

2709 Jahn Ave NW, Suite H2, Gig Harbor WA 98335

Ph. (253) 853-7780- www.SprinxFire.com

Hydraulic Calculations

Expires CERTIFICATE OF COMPETENCY FIRE SPRINKLER SYSTEMS

Joseph G. Faulkner 9491-0699-CEG Level 3 Sprinx Fire Protection, Inc. SPRINFP011LS

Signature 01/07/20

SPRINX FIRE PROTECTION INC. 2709 JAHN AVE NW SUITE H2 GIG HARBOR, WA 98335 253-853-7780

Job Name : ETC Building B

Drawing : FP-3.0

Location : 2902 E PIONEER PUYALLUP, WA 98372

Remote Area : RA#1 Contract : 24-093CM

Data File : ETC Building B MAIN Area 1.WXF

Page 1 Date 1/

te 1/2/2025

HYDRAULIC CALCULATIONS for

JOB NAME East Town Crossing Building B

Location 2902 E PIONEER PUYALLUP, WA 98372

Drawing # FP-3.0 Contract # 24-093CM

Date 1/2/2025

DESIGN

Remote area # RA#1

Remote area location UNIT 307 - LIVING ROOM **Occupancy classification** RESIDENTIAL NFPA 13R

Density 0.05 - Gpm/SqFt **Area of application** 256 - SqFt **Coverage/sprinkler** 256 16'X16' - SqFt

Type of sprinkler calculated VIKING VK468 RESIDENTIAL PENDENT K=4.9

Sprinklers calculated 4 In-rack demand N/A - GPM Hose streams N/A - GPM

Total water required (including hose streams) 55.4349 - GPM @ 34.1711 - Psi

Type of system WET-CPVC

Volume of system (dry or pre-action) N/A - Gal

WATER SUPPLY INFORMATION

Test date 4/16/2024

Location 2902 E PIONEER

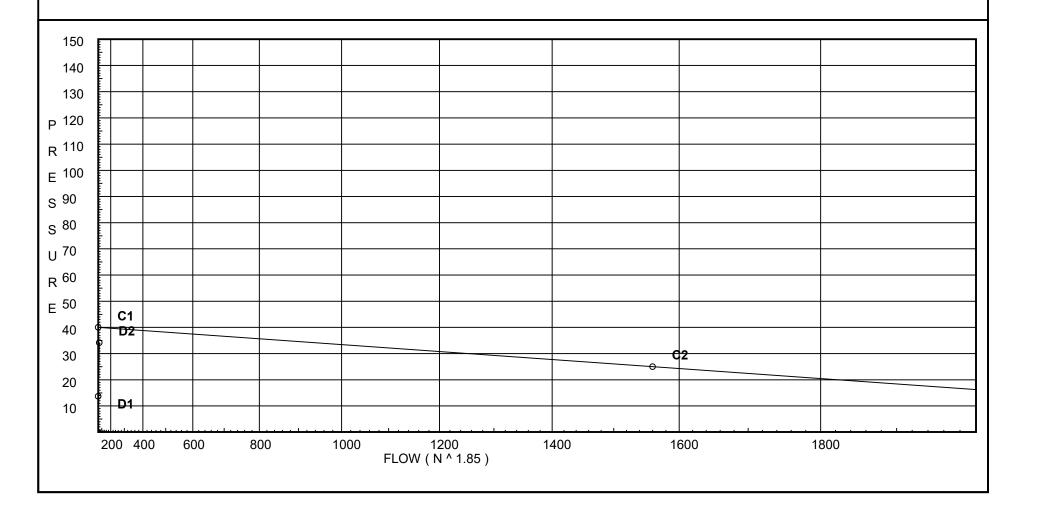
Source of info CITY OF PUYALLUP WATER DIVISON

CONTRACTOR INFO SPRINX FIRE PROTECTION

Address 2709 JAHN AVE. / SUITE H2 / GIG HARBOR

Phone # 253-853-7780

Name of designer ALEXANDER J PARADIS


Authority having jurisdiction CITY OF PUYALLUP

NOTES:

Date 1/2/2025

City Water Supply: C1 - Static Pressure : 40

C2 - Residual Pressure: 25 C2 - Residual Flow : 1560 Demand: D1 - Elevation : 13.677 D2 - System Flow : 55.435
D2 - System Pressure : 34.171
Hose (Demand) : 55.435
Safety Margin : 55.435

$$\begin{array}{c} 7.2 & 13.6 \\ \textit{UP9} \leftarrow \textit{UP8} \leftarrow \textit{UP7} \leftarrow \textit{7} \\ 13.6 \end{array}$$

Fittings Used Summary

	IX FIRE PROTECTION INC. Building B																	_	ige 4 ate 1	 /2/202	5
Fitting I Abbrev	Legend . Name	1/2	3/4	1	11/4	1½	2	2½	3	3½	4	5	6	8	10	12	14	16	18	20	24
В	NFPA 13 Butterfly Valve	0	0	0	0	0	6	7	10	0	12	9	10	12	19	21	0	0	0	0	0
E	NFPA 13 90' Standard Elbow	1	2	2	3	4	5	6	7	8	10	12	14	18	22	27	35	40	45	50	61
G	NFPA 13 Gate Valve	0	0	0	0	0	1	1	1	1	2	2	3	4	5	6	7	8	10	11	13
N *	CPVC 90'Ell Harvel-Spears		7	7	8	9	11	12	13	0	0	0	0	0	0	0	0	0	0	0	0
O *	CPVC Tee - Branch	3	3	5	6	8	10	12	15	0	0	0	0	0	0	0	0	0	0	0	0
R *	CPVC Coupling Tee - Run	1	1	1	1	1	1	2	2	0	0	0	0	0	0	0	0	0	0	0	0
S	NFPA 13 Swing Check	0	0	5	7	9	11	14	16	19	22	27	32	45	55	65					
Т	NFPA 13 90' Flow thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101	121
Ziw	Wilkins 350AST	Fittin	ng gener	ates a F	ixed Los	s Based	d on Flo	W													

Units Summary

Inches Diameter Units Length Units Feet

Flow Units US Gallons per Minute Pressure Units Pounds per Square Inch

Note: Fitting Legend provides equivalent pipe lengths for fittings types of various diameters. Equivalent lengths shown are standard for actual diameters of Sched 40 pipe and CFactors of 120 except as noted with *. The fittings marked with a * show equivalent lengths values supplied by manufacturers based on specific pipe diameters and CFactors and they require no adjustment. All values for fittings not marked with a * will be adjusted in the calculation for CFactors of other than 120 and diameters other than Sched 40 per NFPA.

Page Date 5

1/2/2025

SUPPLY ANALYSIS

Node at Source	Static Pressure	Residual Pressure	Flow	Available Pressure	Total Demand	Required Pressure
TEST	40.0	25	1560.0	39.969	55.43	34.171

NODE ANALYSIS

Node Tag	Elevation	Node Type	Pressure at Node	Discharge at Node	,	lotes	
1	109.58	4.9	7.04	13.0	0.05	256	
2	110.08		6.99				
3	110.08		7.27				
4	110.08		8.99				
5	110.08		9.65				
6	110.08		9.95				
UP3	110.08		10.38				
UP2	99.83		14.94				
UP1	89.58		19.44				
28	89.58		19.75				
UP4	89.58		19.76				
7	89.58		19.92				
7A	89.58		20.35				
TOR	89.58		22.1				
BOR	80.0		27.01				
BKV	78.0		34.15				
WM1	78.0		34.17				
WM2	78.0		34.17				
TEST	78.0		34.17				
8	109.58	4.9	7.05	13.01	0.05	256	
9	110.08	4.0	7.01	44.00	2.25	050	
10	108.58	4.9	8.55	14.33	0.05	256	
11	110.08		8.21				
12	110.08		8.45	4=00			
13	109.58	4.9	9.48	15.09	0.05	256	
14	110.08		9.49				
20	110.08		10.55				
21	110.08		10.63				
22	110.08		10.72				
UP6	110.08		10.76				
24	110.08		10.76				
25	99.83		15.19				
UP5	99.83		15.21				
27	99.83		15.22				
UP9	110.08		10.82				
UP8	99.83		15.26				
UP7	89.58		19.74				
23	110.08		10.73				
26	99.83		15.2				
29	89.58		20.07				

ETC Building B

1/2/2025 Date Node1 Elev1 K Qa Fitting Pipe **CFact** Pt Nom Pe to or **Ftngs** Notes Node2 Elev2 Fact Qt Act Eqiv Total Pf/Ft Pf Len 1 109.580 4.90 13.00 1 0 5.0 0.500 150 7.040 5.000 -0.217to 5.500 2 110.080 13.0 1.101 0.0307 0.169 Vel = 4.382 110.080 0.0 1 R 1.0 8.000 150 6.992 to 1.000 0.0 3 110.080 13.0 1.101 9.000 0.0307 0.276 Vel = 4.383 1 0 110.080 13.01 5.0 10.550 150 7.268 to 5.000 0.0 4 110.080 26.01 1.101 15.550 0.1107 1.721 Vel = 8.774 1.25 R 8.989 110.080 14.33 1.0 7.420 150 1.000 to 0.0 5 40.34 8.420 0.0790 110.080 1.394 0.665 Vel = 8.485 1.0 110.080 0.0 1.25 R 2.750 150 9.654 to 1.000 0.0 6 40.34 1.394 3.750 0.0789 0.296 Vel = 8.48110.080 6 2 10.0 110.080 15.09 0 7.640 150 9.950 10.000 0.0 to UP3 110.080 55.43 2.003 17.640 0.0244 0.430 Vel = 5.64UP3 2 110.080 -20.14 R 1.0 10.250 150 10.380 1.000 4.439 to UP2 99.830 35.29 2.003 11.250 0.0105 0.118 Vel = 3.59UP2 2 99.830 -17.030 10.0 10.250 150 14.937 to 10.000 4.439 UP1 2.003 0.0032 0.064 89.580 18.26 20.250 Vel = 1.86UP1 2 9R 19.440 89.580 0.0 9.0 70.830 150 20 20.0 0.0 to 29.000 2.003 0.0031 28 89.580 18.26 99.830 0.311 Vel = 1.8628 89.580 -12.802 2R 2.0 10.670 150 19.751 2.000 0.0 to UP4 89.580 5.46 2.003 12.670 0.0003 0.004 Vel = 0.56UP4 2 19.755 89.580 23.58 R 1.0 11.000 150 0 10.0 to 11.000 0.0 7 89.580 29.04 2.003 0.0074 Vel = 2.9622.000 0.162 89.580 7 13.60 2 3R 3.0 26.000 150 19.917 to 3.000 0.0 2.003 7A 89.580 42.64 29.000 0.0150 0.434 Vel = 4.342 7A 89.580 12.79 5R 5.0 36.000 150 20.351 20 20.0 36.000 0.0 to **TOR** 89.580 55.43 2.003 Ν 11.0 72.000 0.0243 1.752 Vel = 5.64В **TOR** 89.580 0.0 2 8.183 9.500 120 22.103 S 4.149 15.003 23.186 to **BOR** 80 55.43 2.203 0.0231 32.686 0.756 Vel = 4.67**BOR** 6 Т 43.037 80 0.0 53.000 140 27.008 3E 60.252 103.289 * * Fixed Loss = 6.261 to 7.127 BKV 78 55.43 6.16 Ziw 0.0 156.289 0.0001 0.019 Vel = 0.60**BKV** 78 0.0 6 Τ 43.037 55.000 140 34.154 Ε 20.084 67.425 0.0 to 78 55.43 6.16 G 4.304 122.425 0.0001 0.014 WM1 Vel = 0.60

Page

6

Page 7 Date 1/2/2025

= I C Bull	aing B									Date 1/2/2025
Node1 to	Elev1	К	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	****** Notes *****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf	
WM1	78		0.0	8	Т	55.354	39.000	140	34.168	
.O	70		0.0	0	'	33.334	55.354	140	0.0	
WM2	78		55.43	8.27			94.354	0	0.002	Vel = 0.33
WM2	78		0.0	8			26.000	140	34.170	
to TEST	78		55.43	8.27			26.000	0	0.0 0.001	Vel = 0.33
TEST	-		0.0 55.43	-					34.171	K Factor = 9.48
8	109.580	4.90	13.01	1	0	5.0	0.500	150	7.053	
to	110 000		10.04	1 101			5.000	0.0000	-0.217	Val = 4.00
9	110.080 110.080		13.01 0.0	1.101 1	0	5.0	5.500 3.540	0.0309 150	0.170 7.006	Vel = 4.38
9 to	110.080	1	0.0	I	U	5.0	5.000	130	7.006 0.0	
3	110.080	1	13.01	1.101			8.540	0.0307	0.262	Vel = 4.38
3			0.0 13.01						7.268	K Factor = 4.83
10	108.580	4.90	14.33	1	N	7.0	1.500	150	8.552	
to 11	110.080	1	14.33	1.101			7.000 8.500	0.0368	-0.650 0.313	Vel = 4.83
11	110.080		0.0	1.101	0	5.0	1.500	150	8.215	VCI - 4.00
to						0.0	5.000		0.0	
12	110.080		14.33	1.101			6.500	0.0368	0.239	Vel = 4.83
12 to	110.080		0.0	1	20	10.0	4.580 10.000	150	8.454 0.0	
4	110.080		14.33	1.101			14.580	0.0367	0.535	Vel = 4.83
4			0.0 14.33						8.989	K Factor = 4.78
13	109.580	4.90	15.09	1	0	5.0	0.500	150	9.484	1.70
to							5.000		-0.217	
14	110.080			1.101			5.500	0.0405	0.223	Vel = 5.09
14 to	110.080	l	0.0	1	0	5.0	6.390 5.000	150	9.490 0.0	
6	110.080	1	15.09	1.101			11.390	0.0404	0.460	Vel = 5.09
			0.0							
6	110.000		15.09			4.6	04.070	450	9.950	K Factor = 4.78
UP3 to	110.080	1	20.14	2	4R O	4.0 10.0	31.670 14.000	150	10.380 0.0	
20	110.080	<u> </u>	20.14	2.003			45.670	0.0037	0.170	Vel = 2.05
20	110.080		0.0	2	3R	3.0	19.000	150	10.550	
to 21	110 000		20.44	2 002			3.000	0.0027	0.0	Val = 2.05
21	110.080 110.080		20.14 0.0	2.003	3R	3.0	22.000 20.170	0.0037 150	0.082 10.632	Vel = 2.05
to	110.000	•	0.0	۷	υN	5.0	3.000	100	0.0	
22	110.080	1	20.14	2.003			23.170	0.0038	0.087	Vel = 2.05
22	110.080)	-2.35	2	2R	2.0	10.670 2.000	150	10.719 0.0	
to										

Page 8 Date 1/2/2025 ETC Building B

ETC Buil	iding b								Date 1/2/2025
Node1	Elev1 K	Qa	Nom	Fitting	1	Pipe Ftngs	CFact	Pt Pe	****** Notes *****
Node2	Elev2 Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf	Notes
UP6	110.080	-12.94	2	2R	2.0	11.000	150	10.757	
to	440.000	4.05	0.000			2.000	0.0000	0.0	V-I 0.40
24	110.080 110.080	4.85 2.36	2.003	10R	10.0	13.000 70.830	0.0002 150	0.003 10.760	Vel = 0.49
to	110.000	2.50	۷	20	20.0	30.000	150	0.0	
UP9	110.080	7.21	2.003			100.830	0.0006	0.057	Vel = 0.73
UP9		0.0 7.21						10.817	K Factor = 2.19
UP2	99.830	17.04	2	10R	10.0	71.000	150	14.937	101001 2.10
to				0	10.0	20.000		0.0	
25	99.830	17.04	2.003		0.0	91.000	0.0027	0.250	Vel = 1.73
25 to	99.830	-2.01	2	2R	2.0	10.670 2.000	150	15.187 0.0	
UP5	99.830	15.03	2.003			12.670	0.0022	0.028	Vel = 1.53
UP5	99.830	-10.64	2	2R	2.0	11.000	150	15.215	
to 27	99.830	4.39	2.003			2.000 13.000	0.0002	0.0 0.003	Vel = 0.45
27	99.830	2.00	2	9R	9.0	70.830	150	15.218	
to	00.000	0.00	0.000	20	20.0	29.000	0.0004	0.0	
UP8	99.830	6.39 0.0	2.003			99.830	0.0004	0.044	Vel = 0.65
UP8		6.39						15.262	K Factor = 1.64
UP6	110.080	12.94	2	R	1.0	10.250	150	10.757	
to UP5	99.830	12.94	2.003			1.000 11.250	0.0017	4.439 0.019	Vel = 1.32
UP5	99.830	10.64	2.003	0	10.0	10.250	150	15.215	V G1 = 1.02
to					10.0	10.000		4.439	
UP4	89.580	23.58	2.003			20.250	0.0050	0.101	Vel = 2.40
UP4		0.0 23.58						19.755	K Factor = 5.31
UP9	110.080	7.21	2	R	1.0	10.250	150	10.817	111 40101 0.01
to					-	1.000		4.439	\\
UP8	99.830	7.21	2.003		10.0	11.250	0.0005	0.006	Vel = 0.73
UP8 to	99.830	6.39	2	0	10.0	10.250 10.000	150	15.262 4.439	
UP7	89.580	13.6	2.003			20.250	0.0018	0.037	Vel = 1.38
UP7	89.580	0.0	2	8R	8.0	71.000	150	19.738	
to 7	89.580	13.6	2.003	20	20.0	28.000 99.000	0.0018	0.0 0.179	Vel = 1.38
		0.0							
_7		13.60						19.917	K Factor = 3.05
22 to	110.080	2.36	1.25	3R	3.0 6.0	26.000 9.000	150	10.719 0.0	
to 23	110.080	2.36	1.394	0	0.0	9.000 35.000	0.0004	0.0 0.015	Vel = 0.50
23	110.080	0.0	1.25	5R	5.0	47.580	150	10.734	
to	110 000	0.00	1 204	20	12.0	17.000	0.0004	0.0	Vol = 0.50
_24	110.080	2.36	1.394			64.580	0.0004	0.026	Vel = 0.50

Final Calculations: Hazen-Williams

SPRINX FIRE PROTECTION INC. ETC Building B

28

29

7A

to 7A

to 29 89.580

89.580

89.580

89.580

12.80

12.8

0.0

12.8

0.0

12.80

1.25

1.394

1.25

1.394

2R

0

2R

0

2.0

6.0

2.0

6.0

Fitting Node1 Elev1 Κ Qa Nom Pipe **CFact** Pt **Ftngs** Pe to or Notes Node2 Elev2 Fact Qt Act Eqiv Len Total Pf/Ft Pf 24 2.36 10.760 K Factor = 0.7225 99.830 2.00 1.25 3R 3.0 26.000 150 15.187 Ο 6.0 9.000 0.0 to 26 99.830 2.0 1.394 35.000 0.0003 0.011 Vel = 0.4226 99.830 15.198 0.0 1.25 5R 5.0 47.580 150 20 12.0 0.0 to 17.000 27 99.830 2.0 1.394 64.580 0.0003 0.020 Vel = 0.420.0 27 2.00 15.218 K Factor = 0.51

26.000

8.000

34.000

21.580

29.580

8.000

150

150

0.0094

0.0094

19.751

0.321

20.072

0.279

20.351

0.0

0.0

Page

Date

Vel = 2.69

Vel = 2.69

K Factor = 2.84

9 1/2/2025

2709 Jahn Ave NW, Suite H2, Gig Harbor WA 98335

Ph. (253) 853-7780- www.SprinxFire.com

Hydraulic Calculations

Expires DEC 31, 25 WASHINGTON STATE CERTIFICATE OF COMPETENCY FIRE SPRINKLER SYSTEMS

Joseph G. Faulkner 9491-0699-CEG Level 3 Sprinx Fire Protection, Inc. SPRINFP011LS

Joseph D paulfm 01/07/20
Signature Date

SPRINX FIRE PROTECTION INC. 2709 JAHN AVE NW SUITE H2 GIG HARBOR, WA 98335 253-853-7780

Job Name : ETC Building B

Drawing : FP-3.0

Location : 2902 E PIONEER PUYALLUP, WA 98372

Remote Area : RA#3 Contract : 24-093CM

Data File : ETC Building B MAIN Area 3.WXF

Date 01/02/2025

HYDRAULIC CALCULATIONS for

JOB NAME East Town Crossing Building B

Location 2902 E PIONEER PUYALLUP, WA 98372

Drawing # FP-3.0 Contract # 24-093CM

Date 1/2/2025

DESIGN

Remote area # RA#3

Remote area location STAIRWELL

Occupancy classification LIGHT HAZARD

Density 0.10 - Gpm/SqFt

Area of application 273 - SqFt

Coverage/sprinkler 4 HEADS - SqFt

Type of sprinkler calculated VIKING VK178 QR CHROME DRY HORIZ. SIDEWALL

Sprinklers calculated 4 In-rack demand N/A - GPM Hose streams N/A - GPM

Total water required (including hose streams) 60.3415 - GPM @ 33.3383 - Psi

Type of system WET-CPVC

Volume of system (dry or pre-action) N/A - Gal

WATER SUPPLY INFORMATION

Test date 4/16/2024

Location 2902 E PIONEER

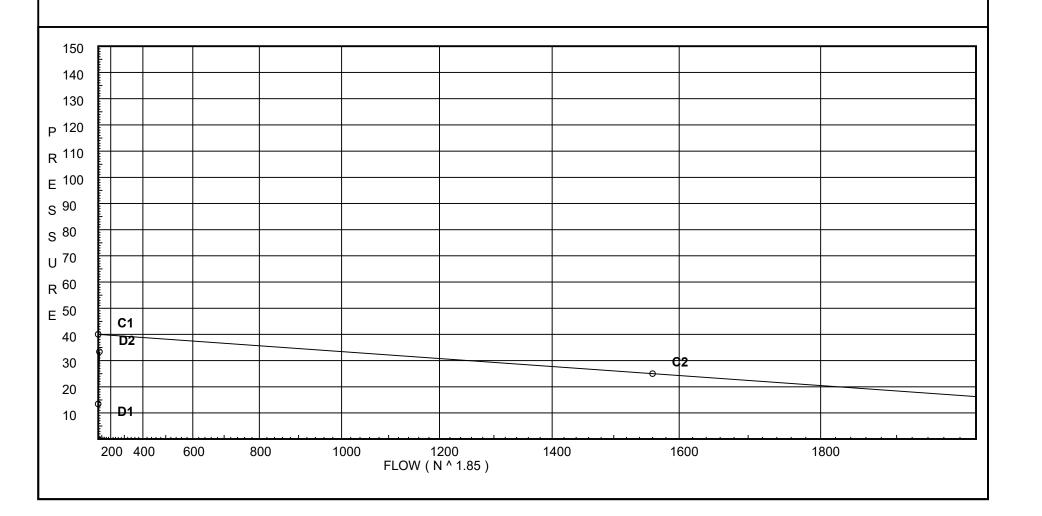
Source of info CITY OF PUYALLUP WATER DIVISON

CONTRACTOR INFO SPRINX FIRE PROTECTION

Address 2709 JAHN AVE. / SUITE H2 / GIG HARBOR

Phone # 253-853-7780

Name of designer ALEXANDER J PARADIS
Authority having jurisdiction CITY OF PUYALLUP


NOTES:

Date 01/02/2025

City Water Supply: C1 - Static Pressure : 40 C2 - Residual Pressure: 25 C2 - Residual Flow : 1560

Demand:

D1 - Elevation : 13.426 D2 - System Flow : 60.342
D2 - System Pressure : 33.338
Hose (Demand) : 60.342
Safety Margin : 60.342

Date 01/02/2025

Fittings Used Summary

	IX FIRE PROTECTION INC. Building B																		ige 4 ate 0	 1/02/20	025
Fitting L Abbrev	Legend . Name	1/2	3/4	1	11/4	1½	2	2½	3	3½	4	5	6	8	10	12	14	16	18	20	24
В	NFPA 13 Butterfly Valve	0	0	0	0	0	6	7	10	0	12	9	10	12	19	21	0	0	0	0	0
E	NFPA 13 90' Standard Elbow	1	2	2	3	4	5	6	7	8	10	12	14	18	22	27	35	40	45	50	61
G	NFPA 13 Gate Valve	0	0	0	0	0	1	1	1	1	2	2	3	4	5	6	7	8	10	11	13
N *	CPVC 90'Ell Harvel-Spears		7	7	8	9	11	12	13	0	0	0	0	0	0	0	0	0	0	0	0
O *	CPVC Tee - Branch	3	3	5	6	8	10	12	15	0	0	0	0	0	0	0	0	0	0	0	0
R *	CPVC Coupling Tee - Run	1	1	1	1	1	1	2	2	0	0	0	0	0	0	0	0	0	0	0	0
S	NFPA 13 Swing Check	0	0	5	7	9	11	14	16	19	22	27	32	45	55	65					
T	NFPA 13 90' Flow thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101	121
Ziw	Wilkins 350AST	Fittin	ig gener	ates a F	ixed Los	s Based	d on Flo	W													

Units Summary

Diameter Units Inches Length Units Feet

Flow Units US Gallons per Minute Pressure Units Pounds per Square Inch

Note: Fitting Legend provides equivalent pipe lengths for fittings types of various diameters. Equivalent lengths shown are standard for actual diameters of Sched 40 pipe and CFactors of 120 except as noted with *. The fittings marked with a * show equivalent lengths values supplied by manufacturers based on specific pipe diameters and CFactors and they require no adjustment. All values for fittings not marked with a * will be adjusted in the calculation for CFactors of other than 120 and diameters other than Sched 40 per NFPA.

Page Date 5

01/02/2025

011					1010
SUI	PPL	.Y A	١NA	L	YSIS

Node at Source	Static Pressure	Residual Pressure	Flow	Available Pressure	Total Demand	Required Pressure
TEST	40.0	25	1560.0	39.963	60.34	33.338

NODE ANALYSIS

Node Tag	Elevation	Node Type	Pressure at Node	Discharge at Node		Notes	
30 5 6 UP3 UP2 UP1 28 UP4 7 7A TOR BOR BKV WM1 WM2	109.0 110.08 110.08 110.08 99.83 89.58 89.58 89.58 89.58 89.58 89.58 89.58 80.0 78.0 78.0	5.6	7.53 9.1 9.15 9.19 13.71 18.2 18.46 18.46 18.64 19.15 21.2 26.23 33.32 33.33 33.34	15.37	0.1	130.24	
TEST 40 50 51	78.0 109.0 109.0 110.08	5.6 5.6	33.34 7.28 7.0 7.96	15.11 14.82	0.1 0.1	82.25 123.37	
60 20 21 22 UP6 24 25 UP5 27 UP9 UP8 UP7 23 26 29	109.0 110.08 110.08 110.08 110.08 110.08 99.83 99.83 110.08 99.83 89.58 110.08 99.83	5.6	7.22 9.11 9.3 9.39 9.39 13.86 13.88 13.88 13.88 13.88 13.83 18.41 9.33 13.87 18.83	15.05	0.1	73.5	

Page 6 Date 01 ETC Building B 01/02/2025

ETC Buil	aing B									Date 01/02/2025
Node1	Elev1	K	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	****** Notes *****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf	110100
30 to	109	5.60	15.37	1	4N	28.0	20.830 28.000	150	7.529 -0.468	
5	110.080)	15.37	1.101			48.830	0.0418	2.041	Vel = 5.18
5 to	110.080)	0.0	1.25	R	1.0	2.750 1.000	150	9.102 0.0	
6	110.080		15.37	1.394			3.750	0.0133	0.050	Vel = 3.23
6 to	110.080		0.0	2	0	10.0	7.640 10.000	150	9.152 0.0	V I 450
UP3 UP3	110.080		15.37 13.76	2.003	R	1.0	17.640 10.250	0.0023 150	0.040 9.192	Vel = 1.56
to UP2	99.830)	29.13	2.003	ĸ	1.0	1.000 1.250 11.250	0.0074	9.192 4.439 0.083	Vel = 2.97
UP2	99.830		-12.78	2.003	0	10.0	10.250	150	13.714	V 61 - 2.91
to UP1	89.580		16.35	2.003	Ü	10.0	10.000 20.250	0.0026	4.439 0.052	Vel = 1.66
UP1	89.580		0.0	2	9R	9.0	70.830	150	18.205	
to	00 500		16 DE	2 002	20	20.0	29.000	0.0005	0.0	Val = 166
28 28	89.580 89.580		16.35 -13.84	2.003	2R	2.0	99.830 10.670	0.0025 150	0.253 18.458	Vel = 1.66
to	00.000		-10.04	2	211	2.0	2.000	100	0.0	
UP4	89.580		2.51	2.003			12.670	0.0002	0.002	Vel = 0.26
UP4 to	89.580		28.45	2	R O	1.0 10.0	11.000 11.000	150	18.460 0.0	
7	89.580		30.96	2.003	O	10.0	22.000	0.0083	0.182	Vel = 3.15
7 to	89.580		15.55	2	3R	3.0	26.000 3.000	150	18.642 0.0	
_7A	89.580		46.51	2.003			29.000	0.0176	0.510	Vel = 4.74
7A to	89.580		13.83	2	5R 2O	5.0 20.0	36.000 36.000	150	19.152 0.0	
TOR	89.580		60.34	2.003		11.0	72.000	0.0285	2.049	Vel = 6.14
TOR to	89.580		0.0	2	B S	8.183 15.003	9.500 23.186	120	21.201 4.149	V. 1. 500
BOR BOR	80 80		0.0	2.203 6	T	43.037	32.686 53.000	0.0271 140	0.885 26.235	Vel = 5.08
to BKV	78		60.34	6.16	3E Ziw	60.252 0.0	103.289 156.289	0.0001	7.062 0.021	* * Fixed Loss = 6.195 Vel = 0.65
BKV	78		0.0	6	T	43.037	55.000	140	33.318	70. 0.00
to WM1	78		60.34	6.16	E G	20.084 4.304	67.425 122.425	0.0001	0.0 0.016	Vel = 0.65
WM1	78		0.0	8	T	55.354	39.000	140	33.334	V C1 0.00
to					-		55.354		0.0	
WM2	78		60.34	8.27			94.354	0	0.003	Vel = 0.36
WM2 to	78		0.0	8			26.000	140	33.337 0.0	
TEST	78		60.34	8.27			26.000	0	0.001	Vel = 0.36
TEST			0.0 60.34						33.338	K Factor = 10.45
40	109	5.60	15.11	1	4N	28.0	20.580	150	7.282	
to 20	110.080)	15.11	1.101	3R O	3.0 5.0	36.000 56.580	0.0405	-0.468 2.293	Vel = 5.09

Page 7 Date 01 ETC Building B 01/02/2025

ETC Buil	unig b									Date 01/02/2025
Node1 to	Elev1	K	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	****** Notes *****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf	
20			0.0 15.11						9.107	K Factor = 5.01
50	109	5.60	14.82	1	3N	21.0	10.670	150	7.000	
to					0	5.0	26.000		-0.468	
51	110.080		14.82	1.101	20	2.0	36.670	0.0391	1.433	Vel = 4.99
51 to	110.080	J	15.04	1.25	2R O	2.0 6.0	17.250 8.000	150	7.965 0.0	
21	110.080)	29.86	1.394			25.250	0.0453	1.143	Vel = 6.28
21			0.0 29.86						9.108	K Factor = 9.89
60	109	5.60	15.05	1	3N	21.0	4.170	150	7.220	
to 51	110 000	`	15.05	1 101	0	5.0	26.000	0.0400	-0.468	Val = 5.07
51	110.080	J	15.05 0.0	1.101			30.170	0.0402	1.213	Vel = 5.07
51			0.0 15.05						7.965	K Factor = 5.33
UP3	110.080)	-13.77	2	4R	4.0	31.670	150	9.192	
to	440.000		40.77	0.000	0	10.0	14.000	0.0040	0.0	V 1 4 40
20	110.080		-13.77	2.003	٥٦	0.0	45.670	-0.0019	-0.085	Vel = 1.40
20 to	110.080)	15.12	2	3R	3.0	19.000 3.000	150	9.107 0.0	
21	110.080)	1.35	2.003			22.000	0	0.001	Vel = 0.14
21	110.080)	29.86	2	3R	3.0	20.170	150	9.108	
to 22	110.080	1	31.21	2.003			3.000 23.170	0.0084	0.0 0.194	Vel = 3.18
22	110.080		-3.59	2.003	2R	2.0	10.670	150	9.302	Vei - 3.10
to	110.000	,	-0.00	۷	211	2.0	2.000	100	0.0	
UP6	110.080		27.62	2.003			12.670	0.0067	0.085	Vel = 2.81
UP6	110.080)	-22.16	2	2R	2.0	11.000 2.000	150	9.387	
to 24	110.080)	5.46	2.003			13.000	0.0004	0.0 0.005	Vel = 0.56
24	110.080		3.59	2	10R	10.0	70.830	150	9.392	
to					20	20.0	30.000		0.0	V I 0.00
UP9	110.080)	9.05	2.003			100.830	0.0009	0.086	Vel = 0.92
UP9			0.0 9.05						9.478	K Factor = 2.94
UP2	99.830		12.78	2	10R	10.0	71.000	150	13.714	
to					0	10.0	20.000		0.0	
25	99.830		12.78	2.003			91.000	0.0016	0.147	Vel = 1.30
25 to	99.830		-1.57	2	2R	2.0	10.670 2.000	150	13.861 0.0	
UP5	99.830		11.21	2.003			12.670	0.0013	0.016	Vel = 1.14
UP5	99.830		-6.29	2	2R	2.0	11.000	150	13.877	
to 27	99.830		4.92	2.003			2.000 13.000	0.0002	0.0 0.003	Vel = 0.50
27	99.830		1.57	2.003	9R	9.0	70.830	150	13.880	v GI - U.UU
to					20	20.0	29.000		0.0	
UP8	99.830		6.49	2.003			99.830	0.0005	0.046	Vel = 0.66

Page 8 Date 01 ETC Building B 01/02/2025

ETC Buil	ding B									Date	01/02	/2025
Node1 to		K	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	*****	Notes	****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf			
UP8			0.0 6.49						13.926	K Factor =	- 17/	
UP6	110.080		22.16	2	R	1.0	10.250	150	9.387	IX I actor -	- 1./4	
to	110.000		22.10	۷	1	1.0	1.000	130	4.439			
UP5	99.830		22.16	2.003			11.250	0.0045	0.051	Vel = 2.2	26	
UP5	99.830		6.29	2	0	10.0	10.250	150	13.877			
to UP4	89.580		28.45	2.003			10.000 20.250	0.0071	4.439 0.144	Vel = 2.9	an	
01 4	00.000		0.0	2.000			20.200	0.0071	0.144	VCI - 2.0	,,,	
UP4			28.45						18.460	K Factor =	= 6.62	
UP9	110.080	1	9.05	2	R	1.0	10.250	150	9.478			
to	00.000		0.05	0.000			1.000	0.0000	4.439	\/ \	20	
UP8	99.830		9.05	2.003		40.0	11.250	0.0008	0.009	Vel = 0.9	92	
UP8 to	99.830		6.49	2	0	10.0	10.250 10.000	150	13.926 4.439			
UP7	89.580		15.54	2.003			20.250	0.0024	0.048	Vel = 1.5	58	
UP7	89.580		0.0	2	8R	8.0	71.000	150	18.413			
to	00 500		45.54	0.000	20	20.0	28.000	0.0000	0.0			
7	89.580		15.54	2.003			99.000	0.0023	0.229	Vel = 1.5	98	
7			0.0 15.54						18.642	K Factor =	= 3.60	
22	110.080	<u> </u>	3.59	1.25	3R	3.0	26.000	150	9.302	TOT GOLOI	0.00	
to	110.000		0.00	1.20	0	6.0	9.000	100	0.0			
23	110.080)	3.59	1.394			35.000	0.0009	0.032	Vel = 0.7	' 5	
23	110.080)	0.0	1.25	5R	5.0	47.580	150	9.334			
to 24	110.080	1	3.59	1.394	20	12.0	17.000 64.580	0.0009	0.0 0.058	Vel = 0.7	75	
24	110.000		0.0	1.334			04.500	0.0009	0.030	VCI - 0.1	<u>J</u>	
24			3.59						9.392	K Factor =	= 1.17	
25	99.830		1.58	1.25	3R	3.0	26.000	150	13.861			
to					0	6.0	9.000		0.0		_	
26	99.830		1.58	1.394			35.000	0.0002	0.007	Vel = 0.3	33	
26 to	99.830		0.0	1.25	5R 2O	5.0 12.0	47.580 17.000	150	13.868 0.0			
27	99.830		1.58	1.394		12.0	64.580	0.0002	0.012	Vel = 0.3	33	
			0.0									
27			1.58						13.880	K Factor =	0.42	
28	89.580		13.83	1.25	2R	2.0	26.000	150	18.458			
to 29	89.580		13.83	1.394	0	6.0	8.000 34.000	0.0109	0.0 0.371	Vel = 2.9	11	
29	89.580		0.0	1.394	2R	2.0	21.580	150	18.829	VEI - 2.8	7 1	
to	09.560		0.0	1.20	0	6.0	8.000	150	0.029			
7A	89.580		13.83	1.394		-	29.580	0.0109	0.323	Vel = 2.9	91	
			0.0									
7A			13.83						19.152	K Factor =	= 3.16	

MEMORANDUM

TO: BRIAN JOHNSON, WATER SYSTEM

SPECIALIST

FROM: KERRI SIDEBOTTOM, P.E.

DATE: APRIL 16, 2024

SUBJECT: EAST TOWN CROSSING ADDITIONAL

FIRE FLOW AVAILABILITY

CITY OF PUYALLUP, PIERCE COUNTY,

WASHINGTON G&O #21415.19

Per your request, I have analyzed the available fire flow at the proposed East Town Crossing development, in the central part of the City's water service area. Fire flow at this location was previously analyzed in a memo from Gray & Osborne, dated February 14, 2024. The Developer has proposed a Revised Water Piping Plan for the site, which has been analyzed in this memo. The setup of the hydraulic model and the assumptions used to determine the static pressure and available fire flow are noted as follows.

- The available fire flows and pressures are measured at 14 nodes, corresponding to the proposed hydrants within the development, as shown in the attached figure.
- Water system demands are based on projected 2038 demands and reservoirs are depleted of fire suppression and equalizing storage, as established in the 2019 Water System Plan (WSP), approved by the Department of Health (DOH). The City's water model was updated in 2021 to reflect additional system improvements since the WSP was developed.
- All pump stations are idle, and the Salmon Springs source is operating at 1,100 gallons per minute (gpm).

The development is located in Zone 1, which is supplied by Maplewood Springs and the 15th Avenue SE Reservoirs. The system was modeled as-is, with the proposed piping indicated on the attached figure. The model was run for two different scenarios, all of which include new 8-inch piping. The new piping for Scenario 1 includes the Phase 1 piping shown on the attached figure in pink. Scenario 2 includes additional piping for Phase 2 of the development is shown in orange on the attached figure.

The available pressure under 2038 peak hour demands at the hydrants is included in Table 1.

TABLE 1
Peak Hour Pressure

Node	Hydrant	Elevation, feet	Peak Hour Pressure, psi
J2238	J	71	41
J2240	L	72	41
J2242	M	72	40
J2244	N	76	39
J2246	Н	76	39
J2248	I	76	41
J2250	F	73	40
J2252	D	69	42
J2254	С	67	43
J2256	В	66	43
J2258	A	66	43
J2260	Е	72	41
J2274	G	75	39
J2276	K	71	41

The peak hour pressures within the development are essentially the same under either of the proposed scenarios, and the looping does not appreciably impact the pressures.

SCENARIO 1

Scenario 1 includes the piping planned for Phase 1, shown in pink on the attached figure. The piping includes 8-inch mains, mostly dead-ends, extending from the existing 8-inch main running from north to south through the site, as well as a connection to the 16-inch main on Shaw Road, to the west. Part of the existing 8-inch main will be replaced during construction of the development.

Available fire flow was modeled at 12 of the proposed hydrants in the development; Hydrants A through L. The hydrants are located on 8-inch pipes throughout the development, many of which are dead-ends. The results of this modeling are included in Table 2. The modeled fire flow is available at any hydrant individually, but not simultaneously.

TABLE 2

Modeled Fire Flow Availability, Scenario 1

		Available Fire	Residual Pressure at	Minimum System Pressure at Available
Node	Hydrant		Available Fire Flow, psi	Fire Flow, psi
J2238	J	$2,140^{(1)}$	25	25
J2240	L	$1,560^{(1)}$	23	23
J2246	Н	$1,560^{(1)}$	22	22
J2248	I	$2,580^{(1)}$	23	23
J2250	F	$1,560^{(1)}$	25	25
J2252	D	$2,170^{(1)}$	28	28
J2254	C	$1,920^{(1)}$	29	28
J2256	В	$2,230^{(1)}$	26	26
J2258	A	$1,560^{(1)}$	28	28
J2260	Е	1,560 ⁽¹⁾	23	23
J2274	G	1,560 ⁽¹⁾	25	25
J2276	K	1,560 ⁽¹⁾	27	27

⁽¹⁾ Limited by maximum system-wide velocity of 10 feet per second.

Fire flow to all of the hydrants is limited by the 10-fps maximum velocity through the existing and proposed 8-inch pipes in this scenario.

SCENARIO 2

Scenario 2 includes the piping indicated for Phases 1 and 2, shown in pink and orange on the attached figure. The piping includes 8-inch pipes extending from the existing 8-inch main running from north to south through the site, a connection to the existing 16-inch main on Shaw Road to the west, and improved looping as compared with Scenario 1.

Available fire flow was measured at the 14 proposed hydrants in the development; Hydrants A through N. The hydrants are located on 8-inch pipes throughout the development. The results of this modeling are included in Table. The modeled fire flow is available at any hydrant individually, but not simultaneously.

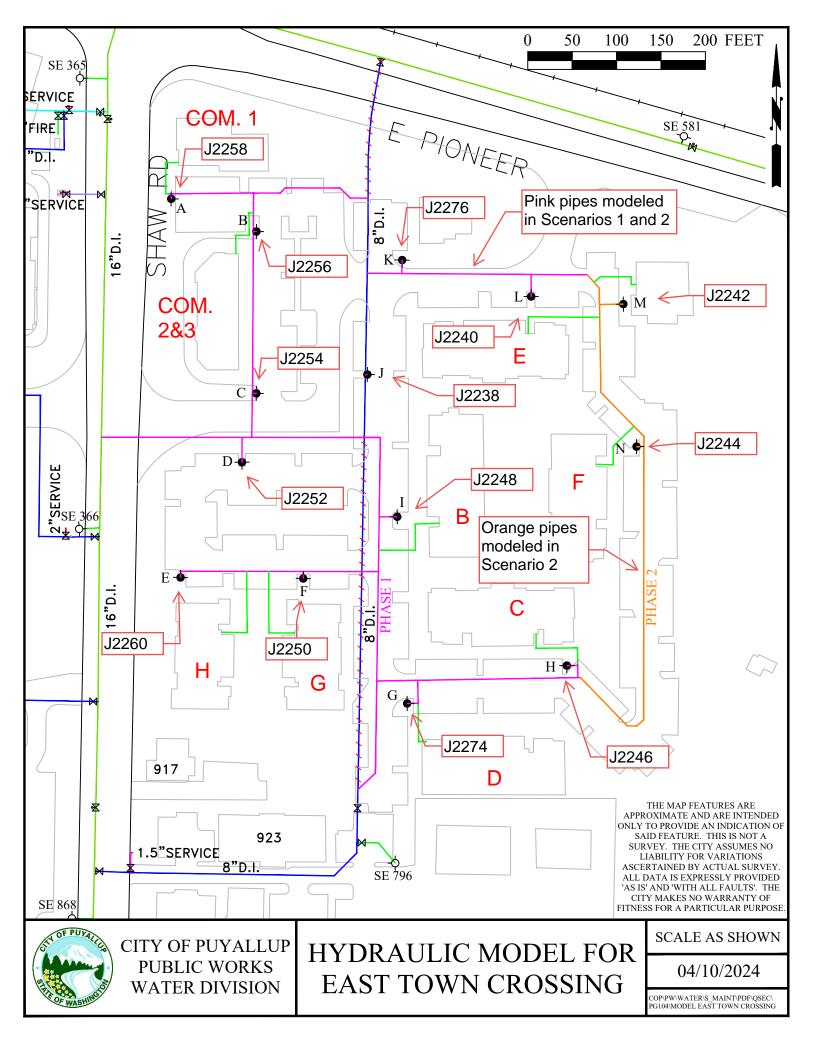
TABLE 3

Modeled Fire Flow Availability, Scenario 2

Node	Hydrant	Available Fire Flow, gpm	Residual Pressure at Available Fire Flow, psi	Minimum System Pressure at Available Fire Flow, psi
J2238	J	$2,430^{(1)}$	25	25
J2240	L	2,340 ⁽¹⁾	21	21
J2242	M	2,320(2)	20	20
J2244	N	2,120 ⁽²⁾	20	20
J2246	Н	2,330 ⁽¹⁾	20	20
J2248	I	$2,540^{(1)}$	24	24
J2250	F	1,560 ⁽¹⁾	26	26
J2252	D	$2,230^{(1)}$	28	28
J2254	C	1,980 ⁽¹⁾	29	28
J2256	В	$2,340^{(1)}$	26	26
J2258	A	1,560 ⁽¹⁾	38	38
J2260	Е	1,560 ⁽¹⁾	23	23
J2274	G	1,980 ⁽¹⁾	25	25
J2276	K	$2,040^{(1)}$	25	25

- (1) Limited by maximum system-wide velocity of 10 fps.
- (2) Limited by minimum system-wide pressure of 20 psi at all service locations.

Fire flow to the hydrants is limited by the 10-fps maximum velocity through the existing and proposed 8-inch pipes.


It should be noted that the dead-end 8-inch mains within the proposed site can only provide 1,560 gpm, due to the City's 10-fps velocity limitation considered for the fire flow analysis. Therefore, if 1,500 gpm is required at the hydrant, located on a dead-end main, there is essentially no additional flow available for the sprinkler system supplied by the same dead-end main. This impacts Hydrants A, E, and F in both scenarios, and additionally Hydrants G and H in Scenario 1 only.

The Department of Health and City Standards for water distribution systems are to meet the peak hourly demand of the system while providing a minimum pressure of 30 psi, system-wide. Under peak daily demand with a fire flow, the system is designed to maintain a minimum pressure of 20 psi, system-wide. Although the peak hourly demand pressure may currently be higher than these standards, the Developer must recognize that

the City may not provide pressure higher than 30 psi in the future. The flows and pressures determined in this memo are based on the approximate hydrant elevation at ground level. The Developer may design their sprinkler system for whatever pressure they wish, however they must recognize and be responsible for conditions when the pressure may be less than currently exists.

KS/sr

