8-8, 16=23-8-8, 19=23-8-8, 20=23-8-8, 21=23-8-8, 22=23-8-8, 20=23-8-8, 21=23-8				11-18=-160/55, 12-1 13-16=-149/63	17=-16	2/57,		11) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.					
REACTIONS	(size) Max Horiz Max Uplift Max Grav	2=23-8-8, 17=23-8-8 20=23-8-8 23=23-8-8 26=23-8-8 2=-73 (LC 2=-11 (LC (LC 13), 1 (LC 13), 2 (LC 12), 2 (LC 12), 2 (LC 12), 2 2=187 (LC 16=183 (L 20=214 (L 22=211 (L 24=199 (L 24=199 (L 26=183 (L	$\begin{array}{c} 14=23-8-8, \ 16=23-8, \\ 18=23-8-8, \ 19=23-4, \\ 21=23-8-8, \ 22=23-4, \\ 21=23-8-8, \ 22=23-4, \\ 38), \ 14=-1 \ (LC \ 9), \ 16 \ 7=-26 \ (LC \ 13), \ 18=-2 \ 9=-27 \ (LC \ 13), \ 20=-2 \ 2=-26 \ (LC \ 12), \ 23=-2 \ 4=-24 \ (LC \ 12), \ 23=-2 \ 4=-24 \ (LC \ 12), \ 25=-2 \ 6=-21 \ (LC \ 12), \ 25=-20 \ (LC \ 12), \ 25$	-8, 1 8-8, 1 8-8, 2 =-20 24 25 25 26 3), .), 4), 4), 5 (1), 6	 Unbalanced this design. Wind: ASCE Vasd=87mpl II; Exp B; En and C-C Con 1-10-4 to 11. Exterior(2N) right expose for members Lumber DOI Truss desig only. For stt see Standar or consult qu All plates are Gable requir Gable requir 	roof live loads have 7-16; Vult=110mph n; TCDL=4.2psf; BC closed; MWFRS (er ner(3E) -1-0-0 to 1- 10-4, Corner(3R) 1 14-10-4 to 24-8-8 z d; end vertical left a and forces & MWF .=1.60 plate grip DC ned for wind loads i uds exposed to winc d Industry Gable En ualified building desi e 2x4 MT20 unless o es continuous botto spaced at 2-0-0 oc.	been of CDL=6.0 Nvelope 10-4, E 1-10-4 one; ca and righ RS for DL=1.60 n the p I (norm id Deta gner as otherwi m chor	considered for ond gust))psf; h=25ft; C) exterior zon ixterior(2N) to 14-10-4, intilever left ai tt exposed;C-(C reactions shor) ane of the tru- al to the face) ils as applicab s per ANSI/TP se indicated. d bearing.	cat. e nd C wm; ss , sle, 21.	LOAD	(ASE(S)	Star	ndard	S ZHAO SHING	
FORCES	(lb) - Max Tension 1-2=0/34 4-5=-65/5 7-8=-75/1 10-11=-4 13-14=-6	2-3=-95/40 5-3=-95/40 5-6=-55/ 33, 8-9=-75 8/66, 11-12 8/28, 14-15	pression/Maximum), 3-4=-80/48, (73, 6-7=-56/101, 5/133, 9-10=-54/99, =-48/34, 12-13=-53/3 =0/34	7 8 30, 9	 This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and ai All bearings capacity of 4 	is been designed fo ad nonconcurrent w has been designed f in chord in all areas by 2-00-00 wide will by other members. are assumed to be 05 psi.	r a 10.0 ith any for a liv where fit betv HF No.) psf bottom other live load e load of 20.0 a rectangle veen the botto 2 crushing	ds. psf om				PROPESSIONA	A BED ONOT	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

-----March 26,2024

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	B01	Common Supported Gable	4	1	R81482207 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:45 ID:H2Pf3_z01ykfVHlh16SDFSzZ3ty-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1 PRMU20240404

Scale = 1:33.8

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 15.0 0.0* 10.0	Spacing2Plate Grip DOL1Lumber DOL1Rep Stress IncrYCodeIE	-0-0 .15 .15 ES 3C2018/TPI2014	CSI TC BC WB Matrix-SH	0.08 0.03 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 44 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=11-5-0, 11=11-5-(14=11-5-(Max Horiz 2=75 (LC Max Uplift 2=-8 (LC (LC 13), 1 (LC 12), 1 Max Grav 2=188 (LC 10=169 (L 12=157 (L 14=169 (L)	athing directly applied or applied or 10-0-0 oc 8=11-5-0, 10=11-5-0, 0, 12=11-5-0, 13=11-5-0 11) 13), 8=-6 (LC 13), 10=-2 11=-40 (LC 13), 13=-40 4=-28 (LC 12) C 1), 8=188 (LC 1), C 1), 11=219 (LC 26), C 1), 13=219 (LC 25), C 1)	 Wind: ASCE Vasd=87mpl II; Exp B; En and C-C Cor to 5-8-8, Cor 12-5-0 zone; vertical left a forces & MW DOL=1.60 pl Truss desig only. For stu- or consult qu All plates are 5 Gable requir 6 Gable studs 7 This truss h on the bottor 3-06-00 tail b 	7-16; Vult=110mp n; TCDL=4.2psf; Bi closed; MWFRS (e ner(3E) -1-0-0 to 1 ner(3R) 5-8-8 to 8- cantilever left and nd right exposed; C FRS for reactions ate grip DOL=1.60 ned for wind loads ids exposed to win d Industry Gable Ei alified building des 2 x4 MT20 unless es continuous botto spaced at 2-0-0 oc s been designed fad nonconcurrent v nas been designed n chord in all areas y 2-00-00 wide wil	h (3-sec CDL=6.0 nvelope -8-8, Ex 8-8, Ex right ex c-C for n shown; in the pi d (norm nd Deta igner as otherwi for a 10.0 vith any for a liv s where l fit betw	ond gust) Dpsf; h=25ft; () exterior zon terior(2N) 1-8 erior(2N) 8-8- ierior(2N) 8-8- ierior(2N) 8-8- posed ; end hembers and Lumber ane of the tru al to the face) ils as applicat s per ANSI/TF se indicated. d bearing. D psf bottom other live load e load of 20.0 a rectangle veen the bottom	Cat. e -8 8 to ss , ole, vl 1. ds. psf					
FORCES TOP CHORD	(lb) - Maximum Com Tension 1-2=0/42, 2-3=-87/5 4-5=-76/98, 5-6=-72	pression/Maximum 4, 3-4=-80/46, /98, 6-7=-64/39,	chord and ar 9) All bearings capacity of 4 10) Provide mec	are assumed to be 05 psi. hanical connection	HF No.	2 crushing ers) of truss to)					
BOT CHORD WEBS NOTES	7-8=-69/28, 8-9=0/4 2-14=-27/80, 13-14= 11-12=-27/80, 10-11 5-12=-118/2, 4-13=- 6-11=-176/90, 7-10=	2 27/80, 12-13=-27/80, =-27/80, 8-10=-27/80 176/91, 3-14=-140/80, 140/80	2, 6 lb uplift 2, 6 lb uplift at joint 14, 4 10. 11) This truss is International	e capable of withsta at joint 8, 40 lb upli D lb uplift at joint 1 designed in accord Building Code sec	anding 8 It at join and 27 Iance w	t 13, 28 lb uplift at joi t 13, 28 lb upl lb uplift at joi th the 2018 16.1 and	nt ift nt			ž	TLAOMIN TLAOF WA	G ZHAO

1) Unbalanced roof live loads have been considered for this design.

referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Roseville, CA 95661 916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	B02	Common	8	1	R81482208 Job Reference (optional)

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:45 Page: 1 ID:hMZM7CoEKezeq7h_C9BxhVzZ3uA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale =	1:35.4
---------	--------

Plate Offsets (X, Y): [2:0-3-9,0-1-8], [4:0-3-9,0-1-8]

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.47	Vert(LL)	-0.03	4-6	>999	240	MT20	185/148
TCDL	15.0	Lumber DOL	1.15	BC	0.33	Vert(CT)	-0.07	4-6	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.05	Horz(CT)	0.01	4	n/a	n/a		
BCDL	10.0	Code	IBC2018/TPI2014	Matrix-SH							Weight: 37 lb	FT = 10%
LUMBER			5) All bearing	s are assumed to b	e HF No.	2 crushing						
TOP CHORD	2x4 HF No.2		capacity o	f 405 psi.								
BOT CHORD	2x4 HF No.2		Provide m	echanical connection	on (by oth	ers) of truss	to					
WEBS	2x4 HF No.2		bearing pl	ate capable of withs	standing 2	6 lb uplift at	joint					
BRACING			2 and 26 l	b uplift at joint 4.								
TOP CHORD	Structural wood she	athing directly applie	ed or 7) This truss	is designed in acco	ordance w	ith the 2018						
	5-9-0 oc purlins.		Internation	al Building Code se	ection 230	6.1 and						
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 or			11.							
	bracing.		LUAD CASE(5) Standard								
REACTIONS	(size) 2=0-3-8, 4	1=0-3-8										
	Max Horiz 2=-75 (LC	; 10)										
	Max Uplift 2=-26 (LC	: 12), 4=-26 (LC 13)										
	Max Grav 2=648 (LC	C 1), 4=648 (LC 1)										
FORCES	(lb) - Maximum Com	pression/Maximum										
	Tension											
TOP CHORD	1-2=0/43, 2-3=-679/6	63, 3-4=-679/63,										
	4-5=0/43	-										
BOICHORD	2-6=0/452, 4-6=0/45	2										
WEBS	3-6=0/276											
NOTES												
 Unbalance this design 	ed roof live loads have	been considered for	ſ									
2) Wind AS	 CE 7-16: Vult=110mph	(3-second qust)										
Vasd=87r	nph: TCDL=4.2psf: BC	DL=6.0psf: h=25ft: (Cat.									
II; Exp B;	Enclosed; MWFRS (en	velope) exterior zon	e								OMIN	GZH
and C-C E	Exterior(2E) -1-0-0 to 2-	-0-0, Interior (1) 2-0-	0 to								ALA WI	A A
5-8-8, Ext	terior(2R) 5-8-8 to 8-8-8	3, Interior (1) 8-8-8 to)							7	THE WE	SHIN
12-5-0 zo	ne; cantilever left and r	ight exposed ; end								5	15º X	
vertical let	ft and right exposed;C-	C for members and								5		
forces & N	MWFRS for reactions sl	hown; Lumber										
DOL=1.60	0 plate grip DOL=1.60											
This truss	has been designed for	a 10.0 psf bottom									1.1.1	

3) chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

> 400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

ESSIONAL ENGI

----March 26,2024

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	C01	Common	16	1	R81482209 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:45 Page: 1 ID:0udP3b?PAAKe3NNYX4YEhIzZ3wU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f PRMU20240404

L	7-6-10	14-8-6	22-3-0	
Γ	7-6-10	7-1-12	7-6-10	Т
:57.5				

Plate Offsets (X, Y): [4:0-2-12,0-2-0]

Scale =

Loading TCLL (roof) TCDL BCLL		(psf) 25.0 15.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.47 0.63 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.11 -0.20 0.04	(loc) 8-10 2-10 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 185/148
BCDL		10.0	Code	IBC2018	/1912014	Matrix-SH							weight: 88 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural wo 3-11-2 oc pur Rigid ceiling d bracing.	ood shea rlins. directly a	thing directly applied applied or 10-0-0 oc	5) 6) I or 7) LO	All bearings a capacity of 40 Provide mech bearing plate 2 and 35 lb u This truss is of International referenced st AD CASE(S)	are assumed to be l b5 psi. nanical connection capable of withstar plift at joint 6. Jesigned in accorda Building Code sect andard ANSI/TPI 1 Standard	HF No. (by othending 3 ance wittion 230	2 crushing ers) of truss t 5 lb uplift at j th the 2018 6.1 and	to joint					
REACTIONS	(size) 2= Max Horiz 2= Max Uplift 2= Max Grav 2=	0-3-8, 6 136 (LC -35 (LC 1260 (L	=0-3-8 11) 12), 6=-35 (LC 13) C 19), 6=1260 (LC 20	D)										
FORCES	(lb) - Maximu	im Comp	pression/Maximum											
TOP CHORD	Tension 1-2=0/43, 2-3 4-5=-1517/90	3=-1652/), 5-6=-1	/46, 3-4=-1517/90, 652/46, 6-7=0/43											
BOT CHORD WEBS	2-10=-53/139 4-8=-53/726, 3-10=-403/14	91, 8-10= 5-8=-40 18	=0/910, 6-8=0/1303)3/148, 4-10=-53/726	,										
NOTES														
 Unbalance this design Wind: ASC 	ed roof live load n. CE 7-16: Vult=1	ls have l	ceen considered for											aa.
Vasd=87m II; Exp B; I and C-C E 11-1-8, Ex to 23-3-0 z vertical lef forces & M	hph; TCDL=4.2 Enclosed; MWF Exterior(2E) -1-0 tterior(2R) 11-1- zone; cantilever t and right expo MWERS for reac	psf; BCI FRS (env)-0 to 2-1 -8 to 14- r left and osed;C-0	DL=6.0psf; h=25ft; Ca velope) exterior zone 0-0, Interior (1) 2-0-0 1-8, Interior (1) 14-1 I right exposed ; end C for members and own: Lumber	at. to -8								4	TANOMING WA	ST ZHAO
DOL=1.60 3) This truss chord live) plate grip DOL has been desig load nonconcu	=1.60 gned for rrent wit	a 10.0 psf bottom h anv other live loads	s.								4.	P 540	14 0 2
 4) * This trus on the bott 3-06-00 ta 	s has been des tom chord in all Ill by 2-00-00 wi	signed fo l areas v ide will f	r a live load of 20.0p where a rectangle it between the botton	sf								-	FESSIONA	LENGING

* This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

> 400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

March 26,2024

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	C02	Common	4	1	R81482210 Job Reference (optional)

 Run: 8.63 S
 Nov
 1 2023 Print: 8.630 S
 Nov
 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:46
 Page: 1

 ID:KJfmoEvRWDm?ZvczRKOqE6zZ3vJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f
 PRMU20240404

22-3-0

Scale = 1:53.3															
oading		(nef)	Spacing	2-0-0		C SI		DEEL	in	(loc)	l/def!	L/d		CRIP	
		(psi) 25.0		1 15			0.11	Vort(LL)	n/a	(100)	n/a	000	MT20	185/1/8	
		15.0		1.15		BC	0.06	Vert(CT)	n/a		n/a	000	101120	103/140	
RCLI		0.0*	Ren Stress Incr	VES		WB	0.00	Horz(CT)	0.00	12	n/a	999 n/a			
		10.0	Code	IBC2018	/TPI2014	Matrix-SH	0.10	11012(01)	0.00	12	n/a	n/a	Weight: 105 lb	FT = 10%	
		10.0	0000	1002010		Matrix Off	-						Wolght. Too lo	11 - 10%	
UMBER				1)	Unbalanced	roof live loads ha	ve been o	considered fo	r						
OP CHORD	2x4 HF No	0.2		•	this design.	7 40 34 14 440									
SOT CHORD	2x4 HF No	0.2		2)	Wind: ASCE	7-16; Vult=110m	iph (3-sec	cond gust)	Cat						
JIHERS	2x4 HF NO	0.2				closed: MWERS	OCDL=0.	p_{SI} , $n=2511$, v_{SI}	oal.						
3RACING	o				and C-C Cor	ner(3F) -1-0-0 to	2-0-0 Ex	terior(2N) 2-0)-0						
OP CHORD	6-0-0 oc p	wood shea urlins	athing directly applied	or	to 11-1-8, Co	orner(3R) 11-1-8	to 14-1-8,	Exterior(2N)							
3OT CHORD	Rigid ceilir	na directly	applied or 10-0-0 oc		14-1-8 to 23-	3-0 zone; cantile	ver left ar	nd right expos	sed ;						
	bracing.				end vertical I	eft and right expo	osed;C-C	for members	and						
REACTIONS	(size)	2=22-3-0,	12=22-3-0, 14=22-3-0),	forces & MW	FRS for reaction	s shown;	Lumber							
		15=22-3-0), 16=22-3-0, 18=22-3-	-0, 3)	Truss design	ale grip DOL=1.0	s in the n	lane of the tru	199						
		19=22-3-0), 20=22-3-0, 21=22-3-	-0, 0)	only For stu	ids exposed to w	ind (norm	al to the face)						
		22=22-3-0	0, 23=22-3-0		see Standard	d Industry Gable	End Deta	ils as applical	ble.						
	Max Horiz	2=136 (LC			or consult qu	alified building de	esigner a	s per ANSI/TF	PI 1.						
	Max Uplift	2=-12 (LU	(8), 14=-51 (LU 13),	4)	All plates are	2x4 MT20 unles	s otherwi	se indicated.							
		18=-34 (L)	C 13), 10=-35 (LC 13), C 13), 20=-35 (LC 12),	' 5)	Gable require	es continuous bo	ttom chor	d bearing.							
		21=-37 (1)	C(12), 20=30 (LC(12)) C(12), 22=-30 (LC(12))	' 6)	Gable studs	spaced at 2-0-0 o	DC.								
		23=-51 (L	C 12)	' 7)	This truss ha	s been designed	for a 10.0) psf bottom							
	Max Grav	2=237 (LC	C 1), 12=237 (LC 1),	0)	* This trues h	ad nonconcurrent	with any	other live loa	ds. Doof						
		14=295 (L	C 26), 15=167 (LC 26	i), ^{o)}	on the bottor	n chord in all are	a ivi a iv	e load of 20.0	Jpsi						
		16=207 (L	C 1), 18=209 (LC 26),		3-06-00 tall h	v 2-00-00 wide v	as where vill fit betv	a rectangle	nm						
		19=190 (L	-C 22), 20=209 (LC 25),	chord and ar	v other members	5.		5111						
		21=207 (L	-C 1), 22=167 (LC 25),	9)	All bearings	are assumed to b	e HF No.	2 crushing					_		
	(IL) M	23=295 (L	.U 25)	,	capacity of 4	05 psi.		5						AL.	
ORCES	(ID) - Maxir	mum Com	pression/iviaximum	10)) Provide mec	hanical connection	on (by oth	ers) of truss t	0				OMIN	G Zn	
	1-2-0/42	2-3143/1	112 3-4118/75		bearing plate	capable of withs	standing 1	2 lb uplift at j	oint				JA	-MA	
	4-5=-100/7	75. 5-6=-93	3/101. 6-7=-96/136.		2, 35 lb uplift	at joint 20, 37 lb	uplift at jo	Dint 21, 30 lb					FWA	SHIN	1
	7-8=-96/13	36. 8-9=-72	2/96. 9-10=-65/52.			22, 51 ID UPIIT AT	JOINT 23, v	isint 15 and 6	Joint			7	58 27	S CA	-
	10-11=-81	/26, 11-12	=-117/73, 12-13=0/42		unlift at joint	14 10 10 10, 30 1	o upint at	joint 15 and 5	מווכ			7		<u> </u>	-
3OT CHORD	2-23=-52/1	101, 22-23	=-52/101,	11	This truss is	designed in acco	rdance w	ith the 2018						77	
	21-22=-52	/101, 20-2	1=-52/101,	,	International	Building Code se	ection 230	6.1 and							
	19-20=-52	/101, 18-1	9=-52/101,		referenced s	tandard ANSI/TP	11.								
	16-18=-52	/101, 15-1	6 = -52/101, 4 = 52/101	LO	AD CASE(S)	Standard						- 2	7 540	74 0 5	~
WEBS	7-10-140	/101, 12-1	4=-02/101 -170/50 5-21-164/60	>									GIST	EREV	<u> </u>
VEB3	4-22138	/43, 0-20= /52 3-23-	-224/81 8-18-170/57	<u>~</u> , 7									CSSIC.	ENGL	
	9-16=-164	/62, 10-15	=-138/52, 11-14=-224	, /81									NA	LEI	
NOTES		,	,												
													March	26,2024	

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MITEk-US.com

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	D01	Common	6	1	R81482211 Job Reference (optional)

(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
25.0	Plate Grip DOL	1.15		тс	0.40	Vert(LL)	-0.07	6-8	>999	240	MT20	185/148	
15.0	Lumber DOL	1.15		BC	0.51	Vert(CT)	-0.17	6-8	>999	180			
0.0*	Rep Stress Incr	YES		WB	0.12	Horz(CT)	0.05	6	n/a	n/a			
10.0	Code	IBC2018/	TPI2014	Matrix-SH							Weight: 75 lb	FT = 10%	
2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural wood shea 3-10-4 oc purlins.	athing directly applie	5) 6) ed or 7)	All bearings a capacity of 4 Provide mec bearing plate 2 and 40 lb u This truss is International	are assumed to b 05 psi. hanical connection capable of withs plift at joint 6. designed in acco Building Code se bandard ANSI/TE	oe HF No. on (by oth standing 4 ordance w ection 230	2 crushing ers) of truss 0 lb uplift at ith the 2018 16.1 and	to joint						
	(psf) 25.0 15.0 0.0* 10.0 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural wood shea 3-10-4 oc purlins.	(psf) 25.0 15.0 0.0* 10.0 2x4 HF No.2 2x4 HF No.2	(psf) Spacing 2-0-0 25.0 Plate Grip DOL 1.15 15.0 Lumber DOL 1.15 0.0* Rep Stress Incr YES 10.0 Code IBC2018/ 2x4 HF No.2 5) 2x4 HF No.2 2x4 HF No.2 6) 2x4 HF No.2 2x4 HF No.2 7) 3-10-4 oc purlins.	(psf) Spacing 2-0-0 25.0 Plate Grip DOL 1.15 15.0 Lumber DOL 1.15 0.0* Rep Stress Incr YES 10.0 Code IBC2018/TPI2014 2x4 HF No.2 5) All bearings a capacity of 4 2x4 HF No.2 6) Provide mec 2x4 HF No.2 6) Provide mec 2x4 HF No.2 7) This truss is international internatinal international international internatinal	(psf) Spacing 2-0-0 CSI 25.0 Plate Grip DOL 1.15 TC 15.0 Lumber DOL 1.15 BC 0.0* Rep Stress Incr YES WB 10.0 Code IBC2018/TPI2014 Matrix-SH 2x4 HF No.2 Shacing plate capable of withs 2 and 40 lb uplift at joint 6. 5) All bearings are assumed to be capacity of 405 psi. 2x4 HF No.2 Structural wood sheathing directly applied or 3-10-4 oc purlins. 7) This truss is designed in accordinate and 40 SUTP	(psf) Spacing 2-0-0 CSI 25.0 Plate Grip DOL 1.15 TC 0.40 15.0 Lumber DOL 1.15 BC 0.51 0.0* Rep Stress Incr YES WB 0.12 10.0 Code IBC2018/TPI2014 Matrix-SH 2x4 HF No.2 5) All bearings are assumed to be HF No. capacity of 405 psi. 2x4 HF No.2 5) All bearings are assumed to be HF No. capacity of 405 psi. 2x4 HF No.2 5) All bearings are assumed to be HF No. capacity of 405 psi. 2x4 HF No.2 5) All bearing plate capable of withstanding 4 2 and 40 lb uplift at joint 6. Structural wood sheathing directly applied or 3-0-4 oc purlins. 7) This truss is designed in accordance wind the mational Building Code section 230 Terefore distingting the provide the 40.0.0 cm 7) This trust is designed in accordance wind the mational Building Code section 230	(psf) Spacing 2-0-0 CSI DEFL 25.0 Plate Grip DOL 1.15 TC 0.40 Vert(LL) 15.0 Lumber DOL 1.15 BC 0.51 Vert(LL) 0.0* Rep Stress Incr YES WB 0.12 Horz(CT) 10.0 Code IBC2018/TPI2014 Matrix-SH 5) All bearings are assumed to be HF No.2 crushing capacity of 405 psi. 2x4 HF No.2 5) All bearings are assumed to be HF No.2 crushing capacity of 405 psi. 6) Provide mechanical connection (by others) of truss bearing plate capable of withstanding 40 lb uplift at 2 and 40 lb uplift at joint 6. Structural wood sheathing directly applied or 3-10-4 oc purlins. 7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.	(psf) Spacing 2-0-0 CSI DEFL in 25.0 Plate Grip DOL 1.15 TC 0.40 Vert(LL) -0.07 15.0 Lumber DOL 1.15 BC 0.51 Vert(CT) -0.17 0.0* Rep Stress Incr YES WB 0.12 Horz(CT) 0.05 10.0 Code IBC2018/TPI2014 Matrix-SH 5) All bearings are assumed to be HF No.2 crushing capacity of 405 psi. 2x4 HF No.2 5) All bearings are assumed to be HF No.2 crushing capacity of 405 psi. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 40 lb uplift at joint 2 and 40 lb uplift at joint 6. 7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.	(psf) 25.0 15.0 0.0*Spacing Plate Grip DOL 1.152-0-0 1.15CSI TC 0.40 BC WB WB Matrix-SHDEFL Vert(LL) -0.07in(loc) 6-8 Vert(CT) -0.172x4 HF No.2 2x4 HF No.2 2x4 HF No.2	(psf) 25.0 15.0 0.0*Spacing Plate Grip DOL 1.152-0-0 1.15CSI TC 0.40 BC WB WB WB 0.12DEFL Vert(LL) Vert(CT) 0.07in(loc) /defl Vert(CT) 0.07//defl 6-8 >999 999 Vert(CT) 0.05in(loc) 6-8 >999 Vert(CT) 0.05//defl 6-8 >999 Vert(CT) 0.05//defl 6-8 >999 Vert(CT) 0.05//defl 6-8 >999 Vert(CT) 0.05//defl 6-8 o.072x4 HF No.2 2x4 HF No.2 2x4 HF No.25) All bearings are assumed to be HF No.2 crushing capacity of 405 psi.5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 40 lb uplift at joint 2 and 40 lb uplift at joint 6.5)Structural wood sheathing directly applied or 3-10-4 oc purins.7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.7)	(psf) 25.0 15.0 0.0*Spacing Plate Grip DOL Lumber DOL 1.02-0-0 1.15 TCCSI TCDEFL vert(LL) vert(LL) -0.07in(loc) identical indication identical indication0.0* 0.0* 10.0Plate Grip DOL Lumber DOL 1.151.15 VES VES VES VBRBC 0.51 WB Matrix-SHDEFL Vert(CT) identical indication identical indicationin(loc) identical indication identical indicationin2x4 HF No.2 2x4 HF No.2 2x4 HF No.25)All bearings are assumed to be HF No.2 crushing capacity of 405 psi.inin5)All bearings are assumed to be HF No.2 crushing capacity of 405 psi.6)Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 40 lb uplift at joint 2 and 40 lb uplift at joint 6.in7)This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.in	(psf) Spacing 2-0-0 CSI DEFL in (loc) l/defl L/d PLATES 25.0 Plate Grip DOL 1.15 TC 0.40 Vert(LL) -0.07 6-8 >999 240 MT20 15.0 Lumber DOL 1.15 BC 0.51 Vert(CT) -0.17 6-8 >999 180 0.0* Rep Stress Incr YES WB 0.12 Horz(CT) 0.05 6 n/a n/a 2x4 HF No.2 Code IBC2018/TPI2014 Matrix-SH 5) All bearings are assumed to be HF No.2 crushing capacity of 405 psi. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 40 lb uplift at joint 2 and 40 lb uplift at joint 2 and 40 lb uplift at joint 6. 7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.	(psf) Spacing 2-0-0 CSI DEFL in (loc) I/defl L/d PLATES GRIP 25.0 Plate Grip DOL 1.15 TC 0.40 Vert(LL) -0.07 6-8 >999 240 MT20 185/148 15.0 0.0* Rep Stress Incr YES BC 0.51 Vert(CT) -0.17 6-8 >999 180 MT20 185/148 2x4 HF No.2 Code IBC2018/TPI2014 Matrix-SH WB 0.12 Horz(CT) 0.05 6 n/a n/a 2x4 HF No.2 Code IBC2018/TPI2014 Matrix-SH Sindering are assumed to be HF No.2 crushing capacity of 405 psi. FT = 10% 2x4 HF No.2 5) All bearings are assumed to be HF No.2 crushing capacity of 405 psi. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 40 lb uplift at joint 2 and 40 lb uplift at joint 2 and 40 lb uplift at joint 2 and 40 lb uplift at joint 6. This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1. Stridewing directly applied or 3-10-4 oc purlins. This trust indariad ANSI/TPI 1. This trust indariad ANSI/TPI 1.

LOAD CASE(S) Standard

BOT CHORD	Rigid ceili bracing.	ing directly applied or 10-0-0 oc
REACTIONS	(size)	2=0-3-8, 6=0-3-8
	Max Horiz	2=-65 (LC 13)
	Max Uplift	2=-40 (LC 12), 6=-40 (LC 13)
	Max Grav	2=1115 (LC 1), 6=1115 (LC 1)
FORCES	(lb) - Max Tension	imum Compression/Maximum
TOP CHORD	1-2=0/34, 4-5=-1553	2-3=-1781/115, 3-4=-1553/124, 3/124, 5-6=-1781/115, 6-7=0/34

BOT CHORD 2-10=-55/1505, 8-10=0/1003, 6-8=-50/1505 4-8=-25/574, 5-8=-397/120, 4-10=-25/574, WEBS 3-10=-397/120

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 10-4-8, Exterior(2R) 10-4-8 to 13-4-8, Interior (1) 13-4-8 to 21-9-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

```
AND WASE
PORESSIONAL ENGINE
    -WAL ENGINE
    March 26,2024
```

👠 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with the connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com) 400 Sunrise Ave., Suite 270 Roseville CA 95661 916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	D02	Common	2	1	R81482212 Job Reference (optional)

Scale = 1:43.2

 Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:46
 Page: 1

 ID:sxggIKWpka4vZbQaMqHYFfzZ3uX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f
 PRMU20240404

20-9-0

				-											
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		25.0	Plate Grip DOL	1.15		тс	0.08	Vert(LL)	n/a	-	n/a	999	MT20	185/148	
TCDL		15.0	Lumber DOL	1.15		вс	0.03	Vert(CT)	n/a	-	n/a	999			
BCLL		0.0*	Rep Stress Incr	YES		WB	0.07	Horz(CT)	0.00	12	n/a	n/a			
BCDL		10.0	Code	IBC2018	3/TPI2014	Matrix-SH	0.01		0.00				Weight: 83 lb	FT = 10%	
													0		-
LUMBER				1)	Unbalanced	roof live loads hav	e been o	considered fo	or						
TOP CHORD	2x4 HF N	0.2			this design.										
BOT CHORD	2x4 HF N	0.2		2)	Wind: ASCE	7-16; Vult=110mp	h (3-sec	cond gust)	. .						
OTHERS	2x4 HF N	0.2			Vasd=8/mph	n; TCDL=4.2psf; B	CDL=6.0	Upsf; h=25ft;	Cat.						
BRACING					II; Exp B; En	Closed; MIVERS (envelope	e) exterior zor	ne						
TOP CHORD	Structura	I wood shea	athing directly applied	or		ner(3E) -1-0-0 to 2	2-0-0, EX	(terior(2N) 2-0	0-0						
	6-0-0 oc	purlins.			12 4 9 to 21	0.0 zono: contilou	or loft or	d right export	od ·						
BOT CHORD	Rigid ceil	ing directly	applied or 10-0-0 oc		end vertical l	oft and right expos		for members	and						
	bracing.				forces & MW	FRS for reactions	shown.	l umber	ana						
REACTIONS	(size)	2=20-9-0,	12=20-9-0, 14=20-9-0),	DOI = 1.60 pl	ate grip DOI =1.60)	Lambol							
		15=20-9-0	0, 16=20-9-0, 17=20-9-	^{-0,} 3)	Truss design	ned for wind loads	in the p	lane of the tru	uss						
		19=20-9-0), 20=20-9-0, 21=20-9-	-0, -,	only. For stu	ids exposed to wir	nd (norm	al to the face							
	M	22=20-9-0), 23=20-9-0		see Standard	d Industry Gable E	nd Deta	ils as applica	ble,						
	Max Horiz	2=-65 (LU	(17)		or consult qu	alified building de	signer as	s per ANSI/TI	PI 1.						
	wax upint	2=-7 (LC	(13), 12=0 (LC 13), C (12) (LC 13),	4)	All plates are	e 2x4 MT20 unless	otherwi	se indicated.							
		14=-20 (L 1625 (L	C = 13, $13 = -25$ (LC = 13), C = 13), $17 = -26$ (LC = 13)	' 5)	Gable require	es continuous bott	om chor	d bearing.							
		2027 (L	C 12), 17=-20 (LC 13), C 12), 2125 (LC 12)	' 6)	Gable studs	spaced at 2-0-0 or	C.								
		20= 27 (L 22=-25 (L	C(12), 21=25(LC(12)) C(12), 23=-26(LC(12))	' 7)	This truss ha	is been designed f	or a 10.0	0 psf bottom							
	Max Grav	2=204 (LC	C 1), 12=204 (LC 1).		chord live loa	ad nonconcurrent	with any	other live loa	ids.						
	max orar	14=226 (L	_C 26), 15=193 (LC 26). 8)	* This truss h	has been designed	l for a liv	e load of 20.0	0psf						
		16=200 (L	_C 1), 17=211 (LC 26),		on the bottor	n chord in all area	s where	a rectangle							
		19=174 (L	_C 22), 20=211 (LC 25),	3-06-00 tall t	by 2-00-00 wide wi	II III Delv	veen the botto	om						
		21=200 (L	_C 1), 22=193 (LC 25),	0)	All bearings	are assumed to be		2 crushing							
		23=226 (L	_C 25)	3)	capacity of 4	05 nei	7 III INO.	2 crushing							
FORCES	(lb) - Max	timum Com	pression/Maximum	10) Provide med	hanical connectior	n (by oth	ers) of truss t	to				OMIN	Ga	
		0.0 04/4	7 0 4 00/47		bearing plate	e capable of withst	anding 6	6 lb uplift at jo	oint				TAUM	CHA	
TOP CHORD	1-2=0/34	2-3=-91/4	7, 3-4=-08/47, /96 6 7_ 65/119		12, 27 lb upli	ft at joint 20, 25 lb	uplift at	joint 21, 25 ll	b			-	T OF WA	SHO	
	7 9 - 65/1	19, 5-0=-50	0/96 0 10- 51/52		uplift at joint	22, 26 lb uplift at j	oint 23, 2	26 lb uplift at	joint			-	AN ST		
	10-115	3/26 11-12	0/00, 9-10=-31/32, 970/33 12-13-0/34		17, 25 lb upli	ft at joint 16, 25 lb	uplift at	joint 15, 26 ll	b			-		6	
	2-23=-30	/72 22-23=	-30/72 21-22=-30/72		uplift at joint	14 and 7 lb uplift a	at joint 2.								
	20-21=-3	0/72. 19-20)=-30/72. 17-19=-30/72	2. 11) Beveled plate	e or snim required	to provi	de fuil bearing	g						
	16-17=-3	0/72, 15-16	5=-30/72, 14-15=-30/72	2, 10) This truck is	designed in accord	l(S) Z.	ith the 2019							
	12-14=-3	0/72	,	12	International	Building Code ser	tion 230)6 1 and					510	TA ISA	
WEBS	7-19=-13	4/8, 6-20=-	172/57, 5-21=-159/58,		referenced s	tandard ANSI/TPI	1						TO REGIME	The A	
	4-22=-15	5/55, 3-23=	-178/72, 8-17=-172/57	^{7,} IC	AD CASE(S)	Standard	••						P.B. UIST	En CIT	
	9-16=-15	9/58, 10-15	5=-155/55, 11-14=-178	/72		Clandara							SIONA	LEN	
NOTES															

March 26,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	M01	Monopitch Supported Gable	2	1	R81482213 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:46 ID:4huqHdJHShWV1WImsUU9qJzZ4Sx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:35.1

Plate Offsets (X, Y): [6:0-4-0,0-4-8]

Loading		(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP					
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.28	Vert(LL)	n/a	-	n/a	999	MT20	185/148					
TCDL		15.0	Lumber DOL	1.15		BC	0.03	Vert(TL)	n/a	-	n/a	999							
BCLL		0.0*	Rep Stress Incr	NO		WB	0.21	Horiz(TL)	0.00	11	n/a	n/a							
BCDL		10.0	Code	IBC20	18/TPI2014	Matrix-R							Weight: 71 lb	FT = 10%					
											Vantia	10 70							
LUMBER						7 40 1/14 440	h (0				ven: 1-	10=-73	94, 11-20=-20						
TOP CHORD	2x6 DF N	10.2			1) Wind: ASCE	7-16; Vult=110mp	on (3-sec	cond gust)	0-4										
BOT CHORD	2x4 HF N	0.2			vaso=87mpr	1; TCDL=4.2pst; B	CDL=6.	Upst; n=25tt; 0	Cat.										
WEBS	2x4 HF N	0.2			II; EXP B; EN		envelope	e) exterior zor	ie										
OTHERS	2x4 HF N	10.2			and C-C Cor	ner (3) zone; canu	iever iei	t and right											
BRACING					exposed; en		ngni exp												
TOP CHORD	Structura	I wood shea	athing directly applie	ed or	Internoters and	1 FO ploto grip D		Clions shown	,										
	6-0-0 oc	purlins, exe	cept end verticals.			= 1.60 plate grip D	UL=1.0	J Jama af tha tw											
BOT CHORD	Rigid ceil	ing. 27 This designed of which loads in the plane of the datas																	
PEACTIONS	(size)	11-18-2-4	12-18-2-4 13-18	-2-1	see Standard	d Industry Gable E	nd Deta	ils as applica	ble,										
REACTIONS	(3126)	1/-18-2-4	15-18-2-4, 15-10	-2-4, -2-1	or consult qu	alified building des	signer a	s per ANSI/TF	PI 1.										
		17-18-2-4	18-18-2-4 10-18	-2-4	Provide adec	quate drainage to p	prevent	water ponding	g.										
		20=18-2-4	, 10=10 2 4, 13=10	<u>۲</u> ,	All plates are	2x4 MT20 unless	otherwi	se indicated.											
	Max Horiz	20=37 (1 (. 9)		Gable require	es continuous bott	om choi	d bearing.											
	Max Uplift	11=-39 (I	(12) 12=-108 (I C	8)	Truss to be f	ully sheathed from	one fac	e or securely											
		13=-94 (L	C 12), 12= 100 (EC C 12), 14=-96 (I C 8	(), ()	braced again	ist lateral moveme	nt (i.e. c	liagonal web)											
		15=-95 (L	C 12), 11= 00 (LC 0 C 12), 16=-95 (LC 8)	7) Gable studs	spaced at 2-0-0 or) .												
		17=-95 (L	C 12), 18=-96 (LC 8),	B) This truss ha	s been designed f	or a 10.	0 psf bottom											
		19=-96 (L	C 12), 20=-41 (LC 8)	chord live loa	ad nonconcurrent v	with any	other live loa	ds.										
	Max Grav	11=694 (L	C 1), 12=1808 (LC	, 1).	9) * This truss h	nas been designed	for a liv	e load of 20.0	Opsf										
		13=1596	LC 1), 14=1640 (LC	; 1).	on the bottom chord in all areas where a rectangle														
		15=1627	LC 1), 16=1621 (LC	C 1).	3-06-00 tall by 2-00-00 wide will fit between the bottom														
		17=1630	LC 1), 18=1622 (LC	C 1).	chord and ar	ly other members.													
		19=1701	LC 1), 20=628 (LC	1)	10) All bearings	are assumed to be	HF NO.	2 crushing					I						
FORCES	(lb) - Max	imum Com	pression/Maximum	,	capacity of 4	05 psi.							OMIN	U ZH					
	Tension		procession		11) Provide mec	nanical connection	i (by oth	ers) of truss t	0				THE W	ASD					
TOP CHORD	1-20=-60	9/186 1-2=	-52/18 2-3=-58/21		bearing plate	capable of withst	anding 4	1 Ib uplift at j	oint				100						
	3-4=-58/2	23. 4-5=-58	25. 5-7=-57/27.		20, 39 lb upi	ft at joint 11, 96 lb	upliπ at	Joint 19, 96 lt) 			2	201						
	7-8=-45/2	27. 8-9=-44	28, 9-10=-47/32.		upint at joint	18, 95 ib upilit at jo			joint			2	State						
	10-11=-6	75/207	-, ,		16, 95 lb upil	12 and 109 lb unlit	upilit at	JOINT 14, 94 10	5										
BOT CHORD	19-20=-3	7/60, 18-19	=-37/60, 17-18=-37/	/60,		designed in second	donoo w	112. 114 the 2019											
	16-17=-3	7/60, 15-16	=-37/60, 14-15=-33/	/49,	International	Building Code sec	stion 230	10100 ± 2010											
	13-14=-3	3/49, 12-13	=-33/49, 11-12=-33/	/49	referenced	tandard ANSI/TDI	1					7	7 540	74 / 5 /					
WEBS	2-19=-16	63/512, 3-1	8=-1582/470,				1.					-	Op EGICT	TEREY SY					
	4-17=-15	90/472, 5-1	6=-1581/469,			Standard	Lunch		4.5				ESC	GI					
	6-15=-15	87/471, 7-1	4=-1600/474,		 Dead + Roo Diata la 	of Live (balanced):	Lumber	increase=1.	15,				SION/	LEN					
	8-13=-15	57/463, 9-1	2=-1765/523		Plate Increa	ase=1.15													

Uniform Loads (lb/ft)

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Page: 1

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	M02	Monopitch Structural Gable	2	1	R81482214 Job Reference (optional)

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:46 ID: Bxjk6SOoHdTJTXUs9xwV4zzZ4Fw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:52

DI - 4 -	<u>0</u> "	\sim	10.	104.0 0 0 0	4 4 01	00.0 0 40 0 4	41
Plate	Offsets	(X,	Y):	21:0-2-0,0	-1-12],	22:0-2-12,0-1	-41

Loading		(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOI	1 15		тс	0 45	Vert(LL)	-0 15	20-21	>999	240	MT20	185/148
TCDI		15.0	Lumber DOI	1 15		BC	0.62	Vert(CT)	-0.31	20-21	>700	180		
BCLL		0.0*	Ren Stress Incr	YES		WB	0.50	Horz(CT)	0.03	18	n/a	n/a		
BCDI		10.0	Code	IBC20	8/TPI2014	Matrix-SH	0.00	11012(01)	0.00	10	n/ a	n/a	Weight: 155 lb	FT - 10%
DODL		10.0	Code	ID020	10/11/12/014	Wath Str							weight. 155 lb	11 = 1070
LUMBER				V	VEBS 2	2-21=-342/166, 3-2	0=0/24	9, 5-18=-734	/216,					
TOP CHORD	2x6 DF N	0.2			3	3-18=-2289/435, 2-	20=-53	0/114,						
BOT CHORD	2x6 DF N	0.2				1-21=-438/2364, 6-	17=-39	/243,						
WEBS	2x4 HF N	0.2			7	7-16=-230/78, 8-15	=-147/5	8, 9-14=-173	3/65,					
OTHERS	2x4 HF N	0.2				10-13=-214/65								
BRACING				N	IOTES									
TOP CHORD	Structura	I wood she	athing directly applie	ed or 1) Wind: ASCE	7-16; Vult=110mpl	h (3-sec	cond gust)	• •					
	4-5-5 oc j	purlins, ex	cept end verticals.		Vasd=8/mpr	n; TCDL=4.2psf; BC	JDL=6.	Jpst; h=25tt;	Cat.					
BOT CHORD	bracing.	ing directly	applied or 6-0-0 oc		and C-C Cor	ner (3) zone; cantil	ever lef	t and right	me					
WEBS	1 Row at	midpt	3-18		exposed ; en	d vertical left and r	ight exp	osed;C-C fo	r					
REACTIONS	(size)	12=11-3-8	3. 13=11-3-8. 14=11	-3-8.	members an	d forces & MWFRS	6 for rea	ctions shown	n;					
	()	15=11-3-8	3 16=11-3-8 17=11	-3-8	Lumber DOL	=1.60 plate grip D0	OL=1.60)						
		18=11-3-8	3 22=0-5-8	2 2) Truss desigi	ned for wind loads	in the p	lane of the tr	uss					
	Max Horiz	22=41 (1 (C 11)		only. For stu	ids exposed to win	d (norm	al to the face	e),					
	Max Unlift	12=-177 (IC1) 13=-20 (IC8)	see Standard	d Industry Gable Er	nd Deta	ils as applica	able,					
	Max Opint	14-12 ((12), 15 = 20 (100)),	or consult qu	alified building des	igner a	s per ANSI/T	PI 1.					
		1618 (L	C 12), 13= 11 (LO 0 C 12), 17=-557 (LC	/, 1) 3) Provide adeo	quate drainage to p	revent	water pondin	ıg.					
		1896 (L	C(12), 17 = 357 (EC	\', 4) All plates are	2x4 MT20 unless	otherwi	se indicated.						
	Max Grav	12-10 (10	2 8) 13-367 (I C 1)	′ 5) Truss to be f	ully sheathed from	one fac	e or securely	v					
		14-209 (1	(10, 10-300, (10, 1))	`	braced again	ist lateral movemer	nt (i.e. d	iagonal web).					
		14-200 (L	(101), $17-20$ (1 C 12)	, 6 6) Gable studs	spaced at 2-0-0 oc			,					
		18-1673	(C 1), 17 = 29 (C 12)	/, 1) 7) This truss ha	s been designed fo	or a 10.0) psf bottom						
FORCES	(lb) Mov			')	, chord live loa	ad nonconcurrent w	vith any	other live loa	ads.					
FURCES	(ID) - Max	amum Com	ipression/iviaximum	8	8) * This truss has been designed for a live load of 20.0psf									
	1 22 72	E/170 1 0	2661/497		on the bottor	n chord in all areas	where	a rectangle	•				► OMING	J ZH
TOP CHORD	1-22=-72	0/173, 1-2=	=-2001/487, 44/400 F C 20/07		3-06-00 tall b	y 2-00-00 wide wil	l fit betv	veen the bott	tom				4 In WA	A ON
	2-3=-213	9/400, 3-5=	=-44/109, 5-6=-39/97	,	chord and ar	v other members.						. 7	' ACT WA	NA C
	6-7=-39/1	06, 7-8=-3	7/104, 8-9=-36/105,	9) All bearings	are assumed to be	HF No.	2 crushing				7	15 27	
	9-10=-34/	/104, 10-11	=-32/101, 11-12=-10	0/69	capacity of 4	05 psi.		5				-	10 A	
BUICHURD	21-22=-12	22/326, 20-	-21=-533/2655,	1	0) Provide mec	hanical connection	(by oth	ers) of truss	to			-		
	18-20=-4	21/2135, 1	7-18=-103/41,		bearing plate	capable of withsta	andina 4	9 lb uplift at	ioint					
	16-17=-10	03/41, 15-1	6=-103/41,		22. 177 lb up	lift at joint 12, 96 lb	o uplift a	t ioint 18, 55	57 lb					
	14-15=-10	03/41, 13-1	4=-103/41,		uplift at joint	17 18 lb uplift at io	int 16	11 lb uplift at	ioint					
	12-13=-10	03/41			15. 12 lb unli	ft at joint 14 and 20) lb upli	t at joint 13	,				P \$ 540	40/8
				1	1) This truss is	designed in accord	lance w	ith the 2018					GIST	ERU
					International	Building Code sec	tion 230	6 1 and					SSI0-	ENG
					referenced s	tandard ANSI/TPI	1.						NA	LDI
				L	OAD CASE(S)	Standard								
					• • • •									

Roseville, CA 95661 916.755.3571 / MiTek-US.com

March 26,2024

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	M03	Monopitch Girder	8	1	R81482215 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:46 ID:MkM3FijYH1wdFiHmq?02iZzZ4OY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:52

Plate Offsets	(X, Y): [2:0-2-0,0-1-8],	, [6:0-1-12,0-2-0], [7:0	0-3-7,0-2-0), [8:Edge,0-3	-8], [9:0-3-8,0-1-1	2], [10:0-	3-4,0-1-8], [1	2:0-1-12	,0-1-12]	, [13:0-3	-8,0-2-	4], [14:0-9-4,0-3-	0]	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC2018	8/TPI2014	CSI TC BC WB Matrix-SH	0.94 0.69 0.98	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.63 -1.32 0.08	(loc) 10-12 10-12 8	l/defl >548 >261 n/a	L/d 240 180 n/a	PLATES MT20 M18AHS Weight: 163 lb	GRIP 220/195 169/162 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES	2x6 DF No.2 2x6 DF 2400F 2.0E 2x4 HF No.2 *Excep 1.6E Structural wood she 1-7-10 oc purlins, e Rigid ceiling directly bracing. (size) 8=0-5-8, ' Max Horiz 14=41 (LC Max Uplift 8=-243 (L Max Grav 8=1596 (I (lb) - Maximum Com Tension	ot* 1-13:2x4 DF 1800 eathing directly applie except end verticals. r applied or 6-10-11 c 14=0-5-8 C 11) .C 12), 14=-179 (LC 1 LC 1), 14=1532 (LC 2 opression/Maximum	4) 5) F d or 6) ₁₀ 7) 8) 3) 9) 9)	This truss ha chord live loa * This truss h on the bottor 3-06-00 tall th chord and ar All bearings capacity of 4 Provide mec bearing plate joint 14 and 3 This truss is International referenced s Hanger(s) or provided suff Ib down and	is been designed ad nonconcurrent has been designed n chord in all area yy 2-00-00 wide w ny other members are assumed to be 05 psi. hanical connectio c capable of withs? 243 lb uplift at joir designed in accor Building Code se tandard ANSI/TPI other connection ficient to support of 127 lb up at 18-1	for a 10. with any d for a liv as where ill fit betw e HF No. n (by oth tanding 1 tt 8. rdance w ction 230 1. device(s concentra -8, and 2	D psf bottom other live loa e load of 20. a rectangle veen the bott 2 crushing ers) of truss 79 lb uplift a ith the 2018 b6.1 and) shall be ated load(s) 2 59 lb down a	ads. Opsf om to t 258 and						
TOP CHORD BOT CHORD	1-14=-1374/365, 1-2 2-3=-8382/2237, 3-5 5-6=-7884/2335, 6-7 7-8=-1493/438 13-14=-187/529, 12	2=-6014/1478, 5=-7885/2331, 7=-4625/1319, -13=-1526/6006,	10	126 lb up at selection of s responsibility) In the LOAD of the truss a	18-1-8 on bottom such connection d of others. CASE(S) section are noted as front	, loads a (F) or ba	The design/ is the oplied to the ck (B).	face						
WEBS	10-12=22/1/83/6, 1 8-9=-60/178 5-10=-433/210, 1-12 2-13=-938/341, 2-12 3-12=-346/209, 3-10 6-10=-1072/3424, 6 7-9=-1318/4645	9-10=-1320/4620, 3=-1375/5560, 2=-773/2508,)=-826/686, -9=-1271/452,	LC 1)	DAD CASE(S) Dead + Roo Plate Increa Uniform Loo Vert: 1-7 Concentrate	Standard of Live (balanced) ase=1.15 ads (lb/ft) =-80, 8-14=-20 ed Loads (lb) 256 (E=-128 B=	: Lumber	Increase=1.	15,			, y	LIAOMIN VIAOF WA	S ZHAO	
NOTES 1) Wind: ASt Vasd=87r II; Exp B; and C-C C exposed ; members Lumber D 2) Provide a	CE 7-16; Vult=110mph mph; TCDL=4.2psf; BC Enclosed; MWFRS (er Corner (3) zone; cantile end vertical left and rig and forces & MWFRS OL=1.60 plate grip DC dequate drainage to pr	a (3-second gust) CDL=6.0psf; h=25ft; C hvelope) exterior zon ever left and right ght exposed;C-C for for reactions shown; DL=1.60 event water ponding	cat. e	ven. 10=	-230 (F=-120, B=	- 127)						PHORESSIONA	TA EBED CINES	

- Provide adequate drainage to prevent water ponding. 2)
- 3) All plates are MT20 plates unless otherwise indicated.

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

TALL

March 26,2024

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	M04	Monopitch Girder	10	1	R81482216 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:46 ID:PNJjVDqJea79w0dFEtVs2ezZ4BV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:52

Plate Offsets ((X, Y): [2:0-3-8,0-1-8],	, [3:0-1-12,0-1-8], [6:	0-2-4,0-2-0], [7:0-2-4,0-2-	-4], [8:Edge,0-3-8],	[9:0-2-4	4,0-2-8], [12:0)-3-8,0-2	-8]					
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC2018	/TPI2014	CSI TC BC WB Matrix-SH	0.88 0.77 0.89	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.28 -0.59 0.04	(loc) 10-12 10-12 8	l/defl >966 >461 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 135 lb	GRIP 185/148 FT = 10%	
LUMBER TOP CHORD 30T CHORD WEBS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x6 DF No.2 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural wood she 3-1-2 oc purlins, exx Rigid ceiling directly bracing. 1 Row at midpt (size) 8=0-5-8, ' Max Horiz 14=43 (L0 Max Uplift 8=-179 (L 14=-208 (Max Grav 8=1147 (I 14=64 (L0 (lb) - Maximum Corr Tension 1-14=-49/238, 1-2=- 2-3=-2605/749, 3-5= 5-6=-4653/1485, 6-7 7-8=-1085/333 13-14=-95/63, 12-13 10-12=-761/2596, 9 8-9=-31/97 6-9=-826/344, 5-10 3-12=-781/330, 2-13 7-9=-893/3030, 6-10 3-10=-746/2116, 2-1 1-13=-1542/478	athing directly applie cept end verticals. applied or 4-2-3 oc 1-13 13=0-5-8, 14=0-3-8 C 11) C 12), 13=-308 (LC LC 2) LC 1), 13=2153 (LC C 12) pression/Maximum 489/1580, e-4653/1480, 7=-2979/887, 3=-1573/487, -10=-882/2976, e-481/209, 3=-1693/535, b=-633/1747, 12=-1230/4249,	2) 3) 4) ed or 5) 6) 12), 7) 1), 8) 9) LO 1)	Provide adec This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and ar All bearings a capacity of 4 Provide mecl bearing plate joint 14, 179 13. This truss is International referenced si Hanger(s) or provided suff lb down and 127 lb up at selection of s responsibility In the LOAD of the truss a AD CASE(S) Dead + Roc Plate Increa Uniform Loa Vert: 1-7: Concentrate	quate drainage to p is been designed for ad nonconcurrent w has been designed in chord in all areas by 2-00-00 wide will by other members. are assumed to be 05 psi. hanical connection a capable of withsta lb uplift at joint 8 ard designed in accord Building Code sec tandard ANSI/TPI - other connection de other connection de of others. CASE(S) section, are noted as front (I Standard of Live (balanced): ase=1.15 ads (lb/ft) =-80, 8-14=-20 ed Loads (lb) 255 (F=-127, B=-	brevent to or a 10.0 vith any for a liv s where I fit betw HF No. (by oth anding 2 and 308 dance w tion 230 1. device(s) bocentra 8, and 2 chord. ⁻ vvice(s) loads af F) or ba Lumber	water ponding o psf bottom other live loa e load of 20.0 a rectangle veen the botto 2 crushing ers) of truss t lo uplift at joir ith the 2018 06.1 and) shall be ated load(s) 2 258 lb down a The design/ is the oplied to the f ck (B).	g. ds. Dpsf om t s t t 58 ind face 15,				TUROMING	S ZHAO SHINGTON	
 Wind: ASC Vasd=87n 	CE 7-16; Vult=110mph nph: TCDI =4 2psf: BC	i (3-second gust) :DI =6 0psf: h=25ft: (Cat								5			2

II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

54074

OFESSIONAL ENGI

The second second

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	M05	Monopitch Girder	2	2	R81482217 Job Reference (optional)

March 26,2024

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Scale = 1:52

[2:0-2-0,0-2-0], [3:0-1-12,0-1-8], [4:0-3-7,0-3-1], [5:0-3-7,0-2-1], [9:0-1-12,0-2-4], [10:0-3-7,0-2-1], [12:0-2-0,0-1-12], [13:0-1-12,0-2-8], [18:0-5-8,0-4-0], Plate Offsets (X, Y): [19:0-2-0,0-1-12], [20:0-2-0,0-2-0]

Loading TCLL (roof) TCDL		(psf) 25.0 15.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.98 0.70	DEFL Vert(LL) Vert(CT)	in -0.33 -0.67	(loc) 13-15 13-15	l/defl >825 >409	L/d 240 180	PLATES MT20 M18AHS	GRIP 220/195 169/162	
BCLL BCDL		0.0* 10.0	Rep Stress Incr Code	NO IBC201	8/TPI2014	WB Matrix-SH	0.97	Horz(CT)	0.04	11	n/a	n/a	Weight: 329 lb	FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 DF 2400 2x6 DF 2400 2x4 HF No.2 Structural wc 5-0-4 oc purl Rigid ceiling bracing. (size) 11 20 Max Horiz 20 Max Uplift 11 19 Max Grav 11 19 (lb) - Maximu	DF 2.0E F 2.0E F 2.0E bod sheat directly 1=0-5-8, 0=6-5-8 0=48 (LC 1=-252 (L 0=-2552 (L 0=131 (L um Comp	athing directly applied cept end verticals. applied or 4-11-5 oc 18=6-5-8, 19=6-5-8, 32) LC 38), 18=-1118 (LC LC 1), 20=-571 (LC 1 LC 1), 18=14725 (LC C 30), 20=233 (LC 3 pression/Maximum	1) l or 2) (38), 3) (38), 3) (1), 4) (38)	2-ply truss to (0.131*x3") n Top chords of staggered at Bottom choror staggered at Web connect Except memil All loads are except if note CASE(S) sec provided to d unless other Unbalanced this design. Wind: ASCE Vasd=87mph II; Exp B; Enc	be connected toge ails as follows: connected as follows: 0-9-0 oc, 2x4 - 1 ro s connected as foll 0-9-0 oc. ted as follows: 2x4 - ber 8-13 2x4 - 1 rov considered equally ad as front (F) or ba ction. Ply to ply cont listribute only loads wise indicated. roof live loads have 7-16; Vult=110mph h; TCDL=4.2psf; BC closed; MWFRS (er	ther wi s: 2x6 - bw at 0- lows: 2 - 1 row v at 0-2 applied ck (B) nection noted been of c (3-sec CDL=6.0	th 10d 2 rows 9-0 oc. x6 - 2 rows at 0-4-0 oc, -0 oc. d to all plies, face in the LC s have been as (F) or (B), considered for cond gust) Dpsf; h=25ft;) exterior zoi	DAD or Cat. ne	11) This Interrefe 12) This 200 Cor from 13) Har prov lb d des resp LOAD (1) De Pla Ur	s truss is rnationa struss h 0 lb. Lur nect tru no 0-0-0 t nger(s) 0 vided su own and ign/selec oonsibilit CASE(S) ead + RC tate Increa- iform Lc Vert: 1-8	desig I Build standa as bee mber E ss to r o 6-5-4 fficient I 127 II ction o y of ot of Live ase=1 bads (I 3=-794	ned in accordance ing Code section rd ANSI/TPI 1. en designed for a DOL=(1.33) Plate esist drag loads a for 309.7 plf. r connection devit to support conce b up at 18-1-8 or f such connection hers. ndard e (balanced): Lur .15 b/ft) k, 8-10=-80, 11-2i ads (lb)	total drag load of grip DOL=(1.33) along bottom chor ce(s) shall be entrated load(s) 22 h bottom chord. T h device(s) is the nber Increase=1.1	rd 58 Гhe 15,
TOP CHORD	l ension 1-2=-192/264 3-4=-3114/13 5-6=-11281/2 8-9=-14484/3 1-20=-1115/2	4, 2-3=-1 3145, 4-4 2612, 6-4 3275, 9- 231	1282/5220, 5=-770/533, 8=-15792/3506, 10=-7979/1807,	5)	and C-C Con exposed ; en members and Lumber DOL Provide adec	ner (3) zone; cantile d vertical left and ri d forces & MWFRS =1.60 plate grip DC quate drainage to pr MT20 plates unles	ever lef ght exp for rea DL=1.60 revent v	t and right osed;C-C for ctions showr) water ponding wise indicate	r i; g.		Vert: 13	=-127	(B)	4.4 .	
BOT CHORD	19-20=-5176 17-18=-829/ 15-16=-3635 12-13=-1802	6/1485, 1 1054, 16 5/15766, 2/7973 1	8-19=-13137/3521, -17=-2823/11259, 13-15=-3346/14479, 1-12=0/0	7) 7) 8)	This truss ha chord live loa * This truss h	s been designed fo ad nonconcurrent w has been designed f	r a 10.0 ith any for a liv) psf bottom other live loa e load of 20.0	ids. Opsf			3	ALAOMIN VIAOF WA	G ZHAO	
NEBS NOTES	10-11=-2479 5-16=-471/2 9-12=-2240(9-13=-1604/ 4-17=-766/ 5-17=-11924 3-19=-2198/8 6-16=-4947/	2.50,5,7 167, 8-1: 607, 10- 6796, 2-2 730, 4-1: 1/2509, 2 8546, 6- 1205, 8-	18=-7097/1598, 3=-1785/531, 12=-1885/8338, 20=-1549/5410, 8=-14542/3031, 2-19=-3347/836, 15=-592/279, 15=-533/1473	9 <u>]</u> 10	on the bottom 3-06-00 tall b chord and an All bearings a capacity of 4 D) Provide med bearing plate joint 11, 1118 and 868 lb up	n cnord in all areas by 2-00-00 wide will by other members. are assumed to be 05 psi. hanical connection capable of withsta 3 lb uplift at joint 18. plift at joint 19.	where fit betw HF No. (by oth nding 2 , 571 lb	a rectangle veen the both 2 crushing ers) of truss t 52 lb uplift at uplift at joint	om to t 20				PROPESSIONA	74 ERED LENGTHON	

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	M06	Monopitch	18	1	R81482218 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:47 ID:xL3mvu_WJToi1UB7CL8mJUzZ44r-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:51.6

Plate Offsets (e Offsets (X, Y): [2:0-1-12,0-1-12], [3:0-1-12,0-1-8], [6:0-1-12,0-1-12], [7:0-2-0,0-2-0], [9:0-2-0,0-2-0], [10:0-4-0,0-2-0], [12:0-1-12,0-1-12], [13:0-2-0,0-2-4]													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2018	3/TPI2014	CSI TC BC WB Matrix-SH	0.57 0.94 0.80	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.48 -0.97 0.12	(loc) 10-12 10-12 8	l/defl >677 >334 n/a	L/d 240 180 n/a	PLATES MT20 M18AHS Weight: 133 lb	GRIP 220/195 169/162 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x6 DF No.2 2x4 DF 1800F 1.6E 2x4 HF No.2 *Excep Structural wood shea 2-6-10 oc purlins, e: Rigid ceiling directly bracing. (size) 8=0-5-8, 1 Max Horiz 14=43 (LC Max Uplift 8=-80 (LC Max Grav 8=1344 (L (lb) - Maximum Com Tension 1-2=-3799/789, 2-3= 3-5=-5816/1162, 5-6 6-7=-3636/728, 1-14 13-14=-170/479, 12- 10-12=-1246/6095, 5 7-8=-1293/293, 2-13 3-12=-372/177, 5-10 6-9=-1055/308, 7-9= 6-10=-464/2277, 3-1 2-12=-482/2351, 1-1	t* 0-0,15-14:2x6 DF athing directly appli xcept end verticals. applied or 2-2-0 oc 4=0-5-8 29) 12), 14=-74 (LC 8) C 1), 14=1325 (LC pression/Maximum -6101/1230, =-5817/1167, =-1341/287, 1-15=(13=-809/3794, 9-10=-729/3630, 8-5 =-902/267, =-471/181, -766/3813, 0=-292/75, 3=-694/3462	5) 6) ed or 7) 8) 9) 1) LC	This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings capacity of 4 Provide mec bearing plate 14 and 80 lb This truss is International referenced s	s been designed ad nonconcurrent as been designe n chord in all are y 2-00-00 wide v y other members are assumed to 05 psi. hanical connectio capable of withs uplift at joint 8. designed in acco Building Code se tandard ANSI/TP Standard	tor a 10.0 t with any d for a live as where a will fit betw s. De HF No.1 Don (by othe standing 7 ordance wi ection 230 11.) pst bottom other live loa e load of 20.0 a rectangle veen the botto 2 crushing ers) of truss t 4 lb uplift at j th the 2018 6.1 and	ds. Dpsf om oint				LAOMING	3 ZHAC	
 Unbalance this design 2) Wind: ASC Vasd=87n II; Exp B; I and C-CC exposed ; members Lumber D Provide ac 4) All plates ; 	ed roof live loads have 1. CE 7-16; Vult=110mph 1ph; TCDL=4.2psf; BC Enclosed; MWFRS (en Corner (3) zone; cantile end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO dequate drainage to pri are MT20 plates unless	been considered for (3-second gust) DL=6.0psf; h=25ft; velope) interior zon ver left and right ght exposed;C-C foi for reactions showr L=1.60 event water ponding s otherwise indicate	or Cat. ne r r s; g. g.									THOMESSIONA	A PACING PACE	

March 26,2024

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	M07	Monopitch Supported Gable	4	1	R81482219 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:47 ID:n?HaYWjvsDOVmN2l?Wj_0LzZ41I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:51.6

Plate Offsets (X, Y): [1:0-2-4,0-2-0], [8:0-4-0,0-4-8], [23:0-3-0,0-3-0]

Loading		(psf)	Spacing	2-0-0		CSI	0.02	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
		25.0		1.15		BC	0.02	Vert(LL)	n/a	-	n/a	999	INT20	103/140	
BCU		0.0*	Ren Stress Incr	VES		WB	0.02	Horiz(TL)	0.00	16	n/a	999 n/a			
BCDI		10.0	Code	IBC201	8/TPI2014	Matrix-SH	0.02	110112(112)	0.00	10	Π/α	Π/α	Weight [,] 112 lt	FT = 10%	
		10.0	0000	IBOLOI	0/11/12/011								Wolgin. 112 la		
LUMBER TOP CHORD BOT CHORD WEBS OTHERS	2x6 DF N 2x4 HF N 2x4 HF N 2x4 HF N 2x4 HF N	lo.2 lo.2 lo.2 *Excep lo.2	t* 31-30:2x6 DF No.	Т(2 В	OP CHORD	1-2=-21/8, 2-3=-19 5-6=-14/6, 6-7=-13 10-11=-7/3, 11-12= 13-14=-2/2, 14-15= 1-31=0/0 29-30=-79/90, 28-2	//8, 3-4≕ //5, 7-9≕ =-5/2, 12 =-1/0, 1∹ 29=-1/2,	-18/7, 4-5=-16 -11/4, 9-10=-8 -13=-3/2, 30=-63/68, 27-28=-1/2,	6/6, 3/4,	10) * Th on tl 3-06 chor 11) All b capa	is truss he botto -00 tall rd and a bearings acity of	has be m cho by 2-0 ny oth are as 405 ps	en designed fo rd in all areas w 0-00 wide will fir er members. ssumed to be H si.	r a live load of 20. here a rectangle between the bott F No.2 crushing	0psf tom
TOP CHORD	Structura 6-0-0 oc	l wood she purlins, ex	athing directly applie cept end verticals.	ed or	:	26-27=-1/2, 25-26= 22-24=-1/2, 21-22= 19-20=0/0_18-19=	=-1/2, 24 =0/0, 20- 0/0_17-′	-25=-1/2, ·21=0/0, 18=0/0_16-17	′=0/0	12) Prov bear	/ide me ring plat	chanic e capa lift at id	al connection (b able of withstand oint 29, 13 lb un	y others) of truss ling 2 lb uplift at jo lift at joint 28, 12	to pint
BOT CHORD	Rigid ceil bracing.	ing directly	applied or 10-0-0 oc	° W	/EBS	15-16=-19/7, 2-29=	=-157/70	, 3-28=-162/6	=0/0 6,	uplif	t at join	27, 12	2 lb uplift at joint	26, 12 lb uplift at	joint
REACTIONS	(size) Max Horiz Max Uplift	16=27-0-4 19=27-0-4 22=27-0-4 25=27-0-4 30=44 (LC 16=-2 (LC 18=-13 (L 20=-12 (L 22=-12 (L 24=-12 (L	4, 17=27-0-4, 18=27 4, 20=27-0-4, 21=27 4, 23=27-0-4, 24=27 4, 26=27-0-4, 30=27 C 9) 8, 17=-8 (LC 12), C 8), 19=-12 (LC 12) C 8), 21=-12 (LC 12) C 8), 21=-12 (LC 12) C 8), 25=-12 (LC 12)	-0-4, -0-4, -0-4, -0-4, -0-4 N 1)), 1), 2)), 2)	OTES Unbalanced this design. Wind: ASCE Vasd=87mpl II; Exp B; En and C C Ca	4-27 = 160/64, 5-20 7-24=-159/63, 8-20 10-21=-160/64, 11 12-19=-159/63, 13 14-17=-124/49, 1-2 roof live loads hav 7-16; Vult=110mp h; TCDL=4.2psf; B closed; MWFRS (== 160/6 3==160/6 -20==160 -18==168 29==107/ e been of the (3-section CDL=6.0 envelope	14, 0-23=-100, 14, 9-22=-161, 2)/64, 3/67, /93 considered foi cond gust) Dpsf; h=25ft; () interior zonn t and right	/64, /64, r Cat. e	 uplift at joint 22, 12 lb uplift at joint 21, 12 lb uplift at joint 20, 12 lb uplift at joint 19, 13 lb uplift at joint 18, 8 lb uplift at joint 17 and 17 lb uplift at joint 30. 13) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard 					
FORCES	Max Grav (Ib) - Max Tension	26=-12 (L 28=-13 (L 30=-17 (L 16=22 (LC 18=210 (L 20=200 (L 22=201 (L 26=200 (L 28=202 (L 30=77 (LC	C 8), 27=-12 (LC 12 C 8), 29=-33 (LC 12 C 8) C 1), 17=157 (LC 1), LC 1), 19=198 (LC 1), LC 1), 21=200 (LC 1), LC 1), 23=200 (LC 1), C 1), 25=200 (LC 1), C 1), 27=200 (LC 1), C 1), 29=203 (LC 1), C 20) pression/Maximum), 3)), 3)), 4)), 5) (, 5) (, 6) 7) 8) 8) 9)	 and C-C Collector exposed; er members an Lumber DOL Truss desig only. For stu- see Standard or consult quitage Provide adee All plates are Gable requiring Truss to be for braced again Gable studs This truss has 	A vertical left and d vertical left and d forces & MWFR: =1.60 plate grip D ned for wind loads uds exposed to wir d Industry Gable E ialified building de: quate drainage to p e 2x4 MT20 unless es continuous bott ully sheathed from 1st lateral moveme spaced at 2-0-0 o us been designed f	or a 10.0	voised;C-C for ctions shown) lane of the tru al to the face) ils as applicat s per ANS/TF water ponding se indicated. d bearing. e or securely iagonal web).	;),)le, 211. J.			and the second se	TANOMIN TANOMIN Service TROPERS	IG ZHIAO ASHINGTON DT4 TERED THO	

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

> 400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

March 26,2024

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	M08	Monopitch Structural Gable	2	1	R81482220 Job Reference (optional)

Run: 8.63 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:47 Page: 1 ID:7aK24bYZ7VX1WXTFJ5sK8HzZ3x4-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f DRMI 120200 120200

6-5-8

Coolo	- 4	
Scale	=	1:20

TCLL (roof) TCDL BCLL BCDL		25.0 15.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr Code	1.15 1.15 YES IBC20	18/TPI2014	TC BC WB Matrix-R	0.04 0.03 0.02	Vert(LL) Vert(CT) Horz(CT)	n/a n/a 0.00	7	n/a n/a n/a	999 999 n/a	MT20 Weight: 28 lb	185/148 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x6 DF N 2x4 HF N 2x4 HF N 2x4 HF N Structural 6-0-0 oc p Rigid ceill bracing.	o.2 o.2 o.2 o.2 I wood shea purlins, exc ing directly	athing directly applie cept end verticals. applied or 10-0-0 oc	ed or c t t t t t t t t t t t t t t t t t t	 i) Truss to be f braced agair i) Gable studs ii) This truss ha chord live loa iii) This truss f on the bottor 3-06-00 tall t chord and ar iii) All bearings 	ully sheathed frc ist lateral moven spaced at 2-0-0 s been designed id nonconcurren ias been design in chord in all are y 2-00-00 wide by other member are assumed to 05 pai	orn one fac nent (i.e. di oc. d for a 10.0 nt with any ed for a live eas where a will fit betw rs. be HF No.1	e or securely (agonal web) (psf bottom other live loa e load of 20.0 a rectangle (een the botto 2 crushing	ds. Opsf om						
REACTIONS	(size) Max Horiz Max Uplift Max Grav	7=6-5-8, 8 10=6-5-8 10=31 (LC 7=-5 (LC 12), 10=-4 7=103 (LC (LC 1), 10	8=6-5-8, 9=6-5-8, C 9) 9), 8=-23 (LC 8), 9=- 9 (LC 8) C 1), 8=235 (LC 1), 9 =203 (LC 1)	1 1 (LC 9=164 ¹	 Provide mec bearing plate 10, 5 lb uplift uplift at joint This truss is International referenced s 	b) psi. hanical connecti capable of with at joint 7, 1 lb u 8. designed in acco Building Code s iandard ANSI/T	ion (by othe standing 4 plift at joint ordance wi section 230	ers) of truss t 9 lb uplift at j 9 and 23 lb th the 2018 6.1 and	o oint						
FORCES	(lb) - Max Tension	imum Com	pression/Maximum	L	OAD CASE(S)	Standard									
TOP CHORD	2-10=-18 4-5=-8/11	5/135, 1-2= , 5-6=-7/9,	0/2, 2-3=-9/6, 3-4=-8 6-7=-58/51	8/9,											
BOT CHORD WEBS	9-10=-35/ 3-9=-126/	′38, 8-9=-3 ′108, 4-8=-	5/38, 7-8=-35/38 188/148, 5-7=-88/11	7											
NOTES														-	

 Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oullapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Vauility** Criteria and DSP-22 available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

March 26,2024

THAOMING ZHAO

REGISTERED THE

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	M09	Monopitch	10	1	R81482221 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:47 ID:iC?q_zNm5x?iE2fsGkU5vTzZ2eg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:53.5

Plate Offsets (X, Y): [3:0-2-4,0-2-0],	[7:0-1-12,0-1-8], [8:0	0-2-8,0-2-8	5], [9:0-2-0,0-1·	-4], [10:0-2-0,0-2-0)], [13:0-	2-4,0-2-0]							
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2018	3/TPI2014	CSI TC BC WB Matrix-SH	0.69 0.62 0.89	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.24 -0.49 0.03	(loc) 11-13 11-13 9	l/defl >999 >560 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 138 lb	GRIP 185/148 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 DF No.2 2x4 HF No.2 2x4 HF No.2 Structural wood shea 3-7-9 oc purlins, exc Rigid ceiling directly bracing. (size) 9=0-5-8, 1 Max Horiz 15=43 (LC Max Upliff 9=-60 (LC 15=-42 (LI Max Grav 9=1027 (L 15=-5 (LC	athing directly applie cept end verticals. applied or 4-7-4 oc 4=0-5-8, 15=0-3-8 2 11) 12), 14=-113 (LC 12 C 3) C 1), 14=1952 (LC 2 9)	3) 4) (d or 5) 6) 2), 7) 1), LC	This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings a capacity of 4 Provide mec bearing plate 15, 60 lb upli This truss is International referenced s DAD CASE(S)	is been designed f ad nonconcurrent v has been designed in chord in all area: by 2-00-00 wide wi by other members. are assumed to be 05 psi. hanical connectior e capable of withsta ft at joint 9 and 11 designed in accord Building Code set tandard ANSI/TPI Standard	or a 10.0 with any for a liv s where Il fit betw HF No. (by oth anding 4 3 lb uplit dance w ttion 230 1.	 psf bottom other live loa e load of 20.0 a rectangle veen the botto 2 crushing ers) of truss t 2 lb uplift at j t at joint 14. tith the 2018 6.1 and 	ds. Dpsf om o						
	(lb) - Maximum Com Tension	pression/Maximum												
TOP CHORD	2-15=0/133, 1-2=0/2 3-4=-2283/430, 4-6= 6-7=-3606/680, 7-8=	, 2-3=-267/1339, -3604/675, -2576/497, 8-9=-967	7/216											
BOT CHORD	14-15=-73/48, 13-14 11-13=-442/2275, 10 9-10=-25/90	=-1332/264,)-11=-491/2571,												
WEBS	3-14=-1538/384, 4-1 6-11=-491/178, 7-10 8-10=-490/2605, 7-1 4-11=-247/1360, 3-1 2-14=-1299/267	3=-666/216, =-700/222, 1=-200/1075, 3=-677/3684,									ź	ALAOMIN ALAOF WA	S ZHAO SHING	
NOTES 1) Wind: ASC Vasd=87n II; Exp B; I and C-C C exposed ; members Lumber D 2) Provide ac	CE 7-16; Vult=110mph nph; TCDL=4.2psf; BCI Enclosed; MWFRS (en Corner (3) zone; cantile end vertical left and rig and forces & MWFRS i OL=1.60 plate grip DO dequate drainage to pre	(3-second gust) DL=6.0psf; h=25ft; C velope) exterior zon ver left and right ht exposed;C-C for for reactions shown; L=1.60 event water ponding	Cat. e									PROPESSIONA	TA ERED LENGTHON	

March 26,2024

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	M10	Monopitch Girder	2	2	R81482222 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:47 ID:Xew4Tgh3tC15glQtB1?8Y7zZ26h-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:51.8

Plate Offsets (X, Y): [3:0-2-4,0-2-4],	, [4:0-1-12,0-2-0], [10	:0-2-0,0-2	-0], [12:0-2-0,0	-1-8], [13:0-2-12,	0-1-8], [1	6:0-3-12,0-2-4	4], [17:0	-1-12,0-	1-12], [1	8:0-3-6	3,0-3-8], [19:0-1	-12,0-1-8]
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC2018	8/TPI2014	CSI TC BC WB Matrix-SH	0.62 0.65 0.95	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.17 -0.34 0.02	(loc) 13-15 13-15 13-15 11	l/defl >999 >798 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 328 II	GRIP 185/148 b FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 DF No.2 *Excep 2.0E 2x6 DF No.2 2x4 HF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 11=0-4-0, 20=6-5-8 Max Horiz 20=66 (L0 Max Uplift 11=-170 (19=-121 (Max Grav 11=1385 (19=364 (L0)) - Maximum Corr	ot* 1-7:2x6 DF 2400F athing directly applie cept end verticals. applied or 5-3-4 oc , 18=6-5-8, 19=6-5-8, C 32) (LC 38), 18=-913 (LC (LC 66), 20=-233 (LC (LC 65), 20=315 (LC 3 poression/Maximum	1) d or 2) 38), 51) 1), 34)	2-ply truss to (0.131*x3") r Top chords c oc, 2x6 - 2 rc Bottom chorr staggered at Web connec 0-9-0 oc, Exc All loads are except if nott CASE(S) sec provided to c unless other Wind: ASCE Vasd=87mpf II; Exp B; En and C-C Cor exposed ; en	b be connected to alia as follows: connected as follows: connected as follows: dows staggered at dows staggered at down as follows: 2x considered equa ed as front (F) or tion. Ply to ply co distribute only loa- wise indicated. 7-16; Vult=110m n; TCDL=4.2psf; I closed; MWFRS ner (3) zone; can d vertical left ano d vertical left ano	gether wi ows: 2x4 + 0-9-0 oc. follows: 2 (4 - 2 row 5 2x4 - 1 Illy applie back (B) onnection ds noted ph (3-sec BCDL=6. (envelope tillever lef f right exp 20 for are	th 10d th 10d th 10d th 10d trow at 0-9-0 cd to all plies, face in the LC s have been as (F) or (B), cond gust) Opsf; h=25ft; (f) opsf; h=25ft; (f) t and right osed; C-C for	-0 lt Doc. DAD Cat. he	10) This 200 Cor from 11) Har pro lb d des resy LOAD (1) De Pli Ur Ur	s truss h 10 lb. Lun nect tru n 0-0-0 t nger(s) c vided su lown and ign/sele ponsibili CASE(S ead + Rc ate Increa- niform Lc Vert: 1-1- poncentra Vert: 15	as beember D mber D ss to r o $6-5-{}$ or other fficient d 191 II ction o ty of ot boats (II 6=-722 ted Lo =-38 (II	en designed for DOL=(1.33) Plat esist drag loads 8 for 309.7 plf. r connection de t to support con b up at 13-5-4 f such connecti hers. ndard e (balanced): Lu .15 b/ft) 2, 6-10=-80, 11- ads (Ib) B)	a total drag load of te grip DOL=(1.33) s along bottom chord vice(s) shall be centrated load(s) 229 on bottom chord. The ion device(s) is the umber Increase=1.15, 20=-20
TOP CHORD	Tension 1-20=-254/279, 1-2= 2-3=-2497/7283, 3-4 4-5=-6321/2095, 5-6 6-8=-6250/2053, 8-5 9-10=-3841/1023, 1	=-1216/2658, 4=-1661/960, 5=-6311/1898, 9=-6250/1728, 0-11=-1293/358	4) 5) 6)	members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all aces where a rectangle									La La
WEBS NOTES	 13-20904;923, 16-17=-979/1621, 15-16=-2215/6903, 13-15=-2215/6903, 12-13=-1015/3836, 11-12=-50/149 9-12=-1073/387, 10-12=-1012/3863, 8-13=-403/173, 9-13=-859/2505, 6-15=-195/379, 6-13=-986/388, 5-16=-1532/360, 6-16=-893/534, 3-17=-2175/9064, 4-16=-1474/5520, 2-19=-214/305, 1-19=-2804/1270, 2-18=-4921/1566 3-06-00 tall by 2-00-00 wide will fit chord and any other members. All bearings are assumed to be HI capacity of 405 psi. Provide mechanical connection (b bearing plate capable of withstanc joint 20, 170 lb uplift at joint 11, 91 and 121 lb uplift at joint 19. This truss is designed in accordar International Building Code sectio referenced standard ANSI/TPI 1. 				vill fit betv s. pe HF No. tranding 2 1, 913 lb rdance w ection 230 I 1.	veen the botto 2 crushing ers) of truss t 133 lb uplift at 133 lb uplift at 131 lb uplift a	om 0 8				PROFILESSION	NG ZHLAO TASHINGTON TTERED OF AL ENGINE	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	M11	Monopitch Girder	10	1	R81482223 Job Reference (optional)

Scale = 1:52

'late Offsets (X, Y): [2:0-1-12,0-1-8], [7:0-1-12,0-1-8], [8:0-3-7,0-2-0], [9:Edge,0-3-8], [10:0-3-8,0-1-12], [11:0-3-4,0-1-12], [14:0-3-0,0-2-4], [15:0-3-8,0-2-0], [16:0-9-4,0-3-0]														
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC2018	8/TPI2014	CSI TC BC WB Matrix-SH	0.70 0.68 0.95	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.59 -1.24 0.09	(loc) 11-13 11-13 9	l/defl >585 >278 n/a	L/d 240 180 n/a	PLATES MT20 M18AHS Weight: 164 lb	GRIP 220/195 169/162 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	2x6 DF No.2 *Excep 2.0E 2x6 DF 2400F 2.0E 2x4 HF No.2 *Excep 1.6E Structural wood she 2-3-4 oc purlins, ex Rigid ceiling directly bracing. (size) 9=0-5-8, 7 Max Horiz 16=41 (LC Max Uplift 9=-191 (L Max Grav 9=1554 (I (lb) - Maximum Com Tension 1-16=-1418/393, 1-2 2-3=-8618/2422, 3-4 4-6=-7468/2002, 6-7 7-8=-4481/1132, 8-5 15-16=-197/551, 14 13-14=-2553/8827, 1 0-11=-1133/4475, 9 2-15=-958/361, 3-14 6-11=-404/160, 7-10 8-10=-1127/4498, 7 2-14=-811/2606, 1-1 4-13=-197/510, 4-14 4-11=-1556/552	t* 1-5:2x6 DF 2400F t* 1-15:2x4 DF 1800 athing directly applie cept end verticals. applied or 6-6-3 oc 16=0-5-8 C 9) C 12), 16=-208 (LC 8 C 1), 16=1573 (LC 1 pression/Maximum 2=-6219/1624, t=-8615/2424, r=-7469/2006, b=-1451/385 -15=-1672/6211, 11-13=-2553/8827, 9=10=-55/174 t=-275/127, b=-123/410, -11=-924/3162, 15=-1514/5745, t=-311/147,	2) 3) 4) F 5) d or 6) 7) 3) 9) 10 LC 1)	Provide ader All plates are This truss ha chord live loa * This truss lo on the bottoo 3-06-00 tall l chord and ar All bearings capacity of 4 Provide mecu joint 16 and This truss is International referenced s Hanger(s) or provided suf lb down and 115 lb up at selection of responsibility of the truss a AD CASE(S) Dead + Ro Plate Increa Uniform Lo Vert: 13-	quate drainage to p a MT20 plates unle as been designed f ad nonconcurrent v has been designed m chord in all areas by 2-00-00 wide wi yy other members. are assumed to be 05 psi. hanical connection e capable of withsta 191 lb uplift at joint designed in accorr Building Code sec tandard ANSI/TPI other connection of ficient to support of 115 lb up at 13-5- 13-5-4 on bottom such connection de y of others. CASE(S) section, are noted as front (Standard of Live (balanced): ase=1.15 ads (lb/ft) =-80, 9-16=-20 ed Loads (lb)	prevent i ss other or a 10.0 with any for a liv s where Il fit betw a HF No. (by oth anding 2 9. dance w tion 230 1. device(s) oncentra 4, and 2 chord. Evice(s) loads a F) or ba Lumber	water pondin, wise indicate 0 psf bottom other live loa e load of 20.0 a rectangle veen the botto 2 crushing ers) of truss t 08 lb uplift at 108 lb uplift at 208 lb uplift at 108 lb uplift at 108 lb uplift at 108 lb down a The design/ is the 000 lb down at The design/ is the 100 lb down at 100	g. ed. lds. Opsf om to t face 15,			Level and the second	THA OMING	ZHAO SHUNCTON	
1) Wind: AS	CE 7-16; Vult=110mph	(3-second gust)									2			

Wind: ASCE 7-16; Vulter 110mpn (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

PESSIONAL ENGI

THE STATE

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	M12	Monopitch	2	1	R81482224 Job Reference (optional)

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:48 ID:7Gaf3iWf7CZ2nGYaT3JE3NzZ2C4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

March 26,2024

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Scale = 1:52

Plate Offsets ((X, Y): [1:0·	-2-12,0-2-0], [9:0-4-0,0-4-8], [1	5:0-2-0,0-2-	-0], [17:0-2-12	2,0-3-0], [22:0-3-0	0,0-3-0], [2	9:0-2-12,0-3-	0], [30:0	-3-0,0-0	-4]				
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC2018	3/TPI2014	CSI TC BC WB Matrix-SH	0.33 0.34 0.48	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a -0.02	(loc) - - 23	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 119 lb	GRIP 185/148 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x6 DF N 2x4 HF N 2x4 HF N 2x4 HF N Structura 5-4-10 oc Rigid ceil bracing.	0.2 0.2 0.2 0.2 I wood shea purlins, e: ing directly	athing directly appli xcept end verticals. applied or 4-2-3 oc	TC ied or BC	OF CHORD	1-30=-1357/132 2-3=-1872/1853 4-5=-1300/1276 6-7=-718/699, 7 10-11=-776/765 12-13=-1355/13 14-15=-2061/20 29-30=-265/210 27-28=-1580/150 25-26=-1001/99	7, 1-2=-21/ , 3-4=-159: , 5-6=-100: -8=-427/41 , 11-12=-10 46, 13-14= 54, 15-16= , 28-29=-11 69, 26-27= 0, 24-25=-	45/2120, 2/1564, 3/987, 0, 8-10=-487 066/1056, -1645/1637, -1218/1211 369/1829, -1290/1279, 711/700,	7/469,	8) Thi cho 9) * T on 3-0 cho 10) All cap 11) Pro bea	s truss h ord live lo his truss the botto 6-00 tall ord and a bearings bacity of wride met aring plat	as bee bad not has be m cho by 2-0 ny oth are as 405 ps chanic re capa	en designed for a nconcurrent with een designed for rd in all areas w 00-00 wide will fit ier members. ssumed to be Hf si. al connection (b able of withstand	10.0 psf bottom any other live load a live load of 20.0 here a rectangle between the botto ⁵ No.2 crushing y others) of truss to ing 1340 lb uplift a	ds. Ipsf Im o
REACTIONS	(size) Max Horiz Max Uplift	16=29-0-4 19=29-0-4 22=29-0-4 25=29-0-4 30=43 (LO 16=-1192 37), 18=-1 37), 20=-1 37), 26=-1 37), 26=-1 37), 26=-1 37), 28=-1 37), 28=-1	4, 17=29-0-4, 18=29 4, 20=29-0-4, 21=29 4, 23=29-0-4, 24=29 4, 26=29-0-4, 27=29 4, 29=29-0-4, 30=29 2 36) (LC 30), 17=-1240 12 (LC 30), 19=-13 17 (LC 38), 21=-25 30 (LC 38), 23=-24 17 (LC 38), 25=-13 12 (LC 29), 27=-12 3 (LC 30), 29=-129 340 (L 20)	9-0-4, 9-0-4, 9-0-4, 9-0-4, (LC (LC (LC (LC (LC (LC (LC (LC (LC (LC	EBS DTES Wind: ASC Vasd=87mµ II: Exp B; E	23-24=-422/411 20-21=-774/763, 18-19=-1353/13 16-17=-398/396 2-29=-167/79, 3 5-26=-160/61, 6 8-23=-159/73, 9 11-20=-159/65, 13-18=-141/57, 1-29=-2405/245- E 7-16; Vult=110r ph; TCDL=4.2psf; nclosed; MWFRS	, 21-23=-44 , 19-20=-11 42, 17-18= -28=-159/6 -25=-160/6 -22=-160/7 12-19=-16 14-17=-22 4, 15-17=-2 mph (3-sec BCDL=6.(6 (envelope	35/473, 064/1052, -1642/1631, 9, 4-27=-160 2, 7-24=-160 9, 10-21=-16 3/62, 7/95, 2349/2338 cond gust) 0psf; h=25ft; exterior zor	0/63, 1/66, 11/74, Cat. ne	joir 29, upl 24, upl 19, 12) Thi Inte refe 13) Thi 420 Co from	t 30, 119 13 lb up ift at join 24 lb up ift at join 12 lb up s truss is ernationa ernationa s truss h 00 lb. Lur nnect tru n 0-0-0 t	92 lb u lift at j t 26, 1: lift at j t 21, 1 lift at j s desig l Build standa as bee mber [ss to r o 29-0	plift at joint 16, 1 joint 28, 12 lb upift at joint joint 23, 30 lb upift at joint joint 23, 30 lb upift 7 lb uplift at joint joint 18 and 1240 med in accordan ing Code section and ANSI/TPI 1. an designed for a OOL=(1.33) Platt esist drag loads i-4 for 144.7 plf.	296 lb uplift at joint ift at joint 27, 12 lb 25, 17 lb uplift at joint 22, 13 lb uplift at joint 20, 13 lb uplift at joint 10 uplift at joint 17 ce with the 2018 1 2306.1 and 1 total drag load of 9 grip DOL=(1.33) along bottom chore	t oint oint '
	Max Grav	16=1242 (50), 18=1 20=199 (L 22=200 (L 24=200 (L 26=200 (L 28=199 (L 30=1379 (LC 49), 17=1371 (I 75 (LC 1), 19=205 (C 1), 21=201 (LC C 1), 23=199 (LC C 1), 25=200 (LC C 1), 27=200 (LC C 1), 27=200 (LC C 1), 29=1393 (LC (LC 36)	LC (LC 1), 1), 1), 2), 2), 49),	and C-C Co exposed ; e members a Lumber DC Truss desig only. For s see Standa or consult o	orner (3) zone; ca end vertical left an nd forces & MWF PL=1.60 plate grip gned for wind loa- tuds exposed to v rd Industry Gable qualified building of	ntilever lef ad right exp RS for rea DOL=1.60 ds in the pl vind (norm End Deta designer as	t and right bosed;C-C for ctions shown ane of the tru al to the face ils as applica s per ANSI/TI	n; uss), ble, PI 1.				TUNOMIN STATE DE W	G ZHAO	
FORCES	(lb) - Max Tension	timum Com	pression/Maximum	3) 4) 5) 6)	Provide ade All plates au Gable requi Truss to be braced aga	equate drainage t re 2x4 MT20 unle ires continuous b fully sheathed fro inst lateral mover	o prevent v ess otherwi ottom chor om one fac ment (i.e. d	vater ponding se indicated. d bearing. e or securely iagonal web)	g. ,			1	POFESSION	TERED AND	,

7) Gable studs spaced at 2-0-0 oc.

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING B	LD G
3907862	M12	Monopitch	2	1	Job Reference (optional)	R81482224
Builders FirstSource (Arlington, V	VA), Arlington, WA - 98223,	Run: 8.63 S Nov 1 2	023 Print: 8.6	30 S Nov 1	2023 MiTek Industries, Inc. Mon Mar 25 09:36:48	Page: 2

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:48 ID:7Gaf3iWf7CZ2nGYaT3JE3NzZ2C4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f PRMU20240404

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	N01	Monopitch Structural Gable	2	1	R81482225 Job Reference (optional)

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:48 ID:Ic8cvCbnUv7Kwrn9jz5wbCzZ1E?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:43.9

Plate Offsets (X, Y): [8:0-4-0,0-4-8], [18:0-3-0,0-3-0]

`														
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	_
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.28	Vert(LL)	-0.01	21-22	>999	240	MT20	185/148	
TCDL	15.0	Lumber DOL	1.15		BC	0.31	Vert(CT)	-0.04	21-22	>999	180			
BCLL	0.0*	Rep Stress Incr	NO		WB	0.36	Horz(CT)	0.01	20	n/a	n/a			
BCDL	10.0	Code	IBC201	8/TPI2014	Matrix-SH							Weight: 119 lb	FT = 10%	
		-	N	EBS 3	3-25=-1064/0. 7-20	=-703/0	. 5-23=-86/9.		1) D	ead + Ro	of Live	e (balanced): Lum	ber Increase=1.15.	
TOP CHORD	2x6 DF No 2				3-28=0/892, 28-29=	0/887.	23-29=0/864,		PI	ate Incre	ase=1	.15	,	
BOT CHORD	2x4 HF No.2			ŧ	5-30=-954/0, 30-31	=-877/0	, 20-31=-886/	0,	U	niform Lo	bads (It	o/ft)		
WEBS	2x4 HF No.2			2	2-26=-89/0, 24-28=	0/50, 4-	29=-61/0,			Vert: 1-	13=-16	4, 14-27=-20		
OTHERS	2x4 HF No.2			2	22-30=-173/0, 6-31	=-17/30	, 21-31=0/49,							
BRACING				8	3-19=-141/0, 9-18=	-356/0,	10-17=-324/0),						
TOP CHORD	Structural wood she	athing directly applie	d or		1-16=-336/0, 12-1	5=-316	0							
	6-0-0 oc purlins, ex	cept end verticals.	N	OTES										
BOT CHORD	Rigid ceiling directly	applied or 6-0-0 oc	1)	Wind: ASCE	7-16; Vult=110mpl	n (3-seo	ond gust)	_						
	bracing, Except:			Vasd=87mpl	n; TCDL=4.2psf; BC	DL=6.	Opsf; h=25ft; C	Cat.						
	10-0-0 oc bracing: 2	2-23,21-22,20-21.		II; Exp B; En	closed; MWFRS (e	nvelope	e) exterior zon	e						
REACTIONS	(size) 14=11-9-0	0, 15=11-9-0, 16=11-	9-0,	and U-U Cor	ner (3) zone; cantil d vertical left and ri	ever let								
	17=11-9-0	0, 18=11-9-0, 19=11-	·9-0,	members an		for roa	ctions shown							
	20=11-9-0), 25=3-3-0, 26=3-3-	0,	Lumber DOI	=1.60 plate arin D0	101100)							
	2/=3-3-0 Max Llaria 27 C1 (LC		2	Truss design	ed for wind loads i	n the p	, lane of the tru	ss						
	Max Gray 11-106 (LC	ンッ) (C 1) 15_350 (I C 1)	_,	only. For stu	ds exposed to wind	d (norm	al to the face)							
	16-276 (I	C 1) 17-361 (LC 1)	,	see Standard	Industry Gable Er	nd Deta	ils as applicat	ole,						
	18=409 (I	C 1) 19=131 (I C 1)	,	or consult qu	alified building des	igner a	s per ANSI/TP	ч <u>1</u> .						
	20=1200	(LC 1), 25=1150 (LC	, 1), 3)	Provide adec	uate drainage to p	revent	water ponding							
	26=82 (LC	C 1), 27=134 (LC 1)	/' 4)	All plates are	2x4 MT20 unless	otherwi	se indicated.							
FORCES	(lb) - Maximum Com	pression/Maximum	5)	Truss to be f	ully sheathed from	one fac	e or securely							
	Tension			braced again	st lateral movemer	nt (i.e. d	agonal web).						-	
TOP CHORD	1-27=-115/0, 1-2=-2	3/28, 2-3=-20/30,	6)	Gable studs	spaced at 2-0-0 oc									
	3-4=-810/0, 4-5=-80	1/0, 5-6=-37/29,	7)	i his truss ha	s been designed fo	ora 10.0	J pst bottom	de la				OMINO	G 21.	
	6-7=-33/34, 7-9=-33	/31, 9-10=-31/31,	0)	* This truce h		for a live	other live load	JS.				TAU	CHA	
	10-11=-31/33, 11-12	2=-31/35, 12-13=-31/	36, ⁸⁾	on the bottor	n chord in all areas	where	e ioau oi 20.0 a rectande	hai				T OF WA	SHIN	
	13-14=-98/0			3-06-00 tall h	v 2-00-00 wide will	fit betv	veen the botto	m				AN YOR		
BOLCHOUD	26-27=-88/73, 25-26	5=-88/73, 24-25=-88/	73,	chord and ar	v other members						-	A		
	23-24=-88/73, 22-23	3=0/802, 21-22=0/80	2, 9)	All bearings	are assumed to be	HF No.	2 crushing					1°	2	
	20-21=0/802, 19-20=	=-31/31, 17-19=-32/3	21, ^{-,}	capacity of 4	05 psi.		J							
	10-17=-32/31, 15-10	=-32/31, 14-13=-32/	1)) This truss is	designed in accord	ance w	ith the 2018							
				International	Building Code sect	ion 230	6.1 and				1	540	14 /8 1	
				referenced s	andard ANSI/TPI 1							ON REGION	BE A	
			11	 Load case(s) 	1 has/have been r	nodified	d. Building				-	Econst	GIT	
				designer mu	st review loads to v	erify the	at they are					SIONA	LEN	
			-	correct for th	e intended use of th	nis trus	5.							
			L	DAD CASE(S)	Standard									

400 Sunrise Ave., Suite 270

Roseville, CA 95661 916.755.3571 / MiTek-US.com

March 26,2024

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	N02	Monopitch Structural Gable	2	1	R81482226 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:48 ID:HvtLD4X8WgiSXinUIG13iLzZ1Gf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:60.7

Plate Offsets (X, Y): [6:0-4-0,0-4-8]

Loading TCLL (roof) TCDL BCLL	(psf) 25.0 15.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.26 0.25 0.31	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.08 0.00	(loc) 14-15 14-15 16	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 185/148
BCDL	10.0	Code	IBC2018	/TPI2014	Matrix-SH							Weight: 165 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x6 DF No.2 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural wood she	athing directly applied	or NO	EBS 7 1 1 9 2 5 5 5 5 5 5	-20=-56/63, 8-19=- 1-16=-845/214, 12 3-15=-106/652, 11 1-16=-391/67, 8-17= 1-25=-170/58, 3-24= 1-22=-166/56, 6-21=	-547/10 -15=-4 -15=-12 =-77/55 =-160/5 =-80/30	8, 9-17=-23(52/162, 25/831, 1, 7-19=-245 4, 4-23=-160	D/111, 5/88, D/54,	11) This Inte refe LOAD (s truss is rnationa renced s	desig I Build standa Star	ned in accordance ng Code section rd ANSI/TPI 1. ndard	e with the 2018 2306.1 and
BOT CHORD	6-0-0 oc purlins, exe Rigid ceiling directly bracing, Except: 10-0-0 oc bracing: 1	cept end verticals. applied or 6-0-0 oc 6-17,14-15.	1)	Wind: ASCE Vasd=87mph II; Exp B; End and C-C Corr	7-16; Vult=110mpr ; TCDL=4.2psf; BC closed; MWFRS (ei ner (3) 0-1-12 to 15	n (3-sec CDL=6.0 nvelope 5-1-12, l	ond gust))psf; h=25ft; e) exterior zo Exterior (2)	Cat. ne					
REACTIONS	(size) 14=0-5-8, 20=11-3-5 23=11-3-5 26=11-3-5 Max Horiz 26=61 (LC Max Uplift 14=-30 (L 19=-38 (L 23=-12 (L 23=-12 (L 25=-11 (L 19=736 (L 19=736 (L 21=102 (L 23=199 (L 25=213 (L	16=0-5-8, 19=0-3-8, 3, 21=11-3-8, 22=11-3 3, 24=11-3-8, 25=11-3 3, 24=11-3-8, 25=11-3 3 C 9) C 12), 16=-65 (LC 12) C 12), 20=-9 (LC 8), C 12), 22=-10 (LC 12), C 12), 24=-12 (LC 8), C 12), 24=-12 (LC 8), C 1), 20=101 (LC 1), C 1), 22=209 (LC 1), C 1), 24=199 (LC 1), C 1), 26=73 (LC 1)	-8, -8, 2) , 2) , 3) 4) 5) 6) 7)	15-1-12 to 19 cantilever left right exposed for reactions : DOL=1.60 Truss design only. For stu see Standard or consult qu Provide adeq All plates are Truss to be fu braced again Gable studs s This truss has	I-6-12, Corner (3) 1 c and right exposed (;C-C for members) shown; Lumber DC and for wind loads i ds exposed to winc l Industry Gable En alified building desi uate drainage to p 2x4 MT20 unless ully sheathed from spaced at 2-0-0 oc. s been designed for d concensurate	9-6-12 ; end v and for DL=1.60 n the pld (norm id Detai igner as revent v otherwisione fac it (i.e. d	to 34-6-12 z ertical left ar cess & MWFf plate grip ane of the tr al to the face is as applica per ANSI/T vater pondin se indicated. e or securely iagonal web) psf bottom	one; nd RS uss a), bble, PI 1. g. V				TAOMING	3 ZHAC
FORCES	(lb) - Maximum Com Tension	pression/Maximum	8)	* This truss h	as been designed	for a liv	e load of 20.	opsf			7	THE WA	STRA L
TOP CHORD	1-26=-59/21, 1-2=-1 3-4=-19/22, 4-5=-19/ 7-8=-47/210, 8-9=-2 11-12=-646/125, 12- 13-14=-453/107	8/19, 2-3=-18/20, /23, 5-7=-20/25, 43/56, 9-11=-50/136, -13=-647/129,	9)	on the bottom 3-06-00 tall b chord and an All bearings a capacity of 40 Provide mech	n chord in all areas y 2-00-00 wide will y other members. are assumed to be 05 psi. nanical connection	where fit betw HF No.	a rectangle veen the bott 2 crushing ers) of truss	tom					
BOLCHORD	25-26=-86/70, 24-25 22-23=-86/70, 21-22 19-20=-85/70, 17-19 16-17=-66/241, 15-1	>=-86/70, 23-24=-86/7 2=-86/70, 20-21=-85/7 9=-207/58, 6=-130/49, 14-15=-21	0, 10) 0, 1/48	bearing plate 26, 30 lb uplif uplift at joint 25, 12 lb uplif uplift at joint 2	capable of withsta ft at joint 14, 9 lb up 19, 65 lb uplift at joint ft at joint 24, 12 lb u 22 and 11 lb uplift a	nding 5 olift at jo int 16, 1 uplift at at joint 2	Ib uplift at jo pint 20, 38 lb 1 lb uplift at joint 23, 10 l 21.	joint b			3	POFESSIONA	ERED LENGING

March 26,2024

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	N03	Monopitch	2	1	R81482227 Job Reference (optional)

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:48 ID:OvDiVSV81MqFA18a1za1_7zZ1OS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:59.6

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2018	8/TPI2014	CSI TC BC WB Matrix-SH	0.26 0.15 0.45	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.03 0.00	(loc) 11-12 11-12 18	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 198 lb	GRIP 185/148 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 DF N 2x6 DF N 2x4 HF N Structural 6-0-0 oc p Rigid ceill bracing. (size) Max Horiz Max Uplift Max Grav (lb) - Max Tension 1-20=-37	0.2 0.2 0.2 I wood she purlins, ex ing directly 11=0-5-8, 18=0-5-8, 20=59 (L0 11=-29 (L 16=-35 (L 20=-28 (L 11=503 (l 20=435 (L 20=435 (L 20=435 (L 20=435 (L 20=435 (L 20=435 (L) 20=435 (L)	athing directly applied cept end verticals. applied or 6-0-0 oc 14=0-5-8, 16=0-3-8, 20=0-5-8 C 11) C 12), 14=-66 (LC 8), C 12), 18=-40 (LC 12 C 8) C 1), 14=1097 (LC 1 C 1), 18=750 (LC 1), C 1) pression/Maximum 582/92, 2-3=-55/247,	1) d or 2) 3) 4) 5)), 5)), 6) 7)	Wind: ASCE Vasd=87mpH II; Exp B; Enn and C-C Cor 15-1-12 to 18 cantilever lef right exposed for reactions DOL=1.60 Provide adec All plates are This truss ha chord live loa * This truss ho on the bottom 3-06-00 tall b chord and ar All bearings a capacity of 4 Provide mech bearing plate	7-16; Vult=110mpl a; TCDL=4.2psf; BC closed; MWFRS (e ner (3) 0-1-12 to 15 8-9-8, Corner (3) 18 and right exposed t; C-C for members shown; Lumber DC uate drainage to p 3x4 MT20 unless s been designed for d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide will y other members. are assumed to be D5 psi. nanical connection capable of withsta f at joint 11, 40 lb	h (3-sec CDL=6. cDL=6. cDL=6. cDL=6. cDL=6. convelope s-9-8 to s-9-8 to s-9-8 to s-9-8 to s-9-8 to s-9-8 to s-9-8 to convelope otherwi or a 10. convelope otherwi or a 10. convelope otherwi or a 10. convelope otherwi or a 10. convelope otherwi or a 10. convelope otherwi or a 10. convelope otherwi or a 10. convelope otherwi ot	ond gust) Dpsf; h=25ft; exterior zon Exterior (2) 33-9-8 zone; partical left ar ces & MWFF plate grip water pondin, se indicated. Dpsf bottom other live load of 20.0 a rectangle veen the botth 2 crushing ers) of truss f 8 lb uplift at j se ta 25 lb	Cat. ne dd RS g. ds. Opsf om to oint						
BOT CHORD	3-5=-74/3 7-9=-626/ 10-11=-43 19-20=-95	816, 5-6=-1 /119, 9-10= 35/105 5/103, 18-1	67/42, 6-7=-48/156, 626/123, 9=-152/578,	8)	uplift at joint This truss is International referenced si	16 and 66 lb uplift a designed in accord Building Code sect andard ANSI/TPI 1	at joint lance w tion 230	14. ith the 2018 6.1 and	-					44.	
WEBS NOTES	16-18=-24 14-15=-5 3-18=-34 7-14=-82 10-12=-10 6-15=-27 3-16=-84 1-19=-10	43/63, 15-1 1/166, 12-1 0/117, 5-16 9/216, 9-12 00/623, 7-1 7/120, 6-14 /27, 2-19=- 0/550	6=-314/74, 4=-150/57, 11-12=-2 5=-479/93, 2=-453/165, 2=-127/827, 4=-332/53, 5-15=-82/5 107/109, 2-18=-869/1	7/47 LC 582, 55,	DAD CASE(S)	Standard						Y	A THOMING	ZHAO	
												3	TORESSIONA	LENGIND	

TAL March 26,2024

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	N04	Monopitch Girder	8	1	R81482228 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:49 ID:Wg12ojsyzac?meQLnG74BRzZ1O_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:59.6

Plate Offsets ((X, Y): [2:0-1-12,0-	1-12], [9:0-2-12,0-2-8],	[10:Edge,0	-3-8], [16:0-1-1	12,0-4-12], [17:0-3	3-8,0-3-0							
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 15.0 0.0 10.0	* Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC2018	3/TPI2014	CSI TC BC WB Matrix-SH	0.60 0.80 0.96	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.63 -1.26 0.15	(loc) 14-16 14-16 10	l/defl >636 >321 n/a	L/d 240 180 n/a	PLATES M18AHS MT20 Weight: 198 lb	GRIP 145/140 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS TOP CHORD BOT CHORD WEBS REACTIONS	2x6 DF 2400F 2. No.2 2x6 DF 2400F 2. 2x4 HF No.2 *Ex 17-1:2x4 DF 1800 Structural wood s 2-8-7 oc purlins, Rigid ceiling direc bracing. 1 Row at midpt (size) 10=0-5 Max Horiz 18=59 Max Uplift 10=-27	DE *Except* 7-9:2x6 DF DE *ept* 9-11:2x4 DF No.2 DF 1.6E theathing directly applie except end verticals. ty applied or 5-11-6 o 5-13, 6-11 i-8, 18=0-5-8 (LC 11) 1 (LC 12), 18=-498 (LC	1) 2, 	Wind MARSH Weight: 198 lb FT = Wind: ASCE 7-16; Vult=110mph (3-second gust) Vert: 16=-1282 (F=-641, B=-641) Vasd=87mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) 0-1-12 to 15-1-12, Exterior (2) Vert: 16=-1282 (F=-641, B=-641) 15-1-12 to 18-9-8, Corner (3) 18-9-8 to 33-9-8 zone; cantilever left and right exposed; c-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. All plates are MT20 plates unless otherwise indicated. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all weight of a live load of 20.0psf)
FORCES TOP CHORD	Max Grav 10=200 (lb) - Maximum C Tension 1-18=-2475/668, 2-3=-10909/3004 5-6=-8028/1834,	59 (LC 1), 18=2578 (LC ompression/Maximum 1-2=-6618/1761, , 3-5=-10423/2577, 6-8=-4680/1025,	6) 7)	chord and any other members. All bearings are assumed to be HF No.2 crushing capacity of 405 psi.) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 498 lb uplift at									
BOT CHORD	8-9=-4680/1030, 17-18=-133/201, 14-16=-3063/109	9-10=-1981/453 16-17=-1824/6611, 02, 13-14=-2618/1041;	8) 8,	This truss is International referenced s	designed in accor Building Code sec tandard ANSI/TPI	dance w ction 230	th the 2018 6.1 and						eee
WEBS	3-16=-455/648, 3 5-14=-185/517, 5 8-11=-471/172, 9 2-16=-1328/4591 1-17=-1799/6759 6-11=-3591/883	5, 10-11=-37/84 -14=-1326/784, -13=-2614/801, -11=-1072/4949, , 2-17=-2012/621, , 6-13=-179/922,	9) 10	Hanger(s) or provided suff lb down and 286 lb up at selection of s responsibility) In the LOAD	other connection icient to support c 286 lb up at 10-3 10-3-8 on bottom such connection de of others. CASE(S) section,	device(s concentra -8, and 8 chord. ⁻ evice(s) , loads ap) shall be Ited load(s) 7 05 lb down a The design/ is the oplied to the f	56 ind				TUNOMIN	SHENCETON
NOTES			LC 1)	of the truss a DAD CASE(S) Dead + Roo Plate Increa Uniform Loa Vert: 1-9 Concentrate	re noted as front (Standard of Live (balanced): ise=1.15 ads (lb/ft) =-80, 10-18=-20 ed Loads (lb)	(F) or ba	ck (B). Increase=1.	15,				PROFESSIONA	14 BED LENGTH

March 26,2024

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING E	BLD G
3907862	N05	Monopitch Girder	2	2	Job Reference (optional)	R81482229
Builders FirstSource (Arlington, V	VA), Arlington, WA - 98223,	Run: 8.63 S Nov 1	2023 Print: 8.6	630 S Nov 1	2023 MiTek Industries, Inc. Mon Mar 25 09:36:49	Page: 1
		ID:exk3XhLne8aW2	0uF3mxYy2zZ	0wz-RfC?Ps	B70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f	PRMU20240404

L	2-10-8	6-10-0	13-8-6	21-0-2	23-7-8	28-3-15	33-8-8	35-11-4
ſ	2-10-8	3-11-8	6-10-6	7-3-13	2-7-6	4-8-7	5-4-9	2-2-12

Scale = 1:62.6

Plate Offsets (X, Y): [7:0-2-0,0-2-0], [17:0-4-0,0-2-4]

		(0	0.0.0		001		DEEL	1	(1)	1/1-4	1.74		
Loading		(psr)	Spacing	2-0-0			0.20		IN 0.11	(IOC)		L/0	PLATES	GRIP 195/149
		25.0	Fiale Grip DOL	1.15		RC	0.39	Vert(LL)	-0.11	10-20	>999	190	WI120	100/140
BCU		0.0*	Rep Stress Incr	NO		WB	0.79	Horz(CT)	-0.29	10-20	>970 n/a	n/a		
BOLL		10.0	Codo		9/TDI2014	Motrix SU	0.56	11012(C1)	0.03	10	n/a	n/a	Woight: 424 lb	ET - 10%
BCDL		10.0	Code	10020	0/1712014	Wathx-Si i					-		Weight. 424 lb	FT = T0 /6
LUMBER				2) N/A					13) This	s truss is	desig	ned in accordan	ce with the 2018
TOP CHORD	2x6 DF No.	2		3) N/A					Inte	rnationa	l Build	ling Code sectior	1 2306.1 and
BOT CHORD	2x6 DF No.	2		4) 2-ply truss to	be connected toge	ther wi	th 8d		refe	renced a	standa	ard ANSI/TPI 1.	
WEBS	2x4 HF No.	2			(0.131"x1.5")	nails as follows:				14) Loa	d case(s	s) 1 ha	is/have been mo	dified. Building
BRACING					Top chords o	onnected as follow	s: 2x4	- 4 rows		des	igner mu	ust rev	iew loads to veri	fy that they are
TOP CHORD	Structural v	vood shea	athing directly applied	d or	staggered at	0-1-0 oc.				cori	ect for th	ne inte	ended use of this	truss.
	6-0-0 oc pu	irlins, exc	ept end verticals.		Bottom chore	is connected as fol	lows: 2	x6 - 4 rows		15) This	s truss h	as bee	en designed for a	total drag load of
BOT CHORD	Rigid ceiling	g directly	applied or 6-0-0 oc		staggered at	0-1-0 oc.				200	0 Ib. Lur	nber L	DOL=(1.33) Plate	grip DOL=(1.33)
	bracing.				Web connect	ed as follows: 2x4	- 4 row	s staggered a	at	Cor		SS 10 F	esist drag loads	along bottom chord
WEBS	1 Row at m	nidpt 4	5-17	-	0-1-0 OC.		onnlin	مالم والمانوم		16) Hor	1 23-5-1	2 10 3: r otho	r connection day	JII. ico(c) chall ho
REACTIONS	(size) 1	2=12-5-8	, 13=12-5-8, 14=12-	5-8, ^D) All loads are	considered equally	applie	to all plies,	חאר	nro	ided su	fficient	t to support conc	entrated load(s) 595
	1	6=12-5-8	, 22=0-5-8			tion Ply to ply con	nection	e have heen		lh d	own and	2851	h un at 10-3-8 o	n bottom chord The
	Max Horiz 2	22=91 (LC	32)		provided to d	istribute only loads	noted	as (F) or (B)		des	ian/sele	ction o	f such connectio	n device(s) is the
	Max Uplift 1	12=-714 (L	_C 50), 22=-8 (LC 29	9)	unless other	vise indicated.	notou	uo (i) oi (b),		res	onsibilit	y of of	thers.	
	Max Grav 1	12=325 (L	C 37), 13=964 (LC 1), 6) Wind: ASCE	7-16: Vult=110mph	n (3-sed	cond aust)		LOAD	CASE(S)	Sta	ndard	
	1	14=435 (L	C 58), 16=3828 (LC	1), -	Vasd=87mph	: TCDL=4.2psf: BC	DL=6.	0psf: h=25ft: (Cat.	1) De	ad + Ro	of Live	e (balanced): I u	mber Increase=1 15
	2	22=1507 (LC 1)		II; Exp B; En	closed; MWFRS (er	nvelope	e) exterior zor	ne	Pla	ate Incre	ase=1	.15	
FORCES	(lb) - Maxim	num Com	pression/Maximum		and C-C Cor	ner (3) 0-1-12 to 15	j-1-12,	Éxterior (2)		Ur	iform Lo	oads (I	b/ft)	
	Tension		0400/404		15-1-12 to 20)-9-8, Corner (3) 20)-9-8 to	35-9-8 zone;			Vert: 1-2	23=-80), 11-23=-164, 12	2-22=-20
TOP CHORD	1-22=-1424	I/81, 1-2≕	-2122/124,	•	cantilever lef	t and right exposed	; end v	ertical left an	nd	Co	oncentra	ted Lo	ads (lb)	
	2-3=-4624/	50, 3-5=-4	1//1/0, 5-b=-515/468	8,	right exposed	;C-C for members	and fo	rces & MWFF	RS		Vert: 25	=-464	(B)	
	9-10-/35/	07,7-9=-1 1558 10-1	120/3040, 11316/633		for reactions	shown; Lumber DC	DL=1.60) plate grip						
	11-123/3	1330, 10-	11=-310/033,	_	DOL=1.60									
	21-22-117	7/121 20-1	21160/2119	1) Provide adec	luate drainage to pi	revent	water ponding	g.				MIN	
DOT ONORD	18-20=-235	5/4622 17	-18=0/4762	8) All plates are	4x5 MT20 unless (otherwi	se indicated.					OMIN	C ZHA
	16-17=-329	97/316. 14	-16=-2186/971.	9) I his truss ha	s been designed to	ith anu	J psr bottom	da			- 2	THE WA	SHI
	13-14=-108	36/777. 12	-13=-365/342	4			for a liv	other live loa	las. Deof			- 7	A	A WONT
WEBS	2-21=-1335	5/168, 3-20	0=-649/0,	1	on the better	as been designed	whore	a roctanglo	opsi			-	12 No	
	5-18=-322/3	369, 6-17	=-1007/0,		3-06-00 tall h	v 2-00-00 wide will	fit het	a reclarigie	om				5	Zario Z
	9-14=-326/	195, 5-17	=-5097/0,		chord and an	v other members	in bett	veen ine boll	0111					
	3-18=-151/8	881, 2-20	=-82/2730,	1	1) All bearings	are assumed to be	HF No	2 crushing						
	1-21=-113/2	2404, 10-	13=-441/7,		capacity of 4	05 psi.						2		
	11-13=-986	6/444, 10-	14=-1133/258,	. 1	2) Provide mecl	nanical connection	(by oth	ers) of truss t	to			-	P 8 540	174 0/85
	7-16=-2747	7/0, 7-17=0	0/3728, 9-16=-2027/	0	bearing plate	capable of withsta	nding 8	B lb uplift at jo	int				FOGIST	TERE
NOTES					22 and 714 ll	o uplift at joint 12.	5						SSIG	TENGI
1) N/A													INA	LU

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	N06	Monopitch Supported Gable	2	1	R81482230 Job Reference (optional)

Max Horiz 5=61 (LC 11)

Tension

3-4=-208/210

2-4=-283/310

 Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) zone; cantilever left and right

Lumber DOL=1.60 plate grip DOL=1.60

Gable studs spaced at 2-0-0 oc.

exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown;

Truss designed for wind loads in the plane of the truss

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Provide adequate drainage to prevent water ponding.

Gable requires continuous bottom chord bearing.

Truss to be fully sheathed from one face or securely

braced against lateral movement (i.e. diagonal web).

This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads.

4-5=-71/80

Max Uplift 4=-35 (LC 9), 5=-42 (LC 8) Max Grav 4=114 (LC 1), 5=111 (LC 20)

1-5=-90/110, 1-2=-15/22, 2-3=-9/10,

(lb) - Maximum Compression/Maximum

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:49 ID:IfFvampx22v9aNEHjaWqDOzZ1LT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:27.2

FORCES

TOP CHORD

BOT CHORD

WEBS

NOTES

2)

3)

4)

5)

6) 7)

Loading	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.07	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 185/148	
CDL	15.0	Lumber DOL	1.15		BC	0.05	Vert(TL)	n/a	-	n/a	999			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.05	Horiz(TL)	0.00	4	n/a	n/a			
3CDL	10.0	Code	IBC2018	/TPI2014	Matrix-R							Weight: 15 lb	FT = 10%	
UMBER TOP CHORD 30T CHORD VEBS DTHERS BRACING TOP CHORD 30T CHORD	2x6 DF No.2 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural wood shea 2-5-8 oc purlins, exc Bioid ceiling directly	athing directly applic cept end verticals. applied or 10-0-0	8) 9) ed or ¹⁰⁾	* This truss h on the bottom 3-06-00 tall b chord and an All bearings a capacity of 4 Provide mect bearing plate 5 and 35 lb u	as been design n chord in all an y 2-00-00 wide y other member are assumed to 05 psi. hanical connec capable of wit plift at joint 4.	ned for a liv reas where will fit betw ers. b be HF No. tion (by oth hstanding 4	e load of 20. a rectangle veen the bott 2 crushing ers) of truss 2 lb uplift at	Opsf tom to joint						
REACTIONS	(size) 4=2-5-8, 5	5=2-5-8	11)	This truss is International referenced si	designed in acc Building Code tandard ANSI/T	cordance wi section 230 TPI 1.	th the 2018 6.1 and							

LOAD CASE(S) Standard

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	N07	Monopitch	2	1	R81482231 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:49 ID:3jlvOmE8T_scuwT5i4M2jZzZ10G-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

[1:0-2-4,0-2-8], [2:0-2-0,0-2-8], [3:0-2-0,0-2-4], [8:0-2-0,0-2-0], [9:0-3-7,0-2-8], [10:Edge,0-3-8], [11:0-2-0,0-3-8], [13:0-3-4,0-2-0], [14:0-2-0,0-2-4], [16:0-2-0,0-2-8], [10:0-2-0,0-2-8],

Scale = 1:62.6

Plate Offsets	(X, Y): [17:0-2-4,0-2-8], [18:0-2-0,0-0-4]				_							-	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC201	8/TPI2014	CSI TC BC WB Matrix-SH	0.74 0.90 0.95	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.60 -1.20 0.11	(loc) 13-14 13-14 10	l/defl >715 >356 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 209 lb	GRIP 185/148 FT = 10%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x6 DF No.2 2x6 DF No.2 *Excep 2.0E 2x4 HF No.2 *Excep 2x4 HF No.2 *Excep 2x4 HF No.2 Structural wood she 2-2-0 oc purlins, ex Rigid ceiling directly bracing. (size) 10=0-5-8, Max Horiz 18=60 (LC Max Uplift 10=-104 (Max Grav 10=1782 (lb) - Maximum Com Tension 1-18=-1721/261, 1-2 2-3=-5453/777, 3-5 5-6=-7364/1046, 6-8 8-9=-4816/707, 9-10 17-18=-100/116, 16 14-16=-841/5450, 13 11-13=-711/4809, 11 6-13=-563/183, 8-11 5-14=-470/176, 3-16 2-17=-1512/261, 1-1 2-16=-442/3113, 3-1 5-13=-353/63, 8-13= 9-11=-709/4943	ot* 12-15:2x6 DF 240 athing directly applie cept end verticals. applied or 8-7-10 or 18=0-5-8 C 11) (LC 12), 18=-105 (LC (LC 1), 18=1782 (LC pression/Maximum 2=-2598/382, =-7704/1086, 3=-7364/1051,)=-1693/288 =17=-447/2595, 3-14=-1138/7697, 0-11=-36/104 I=-1368/319, S=-1107/242, I7=-420/2952, 14=-327/2324, =-383/2666,	1) DOF ed or c 2) c 3) 4) C 8) C 8) C 1) 5) 6) 7) L 0	Wind: ASCE Vasd=87mpl II; Exp B; En and C-C Cor 15-1-12 to 20 cantilever lef right expose for reactions DOL=1.60 Provide aded This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar All bearings capacity of 4 Provide mec bearing plate joint 18 and This truss is International referenced s DAD CASE(S)	7-16; Vult=110mp 1; TCDL=4.2psf; Bi closed; MWFRS (e ner (3) 0-1-12 to 1 0-9-8, Corner (3) 2 t and right exposed d;C-C for members shown; Lumber Dr quate drainage to p is been designed find ad nonconcurrent w has been designed willy y 0-ther members. are assumed to be 05 psi. hanical connectione e capable of withstat 104 Ib uplift at joint designed in accord Building Code sec tandard ANSI/TPI Standard	h (3-sec CDL=6.) envelope 5-1-12, 0-9-8 to d ; end v s and foi OL=1.60 or event v or a 10.0 with any for a liv s where Il fit betw e HF No. (by oth anding 1 : 10. dance w ttion 230 1.	cond gust) Dpsf; h=25ft; (e) exterior zor Exterior (2) 35-9-8 zone; ertical left an rces & MWFR) plate grip water ponding 0 psf bottom other live loa e load of 20.0 a rectangle ween the botto 2 crushing ers) of truss t 05 lb uplift at ith the 2018 16.1 and	Cat. ne dd RS g. ds. Dpsf pom				A LINOMIN	G ZHAO SHINGIOY	
NOTES														

54074 OFESSIONAL ENGI

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	N08	Monopitch	6	1	R81482232 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:49 ID:TtcBqzuWKUJBT8GKNyxeLZzZ179-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:64.5

Plate Offsets	(X, Y): [2:0-2-4,0-2-8],	[3:0-2-0,0-2-0], [8:0	-2-4,0-2-8]	, [9:0-2-12,0-2	-4], [10:Edge,0-3-8	8], [11:0-	3-4,0-3-8], [1	3:0-3-0,0)-2-0], [1	4:0-2-0,	0-2-0],	[16:0-2-4,0-2-8],	[17:0-1-12,0-2-0]
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2018	3/TPI2014	CSI TC BC WB Matrix-SH	0.79 0.82 0.99	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.67 -1.35 0.12	(loc) 13-14 13-14 10	l/defl >656 >327 n/a	L/d 240 180 n/a	PLATES MT20 M18AHS Weight: 216 lb	GRIP 185/148 169/162 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS	2x6 DF No.2 2x6 DF 2400F 2.0E No.2 2x4 HF No.2 *Excep 2x4 HF No.2 *Excep 2x4 HF No.2 Structural wood she 2-2-0 oc purlins, ex Rigid ceiling directly bracing. (size) 10=0-5-8, Max Horiz 18=60 (LC Max Uplift 10=-108 (Max Grav 10=1844 ((lb) - Maximum Com Tension 1-18=-1743/262, 1-2 2-3=-6421/873, 3-5= 5-6=-7791/1062, 6-8 8-9=-5018/706, 9-10 17-18=-106/146, 16- 14-16=-936/6418, 13 11-13=-709/5010, 11 2-17=-1479/258, 3-1 5-14=-397/162, 6-13	*Except* 12-10:2x6 t* 11-9:2x4 DF No.2 athing directly applie cept end verticals. applied or 9-3-15 oc 18=0-5-8 C11) LC 12), 18=-109 (LC (LC 1), 18=1844 (LC pression/Maximum 2=-3684/510, 8380/1134, 3=-7791/1067, 0=-1753/286 -17=-576/3679, 3-14=-1183/8373, 0-11=-35/106 (6=-1036/223, 3=-564/179, 570-72	1) DF ed or 2 2) 3) 4) 5 8) 5 1) 6) 7) 8) 8)	Wind: ASCE Vasd=87mpl II; Exp B; En and C-C Cor 15-1-12 to 22 cantilever lef right expose for reactions DOL=1.60 Provide adee All plates are This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar All bearings capacity of 4 Provide mec bearing plate joint 18 and This truss is International referenced s	7-16; Vult=110mp 7-16; Vult=110mp 7, TCDL=4.2psf; E closed; MWFRS (ener (3) 0-1-12 to 12 2-0-4, Corner (3) 2 t and right exposed d; C-C for member shown; Lumber D quate drainage to a MT20 plates unlead a MT20	ph (3-sec 3CDL=6.(envelope 15-1-12, 22-0-4 to ad; end v s and for DOL=1.6(prevent v ess other for a 10.0 with any d for a liv s where ill fit betw e HF No. n (by oth tanding 1 tt 10. rdance w ction 230(1.	orond gust) Opsf; h=25ft;) exterior zo Exterior (2) 37-0-4 zone vertical left ar cces & MWFf 0 plate grip water pondin wise indicate 0 psf bottom other live loa e load of 20. a rectangle veen the bott 2 crushing ers) of truss 09 lb uplift a ith the 2018 16.1 and	Cat. ne ; nd RS g. ads. 0psf om to t				ALAOMINC XLAOMINC	3 ZHAO
NOTES	8-11=-1433/319, 9-1 8-13=-400/2902, 5-1 3-14=-274/2021, 2-1 1-17=-523/3844	13=-708/5153, 13=-610/96, 16=-406/2987,											A CLOSE

NOTES

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	N09	Monopitch	6	1	R81482233 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:49 ID:_FIzVJ1wbAv1?UUkLcBW55zZ19Z-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:64.5

Plate Offsets	(X, Y): [3:0-3-8,0-2-0],	, [5:0-2-0,0-2-0], [9:0-	-3-7,0-2-8]	, [11:0-2-0,0-2	-8], [15:0-4-8,0-5-	0]							
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2018	3/TPI2014	CSI TC BC WB Matrix-SH	0.73 0.55 0.92	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.27 -0.54 0.02	(loc) 13 13 10	l/defl >999 >643 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 213 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x6 DF No.2 2x6 DF No.2 2x4 HF No.2 2x4 HF No.2 Structural wood she 3-5-10 oc purlins, e Rigid ceiling directly bracing. (size) 10=0-5-8, Max Horiz 18=60 (LC Max Uplift 10=-75 (L 18=-246 (Max Grav 10=1273 18=13 (LC (lb) - Maximum Com Tension 1-18=-24/295, 9-10= 1-2=-141/1017, 2-3= 3-5=-1968/280, 5-6= 6-8=-3368/2545, 8-9= 17-18=-89/74, 16-17 14-16=-2290/338, 11 11-13=-445/3114, 10 3-16=1817/326, 1-1 2-17=-7/381, 2-16=- 3-14=-590/4395, 5-1	athing directly applie xcept end verticals. applied or 4-9-6 oc 16=0-5-8, 18=0-5-8 C 11) C 12), 16=-155 (LC (LC 1), 16=2661 (LC C 12) npression/Maximum =-1183/207, =-335/2296, =-3868/540, =-3121/453 ?=-1014/176, 3-14=-295/1961, 0-11=-34/96 I7=-1101/177, 1392/215, 14=-1056/250,	1) 1) 1) 1) 12), 4) 1), 5) 6) 7) LC	Wind: ASCE Vasd=87mpl II; Exp B; En and C-C Cor 15-1-12 to 22 cantilever lef right expose for reactions DOL=1.60 Provide aded This truss ha chord live loa * This truss ha chord live loa * This truss for 3-06-00 tall to chord and ar All bearings capacity of 4 Provide mec bearing plate joint 18, 75 II 16. This truss is International referenced s	7-16; Vult=110m, h; TCDL=4.2psf; E closed; MWFRS (rner (3) 0-1-12 to 2-0-4, Corner (3) 2 ft and right expose d;C-C for member shown; Lumber D quate drainage to as been designed ad nonconcurrent has been designed ad nonconcurrent has been designed to bo y 2-00-00 wide w y 2-00-00 wide w y 000 wide w to 200 wide w to 200-00 wide w to 200	ph (3-sec 3CDL=6.((enveloped 15-1-12, 1 22-0-4 to ed; end v s and for DOL=1.6(prevent v for a 10.0 with any d for a liv as where vill fit betw e HF No. n (by oth tanding 2 and 155 l rdance wi cction 230(11.	ond gust) opsf; h=25ft;) exterior zo Exterior (2) 37-0-4 zone ertical left ar ces & MWFF) plate grip vater pondin.) psf bottom other live loz e load of 20. a rectangle reen the bott 2 crushing ers) of truss i 46 lb uplift at join th the 2018 6.1 and	Cat. ne id id id S g uds. Opsf om to t t				LAOMING HAOMING	3 ZHAO
	5-13=-263/1967, 6-1 8-13=-107/783, 8-11 9-11=-432/3171	13=-580/181, 1=-841/237,									1		A KENDE

NOTES

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	N10	Monopitch Supported Gable	2	1	R81482234 Job Reference (optional)

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:50 ID:Ai3Oen6_ligqnKswWS?PnezZ0pW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:64.5

Plate Offsets (X, Y): [5:0-4-0	0,0-4-8],	[34:0-4-0,0-4-8]											
Loading TCLL (roof) TCDL BCLL		(psf) 25.0 15.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.09 0.11 0.16	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.01 0.00	(loc) 37 37-38 36	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 185/148
BCDL		10.0	Code	IBC201	8/TPI2014	Matrix-SH							Weight: 201 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x6 DF No.2 2x6 DF No.2 2x4 HF No.2 2x4 HF No.2 Structural w	2 2 2 2 2 2 2 2	thing directly applie	T ed or B	OP CHORD	1-38=-319/71, 1-2 3-4=-39/29, 4-6=- 7-8=-34/28, 8-9=- 10-11=-30/27, 11- 14-15=-28/27, 15- 17-18=-29/31, 18- 37-38=-93/92, 36- 35-36=-31/32, 33-	=-431/58 38/28, 6- 33/27, 9- 12=-29/2 16=-28/2 19=-29/3 37=-112/ 35=-31/3	2, 2-3=-42/30, 7=-36/28, 10=-32/27, 16, 12-14=-28/ 8, 16-17=-29/ 22, 19-20=-26/ 428, 12, 32-33=-31/	/26, /30, /16 /32,	7) Th ch 8) * T on 3-(ch 9) All ca	his truss h ord live lo This truss the botto 06-00 tall ord and a l bearings pacity of	as bee bad nor has be m cho by 2-0 ny oth are as 405 ps	en designed for a nconcurrent with een designed for rd in all areas w 0-00 wide will fit er members. ssumed to be HI i.	a 10.0 psf bottom a any other live loads. r a live load of 20.0psf here a rectangle t between the bottom F No.2 crushing
BOT CHORD	B-0-0 oc pur Rigid ceiling bracing, E> 10-0-0 oc br	directly cept: ccept: 37	applied or 6-0-0 oc 7-38,36-37.			31-32=-31/32, 30- 28-29=-31/32, 27- 24-25=-31/32, 23-	31=-31/3 28=-31/3 24=-31/3	2, 29-30=-31/ 2, 25-27=-31/ 2, 22-23=-31/	/32, /32, /32,	10) Pr be 38	ovide me aring plat 3, 2 lb upli	chanic e capa ft at joi	al connection (b able of withstand int 20, 34 lb uplit	y others) of truss to Jing 23 lb uplift at joint ft at joint 36, 6 lb uplift
REACTIONS	(size) 22 23 30 33 Max Horiz 34 Max Uplift 20	0=29-4-0 3=29-4-0 7=29-4-0 0=29-4-0 3=29-4-0 6=29-4-0 8=60 (LC 0=-2 (LC	, 21=29-4-0, 22=29, , 24=29-4-0, 25=29, , 28=29-4-0, 29=29, , 31=29-4-0, 32=29, , 34=29-4-0, 35=29, , 38=0-5-8 11) 12), 21=-9 (LC 8),	-4-0, V -4-0, -4-0, -4-0, -4-0,	VEBS	21-22=-31/32, 20- 3-36=-300/86, 2-3 2-36=-467/98, 4-3 6-33=-160/51, 7-3 9-30=-160/50, 10- 11-28=-160/51, 12 14-25=-160/51, 15 16-23=-159/51, 17 18-21=-129/45	21=-31/3 7=-123/8 5=-93/37 2=-160/5 29=-160/ 2-27=-160 5-24=-160 7-22=-168	22 9, 1-37=-70/4 7, 5-34=-170/5 11, 8-31=-160/ /51, 0/51, 0/51, 8/54,	26, 54, 750,	at 12 at 12 at an 11) Th Int	joint 35, 1 2 Ib uplift a joint 30, 1 2 Ib uplift a joint 24, 1 ad 9 Ib upl his truss is ternationa ferenced 3	12 ID U at joint 12 Ib U at joint 12 Ib U ift at jo desig I Build	plift at joint 34, 1 32, 12 lb uplift a plift at joint 29, 1 27, 12 lb uplift a plift at joint 23, 1 int 21. ned in accordan ing Code sectio rd ANSI/TPI 1	2 Ib uplift at joint 33, t joint 31, 12 Ib uplift 2 Ib uplift at joint 28, it joint 25, 12 Ib uplift 2 Ib uplift at joint 22 ince with the 2018 n 2306.1 and
Max Horiz $38=60$ (LC 11) $16-23=-159/51, 17$ $18-21=-129/45$ Max Uplifi $20=-2$ (LC 12), $21=-9$ (LC 8), $24=-12$ (LC 12), $25=-12$ (LC 8), $27=-12$ (LC 12), $20=-12$ (LC 12), $30=-12$ (LC 12), $31=-12$ (LC 8), $32=-12$ (LC 12), $33=-12$ (LC 8), $32=-12$ (LC 12), $35=-6$ (LC 8), $36=-34$ (LC 12), $35=-6$ (LC 8), $36=-34$ (LC 12), $38=-23$ (LC 8)NOTESMax Grav $20=28$ (LC 1), $21=166$ (LC 1), $22=209$ (LC 1), $23=199$ (LC 1), $24=200$ (LC 1), $22=200$ (LC 1), $23=-200$ (LC 1), $32=200$ (LC 1), $33=196$ (LC 1), $32=201$ (LC 1), $33=196$ (LC 1), $34=224$ (LC 1), $33=372$ (LC 1) $16-23=-159/51, 17$ $18-21=-129/45$ NotesNotesNotesNotesNotesNotesNotesNacora $20=20$ (LC 1), $21=166$ (LC 1), $21=200$ (LC 1), $32=200$ (LC 1), $31=200$ (LC 1), $32=201$ (LC 1), $33=196$ (LC 1), $34=224$ (LC 1), $35=79$ (LC 1), $36=614$ (LC 1), $38=372$ (LC 1)Notes<						ph (3-sec 3CDL=6.0 envelope 15-1-12, 1 22-0-4 to ad; end v s and for S and f	cond gust) Dpsf; h=25ft; (e) exterior zon Exterior (2) 37-0-4 zone; vertical left and cces & MWFR plate grip lane of the tru al to the face) ils as applicat is per ANSI/TF water ponding se indicated.	Cat. le S S ss l, Dle, PI 1. J.	LOAD	CASE(S)) Star	HANNIN THE	IG ZHAO ASHINGTON 199 074 TEBED CITIC	
FORCES	(lb) - Maxim Tension	um Com	pression/Maximum	5 6	 I russ to be braced agai Gable studs 	tully sheathed fron nst lateral moveme spaced at 2-0-0 o	n one fac ent (i.e. d .c.	e or securely liagonal web).					SSION	ALENC

March 26,2024

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	N11	Monopitch Supported Gable	2	1	R81482235 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:50 ID:]7farKKLWkPVOr4Kw9J5NxzZ0nx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

March 26,2024

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

29-4-0

Scale = 1:52.5

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		25.0	Plate Grip DOL	1.15		тс	0.08	Vert(LL)	n/a	-	n/a	999	MT20	185/148	
TCDL		15.0	Lumber DOL	1.15		BC	0.07	Vert(TL)	n/a	-	n/a	999			
BCLL		0.0*	Rep Stress Incr	YES		WB	0.02	Horiz(TL)	0.00	18	n/a	n/a			
BCDL		10.0	Code	IBC201	8/TPI2014	Matrix-R							Weight: 130 lb	FT = 10%	
								· · ·							
LUMBER				т	OP CHORD	1-34=-49/36, 1-2=	-24/21, 2	-3=-22/20,		9) * Th	is truss	has be	en designed for	a live load of 20.	0psf
TOP CHORD	2x6 DF No	o.2				3-4=-20/20, 4-5=-	19/19, 5-6	5=-19/19,		on ti	ne botto	m cho	rd in all areas wh	ere a rectangle	
BOT CHORD	2x4 HF No	o.2				5-7=-19/19, 7-8=-	18/20, 8-9	9=-18/22,		3-06	6-00 tall	by 2-0	0-00 wide will fit	between the bott	om
WEBS	2x4 HF No	0.2				9-11=-18/23, 11-1	2=-18/25	, 12-13=-18/2	27,		d and a	ny otn	er members.		
OTHERS	2x4 HF No	o.2				13-14=-18/28, 14-	15=-19/3	0, 15-16=-19	/31,	10) All b	earings	are as	sumed to be HF	No.2 crushing	
BRACING				Б		10-1/=-19/33, 1/-	22 42/4	9 0 21 22 12	/40	(11) Drov	ido mor	405 ps	I.	othere) of truce	to
TOP CHORD	Structural	wood shea	athing directly applie	dor ^D		55-54=-45/49, 52- 20 21 42/40 20	20 42/4	9, 31-32=-43	/49, /40	11) PIO	ing plot		al connection (by	ouriers) or truss	ioint
	6-0-0 oc p	ourlins, exc	cept end verticals.			50-51=-45/49, 29- 27-28=-13/10, 26.	27_12/4	9,20-29=-43	/49, //0	24 ·	12 lb un	e capa lift at id	bie of withstand	ig 19 ib uplit at j	b
BOT CHORD	Rigid ceili	ng directly	applied or 10-0-0 oc			27-20=-43/43, 20-	27 = 43/4	0,24-20=-43	/40	unlif	t at ioint	20 1	2 lb unlift at joint '	21 12 lb unlift at	ioint
	bracing.					20-21=-43/49 19-	20= 43/4	9 18-19=-43	/49	22	12 lh un	lift at id	pint 23 12 lb unlit	it at ioint 24 12 l	h
REACTIONS	(size)	18=29-4-0	, 19=29-4-0, 20=29-	4-0, _M	/FBS	16-19=-166/65 1	5-20=-16	0, 10 10- 10 1/63	, 10	uplif	t at ioint	26 12	2 lb uplift at joint 3	27 12 lb unlift at	ioint
		21=29-4-0), 22=29-4-0, 23=29-	4-0,		14-21=-160/60, 13	3-22=-160)/60.		28.	12 lb up	lift at id	pint 29. 12 lb upli	t at joint 30. 11	b
		24=29-4-0	, 26=29-4-0, 27=29-	4-0,		12-23=-160/60. 1	1-24=-160	0/60.		uplif	t at joint	31, 14	4 lb uplift at joint 3	32 and 40 lb uplif	ft at
		28=29-4-0), 29=29-4-0, 30=29-	4-0,	9	9-26=-160/60, 8-2	7=-160/6	0, 7-28=-160	/60,	joint	33.	,	. ,	·	
		31=29-4-0), 32=29-4-0, 33=29-	4-0,	(6-29=-160/60, 5-3	0=-160/6	0, 4-31=-159	/60,	, 12) This	truss is	desig	ned in accordanc	e with the 2018	
	Marcal Landar	34=29-4-0			:	3-32=-166/63, 2-3	3=-135/1	01		Inter	rnationa	l Build	ing Code section	2306.1 and	
	Max Horiz	34=62 (LC	(11)	N	OTES					refe	renced s	standa	rd ANSI/TPI 1.		
	Max Oplin	18=-12 (L	C 9), 19=-17 (LC 8), C 12) 21-12 (LC 8)	1) Wind: ASCE	7-16: Vult=110m	ph (3-sec	ond aust)		LOAD C	ASE(S)	Sta	ndard		
		20=-11 (L	C 12), Z I =- 12 (LC 0) C 12), 22 = 12 (LC 9)	,	Vasd=87mpl	n; TCDL=4.2psf; E	SCDL=6.0)psf; h=25ft; (Cat.						
		22=-12 (L) 2412 (L)	C 12), 23=-12 (LC 8)	,	II; Exp B; En	closed; MWFRS	envelope) exterior zor	ne						
		27-12 (1)	C 12), 28–12 (LC 8)	,	and C-C Cor	ner (3) zone; can	tilever left	and right							
		29=-12 (1)	C 12), 20= 12 (LC 8)	,	exposed ; er	d vertical left and	right exp	osed;C-C for							
		31=-11 (1)	C 12), 32=-14 (LC 8)	,	members an	d forces & MWFR	S for rea	ctions shown	;						
		33=-40 (L	C 9), 34=-19 (LC 8)	,	Lumber DOL	.=1.60 plate grip [DOL=1.60)							
	Max Grav	18=77 (LC	C 1), 19=208 (LC 1),	2) Truss desig	ned for wind loads	s in the pl	ane of the tru	ISS						
		20=200 (L	C 1), 21=200 (LC 1)		only. For stu	ids exposed to wi	nd (norm	al to the face)),				OMIN	G ZD	
		22=200 (L	C 1), 23=200 (LC 1)	, ,	see Standar	d Industry Gable I	End Detai	Is as applicat	ble,				JAC WA	A A	
		24=200 (L	C 1), 26=200 (LC 1)	,	or consult qu	alified building de	esigner as	s per ANSI/TF	PI 1.			7	OFWA		
		27=200 (L	C 1), 28=200 (LC 1)	, 3) Provide adeo	quate drainage to	prevent v	vater ponding	j .			7	150 51	S 19	-
		29=200 (L	C 1), 30=200 (LC 1)	, 4) All plates are	2x4 M120 unles	s otherwi	se indicated.				-		S 9	
		31=199 (L	.C 1), 32=208 (LC 1)	, 5) Gable requir	es continuous bol	tom chor	d bearing.				-			
		33=169 (L	.C 1), 34=68 (LC 20)	6) I russ to be f	ully sheathed from	n one fac	e or securely						🔀 🔰	
FORCES	(lb) - Maxi	imum Com	pression/Maximum	-	braced agair	ist lateral movem	ent (I.e. a	iagonai web).	•						
	Tension			1) Gable studs	spaced at 2-0-0 d	iC.) mof hottom					540	74 18	
				8) This truss ha	is been designed	with any	other live less	de				ON REGION	TREY A	
							with any		us.			-	Econst	ar l	6
													SIONA	LEN	

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	N12	Monopitch	12	1	R81482236 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:50 ID:zZ_EPXVdMjy5NLGkvF038hzZ0l8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Scale = 1:57.1

Plate Offsets (X, Y): [1:0-2-4,0-2-8],	, [2:0-1-12,0-1-8], [8:	0-3-7,0-2-0], [10:Edge,0-	1-8], [11:0-3-0,0-3-	0], [14:0)-1-12,0-1-8],	[15:0-2-	0,0-1-12	2]				
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2018	3/TPI2014	CSI TC BC WB Matrix-SH	0.53 0.86 0.95	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.42 -0.84 0.12	(loc) 11-13 11-13 10	l/defl >859 >428 n/a	L/d 240 180 n/a	PLATES MT20 M18AHS Weight: 156 lb	GRIP 185/148 169/162 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC	2x6 DF No.2 2x4 DF 1800F 1.6E 2x4 HF No.2 Structural wood she 2-8-15 oc purlins, e Rigid ceiling directly bracing. 1 Row at midpt (size) 10–0-3-8, Max Horiz 16=59 (LC Max Uplift 10=-119 ((b) - Maximum Com 1-16=-1442/279, 1-2 2-3=-4700/813, 3-5= 5-7=-4139/725, 7-8= 8-10=-1599/362 15-16=-99/117, 14-1 13-14=-874/4697, 1: 10-11=-27/106 2-15=-1144/258, 3-1 5-13=-113/127, 7-11 1-15=-527/2996, 2-1 3-13=-160/943, 5-11 8-11=-741/4198 CE 7-16; Vult=110mph	Pathing directly applie except end verticals. ⁷ applied or 7-4-9 oc 5-11 , 16=0-5-8 C 9) (LC 12), 16=-88 (LC - (LC 1), 16=1497 (LC apression/Maximum 2=-2827/500, =-5613/967, =-4140/731, 8-9=-4/0 15=-564/2822, 1-13=-1006/5606, 14=-736/216, 1=-622/238, 14=-357/2061, 1=-1530/278, (3-second gust)	2) 3) 4) 5) d or 6) 7) 8) 8) 8) 1) LC	Provide ader All plates are This truss ha chord live loa * This truss f on the bottor 3-06-00 tall b chord and ar All bearings capacity of 4 Provide mec bearing plate 16 and 119 I This truss is International referenced s AD CASE(S)	quate drainage to p w MT20 plates unlex is been designed fi ad nonconcurrent w has been designed n chord in all areas by 2-00-00 wide wil y other members. are assumed to be 05 psi. hanical connection e capable of withsta b uplift at joint 10. designed in accord Building Code sec tandard ANSI/TPI Standard	revent v ress other or a 10.0 vith any for a liv for a liv s where I fit betw HF No. (by oth anding 8 lance w tion 230 1.	water ponding wise indicate) psf bottom other live loa e load of 20.0 a rectangle veen the botto 2 crushing ers) of truss t 8 lb uplift at j ith the 2018 16.1 and	g. .d. Dpsf om to oint			J. J	TUA OMING	ZHAO HIGTON	
Vasd=87m II; Exp B; I and C-C C 15-1-12 to cantilever right expos for reaction DOL=1.60	ph; TCDL=4.2ps; BC Enclosed; MWFRS (er Corner (3) 0-1-12 to 15 17-4-4, Corner (3) 17 left and right exposed sed;C-C for members shown; Lumber DO	(U-second gust) DL=6.0psf; h=25ft; C nvelope) exterior zon -1-12, Exterior (2) -4-4 to 32-4-4 zone; ; end vertical left and and forces & MWFR DL=1.60 plate grip	cat. e d S									ALCONTESSIONAL March	4 ENGINE 26,2024	

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	N13	Monopitch Supported Gable	2	1	R81482237 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:50 ID:c36Ath_u3_rid9KZkBWx4azZ?va-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

29-4-0

Scale = 1:52.5

Plate Offsets (X, Y): [9:0-	-4-0,0-4-8],	[24:0-3-0,0-3-0]											
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC20 ²	18/TPI2014	CSI TC BC WB Matrix-R	0.16 0.07 0.15	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 17	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 131 lb	GRIP 185/148 D FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 DF N 2x4 HF N 2x4 HF N 2x4 HF N Structural 6-0-0 oc ţ Rigid ceili bracing. (size) Max Horiz Max Uplift Max Uplift Max Grav	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	athing directly applie- cept end verticals. applied or 10-0-0 oc), 18=29-4-0, 19=29-), 21=29-4-0, 22=29- 0, 24=29-4-0, 25=29-), 27=29-4-0, 28=29- 0, 27=29-4-0, 31=29- 0, 30=29-4-0, 31=29- 0, 30=29-4-0, 31=29- 0, 30=29-4-0, 31=29- 0, 20=-51 (LC 8), C 12), 20=-61 (LC 12) C 8), 28=-12 (LC 8), C 12), 22=-16 (LC 12) C 8), 28=-12 (LC 12) C 8), 28=-12 (LC 12) C 8), 28=-15 (LC 8) C 1), 18=853 (LC 1) (LC 1), 20=1036 (LC 1) C 1), 24=200 (LC 1) C 1), 24=200 (LC 1) C 1), 28=70 (LC 20) pression/Maximum	T d or E 4-0, V 4-0, V 4-0, 1 2, 1 , 2, 1 , 2, 3 , 4 , 3 , 4 , 7 8	OP CHORD BOT CHORD BOT CHORD VEBS VEBS VEBS Vasd=87mp II; Exp B; and C-C Cc exposed ; e members a Lumber DO C) Truss desig only. For si see Standa or consult q D) All plates an D) Gable requi D) Truss to be braced aga Chord live lo	1-32=-63/40, 1-2= 3-4=-19/14, 4-5=- 6-7=-18/18, 7-8=- 10-11=-16/23, 11 13-14=-21/30, 14 16-17=-213/71 31-32=-48/54, 30 28-29=-48/54, 27 25-26=-48/54, 23 21-22=-47/53, 20 18-19=-47/53, 17 2-31=-165/102, 3 5-28=-160/60, 6-2 8-25=-159/63, 9-2 11-22=-237/76, 1 13-20=-996/213, 15-18=-818/179 E 7-16; Vult=110m sh; TCDL=4.2psf; nclosed; MWFRS orner (3) zone; can ind vertical left and ch forces & MWFF L=1.60 plate grip I gned for wind load tuds exposed to w ref load trainage to re 2x4 MT20 unless res continuous bo fully sheathed from inst lateral movem is paced at 2-0-0 as been designed bad nonconcurrent	=-20/16, 2 =-20/16, 2 -18/14, 5- -17/19, 8- -12=-17/2 -15=-22/3 -31=-48/5 -25=-48/5 -25=-48/5 -25=-48/5 -25=-48/5 -25=-48/5 -21=-47/5 -30=-160/6 24=-162/6 22-21=-87 14-19=-1 mph (3-sec BCDL=6. (envelope tillever lef d right exx RS for rea DOL=1.6/ Is in the p ind (norme End Deta esigner a: p revent 'i ss otherwittom choo m one fac enent (i.e. co co. I for a 10. t with any	2-3=-19/14, 6=-18/16, 10=-17/22, 25, 12-13=-21/ 31, 15-16=-21/ 54, 29-30=-48/ 54, 26-27=-48/ 54, 26-27=-48/ 54, 22-23=-47/ 33, 19-20=-47/ 33, 19-20=-47/ 33, 19-20=-47/ 33, 19-20=-47/ 33, 19-20=-47/ 33, 19-20=-47/ 34, 22-23=-47/ 35, 19-20=-47/ 36, 4-29=-160/ 39, 10-23=-140 70, 10-23=-140 71, 190, 0015/217, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,	28, 32, 54, 53, 53, 53, 0/61, 62, 0/60, 2at. e ss , ble, 11.	9) * Tr on 1 3-0 cho 10) All I cap 11) Pro bea 32, upli 23, upli 23, upli 23, upli 23, upli 23, Upli 21) This refe LOAD (1) De Pl; Ur	his truss his truss he botto 6-00 tall rd and a bearings acity of vide me ring pla 22 lb up ft at join 12 lb up ft at join 16 lb up ft at join t 18. s truss is renced CASE(S and + Re ate Incre- inform L- Vert: 1-	has be m cho by 2-0 any oth s are as (405 ps chanic chanic chanic t 20, 1 lift at jt t 20, 1 lift at jt t 25, 1 lift at jt t 25	een designed fo red in all areas w 0-00 wide will fi er members. ssumed to be H i. al connection (b able of withstand bint 17, 23 lb up 1 lb uplift at join bint 27, 12 lb up 1 lb uplift at join bint 22, 53 lb up 1 lb uplift at join ned in accordar ing Code sectio rd ANSI/TPI 1. ndard a (balanced): Lu .15 b/ft) 1, 16-33=-488, 1 1, 16-33=-588, 1 1, 16-358, 100, 100, 100, 100, 100, 100, 100, 10	r a live load of 20.0psf here a rectangle t between the bottom F No.2 crushing ry others) of truss to Jing 15 lb uplift at joint lift at joint 31, 15 lb t 29, 12 lb uplift at joint lift at joint 26, 12 lb t 24, 12 lb uplift at joint lift at joint 21, 61 lb t 19 and 58 lb uplift at nee with the 2018 n 2306.1 and Imber Increase=1.15, 7-32=-20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville, CA. 95661 916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	N14	Monopitch Girder	8	1	R81482238 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:50 ID:eTfiEx59?RgTQPJvebdgrHzZ?qG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

liTek[®]

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Scale = 1:64.5

Plate Offsets ((X, Y): [2:0-1-12,0-2-8]], [4:0-2-4,0-2-0], [8:	0-3-7,0-2-8], [9:0-3-0,0-1	-0], [10:0-2-4,0-3-8], [12:0-	2-4,0-2-0], [1	3:0-3-8,0)-2-0], [1	5:0-2-0,	0-2-0]			
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC2018	8/TPI2014	CSI TC BC WB Matrix-SH	0.91 0.76 0.88	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.29 -0.58 0.03	(loc) 10-12 10-12 9	l/defl >999 >596 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 212 lb	GRIP 185/148 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x6 DF No.2 2x6 DF No.2 2x4 HF No.2 2x4 HF No.2 Structural wood sheat 3-3-5 oc purlins, exa Rigid ceiling directly bracing. 1 Row at midpt (size) 9=0-5-8, 1 Max Horiz 16=60 (LC Max Uplift 9=-280 (LI 16=-139 (I Max Grav 9=1350 (L 16=55 (LC (Ib) - Maximum Com Tension 1-16=-21/190, 1-2=- 2-4=-2398/469, 4-5= 5-7=-3533/1174, 7-8 8-9=-1249/412 15-16=-98/74, 13-15 12-13=-498/2390, 10 9-10=-49/118 2-15=-1906/478, 7-1 8-10=-1179/3557, 2-	athing directly applie cept end verticals. applied or 5-7-11 oc 8-10, 1-15 (5=0-5-8, 16=0-5-8 (211), 15=-291 (LC LC 2) .C 1), 15=2524 (LC - (212)) pression/Maximum 417/1665, -4186/1030, =-1656/440,)-12=-1046/4180, 0=-636/226, 13=-890/4180, =-578/1859	1) ed or 2) 3) 12), 4) 1), 5) 6) 7) 8)	Wind: ASCE Vasd=87mpl II; Exp B; En and C-C Cor 15-1-12 to 22: cantilever lef right expose for reactions DOL=1.60 Provide adec This truss ha chord live loa * This truss ha chord live loa * This truss ha chord no and an All bearings capacity of 4 Provide mec bearing plate joint 16, 280 15. This truss is International referenced su Hanger(s) or provided suf Ib down and deaim focloor	7-16; Vult=110mp ; TCDL=4.2psf; Br closed; MWFRS (e ner (3) 0-1-12 to 1: 2-0-4, Corner (3) 2: t and right exposed ;C-C for members shown; Lumber Du quate drainage to p is been designed for ad nonconcurrent v has been designed mini- by 2-00-00 wide will y other members. are assumed to be 05 psi. hanical connectione acapable of withsta Ib uplift at joint 9 a designed in accord Building Code sec tandard ANSI/TPI other connection to itige of auto acont	h (3-sec CDL=6.0 envelope 5-1-12, 2-0-4 to 3; end 1, 2-0-4 to 4; end 1, 0-12-1.60 or event 1, for a 10, with any for a 10, with any for a 10, with any for a 10, by oth anding 1 ance w tion 230 1, device (soncentra 1-8 on b	cond gust) opsd; h=25ft; (2) exterior zon Exterior (2) 37-0-4 zone; vertical left an ces & MWFF 0) plate grip water ponding 0 psf bottom other live loa e load of 20.0 a rectangle ween the bottw 2 crushing ers) of truss t 39 lb uplift at b uplift at joir ith the 2018 06.1 and 1) shall be ated load(s) 3 ottom chord.	Cat. ne dd SS g. ds. Dpsf om o t t 00 The			نور	VIAOMINO SEOF WA	S ZHAO	
NOTES	5-12=-344/224, 5-10 1-15=-1692/438	l≕-768/346,	9) LO 1)	responsibility In the LOAD of the truss a PAD CASE(S) Dead + Roo Plate Increa Uniform Lo Vert: 1-8 Concentrat Vert: 10=	v of others. CASE(S) section, are noted as front (i Standard of Live (balanced): asse=1.15 ads (lb/ft) =-80, 9-16=-20 ed Loads (lb) 61 (B)	loads a _l F) or ba Lumber	oplied to the f ck (B). Increase=1.	face				THOMESSIONA March	26,2024	

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	N14A	Monopitch Girder	2	1	R81482239 Job Reference (optional)

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:50 Page: 1 ID:1UM_orFFmKRacNButCHeO6zZ?mC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:52.3

Plate Offsets (X, Y): [6:0-3-7,0-2-0], [7:Edge,0-3-8], [8:0-3-4,0-4-0], [11:0-1-12,0-3-4]

	()) [];	1 3	1		- 1									
Loading TCLL (roof) TCDL 3CLL 3CDL	(psf) 25.0 15.0 0.0 * 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC2018	3/TPI2014	CSI TC BC WB Matrix-SH	0.78 0.95 0.97	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.36 -0.70 0.06	(loc) 8-10 8-10 7	l/defl >955 >492 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 168 lb	GRIP 185/148 FT = 10%	_
LUMBER TOP CHORE 30T CHORE WEBS DTHERS BRACING TOP CHORE 30T CHORE WEBS REACTIONS	 2x6 DF No.2 2x6 DF No.2 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural wood she 2-10-9 oc purlins, e Rigid ceiling directly bracing. 1 Row at midpt (size) 7=0-5-8, 1 Max Horiz 12=60 (LC Max Uplift 7=-518 (L Max Grav 7=1599 (L 	athing directly applie xcept end verticals. applied or 5-4-5 oc 1-11, 6-8, 3-8 12=0-4-0 C 9) C 12), 12=-253 (LC 8 -C 2), 12=1480 (LC 1	4) 5) d or 6) 7) 8) 1)	* This truss h on the bottor 3-06-00 tall h chord and ar All bearings i capacity of 4 Provide mec bearing plate joint 12 and 4 This truss is International referenced s Hanger(s) or provided suff lb down and 301 lb up at	has been designed n chord in all area by 2-00-00 wide wi by other members. are assumed to be 05 psi. hanical connection capable of withst 518 lb uplift at join designed in accor Building Code sec tandard ANSI/TPI other connection ficient to support c 301 lb up at 21-0 21-0-0 on bottom	d for a liv is where ill fit betw e HF No. and (by oth canding 2 t 7. dance w ction 230 1. device(s concentra -0, and 3 chord.	e load of 20. a rectangle veen the both 2 crushing ers) of truss 53 lb uplift a ith the 2018 6.1 and) shall be ted load(s) 3 00 lb down a The design/	Opsf tom to t t 300 and						
F ORCES	(lb) - Maximum Com Tension 0 1-12=-1378/455, 1-2 2-35278/2038 3-5	pression/Maximum 2=-4092/1309, 54535/2205	9)	selection of s responsibility In the LOAD	such connection de of others. CASE(S) section,	evice(s) , loads aj	is the oplied to the	face						
BOT CHORE WEBS	2-3=-3276/2038, 3-3 5-6=-4536/2211, 6-7 0 11-12=-134/185, 10- 8-10=-2081/5271, 7- 1-11=-1306/4045, 2- 3-10=-220/262, 5-8= 6-8=-2247/4593, 3-8	435/2203, 	LC 1)	DAD CASE(S) Dead + Rod Plate Increa Uniform Los Vert: 1-6	Standard Standard of Live (balanced): ase=1.15 ads (lb/ft) =-80, 7-12=-20 ad Loads (lb)	(F) or ba	ск (в). Increase=1.	.15,				omino	1 21	
NOTES 1) Wind: AS Vasd=87 II; Exp B and C-C exposed member: Lumber 1 Lumber 1 2) Provide a 3) This trus	2-10=-762/1403 SCE 7-16; Vult=110mph mph; TCDL=4.2psf; BC ; Enclosed; MWFRS (er Corner (3) zone; cantile ; end vertical left and rig and forces & MWFRS DOL=1.60 plate grip DO adequate drainage to pr bas been designed for	(3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zon- wer left and right ght exposed;C-C for for reactions shown; JL=1.60 event water ponding r a 10.0 psf bottom	Cat. e	Vert: 8=-	ed Loads (ib) 123 (F=-61, B=-61	1)						HORESSE	A DO TOT	
chord liv	e load nonconcurrent wi	th any other live load	ls.									NA	LET	

chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	N15	Monopitch Girder	2	1	R81482240 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:51 ID:Nnu1m7sE1ORWqwq6ijd?KSzZ?gF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:62.6

Plate Offsets (X, Y): [2:0-2-4,0-2-0],	[8:0-3-7,0-2-8], [9:E	dge,0-3-8],	[13:0-2-4,0-2-	-0], [15:0-3-8,0-2-0)]								
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC2018	8/TPI2014	CSI TC BC WB Matrix-SH	0.92 0.57 0.76	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.63 -1.26 0.11	(loc) 12-13 12-13 9	l/defl >681 >340 n/a	L/d 240 180 n/a	PLATES MT20 M18AHS Weight: 209 lb	GRIP 185/148 169/162 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 DF No.2 2x6 DF 2400F 2.0E 2x4 HF No.2 *Excep 1800F 1.6E 2x4 HF No.2 Structural wood shea 2-0-9 oc purlins, exc Rigid ceiling directly bracing. 1 Row at midpt (size) 9=0-5-8, 1 Max Horiz 16=60 (LC Max Uplift 9=-337 (LI Max Grav 9=1830 (L	t* 15-1,10-8:2x4 DF athing directly applie cept end verticals. applied or 7-10-4 oc 8-10, 5-10 (6=0-5-8 2 9) C 12), 16=-173 (LC 1 .C 1), 16=1796 (LC 1	1) d or 2) 3) 4) 5) 3))	Wind: ASCE Vasd=87mph II; Exp B; End and C-C Cor 15-1-12 to 20 cantilever lef right exposed for reactions DOL=1.60 Provide adec All plates are This truss ha chord live loa * This truss tha on the bottom 3-06-00 tall b chord and an	7-16; Vult=110mp ; TCDL=4.2psf; B closed; MWFRS (ner (3) 0-1-12 to 1 0-9-8, Corner (3) 2 t and right expose ; C-C for member: shown; Lumber D quate drainage to p • MT20 plates unle s been designed fad nonconcurrent vas been designed n chord in all area vy 2-00-00 wide wi vy other members.	oh (3-sec CDL=6.1 envelope 5-1-12, 20-9-8 to d; end v s and fou (OL=1.60 prevent v ess other for a 10.1 with any d for a liv s where ill fit betw	ond gust) psf; h=25ft; exterior zon Exterior (2) 35-9-8 zone; ertical left ar ces & MWFF plate grip water pondin; wise indicate psf bottom other live loa e load of 20.0 a rectangle yeen the bottom	Cat. ne ; nd RS g. ed. ed. uds. 0psf						
FORCES	(lb) - Maximum Com Tension 1-16=-1687/345, 1-2 2-4=-7798/1552, 4-5 5-7=-5234/1531, 7-8	pression/Maximum =-5456/1017, =-7561/1722, =-5236/1536,	6) 7)	All bearings a capacity of 4 Provide mech bearing plate joint 16 and 3	are assumed to be 05 psi. hanical connectior capable of withst 337 lb uplift at join	e HF No. n (by oth anding 1 t 9.	2 crushing ers) of truss t 73 lb uplift at	to t						
BOT CHORD	8-9=-1721/514 15-16=-125/207, 13- 12-13=-1605/7790, 1 9-10=-53/131 1-15=-1008/5401, 2-	.15=-1081/5449, 10-12=-1752/7553, .15=-1208/342.	8) 9)	This truss is International referenced st Hanger(s) or	designed in accord Building Code sec tandard ANSI/TPI other connection	dance w ction 230 1. device(s	ith the 2018 6.1 and) shall be	800				AOMIN	ZHA	
NOTES	4-13=-477/227, 5-12 8-10=-1554/5319, 5- 4-12=-362/262, 2-13	2=0/321, 7-10=-640/2 10=-2446/490, 5=-561/2419	31, 10	Ib down and design/select responsibility In the LOAD	301 lb up at 27-8 tion of such conne of others. CASE(S) section,	-12 on b ection de	ottom chord. vice(s) is the	The			7	TT OF WA	SHINGTON	
			LC 1)	of the truss a DAD CASE(S) Dead + Roc Plate Increa Uniform Loa Vert: 1-8: Concentrate Vert: 10=	rre noted as front (Standard of Live (balanced): ase=1.15 ads (lb/ft) =-80, 9-16=-20 ed Loads (lb) 61 (B)	(F) or ba	ck (B). Increase=1.	15,				PROFESSIONA	ERED LENGTHER	Ā

March 26,2024

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	N16	Monopitch	2	1	R81482241 Job Reference (optional)

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:51 ID:i6cMUSCwL?t_5kfO3T5UBMzZ?dD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:65.2

Plate Offsets ((X, Y): [1:0-	·2-4,0-2-0],	[5:0-3-8,0-2-4], [8:0-	-1-12,0-2-8	8], [9:0-7-8,0-1	-12], [13:0-2-12,0-	2-0], [18	:0-2-4,0-2-8],	[21:0-1-	12,0-1-0)]			
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC201	8/TPI2014	CSI TC BC WB Matrix-SH	0.99 0.60 0.71	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.22 -0.44 0.05	(loc) 16-18 16-18 13	l/defl >999 >748 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 218 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 DF N 2x6 DF N 2x4 HF N 1.6E 2x4 HF N Structural 3-11-7 oc Rigid ceili bracing. 1 Row at (size) Max Horiz Max Uplift	0.2 0.2 *Excep 0.2 *Excep 0.2 I wood shea purlins, ea ing directly midpt 10=8-3-4, 13=8-3-4, 19=73 (LC 10=-378 (13=-390 (13=-390 (t* 5-13:2x4 DF 1800 athing directly applie xcept end verticals. applied or 5-5-15 oc 5-13, 4-15 11=8-3-4, 12=8-3-4 19=0-4-0 C 36) LC 38), 12=-209 (LC C 32), 19=-147 (LC C 32), 19=-1478 (LC C 32), 11=-1428 (LC	1) F d or 2) , 3) 4) (37), 5) 29) 6)	Wind: ASCE Vasd=87mpl II; Exp B; En and C-C Cor 15-1-12 to 2' cantilever lef right expose for reactions DOL=1.60 Truss desig only. For stu see Standar or consult qu Provide aded Truss to be f braced agair Gable studs This truss ha	Wind: ASCE 7-16; Vult=110mph (3-second gust) Vsad=87mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) 0-1-12 to 15-1-12, Exterior (2) 15-1-12 to 20-8-0, Corner (3) 20-8-0 to 35-8-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Provide adequate drainage to prevent water ponding. Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). Gable studs spaced at 2-0-0 oc. This truss has been designed for a 10.0 psf bottom								-20
FORCES	(lb) - Max	12=1738 (19=1124 (imum Com	(LC 19), 13=3633 (L (LC 1) pression/Maximum	Ċ 1), 7)	* This truss h on the bottor 3-06-00 tall h	nas been designed m chord in all area	d for a liv s where ill fit bety	e load of 20.0 a rectangle	Opsf om					
TOP CHORD	Tension 1-19=-103 2-4=-3218 5-7=-919/ 8-9=-727/	31/261, 1-2 3/645, 4-5= /2631, 7-8= /1096, 9-10	2=-2973/714, 1082/499, 1138/2644, 0=-666/403	8) 9)	chord and ar All bearings capacity of 4 Provide mec bearing plate	ny other members. are assumed to be 05 psi. chanical connection capable of withst	e HF No. n (by oth	2 crushing ers) of truss t 47 lb uplift at	to				I AOMING	3 ZHA
BOT CHORD	18-19=-11 15-16=-10 12-13=-19 10-11=-42	10/156, 16- 032/3212, 1 952/1483, 1 27/417	-18=-748/2967, 13-15=-936/1350, 11-12=-1009/1003,	10	joint 19, 378 and 209 lb u) This truss is	Ib uplift at joint 10 plift at joint 12. designed in accor	dance w	ith the 2018	13			ľ	THE WA	
WEBS	2-18=-614 7-13=-129 4-15=-22 1-18=-68 8-13=-192	4/266, 4-16 96/284, 5-1 18/561, 2-1 1/2901, 8-1 24/714, 9-1	5=-3/233, 5-15=-64/6 3=-3863/795, 6=-295/436, 2=-1414/430, 2=-1298/817	95, 11	referenced standard ANSI/TPI 1. 11) This truss has been designed for a total drag load of 2000 lb. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 27-7-4 to 35-9-12 for 243.7 plf.						HA BER AND			
NOTES				L(1)	DAD CASE(S) Dead + Roo Plate Increa	Standard of Live (balanced): ase=1.15	Lumber	Increase=1.	15,				^{ESSIONA}	LENGL

March 26,2024

Page: 1 PRMU20240404

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	N17	Monopitch	12	1	R81482242 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:51 ID:HzqViSgZNfufQ8M0wt1B_tzZ?JF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

March 26,2024

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Scale = 1:61.1

Plate Offsets	(X, Y): [5:0-2-12,0-1-8	3], [10:0-4-0,0-1-0], [1	11:0-2-8,0-	1-12], [13:0-1-	12,0-1-8], [14:0-	1-12,0-1-8	, [16:0-2-0,0·	-2-8], [17	7:0-1-12,	0-1-0]				
Plate Offsets (Loading TCLL (roof) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS REACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD	(X, Y): [5:0-2-12,0-1-8 (psf) 25:0 15:0 0.0* 10:0 2x6 DF No.2 2x6 DF No.2 2x6 DF No.2 2x4 HF No.2 *Excep 1.6E Structural wood she 3-8-9 oc purlins, ex Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 10 1 Row at midpt (size) 10=0-3-8 MiTek), (f Max Horiz 17=59 (Lf Max Uplift 10=-503 (Lf Max Uplift 10=-503 (Lf Max Grav 10=19 (Lf 17=-69 (Lf Max Grav 10=19 (Lf 17=-1180) (lb) - Maximum Con Tension 1-17=-1084/207, 1-2 2-4=-3586/542, 4-5= 5-7=-340/2081, 7-8= 8-10=-33/506	B) [10:0-4-0,0-1-0], [1] Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code Other Stress Incr other Stress Incr Code code Code code Code code Code code	2-0-0 1.15 1.15 YES IBC2018 1) 0F ed or 2 2) 3) 0F 12), 5) 0, 6) 7) 0, LC	3/TPI2014 Wind: ASCE Vasd=87mp II; Exp B; Er and C-C Coi 15-1-12 to 1 cantilever le right expose for reactions DOL=1.60 Provide ade This truss h chord live lo * This truss h chord live lo * This truss a capacity of 4 Provide med bearing plat 17, 503 lb up This truss is International referenced s	12,0-1-8], [14:0- TC BC WB Matrix-SH 7-16; Vult=110 h; TCDL=4.2psf iclosed; MWFRS mer (3) 0-1-12 ti 9-11-4, Corner (3) 0-1-12 ti 9-11-4, Corner (4) 0-1-12 ti 9-11-4, Corner (5) 0-1-12 ti 9-11-4, Corner ti and right expo d; C-C for member as been designed ad nonconcurren has been de	1-12,0-1-8 0.69 0.60 0.66 mph (3-sec ; BCDL=6.0 S (envelope o 15-1-12, (3) 19-11-4 yeers and for r DOL=1.60 to prevent to do for a 10.0 nt with any need for a 10.0 nt with any need for a live eas where eas where be HF No. be HF No. tion (by oth histanding 6 nd 163 lb u cordance w section 230 PI 1.	I, [16:0-2-0,0 DEFL Vert(LL) Vert(CT) Horz(CT) Horz(CT) bond gust) opsf; h=25ft; b) exterior zor Exterior (2) to 34-11-4 zc rerical left an ces & MWFF b) plate grip water ponding b) psf bottom other live loa e load of 20.0 a rectangle veen the bottom 2 crushing ers) of truss t 9 lb uplift at j oplift at joint 1 th the 2018 6.1 and	-2-8], [17 in -0.24 -0.48 0.05 Cat. ne Cat. ne cone; ads. 0psf om to joint 1.	7:0-1-12 (loc) 14-16 14-16 11	0-1-0] /defi >999 >688 n/a	L/d 240 n/a	PLATES MT20 Weight: 198 lb	GRIP 185/148 FT = 10%	
BOT CHORD	16-17=-113/168, 14 13-14=-587/3579, 1 10-11=-43/35 7-11=-650/208, 5-13 2-16=-657/215, 1-16	-16=-554/3200, 1-13=-268/1570, 3=0/655, 4-14=0/212 5=-480/3126,	,								ž	TLAOMIN Strong WA	SHINGTON	
NOTES	2-14=-58/392, 4-13= 5-11=-3805/584, 8-1	2086/332, 11=-2198/337										PROFESSIONA	14 ERED LENGING	

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	N18	Monopitch Supported Gable	2	1	R81482243 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:51 ID:CcZhmSQ0Nvygcn2b5zbtYEzZ?EP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:62.3

Plate Offsets	(X, Y): [1:0-3-0,0-2-12	2], [2:0-4-8,0-1-0], [7	:0-4-0,0-4-8	8], [13:0-2-5,0	-2-0], [18:0-2-4,0	0-2-8], [21:0	-3-0,0-4-4], [3	32:0-4-0	,0-4-8],	[37:0-4-0),0-1-0]		
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC201	8/TPI2014	CSI TC BC WB Matrix-SH	0.76 0.83 0.74	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.01 -0.03	(loc) 35-36 20-21 20	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 194 lb	GRIP 185/148 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	JMBER DP CHORD 2x6 DF No.2 DT CHORD 2x6 DF No.2 EBS 2x4 HF No.2 THERS 2x4 HF No.2 RACING DP CHORD DP CHORD Structural wood sheathing directly applied or 4-5-4 oc purlins, except end verticals. DT CHORD Rigid ceiling directly applied or 4-4-3 oc bracing. EBS 1 Row at midpt 18-21 EACTIONS (size) 20=0-3-8, 21=27-11-8, 22=27-11-8, 26=27-11-8, 24=27-11-8, 28=27-11-8, 21=27-11-8, 30=27-11-8, 31=27-11-8, 30=27-11-8, 31=27-11-8, 36=27-11-8, 33=27-11-8, 36=27-11-8, 36=27-11-8 Max Horiz 36=27-11-8, 36=27-11-8, 36=27-11-8 Max Horiz 36=95 (LC 31) Max Uplift Max Uplift 20=-1198 (LC 38), 21=-1267 (LC 29), 22=-323 (LC 3), 24=-18 (LC			DP CHORD	 1.37=-507/515, 1-2=-1002/1023, 2-3=-819/840, 3-4=-564/585, 4-5=-317/323, 5-6=-170/194, 6-8=-652/678, 8-9=-893/920, 9-10=-1134/1162, 10-11=-1375/1403, 11-12=-1616/1645, 12-14=-1857/1887, 14-15=-2090/2112, 15-16=-2339/2371, 16-17=-2400/2433, 17-18=-3127/3155, 36-37=-242/253, 35-36=-957/897, 31-33=-721/661, 30-31=-1024/964, 29-30=-1327/1267, 28-29=-1630/1570, 27-28=-1933/1873, 26-27=-2236/2176, 24-26=-2539/2479, 23-24=-2842/2782, 22-23=-3115/3055, 21-22=-3221/3161, 20-21=-66/57 17-21=-526/207, 18-21=-3401/3335, 2-36=-1082/1008, 3-35=-646/660, 4-34=-188/160, 5-33=-160/74, 6-32=-160/57, 10-28=-160/52, 11-27=-160/52, 12-26=-158/53, 14-24=-178/61. All plates are 2x4 MT20 unless Truss to be fully sheathed from braced against lateral moveme of the bottom chord in all areas 3-06-00 tall by 2-00-00 wide with chord and any other members. All plates are 2x4 MT20 unless Truss to be fully sheathed from braced against lateral on the bottom chord in all areas 3-06-00 tall by 2-00-00 wide with chord and any other members. All bearings are assumed to be capacity of 405 psi. Provide mechanical connection bearing plate capable of withstat joint 20, 1267 lb uplift at joint 33, 40 lb uplift at joint 24 and 33 This truss is deseigned in accord international Building Code sec 						MT20 unless oth neathed from on- eral movement (ed at 2-0-0 oc. n designed for a concurrent with een designed for rd in all areas wi 0-00 wide will fit er members. ssumed to be HF i. al connection (by ble of withstand ble of w	erwise indicated. a face or securely .e. diagonal web 10.0 psf bottom any other live loa a live load of 20. there a rectangle between the bott No.2 crushing (others) of truss ing 1198 lb uplift 112 lb uplift at joint 29, 131 lb uplift at ift at joint 29, 131 27, 11 lb uplift at b uplift at joint 22 ce with the 2018 a 2306.1 and	y). .0psf tom to at int 36, lb t joint lb t joint 2.	
FORCES	38), 28=- 38), 30=- 38), 32=- 38), 34=- (LC 32), 1 Max Grav 20=1318 50), 22=- 1), 24=21 27=200 (31=199 (33=198 (35=1391 (lb) - Maximum Con Tension	13 (LC 29), 29=-16 (25 (LC 29), 31=-33 (40 (LC 29), 33=-83 (315 (LC 29), 35=-13 36=-1112 (LC 29) (LC 49), 21=1743 (L 12 (LC 29), 23=129 5 (LC 1), 26=198 (L LC 1), 28=200 (LC 1 LC 1), 30=201 (LC 1 LC 1), 32=200 (LC 1 LC 1), 32=200 (LC 1 LC 1), 34=408 (LC 5 (LC 49), 36=1253 (L npression/Maximum	LC Ni LC 1) LC 1) 225 -C (LC C 1),),),),),),), 2, C 50) -2 50)	Vind: ASCE Vasd=87mp II; Exp 8; Er and C-C Co 15-1-12 to 2 cantilever le right expose for reactions DOL=1.60 Truss desig only. For st see Standai or consult q Provide ade	E 7-16; Vult=110 h; TCDL=4.2psi rner (3) 0-1-12 t 0-8-8, Corner (3 hft and right expo ad;C-C for memb s shown; Lumbe gned for wind loa uds exposed to rd Industry Gabl ualified building pruate drainage	Omph (3-sec f; BCDL=6.0 S (envelope to 15-1-12, E 3) 20-8-8 to 3) 20-8-8 to bers and for r DOL=1.60 ads in the pl wind (normation e End Detai designer as to prevent w	ond gust) ipsf; h=25ft; () exterior zor Exterior (2) 35-8-8 zone; ertical left an ces & MWFR plate grip ane of the tru, al to the face Is as applical per ANSI/TF	Cat. he d SS Jss ble, PI 1.				HOMEN BROMESSION	G ZHAO SHINGTON THE ENGING	

March 26,2024

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MITek-US.com

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING B	LD G
3907862	N18	Monopitch Supported Gable	2	1	Job Reference (optional)	R81482243
Builders FirstSource (Arlington, V	VA), Arlington, WA - 98223,	Run: 8.63 S Nov 1 2	023 Print: 8.6	30 S Nov 1	2023 MiTek Industries, Inc. Mon Mar 25 09:36:51	Page: 2

ID:CcZhmSQ0Nvygcn2b5zbtYEzZ?EP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

12) This truss has been designed for a total drag load of 4200 lb. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-9-4 to 28-6-0 for 151.5 plf.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

PRMU20240404

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	N19	Monopitch Girder	1	1	R81482244 Job Reference (optional)

 Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:52
 Page: 1

 ID:cMsZva0o3HphMQEEZE319UzZ1ea-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f
 PRMU202240404

Scale = 1:29.8

Loading TCLL (roof) (psf) Spacing Plate Grip DOL 1.15 2-0-0 CSI TC DEFL Vert(LL) in (loc) I/defl Vert Lub MT20 185/148 CDL 15.0 Lumber DOL 0.0° 1.15 BC 0.18 Vert(LL) -0.01 5-6 >999 240 MT20 185/148 3CLL 0.0° Rep Stress Incr NO WB 0.28 Horz(CT) 0.00 4 n/a n/a 3GDL 10.0 Code IBC2018/TPI2014 WB 0.28 Horz(CT) 0.00 4 n/a n/a VEES 2x4 HF No.2 This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1. Hange(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 140 Ib down and 35 lb up at 2-112, and 140 lb down and 35 lb up at 4-1-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. Sector Sector Sector Sector STOC CHORD 4-0-58, 6-0-4-0 Max Horiz 64-07 (LC 9) Max Uplit 4-0-58, 6-0-4-0 Max Horiz 1 Dead + Roof Live (balanced): Lumber Increase=1.15. Plate Increase=															
LUMBER 7) This truss is designed in accordance with the 2018 TOP CHORD 2x4 HF No.2 3OT CHORD 2x6 DF No.2 3OT CHORD 2x4 HF No.2 BRACING 1 GOP CHORD Structural wood sheathing directly applied or 6-0-0 cc purlins, except end verticals. SOT CHORD Structural wood sheathing directly applied or 6-0-0 cc purlins, except end verticals. SOT CHORD Rigid ceiling directly applied or 10-0-0 cc braring. REACTIONS (size) 4=05-8, 6=0-4-0 Max Horiz Max Grav 4=500 (LC 1), 6=-569 (LC 1) FORCES (b) - Maximum Compression/Maximum Tension 10 TOP CHORD 1-6=-461/215, 1-2=-739/277, 2-3=-25/24, 3-4=-123/83 5 OTO P CHORD 1-6=-461/215, 1-2=-739/277, 2-3=-25/24, 3-4=-123/83 7)	L oading TCLL (roof) TCDL 3CLL 3CDL	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC2018	3/TPI2014	CSI TC BC WB Matrix-P	0.29 0.18 0.28	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.03 0.00	(loc) 5-6 5-6 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 41 lb	GRIP 185/148 FT = 10%	
30T CHORD 5-6=-66/59, 4-5=-313/737 NEBS 1-5=-315/804, 2-5=-49/222, 2-4=-811/326	LUMBER TOP CHORD SOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD SOT CHORD WEBS	2x4 HF No.2 2x6 DF No.2 2x4 HF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 4=0-5-8, 6 Max Horiz 6=47 (LC Max Grav 4=500 (LC (lb) - Maximum Com Tension 1-6=-461/215, 1-2=- 3-4=-123/83 5-6=-66/59, 4-5=-31 1-5=-315/804, 2-5=-	eathing directly applie cept end verticals. applied or 10-0-0 oc 6=0-4-0 9) C 12), 6=-71 (LC 8) C 1), 6=-569 (LC 1) apression/Maximum -739/277, 2-3=-25/24 3/737 49/222, 2-4=-811/32	7) 8) d or 9) LC 1) ,	This truss is International referenced s Hanger(s) or provided suff Ib down and Ib up at 4-1- of such conno others. In the LOAD of the truss a DAD CASE(S) Dead + Roo Plate Increas Uniform Lo: Vert: 1-3 Concentrativ Vert: 5=-	designed in acc Building Code s tandard ANSI/T other connectic ficient to suppor 35 lb up at 2-1- 12 on bottom ch ection device(s) CASE(S) sectio tre noted as fror Standard of Live (balance ase=1.15 ads (lb/tt) =-80, 4-6=-20 ed Loads (lb) 140 (B), 7=-140	ordance wi section 230 PI 1. on device(s, t concentra -12, and 14 hord. The c) is the resp on, loads ap nt (F) or bac d): Lumber	th the 2018 6.1 and) shall be ted load(s) 1 0 lb down an design/select consibility of oplied to the ck (B). Increase=1.	140 nd 35 tion face .15,						

NOTES

- Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Provide adequate drainage to prevent water ponding.3) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be HF No.2 crushing capacity of 405 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 71 lb uplift at joint 6 and 46 lb uplift at joint 4.

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	N20	Flat Supported Gable	1	1	R81482245 Job Reference (optional)

Run: 8.63 S. Nov. 1 2023 Print: 8.630 S.Nov. 1 2023 MiTek Industries. Inc. Mon. Mar. 25 09:36:52 ID:7vmI7QoWIIYECfsnWSlpQhzZ1es-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1 PRMU20240404

3-6-0

Scale =	1:23.1
---------	--------

_oading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.05	Vert(LL)	n/a	-	n/a	999	MT20	185/148
FCDL	15.0	Lumber DOL	1.15	BC	0.05	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.02	Horiz(TL)	0.00	4	n/a	n/a		
3CDL	10.0	Code	BC2018/TPI2014	Matrix-R							Weight: 14 lb	FT = 10%
LUMBER FOP CHORD BOT CHORD WEBS DTHERS BRACING FOP CHORD	2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural wood shea	athing directly applied d	 This truss ha chord live loa * This truss h on the bottor 3-06-00 tall t chord and ar All bearings 	is been designe ad nonconcurren has been design n chord in all ar by 2-00-00 wide hy other membe are assumed to	ed for a 10.0 nt with any ned for a liv eas where will fit betw ers. be HF No.) psf bottom other live loa e load of 20.0 a rectangle veen the botto 2 crushing	ads. Opsf om					

3-6-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 4=3-6-0, 5=3-6-0, 6=3-6-0

- Max Horiz 6=48 (LC 9) Max Uplift 4=-21 (LC 9), 5=-16 (LC 8), 6=-18 (LC 8) 4=51 (LC 1), 5=190 (LC 1), 6=80 Max Grav (LC 1)
- FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-6=-64/62, 1-2=-8/11, 2-3=-8/11, 3-4=-40/48 BOT CHORD 5-6=-49/57, 4-5=-49/57

2-5=-152/122

WEBS

NOTES

- Wind: ASCE 7-16; Vult=110mph (3-second gust) 1) Vasd=87mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Provide adequate drainage to prevent water ponding. 3)
- Gable requires continuous bottom chord bearing. 4)
- 5) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 6) Gable studs spaced at 2-0-0 oc.

- capacity of 405 psi. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 18 lb uplift at joint 6, 21 lb uplift at joint 4 and 16 lb uplift at joint 5.
- 11) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

LAOMING ZHAO ROADSIGISTERED ASSIONAL ENGINE ----March 26,2024

400 Sunrise Ave., Suite 270 Roseville CA 95661 916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	N21	Flat	1	1	R81482246 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:52 ID:uFzybS6CZFz9wMbJUHxWpCzZ1tx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x4 =

3-6-0

Scale = 1:21.8

_

Loading	(psf)	Spacing	2-0-0	CSI	0.24	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
	25.0 15.0	Plate Grip DOL	1.15	BC	0.21	Vert(LL)	-0.01	3-4 3-4	>999	240 180	MT20	185/148
BCLL	0.0*	Rep Stress Incr	YES	WB	0.01	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IBC2018/TPI2014	Matrix-P		- (-)					Weight: 16 lb	FT = 10%
LUMBER			8) This truss is	designed in accord	dance wi	th the 2018						
TOP CHORD	2x4 HF No.2		Internationa	Building Code sec	tion 230	6.1 and						
BOT CHORD	2x4 HF No.2 2x4 HF No.2			Standard ANSI/TPT	1.							
BRACING	2.4111 10.2			Otandard								
TOP CHORD	Structural wood she	eathing directly applie	ed or									
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	c									
REACTIONS	(size) 3= Mecha Max Horiz 4=-46 (LC Max Uplift 3=-23 (LC Max Grav 3=160 (LC	anical, 4= Mechanica C 10) C 9), 4=-23 (LC 8) C 1), 4=160 (LC 1)	al									
FORCES	(lb) - Maximum Con	npression/Maximum										
TOP CHORD	1-4=-128/125, 1-2=-	-23/25, 2-3=-128/100)									
BOT CHORD	3-4=-65/67											
WEBS	1-3=-48/48											
NOTES	0= = 40 \ 1 + 440 \	(2 I I)										
 Wind: ASC Vasd=87n II; Exp B; and C-C C exposed; members 	TCDL=4.2psf; BC Enclosed; MWFRS (er Corner (3) zone; cantile end vertical left and ri and forces & MWFRS	(3-second gust) CDL=6.0psf; h=25ft; (nvelope) exterior zor ever left and right ght exposed;C-C for for reactions shown	Cat. ne ;									ALLA
2) Provide a	dequate drainage to pr	DL=1.60 revent water ponding	r								AOMIN	S ZHA
 This truss 	has been designed fo	r a 10.0 psf bottom	<u>,</u>							-	OF WA	STATIO V
chord live	load nonconcurrent w	ith any other live loa	ds.							1		
on the bot	ttom chord in all areas	where a rectangle	ppsi							2		
3-06-00 ta	all by 2-00-00 wide will	fit between the botto	om									
chord and	any other members.											
capacity o	of 405 psi.	in NO.2 Crushing								-	P 540	14 / 2 1
6) Refer to g	irder(s) for truss to trus	ss connections.								2	FREGIST	ERE
 Provide m bearing pl 	nechanical connection	(by others) of truss t nding 23 lb uplift at i	0 oint								~S'SIONA	LENU
4 and 23 l	lb uplift at joint 3.	nanig zo io upint at j										
											March	26,2024

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	N22	Flat	1	1	R81482247 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:52 ID:35bgKP2RzPC0CR8970q6ZxzZ1u1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x4 =

3-6-0

Scale = 1:21.7

_

	i										
(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC 0	0.21	DEFL Vert(LL)	in -0.01	(loc) 3-4	l/defl >999	L/d 240	PLATES MT20	GRIP 185/148
15.0	Lumber DOL	1.15	BC (0.10	Vert(CT)	-0.01	3-4	>999	180		
0.0*	Rep Stress Incr Code	IBC2018/TPI2014	WB (Matrix-P	0.01	Horz(CT)	0.00	3	n/a	n/a	Weight: 16 lb	FT = 10%
2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural wood she	athing directly applie	 This truss is International referenced s LOAD CASE(S) 	designed in accordan Building Code section tandard ANSI/TPI 1. Standard	nce wi n 230	th the 2018 6.1 and						
3-6-0 oc purlins, ex Rigid ceiling directly	cept end verticals. applied or 10-0-0 oc										
(size) 3= Mecha Max Horiz 4=45 (LC Max Uplift 3=-23 (LC Max Grav 3=160 (LC	nical, 4= Mechanica 11) 39), 4=-23 (LC 8) 31), 4=160 (LC 1)	I									
(lb) - Maximum Com Tension	pression/Maximum										
1-4=-128/124, 1-2=- 3-4=-64/66 1-3=-47/47	23/25, 2-3=-128/100										
E 7-16; Vult=110mph ph; TCDL=4.2psf; BC inclosed; MWFRS (er orner (3) zone; cantile and vertical left and rig and forces & MWFRS DL=1.60 plate grip DO equate drainage to pr has been designed for oad nonconcurrent wi is has been designed for oad nonconcurrent wi is has been designed for on chord in all areas i l by 2-00-00 wide will any other members. s are assumed to be H 405 psi. der(s) for truss to trus echanical connection (the capable of withstar o uplift at joint 3.	(3-second gust) DL=6.0psf; h=25ff; C welope) exterior zon wer left and right ght exposed;C-C for for reactions shown; u=1.60 event water ponding r a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto HF No.2 crushing as connections. (by others) of truss to dding 23 lb uplift at jo	Cat. e ds. psf m oint							A A A A A A A A A A A A A A A A A A A	HOMENSIONA	A 2HAO SHUNCION ERED LENGINO
	(psf) 25.0 15.0 0.0* 10.0 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural wood she 3-6-0 oc purlins, ex Rigid ceiling directly bracing. size) 3= Mecha Max Horiz 4=45 (LC Max Uplift 3=-23 (LC Max Grav 3=160 (LC (Ib) - Maximum Com Tension 1-4=-128/124, 1-2=- 3-4=-64/66 1-3=-47/47 E 7-16; Vult=110mph ch; TCDL=4.2psf; BC nclosed; MWFRS (er prmer (3) zone; cantile concorcurrent wi has been designed for m chord in all areas by 2-00-00 wide will any other members. s are assumed to be H 405 psi. der(s) for truss to trus chanical connection (te capable of withstar uplift at joint 3.	(psf) Spacing 25.0 15.0 15.0 Lumber DOL 0.0* 10.0 10.0 Rep Stress Incr Code Code 2x4 HF No.2 Rep Stress Incr 2x4 HF No.2 Code 2x4 HF No.2 Structural wood sheathing directly applie 3-6-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc size) 3= Mechanical, 4= Mechanical Max Horiz 4=45 (LC 11) Max Uplift 3=-23 (LC 9), 4=-23 (LC 8) Max Grav 3=160 (LC 1), 4=160 (LC 1) (lb) - Maximum Compression/Maximum Tension 1-4=-128/124, 1-2=-23/25, 2-3=-128/100 3-4=-64/66 1-3=-47/47 E E 7-16; Vult=110mph (3-second gust) ch; TCDL=4.2psf; BCDL=6.0psf; h=25ff; C ch consed; MWFRS (envelope) exterior zon zmer (3) zone; cantilever left and right end vertical left and right exposed; C-C for nd forces & MWFRS for reactions shown; b=1.60 plate grip DOL=1.60 squate drainage to prevent water ponding tas been designed for a live load of 20.0 om chord in all areas where a rectangle by 2-00-00 wide will fit between the botto any other members.	(psf) 25.0 15.0 15.0 10.0Spacing Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code2-0-0 1.15 IBC2018/TPI20142x4 HF No.2 2x4 HF No.28) This truss is International referenced s 2x4 HF No.28) This truss is International referenced s LOAD CASE(S)Structural wood sheathing directly applied or 3-6-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing. size)3= Mechanical, 4= Mechanical Max Horiz 4=45 (LC 11) Max Uplift 3=-23 (LC 9), 4=-23 (LC 8) Max Grav 3=160 (LC 1), 4=160 (LC 1) (lb) - Maximum Compression/Maximum Tension 1-4=-128/124, 1-2=-23/25, 2-3=-128/100 3-4=-64/66 1-3=-47/47E 7-16; Vult=110mph (3-second gust) oh; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. nclosed; MWFRS (envelope) exterior zone orner (3) zone; cantilever left and right end vertical left and right exposed; C-C for nd forces & MWFRS for reactions shown; bL=1.60 plate grip DOL=1.60 equate drainage to prevent water ponding. ias been designed for a 10.0 psf bottom bad nonconcurrent with any other live loads. has been designed for a live load of 20.0psf om chord in all areas where a rectangle by 2-00-00 wide will fit between the bottom any other members. s are assumed to be HF No.2 crushing 405 psi. der(s) for truss to truss connections. cchanical connection (by others) of truss to te capable of withstanding 23 lb uplift at joint uplift at joint 3.	(psf) Spacing 2-0-0 CSI 15.0 Lumber DOL 1.15 BC 10.0° Rep Stress Incr YES WB 2x4 HF No.2 Code IBC2018/TPI2014 Matrix-P 8) This truss is designed in accordar International Building Code sectio referenced standard ANSI/TPI 1. LOAD CASE(S) Standard 2x4 HF No.2 Structural wood sheathing directly applied or 3-6-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing. Standard size) 3= Mechanical, 4= Mechanical Vax Horiz 4=45 (LC 11) Max Uplift 3=-23 (LC 9), 4=-23 (LC 8) Max Grav 3=160 (LC 1), 4=160 (LC 1) (lb) - Maximum Compression/Maximum Tension 1-4=-128/124, 1-2=-23/25, 2-3=-128/100 3-4=-64/66 1-3=-47/47 E 7-16; Vult=110mph (3-second gust) oh; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. nclosed; MWFRS for reactions shown; L=1.60 squate drainage to prevent water ponding. as been designed for a 10.0 psf bottom sad hord in all areas where a rectangle by 20-00 wide will fit between the bottom any other members. sare assumed to be HF No.2 crushing 405(psi. derige box on conding. sare assumed to be HF No.2 crushing 405(psi. derige bof withstanding 23 lb upli	(pst) Spacing 2-0-0 CSI 15.0 Lumber DOL 1.15 TC 0.21 0.0* Rep Stress Incr YES WB 0.01 10.0 Code IBC2018/TPI2014 Matrix-P 2x4 HF No.2 2x4 HF No.2 8) This truss is designed in accordance will International Building Code section 230 referenced standard ANS/TPI 1. 2x4 HF No.2 2x4 HF No.2 International Building Code section 230 referenced standard ANS/TPI 1. 2x4 HF No.2 Structural wood sheathing directly applied or 3-6-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing. size) 3 = Mechanical, 4= Mechanical Vax Horiz 4=45 (LC 11) Vax Grav 3=160 (LC 1, 4=160 (LC 1) (lb) - Maximum Compression/Maximum Tension 1-4=-128/124, 1-2=-23/25, 2-3=-128/100 3-4=64/66 1-3=-47/47 E 7-16; Vult=110mph (3-second gust) ph; TCDL=4.2psf: BCDL=6.0psf; h=25ft; Cat. nclosed; MWFRS (envelope) exterior zone symer (3) zone; cantilever left and right exposed; C-C for nd forces & MWFRS for reactions shown; L=1.60 plate grip DOL=1.60 gauate drainage to prevent water ponding. sas been designed for a 10.0 psf bottom bad nonconcurrent with any other live loads. has been designed for a 10.0 psf bottom bad nonconcurrent with any other live loads. has been designed for a 10.0 ps	(psf) Spacing 2-0-0 CSI TC 0.21 25.0 Iumber DOL 1.15 IC 0.01 Vert(LT) 0.0* Reg Stress Incr YES BC 0.10 Vert(CT) 10.0 Code IBC2018/TPI2014 WB 0.01 Hor(CT) 2x4 HF No.2 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard 2x4 HF No.2 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard Structural wood sheathing directly applied or 3-6-0 oc purlins, except end verticals. Rechanical, 4= Mechanical Verticals. Rigid celling directly applied or 10-0-0 oc bracing. 3= Mechanical, 4= Mechanical Verticals. Nath Toti 4=45 (LC 11) Vax Horiz 4=45 (LC 1) Vax Horiz 4=45 (LC 1) Vax Horiz 4=45 (LC 1) Vartical Va	(pst) Spacing 2-0-0 CSI DEFL in 25.0 Plate Grip DOL 1.15 BC 0.01 Vert(LL) -0.01 10.0 Reg Stress Incr YES Matrix-P Wert(CT) -0.01 224 HF No.2 8. This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard 2x4 HF No.2 8. This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard Structural wood sheathing directly applied or 3-6-0 oc purlins, except end verticals. Rigid celling directly applied or 10-0-0 oc bracing. Structural wood sheathing directly applied or 3-6-0 acy purlins 3-23 (LC 9), 4=23 (LC 8) Vax Grav 3=160 (LC 1), 4=160 (LC 1) (lb) - Maximum Compression/Maximum Tension Matrix-P Matrix-P 1-4=-128/124, 1-2=-23/25, 2-3=-128/100 3-4=-64/66 1-3=-47/47 1-3=-47/47 E 7-16; Vull=110mph (3-second gust) br. TCDL=4-2psf; BCDL=6.0psf; h=25f; Cat. nclosed; MWFRS (reactions shown; N=10-160 paste grip DOL=1.60 apute drainage to prevent water ponding. sas been designed for a 10.0 psf botom. has been designed for a 10.0 psf botom. bas been desig	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(psf) Spacing 2-0-0 CSI 0.21 15.0 Lumber POL 1.15 TC 0.21 10.0 Code IEC2018/TPI2014 WB 0.01 2x4 HF No.2 IEC2018/TPI2014 WB 0.01 2x4 HF No.2 8) This truss is designed in accordance with the 2018 2x4 HF No.2 10.0 This truss is designed in accordance with the 2018 2x4 HF No.2 10.0 This truss is designed in accordance with the 2018 2x4 HF No.2 10.0 This truss is designed in accordance with the 2018 Structural wood sheathing directly applied or 3-60 oc purlins, except end verticals. Rigid calling directly applied or 10-0-0 cb bracing. 3-40 (CC 1) 4x HF No.2 3-40 Mechanical 3tar Hoi (C 1), 4-160 (L 1) 10 (lb) Maximum Compression/Maximum Tension 1-4-128/124, 1-2=23/25, 2-3=-128/100 3-4=-747 E 7-16; Vult=110mph (3-second gust) br: TOL=4_205; BCDL=6.0ps; h=251; Cat. not forces & MWPRS for reactions shown; L=1.00 plate grip DOL=1.60 stad endesigned for a 10.0 psf bottom and notical sets and reas where a rectangle by 2-000 wide will fit between the bottom any other members. are assumed to be HF No.2 crushing 405 psi. 405 psi. <tr< td=""><td>(psf) Spacing 2-0-0 CSI 0.21 DEFL in (loc) l/deft L/d 10.0 Lumber DoL 1.15 TC 0.21 Vert(C1) -0.01 3.4 >999 120 10.0 Code IBC2018/TPI2014 WB 0.01 Her A >999 180 2x4 HF No.2 Code IBC2018/TPI2014 Watrix-P 0.01 Her A >999 180 2x4 HF No.2 International Building Code section 2306.1 and referenced standard ANSI/TP1 1. LoAD CASE(S) Standard 2x4 HF No.2 CoD curlins, except end verticals. Rigid ceiling directly applied or 10-0-0 cb bracing. Structural wood sheathing directly applied or 10-0-0 cb bracing. 3:20 3 = Mechanical 4= Mechanical Max Hoiz 4=45 (LC 11) (lb) Maximum Compression/Maximum Tension 1-4-128/124, 1-2=23/25, 2-3=-128/100 3-4-28/162 3-3=-4747 E 7-16; Vult=110mph (3-second gust) 5h; CoL=4.0psf; h=251; CoL 5h; CoL=4.0psf; h=251; CoL ond encosed, MWPRS for reactions shown; L=1.60 [Lag ing in pDL=1.60 Synate drainage to prevent water ponding, as been designed for a 10.0 psf bottom and north origin at area swhere a rectangle by 2-0-00 wide will fit between the bottom any other members. area assumed to be HF No.2 crushing 405 psi.</td><td>(ps) 25.0 Spacing Plate Grip DOL Lumber DOL 1.15 CSI TC 0.21 C DEFL Vert(LL) in (loc) Videft L/d PLATES MT20 0.0° Rep Stress Incr YES WE 0.01 Vert(LT) 0.01 3.4 999 180 2x4 HF No.2 Code BC2010/TPI2014 Matrix-P WB 0.01 Vert(CT) 0.00 3 n/a n/a 2x4 HF No.2 FNo.2 PLATES N This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSITP1 1. LOAD CASE(S) Standard Structural wood sheathing directly appled or 36-0 co putines, except end verticals. Rigid celling directly appled or 36-0 co putines, except end verticals. Note that the 2018 International Building Code section 2306.1 and referenced standard ANSITP1 1. LOAD CASE(S) Standard Structural wood sheathing directly appled or 36-0 co putines, except end verticals. Note Anice Anice</td></tr<>	(psf) Spacing 2-0-0 CSI 0.21 DEFL in (loc) l/deft L/d 10.0 Lumber DoL 1.15 TC 0.21 Vert(C1) -0.01 3.4 >999 120 10.0 Code IBC2018/TPI2014 WB 0.01 Her A >999 180 2x4 HF No.2 Code IBC2018/TPI2014 Watrix-P 0.01 Her A >999 180 2x4 HF No.2 International Building Code section 2306.1 and referenced standard ANSI/TP1 1. LoAD CASE(S) Standard 2x4 HF No.2 CoD curlins, except end verticals. Rigid ceiling directly applied or 10-0-0 cb bracing. Structural wood sheathing directly applied or 10-0-0 cb bracing. 3:20 3 = Mechanical 4= Mechanical Max Hoiz 4=45 (LC 11) (lb) Maximum Compression/Maximum Tension 1-4-128/124, 1-2=23/25, 2-3=-128/100 3-4-28/162 3-3=-4747 E 7-16; Vult=110mph (3-second gust) 5h; CoL=4.0psf; h=251; CoL 5h; CoL=4.0psf; h=251; CoL ond encosed, MWPRS for reactions shown; L=1.60 [Lag ing in pDL=1.60 Synate drainage to prevent water ponding, as been designed for a 10.0 psf bottom and north origin at area swhere a rectangle by 2-0-00 wide will fit between the bottom any other members. area assumed to be HF No.2 crushing 405 psi.	(ps) 25.0 Spacing Plate Grip DOL Lumber DOL 1.15 CSI TC 0.21 C DEFL Vert(LL) in (loc) Videft L/d PLATES MT20 0.0° Rep Stress Incr YES WE 0.01 Vert(LT) 0.01 3.4 999 180 2x4 HF No.2 Code BC2010/TPI2014 Matrix-P WB 0.01 Vert(CT) 0.00 3 n/a n/a 2x4 HF No.2 FNo.2 PLATES N This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSITP1 1. LOAD CASE(S) Standard Structural wood sheathing directly appled or 36-0 co putines, except end verticals. Rigid celling directly appled or 36-0 co putines, except end verticals. Note that the 2018 International Building Code section 2306.1 and referenced standard ANSITP1 1. LOAD CASE(S) Standard Structural wood sheathing directly appled or 36-0 co putines, except end verticals. Note Anice

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	N23	Jack-Open Girder	1	1	R81482248 Job Reference (optional)

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:52 ID:uFzybS6CZFz9wMbJUHxWpCzZ1tx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1 PRMU20240404

1.22 0

Scale = 1.22.0															
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC2018	3/TPI2014	CSI TC BC WB Matrix-R	0.05 0.02 0.02	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 42 lb	GRIP 185/148 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 DF No. 2x6 DF No. 2x4 HF No. 2x4 HF No. 2x4 HF No. Structural V 6-0-0 oc pu Rigid ceilin bracing. (size) Max Horiz Max Uplift (Max Grav (Ub) - Maxin	.2 .2 .2 .2 wood shea urlins, exc g directly 7=7-10-0, 10, 10=7-10, 10, 10=7-10, 1	athing directly applie sept end verticals. applied or 10-0-0 oc 8=7-10-0, 9=7-10-0, 1, 11=7-10-0, 12=7-10 9), 8=-20 (LC 8), 9= -47 (LC 8), 11=-40 5 (LC 8) 1), 8=132 (LC 1), 9= =311 (LC 1), 11=356 (LC 1) pression/Maximum	4) 5) 6) 7) 8) d or 9) -11 (LC 85 6) (LC 12	All plates are Gable require Truss to be fi braced again Gable studs : This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and ar) All bearing plate 12, 11 lb upli at joint 11, 47 8.	2 2x4 MT20 unless es continuous botto ully sheathed from ist lateral movemen spaced at 2-0-0 oc s been designed fr ad nonconcurrent w nas been designed n chord in all areas by 2-00-00 wide will y other members. are assumed to be 25 psi. hanical connection capable of withsta ft at joint 7, 11 b u 7 lb uplift at joint 10 designed in accord Building Code sec trandard ANSUTTE!	otherwi om chor one factor or a 10.0 or a 10.0	se indicated. d bearing. e or securely iagonal web). D psf bottom other live load o ther live load e load of 20.0 a rectangle veen the botto 2 crushing ers) of truss to 6 lb uplift at joi int 9, 40 lb up l b uplift at joi ith the 2018 16.1 and	ds. psf m oint olift nt						
TOP CHORD BOT CHORD WEBS NOTES 1) Wind: AS' Vasd=87r II; Exp B; and C-C (exposed ; members Lumber D Lumber D 2) Truss de: only. For see Stanc	Tension 1-12=-60/5 4-5=-8/14, 11-12=-40/4 8-9=-40/44 4-9=-74/53 5-8=-101/7 CE 7-16; Vult: mph; TCDL=4 Enclosed; MV Corner (3) zor ; end vertical I and forces & 0OL=1.60 plat signed for win situds expose dard Industry (0)	1, 1-2=-9, 5-6=-8/15 (44, 10-11, , 7-8=-40, , 2-11=-17 7 =110mph .2psf; BCI WFRS (en ne; cantile left and ric MWFRS i e grip DO id loads irrid do to wind Gable End	8, 2-3=-9/10, 3-4=-8, , 6-7=-61/55 =-40/44, 9-10=-40/44 44 72/135, 3-10=-135/95 (3-second gust) DL=6.0psf; h=25ft; C velope) exterior zone ver left and right yht exposed;C-C for for reactions shown; L=1.60 the plane of the trus (normal to the face), d Details as applicabl	/12, 13, 4, 5, 14 at. 1) 35 55	 Hanger(s) or provided suff lb down and lb up at 3-9- of such conn others. In the LOAD of the truss a DAD CASE(S) Dead + Roo Plate Increa Uniform Loa Vert: 1-6: Concentrate Vert: 11= 	other connection of icient to support co 35 lb up at 1-9-12 12 on bottom chorre ection device(s) is CASE(S) section, ire noted as front (I Standard of Live (balanced): ase=1.15 adds (lb/ft) =-80, 7-12=-20 ed Loads (lb) i-140 (F), 10=-140	(F)) shall be tted load(s) 14 0 lb down and design/selectit bonsibility of oplied to the fa ck (B). Increase=1.1	40 d 35 on ace 5,			A PARTY OF THE PAR	HORESSIONA	3 ZHAO SHAO TA DOTOR	

see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Provide adequate drainage to prevent water ponding.

March 26,2024

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	P01	Flat Supported Gable	2	1	R81482249 Job Reference (optional)

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:52 ID:b3dUzKYqPLRxImVRJTdgnWzZ4pu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-10-6

Scale 1.20 6

00010 - 1.20.0													
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.16	Vert(LL)	n/a	-	n/a	999	MT20	185/148
TCDL	15.0	Lumber DOL	1.15		BC	0.15	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IBC2018/	/TPI2014	Matrix-R							Weight: 7 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural wood sheat 1-10-6 oc purlins, e: Rigid ceiling directly bracing. (size) 3=1-10-6, Max Horiz 4=-39 (LC Max Uplift 3=-117 (L Max Gray 3=269 (LC	athing directly applie xcept end verticals. applied or 10-0-0 oc 4=1-10-6 ; 10) C 32), 4=-117 (LC 20 ; 33). 4=269 (LC 36)	8) 9) d or 10) 11) 9) 12)	* This truss f on the bottor 3-06-00 tall b chord and ar All bearings capacity of 4 Provide mec bearing plate 4 and 117 lb This truss is International referenced s Load case(s)	as been designed n chord in all area by 2-00-00 wide w y other members are assumed to be of psi. hanical connection o capable of withst uplift at joint 3. designed in accor Building Code se tandard ANSI/TPI 1 has/have been	d for a liv as where ill fit betw e HF No. n (by oth tanding 1 rdance w ction 230 1. n modified	e load of 20.1 a rectangle veen the bott 2 crushing ers) of truss t 17 lb uplift at th the 2018 6.1 and 4. Building	0psf om to t joint					
FORCES	(lb) - Maximum Com Tension 1-4=-194/45, 1-2=-9	pression/Maximum 0/83. 2-3=-168/79	13)	correct for th This truss ha	e intended use of s been designed OI = (1.33) Plate	this trust for a tota	s. I drag load of =(1.33) Con	f 100					
BOT CHORD	3-4=-110/104			truss to resis	t drag loads along	g bottom	chord from 0	-0-0					
NOTES				to 1-10-6 for	100.0 plf.	-							
 Wind: ASC Vasd=87m II; Exp B; I and C-C C exposed; members Lumber D Truss des only. For see Stand or consult 	CE 7-16; Vult=110mph nph; TCDL=4.2psf; BC Enclosed; MWFRS (en corner (3) zone; cantile end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO signed for wind loads ir studs exposed to wind lard Industry Gable End gualified building desig	(3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zon wer left and right ght exposed;C-C for for reactions shown; IL=1.60 n the plane of the tru: (normal to the face) d Details as applicab gner as per ANSI/TP	LO, cat. 1) e ss le, l 1.	AD CASE(S) Dead + Roo Plate Increa Uniform Loo Vert: 1-2	Standard of Live (balanced) ase=1.15 ads (lb/ft) =-164, 3-4=-20	: Lumber	Increase=1.	15,			نو	THAOMIN THAOF WA	G ZHAO

- 3) /ide adequate draina o prevent v pondir 4)́ Gable requires continuous bottom chord bearing.
- 5) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 2-0-0 oc. 6)
- This truss has been designed for a 10.0 psf bottom 7) chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

PORESSIONAL ENGINE

Page: 1 PRMU20240404

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	P02	Flat	2	1	R81482250 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:52 ID:vrlzY1TBkVbEUMkBh4VBGGzZ4nO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1 PRMU20240404

Scale = 1:20.6

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.16	Vert(LL)	0.00	3-4	>999	240	MT20	185/148
TCDL	15.0	Lumber DOL	1.15	BC	0.15	Vert(CT)	0.00	3-4	>999	180		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		FT 400/
BCDL	10.0	Code	IBC2018/TPI2014	Matrix-R							Weight: 7 lb	FI = 10%
ECDL LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD DOT CHORD NOTES 1) Wind: ASG Vasd=87n II; Exp B; and C-C C exposed ; members Lumber D 2) Provide ard 3) This truss on the bot 3-06-00 ta chord and 5) All bearing capacity of 6) Refer to g 7) Provide m bearing pl 4 and 117	10.0 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural wood she 1-10-6 oc purlins, e Rigid ceiling directly bracing. (size) 3= Mecha Max Horiz 4=-39 (LC Max Uplift 3=-117 (L Max Grav 3=269 (LC (lb) - Maximum Com Tension 1-4=-191/47, 1-2=-9 3-4=-108/104 CE 7-16; Vult=110mph mph; TCDL=4.2psf; BC Enclosed; MWFRS (er Corner (3) zone; cantile end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO dequate drainage to pr has been designed for load nonconcurrent wiss shas been desig	Code athing directly applied xcept end verticals. applied or 10-0-0 oc 10) C 32), 4=-117 (LC 25 C 32), 4=-269 (LC 36) pression/Maximum 0/81, 2-3=-168/77 (3-second gust) DL=6.0psf; h=25ft; C welope) exterior zone wer left and right ght exposed; C-C for for reactions shown; L=1.60 event water ponding. r a 10.0 psf bottom th any other live load or a live load of 20.0p where a rectangle fit between the bottor HF No.2 crushing as connections. (by others) of truss to adding 117 lb uplift at j	A solution of the second secon	Matrix-R designed in accord: Building Code sect tandard ANSI/TPI 1) 1 has/have been r st review loads to w the intended use of th as been designed fo DOL=(1.33) Plate g st drag loads along to 100.0 plf. Standard of Live (balanced): I ase=1.15 ads (lb/ft) :=-164, 3-4=-20	ance w ion 230 nodifiec erify tha is truss r a tota rip DOL bottom	th the 2018 6.1 and 4. Building at they are 5. I drag load of 1 =(1.33) Conn chord from 0-C Increase=1.1!	100 lect D-0 5,			A A A A A A A A A A A A A A A A A A A	Weight: 7 lb	G ZHAO Mana TA BER L ENGINE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	P03	Flat	18	1	R81482251 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:52 ID:5s87qU2k6Rzn5KgAINqgXgzZ4IM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3

Scale = 1:20.6

_

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC2018/TPI20	14	CSI TC BC WB Matrix-R	0.16 0.15 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 3-4 3-4 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 7 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=87m II; Exp B; E and C-C C vasd=87m II; Exp B; E and C-C C Provide ad 3) This truss chord live I 4) * This truss on the bott 3: Of the bott	2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural wood she 1-10-6 oc purlins, e Rigid ceiling directly bracing. (size) 3= Mecha Max Uplif 3=-117 (L Max Grav 3=269 (LC (Ib) - Maximum Com Tension 1-4=-191/47, 1-2=-9 3-4=-108/104 2E 7-16; Vult=110mph ph; TCDL=4.2psf; BC Enclosed; MWFRS (er orner (3) zone; cantile end vertical left and rig and forces & MWFRS DL=1.60 plate grip DO lequate drainage to pr has been designed for om chord in all areas is any other members. s are assumed to be H i 405 psi. rder(s) for truss to trus echanical connection (ate capable of withstar Ib uplift at joint 3.	athing directly applied xcept end verticals. applied or 10-0-0 oc 1:10) C 32), 4=-117 (LC 29 C 33), 4=269 (LC 36) pression/Maximum 0/81, 2-3=-168/77 (3-second gust) DL=6.0psf; h=25ft; Ca velope) exterior zone ver left and right ght exposed;C-C for for reactions shown; L=1.60 event water ponding. a 10.0 psf bottom th any other live load or a live load of 20.0p where a rectangle fit between the bottor HF No.2 crushing as connections. by others) of truss to iding 117 lb uplift at jo	8) This t Intern refere 9) Load desig correct 10) This t plf. Lu truss to 1-1 LOAD C/ 1) Dea Plate Unif V at.	russ is ational ational inced si case(s) mer mus to resis 0-6 for SE(S) d + Roce a Increa form Loa art: 1-2:	designed in accord Building Code sect andard ANSI/TPI 1 1 has/have been r is treview loads to v e intended use of tt s been designed fc ODL=(1.33) Plate g t drag loads along I 100.0 plf. Standard of Live (balanced): I se=1.15 ads (Ib/ft) =-164, 3-4=-20	ance wi tion 230 I. modifiec erify thas or a tota rip DOL bottom Lumber	th the 2018 6.1 and I. Building it they are 5. I drag load of =(1.33) Conn chord from 0-C Increase=1.19	100 ect)-0 5,		£	A STATE OF	HORESSIONA	G ZHIAO SHINO TABLED LENGING

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	P04	Roof Special	2	1	R81482252 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:52 ID:IuoFvOSO6GR8AHIHdLpIGjzZ2Jv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-9-5

2x4 ॥

0-9-4

2x4 II

Scale = 1:23.9

joint 4 and 187 lb uplift at joint 3.

		i										
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.08	Vert(LL)	0.00	4	>999	240	MT20	185/148
TCDL	15.0	Lumber DOL	1.15	BC	0.04	Vert(CT)	0.00	4	>999	180		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IBC2018/TPI20	014 Matrix-R							Weight: 5 lb	FT = 10%
LUMBER			8) This	truss is designed in a	ccordance w	ith the 2018						
TOP CHORD	2x4 DF No.2		Interi	national Building Code	e section 230	6.1 and						
BOT CHORD	2x4 DF 1800F 1.6E		reter	enced standard ANSI	/IPI1.	. Du di di su si						
WEBS	2x4 HF No.2		9) Load	case(s) 1 has/have b	been modified	a. Building						
BRACING			desig	of for the intended up	s to verify the	at they are						
TOP CHORD	Structural wood she	athing directly applie	d or 10) This	trues has been design	e of this trus	s. Il drag load of	100					
	0-9-4 oc purlins, ex	cept end verticals.	nlf I	1033 Has been designumber DOI = (1.33) Pl	late grin DOI	-(1.33) Con	noct					
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc	truss	to resist drag loads a	long bottom	chord from 0-	0-0					
	bracing.		to 0-9	-4 for 100 0 plf	long bottom		00					
REACTIONS	(size) 3= Mecha	anical, 4= Mechanica		ASE(S) Standard								
	Max Horiz 4=-37 (LC	C 10)	1) Dea	d + Roof Live (balance	ced): Lumber	Increase=1.1	15					
	Max Uplift 3=-187 (L	.C 32), 4=-187 (LC 2	Plat	e Increase=1.15		11010000-111	,					
	Max Grav 3=233 (L0	C 33), 4=233 (LC 36)	Unit	orm Loads (lb/ft)								
FORCES	(lb) - Maximum Com Tension	pression/Maximum	V	'ert: 1-2=-164, 3-4=-2	0							
TOP CHORD	1-4=-137/75, 1-2=-2	9/27, 2-3=-114/103										
BOT CHORD	3-4=-58/44											
NOTES												
1) Wind: AS	CE 7-16: Vult=110mph	(3-second aust)										
Vasd=87r	nph; TCDL=4.2psf; BC	DL=6.0psf; h=25ft; C	at.									
II; Exp B;	Enclosed; MWFRS (er	velope) exterior zon	е									
and C-C C	Corner (3) zone; cantile	ever left and right										
exposed ;	end vertical left and right	ght exposed;C-C for										
members	and forces & MWFRS	for reactions shown;										
Lumber D	OL=1.60 plate grip DO	DL=1.60										
2) Provide a	dequate drainage to pr	event water ponding									OMIN	GZD
This truss	has been designed for	r a 10.0 psf bottom									4 In W	A GE AO
chord live	load nonconcurrent wi	ith any other live load	ls.							7	OF WI	TO AND A
 A) A I his trus 	ss has been designed f	or a live load of 20.0	pst							7	S A	
	ttom chord in all areas	where a rectangle	~							5		
S-00-00 la	all by 2-00-00 wide will	in between the bollo										
5) All bearing	any other members.	HE No 2 crushing										
canacity c	93 and assumed to be i	in 140.2 Grushing										
6) Refer to a	irder(s) for truss to trus	ss connections								-	3 540	74 2 5 1
7) Provide m	nechanical connection ((by others) of truss to	,							-	Op EGIC	TEREY S
bearing pl	late capable of withstar	nding 187 lb uplift at									ESer	NGI

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	P05	Flat	8	1	R81482253 Job Reference (optional)

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:52 ID:xIroSp9HJOzJrq4jsNPfQ9zZ2La-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x4 II

3x4 ш

1-10-6

Scale = 1:20.3

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.14	Vert(LL)	0.00	3-4	>999	240	MT20	185/148
TCDL	15.0	Lumber DOL	1.15	BC	0.14	Vert(CT)	0.00	3-4	>999	180		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IBC2018/TPI2014	Matrix-R							Weight: 7 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS (FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASCI Vasd=87my II; Exp 8; E and C-C Cc exposed ; e members a Lumber DO 2) Provide add 3) This truss h chord live Id 3) This truss on the botto 3-06-00 tall chord and a 5) All bearings capacity of 6) Refer to gin 7) Provide me bearing plar joint 4 and	2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural wood she 1-10-6 oc purlins, e Rigid ceiling directly bracing. (size) 3= Mecha Max Horiz 4=-37 (LC Max Uplift 3=-105 (L Max Grav 3=257 (LC (lb) - Maximum Com Tension 1-4=-185/44, 1-2=-9 3-4=-106/103 E 7-16; Vult=110mph ph; TCDL=4.2psf; BC inclosed; MWFRS (er orner (3) zone; cantile and vertical left and rig ind forces & MWFRS DL=1.60 plate grip DC equate drainage to pr oras been designed fo ord nonconcurrent wi is has been designed for ord nonconcurrent wi is has been designed for ord nonconcurrent wi is has been designed for ord nonconcurrent wi is has been designed for ord nonconcurrent wi is has be	athing directly applier xcept end verticals. applied or 10-0-0 oc inical, 4= Mechanical (30) C 32), 4=-105 (LC 25) C 33), 4=257 (LC 36) pression/Maximum 0/80, 2-3=-164/70 (3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zone wer left and right ght exposed;C-C for for reactions shown; JL=1.60 event water ponding. r a 10.0 psf bottom th any other live load or a live load of 20.0p where a rectangle fit between the bottor HF No.2 crushing ss connections. (by others) of truss to nding 105 lb uplift at	 8) This truss is Internationa referenced s 9) Load case(s 9) Load case(s 9) Load rase(s 9) Load rase(s 10) This truss haplif. Lumber truss to resis to 1-10-6 for LOAD CASE(S) 1) Dead + Ro Plate Incre Uniform Lo Vert: 1-2 	designed in accord Building Code sec trandard ANSI/TPI -) 1 has/have been i st review loads to v te intended use of t as been designed fo DOL=(1.33) Plate g t drag loads along 100.0 plf. Standard of Live (balanced): ase=1.15 ads (lb/ft) [==164, 3-4=-20	lance w tion 230 1. modifie rerify tha his trust or a tota pol bottom Lumber	L ith the 2018 36.1 and 3. Building at they are s. I drag load of .=(1.33) Conr chord from 0 Increase=1.1	100 hect 0-0 5,			and a second sec	THAOMIN THAO THAOMIN THAO THAOMIN THAO THAO THAO THAOMIN THAO THAO THAO THAO THAO THAO THAO THAO	G ZHAO SHINGING TA DI TUTO TA DI TUTO TUTO TUTO TUTO TUTO TUTO TUTO TUTO

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	P06	Flat Supported Gable	27	1	R81482254 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:53 ID:h0igQIY9IDDrRJJBNWDy_0zZ21i-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:21.8

Plate Offsets (X, Y): [2:Edge,0-3-8], [3:Edge,0-3-8]

				_								
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.36	Vert(LL)	n/a	-	n/a	999	MT20	185/148
TCDL	15.0	Lumber DOL	1.15	BC	0.32	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.00	Horiz(TL) (0.00	3	n/a	n/a		
BCDL	10.0	Code	IBC2018/TPI2014	Matrix-R							Weight: 8 lb	FT = 10%
							-					
LUMBER			8) * This truss	has been designe	ed for a liv	e load of 20.0ps	f					
TOP CHORD	2x4 HF No.2		on the botto	m chord in all are	as where	a rectangle						
BOT CHORD	2x4 HF No.2		3-06-00 tall	by 2-00-00 wide v	will fit betw	veen the bottom						
WEBS	2x4 HF No.2			iny other members	S.	0 anuahina						
BRACING			9) All bearings	Are assumed to t	DE HE NO.	2 crushing						
TOP CHORD	Structural wood she	athing directly applie	d or 10) Provide me	400 psi. chanical connectiv	on (by oth	ore) of truce to						
	1-10-6 oc purlins, e	xcept end verticals.	hearing nlat	e canable of with	standing ?	92 lb unlift at						
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc	ioint 4 and 3	392 lb uplift at ioin	nt 3							
	bracing.		11) This truss is	designed in acco	ordance w	ith the 2018						
REACTIONS	(size) 3=1-10-6,	4=1-10-6	Internationa	I Building Code se	ection 230)6.1 and						
	Max Horiz 4=45 (LC	35)	referenced	standard ANSI/TF	기 1.							
	Max Uplift 3=-392 (L	.C 32), 4=-392 (LC 2	 9) 12) This truss h 	as been designed	d for a tota	I drag load of 20	0					
	Max Grav 3=412 (LC	5 33), 4=412 (LC 36)	plf. Lumber	DOL=(1.33) Plate	e grip DOL	.=(1.33) Connec	rt					
FORCES	(lb) - Maximum Com	pression/Maximum	truss to resi	st drag loads alon	ng bottom	chord from 0-0-0)					
		104/407 0.0 004/0	to 1-10-6 fo	r 200.0 plf.								
	1-4=-234/207, 1-2=-	164/167, 2-3=-204/2	52 LOAD CASE(S) Standard								
BOTCHORD	3-4=-200/101											
NOTES		(a										
1) Wind: AS	CE 7-16; Vult=110mph	(3-second gust)										
Vaso=87n	npn; TCDL=4.2pst; BC	DL=6.0pst; $n=25\pi$; C	,at.									
II; EXP B;	Enclosed; IVIVERS (en	ivelope) exterior zon	e									
and C-C C	and vertical left and rid	abt exposed C-C for										
members	and forces & MWFRS	for reactions shown										
Lumber D	OI = 1.60 plate grip DO	1 = 1.60									OMIN	G Zn
2) Truss des	signed for wind loads in	the plane of the tru	SS								JA	A
only. For	studs exposed to wind	(normal to the face)									OF WI	ASHIN
see Stand	ard Industry Gable End	d Details as applicab	je,							7	S DI	
or consult	qualified building desig	gner as per ANSI/TP	4 Í.							-		
3) Provide a	dequate drainage to pr	event water ponding										
4) Gable req	uires continuous bottor	m chord bearing.										
5) Truss to b	e fully sheathed from c	one face or securely										
braced ag	ainst lateral movement	t (i.e. diagonal web).									3 , 540	74 8
6) Gable stu	ds spaced at 2-0-0 oc.										ON REGION	TORES A
7) This truss	has been designed for	r a 10.0 psf bottom								-	Escus	CIT A
chord live	load nonconcurrent wi	th any other live load	ls.								SIONA	LEN

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	P07	Flat Supported Gable	26	1	R81482255 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:53

ID:_Rk19OSC5GgCxrYcGm3XWDzZ20X-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1-8-14

Scale = 1:21.8 Plate Offsets (X, Y); [1:Edge.0-1-12], [2:Edge.0-1-12], [3:Edge.0-1-12], [4:Edge.0-1-12]

	, [z.=uge,0 1 12], [0.	Euge,0 1 12], [4:Euge,	0 1 12]									
Loading (psf) TCLL (roof) 25.0 TCDL 15.0 BCLL 0.0* BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC2018/TPI2014	CSI TC BC WB Matrix-R	0.44 0.39 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 8 lb	GRIP 185/148 FT = 10%	
LUMBER TOP CHORD 2x4 HF No.2 BOT CHORD 2x4 HF No.2 BOT CHORD 2x4 HF No.2 WEBS 2x4 HF No.2 BRACING TOP CHORD Structural wood shea 1-8-14 oc purlins, ex BOT CHORD Rigid ceiling directly: bracing. REACTIONS (size) 3=1-8-14, Max Horiz 4=-45 (LC Max Uplift 3=-532 (LC C Max Uplift 3=-532 (LC C Max Grav 3=550 (LC FORCES (lb) - Maximum Comp Tension TOP CHORD 1-4=-301/273, 1-2=-2 BOT CHORD 3-4=-243/223 NOTES 1) Wind: ASCE 7-16; Vult=110mph Vasd=87mph; TCDL=4.2psf; BCL II; Exp B; Enclosed; MWFRS (env and C-C Corner (3) zone; cantilex exposed ; end vertical left and rig members and forces & MWFRS for Lumber DOL=1.60 plate grip DOI 2) Truss designed for wind loads in only. For studs exposed to wind see Standard Industry Gable End or consult qualified building desig 3) Provide adequate drainage to pre 4) Gable requires continuous bottom 5) Truss to be fully sheathed from on braced against lateral movement 6) Gable studs spaced at 2-0-0 oc. 7) This truss has been designed for chord live load nonconcurrent wit	athing directly applied (cept end verticals. applied or 10-0-0 oc 4=1-8-14 8) C 32), 4=-532 (LC 29 2 33), 4=550 (LC 36) pression/Maximum 206/209, 2-3=-270/31 (3-second gust) DL=6.0psf; h=25ft; Cr velope) exterior zone ver left and right ht exposed; C-C for for reactions shown; L=1.60 the plane of the trus (normal to the face), d Details as applicabl mer as per ANSI/TPI svent water ponding. n chord bearing. ne face or securely (i.e. diagonal web). a 10.0 psf bottom h any other live load:	 8) * This truss on the botto 3-06-00 tall chord and a 9) All bearings capacity of 10) Provide me- bearing plat joint 4 and 5 11) This truss is Internationa referenced 3 12) This truss to resi to 1-8-14 fo 18 LOAD CASE(S) at. at. ss. 	has been designed m chord in all area by 2-00-00 wide w ny other members are assumed to be 405 psi. chanical connection e capable of withst 32 lb uplift at joint designed in accor I Building Code se- standard ANSI/TPI as been designed f DOL=(1.33) Plate st drag loads along 276.0 plf. Standard	d for a liv s where ill fit betv e HF No. n (by oth tanding 5 3. rdance w ction 230 1. for a tota grip DOL g bottom	e load of 20.0 a rectangle veen the botto 2 crushing ers) of truss t i32 lb uplift at i4th the 2018 6.1 and I drag load of =(1.33) Coni chord from 0-	opsf om 276 nect 0-0			a second s	THO OF WAR	G ZHAO ISHINGING TA ERED IL ENGING	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	P08	Flat Supported Gable	2	1	R81482256 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:53 ID:TRth3A5prEDpBqWbJh?kdAzZ2?j-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:21.8

Plate Offsets (X, Y): [2:Edge,0-2-0], [3:0-2-8,0-1-0], [4:0-2-8,0-0-8]

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

ICE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. I is for an individual building component, not operly incorporate this design into the overall

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	P09	Flat Supported Gable	2	1	R81482257 Job Reference (optional)

1-7-2

Builders FirstSource (Arlington, WA), Arlington, WA - 98223,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:53

ID:uNByXG907HJKkMFWTAaMBkzZ2_L-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1-7-2

Scale = 1:21.8 Ρ

Plate Offsets (X, Y): [2:Edge,0-2-0],	[3:0-2-8,0-1-0], [4:0-	-2-8,0-0-8]									
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC2018/TPI2014	CSI TC BC WB Matrix-R	0.41 0.35 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 7 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD NOTES 1) Wind: AS(Vasd=87n II; Exp B; and C-CC exposed ; members Lumber D 2) Truss des only. For see Stand or consult 3) Provide ad 4) Gable req 5) Truss to b braced ag 6) Gable stuu 7) This truss chord live	2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural wood sheat 1-7-2 oc purlins, exc Rigid ceiling directly bracing. (size) 3=1-7-2, 4 Max Horiz 4=-45 (LC Max Uplift 3=-534 (LI Max Grav 3=551 (LC (lb) - Maximum Com Tension 1-4=-300/272, 1-2=- 3-4=-223/203 CE 7-16; Vult=110mph nph; TCDL=4.2psf; BC Enclosed; MWFRS (en Corner (3) zone; cantile end vertical left and rig and forces & MWFRS (en Corner (3) zone; cantile end vertical left and rig corner (3) zone; cantile end vertical left and rig studs exposed to wind ard Industry Gable End qualified building desig dequate drainage to pro- uires continuous bottor e fully sheathed from oc ainst lateral movement ds spaced at 2-0-0 oc. has been designed for load nonconcurrent with	athing directly applie sept end verticals. applied or 10-0-0 oc 3 =1-7-2 8) C 32), 4=-534 (LC 2f 3 - 3, 4=551 (LC 36) pression/Maximum 186/188, 2-3=-268/3 (3-second gust) DL=6.0psf; h=25ft; C velope) exterior zon ver left and right ght exposed; C-C for for reactions shown; L=1.60 the plane of the tru: (normal to the face) d Details as applicab gner as per ANSI/TP event water ponding n chord bearing. ne face or securely (i.e. diagonal web). a 10.0 psf bottom th any other live load	 8) * This truss I on the botton 3-06-00 tall I chord and at 9) All bearings capacity of 4 10) Provide met bearing platt joint 4 and 5 11) This truss is International referenced s 2) 12) This truss to resis to 1-7-2 for 2 15 LOAD CASE(S) 	has been designed in chord in all areas by 2-00-00 wide will by other members. are assumed to be 05 psi. thanical connection a capable of withsta 34 lb uplift at joint 3 designed in accord Building Code sect tandard ANSI/TPI 1 as been designed fo DOL=(1.33) Plate g ti drag loads along 276.0 plf. Standard	for a liv where fit betv HF No. (by oth ance w tion 230 I. or a tota rip DOL bottom	e load of 20.0 a rectangle veen the botto 2 crushing ers) of truss to 34 lb uplift at th the 2018 6.1 and I drag load of =(1.33) Conr chord from 0-0	psf m 276 lect D-0			A STATE OF	HORESSION	IG ZH 40 ASHINGTON THERED INST AL ENGINE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

UNAL D March 26,2024

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	P10	Roof Special	2	1	R81482258 Job Reference (optional)

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:53 $ID:YDzLB_itHP6pFQmM9qP93RzZ1zd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff$

3x4 u

0-9-2

Scale = 1:25.6

				_	_							
Loading TCLL (roof) TCDL BCLL BCDI	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC2018/TPI2014	CSI TC BC WB Matrix-R	0.22 0.16 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD FORCES TOP CHORD BOT CHORD	2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural wood shea 0-9-2 oc purlins, exc Rigid ceiling directly bracing. (size) 3=0-9-2, 4 Max Horiz 4=-45 (LC Max Uplift 3=-587 (L Max Grav 3=593 (LC (Ib) - Maximum Com Tension 1-4=-308/269, 1-2=- 3-4=-110/88	athing directly applie cept end verticals. applied or 10-0-0 oc 4=0-9-2 : 30) C 32), 4=-587 (LC 2 C 33), 4=593 (LC 36) pression/Maximum 70/72, 2-3=-267/313	 8) * This truss on the bott 3-06-00 tal chord and 9) All bearing capacity of 10) Provide me bearing pla joint 4 and 11) This truss i Internation 9) 12) This truss 1 9) 12) This truss to rest to 0-9-2 for 8 LOAD CASE(S 	has been design om chord in all ar by 2-00-00 wide any other membes s are assumed to 405 psi. schanical connect te capable of with 587 Ib uplift at joi s designed in acc al Building Code standard ANS/IT has been designe DOL=(1.33) Plat ist drag loads alc 276.0 plf.	ned for a liver reas where will fit betworks ars. be HF No.: tion (by other histanding 5 int 3. cordance wir section 230 PI 1. ed for a tota te grip DOL ong bottom of	e load of 20.0 a rectangle veen the bott 2 crushing ers) of truss t 87 lb uplift at th the 2018 6.1 and I drag load o =(1.33) Con chord from 0	0psf om to t f 276 inect -0-0					
NOTES 1) Wind: AS Vasd=877 II; Exp B; and C-C of exposed members Lumber D 2) Truss de only. For see Stann	CE 7-16; Vult=110mph mph; TCDL=4.2psf; BC Enclosed; MWFRS (en Corner (3) zone; cantile ; end vertical left and rig and forces & MWFRS OCL=1.60 plate grip DO signed for wind loads ir studs exposed to wind lard Industry Gable En currented building devices.	(3-second gust) DL=6.0psf; h=25ft; C welope) exterior zon ver left and right ght exposed;C-C for for reactions shown; L=1.60 the plane of the tru (normal to the face) d Details as applicat	Cat. le ; iss), ole,							بو	HAOMIN HAOMIN	IG ZHAO

- lified building designer as per ANSI/TPI 1. Provide adequate drainage to prevent water ponding.
- 3) 4) Gable requires continuous bottom chord bearing.
- 5) Truss to be fully sheathed from one face or securely
- braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 2-0-0 oc. 6)
- This truss has been designed for a 10.0 psf bottom 7) chord live load nonconcurrent with any other live loads.

ROTESSIONAL ENGINE March 20

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	P11	Roof Special	2	1	R81482259 Job Reference (optional)

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:53 ID:rf?hxecwdSZ9ly?m24FkbFzZ1yS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

0-10-6

Scale - 1.27 5

00010 - 112110												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC2018/TPI20	CSI TC BC WB Matrix-R	0.24 0.18 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 6 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural wood she 0-10-6 oc purlins, e Rigid ceiling directly bracing. (size) 3=0-10-6, Max Horiz 4= 45 (C	athing directly applie xcept end verticals. applied or 10-0-0 oc 4=0-10-6	8) * This on th 3-06- chore 9) All be capa 10) Provi beari joint 11) This Interi	truss has been design e bottom chord in all ar 00 tall by 2-00-00 wide and any other membe arings are assumed to city of 405 psi. de mechanical connect ng plate capable of with 4 and 572 lb uplift at joi truss is designed in acc national Building Code	ned for a liv reas where will fit betw ers. be HF No. tion (by oth hstanding 5 int 3. cordance w section 230	e load of 20.1 a rectangle veen the both 2 crushing ers) of truss t 72 lb uplift at ith the 2018 16.1 and	0psf om to t					
FORCES TOP CHORD BOT CHORD	Max H012 4=-45 (LC Max Uplift 3=-572 (L Max Grav 3=579 (LC (Ib) - Maximum Com Tension 1-4=-305/270, 1-2=- 3-4=-124/103	C 32), 4=-572 (LC 2 C 33), 4=579 (LC 36) pression/Maximum 85/86, 2-3=-269/312	9) refero 12) This plf. L truss to 0- LOAD C	Inced standard ANSI/T russ has been designe Jimber DOL=(1.33) Plat to resist drag loads alc 0-6 for 276.0 plf. ASE(S) Standard	PI 1. ed for a tota te grip DOL ong bottom	l drag load o =(1.33) Con chord from 0	f 276 inect -0-0					
NOTES												
 Wind: AS Vasd=87r II; Exp B; and C-C 0 exposed ; members Lumber D Truss de only. For see Stand 	CE 7-16; Vult=110mph mph; TCDL=4.2psf; BC Enclosed; MWFRS (er Corner (3) zone; cantile ; end vertical left and rig and forces & MWFRS 00L=1.60 plate grip DC signed for wind loads in studs exposed to wind dard Industry Gable En	(3-second gust) DL=6.0psf; h=25ff; C welope) exterior zon wer left and right ght exposed;C-C for for reactions shown; pL=1.60 n the plane of the tru (normal to the face) d Details as applicate	Cat. e ss ,								ALAOMIN ALAOMIN	G ZHAO

- or consult qualified building designer as per ANSI/TPI 1.
- 3) Provide adequate drainage to prevent water ponding. 4) Gable requires continuous bottom chord bearing.
- 5) Truss to be fully sheathed from one face or securely
- braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 2-0-0 oc. 6)
- This truss has been designed for a 10.0 psf bottom 7) chord live load nonconcurrent with any other live loads.

BORESSIONAL ENGINE March 20

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	P12	Flat Supported Gable	1	1	R81482260 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:53 ID:VmJW9ANRnpVDpdJtFptWfXzZ1xT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

M18AHS 5x12 ॥

M18AHS 5x12 II

1-10-6

Scale = 1:24.1

Plate Offsets (X, Y): [1:Edge,0-1-12], [2:Edge,0-1-12], [3:0-3-8,Edge]

		1.1 0 /· 1/1	: 51									
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.47	Vert(LL)	n/a	-	n/a	999	M18AHS	145/140
TCDL	15.0	Lumber DOL	1.15	BC	0.43	Vert(TL)	n/a	-	n/a	999	MT20	185/148
BCLL	0.0*	Rep Stress Incr	NO	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IBC2018/TPI2014	Matrix-R							Weight: 8 lb	FT = 10%
LUMBER			9) * This truss	s has been design	ied for a liv	e load of 20.0	Opsf					
TOP CHORD	2x4 HF No.2		on the bott	om chord in all are	eas where	a rectangle						
BOT CHORD	2x4 HF No.2		3-06-00 tai	I by 2-00-00 wide	WIII TIT DETV	veen the botto	m					
WEBS	2x4 HF No.2		10) All booring	any other member	IS. bo UE No	2 cruching						
BRACING	.		canacity of	405 nsi	DETIFINO.	2 crushing						
TOP CHORD	Structural wood she	athing directly applie	d or 11) Provide me	chanical connecti	ion (by oth	ers) of truss t	'n					
	1-10-6 oc purlins, e	xcept end verticals.	bearing pla	te capable of with	nstanding 5	28 lb uplift at						
BUT CHURD	higia celling alfectly	applied of 9-10-10 C	joint 4 and	528 lb uplift at joir	nt 3.							
PEACTIONS	(cizo) 2-1.10.6	4-1 10 6	12) This truss i	s designed in acc	ordance w	ith the 2018						
REACTIONS	(SIZE) $S=1-10-6$,	4=1-10-0	Internation	al Building Code s	section 230	6.1 and						
	Max Holift 2 = 529 ((30) (22) $A = 529 (1 C 2)$	o) referenced	standard ANSI/TI	PI 1.							
	Max Gray 3=548 (L	C 32), 4=-520 (LC 2 C 33) 1-518 (LC 36)	³⁾ 13) This truss h	has been designe	d for a tota	I drag load of	276					
FORCES	(lb) Movimum Com	0 00), 4=040 (EO 00)	plf. Lumber	r DOL=(1.33) Plat	e grip DOL	.=(1.33) Con	nect					
FURCES	(ID) - Maximum Com Tension	ipression/waximum	truss to res	sist drag loads alo	ng bottom	cnora from 0-	-0-0					
TOP CHORD	1-4=-301/275 1-2=-	224/227 2-3=-271/3		Di 276.0 pil.								
BOT CHORD	3-4=-259/240		LUAD CASE(S	standard								
NOTES												
1) Wind AS	CE 7-16: \/ult=110mph	(3-second quet)										
Vasd=87r	mnh: TCDI =4 $2nsf$: BC	DI = 6 Onsf h = 25 ft C	.at									
II: Exp B:	Enclosed: MWFRS (en	velope) exterior zon	e									
and C-C (Corner (3) zone: cantile	ever left and right										
exposed ;	end vertical left and rig	ght exposed;C-C for										
members	and forces & MWFRS	for reactions shown;										
Lumber D	OL=1.60 plate grip DO	DL=1.60									J OMIN	G ZH
Truss des	signed for wind loads ir	n the plane of the tru	SS								A W	ASUNO
only. For	studs exposed to wind	(normal to the face)	,								1200	
see Stand	dard Industry Gable En	d Details as applicab	le,							7		
Or consult	qualified building desig	gner as per ANSI/TP	11.								0	And Z
 All ploton 	ore MT20 plotes uplos	event water ponding	4							2		
All platesGable reg	are witzo plates unles	s otherwise mulcated	1.									
6) Truss to h	a fully sheathed from c	ne face or securely								2		1~5
braced ac	ainst lateral movement	t (i.e. diagonal web)								7	P 8 540	174 0/8 5
7) Gable stu	ds spaced at 2-0-0 oc.	· (FREGIS	TERE
8) This truss	has been designed for	r a 10.0 psf bottom									SSION	TENU
chord live	load nonconcurrent wi	th any other live load	ls.								-ONA	
											Marc	h 26,2024

titute (www.tpinst.org) titute (www.tpinst.org) titute (www.tpinst.org)

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and bermanent bracing
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	P13	Flat Supported Gable	22	1	R81482261 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:53 $ID:_b1SmOd2XSTcgShgnyEgKFzZ1vs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f$

M18AHS 5x12 ||

M18AHS 5x12 II

1-10-6

Scale = 1:24.2

Plate Offsets (X, Y): [1:Edge,0-1-12], [2:Edge,0-1-12], [3:0-3-8,Edge]

			, 6.1									
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.48	Vert(LL)	n/a	-	n/a	999	M18AHS	145/140
TCDL	15.0	Lumber DOL	1.15	BC	0.43	Vert(TL)	n/a	-	n/a	999	MT20	185/148
BCLL	0.0*	Rep Stress Incr	NO	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IBC2018/TPI2014	Matrix-R							Weight: 8 lb	FT = 10%
					-							
LUMBER			9) * This truss	s has been desigr	ned for a live	e load of 20.0	psf					
TOP CHORD	2x4 HF No.2		on the bott	om chord in all ar	eas where	a rectangle						
BOT CHORD	2x4 HF No.2		3-06-00 tal	I by 2-00-00 wide	will fit betw	een the botto	m					
WEBS	2x4 HF No.2		chord and	any other membe	rs.							
BRACING			10) All bearing	s are assumed to	be HF No.	2 crushing						
TOP CHORD	Structural wood she	athing directly applie	d or capacity of	405 psi.								
	1-10-6 oc purlins, e	xcept end verticals.	11) Provide me	echanical connect	ion (by othe	ers) of truss to	C					
BOT CHORD	Rigid ceiling directly	applied or 9-10-3 oc	bearing pla	te capable of with	nstanding 5	36 ID UPIIT AT						
	bracing.		Joint 4 and	536 ID UPIIT at joi	nt 3. ordonoo wi	th the 2019						
REACTIONS	(size) 3=1-10-6,	4=1-10-6	12) This truss	al Building Code	contiance wi							
	Max Horiz 4=-45 (LC	29)	referenced	al Building Code :		0.1 anu						
	Max Uplift 3=-536 (L	C 32), 4=-536 (LC 29	9) 13) This trues	has been designe	d for a tota	I drag load of	276					
	Max Grav 3=556 (LC	C 33), 4=556 (LC 36)	nlf Lumbe	r DOI = (1.33) Plat	te arin DOI	=(1.33) Conr	210 hect					
FORCES	(lb) - Maximum Com	pression/Maximum	truss to res	sist drag loads alo	ng bottom	chord from 0-	0-0					
	Tension	004/007 0 0 075/0	to 1-10-6 f	or 276.0 plf.								
TOP CHORD	1-4=-305/278, 1-2=-	224/227, 2-3=-275/3	23 LOAD CASE(S	 Standard 								
BOTCHORD	3-4=-260/241											
NOTES												
 Wind: AS 	CE 7-16; Vult=110mph	(3-second gust)										
Vasd=87n	nph; TCDL=4.2psf; BC	DL=6.0psf; h=25ft; C	Cat.									
II; Exp B;	Enclosed; MWFRS (en	velope) exterior zon	e									
and C-C C	Corner (3) zone; cantile	ever left and right										
exposed;	end vertical left and rig	gnt exposed;C-C for										
members	and forces & MWERS	for reactions shown;									MIN	Ga
	OL=1.60 plate grip DO	/L=1.00 									AUM	- CHA
 ITUSS des only For 	signed for wind loads in	(normal to the food)	55								OF WA	ASHD O
Only. For	lord Industry Coble En	d Deteile ee epplieeb	, 							-	AN TO	NON D
or consult	aualified building desir	u Details as applicab	11							-	AN AN	
3) Provide a	dequate drainage to pr	event water ponding								-	5	
 All plates 	are MT20 plates unless	s otherwise indicated								2		
5) Gable reg	uires continuous hottor	m chord bearing	4.									
6) Truss to b	e fully sheathed from c	one face or securely								2.		
braced ad	ainst lateral movement	t (i.e. diagonal web)								7	P \$ 540	14 0 8 5
 Gable stu 	ds spaced at 2-0-0 oc									-	A CGIST	TERD
 This truss 	has been designed for	r a 10.0 psf bottom								1	SSIG	ENGL
chord live	load nonconcurrent wi	th any other live load	ls.								NA	LU
		,, ,, , , , , , , , , , , , ,	-									

March 26,2024

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	P14	Flat Supported Gable	2	1	R81482262 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:53 ID:3H0OdzQR_knFbckMepP8?AzZ1uq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:21.9

Plate Offsets (X, Y): [2:Edge,0-3-8], [3:Edge,0-3-8]

Loading (psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) 25.0	Plate Grip DOL	1.15	TC (0.38	Vert(LL)	n/a	-	n/a	999	MT20	185/148
TCDL 15.0	Lumber DOL	1.15	BC (0.32	Vert(TL)	n/a	-	n/a	999		
3CLL 0.0*	Rep Stress Incr	NO	WB (0.00	Horiz(TL)	0.00	3	n/a	n/a		
3CDL 10.0	Code	IBC2018/TPI2014	Matrix-R		. ,					Weight: 7 lb	FT = 10%
UMBER OP CHORD 2x4 HF No.2 OT CHORD 2x4 HF No.2 OT CHORD 2x4 HF No.2 SRACING OP CHORD Structural wood shea 1-5-4 oc purlins, exc SOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 3=1-5-4, 4 Max Horiz 4=-45 (LC Max Uplift 3=-549 (LC Max Grav 3=559 (LC FORCES (lb) - Maximum Com	athing directly applied cept end verticals. applied or 10-0-0 oc l=1-5-4 :10) C 32), 4=-544 (LC 25 C 33), 4=559 (LC 36) pression/Maximum	 8) * This truss on the botto 3-06-00 tall chord and a 9) All bearings d or 10) Provide met bearing plat 11) This truss is Internationa referenced s 12) This truss h 14) Plf. Lumber truss to resi 	has been designed for m chord in all areas w by 2-00-00 wide will fit ny other members. are assumed to be HF 405 psi. chanical connection (b e capable of withstand designed in accordan I Building Code section standard ANSI/TPI 1. as been designed for a DOL=(1.33) Plate grip st drag loads along bo	r a live where a t betw F No.2 by othe ding 5- nce win nce win a total b DOL: bottom c	e load of 20.0p a rectangle een the botton 2 crushing ers) of truss to 44 lb uplift at th the 2018 6.1 and drag load of 2 =(1.33) Conn shord from 0-0	276 ect 0-0				vveignt: 7 ib	F I = 10%
Tension OP CHORD 1-4=-303/275, 1-2=-	164/166. 2-3=-271/3 [.]	to 1-5-4 for:	276.0 plf.								
30T CHORD 3-4=-203/182		LUAD CASE(S)	Standard								
IOTES											
 Wind: ASCE 7-16; Vult=110mph Vasd=87mph; TCDL=4.2psf; BCI II; Exp B; Enclosed; MWFRS (en and C-C Corner (3) zone; cantile exposed ; end vertical left and rig members and forces & MWFRS Lumber DOL=1.60 plate grip DO Truss designed for wind loads in only. For studs exposed to wind see Standard Industry Gable End or consult qualified building desig Provide adequate drainage to pro- glable requires continuous bottor Truss to be fully sheathed from or braced against lateral movement Gable studs spaced at 2-0-0 oc. This truss has been designed for chord live load nonconcurrent with 	(3-second gust) DL=6.0psf; h=25ft; C velope) exterior zone ver left and right ght exposed;C-C for for reactions shown; L=1.60 the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP event water ponding, m chord bearing. m chard bearing. i.e. face or securely : (i.e. diagonal web).	at. ss le, 1.							A A A A A A A A A A A A A A A A A A A	HOPESSION	IG ZH40 ASHOVCIOL ITA TERED AL ENGINE

March 26,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MITek-US.com

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	P15	Flat Supported Gable	4	1	R81482263 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:53 ID:ICMejIJQjSVvPWp5A21QoGzZ1fU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1 PRMU20240404

Scale - 1.22 4

00010 - 1.22.4												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC2018/TPI2014	CSI TC BC WB Matrix-R	0.40 0.07 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 9 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD 2x4 DF No.2 BOT CHORD 2x4 HF No.2 BOT CHORD 2x4 HF No.2 BRACING TOP CHORD Structural wood sheathing directly applied or 1-10-6 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 3=1-10-6, 4=1-10-6 Max Horiz 4=-50 (LC 10) Max Uplift 3=-71 (LC 9), 4=-71 (LC 8) Max Grav 3=665 (LC 19), 4=654 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 3-458/75		8) * This tr on the b 3-06-00 chord a 9) All bear capacity 10) Provide bearing 4 and 7 11) This tru Internat reference LOAD CAS 1) Dead Plate I	uss has been design ottom chord in all arr tall by 2-00-00 wide nd any other membe ings are assumed to y of 405 psi. mechanical connect plate capable of with 1 lb uplift at joint 3. ss is designed in acc ional Building Code s bed standard ANSI/TI E(S) Standard + Roof Live (balanced ncrease=1.15	eed for a liv eas where will fit betw rs. be HF No. ion (by oth hstanding 7 ordance w section 230 PI 1. d): Lumber	e load of 20.0 a rectangle reen the botto 2 crushing ers) of truss t 1 lb uplift at j th the 2018 6.1 and Increase=1.	Dpsf om o oint 15,						
TOP CHORD BOT CHORD NOTES 1) Wind: ASI Vasd=87r II; Exp B; and C-C (exposed ; members Lumber D	Tension 1-4=-639/370, 1-2=- 3-4=-58/75 CE 7-16; Vult=110mph mph; TCDL=4.2psf; BC Enclosed; MWFRS (er Corner (3) zone; cantile ; end vertical left and ri- and forces & MWFRS JOL=1.60 plate grip DC	33/23, 2-3=-639/370 (3-second gust) iDL=6.0psf; h=25ft; C ivelope) exterior zon ver left and right ght exposed;C-C for for reactions shown; bL=1.60	Cat.	n Loads (lb/ft) :: 1-2=-812, 3-4=-20							معدي	
Truss des only. For	signed for wind loads in studs exposed to wind	n the plane of the tru I (normal to the face)	SS ,								ALAOMIN	G ZHA

- see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Provide adequate drainage to prevent water ponding.
- 4) Gable requires continuous bottom chord bearing.
- 5) Truss to be fully sheathed from one face or securely
- braced against lateral movement (i.e. diagonal web). Gable studs spaced at 2-0-0 oc. 6)
- This truss has been designed for a 10.0 psf bottom 7) chord live load nonconcurrent with any other live loads.

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	P16	Flat	2	1	R81482264 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:53 ID:3fky8Eans0yQCIDZfSyMNczZ1gQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

0-10-8 1-10-6 0-10-8 0-11-14

Scale = 1:29.3

Plate Offsets (2	X, Y): [2:Ed	lge,0-3-8],	[3:Edge,0-3-8]											
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC2018	J/TPI2014	CSI TC BC WB Matrix-R	0.36 0.25 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 3-4 3-4 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 9 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 DF No 2x4 HF No 2x4 HF No Structural 1-10-6 oc Rigid ceilir bracing. (size) Max Horiz Max Uplift Max Grav	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	athing directly applied xcept end verticals. applied or 6-0-0 oc 4=0-3-8, 5= Mechanio 35) C 32), 4=-122 (LC 1) C 29) C 19), 4=79 (LC 29),	7) 8) 9) cal LO , 1)	Provide mec bearing plate joint 5, 261 lt This truss is International referenced s This truss ha plf. Lumber I truss to resis to 1-10-6 for AD CASE(S) Dead + Roo Plate Increas Uniform Lo: Vert: 1-2:	hanical connection e capable of withsto o uplift at joint 3 and designed in accord Building Code sect tandard ANSI/TPI is been designed f DOL=(1.33) Plate of totag loads along 100.0 plf. Standard of Live (balanced): ase=1.15 ads (lb/ft) ==812, 3-5=-20	n (by oth anding 3 nd 122 lb dance w ction 230 1. for a tota grip DOL bottom	ers) of truss t 125 lb uplift at uplift at joint ith the 2018 16.1 and I drag load of =(1.33) Coni chord from 0- Increase=1.4	0 4. 100 nect 0-0 15,					
5=731 (LC 1) Vert: 1-2=-812, 3-5=-20 CORCES (b) - Maximum Compression/Maximum Tension Tension TOP CHORD 1-5=-638/421, 1-2=-125/117, 2-3=-639/466 30T CHORD 4-5=-153/138, 3-4=-146/132 VOTES I) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) zone; cantilever left and right exposed ; end vertical left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle														
5) All bearing capacity of6) Refer to gi	any other m as are assum f 405 psi. irder(s) for tri	uss to trus	IF No.2 crushing									3	AOFESSIONA March	TA ERED LINGT

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	P17	Flat	6	1	R81482265 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:54 ID:Z4Y1U7xLhrK5NAv5djc9lKzZ1ql-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?ff

M18AHS 3x10 II

M18AHS 3x10 🛛

M18AHS 3x10 II

1-10-8

Scale = 1:27.4

-

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 15.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC2018/TPI2014	CSI TC BC WB Matrix-R	0.41 0.20 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 3-4 3-4 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES M18AHS Weight: 9 lb	GRIP 145/140 FT = 10%
BCDL LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=87m II; Exp B; I and C-C C exposed ; members a Lumber DU 2) Provide ac 3) This truss chord live	2x4 DF No.2 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural wood si 1-10-8 oc purlins, Rigid ceiling direc bracing. (size) 3= Mec Max Uplift 3=-275 Max Grav 3=669 (lb) - Maximum Co Tension 1-4=-643/422, 1-2 3-4=-134/117 CE 7-16; Vult=110m nph; TCDL=4.2psf; E Enclosed; MWFRS (Corner (3) zone; can end vertical left and and forces & MWFR OL=1.60 plate grip D dequate drainage to has been designed load nonconcurrent	Code heathing directly applie except end verticals. ly applied or 10-0-0 oc hanical, 4= Mechanical C 35) (LC 32), 4=-275 (LC 29 LC 19), 4=659 (LC 1) mpression/Maximum =-104/99, 2-3=-643/47 bh (3-second gust) CDL=6.0psf; h=25ft; C envelope) exterior zon- ilever left and right right exposed; C-C for S for reactions shown; OL=1.60 prevent water ponding for a 10.0 psf bottom with any other live loac	BC2018/TPI2014 8) This truss Internation referenced 9) This truss plf. Lumbe truss to re to 1-10-8 f LOAD CASE(: 1) Dead + F I Plate Inc Uniform I 9) Vert: 1 3 Cat. e	Matrix-R is designed in accor al Building Code se I standard ANSI/TPI has been designed r DOL=(1.33) Plate sist drag loads along or 100.0 plf. S) Standard toof Live (balanced) rease=1.15 .oads (lb/ft) -2=-812, 3-4=-20	rdance w ction 23(1. for a tota grip DOL g bottom : Lumber	ith the 2018 6.1 and I drag load of =(1.33) Con chord from 0- Increase=1.1	100 nect -0-0				Weight: 9 lb	G 2H40
 4) * This trus: on the bott 3-06-00 ta chord and 5) All bearing capacity of 6) Refer to gi 7) Provide m bearing pla joint 4 and 	s has been designe tom chord in all area Il by 2-00-00 wide w any other members is are assumed to b f 405 psi. irder(s) for truss to ti echanical connectio ate capable of withs I 275 lb uplift at joint	If for a live load of 20.0 s where a rectangle Ill fit between the botto e HF No.2 crushing uss connections. n (by others) of truss to anding 275 lb uplift at 3.	psf m								THOMESSIONA	74 EEEED INGT

March 26,2024

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	P18	Flat	2	1	R81482266 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:54 ID: PpyZUV1 whu9 yhDijyn7aVvzZ1h8-RfC? PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff

March 26,2024

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

3x4 u 3x4 u

1-5-4

Scale = 1:22.7

Loading (psr) Spacing 2-0-0 [CSI DEFL In (IOC) I/defi L/d PLATES	GRIP
TCLL (roof) 25.0 Plate Grip DOL 1.15 TC 0.24 Vert(LL) 0.00 3-4 >999 240 MT20	185/148
TCDL 15.0 Lumber DOL 1.15 BC 0.16 Vert(CT) 0.00 3-4 >999 180	
BCLL 0.0* Rep Stress Incr NO WB 0.00 Horz(CT) 0.00 3 n/a n/a	FT 4004
BCDL 10.0 Code IBC2018/1PI2014 Matrix-R Weight: 7 lb	FI = 10%
LUMBER 100 C 1000 2x4 HF No.2 100 C 1000 1000 1000 1000 1000 1000 100	ING ZHIAO WASTING 4074 STERED INST NAL ENGINE

Job	Truss	Truss Type	Qty	Ply	MKM LEGACY EAST TOWN CROSSING BLD G
3907862	P19	Flat	10	1	R81482267 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 25 09:36:54 ID:g1dYI3_yWUIw5wAW57WPx4zZ?uH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

M18AHS 3x10 II

M18AHS 3x10 II

M18AHS 3x10 II

Scale = 1:28.8

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.29	Vert(LL)	0.00	3-4	>999	240	M18AHS	145/140
TCDL	15.0	Lumber DOL	1.15	BC	0.24	Vert(CT)	0.00	3-4	>999	180		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IBC2018/TPI2014	Matrix-R							Weight: 9 lb	FT = 10%
LUMBER			8) This truss	is designed in acco	ordance w	ith the 2018			-			
TOP CHORD	2x4 HF No.2		Internation	nal Building Code s	ection 230	06.1 and						
BOT CHORD	2x4 HF No.2		reference	d standard ANSI/TF	기 1.							
WEBS	2x4 HF No.2		This truss	has been designed	d for a tota	al drag load of	100					
BRACING			plf. Lumbe	er DOL=(1.33) Plate	e grip DOL	.=(1.33) Con	nect					
TOP CHORD	Structural wood she	athing directly applie	d or truss to re	sist drag loads alor	ng bottom	chord from 0-	-0-0					
	1-10-6 oc purlins. e	xcept end verticals.	to 1-10-6	for 100.0 plf.								
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	; LOAD CASE(S) Standard								
REACTIONS	(size) 3= Mecha	anical. 4= Mechanica	1									
	Max Horiz 4=59 (LC	11)										
	Max Uplift 3=-290 (L	.C 32), 4=-290 (LC 2)	9)									
	Max Grav 3=310 (LC	C 33), 4=310 (LC 36))									
FORCES	(lb) - Maximum Com	pression/Maximum										
		07/06 2 2 447/202										
POT CHORD	1-4=-185/152, 1-2=-	87/80, 2-3=-147/203										
BOTCHORD	3-4=-133/110											
NOTES	0= = 40 \ 4 4 4 4	(0 1)										
1) Wind: AS	CE 7-16; Vult=110mph	(3-second gust)	N =4									
Vasd=87r	The second MWERS (or	DL=6.0pst; n=25π; C	Jat.									
II, EXP D,	Corper (3) zone: cantile	wer left and right	e									
exposed .	end vertical left and rid	aht exposed C-C for										
members	and forces & MWFRS	for reactions shown:										
Lumber D	OL=1.60 plate grip DO	0L=1.60										
2) Provide a	dequate drainage to pr	event water ponding									OMIN	Gz
3) This truss	has been designed for	r a 10.0 psf bottom									TAUM	- LHA
chord live	load nonconcurrent wi	th any other live load	ds.								T F WA	SHID
4) * This trus	ss has been designed f	or a live load of 20.0	psf							-	Re Day	
on the bo	ttom chord in all areas	where a rectangle								-	12 A	2 O) 🕨
3-06-00 tall by 2-00-00 wide will fit between the bottom									-	2		
chord and any other members.												
5) All bearings are assumed to be HF No.2 crushing											A AN	
capacity o	ot 405 psi.										2 540	TA ISA
 b) Refer to g 	proer(s) for truss to trus	ss connections.									TO PA 340	The last
 Provide m 	lete enable of with the	(by others) of truss to	J							-	PR UIST	English
bearing p	ale capable of withstar	nuing 290 ib uplift at									SIONA	LEN
joint 4 and	a 290 ib upilit at joint 3.										-OIVF	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

-----March 26,2024

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- 3. Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other.
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.