

PRCTI20241741

Centris Data Center South Utility Yard Switchgear Building 1023 39th Avenue South East Puyallup, WA 98374

Structural Calculations

Project Number 24201.5 11/08/2024

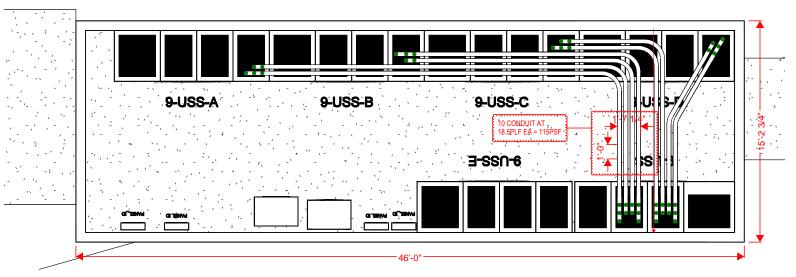
Vertical Design

BSE Brienen Structural Engineers, P.S.

Building Weights

-

-Roof


Metal Roofing Wood Sheathing Metal Stud Framing @ 24"oc Insulation Conduit Misc. Total Dead Load	1.5 psf 2.2 psf 3.8 psf 2.5 psf 12.7 psf <u>1.3 psf</u> 24 psf
Total Live Load	20 psf
Total Snow Load	25 psf
Exterior Walls	
Panel Siding Wood Sheathing Metal Stud Framing Insulation Gyp Board Total Dead Load	2.4 psf 1.5 psf 2.0 psf 2.2 psf <u>2.8 psf</u> 10.9 psf USE 11psf
Lateral Live Load	5 psf
Wind Load	16 psf

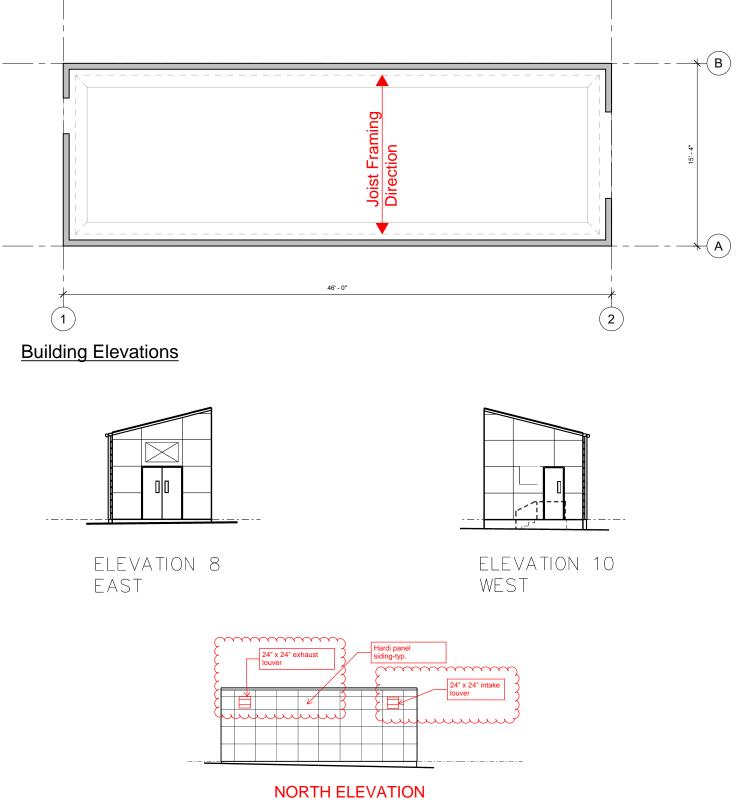
Conduit Weight Calculation

Conduit Plan

20 CONDUTIS OVERHEAD, EACH CONDUIT - 18.5 LBS PER FOOT

Total Conduit Length

- grouped into four groups of 5 L = (5) * (25'-8" + 10'-2") + (5) * (16'-8" + 11'-6") + (5) * (7'-6" + 11'-10") + (5) * (6'-10" + 6'-5") = 483ft


Conduit Weight

w_conduit = 18.5plf w_total = (w_conduit) * (L) = (18.5plf) * (483ft) = 8936 lbs

BSE Brienen Structural Engineers, P.S.

Building Plan

Project Name: Centeris Model: C&C Wind Code: ASCE 7-16

Date: 10/17/2024 Simpson Strong-Tie® CFS Designer™ 5.0.1.0

ASCE7-16 Figure 30.3-5B

WIND LOAD - ASCE 7-16

98 mph, Exposure B, Mean Roof Height = 13.9 ft

K_{zt} at Base = 1

K_d = 0.85 , Roof Slope 14.04 degrees (3:12)

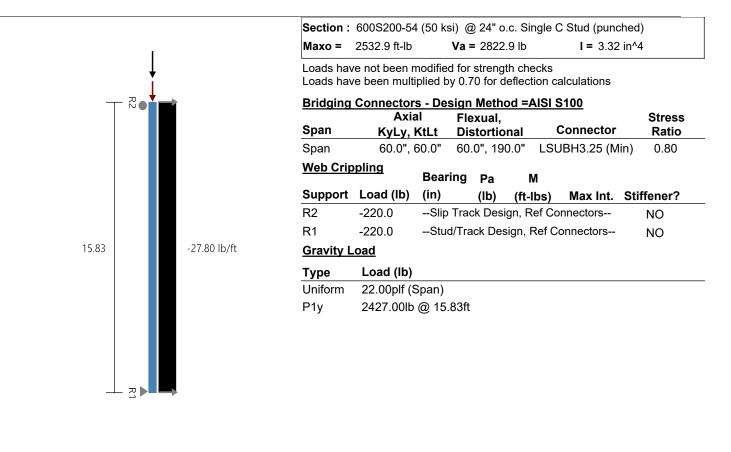
Enclosed Building, GC_{pi} = 0.18

(Wind Loads Shown are for Alternate Basic Load Combinations Using Allowable Stress Design and are Multiplied by a Factor of 0.6 to convert to ASD)

WALL COMPONENTS AND CLADDING per ASCE7-16 Figure 30.3-1

Tributary		<u>GCp</u>	by Zone					
Area (ft2)	Zone 4	4 (+/-)	Ż	Zone 5 (+/-)			
10 ft ²	1.00/-	-1.10		1.00/-1.40				
50 ft ²	50 ft ² 0.88/-0.98			0.88/-1.15				
500 ft ²	0.70/-0.80		0.70/-0.80					
Height					Tributary	Wind Press	sures (psf) by Z	<u>Zone ()</u>
z (ft)	Kz	K _{zt}	K _e	q _z (psf)	Area (ft2)	Windward (4,5)	Leeward (4)	Leeward (5)
0 - 13.9	0.70	1.00	1.00	14.64	10	10.4	-11.2	-13.9
					50	9.6	-10.2	-11.7
					500	9.6	-9.6	-9.6

ROOF COMPONENTS AND CLADDING - MONOSLOPE ROOF


K_h = 0.70; K_{zt} at roof = 1.00; K_e = 1.00; q_h = 14.64 psf

	Po	ositive Pre	ssure, p (p		Negative	Pressure	ıre, p (psf)	
	A=1	0	A=	100	I	A=10	A=100	
Zone	GC_{p}	р	GC_p	р	GC_p	р	GC_{p}	р
1	0.40	9.60	0.30	9.60	-1.30	-13.00	-1.10	-11.24
2	0.40	9.60	0.30	9.60	-1.60	-15.64	-1.20	-12.12
3	0.40	9.60	0.30	9.60	-2.90	-27.06	-2.00	-19.15
2'	0.40	9.60	0.30	9.60	0.00	0.00	0.00	0.00
3'	0.40	9.60	0.30	9.60	0.00	0.00	0.00	0.00

Project Name: Centeris Model: 15'-10" Bearing Wall Code: 2012 NASPEC [AISI S100-2012]

Simpson Strong-Tie® CFS Designer™ 5.0.1.0

		Cod	le Check	Required	Allowed	Interaction	Notes		
Span		Max.	Axial, lbs	2775.3(c)	5499.4(c)	50%	КФ=0.00 lb-in/in Max	: KL/r = 82	
	Max. Shear, Ibs			220.0	1947.4	11%	Shear (Punched)		
	Max. Momer	nt (MaFy, Ma-d	ist), ft-lbs	870.8	2281.9	38%	Ma-dist (control),КФ=0.00 lb-in/in		
Moment Stability, ft-Ibs Shear/Momen				870.8	2332.3	37%			
				0.34	1.00	34%	Shear 0.0, Moment 870.8		
	Axial/Moment			0.94	1.00	94%	Axial 2608.4(c), Moment 869.3		
	Deflection Span, in		Span, in	0.281	meets L/677				
Support	Support Rx(Ib) Ry(Ib) Simpson Strong-Tie Connector					Connector Interaction	Anchor Interaction		
R2	-220.0	0.0	600T2	50-54 (50)	& Anchorage Desi	gned by Engine	er 91.77 %	NA	
R1	-220.0	2775.3	600T1	600T125-54 (50) & Anchorage Designed by Engineer				NA	
* Referen	ce catalog fo	or connector an	d anchor r	equirement	notes as well as s	crew placemen	t requirements		

Project:

Brienen **S**tructural **E**ngineers, P.S.


Conduit Loading on Roof Rafters 15-4 DL = 24pf - 13 pf = 1/pst Conduit = 18.5pl Lergth = 15.33ft Conduit Longth = 15.33ft - (1.5'+1.5') = 12.33ftConduit wit = (10) - (18.5plf) · (12.33 P4) = 2281 # $= (2281 \pm) / (15.33 \pm) / (274) = 74.4 \mu f$ Total DL = 1/pst +75pst = 86 pst

Check DL + SL: RXN = (11psf + 25psf) * (2ft * 15.333/2) = 552#

...adding conduit RXN = 552# + (2281# / 2) = 1692#

www.bse-ps.com

Section :	(2) 1000S250-68	(50 ksi) @ 24" o.c. Back-T	o-Back C Stud (punched)	
Maxo =	13814.3(ft-lb)	Va = 6690.8	I = 31.481	

Bracing, Interconnection and Distortional Buckling Parameters

	Span	Overhang
Flexural Bracing	96 in	None
Axial Bracing	NA	None
Distortional Buckling, K-phi	0 lb-in/in	0 lb-in/in
Distortional Buckling Bracing, Lm	None	None
Interconnection Req'mt	L/6 = 31.6	

See AISI S100 D1.1 for Add'nl Requirements

Load Cases

	Span (psf)	Overhang (psf)
Dead Load	86	NA
Live Load	20	NA
Snow Load	25	NA
Inward Wind Load	9.6	NA
Outward Wind Load	-27.1	NA

Load Combinations

LC Number	Dead	Live	Snow	Inward Wind	Outward Wind
1	1	1	0	0	0
2	1	0	1	0	0

Project Name: Centeris Model: Single 15.33ft Joist Roof Framing w/ Conduit Code: 2012 NASPEC [AISI S100-2012]

Simpson Strong-Tie® CFS Designer™ 5.0.1.0

3	1	0	0	0.6	0
4	1	0.75	0	0.45	0
5	1	0	0.75	0.45	0
6	0.6	0	0	0	0.6

Reactions

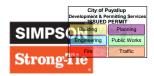
		Vei	rtical			Hori		
	Max Rxn (lb)	Load Comb.	Min Rxn (lb)	Load Comb.	Max Rxn (Ib)	Load Comb.	Min Rxn (lb)	Load Comb.
R1	1742.20	2	581.69	6	44.15	3	-124.63	6
R2	1742.20	2	550.53	6	0.00	1	0.00	1
	assured and D							

Rafter Flexural and Deflection

Mmax (ft-lb)	Ma (ft-lb)	Mmax/ Ma	Load Comb.	Span Defl	Load Comb.	Overhang Defl	Load Comb.	
6677	11355	0.59	2	L/587	2	L/587	2	

Rafter Bending and Web Crippling

Support	Load (Ib)	Load Comb.	Bearing (in)	Pa (Ib)	Pn (lb)	Max Intr.	Load Comb.	Stiffeners Req'd
R1	1690.2	2	6.00	7126.8	14253.6	0.10	2	NO
 R2	1690.2	<u>~~~</u>	6.00	7126.8	14253.6	0.10	2	NO


hunner **Rafter Bending and Shear** Intr. Vmax Load Va Intr. Load Load Support V/Va M/Ma Stiffen Unstiffen (lb) Comb. Factor Comb. Comb. R1 1690 2 1.000 0.25 0.00 0.25 2 N/A N/A R2 1690 2 1.000 0.25 0.00 2 N/A 0.25 N/A

luuuuuuuuuuuuuuk

USE SIMPSON S/DHUTF DRYWALL HANGER TO SUPPORT EA RAFTER @ 1-HR RATED WALL

Date: 10/17/2024

S/DHUTF Drywall Hangers

21/2"

S/DHUTF US Patent: 9,394,680

W

The S/DHUTF top-mount hanger is designed to carry joist loads to a CFS stud wall through two layers of %" gypsum board (drywall). This hanger installs after the drywall is in place and comes in sizes that accommodate most typical joists used in multi-family and commercial construction.

Material: 97 mil (12 ga.)

Finish: Galvanized (G90)

Installation:

- Use all specified fasteners; see General Notes
- · Hanger to be framed in-line with vertical wall stud
- Drywall is installed first
- · Wall top track must be restrained to counteract load eccentricity from hanger

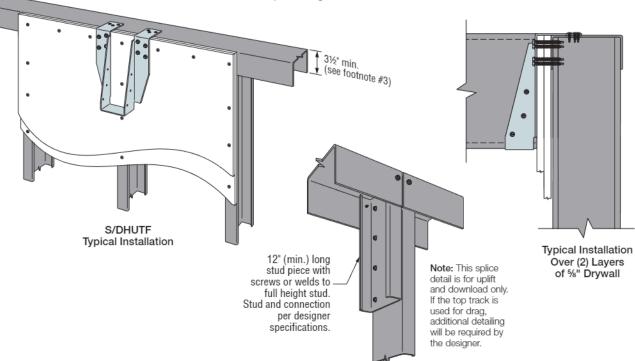
Codes: See p. 13 for Code Reference Key Chart

Model	Dimensi	ions (in.)
No.	w	н
S/DHU1.68/8TF		8
S/DHU1.68/10TF	1 11/16	10
S/DHU1.68/12TF		12
S/DHU2.1/8TF		8
S/DHU2.1/10TF	21/8	10
S/DHU2.1/12TF		12
S/DHU2.56/8TF		8
S/DHU2.56/10TF	2%6	10
S/DHU2.56/12TF		12

S/DHUTF Allowable Loads (lb.)

0/011011	7 110 110		uo (io.)			
Model		Fasteners ⁶		Allowable	Code	
Wodel	Тор	Face	Joist	Uplift	Down	Ref.
S/DHUTF	(6) #10	(8) #14 x 2"	(3) #10	1,230	1,700	1 —
						/

1. Designer shall ensure that the joist member adequately transfers load to the hanger.


2. Tabulated loads assume (2x) 5%" Type X drywall attached per IBC.

 Wall studs designed per designer specifications. At a minimum, the assembly must consist of 600T350-68, Gr. 50 ksi top track and 600S162-43, Gr. 33 ksi wall studs spaced at a maximum of 24" o.c.

4. Tabulated loads are based on testing with full bearing of 3 ¹⁵/₁₆" hanger top flange. The minimum joist gauge is 54 mil (16 ga.).

5. S/DHUTF hanger can be installed ³/^{*} max. from the center of the vertical stud per the in-line framing specifications of the AISI General Provisions without load adjustment.

See the current Fastening Systems catalog at strongtie.com for more information on Simpson Strong-Tie fasteners.

Joist Framing Connectors

Project Name: Centeris Model: East Door+Conduit Opening Code: 2012 NASPEC [AISI S100-2012]

Page 6 of 12 Date: 10/21/2024

Simpson Strong-Tie® CFS Designer™ 5.0.1.0

									Design Loads	
							个		Wind Selection :	C&C Wind, Leeward (5)
R2								0 ft	Trib. Area : Span :	Length ^{2/3}
							Ť		Wall Lateral Pressure :	-11.3 psf
								3 ft	Parapet Lateral Pressure :	
							*		RO Lateral Pressure :	Head/Sill Only
			Late	eral					Lateral element force multiplie	er
			1					11 F f4	Strength :	1.0
								11.5 ft	Deflection :	0.7
									Header: Strong	back, Lateral Track
			Ċ)			+		Gravity Load at Header:	11 psf
									Additional Pt. Load ea. Stud :	256 lbs
								0 ft		
R1				/						
					\checkmark					
					\uparrow					
			6.0 ft	~	24	4 in 🎽				
Lateral	Pressure	to: Head	l/Sill Only	~ ()						

Brace Settings

Component(s)	Members(s)	Flexural Bracing	Axial KyLy	Axial KtLt	Distortional K-Phi(lb-in/in)	Distortional Lm	Interconnection Spacing
Jamb Studs	600S200-54(50), Single	Full	48 in	48 in	0	None	N/A
Vertical Header	600S200-54(50), Single	Full	N/A	N/A	0	None	N/A
Lateral Header	600T125-33(33), Single	Full	N/A	N/A	0	None	N/A

Analysis Results

Component(s)	Members(s)	Axial Load (Ib)	Max KL/r	Max. Moment (ft-lb)		Bottom Reaction (Ib)	Top or End Reaction (lb)
Jamb Studs	600S200-54(50), Single	769.0	75	779.7	276.9	-327.7	-276.9
Vertical Header	600S200-54(50), Single	N/A	N/A	724.5	483.0	N/A	483.0
Lateral Header	600T125-33(33), Single	N/A	N/A	368.7	245.8	N/A	245.8
Design Results							

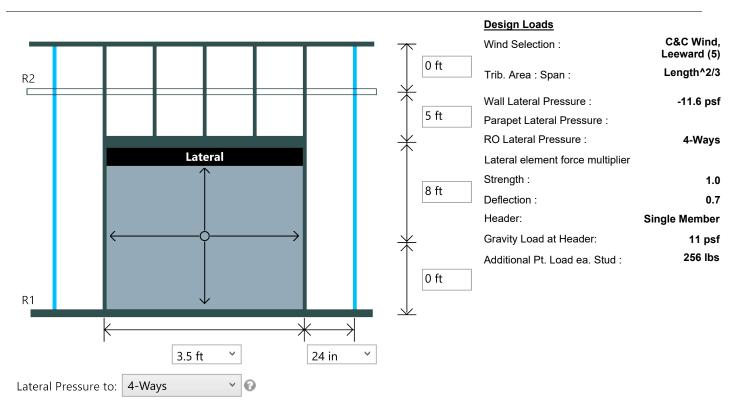
	Def	lection	A + M	V + M			
Members(s)	Span	Parapet	Interaction	Interaction	Web Stiffners	Design OK	
600S200-54(50), Single	L/895	L/0	0.46	0.33	NA	Yes	
600S200-54(50), Single	L/1502	NA	0.32	0.29	No	Yes	
600T125-33(33), Single	L/1597	NA	0.75	0.75	R1, R2	Yes	
	600S200-54(50), Single 600S200-54(50), Single	Members(s) Span 600S200-54(50), Single L/895 600S200-54(50), Single L/1502	600S200-54(50), Single L/895 L/0 600S200-54(50), Single L/1502 NA	Members(s) Span Parapet Interaction 600S200-54(50), Single L/895 L/0 0.46 600S200-54(50), Single L/1502 NA 0.32	Members(s) Span Parapet Interaction Interaction 600S200-54(50), Single L/895 L/0 0.46 0.33 600S200-54(50), Single L/1502 NA 0.32 0.29	Members(s) Span Parapet Interaction Interaction Web Stiffners 600S200-54(50), Single L/895 L/0 0.46 0.33 NA 600S200-54(50), Single L/1502 NA 0.32 0.29 No	

Simpson Strong-Tie® Connectors @ Jambs

Support	Rx(lb)	Ry(lb)	Simpson Strong-Tie® Connector	Connector Interaction	Anchor Interaction
R2	-276.85	0.00	600T250-68 (50) & Anchorage Designed by Engineer	87.10 %	NA
R1	-327.70	769.00	600T125-54 (50) & (2) .157", 1" embed SST PDPA/PDPAT to 4000 nw concrete	70.44 %	52.85 %

* Reference catalog for connector and anchor requirement notes as well as screw placements requirement

Simpson Strong-Tie® CFS Designer™ 5.0.1.0


Simpson Strong-Tie® Wall Stud Bridging Connectors @ Jambs

Span/Parapet	Bracing Length(in.)	Design Number of Braces	Pn(lb.)	LSUBH (Min)¹	LSUBH (Max)¹	SUBH (Min)¹	SUBH (Max)¹	MSUBH (Min)¹	MSUBH (Max) ¹
Span	Varies	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Notes:									
1) Values in par	entheses are st	ress ratios.							
2) Bridging con	nectors are not	designed for	back-bac	k, box, or bui	ilt-up sections				
3) Reference <u>w</u>	ww.strongtie.co	<u>m</u> for latest l	oad data,	important inf	ormation, and	l general note	s.		
4) CFS Designer will not select bridging connectors unless all flexural and axial bracing settings are the same.									
5) If the bracing	length is larger	than the spa	in length, l	bridging conr	nectors are no	t desianed.			

Project Name: Centeris Model: West Door Opening Code: 2012 NASPEC [AISI S100-2012]

Page 8 of 12 Date: 10/21/2024

Simpson Strong-Tie® CFS Designer™ 5.0.1.0

Brace Settings

Component(s)	Members(s)	Flexural Bracing	Axial KyLy	Axial KtLt	Distortional K-Phi(lb-in/in)	Distortional Lm	Interconnection Spacing
Jamb Studs	600S200-54(50), Single	Full	48 in	48 in	0	None	N/A
Vertical Header	600S200-54(50), Y-Y Axis	Full	N/A	N/A	0	None	N/A
Lateral Header	600S200-54(50), Single	Full	N/A	N/A	0	None	N/A

Analysis Results

Component(s)	Members(s)	Axial Load (lb)	Max KL/r	Max. Moment (ft-lb)		Bottom Reaction (lb)	Top or End Reaction (lb)
Jamb Studs	600S200-54(50), Single	320.3	67	663.6	189.6	-207.4	-156.6
Vertical Header	600S200-54(50), Y-Y Axis	N/A	N/A	280.2	320.3	N/A	320.3
Lateral Header	600S200-54(50), Single	N/A	N/A	65.1	68.5	N/A	68.5
Design Results							

		Deflection		A + M	V + M		
Component(s)	Members(s)	Span	Parapet	Interaction	Interaction	Web Stiffners	Design OK
Jamb Studs	600S200-54(50), Single	L/1102	L/0	0.338	0.26	NA	Yes
Vertical Header	600S200-54(50), Y-Y Axis	L/488	NA	0.56	0.56	No	Yes
Lateral Header	600S200-54(50), Single	L/41439	NA	0.03	0.04	No	Yes
Combined Header				0.59	0		

Simpson Strong-Tie® Connectors @ Jambs

Support	Rx(lb)	Ry(lb)	Simpson Strong-Tie® Connector	Connector Interaction	Anchor Interaction
R2	-156.60	0.00	600T250-54 (50) & Anchorage Designed by Engineer	65.31 %	NA
R1	-207.35	551.25	600T125-54 (50) & (1) .157", 1" embed SST PDPA/PDPAT to 2500 nw concrete	44.57 %	72.75 %

Simpson Strong-Tie® CFS Designer™ 5.0.1.0

* Reference catalog for connector and anchor requirement notes as well as screw placements requirement

Simpson Strong-Tie® Wall Stud Bridging Connectors @ Jambs

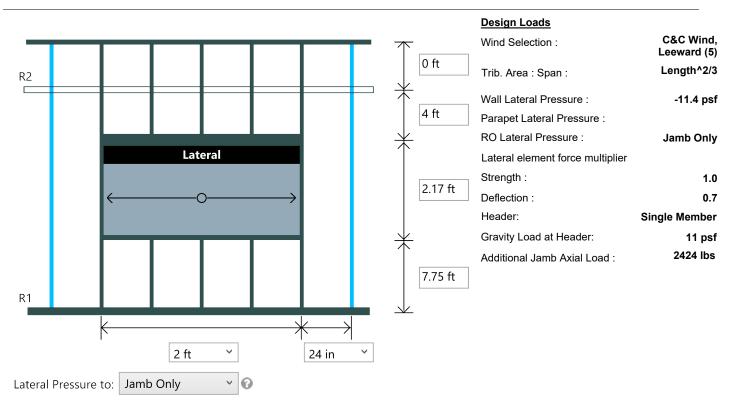
Span/Parapet	Bracing Length(in.)	Design Number of Braces	Pn(lb.)	LSUBH (Min)¹	LSUBH (Max) ¹	SUBH (Min)¹	SUBH (Max)¹	MSUBH (Min)¹	MSUBH (Max) ¹
Span	Varies	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Notes:

1) Values in parentheses are stress ratios.

2) Bridging connectors are not designed for back-back, box, or built-up sections.

3) Reference <u>www.strongtie.com</u> for latest load data, important information, and general notes.


4) CFS Designer will not select bridging connectors unless all flexural and axial bracing settings are the same.

5) If the bracing length is larger than the span length, bridging connectors are not designed.

City of Puyallup Development & Permitting Services (SSUED PERMIT Building Planning Engineering Public Works Fire Traffic

Page 10 of 12 Date: 10/21/2024

Simpson Strong-Tie® CFS Designer™ 5.0.1.0

Brace Settings

Component(s)	Members(s)	Flexural Bracing	Axial KyLy	Axial KtLt	Distortional K-Phi(lb-in/in)	Distortional Lm	Interconnection Spacing
Jamb Studs	600S200-54(50), Single	Full	60 in	60 in	0	None	N/A
Vertical Header	600S200-54(50), Y-Y Axis	Full	N/A	N/A	0	None	N/A
Lateral Header	600S200-54(50), Single	Full	N/A	N/A	0	None	N/A
Sill	600T125-54(50), Single	Full	N/A	N/A	0	None	N/A

Analysis Results

Component(s)	Members(s)	Axial Load (lb)	Max KL/r	Max. Moment (ft-lb)		Bottom Reaction (Ib)	Top or End Reaction (lb)
Jamb Studs	600S200-54(50), Single	2730.2	82	545.1	135.9	-114.5	-135.9
Vertical Header	600S200-54(50), Y-Y Axis	N/A	N/A	22.0	44.0	N/A	44.0
Lateral Header	600S200-54(50), Single	N/A	N/A	11.4	22.8	N/A	22.8
Sill	600T125-54(50), Single	N/A	N/A	22.1	44.2	N/A	44.2

Design Results							
		Defle	ection	A + M	V + M		
Component(s)	Members(s)	Span	Parapet	Interaction	Interaction	Web Stiffners	Design OK
Jamb Studs	600S200-54(50), Single	L/1320	L/0	0.74	0.22	NA	Yes
Vertical Header	600S200-54(50), Y-Y Axis	L/10877	NA	0.04	0.04	No	Yes
Lateral Header	600S200-54(50), Single	L/409027	NA	0.00	0.01	No	Yes
Combined Header				0.05	0		
Sill	600T125-54(50), Single	L/142519	NA	0.01	0.02	No	Yes

Simpson Strong-Tie® Connectors @ Jambs

Support	Rx(lb)	Ry(lb)	Simpson Strong-Tie® Connector	Connector Interaction	Anchor Interaction
R2	-135.89	0.00	600T250-54 (50) & Anchorage Designed by Engineer	56.67 %	NA

SIMPSON STRONG-TIE COMPANY INC.

Project Name: Centeris Model: Conduit Opening Code: 2012 NASPEC [AISI S100-2012]

Page 11 of 12 Date: 10/21/2024

Simpson Strong-Tie® CFS Designer™ 5.0.1.0

R1 -114.51 2730.24 600T125-54 (50) & Anchorage Designed by Engineer 12.31 % NA

* Reference catalog for connector and anchor requirement notes as well as screw placements requirement

Simpson Strong-Tie® Wall Stud Bridging Connectors @ Jambs

Span/Parapet	Bracing Length(in.)	Design Number of Braces	Pn(lb.)	LSUBH (Min)¹	LSUBH (Max)¹	SUBH (Min) ¹	SUBH (Max)¹	MSUBH (Min) ¹	MSUBH (Max) ¹
Span	Varies	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Notes:

1) Values in parentheses are stress ratios.

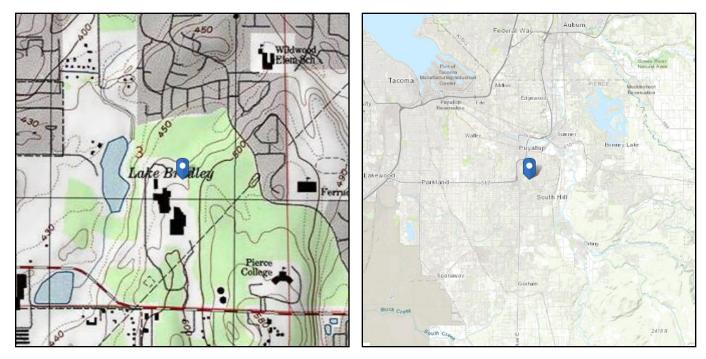
2) Bridging connectors are not designed for back-back, box, or built-up sections.

3) Reference <u>www.strongtie.com</u> for latest load data, important information, and general notes.

4) CFS Designer will not select bridging connectors unless all flexural and axial bracing settings are the same.

5) If the bracing length is larger than the span length, bridging connectors are not designed.

Lateral Design


Address: 1023 39th Ave SE Puyallup, Washington 98374

ASCE Hazards Report

Standard: ASCE/SEI 7-16 Risk Category: II

Soil Class:

II D - Default (see Section 11.4.3) Latitude: 47.160853 Longitude: -122.279318 Elevation: 482.88472036372787 ft (NAVD 88)

Wind

Results:

Wind Speed	98 Vmph
10-year MRI	67 Vmph
25-year MRI	73 Vmph
50-year MRI	78 Vmph
100-year MRI	83 Vmph

Data Source:	ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2
Date Accessed:	Mon Feb 05 2024

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is not in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2.

D - Default (see	Section 11.4.3)	
1.257	S _{D1} :	N/A
0.434	T _L :	6
1.2	PGA :	0.5
N/A	PGA M:	0.6
1.509	F _{PGA} :	1.2
N/A	l _e :	1
1.006	C _v :	1.351
s may be required. S	ee ASCE/SEI 7-16 Se	ection 11.4.8.
	1.257 0.434 1.2 N/A 1.509 N/A 1.006	0.434 T _L : 1.2 PGA : N/A PGA _M : 1.509 F _{PGA} : N/A I _e :

Data Accessed:Mon Feb 05 2024

 Date Source:
 USGS Seismic Design Maps

The ASCE Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE Hazard Tool.

= 1.00

MecaWind v2481

Developed by Meca Enterprises Inc., <u>www.mecaenterprises.com</u>, Copyright © 2024

File Location: G:\2024\24201.5 Centeris Switchgear Bldg 2\Calcs\Centris Wind.wnd

_		-
Con	ors	
Gen	erc	

h

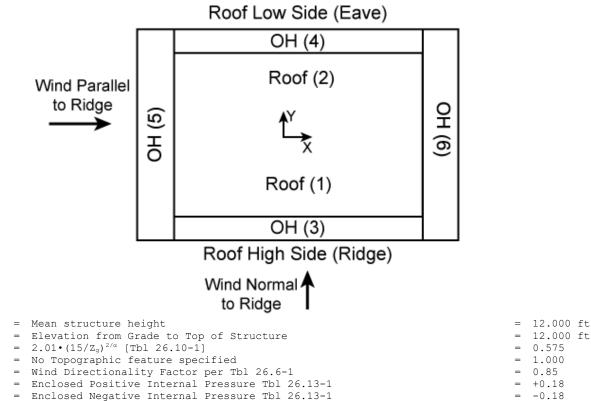
 $K_{\rm h}$ $K_{\rm zt}$

K_d +GC_{pi}

LF

 $-\mathrm{GC}_{\mathrm{pi}}$

 $h_{\tt grade}$


Generar.			
Wind Load Standard	= ASCE 7-16	Basic Wind Speed	= 98.0 mph
Exposure Classification	= B	Risk Category	= II
Structure Type	= Building	Design Basis for Wind Pressures	= LRFD
MWFRS Analysis Method	= Ch 27 Pt 1	C&C Analysis Method	= Ch 30 Pt 1
Dynamic Type of Structure	= Rigid	Show Advanced Options	= True
Reset Advanced Options to Default	= Defaults	Simple Diaphragm Building	= False
Values			
Show Base Reactions in Output	= Summary	Altitude above Sea Level	= 482.900 ft
Base Elevation Of Structure	= 0.000 ft	MWFRS Pressure Elevations	= Mean Ht
Topographic Effects	= None	Override Directionality Factor K _d	= False
Override the Gust Factor G	= False	Override Minimum Pressure	= False
Building:			

:12
55 ft
30 ft
9
9

Exposure Constants [Tbl 26.11-1]:

α = 3-s Gust-speed exponent	=	7.000	Z_g = Nominal Ht of Boundary Layer = 1200.000 ft	
â = Reciprocal of α	=	0.143	b = 3 sec gust speed factor = 0.840	
α_m = Mean hourly Wind-Speed Exponent	=	0.250	b_m = Mean hourly Windspeed Exponent = 0.450	
<pre>c = Turbulence Intensity Factor</pre>	=	0.300	ε = Integral Length Scale Exponent = 0.3333	

Main Wind Force Resisting System (MWFRS) Wind Calculations per Ch 27 Pt1

= Load Factor based upon STRENGTH Design

Ke	= Ground Elev Factor [Tbl 26.9-1]	= 0.983
q_{h}	$= 0.00256 \cdot K_{h} \cdot K_{zt} \cdot K_{d} \cdot K_{e} \cdot V^{2} \star LF [Eq 26.10-1]$	= 11.80 psf
RA	= Roof Area	= 714.91 ft ²
$q_{\rm h}$	$= 0.00256 \cdot K_{h} \cdot K_{zt} \cdot K_{d} \cdot K_{e} \cdot V^{2} \star LF [Eq 26.10-1]$	= 11.80 psf
q _{in}	= Negative Internal Pressure: qh•LF	= 11.80 psf
q_ip	= Positive Internal Pressure: qh•LF	= 11.80 psf
MWFRS	Wind Loads [Normal to Ridge]	
h	= Mean Roof Height Of Building	= 12.000 ft
RHt	= Ridge Height Of Roof	= 14.555 ft
В	= Horizontal Dimension Of Building Normal To Wind Direction	= 46.000 ft
L	= Horizontal Dimension Of building Parallel To Wind Direction	= 15.330 ft

L	= Horizontal Dimension Of building Parallel To Wind Direction	= 15.330 ft
L/B	= Ratio Of L/B used For Cp determination	= 0.333
h/L	= Ratio Of h/L used For Cp determination	= 0.783
Slope	= Slope Of Roof	= 9.46 Deg
Cust Es	aton Coloulation for Wind. [Normal to Bidgel	
Gust Fa	ctor Calculation for Wind: [Normal to Ridge]	
Gust F	actor Category I Rigid Structures - Simplified Method	
G_1	= Simplified: For Rigid Structures can use 0.85	= 0.85
Gust F	actor Category II Rigid Structures - Complete Analysis	
Zm	= Equiv Struc Height: $Max(0.6 \cdot h, Z_{min})$	= 30.000 ft
Izm	= Turbulence Intensity: $c \cdot (33/Z_m)^{1/6}$ [Eq 26.11-1]	= 0.305
L_{zm}	= Turbulence Integral Length Scale: $\ell \cdot (Z_m/33)^{\epsilon}$ [Eq 26.11-9]	= 309.993 ft

		Tarbaronoo Incograf Dongon Doaro, ((Lm, 00) [Eq 10,11)]		000.000 10
В	=	Building Width Width Normal to Wind Direction	=	46.000 ft
Q	=	$[1/(1+0.63 \cdot [(B+h)/L_{zm}]^{0.63})]^{0.5}$ [Eq 26.11-8]	=	0.906
G ₂	=	Detailed: $0.925 \cdot [(1+1.7 \cdot g_q \cdot I_{zm} \cdot Q) / (1+1.7 \cdot g_v \cdot I_{zm})]$ [Eq 26.11-6]	=	0.869
Gust Fac	toı	r Used in Analysis		
G	=	Gust Factor: Min(G ₁ , G ₂)	=	0.850
Ср _{ии}	=	Windward Wall Coefficient (All L/B Values)	=	0.800
Ср _{ым}	=	Leeward Wall Coefficient using L/B	=	-0.500
Cp _{sw}	=	Side Wall Coefficient (All L/B values)	=	-0.700

Wind Pressures [Normal to Ridge]

All wind pressures include a Load Factor (LF) of 1.0

	mii wind pressures include a load rabber (ir) of 1.0													
Elev	GC _{pi}	GC _{pi}	\mathbf{q}_{i}	Kz	K_{zt}	$\mathbf{q}_{\mathbf{z}}$	Windward	Leeward	Side	Total	Minimum			
	Windward	Leeward					Press	Press	Press	Press	Pressure*			
ft			psf			psf	psf	psf	psf	psf	psf			
14.555	+0.18	+0.18	11.80	0.575	1.000	11.80	5.90	-7.14	-9.15	13.04	16.00			
12.000	+0.18	+0.18	11.80	0.575	1.000	11.80	5.90	-7.14	-9.15	13.04	16.00			
14.555	-0.18	-0.18	11.80	0.575	1.000	11.80	10.15	-2.89	-4.90	13.04	16.00			
12.000	-0.18	-0.18	11.80	0.575	1.000	11.80	10.15	-2.89	-4.90	13.04	16.00			

	K _z GC _{pi}		2.01•(15/Z _g) ^{2/a} [Tbl 26.10-1] Enclosed Internal Pressure Tbl 26.13-1	K_{zt} q_z		No Topographic feature specified 0.00256• $K_z \bullet K_{zt} \bullet K_d \bullet K_e \bullet V^2 \star LF$ [Eq 26.10-1]
	q_{ip}	=	Positive Internal Pressure: qh•LF	q_{in}	=	Negative Internal Pressure: q _h •LF
	Side	=	$q_h \bullet G \bullet Cp_{SW} - q_{ip} \bullet (+GC_{pi})$ [Eq 27.3-1]	Leeward	=	$q_h \cdot G \cdot Cp_{LW} - q_{ip} \cdot (+GC_{pi})$ [Eq 27.3-1]
	Windward	=	$q_z \cdot G \cdot Cp_{WW} - q_{ip} \cdot (+GC_{pi})$ [Eq 27.3-1]	Total	=	Windward - Leeward
Min	imum Press	sur	e: § 27.1.5 no less than 16.00 psf	(Incl LF)	aj	pplied to Walls

• Mi • Positive Pressures Act TOWARD Surface and Negative Pressures Act AWAY from Surface

All wind	pressure	s includ	es [Normal e a Load F	actor (I	-	. 0
-					. 1	

Component	Description	Location	Start	End	GC _{pi}	C_{pMin}	C_{pMax}	$\mathbf{P}_{C_{pMin}}$	$\mathbf{P}_{C_{pMax}}$	P_{min}
			ft	ft				psf	psf	psf
Roof	Roof (0 to $h/2$)	All	0.000	6.000	+0.18	-1.007	-0.180	-12.23	-3.93	8.00
Roof	Roof $(h/2 \text{ to } h)$	All	6.000	12.000	+0.18	-0.787	-0.180	-10.02	-3.93	8.00
Roof	Roof (h to 2*h)	All	12.000	15.330	+0.18	-0.613	-0.180	-8.28	-3.93	8.00
Roof	Roof (0 to $h/2$)	All	0.000	6.000	-0.18	-1.007	-0.180	-7.98	0.32	8.00
Roof	Roof $(h/2 \text{ to } h)$	All	6.000	12.000	-0.18	-0.787	-0.180	-5.77	0.32	8.00
Roof	Roof (h to 2*h)	All	12.000	15.330	-0.18	-0.613	-0.180	-4.03	0.32	8.00

Roof Pressures based upon Ch 27 Pt1:

Component =	The	bι	ildir	ng	соп	ipone	nt	fc	r	
	pres	รรเ	ires							
Ctost -	Ctor		Diat	£.		TeT i no ni		~~1	E o	1

Location = Reference Graphic in Output for Values

= End Dist from Windward Edge

 $\begin{array}{rcl} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$

= Largest Coefficient Magnitude

 $= q_h \bullet G \bullet C_{pMax} - q_{in} \bullet GC_{pi} \quad [Eq \ 27.3 - 1]$

- The smaller uplift pressures due to C_{pMin} can become critical when wind is combined with roof live load or snow load; load combinations are given in ASCE 7 · Positive Pressures Act TOWARD Surface and Negative Pressures Act AWAY from Surface

MWFRS Wind Loads [Normal to Eave]

MWFRS Wind Loads [Normal to Eave]	
h = Mean Roof Height Of Building	= 12.000 ft
RHt = Ridge Height Of Roof	= 14.555 ft
B = Horizontal Dimension Of Building Normal To Wind Direction	= 46.000 ft
L = Horizontal Dimension Of building Parallel To Wind Direction	= 15.330 ft
L/B = Ratio Of L/B used For Cp determination	= 0.333
h/L = Ratio Of h/L used For Cp determination	= 0.783
Slope = Slope Of Roof	= 9.46 Deg
Gust Factor Calculation for Wind: [Normal to Eave]	
Gust Factor Category I Rigid Structures - Simplified Method	
G_1 = Simplified: For Rigid Structures can use 0.85	= 0.85
Gust Factor Category II Rigid Structures - Complete Analysis	
Z_m = Equiv Struc Height: Max(0.6•h, Z_{min})	= 30.000 ft
I_{zm} = Turbulence Intensity: c•(33/Z _m) ^{1/6} [Eq 26.11-1]	= 0.305
L_{zm} = Turbulence Integral Length Scale: $l \cdot (Z_m/33)^{\epsilon}$ [Eq 26.11-9]	= 309.993 ft
B = Building Width Width Normal to Wind Direction	= 46.000 ft
$Q = [1/(1+0.63 \cdot [(B+h)/L_{zm}]^{0.63})]^{0.5} [Eq 26.11-8]$	= 0.906
$G_2 = \text{Detailed: } 0.925 \cdot [(1+1.7 \cdot g_q \cdot I_{zm} \cdot Q) / (1+1.7 \cdot g_v \cdot I_{zm})] [Eq 26.11-6]$	= 0.869
Gust Factor Used in Analysis	
$G = Gust Factor: Min(G_1, G_2)$	= 0.850
Cp _{ww} = Windward Wall Coefficient (All L/B Values)	= 0.800
Cp _{LW} = Leeward Wall Coefficient using L/B	= -0.500
Cp_{sw} = Side Wall Coefficient (All L/B values)	= -0.700

Wind Pressures [Normal to Eave] - = 1 0

	All wind pressures include a Load Factor (LF) of 1.0											
Elev	GC _{pi}	GC _{pi}	\mathbf{q}_{i}	Kz	K _{zt}	q₂	Windward	Leeward	Side	Total	Minimum	
	Windward	Leeward					Press	Press	Press	Press	Pressure*	
ft			psf			psf	psf	psf	psf	psf	psf	
12.000	+0.18	+0.18	11.80	0.575	1.000	11.80	5.90	-7.14	-9.15	13.04	16.00	
12.000	-0.18	-0.18	11.80	0.575	1.000	11.80	10.15	-2.89	-4.90	13.04	16.00	

K_z	=	$2.01 \cdot (15/Z_g)^{2/\alpha}$ [Tbl 26.10-1]	K_{zt}
GC_{pi}	=	Enclosed Internal Pressure Tbl	q_z
		26.13-1	
q_{ip}	=	Positive Internal Pressure: q _h •LF	q_{in}
Side	=	$q_h \cdot G \cdot Cp_{SW} - q_{ip} \cdot (+GC_{pi})$ [Eq 27.3-1]	Leev
Windward	=	$q_z \cdot G \cdot Cp_{WW} - q_{ip} \cdot (+GC_{pi})$ [Eq 27.3-1]	Tota

= No Topographic feature specified

 $= 0.00256 \cdot K_z \cdot K_{d} \cdot K_{e} \cdot V^2 \star LF [Eq 26.10-1]$

= Negative Internal Pressure: qh•LF

Leeward = $q_h \cdot G \cdot Cp_{IM} - q_{ip} \cdot (+GC_{pi})$ [Eq 27.3-1] Total = Windward - Leeward

• Minimum Pressure: § 27.1.5 no less than 16.00 psf (Incl LF) applied to Walls

· Positive Pressures Act TOWARD Surface and Negative Pressures Act AWAY from Surface

Roof Wind Pressures [Normal to Eave] All wind pressures include a Load Factor (LF) of 1.0

Description	Location	Start	End	GC _{pi}	C_{pMin}	C_{pMax}	$\mathbf{P}_{C_{pMin}}$	$\mathbf{P}_{C_{pMax}}$	\mathbf{P}_{\min}	
		ft	ft				psf	psf	psf	
Roof (0 to $h/2$)	All	0.000	6.000	+0.18	-1.007	-0.180	-12.23	-3.93	8.00	
Roof $(h/2 \text{ to } h)$	All	6.000	12.000	+0.18	-0.787	-0.180	-10.02	-3.93	8.00	
Roof (h to 2*h)	All	12.000	15.330	+0.18	-0.613	-0.180	-8.28	-3.93	8.00	
Roof (0 to h/2)	All	0.000	6.000	-0.18	-1.007	-0.180	-7.98	0.32	8.00	
Roof $(h/2 \text{ to } h)$	All	6.000	12.000	-0.18	-0.787	-0.180	-5.77	0.32	8.00	
Roof (h to 2*h)	All	12.000	15.330	-0.18	-0.613	-0.180	-4.03	0.32	8.00	
	Roof (0 to h/2) Roof (h/2 to h) Roof (h to 2*h) Roof (0 to h/2) Roof (h/2 to h)	DescriptionLocationRoof (0 to h/2)AllRoof (h/2 to h)AllRoof (h to 2*h)AllRoof (0 to h/2)AllRoof (h/2 to h)All	Description Location Start ft Roof (0 to h/2) All 0.000 Roof (h/2 to h) All 6.000 Roof (h to 2*h) All 12.000 Roof (0 to h/2) All 0.000 Roof (0 to h/2) All 0.000 Roof (0 to h/2) All 0.000 Roof (h/2 to h) All 6.000	Description Location Start ft End ft Roof (0 to h/2) All 0.000 6.000 Roof (h/2 to h) All 6.000 12.000 Roof (h to 2*h) All 12.000 15.330 Roof (0 to h/2) All 0.000 6.000 Roof (0 to h/2) All 0.000 6.000 Roof (h/2 to h) All 0.000 12.000	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Description Location Start ft End ft GC _{pi} C _{pMin} Roof (0 to h/2) All 0.000 6.000 +0.18 -1.007 Roof (h/2 to h) All 6.000 12.000 +0.18 -0.787 Roof (h to 2*h) All 12.000 15.330 +0.18 -0.613 Roof (0 to h/2) All 0.000 6.000 -0.18 -1.007 Roof (0 to h/2) All 0.000 6.000 -0.18 -1.007 Roof (h/2 to h) All 0.000 6.000 -0.18 -1.007	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

End

Roof Pressures based upon Ch 27 Pt1:

Component = The building component for

- pressures = Start Dist from Windward Edge Start
- $C_{\rm pMin}$
 - = Smallest Coefficient Magnitude = $q_h \cdot G \cdot C_{pMin} q_{ip} \cdot GC_{pi}$ [Eq 27.3-1]

Location = Reference Graphic in Output for Values = End Dist from Windward Edge

- = Largest Coefficient Magnitude
- = $q_h \bullet G \bullet C_{pMax} q_{in} \bullet GC_{pi}$ [Eq 27.3-1]

 $\vec{P}_{C_{pMin}} = q_h \cdot G \cdot C_{pMin} - q_{ip} \cdot G_{C_{pi}} [Eq 2 \dots 1]$ $= Min \ Press \ projected \ on \ vertical \ plane \ [§ 27.1.5]$ $= Min \ Press \ projected \ on \ vertical \ plane \ [§ 27.1.5]$ P_{min}

• 0.838 Reduction Factor applied for h/L>=1 & (0 to h/2)

- The smaller uplift pressures due to C_{pMin} can become critical when wind is combined

with roof live load or snow load; load combinations are given in ASCE 7

· Positive Pressures Act TOWARD Surface and Negative Pressures Act AWAY from Surface

 $C_{p\rm Max}$

MWFRS Wind Loads [Parallel to Ridge]	
h = Mean Roof Height Of Building	= 12.000 ft
RHt = Ridge Height Of Roof	= 14.555 ft
B = Horizontal Dimension Of Building Normal To Wind Direction	= 15.330 ft
L = Horizontal Dimension Of building Parallel To Wind Direction	= 46.000 ft
L/B = Ratio Of L/B used For Cp determination	= 3.001
h/L = Ratio Of h/L used For Cp determination	= 0.261
Slope = Slope Of Roof	= 9.46 Deg
Gust Factor Calculation for Wind: [Parallel to Ridge]	
Gust Factor Category I Rigid Structures - Simplified Method	0.05
G ₁ = Simplified: For Rigid Structures can use 0.85	= 0.85
Gust Factor Category II Rigid Structures - Complete Analysis	
Z_m = Equiv Struc Height: Max(0.6•h, Z_{min})	= 30.000 ft
I_{zm} = Turbulence Intensity: $c \cdot (33/Z_m)^{1/6}$ [Eq 26.11-1]	= 0.305
L_{zm} = Turbulence Integral Length Scale: $\ell \cdot (Z_m/33)^{\epsilon}$ [Eq 26.11-9]	= 309.993 ft
B = Building Width Width Normal to Wind Direction	= 15.330 ft
$Q = [1/(1+0.63 \cdot [(B+h)/L_{zm}]^{0.63})]^{0.5} [Eq 26.11-8]$	= 0.938
$G_2 = \text{Detailed: } 0.925 \cdot [(1+1.7 \cdot g_q \cdot I_{zm} \cdot Q) / (1+1.7 \cdot g_v \cdot I_{zm})] [Eq 26.11-6]$	= 0.888
Gust Factor Used in Analysis	
$G = Gust Factor: Min(G_1, G_2)$	= 0.850
On	- 0.000
Cp _{WW} = Windward Wall Coefficient (All L/B Values)	= 0.800
Cp _{LW} = Leeward Wall Coefficient using L/B	= -0.250
Cp_{SW} = Side Wall Coefficient (All L/B values)	= -0.700

Wind Pressures [Parallel to Ridge] - - -

Elev	GC _{pi}	GC _{pi}	\mathbf{q}_{i}	Kz	K _{zt}	$\mathbf{q}_{\mathbf{z}}$	Windward	Leeward	Side	Total	Minimum
	Windward	Leeward					Press	Press	Press	Press	Pressure*
ft			psf			psf	psf	psf	psf	psf	psf
14.555	+0.18	+0.18	11.80	0.575	1.000	11.80	5.90	-4.63	-9.15	10.53	16.00
12.000	+0.18	+0.18	11.80	0.575	1.000	11.80	5.90	-4.63	-9.15	10.53	16.00
14.555	-0.18	-0.18	11.80	0.575	1.000	11.80	10.15	-0.38	-4.90	10.53	16.00
12.000	-0.18	-0.18	11.80	0.575	1.000	11.80	10.15	-0.38	-4.90	10.53	16.00

K_z	$= 2.01 \cdot (15/Z_g)^{2/\alpha}$ [Tbl 26.10-1]	
GC_{pi}	= Enclosed Internal Pressure Tbl	
	26.13-1	
q_{ip}	= Positive Internal Pressure: qh•LF	
Side	$= \alpha \cdot G \cdot C p_{m} - \alpha \cdot (+GC_{m}) [E\alpha_{m} 27_{m} 3 - 1]$	

= No Topographic feature specified $= 0.00256 \cdot K_z \cdot K_{zt} \cdot K_d \cdot K_e \cdot V^2 \star LF \ [Eq \ 26.10-1]$

= Negative Internal Pressure: $q_h \bullet LF$

 q_{in}

 $\begin{array}{rcl} q_{in} & - & \text{Negative Internal Pressure: } q_{h} \\ \text{Leeward} & = & q_{h} \cdot G \cdot C p_{IW} - q_{ip} \cdot (+GC_{pi}) & [Eq \ 27.3-1] \\ \text{Total} & = & \text{Windward} - & \text{Leeward} \end{array}$

Location = Reference Graphic in Output for Values

= End Dist from Windward Edge

= Largest Coefficient Magnitude

= $q_h \bullet G \bullet C_{pMax} - q_{in} \bullet GC_{pi}$ [Eq 27.3-1]

• Minimum Pressure: § 27.1.5 no less than 16.00 psf (Incl LF) applied to Walls

 K_{zt}

 q_z

· Positive Pressures Act TOWARD Surface and Negative Pressures Act AWAY from Surface

Roof Wind Pressures	[Parallel	to	Ridge]	
---------------------	-----------	----	--------	--

All wind pressures include a Load Factor (LF) of 1.0

Component	Description	Location	Start	End	GC _{pi}	C_{pMin}	C _{pMax}	$\mathbf{P}_{C_{pMin}}$	$\mathbf{P}_{C_{pMax}}$	\mathbf{P}_{\min}
			ft	ft	_	_	_	psf	psf	psf
Roof	Roof (0 to h)	All	0.000	12.000	+0.18	-0.900	-0.180	-11.15	-3.93	8.00
Roof	Roof (h to 2*h)	All	12.000	24.000	+0.18	-0.500	-0.180	-7.14	-3.93	8.00
Roof	Roof (>= 2*h)	All	24.000	46.000	+0.18	-0.300	-0.180	-5.13	-3.93	8.00
Roof	Roof (0 to h)	All	0.000	12.000	-0.18	-0.900	-0.180	-6.90	0.32	8.00
Roof	Roof (h to 2*h)	All	12.000	24.000	-0.18	-0.500	-0.180	-2.89	0.32	8.00
Roof	Roof (>= 2*h)	All	24.000	46.000	-0.18	-0.300	-0.180	-0.89	0.32	8.00

End

 C_{pMax}

Roof Pressures based upon Ch 27 Pt1:

Component = The building component for

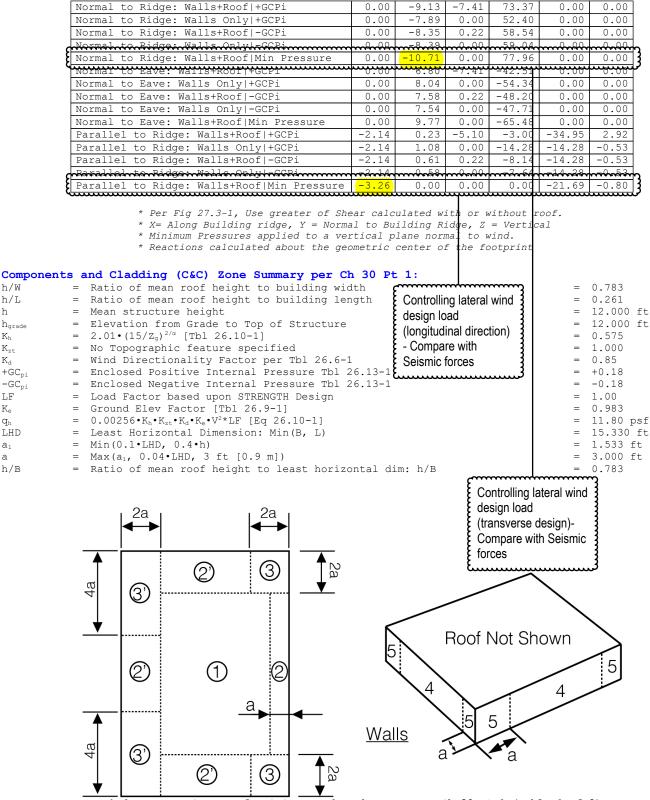
pressures = Start Dist from Windward Edge

Start

= Smallest Coefficient Magnitude = $q_h \cdot G \cdot C_{pMin} - q_{ip} \cdot GC_{pi}$ [Eq 27.3-1] C_{pMin}

 $\hat{P}_{C_{pMin}} = q_h \cdot G \cdot C_{pMin} - q_{ip} \cdot G C_{pi} [Eq 2/.5-1] + c_{pMax}$ = Min Press projected on vertical plane [§ 27.1.5] P_{min}

• No reduction factor was applicable


 \cdot The smaller uplift pressures due to C_{pMin} can become critical when wind is combined

with roof live load or snow load; load combinations are given in ASCE 7 $\,$

• Positive Pressures Act TOWARD Surface and Negative Pressures Act AWAY from Surface

	Reaction	Summar	y Wind	(MWFRS)				
Description			Fx	Fy	$\mathbf{F}_{\mathbf{z}}$	M _x	My	Mz
			Kip	Kip	Kip	k•ft	k•ft	k•ft

h/W

h/L

 h_{grade}

h

 \mathbf{K}_{h}

 K_{zt}

-GC_{pi}

LF

Ke

qh

 a_1

а

T'HD

h/B

 K_d +GC_{pi}

> Wind Pressure Summary for C&C Zones based Upon Areas Ch 30 Pt 1 (Table 1 of 2) All wind pressures include a Load Factor (LF) of 1.0

Zone	e Figure	Pos A ≤ 10 ft ² psf	Neg A ≤ 10 ft ² psf	Pos A = 20 ft ² psf	Neg A = 20 ft ² psf	Pos A = 50 ft ² psf	Neg A = 50 ft ² psf
1	30.3-5A	16.00	-16.00	16.00	-16.00	16.00	-16.00
2	30.3-5A	16.00	-17.47	16.00	-17.11	16.00	-16.64
2'	30.3-5A	16.00	-21.01	16.00	-20.65	16.00	-20.18
3	30.3-5A	16.00	-23.37	16.00	-21.24	16.00	-18.42
3'	30.3-5A	16.00	-32.81	16.00	-29.26	16.00	-24.56

	30.3-1						
5	30.3-1	16.00	-17.00	16.00	-16.00	16.00	-16.00

Wind Pressure	Summary	for C&C	Zones	based	Upon	Areas	Ch 30	Pt 1	(Table 2 of 2)
	All wind	pressur	es incl	lude a	Load	Factor	: (LF)	of 1	0

	ALL W11	nd pressu	res includ	de a Load	Factor (1	F) of 1.()
Zone	Figure	Pos A = 100 ft^2	Neg A = 100 ft^2	Pos A = 200 ft^2	Neg A = 200 ft^2	Pos A > 500 ft ²	Neg A > 500 ft ²
		psf	psf	psf	psf	psf	psf
1	30.3-5A	16.00	-16.00	16.00	-16.00	16.00	-16.00
2	30.3-5A	16.00	-16.29	16.00	-16.29	16.00	-16.29
2'	30.3-5A	16.00	-19.83	16.00	-19.83	16.00	-19.83
3	30.3-5A	16.00	-16.29	16.00	-16.29	16.00	-16.29
3'	30.3-5A	16.00	-21.01	16.00	-21.01	16.00	-21.01
4	30.3-1	16.00	-16.00	16.00	-16.00	16.00	-16.00
5	30.3-1	16.00	-16.00	16.00	-16.00	16.00	-16.00

* A is effective wind area for C&C: Span Length * Effective Width * Effective width need not be less than 1/3 of the span length

* Maximum and minimum values of pressure shown.

* + Pressures acting toward surface, - Pressures acting away from surface * Per § 30.2.2 the Minimum Pressure for C&C is 16.00 psf [0.766 kPa] {Includes LF} * Interpolation can be used for values of A that are between those values shown.

Calculation of Seismic Response Coefficient, Cs

(ASCE 7-16, Chapter 11 and 12, Equivalent Lateral Force "ELF" Procedure)

BUILDING INFORMATION :

Risk Category :	=	(ASCE 7-16 Table 1.5-1 & IBC Table 1604.5)
Importance Factor, le :	1.00	(ASCE 7-16 Table 1.5-2)
Response Modification Factor, R :	6.5	(ASCE 7-16 Table 12.2-1)
Overstrength Factor, Ω :	3	(ASCE 7-16 Table 12.2-1)
Deflection Amplification Factor, Cd :	4	(ASCE 7-16 Table 12.2-1)
		•

SITE INFO & SEISMIC ACCELERATIONS :

Site Class :	D (default)	(IBC Section 1613.2.2, "D" Assumed or per Geotech.)
Ss :	1.257	
S1 :	0.434	
Fv:	1.866	(ASCE 7-16 TABLE 11.4-2)
Sds :	1.006	
Sd1 :	0.540	(Eqn 11.4-2 & 11.4-4)
Seismic Design Category :	D	(ASCE 7-16 TABLE 11.6-1 & 11.6-2)

PERIOD DETERMINATION :

Ct :	0.02	(ASCE 7-16 Table 12.8-2)
x :	0.75	(ASCE 7-16 Table 12.8-2)
hn (ft) :	14.67	
Ta = Ct*hn^x :	0.150	(Eqn 12.8-7)
Ts = (Sd1/Sds) :	0.537	(ASCE 7-16 11.4.6)
1.5*Ts :	0.805	

CALCULATE Cs :

Cs = Sds/(R/I) :	0.155	(Eqn 12.8-2)
Max Cs = Sd1/(Ta*(R/I)):	0.554	(Eqn 12.8-3)
Min Cs = 0.044*Sds*I > 0.01 :	0.044	(Eqn 12.8-5)
Min Cs = 0.5*S1/(R/I) :	0.000	(Eqn 12.8-6, for S1 > 0.6g)
Minimum Cs :	0.044	
		•
Cs :	0.155	
Base Shear, V = Cs * W :	0.155 * W	
		•

SITE CLASS CHECKS :

Check ASCE-16, 11.4.8, Site Class F :	Site Response Analysis Not Required	Ground Motion Hazard Analysis <u>is</u>
Check ASCE-16, 11.4.8, Site Class E :	Ground Motion Hazard Analysis Not Required	Required for seismically isolated structures or structures with damping
Check ASCE-16, 11.4.8, Site Class D,		systems on sites with S1 >/= 0.6
Exception 2:	Analysis Not Required	

Seismic Weight

-Roof	
Metal Roofing	1.5 psf
Wood Sheathing	2.2 psf
Metal Stud Framing @ 24"oc	3.8 psf
Insulation	2.5 psf
Conduit	12.7 psf
Misc.	1.3 psf
Total	24 psf
-Exterior Walls	
Panel Siding	2.4 psf
Wood Sheathing	1.5 psf
Metal Stud Framing	2.0 psf
Insulation	2.2 psf
Gypsum Board	2.8 psf
Total	10.9 psfUSE <u>11psf</u>

Seismic Base Shear

Roof: (46ft x 15.33ft) x (24psf) = 16924 lbs

Exterior Walls: perimeter = $(2 \times 46ft) + (2 \times 15.33ft) = 123 ft$ wall height = 13.9 ft (average) $(123ft \times 13.9ft / 2) \times (11 \text{ psf}) = 9403 \text{ lbs}$

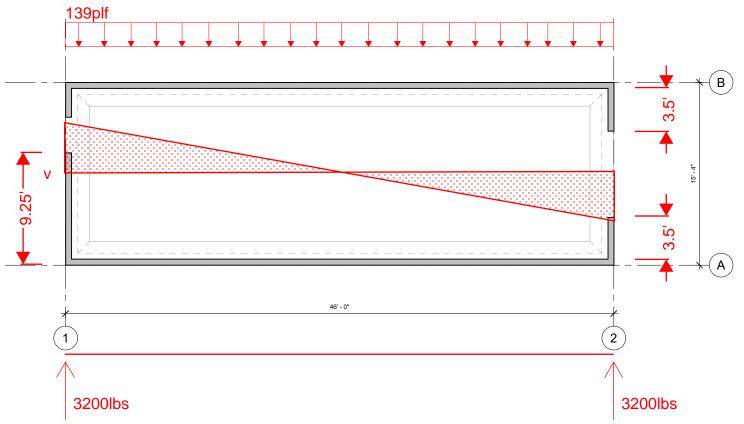
Seismic Weight = 16924lbs + 9403lbs = 26327lbs

Base Shear, V = Cs * W = 0.155 * 26327lbs = 4081lbs = 4.1kips

Seismic: (ASD) V_seismic = 0.7*(4.1kips) = 2.9kips -Compare with Wind Base Shear (Transverse Direction) (ASD) V_wind = 0.6*10.71kips = 6.4kips > V_seismic ∴ [Wind Controls, Transverse] Longitudinal Direction (ASD) V_wind = 0.6*3.26kips = 2.0kips < V_seismic ∴ [Seismic Controls, Longitudinal Direction]

Diaphragm Design

-Diphragm Forces


Transverse Direction: V = 6.4kips (ASD)

Distributed Wind Load w = 6.4kips / 46ft = 0.139k/ft = 139plf

- 2 walls ea end of diaphragm Force to each wall = (6.4kips) / 2 = 3.2kips = 3200lbs

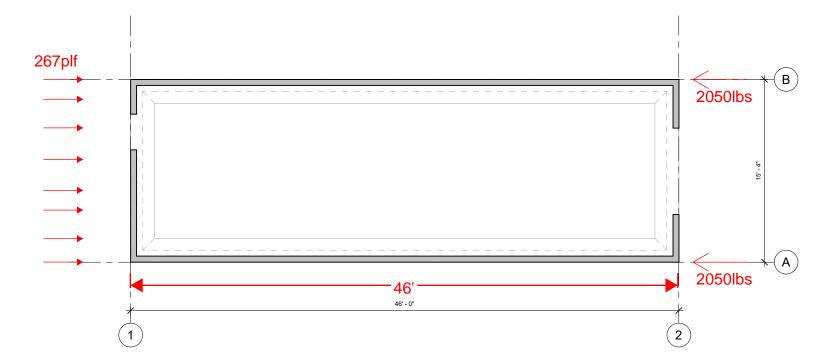
-Max Diaphragm shear @ gridline 1 & 2 v = (3200lbs) / 15.33ft = 209plf

-Max chord Forces @ gridlines A & B $M_max = (139lbs/ft) * (46ft)^2 / 8 = 36766 lb-ft$ Total Chord Force, T/C = (36766lb-ft) / 15.33ft = 2398lbs Linear chord force = 4056lbs / 52ft = 78lbs/ft

www.bse-ps.com

Diaphragm Design

-Diphragm Forces


Longitudinal Direction V = 4.1kips (ASD)

Distributed Seismic Load w = 4.1kips / 15.33ft = 0.267k/ft = 267lbs/ft

- 2 walls ea end of diaphragm Force to each wall = (4.1kips) / 2 = 2.1kips = 2050lbs

- Max Diaphragm shear @ gridline A & B v = (2050lbs) / 46ft = 45 lbs/ft

- Max chord Forces @ gridlines 1&2 Mmax = $(61lbs/ft) * (22ft)^2 / 8 = 3691 lb-ft$ Total Chord Force, T/C = (3691lb-ft) / 52ft = 71lbsLinear chord force = 71lbs / (9ft+24ft) = 2lbs/ft

Diaphragm Design

-Diphragm Forces

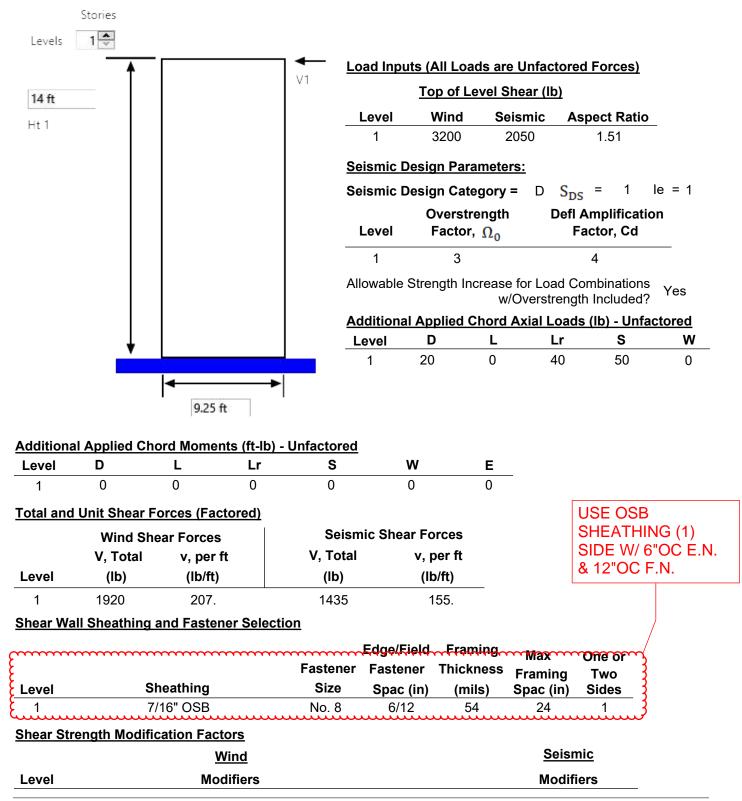
United States and Mexico (lb/ft)									
	Thick- ness (in.)	Blocked				Unblocked			
		Screw spacing at diaphragm boundary edges and at all continuous panel edges (in.)				Screws spaced maximum of 6 in. on all supported edges			
Sheathing		6	4	2.5	2	Load			
		Screw spacing at all other panel edges (in.)				perpendicular to unblocked edges and continuous	All other configurations		
		6	6	4	3	panel joints			
	3/8	768	1022	1660	2045	685	510		
Structural I	7/16	768	1127	1800	2255	~~755~~~	565		
	15/32	925	1232	1970	2465	825	615		
C-D, C-C and	3/8	690	920	1470	1840	615	460		
other graded wood structural panels	7/16	760	1015	1620	2030	680	505		
	15/32	832	1110	1770	2215	740	555		

Table F2.4-1 Nominal Shear Strength (v_n) per Unit Length for Diaphragms Sheathed With Wood Structural Panel Sheathing ^{1,2} United States and Mexico (lb/ft)

1. For SI: 1" = 25.4 mm, 1 ft = 0.305 m, 1 lb = 4.45 N

 For diaphragms sheathed with wood structural panels, tabulated R_n values are applicable for short-term load duration (seismic loads).

> Using 15/32" min thickness OSB @ roof w/ #8 SMS @ 6"oc at panel edges- $825lb/ft / \Omega = 330plf > 209plf [OK]$


Gridline 1 Wall

Project Name: Centeris

Model: LFRS Shearwall -1

Code: 2012 NASPEC [AISI S100-2012] AISI S400-15/S1-16 AISI S240-15

LFRS Shearwall Summary Report

Gridl	ine 1 Wall								Development & Perr /ISSUED PI Building Engineering
Proiect N	lame: Centeris								Fire
•	LFRS Shearwa							Date	: 10/16/2024
	012 NASPEC [A					Simpson	Strong-Tie®	CFS Design	er™ 5.0.1.0
		16 AISI S240-15							
LFRS	Shearwall S	Summary Rep	oort						
1		None	9				No	one	
Availab	ole Shear Stre	ength and Shear	r Ratios						
		Wind						<u>Seismic</u>	
	Aspect Ratio	Available S	hear Shear	r Ratio	Aspe	ect Ratio	Availal	ole Shear	Shear Ration
Level	Factor	Strength, va	(lb/ft) v/	va	-	actor	Strengtl	n, va (Ib/ft)	v/va
1	1	455		456		1		376	0.413
					7				
				00S200-54					
Chords			@ EA HO	LD DOWN					
				Bracing	(in)				
				2	Axia	l Axial	Flex Kφ	Axial K¢	Bracing,
Level	Section	Fy (ksi) C	onfiguration	Flexura	∣ KyLy	/ KtLt	(lb-in/in)	(lb-in/in)	Lm (in)
1	600S200-54	50	Single	60	60	60	0	0	None
	ambinationa	ASCE7-16 ASD	uuuu)					
		ASCE/-10 ASD							
	= D								
	= D+L = D+(1===0								
	= D + (Lr or S = D + 0.75L +	,							
	= D + 0.75L + = D + (0.6W c	· · ·							
	,	6W or 0.7E) + 0.	751 + 0.75(1 r)	or S)					
		Sds)D + 0.7Ω₀Qe	•	01 0)	Note	· I CO5 ar	nd I CO6 b	ased on the	lower of
		5 Sds)D + 0.72800		+ 0.75(I.r.or.S)	-		or Expected		
		tored Chord Co							
Level	LC1	LC2	LC3	LC4	LC5	1.0	C6	LC05	LC06
1	20	20	70	58	2906		79	6538	4946
•					2000	21	10	0000	-0-0
		Chord Strong-	•						
Level	LC1	LC2	LC3	LC4	LC5			LC05	LC06
1	0	0	0	0	0	(0	0	0
	Minimum	Minimum		Interactions					
Level	Ma (ft-lb)	Pa (lb)	LC1 USE	S/HDU9-54		LC5	LC6	LC05	LC06
1	2282	5862	0.003 HOL	D DOWN		0.496	0.372	0.93	0.703
Ties and	<u>d Holdowns</u>								
				Holdow	'n	LRFD	Holdowr	1	
·····			France	ed Rod Capa		Capacity	Disp at	Holdown	Rod Dia
Level	Holdown	Quantity Cor	<u> </u>	h (in) Ta (lb/E	-		-		(in)
1	S/HDU9 - 5		ise 4	6750	,	10805	0.131	12.875	0.875
·····	······	······	كىنىد						-

SIMPSON STRONG-TIE COMPANY INC.

City of ment & ISSUE Gridline 1 Wall

Project Name: Centeris

Model: LFRS Shearwall –1

Code: 2012 NASPEC [AISI S100-2012] AISI S400-15/S1-16 AISI S240-15

	-							
Leviel		Ioldown Offs						
Level	E	nd of Shear	Wall (in)					
1		0.0						
Load Co	ombinations	6 (ASCE7-	16 ASD)					
LC7	= 0.6D +	0.6W						
LC8	= 0.6D +	0.7E						
LCO8	= (0.6-0.1	I4Sds)D + 0.7	ν _{Ω₀Qe} Note: LCC	08 based on the lo	ower of O	verstrength	or Expect	ted Strength
	Factored	Net Uplift (II)					
		values repre						
F	Positive valu	ues indicate	no net uplift)			Shear	Forces (I	b)
Level	LC7	LC8 LC	:08		Wind	Seismic	Seismic	w/Overstrength
1	-2894	-2160 -65	506		1920	1435		4305
	Ratio (Factored Net	t Uplift)/(Holdow	n Capacity)				
Level	LC7	LC8	LC08					
1	0.429	0.32	0.803					
Disulas	4							
Displace	ement							
		Floor-Flo	-		_			
		tive Displace	. ,			rift %		
Level	Wind	Seismic	Seismic, Cd	Wind			smic, Cd	-
1	0.32	0.17	0.68	0.19	0.	1	0.4	

Gridline 2 Wall

Project Name: Centeris

Model: LFRS Shearwall –2

Code: 2012 NASPEC [AISI S100-2012] AISI S400-15/S1-16 AISI S240-15

LFRS Shearwall Summary Report

Gridline 2 Walls

Project Name: Centeris

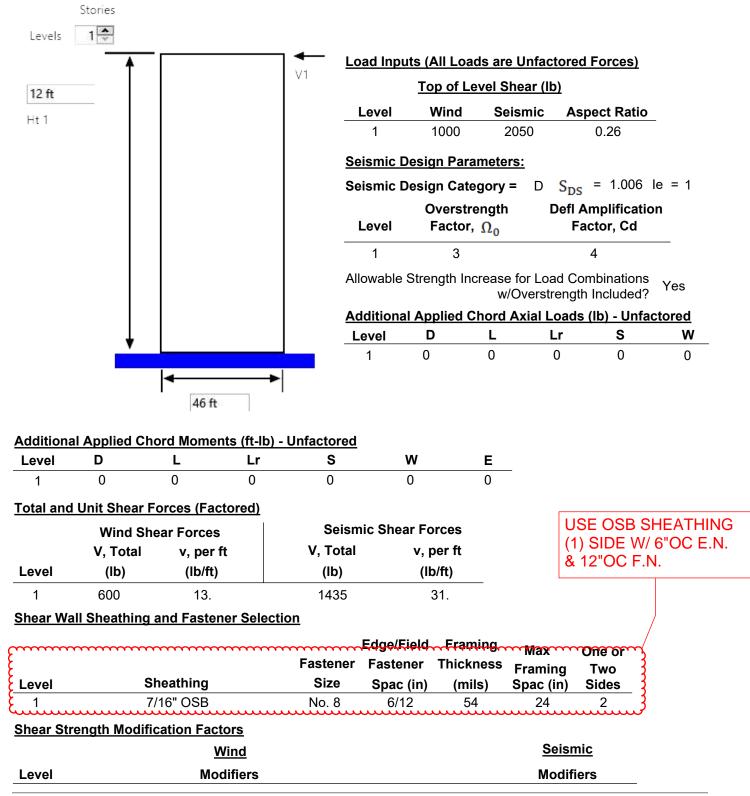
Model: LFRS Shearwall -2

Code: 2012 NASPEC [AISI S100-2012] AISI S400-15/S1-16 AISI S240-15 Date: 10/16/2024 Simpson Strong-Tie® CFS Designer™ 5.0.1.0

	Cheenwell C	ummary Rep	port							
	Snearwall S									
1		None	е					No	one	
Availał	ble Shear Stre	ength and Shear	r Ratio	s						
		Wind		-					<u>Seismic</u>	
	Aspect Ratio		hear	Shear Ra	atio	Aspec	t Ratio	Availal	ble Shear	Shear Rat
Level	Factor	Strength, va		v/va		-	ctor		h, va (lb/ft)	v/va
1	0.5	512	<u></u>	0.535).5		194	0.415
					. = 1	7				
				E 600S20 CK-TO-B/						
Chords	<u>5</u>			HOLD D						
					Bracing	(in)				
			~~~~~	·····		Axial	Axial	Flex Kø	Axial Kφ	Bracing,
Level	Section	Fy (ksi) C	configu	ration	Flexural	-	KtLt	(lb-in/in)	•	Lm (in)
1	600S200-54	50 (2	2) Back-	To-Back	60	60	60	0	0	None
·····	·····	uulatercona	ection S	Spacing =	12 in					
_C3	= D + L = D + (Lr or S = D + 0.75L +	,								
_C6 _CO5	= D + (0.6W c) $= D + 0.75(0.6)$ $= (1.0 + 0.14S)$ $= (1.0 + 0.105)$ Fac LC1 20	6W or 0.7E) + 0. Sds)D + 0.7Ω₀Qe 5 Sds)D + 0.5259 tored Chord Co LC2 20	e Ω₀Qe + ompres LC3 70	0.75L + 0. sion, P (II L	75(Lr or S) <b>5)</b> <b>C4</b> 58		trength c	or Expected	ased on the lo d Strength <b>LC05</b> 8633	ower of <b>LC06</b> 6517
LC6 LCO5 LCO6 <b>Level</b> 1	= D + (0.6W c) $= D + 0.75(0.6)$ $= (1.0 + 0.14S)$ $= (1.0 + 0.105)$ Factored	or 0.7E) 6W or 0.7E) + 0. 6ds)D + 0.7Ω₀Qe 5 Sds)D + 0.5259 tored Chord Co LC2 20 Chord Strong-2	e Ω₀Qe + ompres LC3 70 Axis Be	0.75L + 0. sion, P (II L sending, M	75(Lr or S) <b>5)</b> <b>C4</b> 58 <b>x (ft-lb)</b>	Overs <b>LC5</b> 3840	trength c	or Expected <b>C6</b> 380	d Strength <b>LC05</b> 8633	<b>LC06</b> 6517
LC6 LCO5 LCO6 Level 1 Level	= D + (0.6W c) $= D + 0.75(0.6)$ $= (1.0 + 0.14S)$ $= (1.0 + 0.105)$ Fac LC1 20 Factored LC1 LC1	or 0.7E) 6W or 0.7E) + 0. 6ds)D + 0.7Ω₀Qe 5 Sds)D + 0.5259 tored Chord Co LC2 20 Chord Strong- LC2	e Ω₀Qe + ompres LC3 70 Axis Be LC3	0.75L + 0. sion, P (Ik L ending, M	75(Lr or S) <b>C4</b> 58 <b>x (ft-lb)</b> <b>C4</b>	Overs LC5 3840 LC5	trength c L( 28	or Expected C6 880 C6	d Strength LC05 8633 LC05	LC06 6517 LC06
LC6 LCO5 LCO6 <b>Level</b> 1	= D + (0.6W c) $= D + 0.75(0.6)$ $= (1.0 + 0.14S)$ $= (1.0 + 0.105)$ Factored	or 0.7E) 6W or 0.7E) + 0. 6ds)D + 0.7Ω₀Qe 5 Sds)D + 0.5259 tored Chord Co LC2 20 Chord Strong-2	e Ω₀Qe + ompres LC3 70 Axis Be	0.75L + 0. sion, P (Ik L ending, M	75(Lr or S) <b>5)</b> <b>C4</b> 58 <b>x (ft-lb)</b>	Overs <b>LC5</b> 3840	trength c L( 28	or Expected <b>C6</b> 380	d Strength <b>LC05</b> 8633	<b>LC06</b> 6517
LC6 LCO5 LCO6 Level 1 Level	= D + (0.6W c) $= D + 0.75(0.6)$ $= (1.0 + 0.14S)$ $= (1.0 + 0.105)$ Fac LC1 20 Factored LC1 LC1	or 0.7E) 6W or 0.7E) + 0. 6ds)D + 0.7Ω₀Qe 5 Sds)D + 0.5259 tored Chord Co LC2 20 Chord Strong- LC2	e Ω₀Qe + ompres LC3 70 Axis Be LC3	0.75L + 0. sion, P (II L ending, M	75(Lr or S) <b>C4</b> 58 <b>x (ft-lb)</b> <b>C4</b>	Overs LC5 3840 LC5	trength c L( 28	or Expected C6 880 C6	d Strength LC05 8633 LC05	LC06 6517 LC06
_C6 _C05 _C06 _Level _1 _Level	= D + (0.6W c) $= D + 0.75(0.6)$ $= (1.0 + 0.14S)$ $= (1.0 + 0.105)$ Factored LC1 20 Factored LC1 0 Minimum	or 0.7E) 6W or 0.7E) + 0. 6ds)D + 0.7Ω₀Qe 5 Sds)D + 0.5259 tored Chord Co LC2 20 Chord Strong- LC2 0	e Ω₀Qe + ompres LC3 70 Axis Be LC3	0.75L + 0. sion, P (II L ending, M	75(Lr or S) <b>C4</b> 58 <b>x (ft-lb)</b> <b>C4</b> 0	Overs LC5 3840 LC5	trength c L( 28	or Expected C6 880 C6	d Strength LC05 8633 LC05 0	LC06 6517 LC06
_C6 _C05 _C06 _Level _1 1	= D + (0.6W c) $= D + 0.75(0.6)$ $= (1.0 + 0.14S)$ $= (1.0 + 0.105)$ Factored LC1 20 Factored LC1 0 Minimum	or 0.7E) 6W or 0.7E) + 0. 6ds)D + 0.7Ω₀Qe 5 Sds)D + 0.5259 tored Chord Co LC2 20 Chord Strong- LC2 0 Minimum	e Ω₀Qe + ompres LC3 70 Axis Be LC3 0	0.75L + 0. sion, P (Ik L ending, M L	75(Lr or S) <b>C4</b> 58 <b>x (ft-lb)</b> <b>C4</b> 0 eractions	Overs LC5 3840 LC5 0	trength c L( 28	or Expected <b>C6</b> <b>C6</b> 0	d Strength LC05 8633 LC05 0 LC05 I	LC06 6517 LC06 0
LC6 LCO5 LCO6 1 Level 1 Level 1	= D + (0.6W c) $= D + 0.75(0.6)$ $= (1.0 + 0.14S)$ $= (1.0 + 0.105)$ Fac LC1 20 Factored LC1 0 Minimum Ma (ft-lb)	or 0.7E) 6W or 0.7E) + 0. 6ds)D + 0.7Ω₀Qe 5 Sds)D + 0.5259 tored Chord Co LC2 20 Chord Strong- LC2 0 Minimum Pa (lb)	e Ω₀Qe + ompres LC3 70 Axis Bo LC3 0 LC1	0.75L + 0. sion, P (It ending, M L LC2	75(Lr or S) <b>C4</b> 58 <b>x (ft-lb)</b> <b>C4</b> 0 eractions LC3	Overs: LC5 3840 LC5 0 LC4	trength c L( 28 L( C LC5	Dr Expected 680 C6 0 LC6	d Strength LC05 8633 LC05 0 LC05 I	LC06 6517 LC06 0
Level 1 Level 1 1 Level	= D + (0.6W c) $= D + 0.75(0.6)$ $= (1.0 + 0.14S)$ $= (1.0 + 0.105)$ Fac LC1 20 Factored LC1 0 Minimum Ma (ft-lb) 4564	or 0.7E) 6W or 0.7E) + 0. 6ds)D + 0.7Ω₀Qe 5 Sds)D + 0.5259 tored Chord Co LC2 20 Chord Strong- LC2 0 Minimum Pa (lb)	e Ω₀Qe + ompres LC3 70 Axis Bo LC3 0 LC1	0.75L + 0. sion, P (It ending, M L LC2	75(Lr or S) <b>C4</b> 58 <b>x (ft-lb)</b> <b>C4</b> 0 eractions LC3	Overs: LC5 3840 LC5 0 LC4 0.004	trength c L( 28 L( C LC5	Dr Expected 680 C6 0 LC6	d Strength LC05 8633 LC05 0 LC05 I 0.478 (	LC06 6517 LC06 0
LC6 LC05 LC06 1 1 Level 1 Level 1	= D + (0.6W c) $= D + 0.75(0.6)$ $= (1.0 + 0.14S)$ $= (1.0 + 0.105)$ Fac LC1 20 Factored LC1 0 Minimum Ma (ft-lb) 4564	or 0.7E) 6W or 0.7E) + 0. 6ds)D + 0.7Ω₀Qe 5 Sds)D + 0.5259 tored Chord Co LC2 20 Chord Strong- LC2 0 Minimum Pa (lb)	e Ω₀Qe + ompres LC3 70 Axis Bo LC3 0 LC1 0.001	0.75L + 0. sion, P (It ending, M L LC2	75(Lr or S) <b>C4</b> 58 <b>x (ft-lb)</b> <b>C4</b> 0 eractions LC3 0.005 Holdow	Oversi LC5 3840 LC5 0 LC4 0.004 m	trength c 28 <u>L(</u> 0 0.255	<b>C6</b> <b>C6</b> <b>C6</b> <b>C6</b> 0 <b>LC6</b> 0.191	d Strength LC05 8633 LC05 0 LC05 I 0.478 (	LC06 6517 LC06 0 LC06 0.361



										City o Development 8 /ISSUI
Gridli	ne 2 Wal	s		USE	S/HDU11	·54				Building
Project Na	ame: Cente	eris		HOL	D DOWN					Fire
Model: L	FRS Shear	wall –2							Date	: 10/16/2024
		C [AISI S100- S1-16 AISI S	-			Sir	mpson Stror	ng-Tie® (	CFS Designe	er™ 5.0.1.0
LFRS S	Shearwal	l Summa	ry Report							
1	S/HDU11	- 54 1	Base	4	7665	12	2265 0	.109	16.625	0.875
		Holdown C	Offset from							
Level	E	End of She	ar Wall (in)							
1		0.0								
Load Co	mbination	s (ASCI	E7-16 ASD)							
LC7	= 0.6D ·	+ 0.6W								
LC8	= 0.6D +	0.7E								
LCO8	= (0.6-0.	14Sds)D +	0.7Ω₀Qe Note	: LCO8 ba	ased on the lo	ower of O	verstrengtł	n or Exp	ected Strei	ngth
	Factore	d Net Uplift	(lb)							
			present uplift,							
P	ositive va	lues indica	te no net uplif	ft)			Shea	r Forces	s (lb)	
Level	LC7	LC8	LC08			Wind	Seismic	Seism	nic w/Overs	strength
1	-3828	-2858	-8601			960	718		2152	
	Ratio	(Factored	Net Uplift)/(Ho	ldown Ca	pacity)					
Level	LC7	LC8	B LC08	3						
1	0.499	0.37	3 0.935	5						
<u>Displace</u>	ement									
		Floor-F	loor							
		F1001-F	1001							
	Rela	ative Displa	acement (in)				rift %			
Level	<b>Rel</b> a <u>Wind</u> 0.43		acement (in)	Cd	<b>Wind</b> 0.25		smic Sei	<b>smic, C</b> 0.59	d	


Gridline A/B Walls

Project Name: Centeris

Model: LFRS Shearwall - A

Code: 2012 NASPEC [AISI S100-2012] AISI S400-15/S1-16 AISI S240-15

# LFRS Shearwall Summary Report



Grid	line A/B Wall	S								Development & Per /ISSUED F Building Engineering
Project N	lame: Centeris									Fire
	LFRS Shearwa								Date	: 10/16/2024
	012 NASPEC [A NSI S400-15/S1-						Simpson	Strong-Tie®	CFS Design	er™ 5.0.1.0
LFRS	Shearwall S	ummary	Report							
1			None					No	one	
<u>Availat</u>	ole Shear Stre	ngth and S	hear Ratio	<u>s</u>						
		<u>w</u>	<u>'ind</u>						<u>Seismic</u>	
	Aspect Ratio	Availat	ole Shear	Shear Ration	0	Aspe	ect Ratio	Availal	ble Shear	Shear Rati
Level	Factor	Strength	n, va (lb/ft)	v/va		F	actor	Strengt	h, va (lb/ft)	v/va
1	1	g	10	0.014			1	7	752	0.041
				USE (1) 6						
Chords				@ EA HO	LD DOV	VN				
Chorus					Dresing	(i.e.)				
~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			Bracing	. ,	_			h Duccium
Level	Section	Fy (ksi)	Configu	ration	Flexural	Axia Kvl v	7.000	Flex Kφ (lb-in/in)		0,
1	600S200-54	50	Sin		60	60		0	0	None
uuu		·····			00	00	00	Ũ	Ũ	Nono
_oad C	ombinations	ASCE7-16	ASD							
_C1	= D									
_C2	= D + L									
_C3	= D + (Lr or S)								
	= D + 0.75L +		S)							
	= D + (0.6W o	,		<i>u</i>						
	= D + 0.75(0.6	,		0.75(Lr or S)						
	= (1.0 + 0.148	-		0.751 . 0.75				nd LCO6 b or Expected	ased on the d Strength	lower of
_000	= (1.0 + 0.105				(Lr or S)	010	ouongure		a ea en gar	
	Fac	tored Chor	d Compres	ssion, P (lb)						
Level	LC1	LC2	LC3	LC4	1	LC5	L	C6	LC05	LC06
1	0	0	0	0		374	28	81	1123	842
	Factored	Chord Stro	ong-Axis B	ending, Mx ((ft-lb)					
Level	LC1	LC2	LC3	LC4	4	LC5	L	C6	LC05	LC06
1	0	0	0	0		0		0	0	0
	Minimum	Minimu	m	Intera	octions					
Level	Ma (ft-lb)	Pa (lb)		USE S/HE			LC5	LC6	LC05	LC06
1	2282	6175	0	HOLD DC			0.061	0.045	0.152	0.114
nes an	<u>d Holdowns</u>									
			\dots	Exposed Ro	Holdow		LRFD Canacity	Holdowr		Rod Die
Level	Holdown	Quantity		Length (in)	•	-	Capacity D Tn (lb)	Disp at Φ Tn (lb)	Holdown height (in)	
1	S/HDU4 - 54	-	Base	4	2550		4080	0.053	7.875	0.625
• •	2,.1201 0	- •		} ∶	2000			0.000		0.020

SIMPSON STRONG-TIE COMPANY INC.

City of P ISSUED

Gridline A/B Walls

Project Name: Centeris

Model: LFRS Shearwall – A

Code: 2012 NASPEC [AISI S100-2012] AISI S400-15/S1-16 AISI S240-15

	ł	Holdown Offs	set from					
Level	E	nd of Shear	Wall (in)					
1		0.0						
Load Co	ombinations	s (ASCE7-	16 ASD)					
LC7	= 0.6D +	0.6W						
LC8	= 0.6D +	0.7E						
LCO8	= (0.6-0.2	14Sds)D + 0.7	Ω₀Qe Note: LCO8	based on the lo	ower of C	verstrength	or Expec	ted Strength
	Factored	Net Uplift (II))					
	(Negative	values repre	esent uplift,					
P	Positive value	ues indicate	no net uplift)			Shear	Forces (I	b)
Level	LC7	LC8 LC	08		Wind	Seismic	Seismic	w/Overstrength
1	-157	-374 -11	23		600	1435		4305
	Ratio (Factored Net	t Uplift)/(Holdown	Capacity)				
Level	LC7	LC8	LC08					
1	0.061	0.147	0.367					
Displace	ement							
<u>Biopidot</u>		Floor-Flo	or					
	Rola	tive Displace	-		п	rift %		
Level	Wind	Seismic	Seismic, Cd	Wind			smic, Cd	
1	0	0	0.02	0			0.01	-
-	-	-						

Project:

Brienen Structural Engineers, P.S.

Shear Transfer - Bot Track Anchors BOT TRACK D ABI SIDO - Section E3 AUCHOR Track Hickness, E= 54 mil BOLT Fy = 50 ks.; Fu = 65 ks; Anchor Bolt $\mathscr{G}, D = O.625''$ $A_{\perp} = O.31in^2$ ABISDOF3.3.1.1 P. = C*mpxd x txF S2=3.5 $C = 4 - 0.1 \binom{d_k}{k} = 4 - 0.1 \binom{-0.625''}{0.051''} = 2$ mg= 0.75 (w/ washer $P_{n} = (2.84)(0.75)(0.6.5")(.054")(6.75)$ = 4.67 kips Pn/0 = 4.67 kips / 2.5 = 1.87 kips Try Bolt Hole Deformation AISI SIO E3. 3.2.1 Pn = (4.64 + 1.53) dxtxF : 2=222 $\alpha = 1.0$ $P_n = (4.64.(1.0) \cdot (.051") + 1.53) \cdot 0.675")(.057")(.6545.)$ = 3.91 kips Pn/2 = 3.91 kips/2.22 = 1.76 kips per-anchor

www.bse-ps.com

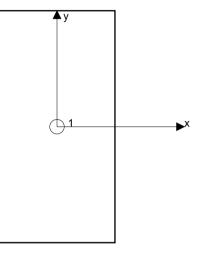
www.hilti.com Company: Page: 1 Specifier: Address: Phone I Fax: E-Mail: Design: Alt Bot Track Anchor Date: 2/14/2024 Fastening point: Specifier's comments: 1 Input data Anchor type and diameter: KWIK HUS-EZ (KH-EZ) 5/8 (3 1/4) Item number: 418078 KH-EZ 5/8"x3 1/2" Effective embedment depth: $h_{ef,act}$ = 2.390 in., h_{nom} = 3.250 in. Material: Carbon Steel **Evaluation Service Report:** ESR-3027 Issued I Valid: 4/1/2022 | 12/1/2023 Proof: Design Method ACI 318-19 / Mech Stand-off installation: e_b = 0.000 in. (no stand-off); t = 0.125 in. l_x x l_y x t = 6.000 in. x 12.000 in. x 0.125 in.; (Recommended plate thickness: not calculated) Anchor plate^R: Profile: no profile Base material: cracked concrete, 2500, f_c' = 2,500 psi; h = 18.000 in. Installation: hammer drilled hole, Installation condition: Dry Reinforcement: tension: not present, shear: not present; no supplemental splitting reinforcement present 2000# PER ANCHOR edge reinforcement: none or < No. 4 bar : BOLT HOLE ^R - The anchor calculation is based on a rigid anchor plate assumption. DEFORMATION **CONTROLS** @ Geometry [in.] & Loading [lb, in.lb] 1.7KIPS/BOLT 2,000 12 14.75 0.1251 Ζ х

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2024 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

1

Hilti PROFIS Engineering 3.0.91

www.hilti.com				
Company:		Page:		2
Address:		Specifier:		
Phone I Fax:		E-Mail:		
Design:	Alt Bot Track Anchor	Date:		2/14/2024
Fastening point:				
1.1 Design results				
Case	Description	Forces [lb] / Moments [in.lb]	Seismic	Max. Util. Anchor [%]


N = 0; $V_x = 0$; $V_y = 2,000$;

 $M_x = 0; M_y = 0; M_z = 0;$

2 Load case/Resulting anchor forces

Combination 1

Anchor reactio	ns [lb] +Tension, -Compres	ssion)		
Anchor	Tension force	Shear force	Shear force x	Shear force y
1	0	2,000	0	2,000
max. concrete c resulting tensior	ompressive strain: ompressive stress: h force in (x/y)=(0.00 ession force in (x/y)=	- 0/0.000): 0	[‰] [psi] [lb] [lb]	

99

no

Anchor forces are calculated based on the assumption of a rigid anchor plate.

3 Tension load

	Load N _{ua} [lb]	Capacity ଦ N _n [lb]	Utilization $\beta_N = N_{ua} / \Phi N_n$	Status
Steel Strength*	N/A	N/A	N/A	N/A
Pullout Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Failure**	N/A	N/A	N/A	N/A

* highest loaded anchor **anchor group (anchors in tension)

City of Puyallup Development & Permitting Service ISSUED PERMIT Building Planning Engineering Public Works Fire Traffic

Hilti PROFIS Engineering 3.0.91

Company:		Page:	3
Address: Phone I Fax:	1	Specifier: E-Mail:	
Design:	l Alt Bot Track Anchor	Date:	2/14/2024
Fastening point:		200	_/ • // _ • _ •

4 Shear load

	Load V _{ua} [lb]	Capacity ଦ V _n [lb]	Utilization $\beta_V = V_{ua} / \Phi V_n$	Status
Steel Strength*	2,000	6,732	30	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength**	2,000	2,037	99	OK
Concrete edge failure in direction x-**	2,000	2,968	68	OK

* highest loaded anchor **anchor group (relevant anchors)

4.1 Steel Strength

V_{sa}	= ESR value	refer to ICC-ES ESR-3027
	$_{el} \ge V_{ua}$	ACI 318-19 Table 17.5.2

Variables

[psi]
180

Calculations

V _{sa} [lb]	
11,220	

Results

V _{sa} [lb]	∲ _{steel}	♦ V _{sa} [lb]	V _{ua} [lb]
11,220	0.600	6,732	2,000

www.hilti.com

Company:		Page:	4
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Alt Bot Track Anchor	Date:	2/14/2024
Fastening point:			

4.2 Pryout Strength

$V_{cp} = k_{cp} \left[\left(\frac{A_{Nc}}{A_{Nc0}} \right) \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b} \right]$	ACI 318-19 Eq. (17.7.3.1a)
$\phi V_{cp} \ge V_{ua}$	ACI 318-19 Table 17.5.2
A _{Nc} see ACI 318-19, Section 17.6.2.1, Fig. R 17.6.2.1(b)	
$A_{\rm Nc0} = 9 h_{\rm ef}^2$	ACI 318-19 Eq. (17.6.2.1.4)
$\Psi_{ed,N} = 0.7 + 0.3 \left(\frac{c_{a,min}}{1.5h_{ef}} \right) \le 1.0$	ACI 318-19 Eq. (17.6.2.4.1b)
$\Psi_{cp,N} = MAX \left(\frac{c_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}} \right) \le 1.0$	ACI 318-19 Eq. (17.6.2.6.1b)
$N_{b} = k_{c} \lambda_{a} \sqrt{f_{c}} h_{ef}^{1.5}$	ACI 318-19 Eq. (17.6.2.2.1)

Variables

k _{cp}	h _{ef} [in.]	c _{a,min} [in.]	$\Psi_{\text{c,N}}$	
1	2.390	3.250	1.000	
	Ŀ	2	f [poil	
c _{ac} [in.]	K _c	^ a	f _c [psi]	
c_ac [in.] 3.630	к _с 17	1.000	2,500	

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	$\psi_{\text{ed},\text{N}}$	$\psi_{\text{cp},\text{N}}$	N _b [lb]
49.01	51.41	0.972	1.000	3,141
Results				
V _{cp} [lb]	ϕ_{concrete}	φ V _{cp} [lb]	V _{ua} [lb]	_
2,910	0.700	2,037	2,000	

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2024 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

City of Puyallup Development & Permitting Service (ISSUED PERMIT Building Planning Engineering Public Works Fire Traffic

Hilti PROFIS Engineering 3.0.91

www.hilti.com

Company:		Page:	5
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Alt Bot Track Anchor	Date:	2/14/2024
Fastening point:			

4.3 Concrete edge failure in direction x-

$V_{cb} = \left(\frac{A_{Vc}}{A_{Vc0}}\right) \psi_{ed,V} \psi_{c,V} \psi_{h,V} \psi_{parallel,V} V_{b}$	ACI 318-19 Eq. (17.7.2.1a)
 	ACI 318-19 Table 17.5.2
$A_{Vc0} = 4.5 c_{a1}^2$	ACI 318-19 Eq. (17.7.2.1.3)
$\Psi_{ed,V} = 0.7 + 0.3 \left(\frac{c_{a2}}{1.5 c_{a1}} \right) \le 1.0$	ACI 318-19 Eq. (17.7.2.4.1b)
$\Psi_{h,V} = \sqrt{\frac{1.5c_{a1}}{h_a}} \ge 1.0$	ACI 318-19 Eq. (17.7.2.6.1)
$V_{b} = \left(7 \left(\frac{l_{e}}{d_{a}}\right)^{0.2} \sqrt{d_{a}}\right) \lambda_{a} \sqrt{f_{c}} c_{a1}^{1.5}$	ACI 318-19 Eq. (17.7.2.2.1a)

Variables

c _{a1} [in.]	c _{a2} [in.]	$\Psi_{c,V}$	h _a [in.]	l _e [in.]
3.250	-	1.000	18.000	2.390
λ _a	d _a [in.]	f _c [psi]	$\Psi_{\text{parallel},V}$	
	a • •	0	· parallel, v	
1.000	0.625	2,500	2.000	

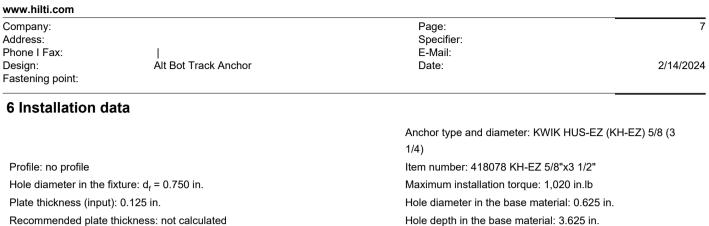
Calculations

A _{vc} [in. ²]	A _{Vc0} [in. ²]	$\psi_{\text{ed},\text{V}}$	$\psi_{h,V}$	V _b [lb]
47.53	47.53	1.000	1.000	2,120
Results				
V _{cb} [lb]	$\phi_{concrete}$	φ V _{cb} [lb]	V _{ua} [lb]	
4,240	0.700	2,968	2,000	-

5 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered - the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout or pryout strength governs.
- Refer to the manufacturer's product literature for cleaning and installation instructions.
- For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- Hilti post-installed anchors shall be installed in accordance with the Hilti Manufacturer's Printed Installation Instructions (MPII). Reference ACI 318-19, Section 26.7.

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2024 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan



www.hilti.com			
Company:		Page:	6
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Alt Bot Track Anchor	Date:	2/14/2024
Fastening point:			

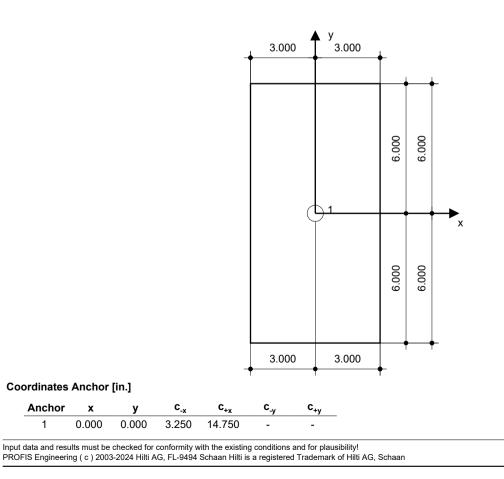
Fastening meets the design criteria!

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2024 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

Drilling method: Hammer drilled

Cleaning: Manual cleaning of the drilled hole according to instructions for use is required.

Hole depth in the base material: 3.625 in.


ISSUE

Minimum thickness of the base material: 5.000 in.

Hilti KH-EZ screw anchor with 3.25 in embedment, 5/8 (3 1/4), Carbon steel, installation per ESR-3027

6.1 Recommended accessories

Drilling	Cleaning	Setting
Suitable Rotary Hammer	 Manual blow-out pump 	Torque wrench
 Properly sized drill bit 		 Hilti SIW 9-A22 Impact Wrench

www.hilti.com			
Company:		Page:	8
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Alt Bot Track Anchor	Date:	2/14/2024
Fastening point:			

7 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each
 case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data
 or programs, arising from a culpable breach of duty by you.