

City of Payallup SSUED FERMIT Building Planning Engineering Public Works Fire Traffic

Calculations required to be provided by the Permittee on site for all Inspections

MiTek, Inc.

Re: 4448984

MKM EAST TOWN BLDG H

The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Builders FirstSource (Arlington, WA).

Pages or sheets covered by this seal: R86730494 thru R86730584

My license renewal date for the state of Washington is September 28, 2025.

Zhao, Xiaoming

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MITek or TRENCO. Any project specific information included is for MITek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	A01	California	4	1	Job Reference (optional)	R86730494

live load applied where required.

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:09 ID:1jDs?7e0NjHsZYUwXgjM0UzIsn1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	3-7-10	10-1-6	13-9-0	
Casha	3-7-10	6-5-12	3-7-10	
Scale = 1:46.3				

	(A, Y): [2:0-6	5-0,0-0-6],	[3:0-2-4,0-2-0], [5:0-	-2-4,0-2-0], [0:0-0-0,0-0-6									
Loading TCLL (Roof Snow = TCDL BCLL BCDL	= 25.0)	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC201	8/TPI2014	CSI TC BC WB Matrix-SH	0.56 0.37 0.11	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.11 0.02	(loc) 8-9 8-9 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 54 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x4 HF No 2x4 HF No 2x4 HF No 2x4 HF No 2x0 O cp Rigid ceilir bracing. (size) Max Horiz Max Uplift Max Grav (lb) - Maxin Tension 1-2=0/143 4-5=-886(5) 2-9=-69/90 3-9=0/310 4-9=-345/1	2.2 .2 .2 wood she purlins, ex urlins (5-9 g directly 2=0-3-8, 6 2=62 (LC 2=-102 (L 2=-102 (L 2=1100 (L mum Com , 2-3=-116 94, 5-6=-1)5, 8-9=-1: , 5-8=-0/31 00	athing directly applie (cept -14 max.): 3-5. applied or 10-0-0 oc 3=0-3-8 13) C 14), 6=-102 (LC 19 .C 35), 6=1100 (LC 3 pression/Maximum 35/96, 3-4=-886/94, 165/96, 6-7=0/143 31/1163, 6-8=-85/90 0, 4-8=-345/100,	3) 4) 4) 5) 5) 7) 5) 9) 35) 1(5 1	Unbalanced design. This truss ha load of 16.0 overhangs n Provide aded This truss ha chord live loa * This truss l on the bottoo 3-06-00 tall l chord and at All bearings Provide mec bearing plate 2 and 102 lb D) This truss is International referenced s I) Graphical pu or the orient bottom chore	snow loads have as been designed psf or 2.00 times on-concurrent wit quate drainage to as been designed ad nonconcurrent has been designed by 2-00-00 wide w y other members are assumed to b thanical connectio e capable of without pulift at joint 6. designed in accoo Building Code se tandard ANSI/TP urlin representatio ation of the purlin d.	been cor for great flat roof le h other li prevent for a 10. with any d for a liv as where vill fit betv s e HF No. n (by oth tanding 1 rdance w ection 230 I 1. n does no along the	nsidered for t er of min roo bad of 25.0 p ve loads. water pondin 0 psf bottom 0 other live loa e load of 20. a rectangle veen the bott 2. ers) of truss 02 lb uplift a ith the 2018 06.1 and bt depict the a top and/or	his f live sof on g. dos. Opsf to t joint size					
NOTES 1) Wind: AS Vasd=87r II; Exp B; and C-C I 3-9-6, Ext 9-11-10, I 14-2-9 to end vertic forces & I DOL=1.6 2) TCLL: AS DOL= 1.7 Ce=1.0; C	CE 7-16; Vult mph; TCDL=4 Enclosed; MI Exterior(2E) - terior(2R) 3-9 Exterior(2R) 3-9 Exterior(2R) 3- t5-9-0 zone; cal left and rig WWFRS for re 0 plate grip D CCE 7-16; Pf= 15); Is=1.0; R Cs=1.00; Ct=1	=110mph i.2psf; BC WFRS (en 2-0-0 to 1- -6 to 8-0-5 0-11-10 to cantilever ht expose eactions si oL=1.60 25.0 psf (i ough Cat I.10; IBC	(3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zon- 0-0, Interior (1) 1-0-6 5, Interior (1) 8-0-5 to 14-2-9, Interior (1) 1eft and right expose; d;C-C for members a hown; Lumber Lum DOL = 1.15 Pla B; Partially Exp.; 1607.11.2 minimum I	12 Cat. e 0 to o ed ; Lu and 1) te roof	2) Hanger(s) or provided suf Ib down and up at 6-0-12 and 177 Ib d The design/s responsibility DAD CASE(S) Dead + Sno Increase=1 Uniform Lo Vert: 1-3 Concentrat Vert: 3=-	or other connection ficient to support of 118 lb up at 3-9- 2, and 118 lb down own and 118 lb up selection of such of y of others. Standard ow (balanced): Lu .15 ads (lb/ft) =-80, 3-5=-80, 5-7 ed Loads (lb) 78, 5=-78	device(s concentra 6, 118 lb n and 92 p at 9-11 connectic mber Inc 7=-80, 2-	 shall be ated load(s) / down and 9: lb up at 7-8- -10 on top cl n device(s) is rease=1.15, 6=-20 	177 2 lb 4, hord. s the Plate				HORESSIONA	G ZHAO SHENGTON TA BER GING

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

-----February 17,2025

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	A02	California Girder	4	1	Job Reference (optional)	R86730495

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:10 ID:9DVmkZoAJjv0dY_QouSP2EzIsmq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	<u> 1-7-10 </u>	6-10-8	12-1-6	13-9-0
	1-7-10	5-2-14	5-2-14	1-7-10
Scale = 1:47.6		-	-	
Plate Offsets (X, Y): [2:0-6-0,0-0-10], [3:0-7-12,0-1-4], [5:	0-7-12,0-1-4], [6:0-6-0,0-0-10	0]		

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL		25.0	Plate Grip DOL	1.15		TC	0.88	Vert(LL)	-0.17	9	>944	240	M18AHS	145/140	
(Roof Snow =	25.0)		Lumber DOL	1.15		BC	0.42	Vert(CT)	-0.26	9	>620	180	MT20	185/148	
TCDL		15.0	Rep Stress Incr	NO		WB	0.36	Horz(CT)	0.03	6	n/a	n/a			
BCLL		0.0*	Code	IBC201	8/TPI2014	Matrix-SH									
BCDL		10.0											Weight: 54 lb	FT = 10%	
LUMBER				5) Provide adeo	uate drainage to	prevent	water pondin	q.						
TOP CHORD	2x4 HF No.2	2		6) All plates are	MT20 plates unle	ess other	wise indicate	ed.						
BOT CHORD	2x4 HF No.2	2		7) This truss ha	s been designed	for a 10.0	0 psf bottom							
WEBS	2x4 HF No.2	2			chord live loa	ad nonconcurrent	with any	other live loa	ads.						
BRACING				8) * This truss h	as been designed	d for a liv	e load of 20.	0psf						
TOP CHORD	Structural w	ood she	athing directly applied	d or	on the bottor	n chord in all area	as where	a rectangle							
	4-9-5 oc pu	rlins, exc	ept		3-06-00 tall t	by 2-00-00 wide w		veen the bott	om						
	2-0-0 oc pu	rlins (2-5	-1 max.): 3-5.	q	All hearings	are assumed to be	e HF No	2							
BOT CHORD	Rigid ceiling	gairectly	applied or 10-0-0 oc	1	0) Provide mec	hanical connection	n (by oth	ers) of truss	to						
REACTIONS	(size) 2	-0-3-8 6	\$-0-3-8		bearing plate	capable of withst	tanding 1	00 Ib uplift a	t joint						
REACTIONS	(SIZE) 2 Max Horiz 2	=0-3-8, 0 =39 (I C	g)		2 and 100 lb	uplift at joint 6.									
	Max Unlift 2	=-100 (LC	5) C 10) 6=-100 (I C 11	1) 1	 This truss is 	designed in accor	rdance w	ith the 2018							
	Max Grav 2	= 100 (E =817 (LC	C 17), 6=817 (LC 18)	.,	International	Building Code se	ction 230	06.1 and							
FORCES	(lb) - Maxim	um Com	pression/Maximum	1	referenced s	rlin ronrosontation	11. n door ni	at donict the	sizo						
	Tension				or the orients	ation of the purlin:	along the	ton and/or	SIZE						
TOP CHORD	1-2=0/143, 2	2-3=-130	4/100, 3-4=-2749/19	19,	bottom chord	l.	along are								
	4-5=-2749/1	199, 5-6=	-1303/99, 6-7=0/143	۶ 1	3) Hanger(s) or	other connection	device(s) shall be							
BOT CHORD	2-10=-76/11	17, 9-10	=-84/1104, 8-9=-87/	1123,	provided suff	icient to support of	concentra	ated load(s) 9	98 lb						
	6-8=-79/113	37	4444740 40 0004		down and 24	7 lb up at 1-9-6,	97 lb dov	vn and 32 lb	up at						
WEB5	3-10=-22/17	74, 3-9=- 718 5-8-	111/1718, 4-9=-039/ 22/17/	114,	4-0-12, 104	b down and 37 lb	up at 6-	0-12, 104 lb	down						
NOTES	5-5=-110/17	10, 5-0-	-22/174		and 37 ib up	at 7-8-4, and 97	7 Ib up at	and 32 ib up	at						
1) Wind: AS	CE 7-16: \/ult-	.110mnh	(3-second quet)		chord and 8	Ib down at 2-0-1	28 lb dc	wn at 4-0-1	28				OMIN	G 71	
Vasd=87r	mph TCDI =4	2nsf ⁻ BC	DI = 6 Opsf h = 25 ft C	at	lb down at 6	-0-12. 8 lb down a	at 7-8-4.	and 8 lb dow	vn at				TA	CHA	
II: Exp B:	Enclosed: MW	/FRS (en	velope) exterior zone	e:	9-8-4, and 8	lb down at 11-8-4	4 on bott	om chord. Th	he				T OF WA	SHIN	
cantilever	left and right e	exposed	; end vertical left and	l í	design/selec	tion of such conne	ection de	vice(s) is the				7	SV CT		
right expo	sed; Lumber D	DOL=1.6	0 plate grip DOL=1.6	0	responsibility	of others.						5		S 9 2	
2) TCLL: AS	CE 7-16; Pf=2	5.0 psf (l	Lum DOL = 1.15 Plat	te 1	4) In the LOAD	CASE(S) section	, loads a	pplied to the	face						
DOL = 1.	15); ls=1.0; Ro	ugh Cat	B; Partially Exp.;		of the truss a	ire noted as front	(F) or ba	ск (В).							
Ce=1.0; C	S=1.00; Ct=1.	10; IBC 1	1607.11.2 minimum r	1 100 [°]	OAD CASE(S)	Standard			B I (
3) Linhalanc	applied where i	have be	en considered for thi	1 ie) Dead + Sho	w (balanced): Lui	mber Inc	rease=1.15,	Plate				P 540	74 0 5 5	
design		nave be		10		ads (lb/ft)							CGIST	EREV	
 This truss 	has been des	igned for	greater of min roof li	ive	Vert 1-3	=-80 3-5=-80 5-7	7=-80 2-1	6=-20					SSIG	ENGL	
load of 16	6.0 psf or 2.00	times flat	roof load of 25.0 psf	fon	Concentrate	ed Loads (lb)	, 2 .						NA	LDI	
overhang	s non-concurre	ent with c	other live loads.		Vert: 3=8	5, 5=85									
						,							February	17,2025	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Page: 1

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	A03	California	4	1	Job Reference (optional)	R86730496

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:11 ID:VeFpefR_8oG7e5GrbIQcN6zIsnH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	5-7-10	8-1-6	13-9-0	
Scale = 1:58.8	5-7-10	2-5-12	5-7-10	

Plate Offsets (X, Y):	[2:0-6-0,0-0-6], [3:0-7-12,0-1-4], [4:0-2-4,0-2-4], [5:0-6-0,0-0-6]
-----------------------	---

						-							-	
Loading TCLL (Roof Snow = TCDL BCLL	25.0)	(psf) 25.0 15.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2018	/TPI2014	CSI TC BC WB Matrix-SH	0.63 0.38 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.05 -0.08 0.02	(loc) 2-8 2-8 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES M18AHS MT20	GRIP 145/140 185/148
BCDL		10.0											Weight: 54 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 HF No. 2x4 HF No. 2x4 HF No. Structural w 4-4-1 oc pu 2-0-0 oc pu Rigid ceiling bracing.	2 2 2 rlins, exc rlins (5-9 g directly	athing directly applied ept -11 max.): 3-4. applied or 10-0-0 oc	4) 5) 6) 1 or 7) 8)	This truss ha load of 16.0 y overhangs no Provide adec All plates are This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b	s been designed fo opsf or 2.00 times fla on-concurrent with uate drainage to p MT20 plates unles s been designed fo ad nonconcurrent w las been designed in n chord in all areas by 2-00-00 wide will	or greated to the revent with the revent with a solution of the revent with a solution of the revent with a solution where the revent solution of the solution for a live where solution of the solution of the solution of the solution of th	er of min roof pad of 25.0 p re loads. vater pondini, wise indicate 0 psf bottom other live loa e load of 20.0 a rectangle veen the botti	f live sf on g. ed. ads. Opsf om					
REACTIONS	(size) 2 Max Horiz 2 Max Uplift 2 Max Grav 2	=0-3-8, 5 =84 (LC =-74 (LC =1196 (L	=0-3-8 13) 14), 5=-74 (LC 15) C 35), 5=1196 (LC 3	9) 10) 5)	chord and an All bearings a Provide mech bearing plate	y other members. are assumed to be hanical connection capable of withsta	HF No. (by oth nding 7	2 . ers) of truss t 4 lb uplift at j	to joint					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maxim Tension 1-2=0/143, 4-5=-1197/6 2-8=-18/83 ⁻ 3-8=0/168	2-3=-119 33, 5-6=0 1, 7-8=-20 3-7=-100	6/64, 3-4=-828/87, /143)/827, 5-7=-7/832 /101 4-7=0/168	11) 12)	2 and 74 ib u This truss is International referenced si Graphical pu or the orienta bettom obsets	plift at joint 5. designed in accord Building Code sect tandard ANSI/TPI 1 rlin representation o ttion of the purlin al	ance w ion 230 does no ong the	th the 2018 6.1 and ot depict the s	size					
NOTES 1) Wind: ASC Vasd=87m II; Exp B; I and C-CE 5-9-6, Ext 7-11-10 to cantilever right expos for reaction DOL=1.60 2) TCLL: ASC DOL = 1.1 Ce=1.0; C	CE 7-16; Vult= aph; TCDL=4. Enclosed; MW ixterior(2E) 5-9-1 left and right (sed;C-C for m ns shown; Lui CE 7-16; Pf=2 5); Is=1.0; Rc s=1.00; Ct=1.	110mph 2psf; BCI /FRS (en -0-0 to 1- 5 to 7-11- or (1) 12- exposed embers a mber DO 25.0 psf (I ugh Cat 10; IBC 1	(3-second gust) DL=6.0psf; h=25ft; Ci velope) exterior zone 0-0, Interior (1) 1-0-0 10, Exterior(2R) 2-9 to 15-9-0 zone; end vertical left and and forces & MWFRS L=1.60 plate grip .um DOL = 1.15 Plat B; Partially Exp.; 607.11.2 minimum re	13) at. to LO 1) e	Hanger(s) or provided suff lb down and 122 lb up at of such conn others. AD CASE(S) Dead + Snc Increase=1. Uniform Loz Vert: 1-3: Concentrate Vert: 3=-1	other connection d icient to support co 122 lb up at 5-9-6, 7-11-10 on top cho ection device(s) is t Standard w (balanced): Lum 15 ads (lb/ft) =-80, 3-4=-80, 4-6= ed Loads (lb) 99, 4=-99	evice(s ncentra and 19 ord. The the resp ber Inc) shall be ted load(s) 1 8 lb down ar e design/sele bonsibility of rease=1.15, l 5=-20	98 ad ection Plate			and the second sec	HORES CIST	G ZHAO WEIDZ 74 EDED (THU

live load applied where required.3) Unbalanced snow loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

ONALES

February 17,2025

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	A04	Common	10	1	Job Reference (optional)	R86730497

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:11 ID:rKXG7YISz7IqCFLYunDotazIsnT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

	6-10-8	13-9-0
ſ	6-10-8	6-10-8
Scale = 1:50.8		

Plate Olisets (X, Y): [2:0-6-	0,0-0-6],	[3:0-2-8,0-2-4], [4:0	-6-0,0-0-6]									
Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC201	8/TPI2014	CSI TC BC WB Matrix-SH	0.62 0.43 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.06 -0.11 0.01	(loc) 2-6 2-6 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 46 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=87m II; Exp B; I and C-C E 6-10-8, Ex to 15-9-0 : vertical lef forces & M DOL=1.60 2) TCLL: ASS DOL = 1.1 Ce=1.0; C live load a 3) This truss load of 16 overhangs	2x4 HF No. 2x4 HF No. 2x4 HF No. 2x4 HF No. 2x4 HF No. Xructural w 4-7-1 oc pu Rigid ceiling bracing. (size) 2 Max Horiz 2 Max Horiz 2 Max Grav 2 (lb) - Maxim Tension 1-2=0/143, 4-5=0/143, 4-5=0/143, 2-6=0/519, 3-6=0/324 CE 7-16; Vult- ph; TCDL=4. Enclosed; MW Exterior(2E) -2 tterior(2E) -2 tterior(2E) -6-1 zone; cantilev; MVFRS for re: 0 plate grip DC CE 7-16; Pf=2 5); Is=1.0; Rc 0 plate dight where has been des 0.0 psf or 2.00 5 on on-concurre	2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	athing directly applie applied or 10-0-0 or =0-3-8 11) 12), 4=-44 (LC 13) 1), 4=845 (LC 1) pression/Maximum /42, 3-4=-790/42, 9 (3-second gust) DL=6.0psf; h=25ft; 0 velope) exterior zor 0-0, Interior (1) 1-0- 10-8, Interior (1) 9-1 d right exposed ; en C for members and hown; Lumber = um DOL = 1.15 Pla B; Partially Exp.; 607.11.2 minimum greater of min roof roof load of 25.0 ps ther live loads.	4 5 c 6 7 8 L Cat. 10 0 to 0-8 d 10 10 10 10 10 10 10 10 10 10	 This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings Provide mec bearing plate 2 and 44 lb u This truss is International referenced s OAD CASE(S) 	s been designed for da nonconcurrent v has been designed in chord in all areas by 2-00-00 wide will yo other members, are assumed to be hanical connection capable of withsta plift at joint 4. designed in accord Building Code sec tandard ANSI/TPI Standard	or a 10.0 vith any for a liv s where Il fit betv HF No. a (by oth anding 4 dance w tion 230	D psf bottom other live loa e load of 20. a rectangle veen the bott 2 . ers) of truss : 14 lb uplift at j ith the 2018 36.1 and	ads. Opsf om to joint			and the second se	THORESSIONA	G ZHAO SHINGING TA ERED INGING

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MITek-US.com

February 17,2025

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	B01	California	4	1	Job Reference (optional)	R86730498

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:11 ID:__1bOV5wtuWha8EB7aOkQ?zlsl8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

February 17,2025

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

3-7-10	7-9-6	11-5-0
3-7-10	4-1-12	3-7-10

Scale = 1:46.3 Plate Offsets (X, Y): [2:0-6-0.0-0-10]. [3:0-3-8.Edge]. [4:0-2-4.0-2-0]. [5:0-6-0.0-0-10]

Unbalanced snow loads have been considered for this

3)

design.

		, [0.0 0 0,⊏ugo], [4.	52 ,020	, [0.0 0 0,0 0	101									
Loading TCLL (Roof Snow = TCDL BCLL BCCL	(psf) 25.0 25.0) 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2018	3/TPI2014	CSI TC BC WB Matrix-SH	0.56 0.45 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.04 0.01	(loc) 7-8 7-8 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 45 lb	GRIP 185/148 FT = 10%	
ACCDL LUMBER TOP CHORD 3OT CHORD BRACING TOP CHORD 3OT CHORD 3OT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: AS Vasd=87r II; Exp B; and C-C E 3-9-6, Ext to 11-10-6 left and rig exposed; reactions	10.0 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural wood she 5-3-5 oc purlins, exc 2-0-0 oc purlins (5-6 Rigid ceiling directly bracing. (size) 2=0-3-8, 4 Max Horiz 2=-62 (LC Max Uplift 2=-93 (LC Max Grav 2=1035 (I (lb) - Maximum Com Tension 1-2=0/143, 2-3=-10: 4-5=-1019/97, 5-6=(2-8=-85/740, 7-8=-8 3-8=0/156, 3-7=-30/ CE 7-16; Vult=110mph mph; TCDL=4.2psf; BC Enclosed; MWFRS (er Exterior(2E) -2-0-0 to 1 erior(2E) 3-9-6 to 7-7 9, Interior (1) 11-10-9 tt ght exposed ; end verti shown; Lumber DOL=	Pathing directly applie cept 3-7 max.): 3-4. v applied or 10-0-0 oc 5=0-3-8 C 12) C 14), 5=-93 (LC 15) LC 35), 5=1035 (LC 5) DLC 35), 5=1035 (LC 5) DLC 35), 5=1035 (LC 5) pression/Maximum 19/98, 3-4=-737/92, 0/143 39/737, 5-7=-111/740 /28, 4-7=0/156 n (3-second gust) CDL=6.0psf; h=25ff; C nvelope) exterior zon -0-0, Interior (1) 1-0- 10, Exterior(2R) 7-7- o 13-5-0 zone; cantili- cial left and right forces & MWFRS for 1.60 plate grip	4) 5) 6) ed or 7) 5 8) 9) 35) 10 11 12 Cat. 10 12 Cat. 10 LC ever 1)	This truss ha load of 16.0 overhangs n Provide ader This truss ha chord live loa * This truss f on the bottor 3-06-00 tall k chord and ar All bearings Provide mec bearing plate 2 and 93 lb u 7 This truss is International referenced s 0 Graphical pu or the orienta bottom chore 1 Hanger(s) or provided suff lb down and 123 lb up at 7-7-10 on top connection d AD CASE(S) Dead + Snc Increase=1 Uniform Lo.	as been designed i psf or 2.00 times f on-concurrent with quate drainage to as been designed is ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w ny other members. are assumed to be hanical connection e capable of withst uplift at joint 5. designed in accor Building Code set tandard ANSI/TPI rifin representation ation of the purlin a cother connection ficient to support c 116 lb up at 3-9-6 5-8-8, and 177 lb p chord. The desi levice(s) is the ress Standard by (balanced): Lun .15 ads (lb/ft) =-80, 3-4=-80, 4-60	for great lat roof le o other li prevent for a 10. with any s where ill fit betw e HF No. h (by oth anding S dance w ction 23(1. does no along the soncentra 5, and 25 down ar gn/selec ponsibili mber Inc	er of min rool bad of 25.0 p ve loads. water pondin. 0 psf bottom other live loa e load of 20.1 a rectangle veen the bott 2. ers) of truss i 3 lb uplift at j ith the 2018 b6.1 and bt depict the s top and/or) shall be ated load(s) 1 57 lb down ar d 116 lb up at tion of such ty of others. rease=1.15, 5=-20	f live lsf on g. ads. Opsf com to joint size				Weight: 45 lb	G ZHAO	
DOL=1.60 2) TCLL: AS DOL = 1.7 Ce=1.0; C live load a) CE 7-16; Pf=25.0 psf (15); Is=1.0; Rough Cat Cs=1.00; Ct=1.10; IBC applied where required	(Lum DOL = 1.15 Pla B; Partially Exp.; 1607.11.2 minimum	ite roof	Concentrate Vert: 3=-	ed Loads (lb) 78, 4=-78, 11=-84						3	POPESSION	THE ENGINE	E
3) Unhalanc	ed snow loads have he	en considered for th	is									-UNA		

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	B02	California Girder	4	1	Job Reference (optional)	R86730499

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:12 ID: ptsR5kz0TW7FISu3zmh9ThzIsIJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ffterffferenterff

Page: 1

February 17,2025

1	1-7-10	5-8-8	9-9-6	11-5-0	
I	1-7-10	4-0-14	4-0-14	1-7-10	

Scale = 1:48.3 Plate Offsets (X, Y): [2:0-6-0.0-0-10]. [3:0-4-0.0-0-8]. [5:0-4-0.0-0-8]. [6:0-6-0.0-0-10]

	(,,, ,), [=:0 0	,], [ele : e,e e e], [ele		5], [0:0 0 0,0 0	.0]								
Loading TCLL (Roof Snow = TCDL BCLL	= 25.0)	(psf) 25.0 15.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC2018	3/TPI2014	CSI TC BC WB Matrix-SH	0.72 0.35 0.22	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.11 0.01	(loc) 9 9 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 185/148
BCDL		10.0											Weight: 46 lb	FT = 10%
LUMBER FOP CHORE 3OT CHORE WEBS BRACING TOP CHORE	 2x4 HF No 2x4 HF No 2x4 HF No 2x4 HF No Structural 5-9-5 oc pl 2-0-0 oc pl Rigid ceilir brook 	.2 .2 wood she urlins, exc urlins (3-1 ng directly	athing directly applie ept 0-7 max.): 3-5. applied or 6-0-0 oc	5) 6) 7) d or 8) 9)	Provide adec This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings Provide mec bearing plate	quate drainage to is been designed ad nonconcurrent has been designee n chord in all area y 2-00-00 wide w hy other members are assumed to b hanical connectio c capable of withs	prevent for a 10. with any d for a liv as where rill fit betw e HF No. n (by oth tanding 9	water pondin 0 psf bottom other live loa e load of 20. a rectangle veen the bott 2. ers) of truss 11 b uplift at	g. ads. Opsf com to ioint					
REACTIONS	bracing. (size) Max Horiz Max Uplift Max Grav	2=0-3-8, 6 2=39 (LC 2=-91 (LC 2=725 (LC	6=0-3-8 9) 3 10), 6=-91 (LC 11) C 17), 6=725 (LC 18)	10 11	2 and 91 lb u) This truss is International referenced s) Graphical pu	uplift at joint 6. designed in accol Building Code se tandard ANSI/TPI Irlin representation	rdance w ction 230 1. n does no	ith the 2018 06.1 and ot depict the	size					
FORCES	(Ib) - Maxir Tension	num Com	ipression/Maximum		or the orienta bottom chore	ation of the purlin d.	along the	e top and/or						
FOP CHORE 3OT CHORE WEBS	 1-2=0/143, 4-5=-1765, 2-10=-63/8 6-8=-66/83 3-10=-56/1 5-9=-67/10 	, 2-3=-956 /142, 5-6= 810, 9-10= 80 18, 3-9=- 957, 5-8=-	5/88, 3-4=-1765/142, 955/87, 6-7=0/143 69/802, 8-9=-72/82 68/1057, 4-9=-496/8 56/118	12 1, 9,	 Hanger(s) or provided suff down and 25 4-0-12, 86 lb down and 32 up at 9-7-10 	to ther connection ficient to support of 50 lb up at 1-9-6, down and 18 lb u 2 lb up at 7-4-4, a on top chord and	device(s concentra 97 lb dov up at 5-8 nd 98 lb d 8 lb dov) shall be ated load(s) S vn and 32 lb -8, and 97 lb down and 25 wn at 2-0-12	98 lb up at 60 lb					
NOTES	0 0= 0//10	<i>ior</i> , o o=	50/110		down at 4-0	-12 8 lb down at	5-8-8 ar	witat 2-0-12	., o iu ot					
1) Wind: AS Vasd=87 II; Exp B; cantileve right exp	SCE 7-16; Vult mph; TCDL=4 ; Enclosed; M r left and right osed; Lumber	=110mph .2psf; BC WFRS (er exposed DOL=1.6	(3-second gust) DL=6.0psf; h=25ft; C velope) exterior zone ; end vertical left and 0 plate grip DOL=1.6	at. e; I 13 0	7-4-4, and 8 design/selec responsibility) In the LOAD of the truss a	Ib down at 9-4-4 tion of such conne of others. CASE(S) section are noted as front	on botto ection de , loads a (F) or ba	m chord. The vice(s) is the oplied to the ck (B).	face			ż	TIAOMIN TIAOMIN	G ZHAO
 2) TCLL: AS DOL = 1. Ce=1.0; live load 3) Unbalance design. 	SCE 7-16; Pf= 15); Is=1.0; R Cs=1.00; Ct=1 applied where ced snow load	25.0 psf (ough Cat .10; IBC required. s have be	Lum DOL = 1.15 Plai B; Partially Exp.; 1607.11.2 minimum r	roof	DAD CASE(S) Dead + Sno Increase=1 Uniform Loo Vert: 1-3 Concentrate	Standard bw (balanced): Lu .15 ads (lb/ft) =-80, 3-5=-80, 5-7 ed Loads (lb)	mber Inc 7=-80, 2-	rease=1.15, 6=-20	Plate				THORESCIST	74 ERED (UNIO
 This trust load of 1 overhang 	s has been de 6.0 psf or 2.00 gs non-concur	signed for times flat rent with c	r greater of min roof I t roof load of 25.0 ps other live loads.	ive f on	Vert: 3=7	74, 5=74							SSIONA	LENO

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	B03	California Girder	2	1	Job Reference (optional)	R86730500

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:12 ID:JOseN4GGAOXW?PGXTb5A2Fzlsh2-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page

Scale = 1:53.9

Plate Offsets (X, Y): [2:0-6-0,0-0-6], [3:0-2-4,0-2-8], [5:0-6-0,0-0-6]

Loading TCLL (Roof Snow = TCDL BCLL BCDL	(psf 25.0) 15.0 0.0 10.0) Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC2018/TPI2014	CSI TC BC WB Matrix-SH	0.65 0.33 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.04 -0.05 0.01	(loc) 2-8 2-8 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 48 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 HF No.2 *Ex 2x4 HF No.2 2x4 HF No.2 Structural wood s 5-4-8 oc purlins, 2-0-0 oc purlins (Rigid ceiling dire bracing. (size) 2=0-3- Max Horiz 2=-78	cept* 3-4:2x6 DF No.2 sheathing directly applie except (6-0-0 max.): 3-4. ctly applied or 10-0-0 or -8, 5=0-3-8 (LC 8)	 6) This truss chord live 7) * This trus on the bol 3-06-00 ta chord and 8) All bearing pl 2 and 58 10) This truss linternation reference. 	has been designed load nonconcurrent s has been designe tom chord in all area II by 2-00-00 wide w any other members gs are assumed to b echanical connectic ate capable of withs b uplift at joint 5. is designed in acco nal Building Code se a tsandard ANSI/TP	for a 10. with any d for a liv as where vill fit betw s. e HF No. on (by oth tanding 5 rdance w ection 230 I 1.	D psf bottom other live loa e load of 20. a rectangle veen the bott 2 . ers) of truss : 7 lb uplift at j ith the 2018 06.1 and	ads. Opsf .om to joint					
FORCES TOP CHORD BOT CHORD WEBS	Max Uplift 2=-57 Max Grav 2=988 (lb) - Maximum C Tension 1-2=0/143, 2-3=- 4-5=-856/32, 5-6 2-8=-12/571, 7-8 3-8=0/128, 3-7=-	(LC 10), 5=-58 (LC 11) (LC 31), 5=987 (LC 31) compression/Maximum 856/36, 3-4=-567/55, =0/143 =-13/567, 5-7=0/565 185/172, 4-7=-66/237	11) Graphical or the orie bottom ch 12) Hanger(s) provided s lb down a lb up at 5 such conr	purlin representatio ntation of the purlin ord. or other connectior sufficient to support nd 66 lb up at 5-6-1 -10-4 on top chord. ection device(s) is t	n does no along the device(s concentra 2, and 12 The desi he respo	ot depict the set top and/or) shall be ated load(s) 1 23 lb down ar gn/selection nsibility of oth	size 123 nd 66 of ners.					
NOTES 1) Wind: AS Vasd=87r II; Exp B; cantilever right expo 2) TCLL: AS DOL = 1. Ce=1.0; C live load a	CE 7-16; Vult=110n mph; TCDL=4.2psf; Enclosed; MWFRS left and right exposised; Lumber DOL= iCE 7-16; Pf=25.0 p 15); Is=1.0; Rough (2s=1.00; Ct=1.10; IE	nph (3-second gust) BCDL=6.0psf; h=25ft; ((envelope) exterior zor sed; end vertical left an 1.60 plate grip DOL=1.1 sf (Lum DOL = 1.15 Pla Cat B; Partially Exp.; 3C 1607.11.2 minimum red.	LOAD CASE(1) Dead + 3 Cat. Increase he; Uniform d Vert: - 60 Concent ate Vert: - roof	S) Standard Snow (balanced): Lu =1.15 Loads (lb/ft) -3=-80, 3-4=-80, 4- rated Loads (lb) 1=-104	imber Inc 6=-80, 2-	rease=1.15,	Plate			1	THAOMIN THAOF WA	G ZHAO SHINGTOY
3) Unhalanc	ed snow loads have	heen considered for th	nis									

- Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- 5) Provide adequate drainage to prevent water ponding.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

TONAL ENGI

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	C01	California	4	1	Job Reference (optional)	R86730501

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:12 ID:wjtVklg1s182wE8qGzANkjzlsfE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

L	3-7-10	9-1-0	14-6-6	18-2-0	
Scale = 1:58.9	3-7-10	5-5-6	5-5-6	3-7-10	

Plate Offsets (X, Y): [2:0-6-0,0-0-10], [3:0-4-0,0-1-8], [5:0-4-0,0-1-8], [6:0-6-0,0-0-10]

Loading TCLL		(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.68	DEFL Vert(LL)	in -0.09	(loc) 9	l/defl >999	L/d 240	PLATES MT20	GRIP 185/148	
(Roof Snow =	25.0)		Lumber DOL	1.15		BC	0.44	Vert(CT)	-0.15	9-10	>999	180			
TCDL		15.0	Rep Stress Incr	YES		WB	0.21	Horz(CT)	0.04	6	n/a	n/a			
BCLL		0.0*	Code	IBC201	3/TPI2014	Matrix-SH									
BCDL		10.0				-							Weight: 71 lb	FT = 10%	
LUMBER				3)	Unbalanced	snow loads have b	een cor	nsidered for th	nis						
TOP CHORD	2x4 HF No	.2			design.										
BOT CHORD	2x4 HF No	.2		4)	This truss ha	s been designed fo	or great	er of min roof	live						
WEBS	2x4 HF No	.2			load of 16.0	ost or 2.00 times fla	at roof le	bad of 25.0 ps	st on						
BRACING				5)	Provide adec	uiste drainade to p	revent	ve luaus.							
TOP CHORD	Structural v	wood she	athing directly applie	dor 5)	This truss ha	s heen designed fo	na 10	nsf bottom	J-						
	4-5-10 OC p	urling, ex		0)	chord live loa	id nonconcurrent w	ith any	other live loa	ds.						
	Rigid ceilin	a directly	applied or 10-0-0 oc	7)	* This truss h	as been designed	for a liv	e load of 20.0)psf						
	bracing.	ganoony			on the botton	n chord in all areas	where	a rectangle							
REACTIONS	(size)	2=0-3-8.6	6=0-3-8		3-06-00 tall b	y 2-00-00 wide will	fit betw	veen the botto	om						
	Max Horiz	2=62 (LC	13)	0)	chord and an	y other members.		•							
	Max Uplift	2=-125 (L	C 14), 6=-125 (LC 15	5) 8)	All bearings a	are assumed to be	HF NO.	Z.	•						
	Max Grav	2=1207 (L	C 35), 6=1207 (LC 3	, 9) 85)	bearing plate	canable of withsta	nding 1	25 lb unlift at	ioint						
FORCES	(lb) - Maxir	num Com	pression/Maximum		2 and 125 lb	uplift at joint 6.	nung	20 ib upint at	John						
	Tension			10) This truss is	designed in accord	ance w	ith the 2018							
TOP CHORD	1-2=0/143,	2-3=-157	0/146, 3-4=-2183/21	6,	International	Building Code sect	tion 230)6.1 and							
	4-5=-2183/	216, 5-6=	-1570/146, 6-7=0/14	3	referenced st	andard ANSI/TPI 1									
BOT CHORD	2-10=-117/	1277, 9-1	0=-121/12/2,	11) Graphical pu	rlin representation	does no	ot depict the s	size						
	8-9=-105/1	272, 0-8= 1 2 0- 10	-102/1277 5/000 / 0- 710/1/6		or the orienta	ition of the purlin al	ong the	e top and/or							
WEBS	5-9=-105/9	99 5-8=0)/184	', 10) Hongor(s) or	other connection d) chall bo							
NOTES	0 0 100,0			12	provided suff	icient to support co	ncentra	ated load(s) 1	63						
1) Wind AS(CE 7-16: Vult	=110mph	(3-second qust)		lb down and	124 lb up at 3-9-6.	116 lb	down and 92	lb				OMIN	GZ	
Vasd=87n	nph: TCDL=4	.2psf: BC	DL=6.0psf: h=25ft: C	at.	up at 6-0-12	, 90 lb down and 80) lb up	at 8-0-12, 90	lb				JA	ANA	
II; Exp B;	Enclosed; MV	VFRS (en	velope) exterior zone	Э	down and 80	lb up at 10-1-4, a	nd 116	lb down and §	92 lb				FWA	SHIN	•
and C-C E	Exterior(2E) -2	2-0-0 to 1-	-0-0, Interior (1) 1-0-0) to	up at 12-1-4	, and 163 lb down a	and 124	1 lb up at 14-	4-10			7	15 81	S '93	2
3-9-6, Ext	erior(2R) 3-9-	6 to 8-0-5	5, Interior (1) 8-0-5 to		on top chord	The design/selec	tion of s	such connecti	on			5			
14-4-10, E	Exterior(2R) 1	4-4-10 to	18-7-9, Interior (1)		device(s) is t	he responsibility of	others.								
18-7-9 to 2	20-2-0 zone;	cantilever	left and right expose	ed; LC	DAD CASE(S)	Standard									
	ai ieit anu figi MVFRS for re	actions el	u, c-c for members a	anu 1)	Dead + Sho	w (balanced): Lum	ber Inc	rease=1.15, F	rate			1			_
) plate grip D($\Omega = 1.60$				no de (lb/ft)							P 540	74 0 1 5	~
2) TCLL: AS	CE 7-16: Pf=:	25.0 psf (l	Lum DOL = 1.15 Plat	te	\/ort· 1_2.			620					GIST	EREN	S
DOL = 1.1	5); Is=1.0; R	ough Cat	B; Partially Exp.;		Concentrate	ed Loads (lb)	. 0 0, 2 -	0-20					SSIO	FENGI	
Ce=1.0; C	s=1.00; Ct=1	.10; IBC 1	1607.11.2 minimum r	oof	Vert: 3=-	15. 5=-15							- NA	LU	
live load a	pplied where	required.			. 511. 0-										

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	C02	California Girder	4	1	Job Reference (optional)	R86730502

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:13 ID:OhGzdE?TI5KsTSfhUFsYSUzIwL5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	l 1-7-7	5-4-4	9-1-0	12-9-12	16-6-9	18-2-0	
Scale = 1:59	1-7-7	3-8-12	3-8-12	3-8-12	3-8-12	1-7-7	
Plate Offsets (X Y)	[2.0-6-4.0-0-14] [3:0-7-12.0-1-4] [7:0-7-12.0-1-4] [8·0-6-4 0-0-14] [11	1.0-1-12 0-1-8] [13	·0-1-12 0-1-8]			

	(,,,,,). [2.0.0	1,0014	j, [0.0 i i≥,0 i +], [i	.0 / 12,0], [0.0 0 4,0	, o i ij, [11.0 1 12	., o i oj, [10.0 1 12,0	1					
Loading		(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL		25.0	Plate Grip DOL	1.15		TC	0.98	Vert(LL)	-0.39	12	>555	240	M18AHS	145/140
(Roof Snow =	25.0)		Lumber DOL	1.15		BC	0.75	Vert(CT)	-0.60	12	>360	180	MT20	185/148
TCDL		15.0	Rep Stress Incr	NO		WB	0.54	Horz(CT)	0.06	8	n/a	n/a		
BCLL		0.0*	Code	IBC201	B/TPI2014	Matrix-SH								
BCDL		10.0											Weight: 74 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 HF No. 2x4 DF 180 2x4 HF No. Structural v	.2 00F 1.6E .2 wood shea	athing directly applied	3) 4) d or 5) 6)	Unbalanced design. This truss ha load of 16.0 overhangs n Provide aded All plates are	snow loads have as been designed psf or 2.00 times on-concurrent wit quate drainage to MT20 plates unl	been cor for great flat roof le n other li prevent	nsidered for t er of min root bad of 25.0 p ve loads. water pondin wise indicate	his f live sf on g.	LOAD (1) De Inc Ur Cc	CASE(S) ead + Sn crease=' hiform Lo Vert: 1-3 oncentra	Star ow (ba 1.15 bads (ll 3=-80, ted Los	ndard alanced): Lumber b/ft) 3-7=-80, 7-9=-80 ads (Ib) 85	Increase=1.15, Plate
BOT CHORD	4-2-7 oc pu 2-0-0 oc pu Rigid ceilin bracing.	urlins, exc urlins (2-0 g directly	ept -7 max.): 3-7. applied or 10-0-0 oc	7) 8)	This truss ha chord live loa * This truss h	as been designed ad nonconcurrent has been designed	for a 10. with any d for a liv) psf bottom other live loa e load of 20.1	ads. 0psf		ven. 3=	05, 7=	00	
REACTIONS	(size) 2 Max Horiz 2 Max Uplift 2 Max Grav 2	2=0-3-8, 8 2=39 (LC 2=-115 (L 2=1110 (L	3=0-3-8 9) C 10), 8=-115 (LC 11 .C 30), 8=1110 (LC 3	l) 9) 60) 10	3-06-00 tall t chord and ar All bearings	by 2-00-00 wide w by other members are assumed to b banical connection	ill fit betv e HF No.	veen the bott 2.	om					
FORCES	(lb) - Maxin Tension	num Com	pression/Maximum		bearing plate	e capable of withs	tanding 1	15 lb uplift a	t joint					
TOP CHORD	1-2=0/143, 4-5=-4764/ 6-7=-3920/	2-3=-175 310, 5-6= 264, 7-8=	i1/136, 3-4=-3920/26 4764/310, 1751/136, 8-9=0/14	4, 11 3) This truss is International referenced s	designed in accor Building Code se tandard ANSI/TPI	dance w ction 230 1.	ith the 2018 06.1 and						
BOT CHORD	2-14=-103/ 11-13=-257 8-10=-107/	1475, 13- 7/3920, 10 1495	14=-110/1465, 0-11=-113/1485,	12) Graphical pu or the orienta	Irlin representation ation of the purlin	n does no along the	ot depict the s top and/or	size					•
WEBS	3-14=-68/1 4-13=-679/ 4-12=-57/8 6-11=-679/	12, 7-10= '90, 3-13= 80, 5-12= '90	:-68/112, 7-11=-151/2 :-152/2573, :-416/72, 6-12=-58/88	2572, 13 30,	Hanger(s) or provided suf down and 24 4-0-12, 104	other connection ficient to support o I7 lb up at 1-9-6, lb down and 37 lb	device(s concentra 97 lb dov up at 6-) shall be ated load(s) 9 vn and 32 lb 0-12, 105 lb	98 lb up at down			4	ALAOMIN DE WA	G ZHAO
NOTES					and 37 lb up	at 8-0-12, 105 lb	down ar	nd 37 lb up at	t			-	· W	
1) Wind: AS(Vasd=87n II; Exp B; cantilever	CE 7-16; Vult= mph; TCDL=4 Enclosed; MV r left and right	=110mph .2psf; BC VFRS (en exposed	(3-second gust) DL=6.0psf; h=25ft; C velope) exterior zone ; end vertical left and	at. e;	10-1-4, 104 down and 32 up at 16-4-1 lb down at 4	b down and 37 lb 2 lb up at 14-1-4, 0 on top chord, at -0-12, 8 lb down a	up at 12 and 98 lt nd 8 lb d at 6-0-12	2-1-4, and 97 o down and 2 own at 2-0-1 2, 8 lb down a	lb 47 lb 2, 8 at			2	E	

8-0-12, 8 lb down at 10-1-4, 8 lb down at 12-1-4, and 8

Ib down at 14-1-4, and 8 lb down at 16-1-4 on bottom

chord. The design/selection of such connection device

14) In the LOAD CASE(S) section, loads applied to the face

of the truss are noted as front (F) or back (B).

- cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate 2)
- DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

(s) is the responsibility of others.

IONAL

ENGI

Page: 1

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	C03	California	4	1	Job Reference (optional)	R86730503

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:13 ID:_bHAttsRKe1wDYnjecxurtzlsf?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

	5-7-10	12-6-6	18-2-0
Scale = 1:64.5	5-7-10	6-10-12	5-7-10

Plate Offsets (X, Y): [2:0-6-0,0-0-6], [3:0-8-8,Edge], [5:0-8-8,Edge], [6:0-6-0,0-0-6]

Loading TCLL (Roof Snow = TCDL BCLL BCDL	= 25.0)	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2018	3/TPI2014	CSI TC BC WB Matrix-SH	0.67 0.47 0.22	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.14 0.04	(loc) 8-9 8-9 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES M18AHS MT20 Weight: 71 lb	GRIP 145/140 185/148 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x4 HF No 2x4 HF No 2x4 HF No 3-2-6 oc pu 2-0-0 oc pu Rigid ceilin bracing. (size) 2 Max Horiz 2 Max Horiz 2 Max Uplift 2 Max Grav 2 (lb) - Maxin Tension 1-2=0/143, 4-5=-1299/ 2-9=-104/1 3-9=-10/43	.2 .2 .2 wood she urlins, exc urlins, exc g directly 2=0-3-8, 6 2=84 (LC 2=-131 (L 2=1509 (L num Com 2-3=-177 160, 5-6= 312, 8-9= 3, 5-8=-9, 33	athing directly applie ept -3 max.): 3-5. applied or 10-0-0 oc 3=0-3-8 13) C 14), 6=-131 (LC 19 .C 35), 6=1509 (LC 3 pression/Maximum '3/154, 3-4=-1298/16 -1773/154, 6-7=0/14 -158/1492, 6-8=-73/ /433, 4-9=-442/133,	3) 4) 5) 9) 5) 9) 35) 10 50, 11 13 1312 12	Unbalanced design. This truss ha load of 16.0 j overhangs n Provide adec All plates are This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar All bearings a) Provide mec bearing plate 2 and 131 lb) This truss is International referenced s) Graphical pu or the orienta	snow loads have to show loads have to show loads have to psf or 2.00 times fl on-concurrent with quate drainage to p ad monconcurrent to as been designed n chord in all areas by 2-00-00 wide wi hanical connectior e capable of withste uplift at joint 6. designed in accord Building Code sec tandard ANSI/TPI rlin representation ation of the purlin a	opeen con for great lat roof la other li prevent ses other for a 10. with any l for a liv s where ll fit betw HF No. h (by oth anding 1 dance we ction 230 1. dance no along the	nsidered for t er of min roo bad of 25.0 p ve loads. water pondin wise indicate 0 psf bottom other live loz e load of 20. a rectangle veen the bott 2. ers) of truss 31 lb uplift a ith the 2018 36.1 and bt depict the e top and/or	this f live sof on g. ed. ads. 0psf to to t joint						
NOTES 1) Wind: AS Vasd=87r II; Exp B; and C-C I 5-9-6, Ext 12-4-10, I 16-7-9 to end vertic forces & I DOL=1.6(2) TCLL: AS	CE 7-16; Vult mph; TCDL=4 Enclosed; MW Exterior(2E) -2 terior(2R) 5-9 Exterior(2R) 1 20-2-0 zone; cal left and rig WWFRS for re 0 plate grip DD SCE 7-16; Pf=:	=110mph 2psf; BC WFRS (en 2-0-0 to 1- 6 to 10-0 2-4-10 to cantilever ht expose eactions s DL=1.60 25.0 psf (l	(3-second gust) DL=6.0psf; h=25ft; C velope) exterior zon 0-0, Interior (1) 10-0- 5, Interior (1) 10-0- 5, Interior (1) 10-0-5 16-7-9, Interior (1) left and right expose d;C-C for members a hown; Lumber Lum DOL = 1.15 Pla	13 cat. e 0 to 5 to ed ; and LC 1) te	bottom chord) Hanger(s) or provided suff lb down and up at 8-0-12 and 161 lb do The design/s responsibility DAD CASE(S) Dead + Sno Increase=1 Uniform Loa	d. other connection ficient to support c 114 lb up at 5-9-6 , and 322 lb down own and 114 lb up selection of such co of others. Standard ow (balanced): Lur .15 ads (lb/ft)	device(s oncentra 5, 322 lb and 127 o at 12-4 onnectic	i) shall be ated load(s) : down and 1: 7 Ib up at 10 I-10 on top c n device(s) i rease=1.15,	161 27 lb -1-4, hord. s the Plate			· · · · · · · · · · · · · · · · · · ·	HANOMIN TUNOMIN OF WAN TAU	G ZHAO WEJOZ 14 S	

 TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters and properly incorporate this design into the overall building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Concentrated Loads (lb)

Vert: 1-3=-80, 3-5=-80, 5-7=-80, 2-6=-20

Vert: 3=-62, 5=-62, 13=-136, 14=-136

ENGI

FESSIONAL

February 17,2025

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	C04	California	4	1	Job Reference (optional)	R86730504

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:13 ID:al7Spf0D1yoxvhsPSYBAQqzIsen-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

February 17,2025

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

	7-7-10	10-6-6	18-2-0
Scale = 1:75.8	7-7-10	2-10-12	7-7-10

live load applied where required.

5-7-12

	())	.,	1, L · · · , · · J · 1, L ·	- ,-	-1/1 /	- 1	_							
Loading TCLL (Roof Snow = TCDL BCLL BCDL	= 25.0)	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC201	8/TPI2014	CSI TC BC WB Matrix-SH	0.62 0.45 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.18 0.04	(loc) 2-10 2-10 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 80 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	 2x4 HF No. 2x4 HF No. 2x4 HF No. Structural v 4-1-7 oc pu 2-0-0 oc pu Rigid ceiling bracing 	2 2 vood she irlins, exc irlins (5-3 g directly	athing directly applie æpt -4 max.): 4-5. applied or 10-0-0 oc	3) 4) ed or 5) 6) c 7)	 Unbalanced design. This truss ha load of 16.0 overhangs n Provide adee This truss ha chord live load * This truss has been and the source 	snow loads have as been designed psf or 2.00 times on-concurrent wit quate drainage to as been designed ad nonconcurrent has been designe m chord in all area	for great flat roof I h other li prevent for a 10. with any d for a liv as where	nsidered for t er of min roo bad of 25.0 p ve loads. water pondin 0 psf bottom other live loa other live loa e load of 20. a rectangle	this of live osf on ng. ads. .0psf					
REACTIONS	(size) 2 Max Horiz 2 Max Uplift 2 Max Grav 2	2=0-3-8, 7 2=-107 (L 2=-86 (LC 2=1453 (L	7=0-3-8 C 12) : 14), 7=-86 (LC 15) .C 35), 7=1453 (LC :	8) 9) 35)	3-06-00 tall t chord and au All bearings Provide med	by 2-00-00 wide w ny other members are assumed to b chanical connectio	vill fit betw c. e HF No. n (by oth tanding 6	veen the bot 2 . ers) of truss	tom to					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maxim Tension 1-2=0/143, 4-5=-1134/ 6-7=-1846/ 2-10=-79/14 4-10=0/297 3-10=-334/	num Com 2-3=-184 102, 5-6= 105, 7-8= 410, 9-10 7, 4-9=-87 106, 6-9=	pression/Maximum 16/105, 3-4=-1474/95 1475/94, -0/143 0=-17/1133, 7-9=-23/ //90, 5-9=0/297, 333/106	5, 10 (1410	2 and 86 lb (2) This truss is International referenced s 1) Graphical pu or the orienti bottom chore	uplift at joint 7. designed in acco Building Code se trandard ANSI/TP Irlin representation ation of the purlin d.	rdance w ection 230 I 1. n does no along the	ith the 2018 06.1 and of depict the e top and/or	size					
NOTES 1) Wind: AS Vasd=87 II; Exp B; and C-C 7-9-6, Ex 10-4-10 t cantilever right expor- for reaction DOL=1.6 DOL=1.0; (CE 7-16; Vult mph; TCDL=4. Enclosed; MW Exterior(2E) 7-9- o 14-7-9, Interir left and right i osed;C-C for m ons shown; Lu 0 SCE 7-16; Pf=2 15); Is=1.0; Rc CS=1.00; Ct=1.	=110mph 2psf; BC VFRS (er 2-0-0 to 1- 6 to 10-4- ior (1) 14 exposed nembers a mber DO 25.0 psf (i bugh Cat 10; IBC	(3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zon -0-0, Interior (1) 1-0- -10, Exterior(2R) -7-9 to 20-2-0 zone; ; end vertical left and and forces & MWFR L=1.60 plate grip Lum DOL = 1.15 Pla B; Partially Exp.; 1607.11.2 minimum	Cat. le 0 to L d S tte roof	 provided sufficient (S) Of provided sufficient (S) of such controphysical contents. OAD CASE(S) Dead + Snu Increase=1 Uniform Lo Vert: 1-4 Concentrat Vert: 4=- 	Standard ow (balanced): Lu .15 ads (lb/ft) ==80, 4-5=-80, 5-8 ed Loads (lb) .147, 5=-147	concentra 6, and 2: hord. Th s the res mber Inc 8=-80, 2-	rease=1.15, 7=-20	246 nd ection Plate			· · · · · · · · · · · · · · · · · · ·	THOMESSIONA	G ZHAO A CION THE DE DO THE DO

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	C05	Common	4	1	Job Reference (optional)	R86730505

9-1-0

4-8-15

Builders FirstSource (Arlington, WA), Arlington, WA - 98223,

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:14 ID:AFVBKGOfjTiY7SjMnZFRANzlsel-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

18-2-0

20-2-0

13-5-1

Page: 1

	9-1-0	18-2-0	
Scale - 1:69 7	9-1-0	9-1-0	
Plate Offsets (X, Y): [2:Edge.0-0-4]. [6:Edge.0-0-4]			

	л, т). [Z:Eage	,0-0-4 <u>]</u> ,	[0.Euge,0-0-4]											
Loading TCLL (Roof Snow =) TCDL BCLL BCDL	25.0)	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2018	3/TPI2014	CSI TC BC WB Matrix-SH	0.62 0.66 0.18	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.13 -0.26 0.03	(loc) 2-8 2-8 6	l/defl >999 >829 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 71 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD BOT CHORD BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=87m II; Exp B; I and C-C E 9-1-0, Exte 20-2-0 zor vertical lef forces & M DOL=1.60 2) TCLL: ASC DOL = 1.1; Ce=1.0; C live load a 3) This truss load of 16. overbace	2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural wo 5-1-5 oc purl Rigid ceiling bracing. (size) 2= Max Horiz 2= Max Uplift 2= Max Grav 2= (lb) - Maximu Tension 1-2=0/143, 2 4-5=-900/38, 2-8=-33/921, 4-8=0/563, 5 CE 7-16; Vult=1 hph; TCDL=4.2 Enclosed; MWF Exterior(2E) -2-(erior(2R) 9-1-0 he; cantilever lie t and right expot MWFRS for rear 0 plate grip DOL CE 7-16; Pf=25 5); Is=1.0; Rou s=1.00; Ct=1.1 pplied where re has been desig. 0 psf or 2.00 ti	2003 sheat ins. directly 20-3-8, 6 2-124 (LC 2-1065 (L 2-47 (LC 2-1065 (L 2-47 (LC 2-1065 (L 2-47 (LC 2-1065 (L 2-47 (LC 2-6-8=0/9 -8=-320 110mph 2-5-6=-12 6-8=0/9 -8=-320 110mph 2-5-6=-12 5-6=-12 6-8=0/9 -8=-320 110mph 2-5-6=-12 6-8=0/9 -8=-320 110mph 2-5-6=-12 6-8=0/9 -8=-320 110mph 2-5-6=-12 6-8=0/9 -8=-320 110mph 2-5-6=-12 6-8=0/9 -8=-320 110mph 2-5-6=-12 6-8=0/9 -8=-320 110mph 2-5-6=-12 6-8=0/9 -8=-320 110mph 2-5-6=-12 6-8=0/9 -8=-320 110mph 2-5-6=-12 6-8=0/9 -8=-320 110mph 2-5-6=-12 6-8=0/9 -8=-320 110mph 2-5-6=-12 6-8=0/9 -8=-320 100mph 2-10-5 6-8=0/9 -8=-320 100mph 2-10-5 (C 2-10-5) -10	athing directly applie applied or 10-0-0 oc i=0-3-8 C 10) 12), 6=-47 (LC 13) C 1), 6=1065 (LC 1) pression/Maximum 8/41, 3-4=-901/39, 218/41, 6-7=0/143 921 /113, 3-8=-320/112 (3-second gust) DL=6.0psf; h=25ft; C velope) exterior zon 0-0, Interior (1) 12-1-C ght exposed ; end C for members and nown; Lumber .um DOL = 1.15 Pla B; Partially Exp.; 607.11.2 minimum 1 greater of min roof 1 roof load of 25.0 ps ther live loads	4) 5) d or 6) ; 7) 8) LC Sat. e 0 to 0 to 0 to 0 to 0 to 0 to 0 to	This truss ha chord live loa * This truss f on the bottor 3-06-00 tall b chord and ar All bearings - Provide mec bearing plate 2 and 47 lb u This truss is International referenced s DAD CASE(S)	I as been designed to ad nonconcurrent has been designed in chord in all area by 2-00-00 wide w by other members are assumed to be hanical connection e capable of withst uplift at joint 6. designed in accor Building Code set tandard ANSI/TPI Standard	for a 10. with any d for a liv is where e HF No. n (by oth tanding 4 rdance w ction 230 1.	Dest bottom other live loa e load of 20.0 a rectangle veen the botto 2 . ers) of truss t 7 Ib uplift at j ith the 2018 06.1 and	ids. Dpsf om to joint			24	THOMESSIONA	G ZHAO $SHINCTOR $ $I = 10%$
Ū													February	17,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

MiTe 400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	D01	California	2	1	Job Reference (optional)	R86730506

4-0-0

 \parallel

0-1-1

3-10-15

3-10-15

-2-0-0

2-0-0

Builders FirstSource (Arlington, WA), Arlington, WA - 98223,

Scale = 1:46.3

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:14 ID:Ac7J9KQ_ibPUpWjiFwGN7IzIscz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

9-5-0

5-5-0

13-5-0

9-6-1

╢

0-1-1

13-5-0

3-10-15

15-5-0

2-0-0

5

R

3x6=

19

6

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

8Г M18AHS 5x12 = M18AHS 5x12 💊 2-11-12 0-3-8 0-3-8 ⊢ 3 12 13 14 15 16 4 17 2-8-4 2-8-4 4-3-8 10 18 2 0-4-7 9 8 8 7 3x6= 2x4 II 3x4 = 3-7-10 9-9-6 13-5-0 3-7-10 3-7-10 6-1-12 Plate Offsets (X, Y): [2:0-6-0.0-0-10], [3:0-7-12.0-1-4], [4:0-2-4.0-2-0], [5:0-6-0.0-0-10]

	., . ,. [=	,],[=========],[=====],[=====		-1, [,-	1							-	
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL		25.0	Plate Grip DOL	1.15		тс	1.00	Vert(LL)	-0.04	7-8	>999	240	M18AHS	145/140
(Roof Snow = 2	25.0)	20.0	Lumber DOL	1.15		BC	0.40	Vert(CT)	-0.09	7-8	>999	180	MT20	185/148
	20.0)	15.0	Ren Stress Incr	YES		WB	0.10	Horz(CT)	0.00	5	n/a	n/a	11120	100/110
BCU		0.0*	Code	IBC201	8/TPI2014	Matrix-SH	0.04	11012(01)	0.02	0	Π/α	n/a		
		10.0	Code	100201	0/1112014	Maultx-SIT							Woight: 52 lb	ET 10%
BCDL		10.0											weight. 52 lb	FT = 10%
LUMBER				4)	This truss ha	s been designed	for great	er of min roo	f live					
TOP CHORD	2x4 HF No	o.2		,	load of 16.0	psf or 2.00 times f	lat roof l	oad of 25.0 p	sf on					
BOT CHORD	2x4 HF No	. 2			overhangs n	on-concurrent with	h other li	ve loads.						
WEBS	2x4 HF No	. 2		5)	Provide adeo	quate drainage to	prevent	water pondin	g.					
BRACING				6)	All plates are	MT20 plates unle	ess other	wise indicate	ed.					
	Structural	wood she	athing directly applie	d or 7)	This truss ha	s been designed	for a 10.	0 psf bottom						
	4-11-5 oc	purlins ex	cent	u 01 ·	chord live loa	ad nonconcurrent	with any	other live loa	ads.					
	2-0-0 oc p	urlins (2-2	2-0 max.): 3-4.	8)	* This truss h	has been designed	d for a liv	e load of 20.	0psf					
BOT CHORD	Rigid ceilir	na directly	applied or 10-0-0 oc		on the bottor	n chord in all area	is where	a rectangle						
	bracing.	J			3-06-00 tall b	oy 2-00-00 wide w	ill fit betw	veen the bott	om					
REACTIONS	(size)	2=0-3-8.	5=0-3-8		chord and ar	ny other members		_						
	Max Horiz	2=62 (LC	13)	9)	All bearings	are assumed to be	e HF No.	2.						
	Max Uplift	2=-104 (L	.C 14). 5=-104 (LC 1	5) 10)) Provide mec	hanical connection	n (by oth	ers) of truss	to					
	Max Grav	2=1099 (I	_C 35), 5=1099 (LC 3	35)	bearing plate	e capable of withst	tanding 1	04 lb uplift a	t joint					
FORCES	(lb) - Maxi		pression/Maximum	,	2 and 104 lb	uplift at joint 5.		:+h +h = 2010						
ONOLO	Tension		ipression/maximum	1	International	Ruilding Code co	dance w							
TOP CHORD	1-2=0/143	2-3=-117	71/112 3-4=-925/111		referenced s	tandard ANSI/TPI	1	o. i anu						
	4-5=-1171	/111.5-6=	=0/143	, 1'	Craphical pu	representation	i. Ndoes ni	ot denict the	ozizo					
3OT CHORD	2-8=-84/93	30. 7-8=-8	8/925. 5-7=-111/930	14	or the orient:	ation of the nurlin:	along the	ton and/or	3120					
WEBS	3-8=0/213	. 3-7=-30/	28. 4-7=0/213		bottom chore		along the							
NOTES		,	-,	1:	3) Hanger(s) or	other connection	device(s) shall be						
1) Wind ASC	E 7-16: Vul	t-110mph	(3-second quet)		provided suf	ficient to support of	concentra	ated load(s) 1	187					
Vasd-87m	nh: TCDI -4	1 2nsf: BC	:DI -6 0nsf: h-25ft: C	at	lb down and	120 lb up at 3-9-0	6, 119 lb	down and 92	2 lb					
II: Exp B: E	nclosed: M	WFRS (er	velope) exterior zon	ρ	up at 6-0-12	, and 119 lb dowr	and 92	lb up at 7-4-	4,				OMIN	GZD
and C-C E	xterior(2F) -	2-0-0 to 1	-0-0 Interior (1) 1-0-0	o Dito	and 187 lb d	own and 120 lb up	o at 9-7-	10 on top cho	ord.				JA W	A
3-9-6. Exte	erior(2R) 3-9	-6 to 8-0-	5. Interior (1) 8-0-5 to)	The design/s	election of such c	onnectio	n device(s) is	s the			7	P OF WI	ISHIN Y
9-7-10. Ext	terior(2R) 9-	7-10 to 13	3-10-9. Interior (1)		responsibility	of others.						7	ST ST	
13-10-9 to	15-5-0 zone	e; cantilev	er left and right	L	DAD CASE(S)	Standard						-		
exposed;	end vertical	left and right	ght exposed;C-C for	1)	Dead + Sno	ow (balanced): Lu	mber Inc	rease=1.15,	Plate			-		
members a	and forces &	MWFRS	for reactions shown;	,	Increase=1	.15								
Lumber DC	DL=1.60 plat	te grip DC)L=1.60		Uniform Lo	ads (lb/ft)							A PI	
2) TCLL: ASC	CE 7-16; Pf=	=25.0 psf (Lum DOL = 1.15 Pla	te	Vert: 1-3	=-80, 3-4=-80, 4-6	6=-80, 2-	5=-20				- 🛋 🔿	540	TA SA
DOL = 1.15	5); Is=1.0; R	lough Cat	B; Partially Exp.;		Concentrat	ed Loads (lb)							O REGIM	A A BO
Ce=1.0; Cs	s=1.00; Ct=1	1.10; IBC	1607.11.2 minimum ı	roof	Vert: 3=-	88, 4=-88						-	PROVIS	English
live load ap	oplied where	e required											SIONA	LEN
Unbalance	d snow load	ls have be	en considered for the	is									SINT	
design.														
													Februar	v 17.2025

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	D02	California Girder	2	1	Job Reference (optional)	R86730507

Scale = 1:48.3

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MITek Industries, Inc. Mon Feb 17 10:17:14 ID:eXAGosExTgOlv3VdJZ_dTwzlsdD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-7-10	6-8-8	11-9-6	13-5-0
1-7-10	5-0-14	5-0-14	1-7-10
X X)· [2·0-6-0.0-0.10] [3·0-4-0.0-1-8] [5·0-4-0.0-1-8] [6·0-6-0.0-0-10]			

Plate Offsets	te Offsets (X, Y): [2:0-6-0,0-0-10], [3:0-4-0,0-1-8], [5:0-4-0,0-1-8], [6:0-6-0,0-0-10]												
Loading TCLL (Roof Snow = TCDL BCLL BCDL	(psf) 25.0 = 25.0) 15.0 0.0 * 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC2018	3/TPI2014	CSI TC BC WB Matrix-SH	0.79 0.40 0.34	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.15 -0.23 0.02	(loc) 9 9 6	l/defl >999 >677 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 53 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORE BOT CHORE WEBS BRACING TOP CHORE BOT CHORE REACTIONS	 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural wood she 4-10-14 oc purlins, (2-0-0 oc purlins (2-6 Rigid ceiling directly bracing. (size) 2=0-3-8, (Max Horiz 2=39 (LC Max Uplift 2=-99 (LC Max Grav 2=803 (LC 	5) 6) 7) d or 8) 9) 10]	Provide adec This truss ha chord live loz * This truss h on the bottor 3-06-00 tall k chord and ar All bearings. Provide mec bearing plate 2 and 99 lb u) This truss is International referenced s) Graphical pu	quate drainage to is been designed ad nonconcurrent has been designen n chord in all area by 2-00-00 wide w hy other members are assumed to b hanical connectio e capable of withs uplift at joint 6. designed in accoo Building Code se tandard ANSI/TPI rlin representation	prevent for a 10. with any d for a liv as where rill fit betv e HF No. n (by oth tanding S rdance w ction 230 11. n does no	water pondin of psf bottom other live loa e load of 20. a rectangle veen the bott 2 . ers) of truss 19 lb uplift at 16.1 and bt depict the	g. ads. Opsf om to joint						
FORCES TOP CHORE BOT CHORE WEBS NOTES 1) Wind: AS Vasd=87 II; Exp B; cantileve right exp 2) TCLL: AS DOL = 1. ce=1.0; d live load 3) Unbalanc design. 4) This trus: load of 10 verhanc	(ID) - Maximum Con Tension 0 1-2=0/143, 2-3=-12(4-5=-2597/192, 5-6= 0 2-10=-74/1078, 9-1(8-9=-85/1084, 6-8=- 3-10=-27/165, 3-9=- 5-9=-104/1614, 5-8= 3CE 7-16; Vult=110mph mph; TCDL=4.2psf; BC ; Enclosed; MWFRS (er r left and right exposed osed; Lumber DOL=1.6 SCE 7-16; Pf=25.0 psf (.15); Is=1.0; Rough Cat CS= 1.00; Ct=1.10; IBC applied where required zed snow loads have be s has been designed fo 6.0 psf or 2.00 times fla is non-concurrent with of	pression/Maximum 50/99, 3-4=-2597/192 1259/98, 6-7=0/143)=-82/1065, 78/1097 105/1614, 4-9=-619/ -27/165 (3-second gust) DL=6.0psf; h=25ft; C velope) exterior zonr; end vertical left and 0 plate grip DOL=1.6 Lum DOL = 1.15 Pla B; Partially Exp.; 1607.11.2 minimum i 	2, 12, 1111, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	or the orients bottom chorc) Hanger(s) or provided suft down and 24 4-0-12, 104 I and 37 Ib up 9-4-4, and 90 chord, and 8 Ib down at 6 9-4-4, and 8 design/selec responsibility) In the LOAD of the truss a AD CASE(S) Dead + Snc Increase=1 Uniform Lo. Vert: 1-3 Concentrats Vert: 3-5	ation of the purlin i. other connection ficient to support (17 lb up at 1-9-6, b down and 37 lb at 7-4-4, and 97 3 lb down at 2-0-1 i-0-12, 8 lb down at 11-4-4 ib down at 11-4-4 ib down at 11-4-4 icon of such coma CASE(S) section are noted as front Standard bw (balanced): Lu .15 ads (lb/ft) =-80, 3-5=-80, 5-7 ed Loads (lb) 85, 5=85	along the device(s concentra 97 lb dov up at 6- lb down 7 lb up at 2, 8 lb dc at 7-4-4, 4 on bott ection de , loads a (F) or ba mber Inc 7=-80, 2-	e top and/or) shall be ted load(s) § vn and 32 lb 0-12, 104 lb and 32 lb up 11-7-10 on wm at 4-0-1: and 8 lb dow om chord. Ti vice(s) is the oplied to the ck (B). rease=1.15, 6=-20	98 lb up at down at top 2, 8 vn at he face Plate			a second s	THOMEN THOMESSIONA	G ZHAO MAINGTOL 74 ERED LL ENGING

February 17,2025

Page: 1

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	D03	California	2	1	Job Reference (optional)	R86730508

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:15 ID:tXk5GIYFLfg303Udr0SjWPzIscp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1	5-7-10	7-9-6	13-5-0
ſ	5-7-10	2-1-12	5-7-10

Scale = 1:58.8 Plate Offsets (X, Y): [2:0-6-0,0-0-6], [3:0-7-12,0-1-4], [4:0-2-4,0-2-0], [5:0-6-0,0-0-6]

	, .													
Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC20 ⁴	18/TPI2014	CSI TC BC WB Matrix-SH	0.63 0.40 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.05 -0.08 0.02	(loc) 2-8 2-8 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES M18AHS MT20 Weight: 53 lb	GRIP 145/140 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: AS(Vasd=87r II; Exp B; and C-C E 5-9-6, Ext to 11-10-5 left and rig exposed;(reactions DOL=1.6(2) TCLL: AS DOL=1.1	2x4 HF No. 2x4 HF No. 2x4 HF No. 2x4 HF No. 2x4 HF No. Structural v 4-1-1 oc pu 2-0-0 oc pu Rigid ceilin bracing. (size) 2 Max Horiz 2 Max Uplift 2 Max Grav 2 (lb) - Maxin Tension 1-2=0/143, 4-5=-1302/ 2-8=-29/91 3-8=0/161, CE 7-16; Vult- mph; TCDL=4 Enclosed; MV Enclosed; MV Enclosed; MV Stetrior (2E) -5-9- 9, Interior (1) 1 ght exposed ; CC for memb shown; Lumb CE 7-16; Pf=z	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 3	athing directly applie sept -14 max.): 3-4. applied or 10-0-0 oc 5=0-3-8 13) 14), 5=-87 (LC 15) .C 35), 5=1254 (LC 3 pression/Maximum)1/93, 3-4=-916/114,)/143 1/915, 5-7=-15/919 /132, 4-7=0/184 (3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zono- 0-0, Interior (1) 1-0- 10, Exterior(2R) 7-7-1 0, 15-5-0 zone; cantile cal left and right orces & MWFRS for 1.60 plate grip Lum DOL = 1.15 Plai B: Partially Exp.	4 6 d or 7 8 9 10 55) 1 1 55) 1 1 1 55) 1 1 1 1 55) 1 1 1 1	 This truss ha load of 16.0 overhangs n Provide ader All plates are This truss ha chord live load * This truss ha chord and an * This truss liberarings Provide mean bearing plate 2 and 87 lb u All bearings Provide mean bearing plate 2 and 87 lb u This truss is International referenced s Graphical pu bottom chore Graphical pu fib down and lb up at 7-7- such connect Dead + Smi Increase=1 Uniform Lo Vert: 1-3 Concentrat Vert: 3=- 	Is been designed psf or 2.00 times I on-concurrent witi quate drainage to a MT20 plates unlu- is been designed ad nonconcurrent nas been designed n chord in all area yy 2-00-00 wide w ny other members are assumed to b hanical connection a capable of withs uplift at joint 5. designed in accor Building Code se tandard ANSI/TPI rifin representation ation of the purlin J. other connection ficient to support d. 84 lb up at 5-9-6 10 on top chord. tion device(s) is tt Standard ow (balanced): Lu .15 ads (lb/ft) =-80, 3-4=-80, 4-6 ed Loads (lb) 173, 4=-173	for great flat roof Ich h other II' ess other for a 10. with any d for a Ii' as where vill fit betw s. e HF No. n (by oth tanding & rdance w ection 23(I 1. n does n along the other espoint mber Inc 6=-80, 2-	er of min rooi oad of 25.0 p ve loads. water pondin rwise indicate 0 psf bottom other live load other live load other live load e load of 20. a rectangle veen the bott 2. ers) of truss 87 lb uplift at 36.1 and ot depict the se ated load(s) 2 2 lb down and gn/selection nsibility of oth rease=1.15, 5=-20	f live bsf on lg. ed. ads. Opsf tom to joint size 222 d 84 of hers. Plate				THE SHOWIN	G ZHAO
Ce=1.0; C live load a	Cs=1.00; Ct=1	.10; IBC required.	1607.11.2 minimum r	oof									FESSIONA	LENGIN

3) Unbalanced snow loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

ONALES

February 17,2025

Page: 1

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	D04	Common	4	1	Job Reference (optional)	R86730509

overhangs non-concurrent with other live loads.

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:15 ID:bSLtMAgX?kxeDbFYQ6d3wWzlscf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

February 17,2025

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

	6-8-8	13-5-0	
	6-8-8	6-8-8	
Scale = 1:50.4			
Plate Offsets (X, X): [2:0-6-0.0-0-6] [4:0-6-0.0-0-6]			

	λ, Τ). [2.0-0-0	,0-0-0 <u>]</u> ,	[4.0-0-0,0-0-0]											
Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2018	3/TPI2014	CSI TC BC WB Matrix-SH	0.62 0.41 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.05 -0.10 0.01	(loc) 2-6 4-6 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 45 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD WEBS NOTES 1) Wind: AS(Vasd=87n II; Exp B; I and C-C E 6-8-8, Exp 15-5-0 zor vertical lef forces & M DOL=1.60 2) TCLL: AS(DOL = 1.1)	2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural wo 4-11-2 oc pu Rigid ceiling bracing. (size) 2= Max Horiz 2= Max Horiz 2= Max Uplift 2= Max Grav 2= (lb) - Maximu Tension 1-2=0/143, 2 4-5=0/143 2-6=0/503, 4 3-6=0/315 CE 7-16; Vult=1 nph; TCDL=4.2 Enclosed; MWI Exterior(2E) -2-1 erior(2E) 6-2-1 erior(2E) 6-2-1 erior(2E) 6-2-1 erior(2E) 6-2-1 ft and right expu WFRS for rea 0 plate grip DOI CE 7-16; Pf=225 5); Is=1.0; Rou	2000 sheat rifins. directly : =0-3-8, 4 =-98 (LC =-44 (LC =828 (LC =44 (LC =828 (LC =-3=-767) -6=0/503 -6=0/50 -6=0/503 -6=0/503 -6=0/50 -6=0/503 -6=0/503 -6=0/503 -6=0/503 -	athing directly applied applied or 10-0-0 oc =0-3-8 10) 12), 4=-44 (LC 13) : 1), 4=828 (LC 1) pression/Maximum /42, 3-4=-767/42, 3 (3-second gust) DL=6.0psf; h=25ft; C velope) exterior zone 0-0, Interior (1) 1-0-0 , Interior (1) 9-8-8 to ght exposed; end C for members and hown; Lumber .um DOL = 1.15 Plat 3; Partially Exp.;	4) 5) d or 6) 7) 8) LC at. e) to	This truss ha chord live loa * This truss h on the bottor 3-06-00 tall t chord and ar All bearings 1 Provide mec bearing plate 2 and 44 lb u This truss is International referenced s	I solven designed for an onconcurrent we have been designed in chord in all areas by 2-00-00 wide will by other members. The assumed to be hanical connection e capable of withstatuplift at joint 4. designed in accord Building Code sectandard ANSI/TPI for Standard	or a 10. vith any for a liv s where I fit betv HF No. (by oth anding 4 lance w tion 230) psf bottom other live loa e load of 20.0 a rectangle veen the botto 2 . ers) of truss t 4 lb uplift at j ith the 2018 36.1 and	ds.)psf om o oint				Weight: 45 ID	
3) This truss load of 16	has been designed where re bas been designed by the second	equired. gned for mes flat	greater of min roof l roof load of 25.0 pst	ive f on								3	POPESSIONA	ERED LENGINE

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	J01	Jack-Open	28	1	Job Reference (optional)	R86730510

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MITek Industries, Inc. Mon Feb 17 10:17:15 ID:wUjbPv_r_oC?rI4VwXLJvHzIwL6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-0-0

Scale = 1:31.5

Loading TCLL (Roof Sr TCDL BCLL BCLL) now =	25.0)	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC201	8/TPI2014	CSI TC BC WB Matrix-P	0.56 0.04 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 2-4 2-4 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 8 lb	GRIP 185/148 FT = 10%	
LUMBE TOP CH BOT CH BRACIN TOP CH BOT CH	R IORD IORD IORD IORD	2x4 HF No 2x4 HF No 2-0-0 oc pu Rigid ceilin bracing. (size) : Max Horiz : Max Uplift : Max Grav :	2 2 wood shea rrlins. g directly 2=0-3-8, 3 Mechanic 2=63 (LC 2=-47 (LC 2=455 (LC (LC 3)	athing directly applie applied or 10-0-0 or 3= Mechanical, 4= al 12) : 12), 3=-115 (LC 18 2 18), 3=12 (LC 8), 4	5 ed or 6 7 5 8 9 9 1=39 L	* This truss I on the bottor 3-06-00 tall I chord and ai All bearings Refer to gird Provide mec bearing plate 2 and 115 lb This truss is International referenced s	has been designed in chord in all areas by 2-00-00 wide wi by other members. are assumed to be er(s) for truss to tr hanical connection e capable of withst uplift at joint 3. designed in accord Building Code sec tandard ANSI/TPI Standard	I for a liv s where Ill fit betw HF No. russ con h (by oth anding 4 dance w ction 230 1.	e load of 20.0 a rectangle veen the botto 2 . nections. ers) of truss t if buplift at j ith the 2018 06.1 and	Opsf om o oint						
FORCE	S	(lb) - Maxir Tension	num Com	pression/Maximum												
ГОР СН ЗОТ СН	IORD IORD	1-2=0/141, 2-4=0/0	2-3=-99/2	26												
VOTES I) Wind Vasi II; E and 1-10 verti force DOL 2) TCL DOL Ce= live	d: AS(d=87n xp B; C-C E)-13 z ical let es & M _=1.60 L: AS _ = 1.1 1.0; C load a	CE 7-16; Vult nph; TCDL=4 Enclosed; MV xterior(2E) -2 one; cantileve it and right ex MWFRS for re 0 plate grip D0 CE 7-16; Pf=; 5); Is=1.0; Rt is=1.00; Ct=1	=110mph .2psf; BC VFRS (en 2-0-0 to 1- er left and posed;C actions sl DL=1.60 25.0 psf (I bugh Cat .10; IBC 1 required.	(3-second gust) DL=6.0psf; h=25ft; C velope) exterior zon -0-0, Interior (1) 1-0- right exposed; end C for members and hown; Lumber Lum DOL = 1.15 Pla B; Partially Exp.; 1607.11.2 minimum	Cat. e 0 to te roof								J.	THA OMIN	G ZHAO	

- 3) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Page: 1

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	J02	Jack-Open	28	1	Job Reference (optional)	R86730511

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:15 ID:xJyeTQn_yCYLFHSZi5U0Sjzlsqj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-0-0

Scale = 1:29.3

											-	
Loading TCLL (Roof Snow = TCDL BCLL BCDL	(psf) 25.0 = 25.0) 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2018/TPI2014	CSI TC BC WB Matrix-P	0.51 0.04 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 2-5 2-5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 11 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD NOTES 1) Wind: AS	 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural wood sheat 2-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 3 5= Mecha Max Horiz 2=98 (LC Max Uplift 2=-28 (LC 4=-26 (LC Max Grav 2=445 (LC (LC 1), 5= (lb) - Maximum Com Tension 1-2=0/141, 2-3=-98/5 2-5=-0/0 	athing directly applied applied or 10-0-0 oc 3=0-1-8, 4= Mechanica inical 12) 2 12), 3=-74 (LC 18), 3 (12), 3=75 (LC 20), 4 -39 (LC 3) pression/Maximum 58, 3-4=-37/32 (3-second gust)	 5) * This truss on the botto 3-06-00 tall chord and a 6) All bearings 7) Refer to gird 8) Provide men- bearing plat 9) Provide men- bearing plat 4, 23 lb upli 10) Beveled pla surface with 11) This truss is Internationa referenced i LOAD CASE(S) 	has been designed m chord in all areas by 2-00-00 wide wil ny other members. are assumed to be der(s) for truss to tm chanical connection e at joint(s) 3. chanical connection e capable of withsta f at joint 2 and 74 lk te or shim required truss chord at joint designed in accord I Building Code sec standard ANSI/TPI (for a liv s where I fit betv HF No. uss con (by oth anding 2 o uplift a to provi (s) 3. Jance w tion 230 1.	e load of 20.0 a rectangle veen the botto 2. nections. ers) of truss t ers) of truss t 26 lb uplift at ju t joint 3. de full bearing ith the 2018 36.1 and	0psf om o o oint					
Vasd=87i II; Exp B;	mpn; TCDL=4.2psf; BC ; Enclosed; MWFRS (en	DL=6.0pst; h=25ft; Ca velope) exterior zone	at.									

II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -2-0-0 to 1-0-0, Interior (1) 1-0-0 to 3-10-3 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7 46: PL 36 coef (Jum DOL = 1.16 plate

- TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.
- 3) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

February 17,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	J03	Jack-Open	20	1	Job Reference (optional)	R86730512

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:15 ID:wUjbPv_r_oC?rI4VwXLJvHzIwL6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:34.6

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL		25.0	Plate Grip DOL	1.15		TC	0.56	Vert(LL)	0.00	2-6	>999	240	MT20	185/148	
(Roof Snow =	25.0)		Lumber DOL	1.15		BC	0.04	Vert(CT)	0.00	2-6	>999	180			
TCDL		15.0	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.00	5	n/a	n/a			
BCLL		0.0*	Code	IBC2018	3/TPI2014	Matrix-P		. ,							
BCDL		10.0											Weight: 14 lb	FT = 10%	
				4)	This truss ha	s been designed f	or a 10.0) psf bottom	-						
	2x4 HF N	0.2		.,	chord live loa	ad nonconcurrent v	vith anv	other live loa	ds.						
BOT CHORD	2x4 HF N	0.2		5)	* This truss h	as been designed	for a liv	e load of 20.0	Opsf						
BRACING				,	on the botton	n chord in all areas	s where	a rectangle							
	Structura	l wood she	athing directly applie	d or	3-06-00 tall b	y 2-00-00 wide wi	ll fit betv	veen the botto	om						
	2-0-0 001	nurline	atting allocity applie		chord and an	y other members.									
	Rigid ceil	ing directly	applied or 10-0-0 or	. 6)	All bearings a	are assumed to be	HF No.	2.							
	bracing	ing directly		ý 7)	Refer to girde	er(s) for truss to tr	uss con	nections.							
DEACTIONS	(oizo)	2 0 2 0 2	01010105	8)	Provide mecl	hanical connectior	ı (by oth	ers) of truss t	0						
REACTIONS	(5120)	2=0-3-0, 3	=0-1-0, 4=0-1-0, 5=		bearing plate	e at joint(s) 3, 4.									
	Max Hariz			9)	Provide mecl	hanical connection	ı (by oth	ers) of truss to	0						
	Max Liplift	2=133 (LC	(10) 4 = 50 (10, 10)		bearing plate	capable of withsta	anding 2	6 lb uplift at j	oint						
	Max Oplin	3=-71 (LC	18), 4=-36 (LC 12),		5, 71 lb uplift	at joint 3 and 56 l	b uplift a	t joint 4.							
	May Cray	5=-26 (LC	(12)	10) Beveled plate	e or shim required	to provi	de full bearing	g						
	Max Grav	2=446 (LC	$(L \cup 20), 3=83 (L \cup 20),$	20	surface with	truss chord at joint	(s) 3, 4.								
		4=101 (LC	,);)=/ (LC T), b=	-39 11) This truss is	designed in accord	dance w	ith the 2018							
		(LC 3)			International	Building Code sec	tion 230	6.1 and							
FORCES	(Ib) - Max	umum Com	pression/Maximum		referenced st	tandard ANSI/TPI	1.								
	Lension														

2-0-0

TOP CHORD 1-2=0/141, 2-3=-144/91, 3-4=-95/59, 4-5=-37/32

2-6=0/0

BOT CHORD

NOTES

- 1) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -2-0-0 to 1-0-0, Interior (1) 1-0-0 to 5-10-3 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.
- This truss has been designed for greater of min roof live 3) load of 16.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	J04	Jack-Open	8	1	Job Reference (optional)	R86730513

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:16 ID:zFe11pq7LXK_XUnN9GvyvyzlsgK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:40.1

Loading TCLL (Roof Snow = TCDL BCLL	: 25.0)	(psf) 25.0 15.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2) 018/TPI2014	CSI TC BC WB Matrix-P	0.56 0.04 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 2-7 2-7 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 185/148
BCDL		10.0											Weight: 16 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS	2x4 HF N 2x4 HF N Structura 2-0-0 oc Rigid ceil bracing. (size) Max Horiz Max Uplift Max Grav (lb) - Max Tension 1-2=0/14 4-5=-120 2-7=0/0	lo.2 lo.2 lo.2 ling directly 2=0-3-8, 3 7= Mecha 2=154 (LC 3=-71 (LC 5=-83 (LC 2=446 (L (LC 20), 5 3) cimum Com 1, 2-3=-190 /84, 5-6=-1	athing directly applied applied or 10-0-0 oc 3=0-1-8, 4=0-1-8, 5=0 inical 2 12) 2 18), 4=-51 (LC 18), 3 = 384 (LC 20), 5 = 382 (LC 18), 7=39 pression/Maximum 1/94, 3-4=-152/87, 33/0	d or)-1-8, 4=93 (LC	 This truss ha chord live los * This truss I on the botton 3-06-00 tall I chord and au All bearings Refer to gird Provide mec bearing plate Provide mec bearing plate Frovide mec bearing plate Store mec bearing plate Provide mec bearing plate Beveled plat surface with This truss is international referenced s LOAD CASE(S) 	as been designe ad nonconcurrer has been desigr m chord in all ar by 2-00-00 wide are assumed to ter(s) for truss to thanical connect e at joint(s) 3, 4, thanical connect e capable of with t at joint 4 and 8 te or shim requir truss chord at jo designed in acc Building Code tandard ANSI/T Standard	d for a 10.0 nt with any hed for a liv eas where will fit betw rs. be HF No. o truss con cion (by oth 5. cion (by oth 5. d to provi pint(s) 3, 4, cordance w section 230 PI 1.	D psf bottom other live loa e load of 20.1 a rectangle veen the bott 2 . nections. ers) of truss t ers) of truss t 11 b uplift at j tt joint 5. de full bearin 5. ith the 2018 36.1 and	ads. Opsf om to to joint g					
NOTES 1) Wind: AS Vasd=87r II; Exp B; and C-C I 7-10-15 z vertical le forces & I	CE 7-16; Vu mph; TCDL= Enclosed; M Exterior(2E) one; cantile ft and right WWFRS for	ult=110mph =4.2psf; BC /WFRS (er -2-0-0 to 1 ver left and exposed;C- reactions s	(3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zone -0-0, Interior (1) 1-0-0 right exposed ; end C for members and hown; Lumber	at. e) to								نو	ALA OMIN	G ZHAO

2-0-0

- DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof
- live load applied where required.3) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	J05	Jack-Open	4	1	Job Reference (optional)	R86730514

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:16 ID:_eOTZQ3cunplt4EreDMoT4zIsmT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

2-0-0

Scale = 1:33.6

Loading TCLL (Roof Snow = TCDL BCLL BCDL	= 25.0)	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC20 ⁷	8/TPI2014	CSI TC BC WB Matrix-P	0.56 0.04 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 2-6 2-6 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 13 lb	GRIP 185/148 FT = 109
LUMBER TOP CHORE BOT CHORE BRACING TOP CHORE BOT CHORE REACTIONS FORCES TOP CHORE	2x4 HF N 2x4 HF N 2x4 HF N Structura 2-0-0 oc Rigid ceil bracing. (size) Max Horiz Max Uplift Max Grav (lb) - May Tension 1-2=0/14 4-5=-108	lo.2 J wood she purlins. ing directly 2=0-3-8, 3 Mechanic 2=124 (LC 2=-5 (LC 4=297 (LC 4=297 (LC cimum Com 1, 2-3=-131 /0	athing directly applie applied or 10-0-0 o 3=0-1-8, 4=0-1-8, 6= al 212), 3=-144 (LC 18) 12), 3=-144 (LC 20), 218), 3=42 (LC 20), 218), 6=39 (LC 3) pression/Maximum /56, 3-4=-98/71,	5 ed or 6 7 c 8 <u>=</u> 9 , 1 , 1 , L	 * This truss I on the botton 3-06-00 tall I chord and an All bearings Refer to gird Provide mece bearing plate Provide mece bearing plate This truss is International referenced s OAD CASE(S) 	has been desi, m chord in all a by 2-00-00 wird hy other membrare assumed er(s) for truss hanical conne e at joint(s) 3, hanical conne e capable of w at joint 3 and 1 e or shim requ truss chord at designed in a Building Code tandard ANSI. Standard	gned for a liv areas where de will fit betv bers. to be HF No. to truss con cition (by oth ithstanding 5 79 lb uplift at uired to provi joint(s) 3, 4. ccordance w e section 230 (TPI 1.	e load of 20.1 a rectangle veen the bott 2 . nections. ers) of truss : ers) of truss : b uplift at jo joint 4. de full bearin ith the 2018 36.1 and	0psf om to to oint 2, g					
NOTES 1) Wind: AS	CE 7-16; Vu	ılt=110mph	(3-second gust)											

- Vasd=87mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -2-0-0 to 1-0-0, Interior (1) 1-0-0 to 5-6-11 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.
- 3) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MITek-US.com

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	J06	Jack-Closed	5	1	Job Reference (optional)	R86730515

2-0-0

Builders FirstSource (Arlington, WA), Arlington, WA - 98223,

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:16 ID: uA4I6LWK f610iTQMh466LYz lu?x-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff

Page: 1

Scale = 1:27

Loading		(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL		25.0	Plate Grip DOL	1.15	TC	0.06	Vert(LL)	0.00	1-3	>999	240	MT20	185/148
(Roof Sr	ow = 25.0)		Lumber DOL	1.15	BC	0.03	Vert(CT)	0.00	1-3	>999	180		
TCDL		15.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCLL		0.0*	Code	IBC2018/TPI201	4 Matrix-P								
BCDL		10.0										Weight: 7 lb	FT = 10%
LUMBER	र			7) Provide	e mechanical connec	tion (by oth	ers) of truss t	to					
TOP CH	ORD 2x4 HF N	0.2		bearing	plate capable of with	hstanding 1	1 lb uplift at j	oint					
BOT CH	ORD 2x4 HF N	lo.2		3.									
WEBS	2x4 HF N	0.2		This tru	iss is designed in acc	cordance w	ith the 2018						
BRACIN	G			Interna	tional Building Code	section 230	06.1 and						
TOP CH	ORD Structura	l wood she	athing directly appli	ed or referen	ced standard ANSI/T	ΓPI 1.							
	2-0-0 oc	purlins, ex	cept end verticals.	LOAD CAS	SE(S) Standard								
BOT CH	ORD Rigid cei	lina directly	applied or 10-0-0 o	с									
	bracing.												
REACTI	ONS (size)	1=0-5-8.3	3= Mechanical										
	Max Horiz	1=33 (LC	11)										
	Max Uplift	3=-11 (LC	: 12)										
	Max Grav	1=90 (LC	1) 3=91 (I C 19)										
FORCES	(lb) - May	vimum Com	nression/Maximum										
FUNCES	Tension		ipression/iviaximum										
TOP CH	ORD 1-2=-49/4	44 2-3=-73	/56										
BOT CH	ORD 1-3=-16/	17, <u>2</u> 010											
NOTES													
	N ASCE 7 16. 1/1	ult_110mph	(2 second quet)										
I) WING	1. ASCE 7-10, VU 1-87mph: TCDI -	-1 2pef BC	DI -6 Opef: h-25ft: i	Cat									
II. Ev	n B: Enclosed: N	-4.2031, DO	velope) exterior zor	0al.									
and	C-C Exterior(2E)	zone: cant	ilever left and right										
expo	sed : end vertica	l left and ri	nbt exposed C-C for										
men	bers and forces	& MWFRS	for reactions shown	r:									
Lum	ber DOL=1.60 pl	ate grip DC	L=1.60	,								OMIN	IG 2
2) TCL	L: ASCE 7-16: P	f=25.0 psf (Lum DOL = 1.15 Pla	ate								TAUM	CHA
DOL	= 1.15); ls=1.0:	Rough Cat	B; Partially Exp.:								-	TOF W.	ASHD
Ce=	1.0; Cs=1.00; Ct=	=1.10; IBC	1607.11.2 minimum	roof							-	Si Si	
live l	oad applied whe	re required											6
3) This	truss has been o	designed fo	r a 10.0 psf bottom								-	2	Z Z
chor	d live load nonco	oncurrent wi	th any other live loa	ids.							2		
4) * Thi	s truss has been	designed f	or a live load of 20.0	Opsf								A.	
on th	e bottom chord i	in all areas	where a rectangle										
3-06	-00 tall by 2-00-0	0 wide will	fit between the botto	om							-	P P 540	014 0 8 5
chor	d and any other i	members.										F GIS	TERE
5) All b	earings are assu	med to be I	HF No.2 .									SSIG	IT ENGL
6) Refe	r to girder(s) for	truss to trus	ss connections									~ VN	AL PL A

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

TTTT

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	M01	Monopitch Supported Gable	1	1	Job Reference (optional)	R86730516

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:16 ID:LyiG?qW63IzIz4yHVp23e7zIreu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

18-2-4

	I		
Scale = 1:35.1			
Plate Offsets (X, Y): [6:0-4-0,0-4-8]		

	., .). [0.0	,													
Loading TCLL (Roof Snow = 2 TCDL BCLL BCDL	25.0)	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC20)18/TPI2014	CSI TC BC WB Matrix-R	0.12 0.03 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 11	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 71 lb	GRIP 185/148 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 DF N 2x4 HF N 2x4 HF N 2x4 HF N Structural 6-0-0 oc p Rigid ceili bracing. (size) Max Horiz Max Uplift	0.2 0.2 0.2 0.2 0.2 11=18-2-4 14=18-2-4 17=18-2-4 20=37 (LC 11=-16 (L 13=-41 (L 13=-41 (L 15=-42 (L 17=-42 (L 11=304 (L 11=304 (L 13=701 (L 13=701 (L 13=717 (L 15=715 (L 17=717 (L 19=245 (I)	athing directly applicept end verticals. applied or 10-0-0 o 4, 12=18-2-4, 13=18 4, 15=18-2-4, 16=18 5, 18=18-2-4, 19=18 5 12), 12=-49 (LC 8 C 12), 14=-43 (LC 8 C 12), 16=-42 (LC 8 C 12), 18=-43 (LC 8 C 12), 12=797 (LC 1 C 1), 12=797 (LC 1 C 1), 14=724 (LC 1 C 1), 18=714 (LC 1 C 1), 18=714 (LC 1 C 1), 18=729 (LC 1	ed or pc 3-2-4, 3-2-4, 3-2-4, 8), 8), 8), 8), 1), 1), 1), 1),	 WEBS NOTES 1) Wind: ASCE Vasd=87mp II; Exp B; Er and C-C Co exposed ; ei members ar Lumber DOO 2) Truss desig only. For st see Standar or consult qi 3) TCLL: ASCC DOL = 1.157 Ce=1.0; Css live load app 4) Provide ade 5) All plates ar 6) Gable requii 7) Truss to be braced agai 	2-19=-706/249, 3 4-17=-677/222, 5- 6-15=-675/223, 7- 8-13=-662/218, 9- 5-7-16; Vult=110m h; TCDL=4.2psf; I iclosed; MWFRS mer (3) zone; can nd vertical left and id forces & MWFF =1.60 plate grip I ned for wind loads uds exposed to wid d Industry Gable I julified building de 5-7-16; Pf=25.0 ps i; Is=1.0; Rough C =1.00; Ct=1.10; IB blied where requirr quate drainage to e 2x4 (II) MT20 u res continuous boi fully sheathed fror nst lateral movem	-18=-674, -16=-671, -14=-684, -12=-753, ph (3-sec BCDL=6.6, (envelope tilever lef right exp S for rea DOL=1.66 s in the pl ind (norm End Deta assigner as of (Lum D teta assigner as of (Lum D teta assigner as of (Lum D teta assigner as of C 1607.1 ed. prevent of nless oth ttom chor m one fac en (i.e. c)	(221, (219, (223, (246) (246) (246) (246) (246) (246) (257) (246) (257)	Cat. ne r,); ble, PI 1. ate roof g. ted. ,	12) Pro bea 20, upli 16, upli 13) This Inte refe LOAD (1) De Int Ur	vide me ring pla' 16 lb up ft at join 42 lb up ft at join s truss is rrenced CASE(S ead + Sr crease= iiform Lo Vert: 11	chanic te capa te capa lift at ji lift at ji t 13, 42 lift at ji t 13 an s desig a l Build standa) Sta now (ba 1.15 poads (II -20=-2	al connection (b) able of withstand oint 11, 40 lb upl 2 lb uplift at joint oint 15, 43 lb upl id 49 lb uplift at j ned in accordan ing Code sectior rrd ANSI/TPI 1. ndard alanced): Lumbe b/ft) 20, 1-10=-338	G ZT	int pint
FORCES	(lb) - Max Tension 1-20=-26 ⁻ 2-3=-33/1 5-7=-32/1 9-10=-23/	imum Com 1/91, 10-11 3, 3-4=-33/ 9, 7-8=-22/ /24	pression/Maximum =-287/100, 1-2=-32 /15, 4-5=-32/17, /20, 8-9=-22/22,	2/11,	 B) Gable studs This truss has chord live lo 10) * This truss on the botto 3-06-00 tall 	spaced at 2-0-0 c as been designed ad nonconcurrent has been designe m chord in all area by 2-00-00 wide w	oc. for a 10.0 with any d for a liv as where vill fit betv	0 psf bottom other live loa e load of 20.0 a rectangle veen the botto	ads. Opsf om			Ŷ		A CITOL C	
BOT CHORD	19-20=-32 16-17=-32 13-14=-29	2/45, 18-19 2/45, 15-16 9/37, 12-13	=-32/45, 17-18=-32 =-32/45, 14-15=-29 =-29/37, 11-12=-29	2/45, 9/37, 9/37	chord and a 11) All bearings	ny other members are assumed to b	s. e HF No.	2.				3	PROFESSION	TA ERED LENGING	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

February 17,2025

Page: 1

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	M01A	Monopitch Girder	1	2	Job Reference (optional)	R86730517

Run: 8.83 S. Feb. 1 2025 Print: 8.830 S. Feb. 1 2025 MiTek Industries. Inc. Mon Feb. 17 10:17:17

	bracing.			canti
REACTIONS	(size)	7=3-5-8, 8=3-5-8, 11=3-5-8, 12=3-5-8	4)	TCLI
	Max Horiz Max Uplift	12=20 (LC 5) 7=-445 (LC 1), 8=-347 (LC 8),		DOL Ce='
	Max Grav	11=-327 (LC 8), 12=-292 (LC 1) 7=58 (LC 8), 8=3989 (LC 1), 11=3755 (LC 1), 12=46 (LC 8)	5) 6)	Prov
FORCES	(lb) - Max Tension	imum Compression/Maximum	7)	* Thi
TOP CHORD	1-2=-111/	1174, 2-3=-2463/217, 5/218, 5-6=-124/1385, 1-12=-6/102		3-06-
BOT CHORD	11-12=-1 8-9=-138	13/9, 9-11=-1157/2384, 1/124, 7-8=0/0	8)	All be
WEBS	6-7=-24/3 3-10=-105	00, 1-11=-1099/97, 2-11=-2764/259, 56/127, 2-10=-337/3748,	9)	beari 12, 4

NOTES

2-ply truss to be connected together with 10d 1) (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc.

5-8=-2810/264, 6-8=-1513/136

- ilever left and right exposed ; end vertical left and exposed; Lumber DOL=1.60 plate grip DOL=1.60
- L: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate = 1.15); Is=1.0; Rough Cat B; Partially Exp.; 1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof oad applied where required.
- ide adequate drainage to prevent water ponding. truss has been designed for a 10.0 psf bottom d live load nonconcurrent with any other live loads.
- is truss has been designed for a live load of 20.0psf ne bottom chord in all areas where a rectangle -00 tall by 2-00-00 wide will fit between the bottom d and any other members.
- earings are assumed to be HF No.2.
- vide mechanical connection (by others) of truss to ing plate capable of withstanding 292 lb uplift at joint 145 lb uplift at joint 7, 327 lb uplift at joint 11 and 347 Ib uplift at joint 8.
- 10) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 190 Ib down and 65 lb up at 5-0-0, 74 lb down and 22 lb up at 7-1-8, 74 lb down and 22 lb up at 9-1-8, and 74 lb down and 22 lb up at 11-1-8, and 190 lb down and 65 lb up at 13-1-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

Page: 1

Job	Truss	Truss Type		Qty	Ply	MKM EAST TOWN BLDG H	
4448984	M02	Monopitch Girder		10	1	Job Reference (optional)	R86730518
Builders FirstSource (Arlington, V	VA), Arlington, WA - 98223,		Run: 8.83 S Feb 1 20)25 Print: 8.8	30 S Feb 1	2025 MiTek Industries, Inc. Mon Feb 17 10:17:17	Page: 1
			ID:h3wTmPLmTPNIx6	ihVpUQEeHz	Iro8-RfC?Ps	B70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f	

3-2-5	6-2-12	11-10-3	18-1-4	23-2-13	28-10-4
3-2-5	3-0-7	5-7-7	6-3-1	5-1-9	5-7-7

Scale = 1:51.7

Plate Offsets	(X, Y): [2:0-1	1-12,0-2-0], [3:0-2-8,0-2-0], [7:	:0-3-7,0-2	-1], [8:0-2-12,0-	-2-0], [9:Edge,0-3-8	8], [11:0-	3-4,0-2-12],	[13:0-1-1	2,0-2-0]	, [14:0-3	-8,0-2-	0], [15:Edge,0-3-	3]
Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC20	18/TPI2014	CSI TC BC WB Matrix-SH	0.89 0.96 0.92	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.73 -1.48 0.13	(loc) 11-12 11-12 9	l/defl >472 >232 n/a	L/d 240 180 n/a	PLATES M18AHS MT20 Weight: 168 lb	GRIP 145/140 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x6 DF 24 2x6 DF 24 2x4 HF No 2.0E, 11-7 Structural 1-10-13 oc Rigid ceilir bracing.	00F 2.0E 00F 2.0E 0.2 *Excep 2x4 DF 12 wood sheat purlins, of ng directly	t* 10-8:2x6 DF 2400 800F 1.6E athing directly applie except end verticals applied or 10-0-0 or	DF 2 ed or c	 PCLL: ASCI DOL = 1.15 Ce=1.0; Cs- live load app Provide ade All plates ar This truss ha chord live lo * This truss on the botto 2.00 cot tril 	E 7-16; Pf=25.0 psf ; Is=1.0; Rough Ca =1.00; Ct=1.10; IBC blied where require quate drainage to p e MT20 plates unle as been designed f ad nonconcurrent v has been designed m chord in all area:	(Lum D at B; Par 1607.1 d. orevent oss other or a 10.1 with any l for a liv s where	OL = 1.15 Pl tially Exp.; 1.2 minimum water pondin wise indicate 0 psf bottom other live loa e load of 20. a rectangle	late n roof ig. ed. ads. .0psf					
REACTIONS	(size) Max Horiz Max Uplift Max Grav	9=0-3-8, (15=41 (LC 9=-208 (L 9=2264 (L	req. 0-3-12), 15=0-5 C 5) C 8), 15=-157 (LC 4 -C 1), 15=1922 (LC	5-8 () 1)	 3-06-00 fail by 2-00-00 wide will in between the bottom chord and any other members. 7) WARNING: Required bearing size at joint(s) 9 greater than input bearing size. 									
FORCES	(lb) - Maxin	mum Com	pression/Maximum	·/ {	 All bearings Provide med 	are assumed to be chanical connection	HF NO.	2. ers) of truss	to					
TOP CHORD	1-15=-175 1-2=-4495 3-4=-1172 6-7=-1238	9/162, 8-9 /373, 2-3= 6/1079, 4- 5/1249, 7-	=-2181/233, 8351/719, -6=-12388/1246, -8=-7172/698	1	bearing plat 15 and 208 0) This truss is Internationa	e capable of withsta lb uplift at joint 9. designed in accord I Building Code sec standard ANSI/TPI	anding 1 dance w xtion 230 1	57 lb uplift a ith the 2018 06.1 and	it joint					
BOT CHORD	14-15=-26 11-13=-10	/340, 13-1 68/11719	4=-367/4489, 9-11=-703/7352	1	1) Hanger(s) o	r other connection	device(s) shall be	1202					_
WEBS	2-14=-154 4-12=-620 7-10=-195 7-11=-553 3-12=-366 1-14=-369	2/169, 3-1 /151, 6-11 5/264, 8-1 /5258, 4-1 /3443, 2-1 /4387	3=-1221/169, =-1533/185, 0=-706/7341, 1=-167/969, 3=-366/4108,	1	lb down and down and 12 design/selec responsibilit 2) In the LOAE of the truss	170 lb up at 18-1-4 27 lb up at 18-1-4 ction of such conne y of others. 0 CASE(S) section, are noted as front (on top on botto ction de loads a F) or ba	chord, and 2 m chord. Th vice(s) is the pplied to the ck (B).	face			y.	THA OMING	S ZHAO SHINGTON
		110mm	(2 accord such)	L	UAD CASE(S)	Sianuaru								<u> </u>

- Wind: ASCE 7-16; Vult=110mph (3-second gust) 1) Vasd=87mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15 Uniform Loads (lb/ft) Vert: 9-15=-20, 1-8=-80
 - Concentrated Loads (lb)
 - Vert: 11=-127 (F), 6=-1202

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	M03	Monopitch Girder	10	1	Job Reference (optional)	R86730519

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:17 ID:hjCKrrov1t06qKyEoWh3P_zIru0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

l	3-2-5	6-2-12	11-10-3	18-1-4	23-1-1	28-10-4
ĺ	3-2-5	3-0-7	5-7-7	6-3-1	4-11-13	5-9-3

Scale = 1:51.7

Plate Offsets ((X, Y): [3:0-	3-8,0-3-0],	[4:0-2-12,0-1-12], [7:0-1-12,0	-2-0], [8:0-3-7,0	0-2-0], [9:Edge,0)-3-8], [10:0	-4-8,0-4-8],	[11:0-7-8	8,0-5-4],	[12:0-3-8	8,0-5-0], [14:0-1-12,0-1-	8], [15:0-4-4,0-1-8]
Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC20	18/TPI2014	CSI TC BC WB Matrix-SH	0.55 0.54 0.97	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.37 -0.76 0.02	(loc) 11-12 11-12 9	l/defl >739 >356 n/a	L/d 240 180 n/a	PLATES MT20 M18AHS Weight: 164 lb	GRIP 185/148 145/140 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 DF 24 2x6 DF 24 2x4 HF No 1800F 1.6 Structural 3-2-7 oc p Rigid ceilli bracing. (size) Max Horiz Max Uplift Max Grav	00F 2.0E 100F 2.0E 0.2 *Excep E wood she word she word she wood she	t* 10-8,3-12:2x4 DF athing directly applie cept end verticals. applied or 5-3-6 oc 13=0-5-8, 15=0-3-8 C 8), 13=-381 (LC 8 LC 15) C 1), 13=3208 (LC C 8)	2 = 3 4 eed or 6 ; 7 3), 8 1), 9	 TCLL: ASCE DOL = 1.15) Ce=1.0; Cs= live load app Provide adee All plates are The Fabricat This truss ha chord live load * This truss ha chord live load * This truss ha on the botton 3-06-00 tall li chord and ari All bearings Provide mec bearing plate 15 207 lb ur 	7-16; Pf=25.0 (; Is=1.0; Rough :1.00; Ct=1.10; I lied where requ quate drainage ad m20 plates u tion Tolerance a as been designe ad nonconcurre nas been designe ad nonconcurre no chord in all ar oy 2-00-00 wide ay other membe are assumed to thanical connect e capable of with olift at ioint 9 ano	psf (Lum D Cat B; Par IBC 1607.1 ired. to prevent v nless other t joint 11 = ed for a 10.0 nt with any hed for a 10.0 nt with any hed for a liv eas where will fit betw ers. be HF No. tion (by oth nstanding 5 (381 b up	OL = 1.15 Pl tially Exp.; 1.2 minimum water pondin wise indicate 2% 0 psf bottom other live loc e load of 20. a rectangle veen the bott 2. ers) of truss 65 lb uplift a lift at ioint 13	late n roof g. ed. ads. Opsf tom to t					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maxi Tension 1-15=-77// 2-3=-437/ 4-6=-7846 7-8=-5086 14-15=-12 11-13=-31 3-13=-226 2-14=-30/ 6-11=-155	579, 1-2=- 3167, 3-4= 5/1189, 6-7 5/710, 8-9= 22/29, 13-1 58/3585, 9 59/331, 2-1 452, 1-14= 11/210, 7-1	pression/Maximum 283/1916, 3593/480, =-7841/1191, 1565/231 4=-1913/291, 9-11=-689/5081 3=-1326/165, 1921/278, 1=-507/2945, 9245,	1	 207 ib up This truss is International referenced s Hanger(s) or provided suf Ib down and 12 Ib up at 18- of such com- others. 	designed in acc Building Code : tandard ANS/IT other connection ficient to suppor 70 lb up at 18-1 1-4 on bottom cl nection device(s	cordance w section 230 PI 1. on device(s t concentra 1-4 on top (-4, and 258 hord. The () is the resp	ith the 2018 6.1 and) shall be tted load(s) ' chord, and 2 8 lb down and design/selec coonsibility of	1202 58 lb d 127 tion			نو	YLAOMIN STOPE WA	3 ZHAO
NOTES	7-10=-128 3-12=-932 4-11=-720	33/254, 8-1 2/6888, 4-1)/4343	0=-708/5113, 2=-1380/270,	1 L	2) In the LOAD of the truss a OAD CASE(S)	CASE(S) section are noted as from Standard	on, loads ap nt (F) or ba	oplied to the ck (B).	face				X	

- NOTES
- Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (lb/ft)
 - Vert: 1-8=-80, 9-15=-20
 - Concentrated Loads (lb) Vert: 6=-1202, 11=-255 (F=-127, B=-127)

February 17,2025

ENGI

OFESSIONAL

Page: 1

Job	Truss		Truss Type		Qtv	/ Plv	M	KM FAS			ЭН	
4448984	M04		Monopitch Girder		2	2					511	R86730520
Builders FirstSource	(Arlington, WA), Arli	ngton, WA - 98223,	Monopicit Girder	Run: 8.83 S Fe ID:78QHmez71	eb 1 2025 F GHO4drHT	Print: 8.830 S CX8WqzIrQ5	Feb 1 202 Feb 7 202 FRfC?PsB	<u>bb Refere</u> 5 MiTek Ir 70Hq3NSg	nce (op idustries, PqnL8w3	i <u>tional)</u> Inc. Mc 3uITXbC	on Feb 17 10:17:18 GKWrCDoi7J4zJC?f	Page: 1
	3-2-5 3-2-5	6-2-12 3-0-7	<u>11-10-3</u> 5-7-7	25	<u>18-1-4</u> 6-3-1 9-0-4		<u> </u>	<u>23-1-1</u> 4-11-13	i		<u>29-0-4</u> 5-11-3	
	4x5 = 1 2x4 II	3x4 = 4x 2 3 1 15 14 1x4 = 3x6 =	12 =	0.25 4 13 4x12 =	512 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	x6 = 2 5	2x4 II 6 111 x12=			4x5 = 7 10 4x6 =		4x6 = 8 9 2x4 II
Scale = 1:52	<u>3-2-5</u> 3-2-5	6-2-12 3-0-7	<u>11-10-3</u> 5-7-7		<u>18-1-4</u> 6-3-1		+	<u>23-1-1</u> 4-11-13	i		<u>29-0-4</u> 5-11-3	
Plate Offsets (X, Y	(): [3:0-3-8,0-2-0], [7:0-2-4,0-2-0], [8:0	-2-8,0-1-12], [9:0-1-12,0)-1-0], [10:0-2-4,0-2	2-0], [13:0	-3-8,0-2-4],	[15:0-1-	12,0-1-8]				_
Loading TCLL (Roof Snow = 25.4 TCDL BCLL BCDL	(psf) 25.0 0) 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC2018/TPI2014	CSI TC BC WB Matrix-SH	0.76 0.71 0.75	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.24 -0.49 0.02	(loc) 11-13 11-13 9	l/defl >999 >558 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 327 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD 22	x6 DF No.2 *Exce	pt* 1-5:2x6 DF 2400F	1) 2-ply truss (0.131"x3")	to be connected to nails as follows:	gether wit	th 10d		11) This 200	truss h 0 lb. Lui	as bee mber D	en designed for a t	otal drag load of prip DOL=(1.33)

Top chords connected as follows: 2x4 - 1 row at 0-9-0 2.0E Connect truss to resist drag loads along bottom chord oc, 2x6 - 2 rows staggered at 0-9-0 oc. from 0-0-0 to 6-5-7 for 309.9 plf. BOT CHORD 2x6 DF No.2 12) Hanger(s) or other connection device(s) shall be WEBS 2x4 HF No.2 *Except* 13-3:2x4 DF 1800F Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. provided sufficient to support concentrated load(s) 258 1.6E Web connected as follows: 2x4 - 1 row at 0-6-0 oc, Ib down and 127 lb up at 18-1-4 on bottom chord. The BRACING Except member 6-11 2x4 - 1 row at 0-2-0 oc. design/selection of such connection device(s) is the TOP CHORD Structural wood sheathing directly applied or 2) All loads are considered equally applied to all plies, responsibility of others. 4-3-12 oc purlins, except end verticals. except if noted as front (F) or back (B) face in the LOAD LOAD CASE(S) Standard BOT CHORD Rigid ceiling directly applied or 6-0-0 oc CASE(S) section. Ply to ply connections have been Dead + Snow (balanced): Lumber Increase=1.15, Plate bracing. 1) provided to distribute only loads noted as (F) or (B), Increase=1.15 **REACTIONS** (size) 9=0-5-8, 14=6-5-8, 15=6-5-8, unless otherwise indicated. Uniform Loads (lb/ft) 16=6-5-8 3) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vert: 1-6=-338, 6-8=-80, 9-16=-20 Max Horiz 16=136 (LC 31) Vasd=87mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. Concentrated Loads (lb) Max Uplift 9=-192 (LC 33), 14=-614 (LC 33), II; Exp B; Enclosed; MWFRS (envelope) exterior zone; Vert: 11=-126 (F) 15=-672 (LC 23), 16=-287 (LC 44) cantilever left and right exposed ; end vertical left and Max Grav 9=1618 (LC 1), 14=6685 (LC 1), right exposed; Lumber DOL=1.60 plate grip DOL=1.60 15=155 (LC 24), 16=276 (LC 35) 4) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate FORCES (lb) - Maximum Compression/Maximum DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Tension Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof TOP CHORD 1-16=-249/346, 1-2=-823/2127, live load applied where required. 2-3=-1355/5168, 3-4=-5862/1436, Provide adequate drainage to prevent water ponding. 5) 4-6=-8255/1666. 6-7=-8238/1202. 6) This truss has been designed for a 10.0 psf bottom UA OMING ZHAO 7-8=-4909/736, 8-9=-1509/215 chord live load nonconcurrent with any other live loads. BOT CHORD 15-16=-1014/999 14-15=-2611/1465 * This truss has been designed for a live load of 20.0psf 7) 13-14=-5078/1269. 11-13=-1006/5543. on the bottom chord in all areas where a rectangle 10-11=-633/4905, 9-10=-12/209 3-06-00 tall by 2-00-00 wide will fit between the bottom WEBS 3-14=-4728/480, 2-15=-218/882, chord and any other members. 1-15=-2250/828. 2-14=-3375/790 8) All bearings are assumed to be HF No.2 . 4-13=-2390/329, 3-13=-1155/10643, 9) Provide mechanical connection (by others) of truss to 6-11=-1313/168, 4-11=-627/2826, bearing plate capable of withstanding 287 lb uplift at joint 7-10=-1254/252, 7-11=-585/3532, 16, 192 lb uplift at joint 9, 614 lb uplift at joint 14 and 672 PORESSIONAL ENGINE 8-10=-646/4882 Ib uplift at joint 15. NOTES 10) This truss is designed in accordance with the 2018

International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

> 400 Sunrise Ave., Suite 270 Roseville CA 95661 916.755.3571 / MiTek-US.com

ahari

February 17,2025

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	M05	Monopitch	20	1	Job Reference (optional)	R86730521

Loading

TCLL

TCDL

BCLL

BCDL

WEBS

FORCES

WEBS

NOTES

LUMBER

Run: 8.83 S. Feb. 1 2025 Print: 8.830 S. Feb. 1 2025 MiTek Industries. Inc. Mon Feb 17 10:17:18

2-1-4

ID:VLYHd6VDpTckfkKSDbn8VvzIrMq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 0-5-8 2<u>7-0-4</u> 4-2-12 9-10-3 16-1-4 21-1-1 H 5-7-7 4-11-13 5-11-3 3 - 9 - 46-3-1 0-5-827-0-4 12 0.25 L 5x10 = 15 4x12 =4x5 = 4x6 =2x4 II 3x6 = 4x5 =7 6 4 5 3 2 2-8-0 T 1-6-10 8 14 X \ge 13 12 10 9 11 3x6 II 4x5 II 4x8= 4x6= M18AHS 5x12 = 4x12= 4x8= 4-2-12 9-10-3 16-1-4 21-1-1 27-0-4 4-11-13 4-2-12 5-7-7 6-3-1 5-11-3 Scale = 1:52.2 Plate Offsets (X, Y): [1:0-5-4,0-2-12], [2:0-1-12,0-1-12], [6:0-1-12,0-2-0], [7:0-3-7,0-2-0], [8:Edge,0-3-8], [9:0-2-0,0-2-0], [10:0-4-0,0-2-0], [12:0-2-8,0-2-0], [13:0-2-8,0-2-0], [14:0-3-0,0-1-8] 2-0-0 Spacing CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) 25.0 Plate Grip DOL 1.15 TC 0.68 Vert(LL) -0.43 10-12 >747 240 MT20 185/148 (Roof Snow = 25.0) Lumber DOL 1.15 BC 0.53 Vert(CT) -0.87 10-12 >372 180 M18AHS 169/162 Rep Stress Incr WB 0.82 Horz(CT) 15.0 NO 0.06 8 n/a n/a 0.0 Code IBC2018/TPI2014 Matrix-SH 10.0 Weight: 154 lb FT = 10% 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate Uniform Loads (lb/ft) DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; TOP CHORD 2x6 DF No 2 Vert: 8-14=-12, 1-14=-18, 1-7=32 Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof BOT CHORD 2x6 DF 2400F 2.0E Horz: 7-8=27, 1-14=18, 1-15=90, 1-7=-40 live load applied where required. 2x4 HF No.2 *Except* 15-14:2x6 DF No.2 Concentrated Loads (lb) 3) Provide adequate drainage to prevent water ponding. BRACING Horz: 15=-200 (F) All plates are MT20 plates unless otherwise indicated. 4) TOP CHORD Structural wood sheathing directly applied or 5) This truss has been designed for a 10.0 psf bottom 2-6-12 oc purlins, except end verticals. chord live load nonconcurrent with any other live loads. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc 6) * This truss has been designed for a live load of 20.0psf bracing, Except: on the bottom chord in all areas where a rectangle 8-11-11 oc bracing: 10-12. 3-06-00 tall by 2-00-00 wide will fit between the bottom **REACTIONS** (size) 8=0-5-8, 14=0-5-8 chord and any other members. Max Horiz 14=82 (LC 9) All bearings are assumed to be HF No.2 . Max Uplift 8=-81 (LC 12), 14=-76 (LC 8) 8) Provide mechanical connection (by others) of truss to Max Grav 8=1344 (LC 1), 14=1325 (LC 1) bearing plate capable of withstanding 81 lb uplift at joint (lb) - Maximum Compression/Maximum 8 and 76 lb uplift at joint 14. Tension This truss is designed in accordance with the 2018 9) TOP CHORD 7-8=-1233/293, 1-14=-1321/300, 1-15=0/0, International Building Code section 2306.1 and 1-2=-4024/976, 2-3=-6315/1379, referenced standard ANSI/TPI 1. 3-5=-6018/1272, 5-6=-6017/1277, 10) Load case(s) 26, 27 has/have been modified. Building 6-7=-3926/831 designer must review loads to verify that they are correct BOT CHORD 13-14=-334/676, 12-13=-952/4019, for the intended use of this truss. 10-12=-1351/6310, 9-10=-812/3922, 11) Hanger(s) or other connection device(s) shall be 8-9=-52/180 provided sufficient to support concentrated load(s). The ALAOMING ZHAO 2-13=-859/269, 1-13=-797/3464, design/selection of such connection device(s) is the 3-12=-401/212, 2-12=-614/2340, responsibility of others. 5-10=-450/176, 3-10=-303/114, 12) In the LOAD CASE(S) section, loads applied to the face 6-9=-1009/302, 6-10=-471/2186, of the truss are noted as front (F) or back (B). 7-9=-804/3890 LOAD CASE(S) Standard Except: User defined (1): Lumber Increase=1.60, Plate 26) 1) Wind: ASCE 7-16; Vult=110mph (3-second gust) Increase=1 60 Vasd=87mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. Uniform Loads (lb/ft) PORESSIONAL ENGINE II; Exp B; Enclosed; MWFRS (envelope) interior zone Vert: 8-14=-12, 1-14=-18, 1-7=32 and C-C Corner (3) zone; cantilever left and right Horz: 7-8=27, 1-14=18, 1-15=90, 1-7=-40 -NAL ENGIN exposed ; end vertical left and right exposed;C-C for Concentrated Loads (lb) members and forces & MWFRS for reactions shown; Horz: 15=200 (F) Lumber DOL=1.60 plate grip DOL=1.60 27) User defined (2): Lumber Increase=1.60, Plate Increase=1.60 February 17,2025

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	5
4448984	M06	Monopitch Structural Gable	2	1	Job Reference (optional)	R86730522

1-7-10

1-6-0

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:18 ID:9hGEkvFEPwvZbU_hvno?6ZzIrE6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-5-8

Scale = 1:23.4

Loading TCLL (Roof Snow = TCDL BCLL	(psf) 25.0 = 25.0) 15.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2018/TPI2014	CSI TC BC WB Matrix-R	0.24 0.03 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 185/148
BCDL	10.0										Weight: 30 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	 2x6 DF No.2 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly brocies 	athing directly applie cept end verticals. applied or 6-0-0 oc	 3) TCLL: ASCI DOL = 1.15 Ce=1.0; Cs- live load app 4) This truss ha load of 20.0 overhangs r 5) Provide ade 6) Gable requii 7) Truss to be 	5 7-16; Pf=25.0 ps ; Is=1.0; Rough C :1.00; Ct=1.10; IB blied where require as been designed psf or 2.00 times on-concurrent wit quate drainage to res continuous bot fully sheathed from	of (Lum D cat B; Par C 1607.1 ed. for great flat roof lu h other lin prevent ttom chor m one fac	OL = 1.15 Pli tially Exp.; 1.2 minimum er of min roof bad of 25.0 p ve loads. water ponding d bearing. e or securely	ate roof live sf on g.					
REACTIONS	bracing. (size) 7=6-5-8, 8 10=6-5-8 Max Horiz 10=32 (LC (LC 18), 1 Max Grav 7=92 (LC (LC 3), 10	B=6-5-8, 9=6-5-8, C 11) 9), 8=-31 (LC 8), 9=- ⁻ 10=-101 (LC 8) 1), 8=263 (LC 1), 9= =492 (LC 18)	braced agai 8) Gable studs 9) This truss h chord live lo 109 10) * This truss 91 3-06-00 tall	st lateral movem spaced at 2-0-0 c as been designed ad nonconcurrent has been designe m chord in all area by 2-00-00 wide w	ent (i.e. c bc. for a 10. with any d for a liv as where vill fit betw	D psf bottom other live loa e load of 20.1 a rectangle veen the bott	ds. Dpsf om					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	11) All bearings	are assumed to b	e HF No.	2.	0					
TOP CHORD	2-10=-474/242, 1-2= 3-4=-6/25, 4-5=-7/24	=0/6, 2-3=-7/21, 4, 5-6=-6/17, 6-7=-77,	/70 10 4 lb uplif	e capable of withs t at joint 7 109 lb	tanding 1	01 lb uplift at	i joint Ib					
BOT CHORD WEBS	9-10=-34/39, 8-9=-3 3-9=-69/146, 4-8=-2	4/39, 7-8=-34/39 14/165, 5-7=-76/92	uplift at joint 13) This truss is	8. designed in acco	rdance w	ith the 2018						
NOTES 1) Wind: AS Vasd=871 II; Exp B; and C-C (exposed members Lumber D	CE 7-16; Vult=110mph mph; TCDL=4.2psf; BC Enclosed; MWFRS (er Corner (3) zone; cantile ; end vertical left and rig and forces & MWFRS OL=1.60 plate grip DC	(3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zone ever left and right ght exposed;C-C for for reactions shown; JL=1.60	Internationa referenced s at. LOAD CASE(S)	Building Code se tandard ANSI/TP Standard	ection 230 I 1.)6.1 and					YIA OMIN	G ZHAO SHINGTON

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Page: 1

				r				,						
Job		Truss		Truss Ty	pe		Qty		Ply	МКМ	EAST TOW	'N BLD	GH	R86730523
4448984		M07		Monopi	tch		6		1	Job R	eference (o	ptional)		100730323
Builders FirstSc	burce (Arlington, -2-0-0 2-0-0	WA), Arling	2-5 6-2-12 2-5 3-0-7		<u>11-10-3</u> 5-7-7	Run: 8.83 S Fet ID:cv1wiJ?ZDml	b 1 2025 Pr UyHvmy0jTt <u>18-1-</u> 6-3- ⁻ 29-0-4	int: 8.83 NZLzIrH 4 1	0 S Feb 0-RfC?Ps	1 2025 Mi B70Hq3N	Tek Industries SgPqnL8w3u 23-1-1 4-11-13	s, Inc. Me ITXbGK\	on Feb 17 10:17:19 WrCDoi7J4zJC?f 29-0-4 5-11-3	Page: 1
2-1-4 1-6-0	117	4x5 = 2	3x4 = 3 16 3x4 =	4x12 = 4 2 15 3x4=		3x6 = 5 18 14 4x12 =	0.25 ¹² 4x6= 6 13 4x6	=	2× 7 1: 4x	4 II 2 12=		3x4 8 11 4)	= x6=	5x6 = 9 10 2x6 II
Scale = 1:55 Plate Offsets	(X, Y): [4:0-3-	<u> 3-2</u> 3-2 8,0-2-0],	2-5 6-2-12 2-5 3-0-7 [5:0-2-8,0-1-8], [8:0- ⁻		<u>11-10-3</u> 5-7-7		<u>18-1-</u> 6-3-)-4], [11:0-:	- <u>4</u> 1 2-0,0-2		0-3-8,0-2	<u>23-1-1</u> 4-11-13 2-0], [16:0-1-	-12,0-1	<u>29-0-4</u> 5-11-3 -8]	
	() / [(nsf)	Spacing	2-0-0		CSI		DEEI	- 17 [in (loc) l/defl	l /d		GRIP
TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	25.0 15.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr Code	1.15 1.15 YES IBC2018	/TPI2014	TC BC WB Matrix-SH	0.68 0.50 0.78	Vert(LI Vert(C Horz(C	_) -(T) -(CT) ().22 12).43 12).01	-14 >999 -14 >628 10 n/a	240 180 n/a	MT20 Weight: 167 lb	185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 DF No. 2x6 DF No. 2x4 HF No. Structural w 3-8-8 oc pu Rigid ceiling bracing. (size) 1 Max Horiz 1 Max Uplift 1 1 Max Grav 1 (lb) - Maxim Tension 2-17=-213// 3-4=-344/13	2 2 2 2 2 0 = 0-5-8, 7 = 42 (LC 0 = -59 (L0 7 = -62 (L1 0 = -59 (L0 7 = -62 (L1 0 = -59 (L1 7 = -62 (L1 0 = -59 (L1 7 = -62 (L1 0 = -59 (L1 7 = -62 (L1 62 (L1))))))))))))))))))))))))))))))))))))	athing directly applied cept end verticals. applied or 5-3-0 oc 15=0-5-8, 17=0-3-8 2 9) C 8), 15=-115 (LC 12 C 3) C 1), 15=2041 (LC 1 C 18) pression/Maximum 0/6, 2-3=-210/1057, -1879/351, -3479/651	1) I or 2)), 3) 4) 5) 6)	Wind: ASCE Vasd=87mph II; Exp B; Enu and C-C Cor to 13-10-8, C cantilever lef right exposed for reactions DOL=1.60 TCLL: ASCE DOL = 1.15); Ce=1.0; Cs= live load app This truss ha load of 20.0 g overhangs nu Provide adec This truss ha chord live loa	7-16; Vult=110m ;; TCDL=4.2psf; E closed; MWFRS; closed; MWFRS; i and right exposed t and right exposed t;C-C for member shown; Lumber D 7-16; Pf=25.0 ps i ls=1.0; Rough C 1.00; Ct=1.10; IBG lied where require s been designed port or 2.00 times f on-concurrent with quate drainage to s been designed ad nonconcurrent as been designed	ph (3-seco 3CDL=6.0p (envelope) 3-0-0, Ext to 28-10-1 ed; end vers s and forc DOL=1.60 if (Lum DC at B; Partit C 1607.11 ad. for greater flat roof loa h other live prevent w for a 10-0 with any o d for a live	nd gus posf; h=2 exteric erior (2 $3 zonerical le es & M plate g L = 1.2ally Exp2 minirof mir ad of 29 2 loadsater popsf botther livload o$	it) 25ft; Cat pr zone 2) 13-0-0 ; aft and IWFRS rip 15 Plate 5.0 psf o nding. tom e loads. f 20.0ps;	of e n				
BOT CHORD WEBS NOTES	8-9=-2683/ 16-17=-102 14-15=-176 11-12=-507 4-15=-1442 2-16=-1030 5-14=-753/ 7-12=-448/ 8-11=-651/ 9-11=-486/	713, 9-10 713, 9-10 71338, 12 7278, 10 7333, 3-1 7214, 3-1 235, 4-14 166, 5-12 213, 8-12 2640	=-906/206 6=-1055/221, 2-14=-362/1872,)-11=-39/138 6=-12/248, 5=-757/143, =-674/3717, =-297/1636, =-153/833,	7) 8) 9) LO	on the bottom 3-06-00 tall b chord and ar All bearings a Provide mech bearing plate 17, 59 lb upli This truss is International referenced st AD CASE(S)	y 2-00-00 wide w yy other members are assumed to b hanical connectio capable of withs? ft at joint 10 and 1 designed in accor Building Code se tandard ANSI/TPI Standard	as where a vill fit betwee. e HF No.2 n (by othe tanding 62 115 lb uplif dance with ction 2306 I 1.	rectan een the rs) of tr lb upli t at join t tat join t the 2 .1 and	russ to ft at joint t 15. 018	t		· · · · · · · · · · · · · · · · · · ·	THO FESSIONA	S ZHAO WORTHAN EBED OTOTAL

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MITek-US.com

February 17,2025

Job	Truss	Truss Type	s Type		Ply	MKM EAST TOWN BLDG H	D00700504
4448984	M08	Monopitch		4	1	Job Reference (optional)	R86730524
Builders FirstSource (Arlington, V	VA), Arlington, WA - 98223,	Run	: 8.83 S Feb 1 2	025 Print: 8.8	30 S Feb 1	2025 MiTek Industries, Inc. Mon Feb 17 10:17:19	Page: 1
		ID:7	2BhPXXov_jlmXv	v0U_hKGQzli	rB9-RfC?PsE	370Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f	
. 200		. 11 10 2		10 1 /		22.1.1	ı .

3-2-5	6-2-12	11-10-3	18-1-4	23-1-1	28-10-4
3-2-5	3-0-7	5-7-7	6-3-1	4-11-13	5-9-3

Scale = 1:54.8

Plate Offsets ((X, Y): [4:0-1-	12,0-2-0], [5:0-2-8,0-1-8], [8:0)-1-12,0-	1-8], [9:0-2-8,0-	2-8], [10:0-2-12,0-0	0-4], [11	:0-2-0,0-2-0],	[14:0-3-	8,0-2-0],	[16:0-1	-12,0-1	1-8]		
Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC201	8/TPI2014	CSI TC BC WB Matrix-SH	0.67 0.49 0.77	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.21 -0.42 0.01	(loc) 12-14 12-14 10	l/defl >999 >640 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 166 lb	GRIP 185/148 FT = 10%	
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS FORCES	2x6 DF No.2 2x6 DF No.2 2x4 HF No.2 Structural w 3-8-13 oc p Rigid ceiling bracing. (size) 1 Max Horiz 1 Max Uplift 1 Max Grav 1 (lb) - Maxim Tension 2-17=-218/1 3-4=-336/17 5-7=-3443/6 8-9=-2616/5	10.0 2 2 2 2 2 2 2 2 2 2 2 2 2	athing directly applied xcept end verticals. applied or 5-4-1 oc 15=0-5-8, 17=0-3-8 C 11) C 8), 15=-114 (LC 12 C 8) LC 1), 15=2019 (LC 1 LC 18) pression/Maximum e0/6, 2-3=-206/1027, 1888/355, 3443/648, =-902/205	1 d or 2), 3), 4 5 6	 Wind: ASCE Vasd=87mpi II; Exp B; En and C-C Conton to 13-8-8, Crite exposed;C-C reactions sh DOL=1.60 TCLL: ASCE DOL=1.0; Cs= live load appi This truss ha load of 20.0 overhangs n Provide aded This truss ha chord live load * This truss ha on the bottoor 3-06-00 tall has a second second second second 	7-16; Vult=110mp h; TCDL=4.2psf; B closed; MWFRS (mer (3) -2-0-0 to 1: orner (3) 13-8-8 to exposed; end ver C for members and own; Lumber DOL: 7-16; Pf=25.0 psf ; Is=1.0; Rough Ca c1.00; Ct=1.10; IBC lied where require as been designed f psf or 2.00 times fl psf or 2.00 times fl ad nonconcurrent with quate drainage to p as been designed an onconcurrent with quate drainage to p as been designed f an onconcurrent with quate drainage to p as been designed f an onconcurrent with as been designed f an onconcurrent with as been designed f an onconcurrent with an as been designed f an onconcurrent with an as been designed f an onconcurrent with as been designed f an onconcurrent with an as been designed f an as been	th (3-sec CDL=6. envelope 3-0-0, E: 28-8-8 z tical left forces a =1.60 pl (Lum D tt B; Par c 1607.1 d. or great at roof h or other lin prevent v or a 10.0 with any I for a liv s where II fit betw	cond gust) Dpsf; h=25ft; () exterior zor (terior (2) 13- cone; cantilev and right & MWFRS for ate grip OL = 1.15 Pla tially Exp.; 1.2 minimum er of min roof bad of 25.0 pc // re loads. water ponding 0 psf bottom other live loa a rectangle veen the botto	Cat. ne 0-0 er r ate roof f live sf on g. ds. Opsf om				vveignt: 166 lb	<u>F I = 10%</u>	
WEBS	16-17=-101, 14-15=-1711 11-12=-497, 4-15=-1430, 2-16=-1000, 5-14=-743/2 7-12=-450/1 8-11=-653/2 8-12=-160/8	/46, 15-1 6/331, 12 /2611, 1(/332, 3-1 /210, 3-1 234, 4-14 168, 5-12 212, 9-11 365	6=-1025/216, 2-14=-366/1881, 0-11=-38/131 6=-10/240, 5=-736/140, I=-671/3675, 2=-291/1590, =-478/2583,	7 8 9	chord and an All bearings Provide mec bearing plate 17, 58 lb upl This truss is International referenced s OAD CASE(S)	ny other members. are assumed to be chanical connection e capable of withste ift at joint 10 and 1 designed in accorr Building Code sec tandard ANSI/TPI Standard	HF No. (by oth anding 5 14 lb up dance w ction 230 1.	2 . ers) of truss t 7 lb uplift at j lift at joint 15. ith the 2018)6.1 and	to oint			24	TALAOMING	S ZHAO SHINGJOY	
NULES													1		

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916:755:3571 / MiTek-US.com

February 17,2025

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	M09	Monopitch Girder	2	2	Job Reference (optional)	R86730525

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:19 ID:RbOA4dOW65BhL8rMuoG8_5zlqxr-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

3-2-5	6-2-12	11-10-3	18-1-4	23-1-1	28-10-4	I
3-2-5	3-0-7	5-7-7	6-3-1	4-11-13	5-9-3	1

Scale = 1:54.8

Plate Offsets	(X, Y): [4:0-	2-8,0-2-0],	[8:0-1-12,0-1-8], [1	11:0-2-8,0-	1-8], [14:0-2-0,	0-2-0], [16:0-1-12	2,0-1-8]							
Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC20	8/TPI2014	CSI TC BC WB Matrix-SH	0.91 0.53 0.73	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.16 -0.33 0.01	(loc) 12-14 12-14 10	l/defl >999 >815 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 332 lb	GRIP 185/148 9 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 DF N 2x6 DF N 2x4 HF N Structural 6-0-0 oc p Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	athing directly appl cept end verticals. applied or 6-0-0 oc 15=6-5-8, 16=6-5- _C 32) LC 34), 15=-443 (L LC 24), 17=-331 (L (LC 1), 15=5137 (L	1 ied or c 2 8, .C 26), .C 25) .C 1),	 2-ply truss t (0.131"x3") Top chords oc, 2x6 - 2 r Bottom chor staggered a Web conner All loads are except if noi CASE(S) se provided to unless other Wind: ASCE Vasd=87mp II; Exp B; Er cantilever le 	o be connected t nails as follows: connected as fol ows staggered a rds connected as to 0-9-0 oc. ted as follows: 2 e considered equ ted as front (F) o distribute only lo rwise indicated. E 7-16; Vult=110r h; TCDL=4.2psf; nclosed; MWFRS ft and right expo	together wi llows: 2x4 - at 0-9-0 oc. s follows: 2: 2x4 - 1 row ially applied r back (B) f connection ads noted a mph (3-sec ; BCDL=6.0 S (envelope ssed : end v	th 10d 1 row at 0-9 x6 - 2 rows at 0-9-0 oc. d to all plies, face in the L0 s have been as (F) or (B), yond gust) Opsf; h=25ft; e) exterior zo retrical left ar	DAD Cat. ne; nd	 This Interrete refe This 200 Cor fron Har provodow des resp LOAD (De Inc 	s truss is rnationa renced s s truss h 0 lb. Lur nect tru n 0-0-0 t nger(s) o vided su vided su vided su vided su vided su vided su trand 4 ign/selec ponsibilit CASE(S) ad + Sn crease = 0	desig I Build standa as bee nber D ss to r o 6-5-8 r other fficient 4 lb up ction o y of ot y of ot o Star ow (ba 1.15	ned in accordar ing Code sectio rd ANSI/TPI 1. en designed for a DOL=(1.33) Plati esist drag loads 8 for 309.7 plf. r connection dev t to support com o at 13-4-4 on b f such connectio hers. ndard alanced): Lumbe	acce with the 2018 n 2306.1 and a total drag load of e grip DOL=(1.33) along bottom chord vice(s) shall be centrated load(s) 81 lb ottom chord. The on device(s) is the er Increase=1.15, Plate
FORCES TOP CHORD	(lb) - Max Tension 2-17=-479 3-4=-112 5-7=-4824	16=124 (L imum Com 9/330, 1-2= 1/3269, 4-5 4/1156 7-8	-C 25), 17=576 (LC pression/Maximum =0/6, 2-3=-738/141 ⁻ j=-4085/1246, 3=-4816/725	, 24) 1 4 1,	right expose) TCLL: ASCI DOL = 1.15 Ce=1.0; Cs live load app	$\begin{array}{l} \text{Suffictor for an logit exposed; build where required.} \\ \text{Suffictor for an logit exposed; build where required.} \\ \text{Suffictor for an logit exposed; build where required.} \\ \text{Suffictor for an logit exposed; build where required.} \\ \text{Suffictor for an logit exposed; build where required.} \\ \text{Suffictor for an logit exposed; build where required.} \\ \text{Suffictor for an logit exposed; build where required.} \\ \text{Suffictor for an logit exposed; build where required.} \\ \text{Suffictor for an logit exposed; build where required} \\ \text{Suffictor for an logit exposed; build where required} \\ \text{Suffictor for an logit exposed; build where required} \\ \text{Suffictor for an logit exposed; build where required} \\ \text{Suffictor for an logit exposed; build where required} \\ \text{Suffictor for an logit exposed; build where required} \\ \text{Suffictor for an logit exposed; build where required} \\ \text{Suffictor for an logit exposed; build where required} \\ \text{Suffictor for an logit exposed; build where required} \\ \text{Suffictor for an logit exposed; build where required} \\ \text{Suffictor for an logit exposed; build where required} \\ \text{Suffictor for an logit exposed; build where required} \\ \text{Suffictor for an logit exposed; build where required} \\ \text{Suffictor for an logit exposed; build where required} \\ Suffictor for an logit exposed ex$							3=-80, 10-17=-20	
BOT CHORD WEBS NOTES	8-9=-323 16-17=-9 14-15=-33 11-12=-31 3-16=-16 4-15=-37 5-14=-15 7-12=-48 8-11=-85 9-11=-38	(7)(458, 9-10 (2)(7)(458, 9-10 (2)(7)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)	=-1072/149 5-16=-1942/1426, 12-14=-901/3792, 0-11=-7/151 =-1482/709, 5=-2150/637, 4=-803/6915, 2=-304/1096, 2=-365/1650,	6 7 8 9 1	 Inis truss in load of 20.0 overhangs r Provide ade This truss in chord live lo * This truss on the botto 3-06-00 tall chord and a All bearings Provide mee bearing plat 17, 125 lb u 	as been designe psf or 2.00 time: on-concurrent w quate drainage t as been designe ad nonconcurrer has been design m chord in all ar by 2-00-00 wide ny other membe are assumed to chanical connect e capable of with plift at joint 10, 2 to ioint 10, 2	s flat roof lik s flat roof lik ith other liv to prevent v d for a 10.0 nt with any led for a liv eas where will fit betw rs. be HF No. tion (by oth hstanding 3 91 lb uplift	ad of 25.0 p ve loads. water pondin.) ps bottom other live load e load of 20 a rectangle veen the bott 2. ers) of truss i 31 lb uplift al at joint 16 ar	nive sf on g. ads. Opsf om to t joint ad			and the second se	PH OF ESS	AG ZHLAO ASHTAO TOTA TERED TOTA

February 17,2025

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Page: 1

Job	Truss	Truss Type		Qty	Ply	MKM EAST TOWN BLDG H	
4448984	M10	Monopitch Girder		10	1	Job Reference (optional)	R86730526
Builders FirstSource (Arlington, V	VA), Arlington, WA - 98223,		Run: 8.83 S Feb 1 20	025 Print: 8.8	30 S Feb 1	2025 MiTek Industries, Inc. Mon Feb 17 10:17:20	Page: 1

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:20 ID:JQqOGloCddwBOw57fXHGCezlqsA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	3-2-5	6-2-12	11-10-3	13-5-0	18-1-4		23-1-1		28-10-4	
	3-2-5	3-0-7	5-7-7	1-6-13	4-8-4	I.	4-11-13	I	5-9-3	Ι
	ļ			28	<u>-10-4</u>					
		4.0 4×6-		0.2 3x4 = 3x6 =	= 4x8=	2x4 II		4x12 =		4x12 =
Т	1	4x8 = 4x6 = 2		4 5	6	7		8		9 —
-0-1-3	2					•		Ħ	\sim	-1-3
1-0	17									10
	図 M18AHS 10x12 』	16 15		14 13		12		11		図 M18AHS 3x10 μ
	4x*	12=		M18AHS 10	x18 =	0.10-		4712	-	
	3-2-5	u 6-2-12 u	11-10-3	13-5-0 (18-1-4	1	23-1-1	I	28-10-4	1
	3-2-5	3-0-7	5-7-7	1-6-13	4-8-4		4-11-13		5-9-3	
Scale = 1:51.7										
Plate Offsets (X, Y): [2:0-2-0,0-1-12	2], [3:0-1-12,0-1-8], [8:0	-3-7,0-2-1], [9:0-3-7,0	-2-0], [11:0-3-8,0-	2-0], [14:0-3-0,0-1	-8], [15:0-1-1	2,0-1-12], [16:0	-3-8,0-2-	0], [17:0-9-4,0-3	-0]
Loading TCLL	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.73 Vert(Ll	in .) -0.71	(loc) l/defl 12-13 >483	L/d 240	PLATES MT20	GRIP 220/195
(Roof Snow =) TCDL	25.0) 15.0	Rep Stress Incr	1.15 NO	BC WB	0.95 Vert(C 0.94 Horz(C	T) -1.45 T) 0.12	12-13 >236 10 n/a	180 n/a	M18AHS	145/140
BCLL BCDL	0.0* 10.0	Code	IBC2018/TPI2014	Matrix-SH					Weight: 164 lb	FT = 10%
			1) Wind: ASCE	 7-16: Vult=110m	nph (3-second aus	t)	Vert: 1	3=-164 (F	F=-127. B=-36).	5=-828
 LUMBER TOP CHORD 2x6 DF 2400F 2.0E BTACING UMBES 2x6 HF 2400F 2.0E 2x4 HF No.2*Except* 11-9:2x4 DF 1800F 1.6E BRACING BRACING BRACING TOP CHORD Structural wood sheathing directly applied or 10-00 oc bracing. Except: 8-11-13 oc bracing: 12-13. BOT CHORD Structural wood sheathing directly applied or 10-00 oc bracing. Except: 8-11-13 oc bracing: 12-13. WEBS 1 Row at midpt 5-12 FORCES (b): -3.81, 72-05-8 Max Horiz. 17-41 (LC 7) Max Upilit 10-180 (LC 8), 172-195 (LC 4) Max Grav 10-1889 (LC 1), 17-1959 (LC 4) Max Grav 10-1889 (LC 1), 17-1959 (LC 4) Max Grav. 10-1889 (LC 1), 17-1959 (LC 4) FORCES (b): -1.773/149, 1-2-4-583/488, 10-2-1.7723/38, 3-9-584/3001, 9-10-1-7772/33, 1-15-647(4577, 14-15-917/8003, 12-14-1448/12288, 11-12-581/8033, 10-11-84/192 BOT CHORD D: 1-177-1724/188, 1-2-4-583/488, 11-12-581/8033, 12-14-448/12288, 11-12-581/8033, 12-14-43/3176, 7-12-42/448, 11-1578/2023, 8-12-2491/387 WOTES MOTES M									SHING OF	
			Concentra	ted Loads (lb)					February	17,2025

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H			
4448984	M11	Monopitch Supported Gable	1	1	Job Reference (optional)	R86730527		

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:20 ID:HKpi4?U5681YeBe_DtnYkgzIqoh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

L	2-0-0	26-0-0	28-10-4	
ſ	2-0-0	24-0-0	2-10-4	

Scale = 1:51.7

Plate Offsets (X, Y): [9:0-	-4-0,0-4-8],	[15:0-2-0,0-2-0], [10	6:0-4-8,0-	1-8], [17:0-3-8,0	0-4-0], [30:0-3-8,0-4	-8], [31	:0-11-12,0-3-0)]				-		
Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC201	18/TPI2014	CSI TC BC WB Matrix-SH	0.34 0.24 0.43	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a -0.01	(loo 2	c) l/defl - n/a - n/a 2 n/a	L/d 999 999 n/a	PLATES MT20 Weight: 143 lb	GRIP 185/148 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x6 DF N 2x6 DF N 2x4 HF N 2x4 HF N Structural 5-3-14 oc Rigid ceil	0.2 0.2 0.2 0.2 I wood she: purlins, e: ing directly	athing directly appli xcept end verticals. applied or 5-8-14 or	T ed or c	OP CHORD		-2=-218 4=-1623 6=-1036 -453/44 -12=-16 13-14= 15-16= 9-30=-19 27-28=	87/2161, 2/1600, 6/1020, 00, 8-10=-450/ 029/1024, -1612/1608, -1188/1186 915/1879, -1333/1316,	/440,	5) / 6) (7) T 8) (9) T 0 10) *	All plates and Gable required Fruss to be praced aga Gable studs This truss h chord live k This truss on the botto	re 2x4 res col fully sl inst lat s space as bee bad noi has be om cho	() MT20 unles; ntinuous bottom heathed from on eral movement (ed at 2-0-0 oc. an designed for a nconcurrent with een designed foi rd in all areas w	s otherwise indi chord bearing. e face or secur i.e. diagonal we a 10.0 psf botto any other live a live load of 2 here a rectangl	cated. ely eb). m loads. 20.0psf e
REACTIONS	Max Horiz Max Uplift	16=28-10 18=28-10 20=28-10 22=28-10 25=28-10 27=28-10 29=28-10 31=28-10 31=28-10 31=28-10 31=41 (LC 16=-1175 32) 18-1	-4, 17=28-10-4, -4, 19=28-10-4, -4, 21=28-10-4, -4, 26=28-10-4, -4, 26=28-10-4, -4, 28=28-10-4, -4, 30=28-10-4, -4, 30=28-10-4, -4 2 35) (LC 41), 17=-1229	(LC	VEBS	26-27=-1042/1025, 23-25=-460/443, 22 21-22=-459/444, 20 19-20=-1041/1027, 17-18=-1623/1580, 2-30=-167/90, 3-29 5-27=-171/64, 6-26 8-23=-823/240, 9-2 10-21=-185/116, 11 12-19=-163/65, 13- 14-17=-216/93, 1-3 15-17=-2283/2273	25-26= 2-23=-11 -21=-7! 18-19= 16-17= =-160/6 =-100/5 2=-131/ -20=-1! 18=-14! 0=-234!	-751/734, 73/156, 50/735, -1308/1318, -360/357 55, 4-28=-158/ 4, 7-25=-434/ 124, 57/80, 5/58, 9/2389,	/62, /133,	3 (11) (12) (12) (12) (12) (12) (12) (12)	3-06-00 tall chord and a All bearings Provide me bearing pla bint 31, 11 ² 22 lb uplift at bint 27, 12 b uplift at jo bint 21, 32 b uplift at jo	by 2-0 iny oth a are as chanic te capa 75 lb u at joint lb uplif bint 23, lb uplif bint 18	0-00 wide will fit er members. ssumed to be HI al connection (b able of withstanc plift at joint 16, 1 29, 14 lb uplift at t at joint 26, 49 83 lb uplift at jo t at joint 20, 17 and 1229 lb upli	between the b No.2. y others) of trus ing 1275 lb upl 242 lb uplift at t joint 28, 12 lb b uplift at joint 1 int 22, 65 lb up b uplift at joint ft at joint 17.	ottom ss to ift at joint 30, uplift at 25, 107 lift at 19, 19
	Max Grav	32), 18=-1 32), 22=-5 32), 25=-4 40), 27=-1 41), 29=-2 41), 31=-1 16=1223 (53), 18=13 20=197 (L 22=4741 (L 25=4741 (L 27=211 (L 29=199 (L 31=1311 ($\begin{array}{l} 9 (LC 41), 19=-17 (\\ 32 (LC 41), 21=-65 (\\ 33 (LC 41), 22=-107 \\ 19 (LC 41), 26=-12 (\\ 12 (LC 32), 28=-14 (\\ 127 (LC 32), 30=-124 \\ 1275 (LC 32) \\ (LC 52), 17=1353 (L \\ 80 (LC 1), 19=204 (\\ .C 1), 19=204 (\\ .C 1), 21=225 (LC 2 \\ .C 26), 23=863 (LC \\ .C 1), 26=140 (LC 1 \\ .C 1), 28=198 (LC 1 \\ .C 1), 30=1338 (LC \\ (LC 39) \end{array}$	LC N (LC 1) (LC 1) (LC 2) (LC 2) (LC 1), 27), 2 (LC 1), 27), 2 (LC 1), 27), 3	 Wind: ASCE Vasd=87mp II; Exp B; Er and C-C Co exposed ; er members ar Lumber DOI Truss design only. For st see Standar or consult qi TCLL: ASCE DOL = 1.15) 	7-16; Vult=110mpt h; TCDL=4.2psf; BC iclosed; MWFRS (e rmer (3) zone; cantil- id forces & MWFRS _=1.60 plate grip DC ed for wind loads in uds exposed to wind d Industry Gable Er ialified building des 5 7-16; Pf=25.0 psf ; Is=1.0; Rough Cat 4 00; Ct 1 40; IEC	n (3-sec CDL=6.0 nvelope ever lef ight exp i for rea DL=1.60 n the pla d (norm nd Deta igner as (Lum D is B; Par	cond gust) Dpsf; h=25ft; C) exterior zon t and right osed;C-C for ctions shown;) ane of the trus al to the face) is as applicab s per ANSI/TP OL = 1.15 Pla tially Exp.; 4 2 minimum	Cat. e ss , ole, l 1. tte			· · · · · · · · · · · · · · · · · · ·	THO PHESSOL	G ZHAO	
FORCES	(lb) - Max Tension	imum Com	pression/Maximum	4	Ce=1.0; Cs= live load app) Provide ade	1.00; Ct=1.10; IBC blied where required quate drainage to p	1607.1 I. revent v	1.2 minimum	root				Februar	цел у 17,2025	r:

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H			
4448984	M11	Monopitch Supported Gable	1	1	Job Reference (optional)	R86730527		

- 13) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 14) This truss has been designed for a total drag load of 4200 lb. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 28-10-4 for 145.6 plf.
- 15) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 828 Ib down and 153 lb up at 13-5-4 on top chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

- Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15
 - Uniform Loads (lb/ft)
 - Vert: 1-15=-80, 16-31=-20 Concentrated Loads (lb)
 - Vert: 32=-828

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:20 ID:HKpi4?U5681YeBe_DtnYkgzlqoh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	M11A	Monopitch Supported Gable	1	1	Job Reference (optional)	R86730528

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:20 ID:eBla5P_tvFeyWF7qUv0dmpzlqml-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:51.7

Plate Offsets (X, Y): [9:0-4-0,0-4-8]

															_
Loading		(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL		25.0	Plate Grip DOL	1.15		TC	0.22	Vert(LL)	n/a	-	n/a	999	MT20	185/148	
(Roof Snow =	25.0)		Lumber DOL	1.15		BC	0.02	Vert(TL)	n/a	-	n/a	999			
TCDL		15.0	Rep Stress Incr	NO		WB	0.09	Horiz(TL)	0.00	16	n/a	n/a	-		
BCLL		0.0*	Code	IBC201	8/TPI2014	Matrix-SH									
BCDL		10.0											Weight: 143 lb	FT = 10%	
LUMBER				т	OP CHORD	1-31=-59/31, 1-2=-	26/21, 2	-3=-24/21,		9) This	truss h	as bee	en designed for a	a 10.0 psf bottom	
TOP CHORD	2x6 DF N	o.2				3-4=-23/20, 4-5=-2	1/20, 5-0	6=-19/19,		, cho	rd live lo	ad no	nconcurrent with	any other live loads.	
BOT CHORD	2x6 DF N	o.2				6-7=-18/20, 7-8=-1	9/29, 8-	10=-17/20,		10) * Th	is truss	has be	een designed for	a live load of 20.0psf	
WEBS	2x4 HF N	o.2				10-11=-15/19, 11-1	12=-15/2	0, 12-13=-15/	22,	on t	he botto	m cho	ord in all areas w	here a rectangle	
OTHERS	2x4 HF N	o.2				13-14=-15/23, 14-1	15=-16/2	6, 15-16=-86/	'38	3-06	6-00 tall	by 2-0	0-00 wide will fit	between the bottom	
BRACING				B	OT CHORD	30-31=-66/60, 29-3	30=-25/2	6, 28-29=-25/	26,	cho	rd and a	iny oth	er members.		
TOP CHORD	Structural	wood she	athing directly applie	d or		27-28=-25/26, 26-2	27=-25/2	6, 25-26=-25/	26,	11) All t	earings	are a	ssumed to be H	- No.2 .	
	6-0-0 oc r	ourlins, ex	cept end verticals.			23-25=-25/26, 22-2	23=-25/2	6, 21-22=-25/	28,	12) Pro	/ide me	chanic	al connection (b	y others) of truss to	
BOT CHORD	Rigid ceili	ng directly	applied or 6-0-0 oc			20-21=-25/28, 19-2	20=-25/2	8, 18-19=-25/	28,	bea	ring plat	e capa	able of withstand	ing 7 lb uplift at joint	
	bracing.	0 ,				17-18=-25/28, 16-1	17=-16/2	5		31,	7 lb upli	ft at jo	int 16, 10 lb uplif	t at joint 30, 12 lb uplift	
REACTIONS	(size)	16=28-10	-4. 17=28-10-4.	W	EBS	2-30=-167/64, 3-29	9=-160/6	1, 4-28=-158/	61,	at jo	int 29, 1	12 lb u	plift at joint 28, 1	2 lb uplift at joint 27, 8	
	(0.20)	18=28-10	-4. 19=28-10-4.			5-27=-171/63, 6-26	5=-100/5	0, 7-25=-434/	112,	lb u	olift at jo	oint 26	, 28 lb uplift at jo	int 25, 50 lb uplift at	
		20=28-10	-4, 21=28-10-4,			8-23=-823/182, 9-2	22=-91/4	9, 10-21=-173	3/65,	join	23, 8 10		at joint 22, 13 lb	uplift at joint 21, 12 lb	
		22=28-10	-4, 23=28-10-4,			11-20=-157/60, 12	47 04	5/62, 2/84 4 20 - 20	2/47	upiii 40.4		120, I	2 ID UPIIIT at joint	19, 11 lb uplilt at joint	
		25=28-10	-4, 26=28-10-4,			13-18=-145/56, 14 15 17_ 15/2	-1/=-210	5/84, 1-30=-38	9/47,	10 C			at joint 17.	as with the 2019	
		27=28-10	-4, 28=28-10-4,			15-17=-15/5				13) This	rnotiona	Duild	ling Code costion	ce with the 2018	
		29=28-10	-4, 30=28-10-4,	N	OTES					rofo	roncod	n Build	Ing Code Section	12300.1 anu	
		31=28-10	-4	1)	Wind: ASCE	7-16; Vult=110mp	h (3-sec	ond gust)		Tele	lenceu	stariua	IIU ANGI/TETT.		
	Max Horiz	31=41 (LC	C 11)		Vasd=87mp	n; TCDL=4.2pst; B	CDL=6.0	Jpst; n=25tt; C	Jat.						
	Max Uplift	16=-7 (LC	: 12), 17=-15 (LC 8),		II; EXP B; En	CIOSED; IVIVVERS (6	envelope	e) exterior zon	e						
		18=-11 (L	C 12), 19=-12 (LC 8)),	and C-C Col	d vortical left and	right ovn								
		20=-12 (L	C 12), 21=-13 (LC 8)),	members an	d forces & MW/EP	S for rea	ctions shown.							
		22=-8 (LC	(LC 8), 23=-50 (LC 8),			-1 60 plate grip D									
		25=-28 (L	C 12), 26=-8 (LC 12)), 2)	Truss design	ed for wind loads	in the nl	, ane of the trus					OMIN	IG ZD	
		27=-12 (L	C 8), 28=-12 (LC 12)), –/	only For st	ids exposed to wir	nd (norm	al to the face)					UA	A	
		29=-12 (L	(LC 12)),	see Standar	d Industry Gable E	nd Deta	ils as applicab	, ole.			7	DF W	ASHIA Y	
	May Cray	31=-7 (LU	(0)		or consult a	alified building des	signer as	per ANSI/TP	911.				154 15	X (V) Y	
	wax Grav	10=109 (L	(LC I), $I7=276$ (LC I)	, 3)	TCLL: ASCE	7-16; Pf=25.0 psf	(Lum D	OL = 1.15 Pla	ite			-			
		20-197 (I	(LC 1), $13=204$ (LC 1)	, ,	DOL = 1.15)	; Is=1.0; Rough Ca	at B; Par	tially Exp.;							
		20-131 (1	(1), 21=213 (101)	,	Ce=1.0; Cs=	1.00; Ct=1.10; IBC	1607.1	1.2 minimum	roof						
		25=474 (1	C(1), 26=000 (LC(1)) C(1), 26=140 (LC(1))	,	live load app	lied where require	d.						100		
		27=211 (1	C 1), 28=198 (I C 1)	, 	Provide ade	quate drainage to p	orevent v	water ponding					B . 510	174 / 8 1	
		29=199 (L	.C 1), 30=212 (LC 1)	, 5)	All plates are	e 2x4 () MT20 un	less othe	erwise indicate	ed.				O REGIO	TREE &	
		31=74 (LC	C 1)	ć 6)	Gable requir	es continuous bott	om chor	d bearing.					Ecols	CIT A	
FORCES	(lb) - Max	imum Com	pression/Maximum	7)	Truss to be	ully sheathed from	one fac	e or securely					SION	ALEN	
	Tension		p. coolor / Maximum		braced agair	nst lateral moveme	nt (i.e. d	iagonal web).							
				8)	Gable studs	spaced at 2-0-0 or	C.								

Page: 1

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	M11A	Monopitch Supported Gable	1	1	Job Reference (optional)	R86730528
	•				•	

- 14) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 828 lb down and 153 lb up at 13-5-4 on top chord. The design/selection of such connection device(s) is the responsibility of others. 15) In the LOAD CASE(S) section, loads applied to the face
- of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15

Uniform Loads (lb/ft) Vert: 1-15=-80, 16-31=-20

Concentrated Loads (lb)

Vert: 32=-828 (F)

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries. Inc. Mon Feb 17 10:17:20 ID:eBIa5P_tvFeyWF7qUv0dmpzIqml-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	N01	Monopitch Supported Gable	2	1	Job Reference (optional)	R86730529

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:21 ID:GS9a6g8bpYM0cp0ODi3HdGzIr95-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:46.7

21-10-4

Plate Offsets (X, Y): [7:0-	4-0,0-4-8],	[19:0-3-0,0-3-0]												
Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2018	8/TPI2014	CSI TC BC WB Matrix-R	0.08 0.07 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 13	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 103 I	GRIP 185/148 b FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x6 DF N 2x4 HF N 2x4 HF N 2x4 HF N 2-0-0 oc ţ end vertic Rigid ceill bracing.	o.2 o.2 o.2 o.2 ourlins (6-0 cals. ing directly	-0 max.): 1-12, exce applied or 6-0-0 oc	BC WE pt 1)	DT CHORD EBS D TES Wind: ASCE	23-24=-68/79, 22 20-21=-68/79, 16 16-17=-60/72, 15 13-14=-60/72 2-23=-171/103, 3 5-20=-166/120, 6 10-15=-163/76, 1 E 7-16; Vult=110n	2-23=-68/7 3-20=-68/7 5-16=-60/7 3-22=-161, 3-19=-151, 3-17=-158, 11-14=-15: nph (3-sec	9, 21-22=-68, 9, 17-18=-60, 2, 14-15=-60, 74, 4-21=-15, (133, 86, 9-16=-16, 3/95 cond gust)	/79, /72, /72, 8/86, 0/73,	12) Pro bea 24, upli 21, upli 15 13) Thi Inte	vide me ring plat 34 lb up ft at joint 37 lb up ft at joint and 41 lt s truss is rnationa	chanic e capa lift at ju : 23, 1 lift at ju : 17, 1 o uplift desig I Build standa	al connection (l able of withstan bint 13, 41 lb up 7 lb uplift at joir bint 20, 34 lb up 2 lb uplift at joir at joint 14. ned in accorda ing Code sectior rd ANSI/TPI 1.	y others) of tru ding 30 lb uplift blift at joint 19, 4 t 22, 17 lb uplif blift at joint 18, 7 t 16, 18 lb uplif nce with the 20 on 2306.1 and	ss to at joint 45 lb t at joint 19 lb t at joint 18
REACTIONS	(size) Max Horiz Max Uplift	13=21-10 15=21-10 17=21-10 21=21-10 23=21-10 24=-65 (L 13=-34 (L 15=-18 (L 17=-19 (L 19=-41 (L 21=-17 (L 23=-45 (L	-4, 14=21-10-4, -4, 16=21-10-4, -4, 20=21-10-4, -4, 22=21-10-4, -4, 24=21-10-4, C 8) C 9), 14=-41 (LC 8), C 9), 16=-12 (LC 8), C 8), 18=-34 (LC 9), C 8), 20=-37 (LC 9), C 8), 22=-17 (LC 8), C 9), 24=-30 (LC 8)	2) 3)	Vasd=87mp II; Exp B; Er and C-C Co exposed ; ei members ar Lumber DO Truss design only. For st see Standar or consult q TCLL: ASCC DOL = 1.157 Ce=1.0; Cs=	h; TCDL=4.2psf; rclosed; MWFRS rner (3) zone; odd nd vertical left and nd forces & MWF L=1.60 plate grip ned for wind load uds exposed to w rd Industry Gable ualified building d E 7-16; Pf=25.0 p); Is=1.0; Rough (=1.00; Ct=1.10; IE	BCDL=6. (envelope ntilever lef d right exp RS for rea DOL=1.60 s in the pla- vind (norm End Deta lesigner as sf (Lum D Cat B; Par 3C 1607.1	Dpsf; h=25ft; () exterior zon t and right oosed;C-C for ctions shown) ane of the trus al to the face) ils as applicat s per ANSI/TF OL = 1.15 Pla tially Exp.; 1.2 minimum	Cat. ie ss s, ole, 21 1. ite roof	14) Gra or t bot	iphical p he orien com chor CASE(S)	uriin re ation (d.) Sta	presentation d	es not depict t	ne size or
FORCES TOP CHORD	(lb) - Max Tension 1-24=-58/ 2-3=-9/10 6-8=-11/1 10-11=-1	13=78 (LC 15=204 (L 17=197 (L 19=191 (L 21=199 (L 23=217 (L imum Com (53, 12-13=), 3-4=-9/10 5, 8-9=-11, 1/15, 11-12	C 1), 14=189 (LC 1), .C 1), 16=200 (LC 1), .C 1), 18=209 (LC 1), .C 1), 20=204 (LC 1), .C 1), 22=199 (LC 1), .C 1), 22=199 (LC 1), .C 1), 24=72 (LC 20) pression/Maximum -61/55, 1-2=-9/10, .4-5=-9/10, 5-6=-9/1 /15, 9-10=-11/15, :=-11/15	4) 5) 6) 7) 8) 9) 10, 10]	live load app Provide ade All plates ar Gable requi Truss to be braced agai Gable studs This truss hi chord live lo) * This truss on the botto 3-06-00 tall chord and a) All bearings	plied where requit quate drainage tr e 2x4 () MT20 tr res continuous bo fully sheathed fro nst lateral moven s spaced at 2-0-0 as been designed ad nonconcurren has been designed m chord in all are by 2-00-00 wide ' ny other member are assumed to l	red. o prevent v inless othi- bottom chor m one fac- nent (i.e. d oc. d for a 10.0 t with any ed for a liv eas where will fit betw s. be HF No.	water ponding erwise indicat d bearing. e or securely iagonal web). D psf bottom other live loar e load of 20.0 a rectangle veen the botto 2.	ı. ed. ds. ıpsf				PROPERSION	NG ZH40 ASHACION DOTA DOTA TEREP AL ENGINE	a de la de

-----February 17,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	N02	Monopitch Structural Gable	2	2	Job Reference (optional)	R86730530

Builde

Builders FirstSo	urce (Arlington,	WA), Arling	jton, WA - 98223	,			Run: 8.83 S Fe ID:eMa4ybjwHR	b 1 2025 I R2zBaY9a0	Print: 8.830 S Feb 1 20 Dgqj7zlphN-RfC?PsB70	25 MiTek Ir Hq3NSgPq	ndustries, nL8w3ul7	Inc. Mo TXbGKV	n Feb 17 10:1 VrCDoi7J4zJC	7:21 C?f	Page: 1	
		Т	3-1-0	7-7-	-9	i	12-2-0	Т	17-10-5			23-	8-4			
			3-1-0	4-6-	-9		4-6-7		5-8-5			5-9	-15			
							23	3-8-4								
							0.25	12 5 F								
		4x5 =				3x4 =		3x4 =	7x8 =	3x4	=			4x5 II 7		
	\top \pm	1	2			3		4	5	0 	_		101		Т	
	- 15											-		Π	-15	
	2-9														2-6	
	\perp \perp	15 □		<u></u>		13								8	\perp	
			14	2		4x6=		12	11	10		9		4x5 =		
			3X1	0=				3x4 =		3x4 =						
			3-1-0			12-2-0			17-10-5			23-	8-4			
Scale = 1:50.1			3-1-0			9-1-0			5-8-5			5-9	-15	•		
Plate Offsets (X, Y): [5:0-4	-0,0-4-8],	[6:0-1-12,0-1-8	3], [7:Edge,0	-3-8]	, [10:0-1-12,0-	-1-8]									_
Loading		(psf) 25.0	Spacing	2-0-0 1 15)		CSI TC	0.89	DEFL in	(loc) 12-14	l/defl ∖aaa	L/d 240	PLATES	G	RIP 85/148	
(Roof Snow =	25.0)	20.0	Lumber DOL	1.15			BC	0.00	Vert(CT) -0.03	12-14	>999	180	W120			
BCLL		15.0 0.0*	Rep Stress Ir Code	nor NO IBC2	2018/	TPI2014	WB Matrix-SH	0.34	Horz(CT) 0.01	12	n/a	n/a				
BCDL		10.0						-					Weight: 28	7 lb F	= 10%	
		2			1)	2-ply truss to (0.131"x3") n	be connected to	gether wi	th 10d	12) All t 13) Pro	bearings	are as	sumed to be	e HF No. n (by oth	2. ers) of truss to	
BOT CHORD	2x6 DF No.	2				Top chords c	onnected as follo	ows: 2x4 ·	1 row at 0-9-0	bea	ring plat	e capa	able of withst	tanding 2	8 lb uplift at joint	
OTHERS	2x4 HF No. 2x4 HF No.	.2				Bottom chord	ls connected as f	follows: 2	x6 - 2 rows	upli	ft at joint	12, 2	56 lb uplift at	t joint 10	and 37 lb uplift at	
BRACING	Structural	wood shea	athing directly :	applied or		Staggered at Web connect	0-9-0 oc. ed as follows: 2x	4 - 1 row	at 0-9-0 oc.	join 14) This	t 11. s truss is	desig	ned in accor	dance w	ith the 2018	
	6-0-0 oc pu	irlins, exc	cept end vertic	als.	2)	All loads are except if note	considered equa d as front (F) or	Ily applie back (B)	d to all plies, face in the LOAD	Inte refe	rnationa renced	l Build standa	ing Code se rd ANSI/TPI	ction 230 1.	6.1 and	
BOT CHORD	bracing, E	xcept:		0.00		CASE(S) sec	tion. Ply to ply co	onnection	s have been as (E) or (B)	15) Stu	dding ap	plied t	o ply: 1(Fror	nt)		
REACTIONS	10-0-0 oc b (size) 8	oracing: 12 3=11-9-0,	2-14. 9=11-9-0, 10=	11-9-0,	2)	unless otherw	vise indicated.	ab 110100	act (1) or (D),	1) De	ad + Sn	ow (ba	alanced): Lui	mber Inc	rease=1.15, Plate	
	1	11=11-9-0 15=3-2-12	, 12=11-9-0, 1	4=3-2-12,	3)	Vasd=87mph	; TCDL=4.2psf; I	BCDL=6.0	Opsf; h=25ft; Cat.	lno Ur	crease=" niform Lo	1.15 bads (II	o/ft)			
	Max Horiz	15=59 (LC	: 11) 12) 10- 256	(1 C 12)		II; Exp B; Enc and C-C Corr	ner (3) zone; can	(envelope itilever lef	e) exterior zone t and right		Vert: 1-7	7=-587	, 8-15=-20			
		11=-37 (LC	C 3), 12=-246	(LC 12), (LC 12),		exposed ; end members and	d vertical left and forces & MWFF	l right exp RS for rea	osed;C-C for ctions shown;							
	Max Grav 8	14=-240 (L 3=1355 (L	_C 12), 15=-28 C 1), 9=97 (LC	5 (LC 8) C 3),	4)	Lumber DOL:	=1.60 plate grip I	DOL=1.60) ane of the truss							
	1	10=3760 (12=4556 (LC 1), 11=-11 LC 1), 14=434	(LC 8), 7 (LC 1),	.,	only. For stu	ds exposed to wi	ind (norm	al to the face),							
FORCES	(lb) Maxin	15=175 (L	C 1)	num	_`	or consult qua	alified building de	esigner a	s per ANSI/TPI 1.							
	Tension				5)	TCLL: ASCE $DOL = 1.15$;	7-16; Pf=25.0 ps Is=1.0; Rough C	sf (Lum D Cat B; Par	OL = 1.15 Plate tially Exp.;				L.ON	AING	ZIJI V	
TOP CHORD	1-15=-187/ 3-4=-124/3	57, 1-2=-1 85, 4-6=-4	129/503, 2-3=- 10/72, 6-7=-18	125/504, 0/70,		Ce=1.0; Cs=1 live load appl	1.00; Ct=1.10; IB ied where require	C 1607.1 ed.	1.2 minimum roof				ALAC	WASH	AO V	
BOT CHORD	7-8=-1371/	345 74. 12-14:	=-616/2299.		6) 7)	Provide adeq	uate drainage to	prevent	water ponding.			1	St.	20		
	11-12=-354	1/113, 10- 6 8-94/	11=-354/113, 1/36		8)	Truss to be fu	Illy sheathed fror	m one fac	e or securely				8		E E	
WEBS	2-14=-2635	5/662, 1-1-	4=-572/182,		9)	Gable studs s	si lateral movem spaced at 2-0-0 c	ent (I.e. d DC.	iagonai web).					A		
	4-12=-3187 3-14=-3042	2/773, 6-10	∠=-∠907/747, 0=-3800/954,		10)	This truss has chord live loa	s been designed d nonconcurrent	for a 10.0 with any) psf bottom other live loads.			1	PR Pr	54074		
NOTES	4-10=-86/3	46, 6-8=-4	13/181		11)	* This truss h	as been designe	d for a liv	e load of 20.0psf a rectangle			-	FESO	ISTER	NGIN	
						3-06-00 tall b	y 2-00-00 wide w	vill fit betv	veen the bottom				-510	NALT	ST.	
						chord and an	y other members	<i>.</i>					Eobri	10rv 1	7 2025	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

February 17,2025

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	N03	Monopitch	4	1	Job Reference (optional)	R86730531

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:21 ID:F?EfYdYWXRawIZgrtRzwEMzlpmm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

February 17,2025

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Scale = 1:60.9

Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(pst) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2018	3/TPI2014	CSI TC BC WB Matrix-SH	0.21 0.20 0.62	Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.06 0.01	(loc) 13-15 13-15 11	I/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 201 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 DF No 2x6 DF No 2x4 HF No Structural 6-0-0 oc p Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav	0.2 0.2 0.2 0.2 11=0-5-8, 16=0-5-8, 19=59 (LC 11=-32 (L 11=-32 (L 11=-32 (L 11=-32 (L 11=-32 (L 11=-32 (L 11=-32 (L 11=-32 (L) 11=-32 (athing directly applied cept end verticals. applied or 6-0-0 oc 13=0-5-8, 15=0-3-8, 19=0-3-8 2 11) C 8), 13=-63 (LC 12) C 8), 13=-63 (LC 12) C 8), 16=-62 (LC 12) C 8) C 1), 16=823 (LC 1), C 1) pression/Maximum	1) d or 2) , 3) , 4)), 5) , 6)	Wind: ASCE Vasd=87mpt II; Exp B; Enn and C-C Cor 15-1-12 to 19 cantilever lef right exposed for reactions DOL=1.60 TCLL: ASCE DOL = 1.15); Ce=1.0; Cs= live load app Provide adee All plates are This truss ha chord live loa * This truss F on the bottor	7-16; Vult=110mpl n; TCDL=4.2psf; BC closed; MWFRS (e ner (3) 0-1-12 to 19 3-8-4, Corner (3) 19 t and right exposed d;C-C for members shown; Lumber DC 7-16; Pf=25.0 psf [s=1.0; Rough Ca 1.00; Ct=1.10; IBC lied where required yuate drainage to p s 3x4 (=) MT20 unl s been designed for ad nonconcurrent w has been designed n chord in all areas	h (3-sec CDL=6. nvelope 5-1-12, 9-8-4 to 1; end v and foo DL=1.6((Lum D t B; Par 1607.1 d. revent v ess oth or a 10. <i>v</i> ith any for a liv where	cond gust) Dpsf; $h=25ft;$ h=25ft; h=	Cat. ine r; nd RS late n roof g. ated. opsf					
TOP CHORD	Tension 1-19=-415 3-4=-70/2 7-9=-631/	5/96, 1-2=- 12, 4-6=-6 133, 9-10=	730/102, 2-3=-57/244 7/214, 6-7=-70/185, -53/35, 10-11=-201/6	^{4,} 7) 8)	chord and an All bearings a Provide med	by other members. are assumed to be hanical connection	HF No. (by oth	2. ers) of truss	to					
BOT CHORD	18-19=-97 15-16=-23 12-13=-18	7/112, 16-1 39/69, 13-1 31/62, 11-1	8=-164/725, 5=-106/175, 2=-123/626	0)	19, 32 lb upli uplift at joint	ft at joint 11, 62 lb 15 and 63 lb uplift	uplift at at joint	joint 16, 18 13.	lb				NOMING	3 ZH
NEBS	3-16=-401 2-16=-101 1-18=-107 6-13=-390 9-11=-633 7-12=-151	I/110, 4-15 I2/169, 2-1 7/683, 7-13 D/136, 6-15 3/109, 9-12 I/861, 3-15	=-272/96, 8=-124/119, =-764/200, =-422/144, =-229/126, =0/54	LC	International referenced s	Building Code sec tandard ANSI/TPI - Standard	tion 230)6.1 and					The WA	No N

NOTES

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	N05	Monopitch Girder	8	1	Job Reference (optional)	R86730532

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:22 ID:Cp5F4dQI036wOO1eSUFG02zlpkL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

I	5-8-3	11-2-8	14-2-12	23-3-12	29-0-1	34-10-0
I	5-8-3	5-6-5	3-0-4	9-1-0	5-8-5	5-9-15

Scale = 1:60.9

Plate Offsets ((X, Y): [2:0-1-12,0-1-8	3], [7:0-2-8,0-1-8], [9:0	0-4-8,0-1-8	8], [10:0-3-1,0-	1-4], [16:0-2-8,0-1-	8], [18:0)-3-8,0-2-0]							
Loading TCLL (Roof Snow = TCDL BCLL BCDL	(psf) 25.0 25.0) 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC2018	3/TPI2014	CSI TC BC WB Matrix-SH	0.85 0.65 0.88	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.62 -1.24 0.15	(loc) 13-15 13-15 13-15 11	l/defl >672 >335 n/a	L/d 240 180 n/a	PLATES M18AHS MT20 Weight: 203 lb	GRIP 145/140 185/148 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 DF No.2 2x6 DF 2400F 2.0E 2x4 HF No.2 *Excep 1.6E 2x4 HF No.2 Structural wood she 1-10-4 oc purlins, e Rigid ceiling directly bracing. 1 Row at midpt (size) 11=0-5-8, Max Horiz 19=59 (LC Max Uplift 11=-270 (Max Grav 11=1896	athing directly applie xcept end verticals. applied or 6-8-9 oc 7-12, 9-11 .19=0-3-8 C 7) (LC 8), 19=-460 (LC - (LC 1), 19=2086 (LC	2) F 3) 4) 5) d or 6) 7) 8) 4) 1) 9)	TCLL: ASCE DOL = 1.15) Ce=1.0; Cs= live load app Provide adee All plates are This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings Provide mec bearing plate 19 and 270 II This truss is	5 7-16; Pf=25.0 psf ; Is=1.0; Rough Ca 1.00; Ct=1.10; IBC lied where required quate drainage to p MT20 plates unle is been designed f ad nonconcurrent v has been designed n chord in all areas by 2-00-00 wide wi by 0 other members. are assumed to be hanical connectior e capable of withsta b uplift at joint 11. designed in accorre	(Lum D at B; Par) 1607.1 d. prevent ss other or a 10.1 with any I for a liv s where II fit betw HF No. h (by oth anding 4	OL = 1.15 PI tially Exp.; 1.2 minimum water pondin wise indicate 0 psf bottom other live loa e load of 20. a rectangle veen the bott 2. ers) of truss :60 lb uplift a ith the 2018	late n roof g. ads. 0psf rom to t joint						
TOP CHORD	(ib) - Maximum Con Tension 1-19=-1984/477, 1-2 2-3=-8851/2411, 3-4 4-6=-9109/2155, 6-7 7-9=-4127/655, 9-10	2=-5679/1375, 4=-9108/2152, 7=-7070/1237, 89/25_10-11211	10	International referenced s) Hanger(s) or provided suff lb down and	Building Code sec tandard ANSI/TPI other connection ficient to support co 264 lb up at 11-2-	ction 230 1. device(s oncentra -12, and)6.1 and) shall be ated load(s) 4 401 lb down	423 i and						
BOT CHORD	18-19=-64/181, 16-1 15-16=-2393/8845, 12-13=-1213/7065.	18=-1361/5673, 13-15=-1746/8482, 11-12=-628/4123	11	204 ID UP at selection of s responsibility	such connection de of others.	i cnord. evice(s)	is the	face				TAOMIN	G ZHA	
WEBS NOTES 1) Wind: AS(Vasd=87r II; Exp B;	2-18=-1534/470, 1-1 3-16=-620/351, 2-16 4-15=-279/79, 3-15= 7-13=-144/813, 6-13 6-15=-425/936, 9-12 7-12=-3141/625, 9-1 CE 7-16; Vult=110mph mph; TCDL=4.2psf; BC Enclosed; MWFRS (er	18=-1403/5730, 5=-1084/3405, 441/630, 3=-1608/584, 2=-151/1183, 11=-4349/681 (3-second gust) DL=6.0psf; h=25ft; C nvelope) exterior zon	LC 1) Cat. e;	of the truss a DAD CASE(S) Dead + Sno Increase=1 Uniform Los Vert: 1-1 Concentrat Vert: 16=	er noted as front (Standard ow (balanced): Lun .15 ads (lb/ft) 0=-80, 11-19=-20 ed Loads (lb) e-528 (F=-264, B=-	F) or bander Inc	rease=1.15,	Plate				THOPESSION	SADE CITE	
contilovor	loft and right avpaced	: and vortical laft and	1									-UNA		

II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

February 17,2025

Page: 1

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	N06	Monopitch Girder	2	4	Job Reference (optional)	R86730533

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:22 ID:5Dg4Q4P3uzmm?DgT80id09zlqHE-RfC?PsB70Hg3NSgPgnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

400 Sunrise Ave., Suite 270 Roseville, CA, 95661

916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	N07	Monopitch	8	1	Job Reference (optional)	R86730534

Run: 8.83 S. Feb. 1 2025 Print: 8.830 S. Feb. 1 2025 MiTek Industries. Inc. Mon Feb 17 10:17:22 ID:mU7uWxgs8xOHSA2sm1F09czlqRC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

February 17,2025

400 Sunrise Ave., Suite 270 Roseville CA 95661

916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	N08	Monopitch	6	1	Job Reference (optional)	R86730535

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:23 ID:e48_po43EOI0duyU1It3onzIqTG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

400 Sunrise Ave., Suite 270 Roseville, CA, 95661

916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	N09	Monopitch Supported Gable	2	1	Job Reference (optional)	R86730536
Builders FirstSource (Arlington, V	VA), Arlington, WA - 98223,	Run: 8.83 S Feb 1 2	025 Print: 8.8	330 S Feb 1	2025 MiTek Industries, Inc. Mon Feb 17 10:17:23	Page: 1

Run: 8.83 S. Feb. 1 2025 Print: 8.830 S. Feb. 1 2025 MiTek Industries. Inc. Mon Feb 17 10:17:23 ID:8LWQ7Jcr_s93MJK544StvWzlpde-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	N10	Monopitch Supported Gable	2	1	Job Reference (optional)	R86730537

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:23 ID:p?u5TUoh8gNIVDEkGyhdKzzlpc7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [9:0-4-0,0-4-8]

													-		
Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC201	8/TPI2014	CSI TC BC WB Matrix-R	0.07 0.03 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 18	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 158 lb	GRIP 185/148 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS DTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 DF N 2x6 DF N 2x4 HF N 2x4 HF N Structural 6-0-0 oc p Rigid ceili bracing. (size) Max Horiz Max Uplift	0.2 0.2 0.2 0.2 I wood she purlins, exi ing directly 18=29-4-8 21=29-4-8 24=29-4-8 31=29-4-8 31=29-4-8 34=29-4-1 34=29-	athing directly applie cept end verticals. applied or 6-0-0 oc 3, 19=29-4-8, 20=29 3, 22=29-4-8, 23=29 3, 25=29-4-8, 30=29 3, 32=29-4-8, 33=29 3, 32=29-4-8, 33=29 5, 32=29-4-8, 33=29 5, 32=29-11 (LC 8),	-4-8, W -4-8, W -4-8, -4	OP CHORD OT CHORD /EBS	1 1-34=-63/35, 1-2= 3-4=-18/15, 4-5=- 6-7=-17/17, 7-8=- 10-11=-14/21, 11- 13-14=-14/26, 14- 16-17=-3/0, 16-18 33-34=-47/52, 29- 26-28=-47/52, 29- 26-28=-47/52, 29- 26-28=-47/52, 29- 20-21=-46/50, 19- 2-33=-166/92, 3-3 5-30=-160/60, 28- 2-33=-165/72, 9-2 10-24=-166/69, 11 12-22=-160/61, 11 14-20=-164/62, 15 7-16: Vult=110m	19/16, 2 17/14, 5-1 16/19, 8- -12=-14/2 15=-14/2 15=-14/2 =-223/75 33=-47/5 23=-46/5 22=-46/5 22=-46/5 22=-46/6 (9=-160/6) (5=-159/1 1-23=-150 3-21=-160 5-19=-102	-3=-18/15, 5=-17/15, 10=-16/20, 2, 12-13=-14 7, 15-16=-14 2, 31-32=-47 2, 28-29=-47 2, 28-29=-47 0, 21-22=-46 0, 18-19=-46 3, 4-31=-160 1, 7-28=-161 03, 9/65, 9/61, 2/44	4/24, 4/28, 7/52, 5/50, 5/50, 5/50, 5/50, 5/50, 5/50, 5/50, 5/50, 5/50, 5/50, 5/50, 5/50, 5/50, 5/50, 5/50, 5/50, 5/50, 5/52,	 Frc All All Gal Tru bra Gal Tru bra Chc Thi chc Thi chc Thi chc Thi Thi	vide ade plates ar ole requi ss to be ced agai st tuss h ord live lc his truss the botto 6-00 tall ord and a bearings vide me tring plat 47 lb up ft at join 12 lb up	equate e 2x4 i res cor fully sh nst late s space as bee bad nor has be m choo by 2-0 iny othe are as chanica e capa lift at jo t 32, 11 lift at jo t 26, 9	drainage to prev () MT20 unless ntinuous bottom - heathed from one eral movement (i ed at 2-0-0 oc. en designed for a nconcurrent with een designed for rd in all areas wf 0-00 wide will fit er members. ssumed to be HF al connection (by bible of withstandi bint 18, 22 lb upli 1 lb uplift at joint 10 uplift at joint 10 uplift at joint 29, 11 lb upli	e. tial entry is a second seco	ng. ated. y)). .opsf ttom t joint lb t joint lb ioint
FORCES	Max Grav (lb) - Max Tension	20=-11 (L 22=-12 (L 24=-15 (L 26=-13 (L 29=-12 (L 31=-11 (L 33=-22 (L 18=230 (L 20=204 (L 20=204 (L 20=200 (L 24=206 (L 29=200 (L 31=200 (L 31=200 (L 33=206 (L	C 12), 21=-12 (LC 8 C 8), 23=-11 (LC 12 C 8), 25=-9 (LC 12), C 8), 25=-9 (LC 12), C 8), 30=-12 (LC 8), C 12), 32=-15 (LC 8), C 12), 32=-15 (LC 8), C 13), 19=141 (LC 0), C 13), 21=200 (LC 1), C 1), 23=199 (LC 1), C 1), 25=199 (LC 1), C 1), 28=201 (LC 1), C 1), 32=200 (LC 1), C 1), 34=85 (LC 21), pression/Maximum), (),), 1), 2)), 2)), 3)), 3)) 4)	Vasd=87mp II; Exp B; Er and C-C Coi 15-1-12 to 1 cantilever le right expose for reactions DOL=1.60 Truss design only. For stu- see Standar or consult qu TCLL: ASCE DOL = 1.15) Ce=1.0; Cs= live load app This truss ha load of 20.0	h; TCDL=4.2ps;f lclosed; MWFRS (mer (3) 0-1-12 to 5-4-8, Corner (3) ft and right expose d;C-C for member shown; Lumber E hed for wind loads uds exposed to wi d Industry Gable E jalified building de 7-16; Pf=25.0 ps ; Is=1.0; Rough C ±1.00; Ct=1.10; IB blied where require as been designed psf or 2.00 times 1	a CDL=6.0 ((envelope 15-1-12, I 15-4-8 to ed; end v in the pla od (norm End Detai signer as of (Lum D at B; Part C 1607.1 ed. for greated flat roof lo	post, h=25ft; i post, h=25ft; i auterior (2) auterior (2) auterior (2) auterical left an cces & MWFF plate grip ane of the tru al to the face is as applica is per ANSI/TI OL = 1.15 Pli tially Exp.; 1.2 minimum er of min roof bad of 25.0 p	Cat. ne d SS SS ble, PI 1. ate roof f live sf on	24, upli join	11 lb up ft at join t 19.	lift at jo	THOMESSIONA	t at joint 22, 12 I 20 and 11 lb upli G ZH 40 Sh We 10 F 20 F 20 F 20 F 20 F 20 F 20 F 20 F 2	lb ift at

overhangs non-concurrent with other live loads.

February 17,2025

Page: 1

400 Suntise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTtek-US.com

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	N10	Monopitch Supported Gable	2	1	Job Reference (optional)	R86730537
Builders FirstSource (Arlington, V	VA), Arlington, WA - 98223,	Run: 8.83 S Feb 1 2	025 Print: 8.8	330 S Feb 1	2025 MiTek Industries, Inc. Mon Feb 17 10:17:23	Page: 2

ID:p?u5TUoh8gNIVDEkGyhdKzzlpc7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Builders FirstSource (Arlington, WA), Arlington, WA - 98223,

14) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	N11	Monopitch	10	1	Job Reference (optional)	R86730538

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:24 ID:_OahM37FYGvKsWN6vrCBTtzlpbh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1	7-8-10	15-1-13	22-7-0	30-3-10
1	7-8-10	7-5-3	7-5-2	7-8-11

Scale = 1:57

Plate Offsets	(X, Y): [1:0-3	-0,0-2-12], [2:0-1-12,0-1-8], [5	:0-2-3,0-2	2-0], [7:0-3-7,0-	2-0], [9:Edge,0-3-8], [10:0-	4-0,0-4-0], [1	4:0-1-12	,0-3-4]				
Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC201	8/TPI2014	CSI TC BC WB Matrix-SH	0.60 0.93 0.97	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.43 -0.87 0.07	(loc) 12-14 12-14 9	l/defl >832 >414 n/a	L/d 240 180 n/a	PLATES MT20 M18AHS Weight: 178 lb	GRIP 185/148 169/162 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x6 DF No. 2x6 DF No. 2x4 HF No. 2x4 HF No. 2x7 HF No. 2x7 HF No. 2x7 HF No. 2x7 HF No. 2x7 HF No. 2x7 HF No. 1 Row at m (size) 9 Max Gray 9 (lb) - Maxin Tension 1-15=-1378 2-4=-5802/ 6-7=-4077/ 14-15=-122 10-12=-104 1-14=-801/ 2-12=-186/ 4-10=-1782 7-10=-718/	2 2 2 2 2 2 2 2 2 2 2 2 2 2	athing directly applie cept end verticals. applied or 2-2-0 oc 4-10 (5=0-5-8 29) C 12), 15=-87 (LC 8) C 12), 15=-87 (LC 8) C 1), 15=1494 (LC 1 pression/Maximum 2=-4750/823, i=-4077/714, -6/0, 7-9=-1582/353 14=-884/4742, 9-10=-38/118 4=-873/282, 2=-97/123, 0=-598/231,	2 d or 4 5 7 1) 8 9 1) 8 9 1	 TCLL: ASCE DOL = 1.15) Ce=1.0; Cs= live load app This truss ha load of 20.0 overhangs n Provide adee All plates are This truss ha chord live load * This truss load * This truss load * All bearings Provide mechord and and bearing plate 15 and 119 I This truss is International referenced s OAD CASE(S) 	F-16; Pf=25.0 psf ; Is=1.0; Rough Ca 1.00; Ct=1.10; IBC lied where required as been designed for psf or 2.00 times flaton- concurrent with quate drainage to p a MT20 plates unlet as been designed for ad nonconcurrent w has been designed for a chord in all areas by 2-00-00 wide will by other members. are assumed to be chanical connection be capable of withsta b uplift at joint 9. designed in accord Building Code sec tandard ANSI/TPI - Standard	(Lum D t B; Para 1607.1 J. or great at roof I other I is other I is other I for a liv other I for a liv where I fit betw HF No (by oth unding S lance w tion 230 1.	OL = 1.15 Pl tially Exp.; 1.2 minimum er of min rooi oad of 25.0 p ve loads. water pondin wise indicate 0 psf bottom other live load er load of 20. a rectangle veen the bott 2. ers) of truss 87 lb uplift at ith the 2018 06.1 and	late n roof f live osf on g. ed. ads. Opsf to joint			نو	ALA OMING	G ZHAO
1) Wind: AS Vasd=87r II; Exp B;	CE 7-16; Vult mph; TCDL=4 Enclosed; MV	=110mph .2psf; BC VFRS (en	(3-second gust) DL=6.0psf; h=25ft; C velope) exterior zone	eat.									Ø	

II; EXD B; Enclosed; MWFRS (envelope) exterior Zone and C-C Corner (3) 0-1-12 to 15-1-12, Exterior (2) 15-1-12 to 17-3-10, Corner (3) 17-3-10 to 32-3-10 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

SSIONAL ENGI

Page: 1

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	N12	Monopitch Supported Gable	2	1	Job Reference (optional)	R86730539

Continued on page 2

WARN

Run: 8.83 S. Feb. 1 2025 Print: 8.830 S. Feb. 1 2025 MiTek Industries. Inc. Mon Feb 17 10:17:24 ID:2Es3qd5USI0NVHZsHtYoyrzlpU_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

400 Sunrise Ave., Suite 270 Roseville CA 95661

916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	N12	Monopitch Supported Gable	2	1	Job Reference (optional)	R86730539
Builders FirstSource (Arlington, V	VA), Arlington, WA - 98223,	Run: 8.83 S Feb 1 2	025 Print: 8.8	330 S Feb 1	2025 MiTek Industries, Inc. Mon Feb 17 10:17:24	Page: 2

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:24 ID:2Es3qd5USI0NVHZsHtYoyrzlpU_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft)

Vert: 1-10=-80, 10-16=-338, 17-33=-20

Job	Truss	Truss Type	Qty	F	Ply	MKM EAST TOWN BLDG H	
4448984	N13	Monopitch Girder	2	1	1	Job Reference (optional)	R86730540
Builders FirstSource (Arlington V	VA) Arlington WA - 98223	Run: 8.83 S. F	Eab 1 2025 Prin	int: 8 830	0 S Eeb 1 '	2025 MiTek Industries Inc. Mon Feb 17 10:17:24	Page: 1

22-2-14

7-3-13

37-2-0

14-11-2

6-10-14

8-0-4

8-0-4

2-10-7

BCDL

ID:h0MrnSbPToCDavFZHvW6YhzlbMs-RfC?PsB70Ha3NSaPanL8w3uITXbGKWrCDoi7J4zJC?f

25-10-8

3-7-10

29-6-11

3-8-3

37-2-0

7-7-5

400 Sunrise Ave., Suite 270 Roseville CA 95661

916.755.3571 / MiTek-US.com

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not being read to be only with the experiments contractions. This designer based only upon parameters shown, and show and be the innovational documponent, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	N14	Monopitch Girder	6	1	Job Reference (optional)	R86730541

Run: 8.83 S. Feb. 1 2025 Print: 8.830 S. Feb. 1 2025 MiTek Industries. Inc. Mon Feb 17 10:17:25 ID:7yb5A283HQd1ziEYunNWpuzlbQ1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

NOTES

8-12=-617/2173

of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15

Uniform Loads (lb/ft)

ebruary --

February 17,2025

Page: 1

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	N14A	Monopitch Girder	2	1	Job Reference (optional)	R86730542

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:25 ID:BAjwEksKCZuYOodhIOuC9LzIbJw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-0-2	14-3-14	17-11-8	21-7-11	29-3-0	
7-0-2	7-3-13	3-7-10	3-8-3	7-7-5	

Scale = 1:52.4

Plate Offsets	(X, Y): [2:0-3	-8,0-1-8],	[6:0-1-12,0-1-8], [7:	:0-3-7,0-2	0], [9:0-3-8,0-2	-0], [10:0-1-12,0-1	-8]							
Loading TCLL (Roof Snow = TCDL BCLL BCDL	= 25.0)	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC201	8/TPI2014	CSI TC BC WB Matrix-SH	0.86 0.56 0.90	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.41 -0.84 0.10	(loc) 10-12 10-12 8	l/defl >858 >415 n/a	L/d 240 180 n/a	PLATES MT20 M18AHS Weight: 173 lb	GRIP 185/148 145/140 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS	 2x6 DF No. 2x6 DF 240 2x4 HF No. 1800F 1.6E Structural v 2-4-12 oc p Rigid ceilin bracing. 1 Row at mr (size) & Max Horiz 1 Max Grav & (lb) - Maxin Tension 1-14=-266/ 3-5=-7632/ 6-7=-5650/ 13-14=-876 10-12=-176 8-9=-20/13 2-13=-89/8 3-12=-79/4 	2)0F 2.0E 2 *Excep wood she. purlins, e g directly hidpt 3=0-5-8, 1 4=60 (L 3=-390 (L 3=-2078 (L num Com 54, 1-2=- 1559, 5-6 1205, 7-8 3/5364, 12 3/17776, 9 2 28, 2-14= 04, 3-13=	t* 2-14,9-7:2x4 DF athing directly applie xcept end verticals. applied or 7-10-9 or 2-14, 3-13 14=0-4-0 2-5) C 8), 14=-277 (LC 4 .C 1), 14=1842 (LC pression/Maximum 181/18, 2-3=-5372/5 3=-1959/418 2-13=-1534/7626, 9-10=-1174/5643, 4-5394/914, 4-2537/683,	2 4 ed or 5 c 6 1) 9 900, 1	 TCLL: ASCE DOL = 1.15) Ce=1.0; Cs= live load app Provide ader All plates are This truss ha chord live load * This truss ha chord and ar All bearings Provide mec bearing plate 14 and 390 l This truss is International referenced s Hanger(s) or provided suff lb down and lb down and lb down and lb down and sign/selec responsibility 	5 7-16; Pf=25.0 ps ; Is=1.0; Rough C. 1.00; Ct=1.10; IB(lied where require quate drainage to a MT20 plates unle as been designed ad nonconcurrent has been designed on chord in all area by 2-00-00 wide w hy other members are assumed to be chanical connection a capable of withst b uplift at joint 8. designed in accor Building Code se tandard ANSI/TPI other connection ficient to support c 45 lb up at 17-11 226 lb up at 17-11 p at 17-10 2 on tion of such connect	f (Lum D at B; Para C 1607.1 d. prevent 1 eds other for a 10.0 with any d for a livit s where ill fit betw. e HF No. n (by oth canding 2 dance w ction 230 1. device(s concentra -8 on top 0-12, an bottom c	OL = 1.15 Pl tially Exp.; 1.2 minimum water pondin wise indicate 0 psf bottom other live loa e load of 20. a rectangle veen the bott 2. ers) of truss 277 lb uplift a ith the 2018 06.1 and i) shall be ated load(s) 7 o chord, and d 357 lb dow hord. The vice(s) is the	ate n roof g. ads. Opsf om to t joint 779 357 n				ALAOMING VIA	G ZHAO
NOTES 1) Wind: AS Vasd=87r II; Exp B;	6-9=-1708/ 7-9=-1229/ CE 7-16; Vult= mph; TCDL=4 Enclosed; MV	237, 372 473, 6-10 5799 =110mph .2psf; BC VFRS (en	(3-second gust) DL=6.0psf; h=25ft; (ivelope) exterior zor	ו L 1 Cat. ne;	of the truss a OAD CASE(S) Dead + Sno Increase=1 Uniform Los Vert: 1-7	Standard bw (balanced): Lui .15 ads (lb/ft) =-80, 8-14=-20	(F) or ba	rease=1.15,	Plate					

cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

Concentrated Loads (lb) Vert: 10=-255 (F=-127, B=-127), 5=-770

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Page: 1

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	N15	Monopitch Girder	2	1	Job Reference (optional)	R86730543

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:25 ID:_E3UI2ezGwk3M_diC_VvxdzlbGL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

400 Sunrise Ave., Suite 270 Roseville, CA, 95661

916.755.3571 / MiTek-US.com

Job	•	Truss		Truss Ty	ре		Qt	y	Ply	MKM EA	ST TOWN	N BLDO	ЭH	
4448984		N16		Monopit	ch Girder		2		1	Job Refe	erence (op	tional)		R86730544
Builders FirstSo	urce (Arlington, W/	A), Arling	ton, WA - 98223,			Run: 8.8		Print: 8.8	30 S Feb 1	2025 MiTek	Industries,	Inc. Mo	n Feb 17 10:17	7:26 Page: 1
	⊢	<u>7-8-4</u> 7-8-4		<u>14-7-</u> 6-10-	2		21-10-14 7-3-13 36-10-0		<u>25-6-</u> 3-7-1	<u>8</u>	28-7-8 3-1-0		2-7-14 4-0-6	<u>36-10-0</u> 4-2-2
2-10-7	5x8 = 1 20 x 4x5 II		2x4 II 2 19 7x10=	[↓] 18 5x8=	4x8 = 4x 3 4 1 1	5 = 4 7 4x6 =	0.25 ¹²	4x	6 = 5 1 6 4x6 =	4x6 = 6 6 15 14 4x8 = 4x6 =	5xi 4x8 = 7 8 1 1	6 =	4x5 9 12 4x	= 5x6= 10 11 11 5=
	ļ	<u>7-8-4</u> 7-8-4	 	<u>14-7-</u> 6-10-	- <u>2</u> 14		<u>21-10-14</u> 7-3-13		<u> 25-6</u> ∙ 3-7-1	<u>8</u>	28- 28-7-8 3-1-0 0-2	10-4 3 2-12	32-7-14 3-9-10	36-10-0 4-2-2
Scale = 1:64	(X V): [5:0-2-4	0-2-01	[6·0-2-0 0-2-0] [8·0-2	-8 0-2-81	[14.0-1-12 0-2	2-01 [16:0-3	2-0 0-2-01 [17:0)-2-4 0-	2-0] [19.0	-4-4 0-3-8	1			
Loading TCLL (Roof Snow = TCDL BCLL BCDI	((25.0) 1	psf) 25.0 15.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC2018/	TPI2014	CSI TC BC WB Matrix-S⊦	0.48 0.69 0.94	DEFL Vert(I Vert(0 Horz(- _L) -0 CT) -0 CT) 0	in (loc 24 17-19 47 17-19 02 13) l/defl 9 >999 9 >723 3 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 185/148
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 DF 2400F 2x6 DF No.2 2x4 HF No.2 Structural woo 5-3-6 oc purlin Rigid ceiling of bracing. (size) 11= 20- Max Horiz 20= Max Horiz 20= Max Uplift 11= 13- Max Grav 11=	- 2.0E - 2.0E - 2.0E - 3.0E - 3.0E - 3.0E - 3.33 (L: 3.92 (L: 3.92 (L: 3.93 (L: 3.93 (L: 3.94 (L:))))))))))))))))))))))))))))))))))))	athing directly applied rept end verticals. applied or 4-0-6 oc 12=8-5-4, 13=8-5-4, C 27) .C 45), 12=-114 (LC 2 C 32), 20=-145 (LC 2 C 28), 12=1071 (LC 4 C 1) 20=-1129 (LC 4	1) or 2) 3) 4) 24), 5) 24),	Wind: ASCE Vasd=87mpH II; Exp B; Enc cantilever left right exposed TCLL: ASCE DOL = 1.15); Ce=1.0; Cs= live load appl Provide adec This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an	7-16; Vult= a; TCDL=4 closed; MW t and right e d; Lumber I 7-16; Pf=2 Is=1.0; Ro 1.00; Ct=1. ied where i upate draina s been des d nonconc as been des d nonconc as been des y 2-00-00 v y other me	e110mph (3-see 2psf; BCDL=6. /FRS (envelope exposed ; end v DOL=1.60 plate 5.0 psf (Lum D ugh Cat B; Par 10; IBC 1607.1 required. age to prevent igned for a 10. urrent with any asigned for a 10. urrent with any all areas where wide will fit betw mbers.	cond gu Dpsf; h= e) exter vertical grip D OL = 1 tially E: 1.2 mir water p D psf bo other li e load a recta	ist) =25ft; Cat. ior zone; left and OL=1.60 .15 Plate xp.; iimum rool onding. ottom ve loads. of 20.0psf ngle e bottom		Uniform Lo Vert: 1- Concentra Vert: 14	bads (II 6=-80, ted Lo =-34 (I	b/ft) 6-10=-338, 1 ads (lb) F)	1-20=-20
FORCES TOP CHORD	13= (Ib) - Maximur Tension 1-20=-1075/12 2-4=-3428/72 5-6=-1530/79 8-9=-1143/35 10-11=-394/4	=4472 (m Comp 80, 1-2: 5, 4-5=- 9, 6-8=- 18, 9-10 33		6) 7) 8)	All bearings a Provide mech bearing plate 20, 392 lb up 114 lb uplift a This truss is a International	are assume nanical con capable of lift at joint 1 at joint 12. designed in Building Co	ed to be HF No. nection (by oth f withstanding 1 11, 676 lb uplift n accordance w ode section 230	2. ers) of 45 lb u at joint ith the 1 06.1 and	truss to plift at join 13 and 2018 d	t			. 64	
BOT CHORD	19-20=-100/2 16-17=-751/1 13-14=-3472/ 11-12=-959/9	30, 17- 486, 14 1126, 1 63	19=-676/3458, -16=-1490/745, 2-13=-2029/1334,	9)	reterenced st This truss ha 2000 lb. Lum Connect trus from 28-4-12	andard AN s been des ber DOL=(s to resist c to 36-10-0	igned for a tota 1.33) Plate grip drag loads alon for 237.0 plf	I drag I DOL= g botto	oad of (1.33) m chord			ź	XIAOM ALAOM	ING ZHAO WASHING
WEBS	2-19=-581/14 4-17=-535/17 5-16=-1154/2 6-14=-1662/1 8-13=-2996/4 9-12=-652/31 9-13=-2505/7	1, 1-19 5, 4-19 04, 5-1 78, 6-10 03, 8-14 0, 10-1 69	=-507/3289, =-292/263, 7=-317/2396, 5=-269/2604, 4=-471/2697, 2=-1759/815,	10) 11) LO ₄ 1)	Hanger(s) or provided suff lb down and design/select responsibility In the LOAD of the truss a AD CASE(S) Dead + Snc Increase=1.	other conn icient to su 140 lb up a tion of such of others. CASE(S) s re noted as Standard w (balance 15	ection device(s pport concentra t 25-5-12 on b a connection de ection, loads a s front (F) or ba	i) shall ated loa ottom c vice(s) pplied t ck (B). rease=	be td(s) 175 thord. The is the o the face 1.15, Plate				PHORE SSIO	A4074 ISTERED NAL ENGINE NAL ENGINE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTtek-US.com

Job		Truss		Truss Type		Qty	P	ly	MKM EAS	T TOWN	BLDG	ЭH		
4448984		N17		Monopitch		2	1		Job Refere	ence (opti	onal)		R86730545	
Builders FirstSo	urce (Arlington, V	WA), Arling	ıton, WA - 98223,		Run: 8.83 ID:NoklaZ	S Feb 1 2025 F Zda44wifFvcUIIda	rint: 8.830 OzlaQ7-Rf	S Feb 1 C?PsB70	2025 MiTek li)Hq3NSgPqnL	ndustries, li 8w3uITXb0	nc. Mor GKWrC	n Feb 17 10:17:26 Doi7J4zJC?f	Page:	1
	├ ───	<u>7-8-4</u> 7-8-4		<u>14-7-2</u> 6-10-14		<u>21-10-14</u> 7-3-13 34-10-0		<u>28</u> 3-	5-6-8 7-10	<u>28-7-8</u> 3-1-0		<u>34-10-0</u> 6-2-8	35-10-0 1-0-0 	
2-10-3 2-1-4 	5x8 = 1 9 4x5 II		2x4 II 2 18 7x10=	4x6 = 3 1 1 17 6x8 =	3x4 = 0 4 20 16 4x5 =	.25 ¹²	4x 21	5 = 5 15 4x5 =	4x5= 6 14 13 4x6= 4x5	4x6 7	4x5 = 8 12 3x6 =		4x5 = 9 10	2-9-15
_Scale = 1:62.5 Plate Offsets (X Y): [4:0-1-	<u>7-8-4</u> 7-8-4	[5:0-1-12 0-1-12] [i	<u>14-7-2</u> 6-10-14	-12 0-2-01 [11	21-10-14 7-3-13	13.0-1-12	+ 25 3-	5-6-8 -7-10	<u>28-7-8</u> 3-1-0	·0-1-1	<u>34-10-0</u> 6-2-8 2 0-1-12] [18:0-4	-8 0-3-81	
Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2018/TPI2014	CSI TC BC WB Matrix-SH	0.68 0.66 0.71	DEFL Vert(LL) Vert(CT Horz(CT) -0) -0 T) 0	in (loc) .26 16-18 .52 16-18 .02 12	l/defl >999 >651 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 204 lb	GRIP 185/148 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES	2x6 DF No.2 2x6 DF No.2 2x4 HF No.2 2x4 HF No.2 Structural w 3-5-15 oc pu Rigid ceiling bracing. 1 Row at mi (size) 1' Max Horiz 19 Max Uplift 1 19 Max Grav 1 19 (lb) - Maxim Tension 1-19=-1096/ 2-4=-3527/5 5-6=-1410/2 8-9=-383/24 18-19=-119/ 15-16=-234/ 12-13=-245; 4-16=-516/1 1-15=-381/2 9-12=-2610/	2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4	Athing directly applied trept end verticals. applied or 4-8-3 oc 9-12 12=0-5-8, 19=0-3-8 9) C 1), 12=-172 (LC 1 2 8) 12), 12=2973 (LC 1 C 1) pression/Maximum =-3528/520, -3655/545, 141/815, =-3/0, 9-11=-44/635 18=-578/3649, -15=-808/147, -12=-43/34 =-581/206, B=-133/21, 5=-358/2334, 3=-1280/208, 3=-304/2037,	 Wind: ASC Vasd=87rr II; Exp B; E and C-C C 15-1-12 to cantilever right expos for reaction DOL=1.60 TCLL: ASC DOL = 1.1 Ce=1.0; C live load a 0 This truss load of 20. overhangs This truss chord live This truss chord live * This truss on the bott 3-06-00 ta chord and All bearing Provide m bearing pla 19, 631 lb This truss Internation referencec 	E 7-16; Vult= ph; TCDL=4.2 Enclosed; MW orner (3) 0-1-' 20-10-0, Corr left and right e sed;C-C for me as shown; Lun CE 7-16; Pf=24 5); Is=1.0; Rot s=1.00; Ct=1.1 oplied where r has been desi load nonconcurre lequate draina has been desi load nonconcurre lequate draina has been desi load nonconcurre s has been desi load nonconcurre lequate draina has been desi load nonconcurre lequate draina has been desi load nonconcurre lequate draina has been desi load nonconcurre lequate draina has been desi load nonconcurre ls has been desi load nonconcurre ls has been desi load nonconcur ls has been desi ls has been desi	110mph (3-sec 2psf; BCDL=6.0 FRS (envelope 12 to 15-1-12, 1 her (3) 20-10-0 xposed ; end v embers and for nber DOL=1.60 5.0 psf (Lum Du ugh Cat B; Part 10; IBC 1607.1 equired. igned for greate imes flat roof lo int with other liv uge to prevent v gned for a 10.0 urrent with ague for a 10.1 urrent with ague for a 10.1 urrent with ague for a 10.2 urrent with ague for a 10.3 urrent with ague for a 10.4 urrent with ague fo	and gust p_{SF} ; h=2?) exterior Exterior (2) to 35-10- ertical lef ces & MV plate gri DL = 1.15 ially Exp. 1.2 minim er of min i ad of 25. e loads. vater pon psf botto other live e load of a rectang een the b 2. ers) of tru 1 lb uplift blift at joir th the 20 6.1 and) 5ft; Cat. zone 2) 0 zone; t and VFRS p 5 Plate ; num roof live 0 psf or ding. om loads. 20.0psf le bottom sss to at joint nt 12.	f			HORESSIONA	5 ZHAO SANGION ERED INST	

MiTek[®] 400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

February 17,2025

Job		Truss		Truss Type		Qty	/	Ply	MKM EAS	ST TOWN	BLDO	GΗ	D96720546	
4448984		N18		Monopitch		6	•	1	Job Refe	rence (op	tional)		K00730340	
Builders FirstSou	rce (Arlington, V	VA), Arling	ton, WA - 98223,		Run: 8.83 S F ID:4rhyiePMR2	eb 1 2025 F ZWIpQ2x3hC	Print: 8.83 Cis5zlamN	0 S Feb ´ I-RfC?Psl	1 2025 MiTek B70Hq3NSgP	Industries, qnL8w3uIT	Inc. Mc XbGKV	on Feb 17 10:17:27 VrCDoi7J4zJC?f	Page:	1
	⊢	<u>7-8-4</u> 7-8-4		<u>14-7-2</u> 6-10-14	34-1	<u>1-10-14</u> 7-3-13 0-0		2	5-6-8 -7-10	<u>28-7-8</u> 3-1-0		<u>34-10-0</u> 6-2-8	35-10-0 	
2-10-3 -1-4 -1-4	5x8 = 1 9 9 8 4x5 ⊪		2x4 II 2 18 7x10 =	4x6 = 3 1 17 6x8 =	$3x4 = 0.25^{1}$ 420 16 4x5 =	2	4 21	x5 = 5 15 4x5 =	4x5 = 6 14 13 4x6 = 4x	= 4xi 7 1 5=	4x5 = 6 = 8 12 3x6:	=	4x5 = 9 10 11 2x6 II	2-9-15
Scale = 1:62.5	 	<u>7-8-4</u> 7-8-4	ł	<u>14-7-2</u> 6-10-14	2	<u>1-10-14</u> 7-3-13		<u> 2</u> 3	5-6-8 -7-10	<u>28-7-8</u> 3-1-0		<u>34-10-0</u> 6-2-8	{	
Plate Offsets (X	K, Y): [4:0-1- ⁻	12,0-1-8]	, [5:0-1-12,0-1-12], [6	:0-1-12,0-1-8], [8:0-1-	12,0-2-0], [11:0-4-	4,0-1-4], [13:0-1-1:	2,0-2-0],	[15:0-1-12,	0-1-8], [10	6:0-1-1	12,0-1-12], [18:0-4	1-8,0-3-8]	
Loading TCLL (Roof Snow = 2 TCDL BCLL BCDL	25.0)	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2018/TPI2014	CSI TC BC WB Matrix-SH	0.68 0.66 0.71	DEFL Vert(LL Vert(C ⁻ Horz(C	.) -С Г) -С Т) С	in (loc) 0.26 16-18 0.52 16-18 0.02 12	l/defl >999 >651 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 204 lb	GRIP 185/148 FT = 10%	
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	2x6 DF No.2 2x6 DF No.2 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 3-5-15 oc p Rigid ceiling bracing. 1 Row at mit (size) 1' Max Horiz 11 Max Uplift 1' 19 Max Grav 1' 19 (lb) - Maxim Tension 1-19=-1096/ 2-4=-3527/5 5-6=-1410/2 8-9=-383/24 18-19=-119/ 15-16=-234/ 12-13=-2457 8-12=-1767/ 4-13=-2457 8-12=-1767/ 4-13=-2457 1-18=-504/3	ood shea Irlins, ex directly a dpt \$ 1=0-3-8, ; 9=59 (LC 1=-631 (L 9=-71 (LC 1=-25 (LC 9=-1204 (I um Comp 211, 1-2= 26, 6-8=- 60, 9-10= 215, 16- 1405, 13 7/386, 11 355, 9-12 208, 8-13 208, 8-15 208, 8	thing directly applied cept end verticals. applied or 4-8-3 oc 9-12 12=0-5-8, 19=0-3-8 9) C 1), 12=-172 (LC 1) C 3) 12), 12=2973 (LC 1) LC 1) bression/Maximum =-3528/520, 3655/545, 141/815, =-3/0, 9-11=-44/635 18=-578/3649, -15=-808/147, -12=-43/34 2=-2610/381, 3=-304/2037, 5=-381/2580, =-358/2334, =-133/21,	 Wind: ASC Vasd=87m II; Exp 8; E and C-C C 15-1-12 to cantilever I right expos for reaction DOL=1.60 TCLL: ASC DOL = 1.12 Ce=1.0; Cs live load ag This truss I load of 20.0 overhangs Provide ad This truss I chord live I * This truss on the bott 3-06-00 tal chord and ; All bearing 19, 631 lb 0 This truss i Internation referenced LOAD CASE(S 	E 7-16; Vult=110r ph; TCDL=4.2psf; inclosed; MWFRS orner (3) 0-1-12 to 20-10-0, Corner (3) eft and right exposi- ed;C-C for member is shown; Lumber E 7-16; Pf=25.0 p 5); Is=1.0; Rough (3) i=1.00; Ct=1.10; If philed where requi- has been designed 0 psf or 2.00 times non-concurrent w equate drainage to ab been designed oad nonconcurrent is as been designed ob chord in all area is are assumed to is chanical connecti- te capable of with uplift at joint 11 an is designed in acca al Building Code is standard ANSI/TF	nph (3-sec BCDL=6.((envelope 15-1-12, I 3) 20-10-0 3) 20-10-0 sed ; end v ers and for DOL=1.6C sf (Lum DI Cat B; Parl 3C 1607.1 red. d for greate f falt roof Ic ith other liv o prevent v d for a 10.0 t with any ed f or a live will fit betw 's: be HF No.: on (by oth standing 7 d 172 lb up ordance wi ection 230 P1 1.	ond gus opsf; h=2) exterior Exterior (to 35-10 ertical le ces & M) plate gr OL = 1.1 tially Exp 1.2 minir er of min tad of 25 ve loads. vater pool 0 psf bott other live e load of a rectan veen the 2. ers) of tr 1 lb uplif blift at joi th the 20 6.1 and	t) 25ft; Cat. r zone (2) -0 zone; ft and WFRS ip 5 Plate 5.7 roof live 5.0 psf of hding. iom e loads. 20.0psf gle bottom uss to it at joint int 12. 018	, , , , , ,		a second s	HORESSIONA	3 ZHAO SHUICION BED LENGING	

February 17,2025

		-				_							
Job		Truss		Truss Type		Qty	Ply	MKM	EAST TOWN	N BLD	GH	D007005 17	
4448984		N19		Monopitch		4	1	Job R	eference (on	tional)		R86730547	
Builders FirstSou	irce (Arlington, V	VA), Arling	ton, WA - 98223,		Run: 8.83 S Feb 1 ID:6RcLL6pUhOc9F	2025 Prin wgC1Yzrl	t: 8.830 S Fe LzlaNJ-RfC?	2025 Mi PsB70Hq3N	Fek Industries, SgPqnL8w3ul	Inc. Mc TXbGK\	on Feb 17 10:17:27 WrCDoi7J4zJC?f	Page: 7	1
	├ ────	<u>7-8-4</u> 7-8-4	I	<u>14-7-2</u> 6-10-14	21-10 7-3- 34-10-0	<u>-14</u> 13		25-6-8 3-7-10	<u>28-7-8</u> 3-1-0	<u> </u>	<u>34-10-0</u> 6-2-8	35-10-0 1-0-0 	
2-10-3 12-1-4	5x8 = 1 9 9 8 4x5 II		2x4 II 2 18 7x10=	4x6 = 3 1 1 17 6x8 =	$3x4 = 0.25^{1/2}$ 420 16 4x5 =		4x5= 21 5	4 14 14	x5 = 4x 6 7 1 13 = 4x5 =	4x5 = 6 = 8 12 3x6		4x5 = 9 10 11 2x6 II	2-9-15
Scale = 1:62.5		<u>7-8-4</u> 7-8-4		<u>14-7-2</u> 6-10-14	<u>21-10</u> 7-3-	<u>-14</u> 13		<u>25-6-8</u> 3-7-10	<u>28-7-8</u> 3-1-0	<u> </u>	<u>34-10-0</u> 6-2-8		
Plate Offsets ()	X, Y): [4:0-1-	12,0-1-8],	, [5:0-1-12,0-1-12], [6	5:0-1-12,0-1-8], [8:0-1-	12,0-2-0], [11:0-4-4,0-	1-4], [13:	0-1-12,0-2-	-0], [15:0-1-	12,0-1-8], [1	6:0-1-1	12,0-1-12], [18:0-4	-8,0-3-8]	
Loading TCLL (Roof Snow = 2 TCDL BCLL BCDL	25.0)	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2018/TPI2014	CSI TC BC WB Matrix-SH	0.68 V 0.66 V 0.71 H	EFL ert(LL) ert(CT) orz(CT)	in (l -0.26 16 -0.52 16 0.02	bc) l/defl 18 >999 18 >651 12 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 204 lb	GRIP 185/148 FT = 10%	
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x6 DF No.2 2x6 DF No.2 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 3-5-15 oc p Rigid ceiling bracing. 1 Row at mit (size) 1 ⁻¹ Max Horiz 11 Max Uplift 1 ⁻¹ 19 Max Grav 1 ⁻¹ 19 Max Grav 1 ⁻¹ 19 (lb) - Maximu Tension 1-19=-1096/ 2-4=-3527/5 5-6=-1410/2 8-9=-383/24 18-19=-119/ 15-16=-234/ 2-13=-2455 9-12=-2610/ 1-15=-381/2 4-16=-516/1	ood shea Irlins, ex directly a directly	thing directly applied cept end verticals. applied or 4-8-3 oc 9-12 12=0-5-8, 19=0-3-8 9) C 1), 12=-172 (LC 1 28) 12), 12=2973 (LC 1) C 1) Dression/Maximum =-3528/520, 3655/545, 141/815, =-30, 9-11=-44/635 18=-578/3649, -15=-808/147, -12=-43/34 2=-1767/355, 3=-1280/208, 3=-304/2037, =-358/2334,	 Wind: ASC Vasd=87m II; Exp 8; E and C-C Ci 15-1-12 to cantilever I right expos for reaction DOL=1.60 TCLL: ASC DOL = 1.15 Ce=1.0; Cs live load ap This truss I load of 20.0 overhangs Provide ad This truss I chord live I * This truss on the botto 3-06-00 tal chord and a; All bearings Provide me bearing pla 19, 631 lb o This truss 	E 7-16; Vult=110mph (ph; TCDL=4.2psf; BCE inclosed; MWFRS (env orner (3) 0-1-12 to 15- 20-10-0, Corner (3) 20 eft and right exposed ; ed;C-C for members a is shown; Lumber DOL 2E 7-16; Pf=25.0 psf (L 5); Is=1.0; Rough Cat E =1.00; Ct=1.10; IBC 1 pplied where required. has been designed for 0 psf or 2.00 times flat non-concurrent with of equate drainage to pre has been designed for o ad nonconcurrent with is has been designed for o m chord in all areas w I by 2-00-00 wide will fi any other members. s are assumed to be H echanical connection (th the capable of withstand uplift at joint 11 and 17 s designed in accordar al Building Code sectic standard ANSI/TPI 1.	(3-secon DL=6.0ps relope) et 1-12, Ext -10-0 to end vert nd force: =1.60 pl um DOL 3; Partial 607.11.2 greater of roof load her live l vent wat a 10.0 p h any oth r a live l vhere a r t betwee F No.2 . by others ding 71 ll 2 lb uplif nce with n 2306.1	d gust) f; h=25ft; C xterior zon rerior (2) 35-10-0 zo ical left and s & MWFR: ate grip = 1.15 Pla ly Exp.; minimum I of min roof I t of 25.0 ps oads. rer ponding sf bottom her live load bad of 20.0 ectangle in the botto) of truss to b uplift at joint 12 the 2018 I and	Cat. e ne; d S S tte roof live if on ds. psf om obint		يو.	THA OMINIC	S ZHAO SHINGTON	
NOTES	4-18=-133/2	1		LOAD CASE(S	5) Standard						TROFFESSIONA	LENGING	F

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

February 17,2025

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	N20	Monopitch Supported Gable	1	1	Job Reference (optional)	R86730548

Run: 8 83 S. Feb. 1 2025 Print: 8 830 S. Feb. 1 2025 MiTek Industries. Inc. Mon Feb 17 10:17:27 ID:Ny1jBZoQWHj6Ot2g?wvmORzIaJS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not being read to be only with the experiments contractions. This designer based only upon parameters shown, and show and be the innovational documponent, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

February 17,2025

Page: 1

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	N20	Monopitch Supported Gable	1	1	Job Reference (optional)	R86730548

- TCLL: ASCE 7-16: Pf=25.0 psf (Lum DOL = 1.15 Plate 3) DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.
- 4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding. 5)
- All plates are MT20 plates unless otherwise indicated. 6)
- All plates are 2x4 (||) MT20 unless otherwise indicated. 7)
- Gable requires continuous bottom chord bearing. 8) Truss to be fully sheathed from one face or securely 9)
- braced against lateral movement (i.e. diagonal web). 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) All bearings are assumed to be HF No.2 .
- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 3592 lb uplift at joint 42, 697 lb uplift at joint 22, 3496 lb uplift at joint 41, 38 lb uplift at joint 40, 16 lb uplift at joint 39, 16 lb uplift at joint 38, 24 lb uplift at joint 37, 29 lb uplift at joint 35, 24 Ib uplift at joint 34, 16 lb uplift at joint 33, 12 lb uplift at joint 32, 12 lb uplift at joint 31, 12 lb uplift at joint 30, 12 Ib uplift at joint 29, 12 lb uplift at joint 27, 12 lb uplift at joint 26, 16 lb uplift at joint 25, 26 lb uplift at joint 24 and 660 lb uplift at joint 23.
- 15) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 16) This truss has been designed for a total drag load of 4200 lb. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 34-10-0 for 120.6 plf.

LOAD CASE(S) Standard

Run: 8.83 S. Feb. 1 2025 Print: 8.830 S. Feb. 1 2025 MiTek Industries. Inc. Mon Feb 17 10:17:27 ID:Ny1jBZoQWHj6Ot2g?wvmORzlaJS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Job	Truss	Truss Type	Qty	Ply		
4448984	N20A	Monopitch Supported Gable	1	1	Job Reference (optional)	R86730549

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:28 ID:s1H4NbFhF8r5nJDk173vFkzlaHa-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

400 Sunrise Ave., Suite 270 Roseville, CA, 95661

916.755.3571 / MiTek-US.com

continued on page 2

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H					
4448984	N20A	Monopitch Supported Gable	1	1	Job Reference (optional)	R86730549				

- Gable requires continuous bottom chord bearing 7)
- Truss to be fully sheathed from one face or securely 8) braced against lateral movement (i.e. diagonal web). Gable studs spaced at 2-0-0 oc. 9)
- 10) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members. 12) All bearings are assumed to be HF No.2 .
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 10 lb uplift at joint 42, 31 lb uplift at joint 22, 19 lb uplift at joint 41, 12 lb uplift at joint 40, 12 lb uplift at joint 39, 12 lb uplift at joint 38, 12 lb uplift at joint 37, 12 lb uplift at joint 35, 12 lb uplift at joint 34, 12 lb uplift at joint 33, 12 lb uplift at joint 32, 12 lb uplift at joint 31, 12 lb uplift at joint 30, 12 lb uplift at joint 29, 12 lb uplift at joint 27, 12 lb uplift at joint 26, 13 lb uplift at joint 25, 10 lb uplift at joint 24 and 2 lb uplift at joint 23.
- 14) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.83 S. Feb. 1 2025 Print: 8.830 S. Feb. 1 2025 MiTek Industries. Inc. Mon Feb 17 10:17:28 ID:s1H4NbFhF8r5nJDk173vFkzIaHa-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	N21	Monopitch Girder	1	1	Job Reference (optional)	R86730550

4-0-12

4-0-12

4x5 =

1

6

Builders FirstSource (Arlington, WA), Arlington, WA - 98223,

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:28 ID:zeB7?NsS0vidpswJyWjQyqzlpWt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-1-8

4-0-12 8-1-8 0.25 Г 2x4 II 3x4 = 3 2 0 2-3-3 ______ 4 5 R

4x5 =

Scale = 1:28.9

Loading TCLL (Roof Snow = TCDL BCLL BCDL	(psf) 25.0 25.0) 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC2018	8/TPI2014	CSI TC BC WB Matrix-P	0.12 0.17 0.26	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.00	(loc) 5-6 5-6 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 48 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 DF No.2 2x6 DF No.2 2x4 HF No.2 Structural wood shea 6-0-0 oc purlins, exx Rigid ceiling directly bracing. (size) 4=0-5-8, 6 Max Horiz 6=45 (LC Max Uplift 4=-45 (LC Max Grav 4=497 (LC	athing directly applia cept end verticals. applied or 10-0-0 or 5=0-4-0 7) 8), 6=-69 (LC 4) 2 1), 6=567 (LC 1)	7) 8) ed or 9) 5 10	Provide mec bearing plate 6 and 45 lb of This truss is International referenced s Hanger(s) or provided suf lb down and lb up at 4-1 such connec of the truss a	chanical conne e capable of wi uplift at joint 4. designed in ar Building Code tandard ANSI/ other connect ficient to supp 33 lb up at 2- 4 on bottom cl tition device(s) CASE(S) sect are noted as fr	ction (by oth thstanding 6 ecordance wi e section 2300 TPI 1. tion device(s ort concentra 1-4, and 140 nord. The de is the respor- tion, loads ap ont (F) or bar	ers) of truss 9 lb uplift at 16.1 and 16.1 and 10 shall be 10 advm and 10 lb down and 10 lb down and 10 sign/selectionsibility of ott 10 pplied to the 10 ck (B).	to joint 140 d 34 on of hers. face					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	1)	Dead + Sn	ow (balanced):	Lumber Inc	rease=1.15,	Plate					
TOP CHORD BOT CHORD WEBS	1-6=-460/70, 1-2=-7: 3-4=-137/28 5-6=-39/30, 4-5=-68, 1-5=-104/796, 2-5=-	36/88, 2-3=-18/12, /734 17/127, 2-4=-802/87		Uniform Lo Vert: 1-3 Concentrat Vert: 5=-	ads (lb/ft) =-80, 4-6=-20 ed Loads (lb) 140 (B), 7=-14	0 (B)							

1) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate 2) DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.
- Provide adequate drainage to prevent water ponding. 3)
- This truss has been designed for a 10.0 psf bottom 4)
- chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be HF No.2 . 6)

👠 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - Verify design parameters and KEAU NOTES ON THIS AND INCLUDED MITER KETEKINGE PAGE MIL/4/316V. 1/2/2/23 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville CA 95661 916.755.3571 / MiTek-US.com

Job	Truss Truss Type		Qty	Ply MKM EAST TOWN BLDG H				
4448984	N22	Monopitch Girder	1	1	Job Reference (optional)	R86730551		

7-9-8

Builders FirstSource (Arlington, WA), Arlington, WA - 98223,

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:28 ID:ZcZrVzEujRcD1doGGXnhiNzIpWO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-9-8

Scale = 1:28

2)

3)

Loading TCLL (Roof Snow = TCDL BCLL BCDL	(psf) 25.0 25.0) 15.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr * Code	2-0-0 1.15 1.15 NO IBC2018	8/TPI2014	CSI TC BC WB Matrix-R	0.02 0.01 0.02	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 41 lb	GRIP 185/148 FT = 10 ⁶
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 DF No.2 2x6 DF No.2 2x4 HF No.2 2x4 HF No.2 Structural wood sl 6-0-0 oc purlins, oc Rigid ceiling direc bracing. (size) 6=7-9-8 10=7-9 Max Horiz 10=45	heathing directly appli except end verticals. tly applied or 10-0-0 o 8, 7=7-9-8, 8=7-9-8, 9= -8 1(C 7)	4) 5) 6) 7) ed or 9) c 10 =7-9-8, 11	Provide adec All plates are Gable requir Truss to be f braced agair Gable studs This truss ha chord live loa) * This truss f on the bottor 3-06-00 tall b chord and ar) All bearings	quate drainage a 2x4 () MT20 es continuous t ully sheathed fr ist lateral move spaced at 2-0-(is been design ad nonconcurre has been design n chord in all au by 2-00-00 wide yo other membe are assumed to	to prevent to unless oth- oottom chor oom one fac ment (i.e. d o oc. ed for a 10.0 nt with any ned for a liv ned for a liv reas where e will fit betw ers. b be HF No.	water pondim erwise indica of bearing. se or securely liagonal web) 0 psf bottom other live loa ve load of 20. a rectangle ween the bott 2.	g. ted. , uds. Dpsf om					
	Max Uplift 6=-10 ((LC 4), Max Grav 6=67 (L (L C 1)	LC 5), 7=-22 (LC 4), 8 9=-38 (LC 5), 10=-15 .C 1), 7=196 (LC 1), 8 9=350 (LC 1), 10=76	12 (LC 4) =342 (I C 1)	Provide mec bearing plate 10, 10 lb upli at joint 8 and	hanical connec capable of wit ift at joint 6, 38 I 22 lb uplift at j	tion (by oth hstanding 1 Ib uplift at jo oint 7.	iers) of truss 15 lb uplift at j oint 9, 47 lb u	to oint iplift					
FORCES	(lb) - Maximum Co	ompression/Maximum	(====) 13	b) This truss is International	designed in acc Building Code	cordance w section 230	rith the 2018 06.1 and						
TOP CHORD BOT CHORD WEBS	1-10=-61/18, 1-2= 4-5=-9/5, 5-6=-53, 9-10=-26/20, 8-9= 6-7=-26/20 2-9=-167/33, 3-8=	9/2, 2-3=-9/3, 3-4=-9, /10 26/20, 7-8=-26/20, 162/37, 4-7=-156/38	/4, 14	Hanger(s) or provided suff b down and b up at 3-9- such connec	tandard ANSI/T other connecti ficient to suppo 33 lb up at 1-9 4 on bottom ch tion device(s) is	PI 1. on device(s rt concentra -4, and 140 ord. The de s the respon	s) shall be ated load(s) 1) lb down and esign/selectionsibility of oth	40 I 34 on of ners.					44.
NOTES 1) Wind: ASC	CE 7-16; Vult=110m	ph (3-second gust)	15	i) In the LOAD of the truss a	CASE(S) sections from the contract of the cont	on, loads a nt (F) or ba	pplied to the lock (B).	face				A LAOMIN	G ZHA

Vasd=87mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. LOAD CASE(S) Standard II; Exp B; Enclosed; MWFRS (envelope) exterior zone;

cantilever left and right exposed ; end vertical left and

right exposed; Lumber DOL=1.60 plate grip DOL=1.60

Truss designed for wind loads in the plane of the truss

only. For studs exposed to wind (normal to the face),

see Standard Industry Gable End Details as applicable,

or consult qualified building designer as per ANSI/TPI 1.

TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate

DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof

live load applied where required.

- Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15 Uniform Loads (lb/ft)
 - Vert: 1-5=-80, 6-10=-20
 - Concentrated Loads (lb)
 - Vert: 9=-140 (F), 8=-140 (F)

Page: 1

10%

👠 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - Verify design parameters and KEAU NOTES ON THIS AND INCLUDED MITER KETEKINGE PAGE MIL/4/316V. 1/2/2/23 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com) 400 Sunrise Ave., Suite 270 Roseville CA 95661 916.755.3571 / MiTek-US.com

Job	Truss	Iss Truss Type Qty Ply		MKM EAST TOWN BLDG H				
4448984	N23	Flat	1	1	Job Reference (optional)	R86730552		

3-6-0

Builders FirstSource (Arlington, WA), Arlington, WA - 98223,

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:28 ID:AsNzVuITym?iNHjZX?wiM7zIpaB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2x4 🛚

3x4 =

3-6-0

Scale = 1:28.6

Loading (psf) Spacing 2-0-0 CSI DEFL in (loc) l/defl L/d PLATES GRIP TCLL 25.0 Plate Grip DOL 1.15 TC 0.09 Vert(LL) -0.01 3-4 >999 240 MT20 185/148 (Roof Snow = 25.0) Lumber DOL 1.15 BC 0.10 Vert(CT) -0.01 3-4 >999 180 TCDL 15.0 Rep Stress Incr YES WB 0.01 Horz(CT) 0.00 3 n/a n/a BCLL 0.0* Code IBC2018/TPI2014 Matrix-P Vert								
TCLL 25.0 Plate Grip DOL 1.15 TC 0.09 Vert(LL) -0.01 3-4 >999 240 MT20 185/148 (Roof Snow = 25.0) Lumber DOL 1.15 BC 0.10 Vert(CT) -0.01 3-4 >999 180 TCDL 15.0 Rep Stress Incr YES WB 0.01 Horz(CT) 0.00 3 n/a n/a BCLL 0.0* Code IBC2018/TPI2014 Matrix-P Matrix-P Vert(CT) 0.00 3 n/a n/a								
(Roof Snow = 25.0) Lumber DOL 1.15 BC 0.10 Vert(CT) -0.01 3-4 >999 180 TCDL 15.0 Rep Stress Incr YES WB 0.01 Horz(CT) 0.00 3 n/a n/a BCLL 0.0* Code IBC2018/TPI2014 Matrix-P								
TCDL 15.0 Rep Stress Incr YES WB 0.01 Horz(CT) 0.00 3 n/a BCLL 0.0* Code IBC2018/TPI2014 Matrix-P Matrix-P								
BCLL 0.0* Code IBC2018/TPI2014 Matrix-P								
BCDL 10.0 Weight: 19 lb FT = 10%								
LUMBER 7) Refer to girder(s) for truss to truss connections.								
TOP CHORD 2x6 DF No.2 8) Provide mechanical connection (by others) of truss to								
BOT CHORD 2x4 HF No.2 bearing plate capable of withstanding 21 lb uplift at joint								
WEBS 2x4 HF No.2 4 and 21 lb uplift at joint 3.								
BRACING 9) This truss is designed in accordance with the 2018								
TOP CHORD Structural wood sheathing directly applied or 3-6-0 oc purlins, except end verticals referenced standard ANSI/TPI 1.								
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc LOAD CASE(S) Standard bracing.								
REACTIONS 3= Mechanical, 4= Mechanical Max Horiz 4=-43 (LC 8) Max Uplift 3=-21 (LC 9), 4=-21 (LC 8) Max Grav 3=160 (LC 1), 4=160 (LC 1)								
FORCES (b) - Maximum Compression/Maximum								
Tension								
TOP CHORD 1-4=-128/122, 1-2=-22/24, 2-3=-128/100								
BOT CHORD 3-4=-61/63								
WEBS 1-3=-44/44								
NOTES								
1) Wind: ASCE 7-16; Vult=110mph (3-second gust)								
Vasd=87mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat.								
II; Exp B; Enclosed; MWFRS (envelope) exterior zone								
and C-C Corner (3) zone, canniever leit and right								
members and forces & MWERS for reactions shown								
Lumber DOL=1.60 plate grip DOL=1.60								
2) TCLL: ASCE 7-16: Pf=25.0 psf (Lum DOL = 1.15 Plate								
DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.;								
Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof								
live load applied where required.	1							
3) Provide adequate drainage to prevent water ponding.	1							
4) This truss has been designed for a 10.0 psf bottom								
chord live load nonconcurrent with any other live loads.								
5) ¹ Inis truss has been designed for a live load of 20.0pst								
on the boltom chord in an areas where a rectangle								
chord and any other members.								

on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

6) All bearings are assumed to be HF No.2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

UNAL D.

February 17,2025

Job	Truss	Truss Type Qty Ply MKM EAST TOWN BLDG H		MKM EAST TOWN BLDG H		
4448984	N24	Flat	1	1	Job Reference (optional)	R86730553

2-2-3

3-6-0

Builders FirstSource (Arlington, WA), Arlington, WA - 98223,

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:29 ID:nSvFQMvuddlqqjO7qRouFAzlpY6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3-6-0 2x4 II 4x5 = 2 1 0 3 4 2x4 II 3x4 = 3-6-0

Scale = 1:28.8

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	25.0	Plate Grip DOL	1.15	TC	0.09	Vert(LL)	-0.01	3-4	>999	240	MT20	185/148	
(Roof Snow = 2	25.0)	Lumber DOL	1.15	BC	0.10	Vert(CT)	-0.01	3-4	>999	180			
TCDL	15.0	Rep Stress Incr	YES	WB	0.01	Horz(CT)	0.00	3	n/a	n/a			
BCLL	0.0*	Code	IBC2018/TPI20	14 Matrix-P		()							
BCDL	10.0										Weight: 19 lb	FT = 10%	
											Ŭ		
LUMBER			Refer	to girder(s) for truss t	o truss conr	nections.							
TOP CHORD	2x6 DF No.2		8) Provi	le mechanical connec	ction (by oth	ers) of truss	to						
BOT CHORD	2x4 HF No.2		bearin	ig plate capable of wit	thstanding 2	2 lb uplift at	joint						
WEBS	2x4 HF No.2		4 and	22 lb uplift at joint 3.									
BRACING			9) Thist	russ is designed in ac	cordance w	ith the 2018							
TOP CHORD	Structural wood she	athing directly appli	ed or Intern	ational Building Code	section 230	6.1 and							
	3-6-0 oc purlins, ex	cept end verticals.	reiere	nced standard ANSI/	IPI I.								
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	C LOAD CA	SE(S) Standard									
	bracing.												
REACTIONS	(size) 3= Mecha	anical, 4= Mechanica	al										
	Max Horiz 4=-44 (LC	C 10)											
	Max Uplift 3=-22 (LC	C 9), 4=-22 (LC 8)											
	Max Grav 3=160 (LC	C 1), 4=160 (LC 1)											
FORCES	(lb) - Maximum Com	pression/Maximum											
	Tension												
TOP CHORD	1-4=-128/123, 1-2=-	22/24, 2-3=-128/100	0										
BOT CHORD	3-4=-62/64												
WEBS	1-3=-46/46												
NOTES													
1) Wind: ASC	CE 7-16; Vult=110mph	(3-second gust)											
Vasd=87m	nph; TCDL=4.2psf; BC	DL=6.0psf; h=25ft;	Cat.										
II; Exp B; E	Enclosed; MWFRS (en	velope) exterior zor	ne										
and C-C C	corner (3) zone; cantile	ever left and right											
exposed ;	end vertical left and rig	ght exposed;C-C for	ſ										
members a	and forces & MWFRS	for reactions shown	ı;								OMIN	G ZH	
Lumber D	OL=1.60 plate grip DO	DL=1.60									ALL WA	CT AO	
2) TCLL: ASC	CE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Pla	ate								A OF WA	SHIN -	
DOL = 1.1	5); Is=1.0; Rough Cat	B; Partially Exp.;	,							_	15 6		
Ce=1.0; C	S=1.00; Ct=1.10; IBC	1607.11.2 minimum	roor							_			
IIVE IOad a	ppilea where requirea.	overt weter pending	~										
 FIOVIDE au This truck 	bac been designed for	r a 10.0 pcf bottom	y.								· · · ·		
chord live	load nonconcurrent wi	th any other live log	de										
5) * This trus	s has been designed f	or a live load of 20 (nsf								7 540	74 ~ / 5 /	
on the bott	tom chord in all areas	where a rectangle	op.o.								GIGT	EREV	
3-06-00 ta	Il by 2-00-00 wide will	fit between the bott	om								Eser	NG1	
chord and	any other members.		-								ONA	LEL	

5) This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

6) All bearings are assumed to be HF No.2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

UNAL D.

February 17,2025

Roseville, CA 95661 916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	N25	Flat Supported Gable	1	1	Job Reference (optional)	R86730554

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:29 ID:R1ADVHF4oYPjpA6i00qhwHzlpXf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:30

Loading TCLL (Roof Snow = 2 TCDL BCLL BCDL	(psf) 25.0 25.0) 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2018/TPI2014	CSI TC BC WB Matrix-R	0.05 0.04 0.02	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 17 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 DF No.2 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural wood she 3-6-0 oc purlins, ex Rigid ceiling directly bracing. (size) 4=3-6-0, Max Horiz 6=-46 (LC Max Uplift 4=-19 (LC (LC 8) Max Grav 4=52 (LC	eathing directly applie cept end verticals. rapplied or 10-0-0 oc 5=3-6-0, 6=3-6-0 2 10) 2 9), 5=-14 (LC 8), 6= 1), 5=188 (LC 1), 6=	5) Gable requ 6) Truss to be braced aga 7) Gable stud 8) This truss 1 chord live I 9) * This truss on the bott 3-06-00 tal chord and 10) All bearing 11) Provide me bearing pla 6, 19 lb upl 12) This truss bearing pla	ires continuous botti fully sheathed from inst lateral movemer s spaced at 2-0-0 oc has been designed for bad nonconcurrent w has been designed or chord in all areas by 2-00-00 wide will any other members. s are assumed to be chanical connection te capable of withsta- fit at joint 4 and 14 lk s designed in accord	om chor one fac nt (i.e. d or a 10.0 vith any for a liv where I fit betw HF No. (by oth unding 1 ouplift a lance w	d bearing. e or securely iagonal web) 0 psf bottom other live loa e load of 20.0 a rectangle veen the botto 2. ers) of truss t 7 lb uplift at j t joint 5. ith the 2018	ds. Dpsf om o oint					
FORCES	(LC 1) (Ib) - Maximum Con Tension	npression/Maximum	referenced	standard ANSI/TPI '	1.	16.1 and						
TOP CHORD	1-6=-65/65, 1-2=-7/ 5-6=-47/55, 4-5=-47	10, 2-3=-7/10, 3-4=-4 //55	2/50									
WEBS	2-5=-149/118											
NOTES												
 Wind: ASC Vasd=87m II; Exp B; E and C-C C exposed ; members a Lumber DC 	E 7-16; Vult=110mph ph; TCDL=4.2psf; BC Enclosed; MWFRS (er orner (3) zone; cantille end vertical left and ri and forces & MWFRS DL=1.60 plate grip DC	 (3-second gust) (DL=6.0psf; h=25ft; C) (Dvelope) exterior zon- ever left and right (ght exposed; C-C for for reactions shown; (L=1.60) 	Cat. e							y.	TIA OMIN	S ZHAO
 Truss designed only. For see Stands or consult TCLL: ASC 	Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16: Pf=25.0 psf (Lum DOL = 1.15 Plate											
DOL = 1.1 Ce=1.0; Cs live load ap	5); Is=1.0; Rough Cat s=1.00; Ct=1.10; IBC oplied where required	B; Partially Exp.; 1607.11.2 minimum i	roof							2	PESSIONA	LENGIN

4) Provide adequate drainage to prevent water ponding.

-----February 17,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H				
4448984	P01	Flat Supported Gable	1	1	Job Reference (optional)	R86730555			

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:29 ID:wWRS4gFIMxNu_t4zLpHMKbzIroG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

1-10-8

1-10-6

1-10-6

Scale = 1:27.6

Loading TCLL (Roof Snow = 2 TCDL BCLL BCDL	(psf) 25.0 25.0) 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC2018/TPI2014	CSI TC 0.11 BC 0.03 WB 0.05 Matrix-P	DEFL Vert(LL) n Vert(TL) n Horiz(TL) 0.0	in (loc) /a - /a - 00 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 9 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural wood sh 1-10-6 oc purlins, Rigid ceiling directl bracing. (size) 3=1-10-f Max Horiz 4=39 (LC Max Uplift 3=-117 (Max Grav 3=269 (L	eathing directly applied except end verticals. y applied or 6-0-0 oc 5, 4=1-10-6 C 11) LC 35), 4=-117 (LC 32 LC 36), 4=-269 (LC 39)	 7) Gable studs 8) This truss has chord live lo 9) * This truss on the botto 3-06-00 tall chord and a 10) All bearings 11) Provide meac bearing plats 4 and 117 lb 12) This truss is international 	spaced at 2-0-0 oc. as been designed for a 10. ad nonconcurrent with any has been designed for a lin m chord in all areas where by 2-00-00 wide will fit bett ny other members. are assumed to be HF No chanical connection (by oth e capable of withstanding of puplift at joint 3. designed in accordance w I Building Code section 23 tandard ANSI/TPI 1	0 psf bottom other live loads. ve load of 20.0psf a rectangle ween the bottom .2. uers) of truss to 117 lb uplift at joint vith the 2018 06.1 and					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=87m II; Exp B; E and C-C C exposed ; members a Lumber DO	(lb) - Maximum Co Tension 1-4=-296/126, 1-2= 3-4=-201/172 1-3=-251/280 E7-16; Vult=110mp ph; TCDL=4.2psf; B Enclosed; MWFRS (e orner (3) zone; canti end vertical left and 1 and forces & MWFRS DL=1.60 plate grip D aread for wind leaded in	npression/Maximum -161/153, 2-3=-129/0 h (3-second gust) CDL=6.0psf; h=25ft; C nvelope) exterior zone ever left and right ight exposed;C-C for 5 for reactions shown; DL=1.60 the place of the true	 13) Load case(s designer mu for the inten 14) This truss ha plf. Lumber truss to resis to 1-10-6 for a. LOAD CASE(5) b. 1) Dead + Sn Increase=1 Uniform Lo Vert: 1-2 	 a) 1 has/have been modifie ist review loads to verify the ded use of this truss. as been designed for a tota DOL=(1.33) Plate grip DOI st drag loads along bottom 100.0 plf. b Standard ow (balanced): Lumber Incl. 1.15 asds (lb/ft) 2=-164, 3-4=-20 	d. Building at they are correct al drag load of 100 _=(1.33) Connect chord from 0-0-0 rease=1.15, Plate				JIA OMING	3 ZHAO

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.
- 4) Provide adequate drainage to prevent water ponding.
- 5) Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H			
4448984	P01A	Flat Supported Gable	1	1	Job Reference (optional)	R86730556		

1-8-12

1-8-12

3x4 =

1

1-10-8

Builders FirstSource (Arlington, WA), Arlington, WA - 98223,

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:29 ID:wWRS4gFIMxNu_t4zLpHMKbzIroG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

4 2x4 II 3x4 =

2x4 II

2

1-8-12

Scale = 1:27.6

Loading TCLL (Roof Snow = 2 TCDL BCLL BCDL	25.0)	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC201	8/TPI2014	CSI TC BC WB Matrix-P	0.09 0.03 0.05	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 9 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 HF No. 2x4 HF No. 2x4 HF No. 2x4 HF No. Structural w 1-8-12 oc p Rigid ceiling bracing. (size) 3 Max Horiz 4 Max Uplift 3 Max Grav 3	2 2 2 2 3 3 3 3 3 9 4 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5	athing directly applie xcept end verticals. applied or 6-0-0 oc 4=1-8-12 11) C 35), 4=-124 (LC 32 C 36), 4=263 (LC 39)	7) 8) 9) d or 1(1 ⁻ 2)	 Gable studs : This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an All bearings a Provide mech bearing plate 4 and 124 lb This truss is a International referenced st 	spaced at 2-0-0 oc s been designed for ad nonconcurrent w has been designed n chord in all areas by 2-00-00 wide will yo other members. are assumed to be hanical connection capable of withsta uplift at joint 3. designed in accord Building Code sec tandard ANSI/TPI	or a 10.0 vith any for a liv s where I fit betv HF No. (by oth anding 1 lance w tion 230	D psf bottom other live load e load of 20.0 a rectangle veen the botto 2. ers) of truss to 24 lb uplift at the 2018 66.1 and	ds. psf m joint					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=87m	(Ib) - Maxim Tension 1-4=-292/13 3-4=-189/16 1-3=-243/27 E 7-16; Vult=	aum Com 32, 1-2=- 50 73 -110mph 2nsf: BC	pression/Maximum 149/140, 2-3=-118/0 (3-second gust) DI =6 0nsf: b=25ft: C	1: 14 at L	 Load case(s) designer mus for the intend This truss ha plf. Lumber D truss to resis to 1-8-12 for DAD CASE(S) 	1 has/have been to st review loads to velouse of this truss s been designed fo DOL=(1.33) Plate g t drag loads along 100.0 plf. Standard	modified verify that s. or a tota rip DOL bottom	d. Building at they are cor I drag load of .=(1.33) Conr chord from 0-0	rrect 100 nect 0-0					

Vasd=87mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.
- 4) Provide adequate drainage to prevent water ponding.
- 5) Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

- Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft)
 - Vert: 1-2=-164, 3-4=-20

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H			
4448984	P02	Flat	18	1	Job Reference (optional)	R86730557		

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:29 ID:gKanP496d?WedMCzKVs5KwzIs1t-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1-10-8

1-10-6

2x4 II 3x4 =

1-10-6

Scale = 1:27.6

Loading TCLL (Roof Snow = 2 TCDL BCLL BCDL	25.0)	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC2018	/TPI2014	CSI TC BC WB Matrix-P	0.11 0.03 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 3-4 3-4 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 9 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 HF No. 2x4 HF No. 2x4 HF No. Structural w 1-10-6 oc p Rigid ceiling bracing. (size) 3 Max Horiz 4 Max Uplift 3	2 2 2 urlins, ex g directly = Mecha =-39 (LC =-117 (Li	athing directly applie xcept end verticals. applied or 6-0-0 oc nical, 4= Mechanica 8) C 35), 4=-117 (LC 3)	7) 8) d or 10) I 11) 2)	Refer to girde Provide mech bearing plate 4 and 117 lb This truss is of International referenced st Load case(s) designer mus for the intend This truss ha plf. Lumber E truss to resis	er(s) for truss to trus nanical connection capable of withstau uplift at joint 3. designed in accorda Building Code sect andard ANSI/TPI 1 1 has/have been n st review loads to vi- led use of this truss s been designed fo DOL=(1.33) Plate g t drag loads along t	ss conr (by oth nding 1 ance w ion 230 nodified erify tha r a tota rip DOL pottom	ections. ers) of truss t 17 lb uplift at ith the 2018 6.1 and d. Building at they are cc I drag load of =(1.33) Con chord from 0	to ; joint prrect f 100 nect -0-0					
Max Grav 3=269 (LC 36), 4=269 (LC 39) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-4=-291/126, 1-2=-161/153, 2-3=-129/0 BOT CHORD 3-4=-196/172														
 NOTES 1) Wind: ASC Vasd=87m II; Exp B; E and C-C C. exposed ; 6 members a Lumber DC 2) TCLL: ASC DOL = 1.1! Ce=1.0; CS live load ap 3) Provide ad 4) This truss I chord live I 5) * This truss on the bott 3-06-00 tal chord and a 	E 7-16; Vult ph; TCDL=4. Enclosed; MW orner (3) zon and forces & DL=1.60 plate ZE 7-16; Pf=2 5); Is=1.0; Rc s=1.00; Ct=1. opplied where equate drain has been des oad nonconc s has been de oom chord in a I by 2-00-00 any other me	at 10mph 2psf; BCI /FRS (en e; cantile aft and rig MWFRS a grip DO 25.0 psf (I nugh Cat 10; IBC 1 required. age to prr aigned for urrent wit ssigned for urrent wit ssigned for urrent wit ssigned for urrent with ssigned for urrent with urrent with	(3-second gust) DL=6.0psf; h=25ft; C velope) exterior zon- ver left and right ght exposed;C-C for for reactions shown; L=1.60 Lum DOL = 1.15 Pla B; Partially Exp.; 1607.11.2 minimum r event water ponding r a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto	Cat. e te roof Js. psf m	vert: 1-2-	104, <i>3</i> -4=-20							HORESSIONA	3 ZH40 SIGNO PACING TA EBED ING LENGING

6) All bearings are assumed to be HF No.2.

NAL D

February 17,2025

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H			
4448984	P03	Flat	2	1	Job Reference (optional)	R86730558		

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:30 ID:rPde2H4rTF7FoV5xTi8mf2zIrwE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1-10-8

2x4 🛛 3x4 =

1-10-4

Scale = 1:27.6

Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC2018	3/TPI2014	CSI TC BC WB Matrix-P	0.11 0.03 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 3-4 3-4 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 9 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural w 1-10-4 oc p Rigid ceiling bracing. (size) 3 Max Horiz 4	2 2 2 urlins, ex directly = Mecha =-39 (I C	athing directly applied kcept end verticals. applied or 6-0-0 oc nical, 4= Mechanical 8)	7) 8) 9) d or 10	Refer to gird Provide mech bearing plate 4 and 117 lb This truss is International referenced si Load case(s) designer mus for the intence) This truss ha	er(s) for truss to tru- nanical connection capable of withsta uplift at joint 3. designed in accord Building Code sec andard ANSI/TPI 1 has/have been st review loads to v led use of this trus s been designed for	Uss conr (by oth anding 1 dance w tition 230 1. modified verify the s. or a tota	nections. ers) of truss 17 lb uplift a ith the 2018 16.1 and d. Building at they are co I drag load o	to t joint prrect f 100					
	Max Uplift 3 Max Grav 3	=-117 (L0 =268 (L0	C 35), 4=-117 (LC 32 C 36), 4=268 (LC 39)	2)	plf. Lumber E truss to resis to 1-10-4 for	OL=(1.33) Plate <u>c</u> t drag loads along 100.0 plf.	prip DOL bottom	.=(1.33) Cor chord from 0	nect I-0-0					
FORCES TOP CHORD BOT CHORD WEBS	(Ib) - Maxim Tension 1-4=-291/12 3-4=-195/17 1-3=-250/27	um Com 26, 1-2=- ⁻ 71 72	pression/Maximum 160/152, 2-3=-128/0	LC 1)	Dead + Sno Increase=1. Uniform Loa Vert: 1-2:	Standard w (balanced): Lun 15 ads (Ib/ft) =-164, 3-4=-20	nber Inc	rease=1.15,	Plate					
NOTES 1) Wind: ASC Vasd=87m II; Exp B; I and C-C C exposed; members a: Lumber Dr 2) TCLL: ASC DOL = 1.1 Ce=1.0; C live load a 3) Provide ac 4) This truss chord live 5) * This trus 3-06-00 ta chord and	CE 7-16; Vult= chaph; TCDL=4 Enclosed; MW. borner (3) zon- end vertical le and forces & I OL=1.60 plate CE 7-16; Pf=2 5); Is=1.0; Ro s=1.00; Ct=1. pplied where i dequate draina has been des load nonconc s has been de tom chord in a II by 2-00-00 v	e110mph 2psf; BCI PFRS (ener) e; cantile fit and rig WWFRS i g grip DO 5.0 psf (L ugh Cat 10; IBC 1 3 grip DO 5.0 psf (L ugh Cat 10; IBC 1 age to pre igned for issigned for all areas wide will i mbers.	(3-second gust) DL=6.0psf; h=25ft; C velope) exterior zone ver left and right jht exposed;C-C for for reactions shown; L=1.60 .um DOL = 1.15 Plat B; Partially Exp.; 607.11.2 minimum r event water ponding. a 10.0 psf bottom th any other live load or a live load of 20.0p where a rectangle fit between the bottor	at. e oof s. ssf								and a second sec	HORESSIONA	G ZHAO SHINGING TA ERED LL ENGINE

6) All bearings are assumed to be HF No.2.

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

UNAL D.

February 17,2025
Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	P04	Roof Special	2	1	Job Reference (optional)	R86730559

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:30 ID:uTRi8Tb_SQORwmuMzmBLCazIr4d-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

2x4 II

0-9-1

0-9-1

Scale = 1:29.3

Loading TCLL (Roof Snow = TCDL BCLL BCDL	= 25.0)	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC2018/	TPI2014	CSI TC BC WB Matrix-R	0.03 0.03 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4 4 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 5 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 HF No. 2x4 HF No. 2x4 HF No. 2x4 HF No. Structural V 0-9-1 oc pu Rigid ceilin bracing. (size) (Max Horiz 4 Max Uplift (.2 .2 .2 urlins, exi g directly 3= Mecha 4=37 (LC 3=-40 (LC	athing directly applie cept end verticals. applied or 10-0-0 or nical, 4= Mechanica 11) : 9), 4=-40 (LC 8)	8) 9) ed or 10) c II LOA 1)	Provide mec bearing plate 4 and 40 lb u This truss is International referenced s Load case(s designer mu for the intern AD CASE(S) Dead + Snu Increase=1	thanical connect e capable of with uplift at joint 3. designed in acc Building Code s tandard ANS/IT)) 1 has/have bee st review loads t ded use of this tr Standard ow (balanced): L .15 ads (lb/ft)	ion (by oth histanding 4 cordance wi section 230 PI 1. en modified to verify tha russ.	ers) of truss 0 lb uplift at 16.1 and 1. Building at they are co rease=1.15,	to joint prrect Plate					
FORCES TOP CHORD BOT CHORD	Max Grav 3 (lb) - Maxin Tension 1-4=-68/35 3-4=-34/36	3=85 (LC num Com , 1-2=-5/4	10), 4=85 (LC 11) pression/Maximum I, 2-3=-68/35		Vert: 1-2	=-164, 3-4=-20								
NOTES 1) Wind: AS Vasd=87 II; Exp B; and C-C exposed members Lumber D 2) TCLL: AS DOL = 1. Ce=1.0; (live load a 3) Provide a 4) This truss chord live 5) * This trus on the bo 3-06-00 ta	CE 7-16; Vult mph; TCDL=4 Enclosed; MV Corner (3) zor ; end vertical I and forces & DOL=1.60 plat SCE 7-16; Pf=; 15); Is=1.0; RC Sc=1.00; Ct=1 applied where dequate drain s has been de: e load nonconoc ss has been d duttom chord in all by 2-00-00	=110mph .2psf; BC VFRS (erne; cantile eft and rig MWFRS e grip DO 25.0 psf (i ough Cat .10; IBC required. lage to pr signed for current wi esigned f all areas wide will	(3-second gust) DL=6.0psf; h=25ft; 0 velope) exterior zon ver left and right fht exposed;C-C for for reactions shown. L=1.60 Lum DOL = 1.15 Pla B; Partially Exp.; 1607.11.2 minimum event water ponding a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the bottom	Cat. e tte roof l. ds. ppsf m								· · · · · · · · · · · · · · · · · · ·	THO OF W	NG ZHLAO ASTOCIOU DTA EN CONTON THE POINT

- chord and any other members.
- 6) All bearings are assumed to be HF No.2.
- 7) Refer to girder(s) for truss to truss connections.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com) 400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MITek-US.com

SIONALEN

UNAL D.

February 17,2025

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	P05	Flat	8	1	Job Reference (optional)	R86730560

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:30 ID:clhd4yla5cMypNec1DOdZczlr38-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1-9-5

1-10-6

2x4 u 3x4 =

Scale = 1:27.2

Loading TCLL (Roof Snow = 2 TCDL BCLL	25.0)	(psf) 25.0 15.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC2018/TPI2	2014	CSI TC BC WB Matrix-P	0.11 0.03 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 3-4 3-4 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 185/148	
BCDL		10.0											Weight: 9 lb	FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 HF Nc 2x4 HF Nc 2x4 HF Nc Structural 1-10-6 oc Rigid ceilin bracing. (size) Max Horiz Max Uplift	 b.2 b.2	athing directly applie xcept end verticals. applied or 6-0-0 oc Inical, 4= Mechanical 11) C 35), 4=-104 (LC 32	7) Refe 8) Prov beau 4 ar 9) This d or Inter refe 10) Loav desi for t 11) This plf. I trus;	er to gird vide mec ring plate d 104 lb s truss is rnational renced s d case(s) ggner mu he intence a truss ha Lumber L s to resis	er(s) for truss to tr hanical connectio e capable of withs uplift at joint 3. designed in accord Building Code se tandard ANSI/TPI) 1 has/have beer st review loads to ded use of this tru as been designed DOL=(1.33) Plate t drag loads along	russ conr n (by oth tanding 1 rdance w ection 23C I 1. n modified verify tha ss. for a tota grip DOL a bottom	ections. ers) of truss 1 04 lb uplift af ith the 2018 6.1 and d. Building at they are cc l drag load o =(1.33) Con chord from 0	to t joint prrect f 100 inect -0-0						
FORCES TOP CHORD BOT CHORD WEBS	Max Grav (lb) - Maxi Tension 1-4=-277/ ² 3-4=-193/ ² 1-3=-241/2	3=256 (L0 mum Com 114, 1-2=- 170 261	C 36), 4=256 (LC 39) pression/Maximum 160/152, 2-3=-129/0	to 1 LOAD C 1) De Inc Un	-10-6 for CASE(S) ad + Sno crease=1 iform Los Vert: 1-2	100.0 plf. Standard ow (balanced): Lu .15 ads (lb/ft) =-164, 3-4=-20	mber Inc	rease=1.15,	Plate						
 Wind: ASC Vasd=87m Wind: ASC Vasd=87m II; Exp B; E and C-C C exposed; ; members a Lumber DO TCLL: ASC DOL = 1.1; Ce=1.0; CG live load aq Provide ad This truss chord live Is this truss on the bott 3-06-00 tal 	CE 7-16; Vul aph; TCDL=- Enclosed; M corner (3) zo end vertical and forces & DL=1.60 pla CE 7-16; Pf= 5); Is=1.0; R s=1.00; Ct=' pplied where lequate drain has been de load noncom s has been co tom chord in II by 2-00-00	t=110mph 4.2psf; BC WFRS (er ne; cantile left and ric & MWFRS te grip DO s25.0 psf (l tough Cat 1.10; IBC ² e required. nage to pr esigned for current wi designed for current wi designed for all areas	(3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zone- ver left and right ght exposed; C-C for for reactions shown; L=1.60 Lum DOL = 1.15 Plai B; Partially Exp.; 1607.11.2 minimum r event water ponding, r a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto	at. e oof s. ssf								A PARTY A	HOPESSIE	G ZHAO SHUVGIOZ 74 EBED INDI	
chord and 6) All bearing	any other m Is are assum	iembers. ned to be H	HF No.2 .										NA NA		

February 17,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	P06	Flat	2	1	Job Reference (optional)	R86730561

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:30 ID:NNGL0xgFBzxAx2SDUBIReezIr1y-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

UNAL DE

February 17,2025

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

1-9-5

3x4 =

1-0-14

Scale - 1:30 7

chord and any other members.

6) All bearings are assumed to be HF No.2 .

L oading TCLL Roof Snow = 25.0) TCDL BCLL BCDL	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC2018	/TPI2014	CSI TC BC WB Matrix-P	0.04 0.02 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4 4 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 7 lb	GRIP 185/148 FT = 10%	
LUMBER LOP CHORD 2x4 H 30T CHORD 2x4 H 30T CHORD 2x4 H 30T CHORD 2x4 H 30T CHORD Struc 1-0-1 30T CHORD Rigid braci 4EACTIONS (size) Max U Max G GorCES (lb) - Tensi TOP CHORD 1-4=- 30T CHORD 1-4=- 30T CHORD 1-4=- 30T CHORD 3-4=- WEBS 1-3=- VOTES I) Wind: ASCE 7-16 Vasd=87mph; TC II; Exp B; Enclose and C-C Corner (exposed; end ve members and forn Lumber DOL=1.6 2) TCLL: ASCE 7-16 DOL = 1.15; Is=- Ce=1.0; Cs=1.00; live load applied 1 3) Provide adequate 4) This truss has be chord live load anplied 2- 5) * This truss has b on the bottom che 3-06-00 tall by 2-6 chord and any ott	IF No.2 IF No.2 IF No.2 IF No.2 IF No.2 tural wood she 4 oc purlins, e ceiling directly ng. 3=0-2-0, oriz 4=37 (LC plift 3=-153 (L maximum Con on 259/157, 1-2=- 121/99 207/238 ; Vult=110mph DL=4.2psf; BC d; MWFRS (er 3) zone; cantilet tical left and ri ces & MWFRS 0 plate grip DC 0; Pf=25.0 psf (.0; Rough Cat Ct=1.10; IBC where required 0 drainage to pi en designed fo nconcurrent w een designed fo ord and areas 00-00 wide will er members.	eathing directly applie except end verticals. r applied or 6-0-0 oc 4= Mechanical 11) C 35), 4=-153 (LC 3) C 36), 4=-228 (LC 3) pression/Maximum -89/81, 2-3=-64/0 n (3-second gust) CDL=6.0psf; h=25ft; C nvelope) exterior zon ever left and right ght exposed; C-C for for reactions shown; DL=1.60 (Lum DOL = 1.15 Pla B; Partially Exp.; 1607.11.2 minimum - revent water ponding r a 10.0 psf bottom tih any other live load for a live load of 20.0 where a rectangle fit between the botto	7) 8) 9) ed or 10) 11) 2) 12) 12) LO 1) Cat. e tte roof ds. psf m	Refer to gird Provide mec bearing plate Provide mec bearing plate Provide mec bearing plate A and 153 lb This truss is International referenced s Load case(s ⁵) designer mu for the intend This truss ha plf. Lumber D truss to resis to 1-0-14 for AD CASE(S) Dead + Snc Increase=1 Uniform Lo. Vert: 1-2	er(s) for truss to hanical connecti e at joint(s) 3. hanical connecti e capable of withs uplift at joint 3. designed in accc Building Code s tandard ANSI/TF 1 has/have bee st review loads to led use of this tru s been designec OOL=(1.33) Plate t drag loads alor 100.0 plf. Standard w (balanced): Lt .15 ads (lb/ft) =-164, 3-4=-20	truss conr on (by oth standing 1 ordance wi ection 230 Pl 1. en modified o verify that uss. d for a tota e grip DOL ng bottom umber Inco	ections. ers) of truss to 53 lb uplift at 53 lb uplift at th the 2018 6.1 and I. Building at they are co I drag load of =(1.33) Coni chord from 0- rease=1.15, F	o o joint rrect 100 nect 0-0 Plate			and the second se	HORESSION	G ZHAO SHINGING THE ENGINE	

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	P07	Flat Supported Gable	30	1	Job Reference (optional)	R86730562

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:30 ID:_labVt0HmrqLy9wn9o51fwzlsYK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2-1-3

Scale = 1:28.6

Plate Offsets (X, Y): [3:0-3-0,0-3-0]

	, , , ,	-,,		_										
Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC201	8/TPI2014	CSI TC BC WB Matrix-P	0.11 0.08 0.13	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 10 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural w 1-10-6 oc p Rigid ceiling bracing. (size) 3 Max Horiz 4 Max Uplift 3 Max Grav 3 (lb) - Maxim Tension	2 2 2 2 3 directly =1-10-6, =44 (LC =-529 (L =549 (LC um Com	athing directly applie xcept end verticals. applied or 6-0-0 oc 4=1-10-6 11) C 35), 4=-529 (LC 32) c 36), 4=549 (LC 39) pression/Maximum	6 7 8 d or 9 1 1 2) 2)	 Truss to be braced agai Gable studs This truss h chord live lo * This truss on the botto 3-06-00 tall All bearings Provide mee bearing plat 4 and 529 lt This truss is Internationa referenced s 	fully sheathed from nst lateral moveme spaced at 2-0-0 or as been designed fad nonconcurrent has been designed m chord in all area by 2-00-00 wide wi ny other members. are assumed to be chanical connection e capable of withst uplift at joint 3. designed in accorn Building Code sec tandard ANSI/TPI	n one fac ent (i.e. c c. for a 10. with any f for a liv s where ill fit betw e HF No n (by oth anding f dance w ction 230	e or securely liagonal web) O psf bottom other live loa e load of 20.0 a rectangle veen the botto 2. ers) of truss t i29 lb uplift at ith the 2018 06.1 and	, Dpsf om ; joint					
BOT CHORD WEBS NOTES 1) Wind: AS(Vasd=87n II; Exp B; I and C-C C exposed ; members Lumber D	3-4=-459/42 1-3=-695/73 CE 7-16; Vult= nph; TCDL=4. Enclosed; MW Corner (3) zone end vertical le and forces & I OL=1.60 plate	110mph 2psf; BC /FRS (en e; cantile eft and rig MWFRS grip DO	(3-second gust) DL=6.0psf; h=25ft; C velope) exterior zon- ver left and right jht exposed;C-C for for reactions shown; L=1.60	L Cat. e	of This truss to plf. Lumber truss to resis to 1-10-6 for OAD CASE(S)	276.0 plf. Standard	grip DOI bottom	=(1.33) Con chord from 0	-0-0			نو	ALA OMIN	G ZHAO

- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.
- Provide adequate drainage to prevent water ponding. 4)
- 5) Gable requires continuous bottom chord bearing.

PORESSIONAL ENGINE UNAL DI February 17,2025

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	P07A	Flat Supported Gable	1	1	Job Reference (optional)	R86730563

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:30 ID:CTi?SSfS60dmxGsRkoUNpBzIsTe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1-10-6

Scale = 1:28.6

Plate Offsets (X, Y): [3:0-3-0,0-3-0]

Loading TCLL (Roof Snow = TCDL BCLL BCDL	(psf) 25.0 25.0) 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC2018	/TPI2014	CSI TC BC WB Matrix-P	0.11 0.08 0.13	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 10 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural wood she 1-10-6 oc purlins, e Rigid ceiling directly bracing. (size) 3=1-10-6 Max Horiz 4=-44 (LC Max Uplift 3=-528 (L Max Grav 3=548 (LI (lb) - Maximum Com Tension	eathing directly appli except end verticals. r applied or 6-0-0 oc , 4=1-10-6 2 10) .C 35), 4=-528 (LC 3 C 36), 4=548 (LC 35 npression/Maximum	6) 7) 8) ed or 9) 10) 11) 32) 32) 32) 12)	Truss to be braced agai Gable studs This truss ha chord live lo * This truss on the botto 3-06-00 tall chord and a All bearings Provide med bearing plat 4 and 528 lb This truss is Internationa referenced s	fully sheathed finst lateral move spaced at 2-0- as been design ad nonconcurre has been design m chord in all a by 2-00-00 wide ny other memb- are assumed to shanical connect e capable of with uplift at joint 3. designed in ac Building Code tandard ANSI/7	rom one fac ement (i.e. d 0 oc. ed for a 10.0 ent with any ned for a liv reas where e will fit betw ers. b be HF No. tition (by oth thstanding 5 cordance wis section 230 FPI 1.	e or securely iagonal web)) psf bottom other live loz e load of 20. a rectangle veen the bott 2. ers) of truss 28 lb uplift a th the 2018 6.1 and	y). Opsf rom to t joint					
TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=87m	1-4=-581/537, 1-2=- 3-4=-459/425 1-3=-694/730 CE 7-16; Vult=110mph aph: TCDL =4 2pcf; BC	413/403, 2-3=-63/4	9 13) LO	This truss happed for the second seco	as been designe DOL=(1.33) Pla st drag loads ale 276.0 plf. Standard	ed for a tota ate grip DOL ong bottom	l drag load o =(1.33) Cor chord from 0	of 276 nnect 0-0-0					

II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.
- Provide adequate drainage to prevent water ponding. 4)
- 5) Gable requires continuous bottom chord bearing.

👠 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - Verify design parameters and KEAD NO ISO ON THIS AND INCLUED MILER KETEKINGE PAGE MIL/4/3 16V. 1/2/2/2/3 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville CA 95661 916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	P08	Roof Special	2	1	Job Reference (optional)	R86730564

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:31 ID:CTi?SSfS60dmxGsRkoUNpBzIsTe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

0-9-1

0-9-1

Scale = 1:31														
Loading TCLL (Roof Snow = TCDL BCLL BCDL	- 25.0)	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC2018	3/TPI2014	CSI TC BC WB Matrix-R	0.22 0.16 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 5 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 HF No. 2x4 HF No. 2x4 HF No. Structural v 0-9-1 oc pu Rigid ceilin bracing. (size) 3 Max Horiz 4 Max Uplift 3 Max Grav 3	2 2 2 2 g directly 3=0-9-1, 4 4=-44 (LC 3=-587 (L 3=593 (LC	athing directly applie cept end verticals. applied or 10-0-0 oc 4=0-9-1 2 10) C 35), 4=-587 (LC 32) C 36), 4=593 (LC 39)	8) 9) d or 10 11 12 2) 13	This truss ha chord live loa * This truss H on the bottor 3-06-00 tall H chord and ar) All bearings Dearing plate 4 and 587 lb) This truss is International referenced s) This truss ha	Is been designed ad nonconcurrent has been designe m chord in all area by 2-00-00 wide w ny other members are assumed to b hanical connectio e capable of withs uplift at joint 3. designed in accoo Building Code se tandard ANSI/TP as been designed	for a 10. with any d for a liv as where vill fit betv s. e HF No. on (by oth tanding 5 rdance w ection 230 I 1. for a tota	D psf bottom other live loa e load of 20.0 a rectangle veen the botto 2. ers) of truss t i87 lb uplift at i87 lb uplift at i6.1 and I drag load ol	ids. Dpsf om i joint					
TOP CHORD	(lb) - Maxin Tension 1-4=-307/2	num Com 68, 1-2=-	pression/Maximum 69/71, 2-3=-267/312		plf. Lumber I truss to resis to 0-9-1 for 2	DOL=(1.33) Plate t drag loads along 276.0 plf.	grip DOL g bottom	=(1.33) Con chord from 0	nect -0-0					
BOT CHORD	3-4=-109/8	8		LC	AD CASE(S)	Standard								
NOTES	<u></u>													
 Wind: AS0 Vasd=87r II; Exp B; and C-C 0 exposed ; members Lumber D 	CE 7-16; Vult- mph; TCDL=4 Enclosed; MV Corner (3) zon ; end vertical l- and forces & 0OL=1.60 plate	=110mph .2psf; BC VFRS (en le; cantile eft and rig MWFRS e grip DO	(3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zon ever left and right ght exposed;C-C for for reactions shown; uL=1.60	e									OMIN	IG Zh
2) Truss des only. For see Stand	signed for wind studs expose dard Industry (d loads in d to wind Gable End	the plane of the trus (normal to the face) d Details as applicab	s le,								ż	TIAOF W	AND CONTRACTOR
3) TCLL: AS DOL = 1.1 Ce=1.0; C	CE 7-16; Pf=2 5CE 7-16; Pf=2 15); Is=1.0; Rc Cs=1.00; Ct=1	25.0 psf (l 25.0 p	Lum DOL = 1.15 Pla B; Partially Exp.; 1607.11.2 minimum i	roof										
 4) Provide a 	dequate drain	age to pr	event water ponding									1	FB \$ 540	74 / 2 -
5) Gable req	uires continuo	ous botto	m chord bearing.									7	FFEGIS	TEREPUT
b) I russ to b braced ag	oe tully sheath gainst lateral n	ed from c	one face or securely t (i.e. diagonal web).										~S'SIONA	LENU

- 5) Gable requires continuous bottom chord bearing.
- 6) Truss to be fully sheathed from one face or securely
- braced against lateral movement (i.e. diagonal web).
- 7) Gable studs spaced at 2-0-0 oc.

UNAL DE

February 17,2025

Page: 1

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	P09	Roof Special	2	1	Job Reference (optional)	R86730565

0-10-1

Builders FirstSource (Arlington, WA), Arlington, WA - 98223,

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:31 ID:zMq9_GnoCbLabZTJgqfB4ozIsSB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale - 1.32

00010 = 1102														
Loading TCLL (Roof Snow = TCDL BCLL BCDL	(p. 25.0) 15 0 10	sf) 5.0 5.0 0.0 * 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2018	8/TPI2014	CSI TC BC WB Matrix-R	0.04 0.04 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 5 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural wood 0-10-1 oc purlin Rigid ceiling din bracing. (size) 3=0- Max Horiz 4=44 Max Uplift 3=-7 Max Grav 3=82	d shea ns, ex rectly a -10-1, 4 4 (LC 1 75 (LC 1 2 (LC 1	thing directly applied cept end verticals. applied or 10-0-0 oc 4=0-10-1 1) 9), 4=-75 (LC 8) 0), 4=82 (LC 11)	8) 9) d or 11 12	This truss ha chord live loa * This truss l on the bottor 3-06-00 tall l chord and an) All bearings) Provide mec bearing plate 4 and 75 lb o this truss is International referenced s	as been designed ad nonconcurrent nas been designe m chord in all area by 2-00-00 wide w ny other members are assumed to bhanical connectio capable of withs uplift at joint 3. designed in acco Building Code se tandard ANSI/TP Standard	for a 10.0 with any d for a liv as where vill fit betv s. he HF No. bn (by oth tanding 7 rdance w ection 230 I 1.	D psf bottom other live loa e load of 20.0 a rectangle veen the botto 2. ers) of truss t 5 lb uplift at j ith the 2018 06.1 and	ids. Opsf om io oint					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Tension 1-4=-69/75, 1-2 3-4=-45/53	n Comp 2=-6/7,	2-3=-69/75		(-)									
NOTES 1) Wind: AS Vasd=87r II; Exp B; and C-C (exposed ; members Lumber D 2) Truss dess only. For see Stanc or consult 3) TCLL: AS DOL = 1.7. Ce=1.0; C live load a 4) Provide a	CE 7-16; Vult=110 mph; TCDL=4.2ps Enclosed; MWFR Corner (3) zone; c ; end vertical left a and forces & MW DOL=1.60 plate gri signed for wind loa studs exposed to dard Industry Gab t qualified building GCE 7-16; Pf=25.0 15); Is=1.0; Rougt Cs=1.00; Ct=1.10; applied where required dequate drainage	0mph (sf; BCD SS (env cantilev and rigi /FRS fo ip DOL ads in t o wind (le End g design g design g design g les f(L h Cat E IBC 10 uired.	3-second gust) DL=6.0psf; h=25ft; Ci relope) exterior zone rer left and right nt exposed;C-C for pr reactions shown; =1.60 the plane of the truss (normal to the face), Details as applicabl ner as per ANSI/TPI um DOL = 1.15 Plat 8; Partially Exp.; 607.11.2 minimum re-	at. 5 e, 1. e							c		ALAOMIN ALAOF WA CENTROF	G ZHAO SHIN C 14

- Gable requires continuous bottom chord bearing.
- 6) Truss to be fully sheathed from one face or securely
- braced against lateral movement (i.e. diagonal web).
- 7) Gable studs spaced at 2-0-0 oc.

Page: 1

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	P10	Flat Supported Gable	26	1	Job Reference (optional)	R86730566

1-8-12

1-8-12

Builders FirstSource (Arlington, WA), Arlington, WA - 98223.

Scale = 1:28.6

(Roof Snow = 25.0)

Loading

TCLL

TCDL

BCLL

BCDL

WEBS

BRACING

TOP CHORD

BOT CHORD

FORCES

WEBS

1)

2)

3)

5)

NOTES

TOP CHORD

BOT CHORD

REACTIONS (size)

bracing.

Tension

LUMBER

TOP CHORD BOT CHORD

Run: 8 83 S. Feb. 1 2025 Print: 8 830 S. Feb. 1 2025 MiTek Industries. Inc. Mon Feb 17 10:17:31 ID:PPNRO9tp2fnGz4sQpCtg1vzIsXD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2x4 II 3x4 = 1 2 0 2-1-4 4 3 2x6 II 5x6 = 1 - 8 - 12Plate Offsets (X, Y): [3:0-3-0,0-3-0] Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) 25.0 Plate Grip DOL 1.15 TC 0.11 Vert(LL) 999 MT20 185/148 n/a n/a Lumber DOL 1.15 BC 0.07 Vert(TL) n/a n/a 999 15.0 Rep Stress Incr WB Horiz(TL) 3 NO 0.13 0.00 n/a n/a 0.0 Code IBC2018/TPI2014 Matrix-P Weight: 10 lb 10.0 FT = 10% 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 2x4 HF No 2 7) Gable studs spaced at 2-0-0 oc. 2x4 HF No 2 This truss has been designed for a 10.0 psf bottom 2x4 HF No.2 8) chord live load nonconcurrent with any other live loads. 9) * This truss has been designed for a live load of 20.0psf Structural wood sheathing directly applied or on the bottom chord in all areas where a rectangle 1-8-12 oc purlins, except end verticals. 3-06-00 tall by 2-00-00 wide will fit between the bottom Rigid ceiling directly applied or 6-0-0 oc chord and any other members. 10) All bearings are assumed to be HF No.2 . 3=1-8-12, 4=1-8-12 11) Provide mechanical connection (by others) of truss to Max Horiz 4=45 (LC 9) bearing plate capable of withstanding 532 lb uplift at joint Max Uplift 3=-532 (LC 35), 4=-532 (LC 32) 4 and 532 lb uplift at joint 3. Max Grav 3=550 (LC 36), 4=550 (LC 39) 12) This truss is designed in accordance with the 2018 (lb) - Maximum Compression/Maximum International Building Code section 2306.1 and referenced standard ANSI/TPI 1. 1-4=-586/541, 1-2=-380/370, 2-3=-58/45 13) This truss has been designed for a total drag load of 276 3-4=-425/392 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect 1-3=-674/711 truss to resist drag loads along bottom chord from 0-0-0 to 1-8-12 for 276.0 plf. LOAD CASE(S) Standard Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone OMING ZHAO and C-C Corner (3) zone: cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; OF ESSIONAL ENCIT Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required. Provide adequate drainage to prevent water ponding. Gable requires continuous bottom chord bearing.

----February 17,2025

> 400 Sunrise Ave., Suite 270 Roseville CA 95661

916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	P11	Flat Supported Gable	2	1	Job Reference (optional)	R86730567

1-7-4

1-7-4

Builders FirstSource (Arlington, WA), Arlington, WA - 98223.

1)

2)

3)

5)

Run: 8.83 S. Feb. 1 2025 Print: 8.830 S. Feb. 1 2025 MiTek Industries. Inc. Mon Feb. 17 10:17:31 ID:AIUbwy?98EU3dMTImE2UIWzIsVm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Roseville CA 95661

916.755.3571 / MiTek-US.com

2x4 II 3x4 = 2 0 2-1-4 4 3 2x6 ı 5x6 = 1 - 7 - 4Scale = 1:28.6 Plate Offsets (X, Y): [3:0-3-0,0-3-0] Loading Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) TCLL 25.0 Plate Grip DOL 1.15 TC 0.11 Vert(LL) 999 MT20 185/148 n/a n/a (Roof Snow = 25.0) Lumber DOL 1.15 BC 0.07 Vert(TL) n/a n/a 999 TCDL 15.0 Rep Stress Incr WB Horiz(TL) 3 NO 0.13 0.00 n/a n/a BCLL 0.0 Code IBC2018/TPI2014 Matrix-P BCDL 10.0 Weight: 9 lb FT = 10% LUMBER 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 2x4 HF No 2 TOP CHORD BOT CHORD 7) Gable studs spaced at 2-0-0 oc. 2x4 HF No 2 This truss has been designed for a 10.0 psf bottom WEBS 2x4 HF No.2 8) chord live load nonconcurrent with any other live loads. BRACING 9) * This truss has been designed for a live load of 20.0psf TOP CHORD Structural wood sheathing directly applied or on the bottom chord in all areas where a rectangle 1-7-4 oc purlins, except end verticals. 3-06-00 tall by 2-00-00 wide will fit between the bottom BOT CHORD Rigid ceiling directly applied or 6-0-0 oc chord and any other members. bracing. 10) All bearings are assumed to be HF No.2 . **REACTIONS** (size) 3=1-7-4, 4=1-7-4 11) Provide mechanical connection (by others) of truss to Max Horiz 4=45 (LC 9) bearing plate capable of withstanding 534 lb uplift at joint Max Uplift 3=-534 (LC 35), 4=-534 (LC 32) 4 and 534 lb uplift at joint 3. Max Grav 3=551 (LC 36), 4=551 (LC 39) 12) This truss is designed in accordance with the 2018 FORCES (lb) - Maximum Compression/Maximum International Building Code section 2306.1 and Tension referenced standard ANSI/TPI 1. TOP CHORD 1-4=-589/542, 1-2=-348/339, 2-3=-53/41 13) This truss has been designed for a total drag load of 276 BOT CHORD 3-4=-394/361 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect WEBS 1-3=-655/695 truss to resist drag loads along bottom chord from 0-0-0 to 1-7-4 for 276.0 plf. NOTES LOAD CASE(S) Standard Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone OMING ZHAO and C-C Corner (3) zone: cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; BORESSIONAL ENGINE Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required. Provide adequate drainage to prevent water ponding. Gable requires continuous bottom chord bearing. ----February 17,2025 🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not 400 Sunrise Ave., Suite 270

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	P12	Flat Supported Gable	2	1	Job Reference (optional)	R86730568

1-0-14

Builders FirstSource (Arlington, WA), Arlington, WA - 98223,

Loading

TCLL

TCDL

BCLL

BCDL

WEBS

FORCES

NOTES

1)

2)

3)

4)

5)

6)

Run: 8.83 S. Feb. 1 2025 Print: 8.830 S. Feb. 1 2025 MiTek Industries. Inc. Mon Feb. 17 10:17:31 ID:bZX?lcdCsoyElgxTxhMI6MzIsOW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	P13	Flat Supported Gable	11	1	Job Reference (optional)	R86730569

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:32 ID:CGHH9vGS5h2XZ6GED?uLNyzIsSr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

1-10-6

4

Scale = 1:28.6

L

ľ

Plate Offsets (X, Y): [3:0-3-0,0-3-0]

		-1											
.oading CLL Roof Snow = CDL BCLL BCDL	(psf) 25.0) 15.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr * Code	2-0-0 1.15 1.15 NO IBC2018	8/TPI2014	CSI TC BC WB Matrix-P	0.11 0.08 0.13	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 10 lb	GRIP 185/148 FT = 10%
UMBER TOP CHORD VEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD NOT CHORD VEBS IOTES	2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural wood s 1-10-6 oc purlins Rigid ceiling direc bracing. (size) 3=1-10 Max Horiz 4=45 (Max Uplift 3=-530 Max Grav 3=550 (lb) - Maximum C Tension 1-4=-584/539, 1-: 3-4=-459/426 1-3=-696/732	heathing directly app except end verticals tly applied or 6-0-0 o -6, 4=1-10-6 _C 9) (LC 35), 4=-530 (LC (LC 36), 4=550 (LC 3 ompression/Maximur 2=-413/403, 2-3=-63/4	6) 7) 8) 5. c 10 11 32) 19) 12 n 49 13	Truss to be f braced agair Gable studs This truss ha chord live loa * This truss f on the bottor 3-06-00 tall b chord and ar) All bearings) Provide mec bearing plate 4 and 530 lb 2) This truss is International referenced s B) This truss ha plf. Lumber I truss to resis to 1-10-6 for	ully sheathed from ist lateral movement spaced at 2-0-0 c is been designed ad nonconcurrent nas been designed been designed over the space of the sy 2-00-00 wide w over the members are assumed to b hanical connectio de capable of withs uplift at joint 3. designed in accor Building Code se tandard ANSI/TPI is been designed DOL=(1.33) Plate at drag loads along 276.0 plf.	n one fac ent (i.e. c c. for a 10.1 with any d for a liv as where ill fit betv e HF No. n (by oth tanding 5 rdance w wction 230 11. for a tota grip DOL g bottom	e or securely liagonal web) D psf bottom other live loa e load of 20. a rectangle veen the bott 2 . ers) of truss : i30 lb uplift a' ith the 2018 06.1 and Il drag load o .=(1.33) Con chord from 0	y). opsf to t joint f 276 nnect 0-0-0					
) Wind: AS	CE 7-16; Vult=110m	ph (3-second gust)	LC Cat	DAD CASE(S)	Standard								

Vasd=87mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.
- 4) Provide adequate drainage to prevent water ponding.
- 5) Gable requires continuous bottom chord bearing.

February 17,2025

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	P14	Roof Special	2	1	Job Reference (optional)	R86730570

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:32 ID: tx QO fh EXgA Ew 0 Go Q2a B 02 Dz lq ZX-R fC ?Ps B 70 Hq 3NSg Pq nL 8w 3u ITX b G K Wr CD oi 7J 4z J C ?f for the second s

Scale = 1:32

	-												
Loading TCLL (Roof Sn TCDL BCLL	ow = 25.0)	(psf) 25.0 15.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2018/TPI2014	CSI TC BC WB Matrix-R	0.04 0.04 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 185/148
BCDL		10.0										Weight: 5 lb	FT = 10%
LUMBEF TOP CHI BOT CHI WEBS BRACIN TOP CHI BOT CHI REACTIO	CRD 2x4 HF No. ORD 2x4 HF No. 2x4 HF No. 2x4 HF No. CRD Structural V 0-8-12 oc p ORD Rigid ceilin bracing. ONS (size) C Max Horiz 4 Max Uplift C Max Grav C (lb) - Maxin	2 2 2 wood she purlins, e. g directly 3=0-8-12, 1=45 (LC 3=-93 (LC 3=99 (LC num Com	athing directly applied xcept end verticals. applied or 10-0-0 oc 4=0-8-12 11) 9), 4=-93 (LC 8) 10), 4=99 (LC 11) pression/Maximum	 8) This truss h chord live lo 9) * This truss on the botto 3-06-00 tall chord and a 10) All bearings 11) Provide me bearing plat 4 and 93 lb 12) This truss is Internationa referenced LOAD CASE(S 	as been designed f vad nonconcurrent v has been designed m chord in all areas by 2-00-00 wide wi ny other members. are assumed to be chanical connectior e capable of withsta uplift at joint 3. designed in accord I Building Code sec standard ANSI/TPI Standard	ior a 10. with any I for a liv s where ill fit betw e HF No. h (by oth anding S dance w ction 23(1.	0 psf bottom other live loa e load of 20.0 a rectangle veen the botto 2. ers) of truss t 33 lb uplift at j ith the 2018 36.1 and	ds.)psf om o oint					
	Tension												
TOP CH	ORD 1-4=-70/75	, 1-2=-5/4	l, 2-3=-70/75										
BOT CH	URD 3-4=-42/44												
 Wind Vasc II; Ex and expo mem Lumi Trus only. see S or cci TCLI DOL 	t: ASCE 7-16; Vult: =87mph; TCDL=4 cp B; Enclosed; MV C-C Corner (3) zor sed; end vertical I bers and forces & ber DOL=1.60 plate s designed for winn For studs expose Standard Industry (onsult qualified buill L: ASCE 7-16; Pf=2; =1.15; Is=1.0: R	=110mph .2psf; BC VFRS (en e; cantile eft and rig MWFRS e grip DO d loads in d to wind Gable En ding desig 25.0 psf (bugh Cat	(3-second gust) DL=6.0psf; h=25ft; C: velope) exterior zone ver left and right ht exposed;C-C for for reactions shown; L=1.60 the plane of the truss (normal to the face), d Details as applicabl gner as per ANSI/TPI Lum DOL = 1.15 Plat B; Partially Exp.:	at. 6 e, 1. e							J.	TAOMIN Strong Wi	IG ZHIAO ASHUNCITOU
 Ce=' live li Prov Gabl Trus: brace Gabl 	1.0; Cs=1.0; Kt=1 oad applied where ide adequate drain e requires continue s to be fully sheath ed against lateral n e studs spaced at	.10; IBC required. age to pro- bus bottor ed from co- novement 2-0-0 oc.	event water ponding. n chord bearing. one face or securely t (i.e. diagonal web).	oof								PROFIESSION	AL ENGINE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

February 17,2025

Page: 1

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	P15	Flat Supported Gable	2	1	Job Reference (optional)	R86730571

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:32 ID:?_IAWIo0bd9F9UuSIyX2S7zIqYo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-1-4

1-0-0

Scale = 1:32.4

Plate Offsets (X, Y): [3:Edge,0-1-8]

Loading TCLL Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC201	8/TPI2014	CSI TC BC WB Matrix-R	0.27 0.21 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 6 lb	GRIP 185/148 FT = 10%	
LUMBER TOP CHORD 30T CHORD WEBS 3RACING TOP CHORD 30T CHORD REACTIONS FORCES TOP CHORD 30T CHORD 30T CHORD 30T CHORD 30T CHORD 10 Wind: AS(2x4 HF No 2x4 HF No 2x4 HF No 1-0-0 oc p Rigid ceilin bracing. (size) : Max Horiz (lb) - Maxir Tension 1-4=-303/2 3-4=-143/1	.2 .2 .2 wood she urlins, ex g directly 3=1-0-0, 4 4=-45 (LC 3=-559 (L 3=-559 (L) (L 3=-559 (L) (L 3=-559 (L)	athing directly applie cept end verticals. applied or 10-0-0 or 4=1-0-0 C 35), 4=-559 (LC 3 C 35), 4=-559 (LC 39) ppression/Maximum 103/105, 2-3=-269/3	7) 8) 9) 6d or 11 2) 12 13 13 11	Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar)) All bearings)) Provide mec bearing plate 4 and 559 lb 2) This truss is International referenced s 3) This truss ha plf. Lumber I truss to resis to 1-0-0 for 2 DAD CASE(S)	spaced at 2-0-0 or as been designed f ad nonconcurrent has been designed n chord in all area by 2-00-00 wide wi y other members. are assumed to be chanical connectior e capable of withst uplift at joint 3. designed in accorn Building Code ser tandard ANSI/TPI as been designed f DOL=(1.33) Plate g tdrag loads along 276.0 plf. Standard	c. for a 10.0 with any f for a liv s where ill fit betv e HF No. h (by oth anding 5 dance w ction 230 1. or a tota grip DOL bottom	D psf bottom other live loa e load of 20. a rectangle veen the bott 2. ers) of truss 559 lb uplift a ith the 2018 06.1 and l drag load o .=(1.33) Cor chord from 0	ads. Opsf to t joint f 276 nnect I-0-0						
Vasd=87n II; Exp B; and C-C C	nph; TCDL=4 Enclosed; MV Corner (3) zor end vertical	2psf; BC VFRS (er ne; cantile	EDL=6.0psf; h=25ft; C velope) exterior zon ever left and right	Cat. e										eee.	

Lumber DOL=1.60 plate grip DOL=1.60
 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

members and forces & MWFRS for reactions shown;

- TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.
- 4) Provide adequate drainage to prevent water ponding.
- 5) Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MITek-US.com

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	P16	Flat Supported Gable	2	1	Job Reference (optional)	R86730572

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:32 ID:t7r6yEcYgVp9OQPcYNm3UTzlqaK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-2-8

Scale = 1:32.2

Plate Offsets (X, Y): [3:0-3-0,0-3-0]

- 1010 0110010	(,,, ,). [0.0 0	0,0 0 0]												
Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC20	18/TPI2014	CSI TC BC WB Matrix-P	0.11 0.05 0.12	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 8 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 10, WIEM AS	2x4 HF No 2x4 HF No 2x4 HF No 3tructural 1 1-2-8 oc pu Rigid ceilin bracing. (size) Max Horiz Max Uplift Max Uplift (lb) - Maxin Tension 1-4=-608/5 3-4=-296/2 1-3=-609/6	2 2 2 wood she urlins, ex g directly 3=1-2-8, 4 4=45 (LC 3=-546 (L 3=-546 (L 3=-546 (L num Com 52, 1-2=- 63 61	athing directly appli cept end verticals. applied or 6-0-0 oc 4=1-2-8 9) C 35), 4=-546 (LC 39 pression/Maximum 250/240, 2-3=-37/29	ed or 5 32)) .	 Truss to be braced agai Gable studs This truss had chord live lo This truss on the botto 3-06-00 tall chord and a All bearings Provide meaning plate 4 and 546 lb This truss is International referenced s This truss had plf. Lumber truss to resis CAD CASE(S) 	fully sheathed from spaced at 2-0-0 of as been designed and nonconcurrent has been designed m chord in all are by 2-00-00 wide v ny other members are assumed to b chanical connectic of e capable of withs o uplift at joint 3. designed in accoo I Building Code se standard ANSI/TP as been designed DOL=(1.33) Plate st drag loads alon 276.0 plf. Standard	m one fac lent (i.e. d oc. l for a 10.0 t with any ed for a liv as where will fit betw s. De HF No. on (by oth standing 5 ordance w ection 230 1 1. for a tota o grip DOL g bottom	e or securely liagonal web) D psf bottom other live loa e load of 20.1 2 . ers) of truss t 446 lb uplift at 446 lb uplift at 61.1 and ll drag load of .=(1.33) Con chord from 0	ds. Opsf om joint 276 nect -0-0					
 Wind: AS Vasd=87r II; Exp B; and C-C (exposed ; members 	CE 7-16; Vult nph; TCDL=4 Enclosed; MV Corner (3) zor end vertical l and forces &	=110mph .2psf; BC VFRS (er ne; cantile eft and rig MWFRS	(3-second gust) DL=6.0psf; h=25ft; (avelope) exterior zor ever left and right ght exposed;C-C for for reactions shown	Cat. ne	LOAD CASE(S)	Standard							ILAOMIN	IG ZHAO

- Lumber DOL=1.60 plate grip DOL=1.60
 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.
- 4) Provide adequate drainage to prevent water ponding.
- 5) Gable requires continuous bottom chord bearing.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MITek-US.com

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	P17	Flat Supported Gable	2	1	Job Reference (optional)	R86730573

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:32 ID:wP_uGU?ADc_sU82I0dhRAtzIpq3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2-4-0

Scale = 1:29.5

Plate Offsets (X, Y): [3:0-3-0.0-2-12]

	(,, ,). [0.03	5 0,0 2 12	-											
Loading TCLL (Roof Snow = TCDL	= 25.0)	(psf) 25.0 15.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO	0/50/04	CSI TC BC WB	0.22 0.04 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 185/148
BCDL		0.0 ^ 10.0	Code	IBC201	8/TPI2014	Matrix-P							Weight: 11 lb	FT = 10%
LUMBER TOP CHORE BOT CHORE WEBS BRACING TOP CHORE BOT CHORE REACTIONS FORCES TOP CHORE BOT CHORE WEBS NOTES	 2x4 HF Nc 3rdigid ceilin bracing. (size) Max Horiz Max Horiz Max Grav (lb) - Maxi Tension 1-4=-425/2 3-4=-218/2 1-3=-299/3 	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	athing directly applie xcept end verticals. applied or 6-0-0 oc 4=1-10-6 2 10) C 35), 4=-253 (LC 3 C 35), 4=-253 (LC 3 2 56), 4=419 (LC 59 pression/Maximum 167/156, 2-3=-266/*	6 7 8 ed or 9 1 1 32) 1) 152 1	 Truss to be braced agai Gable studs This truss had chord live lo This truss on the botto 3-06-00 tall chord and a All bearings Provide meet bearing plate A and 253 lb This truss is international referenced as This truss had plate truss to resist to 1-10-6 for 	fully sheathed fro nst lateral mover spaced at 2-0-0 as been designed ad nonconcurren has been designed m chord in all are by 2-00-00 wide v ny other member are assumed to 1 chanical connection to pulift at joint 3. designed in acco I Building Code s standard ANSI/TF as been designed DDL=(1.33) Plate st drag loads alor 100.0 plf.	m one fac nent (i.e. d oc. d for a 10.4 t with any ed for a liv ass where will fit betw 's. be HF No. on (by oth standing 2 brdance w ection 230 Pl 1. d for a tota e grip DOL ng bottom	e or securely iagonal web) 0 psf bottom other live loa e load of 20.0 a rectangle veen the botto 2. ers) of truss t :53 lb uplift at :6.1 and I drag load of =(1.33) Con chord from 0-	ds. Dpsf om joint 100 nect 0-0					
1) Wind: AS Vasd=87 II; Exp B; and C-C exposed members Lumber I	SCE 7-16; Vul mph; TCDL=4 Enclosed; M Corner (3) zo ; end vertical and forces & DOL=1.60 pla	t=110mph 4.2psf; BC WFRS (er ne; cantile left and rig MWFRS te grip DC	(3-second gust) DL=6.0psf; h=25ft; (ivelope) exterior zor ever left and right ght exposed;C-C for for reactions shown DL=1.60	L Cat. 1 ne r,	OAD CASE(S) Dead + Sn Increase=1 Uniform Lc Vert: 1-2	Standard ow (balanced): Li I.15 bads (lb/ft) 2=-338, 3-4=-20	umber Inc	rease=1.15, F	Plate			4	YLA OMIN	G ZHAO

- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.
- Provide adequate drainage to prevent water ponding. 4)
- 5) Gable requires continuous bottom chord bearing.

ROAESSIONAL ENGINE ebruary 1-February 17,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	P17A	Flat Supported Gable	2	1	Job Reference (optional)	R86730574

1-8-12

Builders FirstSource (Arlington, WA), Arlington, WA - 98223,

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:32 ID:wP_uGU?ADc_sU82I0dhRAtzlpq3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

2-4-0

Scale = 1:29.5

Plate Offsets (X, Y): [3:0-3-0,0-2-12]

1 1010 0 10010 (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,]												
Loading	(p	sf)	Spacing	2-0-0		CSI	0.19	DEFL	in n/a	(loc)	l/defl	L/d	PLATES	GRIP
ICLL (Boof Spow	25 0)	5.0		1.15			0.10	Vert(LL)	n/a	-	n/a	999	IVI 1 20	100/140
	25.0)		Lumber DOL	1.15 NO			0.03		11/a	-	n/a	999		
RCU		0.0	Codo	IRCO		Motrix D	0.00	TION2(TL)	0.00	3	n/a	11/a		
BCDI	10	0.0	Code	IDC20	10/1912014	Wallix-P							Weight: 11 lb	FT - 10%
DODL		.0											weight. This	11 = 1070
LUMBER					6) Truss to be	fully sheathed fi	rom one fac	e or securely	y					
TOP CHORD	2x4 HF No.2				braced agai	nst lateral move	ement (i.e. d	iagonal web).					
BOT CHORD	2x4 HF No.2				Gable studs	spaced at 2-0-0	0 oc.							
WEBS	2x4 HF No.2				B) This truss h	as been designe	ed for a 10.0) psf bottom						
BRACING					chord live lo	ad nonconcurre	ent with any	other live loa	ads.					
TOP CHORD	Structural woo	d shea	thing directly appli	ied or	9) * This truss	has been desig	ned for a liv	e load of 20.	0psf					
	1-8-12 oc purli	ns, ex	cept end verticals.		on the botto	m chord in all a	reas where	a rectangle						
BOT CHORD	Rigid ceiling di	rectly a	applied or 6-0-0 oc	;	3-06-00 tall	by 2-00-00 wide	e will fit betw	veen the bott	tom					
	bracing.				Chord and a	ny other membe		0						
REACTIONS	(size) 3=1-	8-12, 4	4=1-8-12		10) All bearings	are assumed to	De HF NO.	\angle .	to					
	Max Horiz 4=-5	60 (LC	10)		hoaring plat		betanding 2	EIS) OI LIUSS	t ioint					
	Max Uplift 3=-2	255 (LC	C 35), 4=-255 (LC 3	32)	4 and 255 lt	e capable of with unlift at joint 3	instantuing 2	.55 ib upilit a	it joint					
	Max Grav 3=42	20 (LC	56), 4=400 (LC 59	9)	12) This truss is	designed in ac	cordance w	ith the 2018						
FORCES	(lb) - Maximum		pression/Maximum	1	Internationa	l Building Code	section 230	6 1 and						
	Tension				referenced s	standard ANSI/1	ГРІ 1.							
TOP CHORD	1-4=-418/270,	1-2=-1	55/144, 2-3=-243/	139	13) This truss h	as been designe	ed for a tota	l drag load o	f 100					
BOT CHORD	3-4=-206/169				plf. Lumber	DOL=(1.33) Pla	te grip DOL	=(1.33) Cor	nnect					
WEBS	1-3=-293/339				truss to resi	st drag loads alo	ong bottom	chord from 0	0-0-0					
NOTES					to 1-8-12 for	⁻ 100.0 plf.								
1) Wind: ASC	CE 7-16: Vult=110	0mph ((3-second gust)		LOAD CASE(S)	Standard								
Vasd=87m	nph; TCDL=4.2ps	f; BCE	DL=6.0psf; h=25ft;	Cat.	1) Dead + Sn	ow (balanced):	Lumber Inc	rease=1.15,	Plate					
II; Exp B; I	Enclosed; MWFR	S (env	velope) exterior zo	ne	Increase=1	.15								
and C-C C	Corner (3) zone; c	antilev	ver left and right		Uniform Lo	ads (lb/ft)							(III)	

- exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face),
- see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate
- DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.
- 4) Provide adequate drainage to prevent water ponding.
- 5) Gable requires continuous bottom chord bearing.

Uniform Loads (lb/ft) Vert: 1-2=-338, 3-4=-20

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	P18	Flat	2	1	Job Reference (optional)	R86730575

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:33 ID:zxIQaY8Fi5Ao5NirvwR1L6zlpr9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

2-4-0

Scale = 1:29.5

Plate Offsets (X, Y	: [3:0-3-0,0-2-12]

	. [0.0 0 0,0 Z 1Z	.1												
Loading TCLL (Roof Snow = 25.0 TCDL BCLL BCDL	(psf) 25.0) 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC2018/T	FPI2014	CSI TC BC WB Matrix-P	0.22 0.04 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 3-4 3-4 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 11 lb	GRIP 185/148 FT = 10%	
LUMBER TOP CHORD 2x. BOT CHORD 2x. WEBS 2x. BRACING TOP CHORD Str 1 BOT CHORD Str 1- BOT CHORD Rig bra REACTIONS (size Max Max FORCES (lb TOP CHORD 1 BOT CHORD 34 WEBS 1-5 NOTES 1) Wind: ASCE 7- Vasd=87mph; II; Exp B; Encle and C-C Corre exposed ; end members and f Lumber DOL= 2) TCLL: ASCE 7 DOL = 1.15); IS Ce=1.0; Cs=1. live load applie 3) Provide adequi 4) This truss has chord live load 5) * This truss has on the bottom of 3-06-00 tall by chord and any	4 HF No.2 4 HF No.2 4 HF No.2 4 HF No.2 4 HF No.2 4 HF No.2 4 HF No.2 5 Constant of the second secon	athing directly applie xcept end verticals. applied or 6-0-0 oc anical, 4=1-3-8 C 10) C 35), 4=-253 (LC 3: C 56), 4=419 (LC 59) apression/Maximum 167/156, 2-3=-266/1 (3-second gust) DL=6.0psf; h=25ft; C velope) exterior zon wer left and right ght exposed;C-C for for reactions shown; DL=1.60 Lum DOL = 1.15 Pla B; Partially Exp.; 1607.11.2 minimum i event water ponding r a 10.0 psf bottom ith any other live load for a live load of 20.0 where a rectangle fit between the botto	6) / 7) f 8) f 10) - 10) - 10]	All bearings . Refer to gird Provide mec bearing plate 4 and 253 lb This truss is International referenced s This truss ha olf. Lumber I truss to resis to 1-10-6 for D CASE(S) Dead + Snc Increase=1 Uniform Lo: Vert: 1-2	are assumed to b er(s) for truss to t hanical connectic e capable of withs uplift at joint 3. designed in acco Building Code se tandard ANSI/TP is been designed OOL=(1.33) Plate t drag loads alon 100.0 plf. Standard ow (balanced): Lu. .15 ads (lb/ft) =-338, 3-4=-20	e HF No russ conn on (by othe standing 2 rdance wi ection 230 I 1. for a tota grip DOL g bottom of umber Inci	2 . lections. ers) of truss t 53 lb uplift at ith the 2018 i6.1 and I drag load of =(1.33) Con chord from 0- rease=1.15, F	o joint 100 nect 0-0 Plate			A REAL PROPERTY AND A REAL	HONESSIONA February	G ZHAO SHINGIOZ 74 ERED INGIT L ENGINEIT	

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	P19	Flat	6	1	Job Reference (optional)	R86730576

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:33 ID:ReQ7LA2tj36t0m6vxQgqK2zlqHh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

2-4-0

2x4 II 5x6 =

1-10-6

Scale = 1:29.5

Plate Offsets (X, Y): [3:0-3-0,0-2-12]

(,,,,	,-	,										-	
Loading TCLL (Roof Snow = 25.0) TCDL BCLL BCDL	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC2018	3/TPI2014	CSI TC BC WB Matrix-P	0.22 0.04 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 3-4 3-4 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 11 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD 2x4 HF I BOT CHORD 2x4 HF I BRACING TOP CHORD Structur. 1-10-6 cc BOT CHORD Structur. 1-10-6 cc BOT CHORD Structur. (size) Max Horiz Max Graw FORCES (lb) - Ma Tension TOP CHORD 1-4=-411 BOT CHORD 1-4=-411 BOT CHORD 1-4=-411 BOT CHORD 1-4=-411 BOT CHORD 3-4=-212 WEBS 1-3=-298 NOTES 1) Wind: ASCE 7-16; V Vasd=87mph; TCDL I; Exp B; Enclosed; and C-C Corner (3) 2: exposed; end vertic members and forces Lumber DOL=1.60 p 2) TCLL: ASCE 7-16; P DOL = 1.15); Is=1.0; Ce=1.0; Cs=1.00; Ci live load applied whea 3) Provide adequate dr 4) This truss has been chord live load nonce 5) * This truss has been on the bottom chord 3-06-00 tall by 2-00- chord and any other	No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2	eathing directly applie except end verticals. applied or 6-0-0 oc anical, 4= Mechanica C 10) C 35), 4=-253 (LC 3 C 56), 4=-419 (LC 59) pression/Maximum 167/156, 2-3=-266/1 (3-second gust) CDL=6.0psf; h=25ff; C hvelope) exterior zon ever left and right ght exposed;C-C for for reactions shown; DL=1.60 Lum DOL = 1.15 Pla B; Partially Exp.; 1607.11.2 minimum event water ponding r a 10.0 psf bottom tith any other live load for a live load of 20.0 where a rectangle fit between the botto	6) 7) 8) 9) 10 11 2) (1) 52 52 Cat. e 52 Cat. e tte roof 1. ds. psf om	All bearings Refer to gird Provide mec bearing plate 4 and 253 lb This truss is International referenced s) This truss ha plf. Lumber I truss to resis to 1-10-6 for DAD CASE(S) Dead + Snn Increase=1 Uniform Lo Vert: 1-2	are assumed to b er(s) for truss to t hanical connectic e capable of withs uplift at joint 3. designed in acco Building Code se tandard ANSI/TP is been designed OOL=(1.33) Plate it drag loads alon 100.0 plf. Standard ow (balanced): Lu .15 ads (lb/tt) =-338, 3-4=-20	be HF No. Iruss conr on (by oth standing 2 ordance w ection 23C 1 1. I for a tota g grip DOL g bottom	2 . lections. ers) of truss t 53 lb uplift at ith the 2018 6.1 and I drag load of =(1.33) Con chord from 0 rease=1.15, I	o joint 100 nect -0-0 Plate			a second s	THO PHE STONA	G ZHAO SERIO TA ERED L ENGING

February 17,2025

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	P20X	Flat	2	1	Job Reference (optional)	R86730577

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:33 ID:yMI1saDbzsQgF9KePRxe1UzlqIm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1-3-2

5x6 =

1-3-2

Scale = 1:31.7

Plate Offsets (X, Y): [3:0-3-0,0-2-12]

chord and any other members.

Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC20	18/TPI2014	CSI TC BC WB Matrix-P	0.08 0.02 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4 3-4 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 9 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD WEBS NOTES	2x4 HF No. 2x4 HF No. 2x4 HF No. 2x4 HF No. Structural v 1-3-2 oc pu Rigid ceilin bracing. (size) (Max Upilft (Max Upilft (Max Grav ((lb) - Maxin Tension 1-4=-394/2 3-4=-158/1 1-3=-285/3	2 2 2 2 2 3 3 4 4 5 0 1 2 3 3 - 2 6 7 1 3 3 5 8 (LC num Com 7 3, 1-2=- 2 6 3 1	thing directly applie cept end verticals. applied or 6-0-0 oc nical, 4= Mechanica : 10) C 35), 4=-267 (LC 3 C 35), 4=341 (LC 59 pression/Maximum 113/101, 2-3=-164/9	6 7 8 ed or ⁹ 1 al 32) L) 1 32) 24	 All bearings Refer to gird Provide med bearing plat 4 and 267 lb This truss is Internationa referenced s This truss ha plf. Lumber truss to resis to 1-3-2 for OAD CASE(S) Dead + Sn Increase=1 Uniform Lo Vert: 1-2 	are assumed to ler(s) for truss to chanical connect e capable of with uplift at joint 3. designed in acc Building Code e standard ANSI/T as been designe DOL=(1.33) Plat st drag loads alo 100.0 plf. Standard ow (balanced): L .15 ads (lb/ft) :=-338, 3-4=-20	be HF No. b truss conr tion (by oth- hstanding 2 cordance wi section 230 'PI 1. ad for a tota te grip DOL ong bottom Lumber Inco	2 . lections. ers) of truss t 67 lb uplift at ith the 2018 6.1 and I drag load of =(1.33) Con chord from 0 rease=1.15, l	to ; joint f 100 nect -0-0 Plate				Weight. 5 ib	
 Wind: ASC Vasd=87n II; Exp B; I and C-C C exposed ; members Lumber D TCLL: ASC DOL = 1.1 Ce=1.0; C live load a Provide ac 4) This truss chord live * This truss on the bot 	CE 7-16; Vult: nph; TCDL=4 Enclosed; MV Corner (3) zor end vertical I and forces & OL=1.60 plat CE 7-16; Pf=; [5); Is=1.0; Rd Ss=1.00; Ct=1 pplied where dequate drain has been de: load noncord ss has been d tom chord in	=110mph .2psf; BC VFRS (en re; cantile eft and rig MWFRS e grip DO 25.0 psf (l ough Cat .10; IBC 1 required. lage to pro- signed for current wi esigned fin all areas i wide will	(3-second gust) DL=6.0psf; h=25ft; (velope) exterior zor ver left and right ght exposed;C-C for for reactions shown L=1.60 Lum DOL = 1.15 Pla B; Partially Exp.; 1607.11.2 minimum event water ponding a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle	Cat. he ; ate roof g. ds.								and a second sec	HOPESSION	NG ZHAO AST HOTO TERED INST AL ENGINE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

February 17,2025

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	P21	Flat	10	1	Job Reference (optional)	R86730578

1-10-6

1-10-6

3x4 =

1

4

2-7-9

2x4 II

2

0

3

Builders FirstSource (Arlington, WA), Arlington, WA - 98223,

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:33 ID:89xpO6?YpLYYy95psyEJymzlbVN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2x4 II 3x4 =

1-10-6

Scale = 1:30.5

Loading TCLL (Roof Snow = 2 TCDL BCLL BCDL	25.0)	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC2018	8/TPI2014	CSI TC BC WB Matrix-P	0.11 0.04 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 3-4 3-4 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 12 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural w 1-10-6 oc pr Rigid ceiling bracing. (size) 3 Max Horiz 4 Max Horiz 4	2 2 2 urlins, ex g directly = Mecha =-58 (LC - 215 (LC	athing directly applied (cept end verticals, applied or 6-0-0 oc nical, 4= Mechanical 10)	7) 8) 9) d or 10 11	Refer to girde Provide mech bearing plate 4 and 215 lb This truss is o International referenced st D Load case(s) designer mus for the intend) This truss ha plf. Lumber D	er(s) for truss to tru- nanical connection capable of withsta uplift at joint 3. designed in accord Building Code sect andard ANSI/TPI 1 1 has/have been r st review loads to v ed use of this truss s been designed fo DOL=(1.33) Plate gi	ss conr (by oth nding 2 ance w ion 230 nodifiec erify tha s. r a tota rip DOL	ections. ers) of truss t 15 lb uplift at 16.1 and 1. Building at they are co 1 drag load of .=(1.33) Con	o joint rrect 100 nect					
FORCES	Max Oplift 3 Max Grav 3 (lb) - Maxim	=-215 (L0 =367 (LC um Com	5 35), 4=-215 (LC 32 5 36), 4=367 (LC 39) pression/Maximum	.) I (truss to resist to 1-10-6 for	t drag loads along t 100.0 plf. Standard	oottom	chord from 0-	-0-0					
TOP CHORD BOT CHORD WEBS	Tension 1-4=-408/22 3-4=-222/18 1-3=-333/37	25, 1-2=-^ 37 '4	171/158, 2-3=-129/0	1)	Dead + Sno Increase=1. Uniform Loa Vert: 1-2=	w (balanced): Lum 15 ads (lb/ft) =-164_3-4=-20	ber Inc	rease=1.15, F	Plate					
NOTES 1) Wind: ASC Vasd=87m II; Exp B; E and C-C C exposed; (members a Lumber DC 2) TCLL: ASC DOL = 1.1! Ce=1.0; Cs live load ag 3) Provide ad 4) This truss l chord live l 5) * This truss on the bott 3-06-00 tal chord and	E 7-16; Vult= ph; TCDL=4.: Enclosed; HW end vertical le and forces & N DL=1.60 plate E 7-16; Pf=2 E 7-16; Pf=2 E 7-16; Pf=2 E 7-10; Ro s=1.00; Ct=1. oplied where i equate draina has been des oad nonconco s has been de om chord in a l by 2-00-00 w	110mph 2psf; BCI (FRS (en ;; cantile fft and rig MWFRS i grip DO 5.0 psf (l ugh Cat 1 10; IBC 1 required. age to pre igned for urrent wil signed for ull areas v vide will f mbers.	(3-second gust) DL=6.0psf; h=25ft; C: velope) exterior zone ver left and right ht exposed;C-C for for reactions shown; L=1.60 .um DOL = 1.15 Plat B; Partially Exp.; 607.11.2 minimum re event water ponding. a 10.0 psf bottom th any other live load or a live load of 20.0p where a rectangle it between the bottor	at. e oof s. ssf									HOMEN HOMEN HOMESSIONA	74 ERED CHING

5) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

6) All bearings are assumed to be HF No.2.

NAL D February 17,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	P22	Roof Special	2	1	Job Reference (optional)	R86730579

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:33 ID:Oz5wYRwrh?Edh_Tcsd6Ma?zlbUA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2x4 II 0-8-12

2-7-9

- 3
- Δ
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 5) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members. 6)
- All bearings are assumed to be HF No.2 . 7) Refer to girder(s) for truss to truss connections.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

4 🖤 ۳24 3

0-8-12

0-8-12

2x4 II 2x4 II 1 2

2x4 u

Scale = 1:34.1

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL		25.0	Plate Grip DOL	1.15		TC	0.07	Vert(LL)	0.00	4	>999	240	MT20	185/148
(Roof Snow =	25.0)		Lumber DOL	1.15		BC	0.07	Vert(CT)	0.00	4	>999	180		
TCDL		15.0	Rep Stress Incr	NO		WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCLL		0.0*	Code	IBC201	8/TPI2014	Matrix-R								
BCDL		10.0											Weight: 6 lb	FT = 10%
LUMBER				8)	Provide mec	hanical connecti	on (by oth	ers) of truss	to					
TOP CHORD	2x4 HF No.	2			bearing plate	e capable of with	standing 1	37 lb uplift a	t joint					
BOT CHORD	2x4 HF No.	2			4 and 137 lb	uplift at joint 3.								
WEBS	2x4 HF No.	2		9)	This truss is	designed in acco	ordance w	ith the 2018						
BRACING					International	Building Code s	ection 230	6.1 and						
TOP CHORD	Structural v	vood shea	athing directly applie	d or 10	referenced s Load case(s)	andard ANSI/TF	21 1. en modified	. Building						
BOT CHORD	Rigid ceiling bracing.	g directly	applied or 10-0-0 oc	;	designer mu	st review loads to ded use of this tru	o verify tha uss.	at they are co	orrect					
REACTIONS	(size) 3 Max Horiz 4 Max Uplift 3 Max Grav 3	8= Mecha 1=-58 (LC 8=-137 (L0 8=179 (LC	nical, 4= Mechanica : 10) C 9), 4=-137 (LC 8) C 10), 4=179 (LC 11)	I Lo 1)	Dead + Sno Increase=1 Uniform Los	Standard ow (balanced): Lu .15 ads (lb/ft)	umber Inc	rease=1.15,	Plate					
FORCES	(lb) - Maxim Tension	num Com	pression/Maximum		Vert: 1-2	=-164, 3-4=-20								
TOP CHORD	1-4=-128/9	7, 1-2=-7/	/6, 2-3=-128/97											
BOT CHORD	3-4=-55/57													
NOTES														
 Wind: ASC Vasd=87r II; Exp B; and C-C C exposed; members Lumber D TCLL: AS DOL = 1.1 Ce=1.0; C live load a Provide oct 	CE 7-16; Vult= mph; TCDL=4. Enclosed; MW Corner (3) zon end vertical lk and forces & OL=1.60 plate CE 7-16; Pf=2 (5); Is=1.0; Rc is=1.00; Ct=1. pplied where	=110mph 2psf; BCl /FRS (en e; cantile eft and rig MWFRS e grip DO 25.0 psf (I pough Cat 10; IBC 1 required.	(3-second gust) DL=6.0psf; h=25ft; C velope) exterior zon ver left and right ght exposed;C-C for for reactions shown; L=1.60 Lum DOL = 1.15 Pla B; Partially Exp.; 1607.11.2 minimum I	cat. e te roof								J.	TAOMIN TAOMIN	ASH CITY
3) Provide a	dequate drain	age to pre	event water ponding	•										
4) I NIS TRUSS	nas been des	signed for	a 10.0 pst bottom											

OREGISTERENCIT

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	R01	Corner Rafter	8	1	Job Reference (optional)	R86730580

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:34 ID:wUjbPv_r_oC?rl4VwXLJvHzIwL6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	2-9	-13			
1	2-8-7	5-7-12	8-5-11	11-4-11	Т
Г	2-8-7	2-9-15	2-9-15	2-11-0	٦
	0-1	1-6			

Scale = 1:58.6

Plate Offsets (X, Y): [2:0-0-5,Edge], [2:1-4-3,0-1-0], [3:0-2-8,2-7-7]

Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC201	8/TPI2014	CSI TC BC WB Matrix-P	0.52 0.00 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.00	(loc) 4-5 4-5 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 27 lb	GRIP 185/148 FT = 10%	
LUMBER TOP CHORD BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD NOTES 1) Wind: AS(Vasd=87n I); Exp B; cantilever right expo 2) TCLL: AS DOL = 1.1 Ce=1.0; C ive load a 3) Unbalance design. 4) Plates che about its c	2x4 DF 18 No.2 Structural 2-8-7 oc p Rigid ceili (size) Max Horiz Max Uplift Max Grav (lb) - Max Tension 1-2=0/94, 4-5=-79/5 CE 7-16; Vu mph; TCDL= Enclosed; M left and righ sed; Lumbe CE 7-16; Pf. 15); Is=1.0; Ct= applied when ed snow load ecked for a p center.	wood she burlins. ng directly 2=0-4-9, 5 6=0-2-2 2=185 (LC 2=-31 (LC (LC 10), 5 10) 2=440 (LC (LC 10), 5 10) 2=440 (LC (LC 16), 5 16) mum Com 2-3=-153/2 2, 5-6=-48, t=110mph 4.2psf; BC WFRS (er t exposed r DOL=1.6 Rough Cat 1.10; IBC ' e required. ds have be Jus or mini	*Except* 2-3:2x4 HF athing directly applied applied. 3=0-2-2, 4=0-2-2, 5= C 10) C 6), 3=-60 (LC 10), 4 i=-60 (LC 10), 6=-67 C 1), 3=79 (LC 19), 4 i=278 (LC 16), 6=37 apression/Maximum 20, 3-4=-117/39, /88, 6-7=-71/0 (3-second gust) DL=6.0psf; h=25ft; 0 velope) exterior zor ; end vertical left an 0 plate grip DOL=1.4 Lum DOL = 1.15 Pla B; Partially Exp.; 1607.11.2 minimum een considered for th us 0 degree rotation	- 5) - 5) - 60-2-2, 8) - (LC 9) - (LC 1(- 4=241 1(- 12 - 4=241 1(- 12 -	 * This truss I on the bottoo 3-06-00 tall I chord and at All bearings Bearing at jo using ANSI/ designer sho Provide mec bearing plate Provide mec bearing plate 3, 31 Ib uplif joint 5 and 6 Diseveled plat surface with 1) This truss is International referenced s Hanger(s) on provided suf down and 12 up at 5-7-7, top chord. T device(s) is i 3) In the LOAD of the truss as DAD CASE(S) Dead + Sm Increase=1 Uniform Lo Vert: 1-7 	has been designed in chord in all areas by 2-00-00 wide will by other members. are assumed to be int(s) 2 considers p IFI 1 angle to grain buld verify capacity hanical connection at joint(s) 3, 4, 5, hanical connection at at joint 2, 67 lb up 7 lb uplift at joint 6. e or shim required truss chord at joint designed in accord Building Code sec Building Code sec tandard ANSI/TPI other connection of ficient to support or 26 lb up at 2-9-8, at and 64 lb down an he design/selection he responsibility of CASE(S) section, are noted as front (Standard bw (balanced): Lun 15 ads (lb/ft) =-80 ed Loads (lb) 47 (B)	for a live s where II fit betw HF No. barallel 1 of bear (by oth 6. (by oth anding 6 lift at join to provi (s) 3, 4, dance w tion provi (s) 3, 4, dance w tion provi (s) 3, 4, dance w tion provi (s) 3, 4, dance w for here loads a F) or ba	e load of 20. a rectangle veen the bott 2 . to grain value a. Building ing surface. ers) of truss or b uplift at the 2018 b6.1 and b6.1 and b1 be the doad(s) 4 o down and 3 up at 8-5-6 of h connection poplied to the ck (B). rease=1.15,	Opsf form to to joint olift at 19 48 lb 44 lb on face Plate			and the second se	THOMESSIONA	G ZHAO SHINGIOU ERED L ENGINO	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

February 17,2025

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	R02	Corner Rafter	4	1	Job Reference (optional)	R86730581

2-8-7

-2-9-15

Builders FirstSource (Arlington, WA), Arlington, WA - 98223,

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:34 ID:X1tL4P4oXglbr3?73KFaRBzlsdQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

9-4-6

Page: 1

Scale = 1:51.9

Plate Offsets (X, Y): [2:0-0-5.Edge], [2:1-4-3.0-1-0], [3:0-2-8.2-7-7]

	(, .). <u>L</u> =	-9-1, [-	,[,	= =,= : :	1								-	
Loading TCLL (Roof Snow = TCDL BCLL BCDL	(ps 25. 25.0) 15. 0. 10.	f) .0 .0 .0 * .0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC20 ⁻	8/TPI2014	CSI TC BC WB Matrix-P	0.52 0.00 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.00	(loc) 3-4 3-4 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 22 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD NOTES 1) Wind: ASC Vasd=87m II; Exp B; I cantilever right expor 2) TCLL: ASC DOL = 1.1 Ce=1.0; C Live load a 3) Unbalance design. 4) Plates che about its c 5) * This trus on the bot 3-06-00 ta chord and 6) All bearing 6) All bearing	2x4 DF 1800F 1 No.2 Structural wood 2-8-7 oc purlins Rigid ceiling dire (size) 2=0-4 Max Horiz 2=144 Max Horiz 2=144 Max Grav 2=444 (lb) - Maximum Tension 1-2=0/94, 2-3=- 4-5=-49/78, 5-6: CE 7-16; Vult=110 nph; TCDL=4.2psf Enclosed; MWFRS left and right expo sed; Lumber DOL: CE 7-16; Pf=25.0 (5); Is=1.0; Rough is=1.0; Ct=1.10; I pplied where requ ed snow loads hav ecked for a plus or center. Is has been design tom chord in all ar all by 2-00-00 wide any other member	.6E *E sheat - ectly a -(LC 1 4 (LC 1 4 (LC 1 4 (LC 1 0 (LC 2 Compi 127/14 =-44/0 mph () ; BCD S (env; cat B BC 16 irred. re beei minus ed for eas wil will fit rs. be HE	Except* 2-3:2x4 HF thing directly applie (applied. (applied. (b), 3=-60 (LC 10), (c), 5=-58 (LC 10), (c), 5=-58 (LC 10), (c), 5=-58 (LC 16), (c), 5=286 (LC 10), (c),	7 8 8 9 0-2-2 1 1 1 1 1 0 1 2 4 L 2 0 1 1 50 1 1 50 1 1 50 1 1 50 1 1 50 1 1 1 1	 Bearing at jc using ANSI/ designer sho Provide mec bearing platt Provide mec bearing platt Provide the mec bearing platt 44 lb uplif uplift at joint Beveled plat surface with This truss is International referenced siz Hanger(s) on provided suf down and 1: up at 5-7-7, top chord. T device(s) is In the LOAD of the truss a Dead + Sm Increase=1 Uniform Lo Vert: 1-6 Concentrat Vert: 3=4 	bint(s) 2 considers TPI 1 angle to grai buld verify capacity chanical connectio e at joint(s) 3, 4, 5 chanical connectio e capable of withs? t at joint 2, 64 lb u 5. e or shim required truss chord at join designed in accor Building Code se tandard ANSI/TPI r other connection ficient to support of 87 lb up at 2-9-8, and 58 lb down a The design/selection the responsibility of CASE(S) section are noted as front Standard ow (balanced): Lu .15 ads (lb/ft) i≡-80 ed Loads (lb) 47 (F)	parallel in formul y of bear n (by oth n (by oth tanding 6 plift at jo d to provi tt(s) 3, 4, ,dance w ction 23(1 1. device(s concentri- and 64 II nd 33 Ib on of suc of others , loads a (F) or ba	to grain value a. Building ing surface. ers) of truss 0 lb uplift at nt 4 and 58 l de full bearin 5. ith the 2018 06.1 and i) shall be ated load(s) 4 o down and 3 up at 8-5-6 of h connection pplied to the ck (B). rease=1.15,	to to joint b 19 48 lb 44 lb 50 1 face Plate			A STATE	THOMEN AND AND AND AND AND AND AND AND AND AN	G ZHAO SINGINO 74 LENGINO
-,	,													

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

February 17,2025

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	R03	Corner Rafter	8	1	Job Reference (optional)	R86730582

2-8-7

2-8-7

-2-9-15

2-9-15

Builders FirstSource (Arlington, WA), Arlington, WA - 98223,

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:34 ID:oR7bzQ62VWsyvxifW8RHnQzIsni-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

9-7-3

6-10-12

	2-9	-13		
1	2-8-7	5-7-12	8-6-12	1
Г	2-8-7	2-9-15	2-11-0	Т
	0-1	-6		

Scale = 1:52.4

Plate Offsets (X, Y): [2:0-0-5.Edge], [2:1-4-3.0-1-0], [3:0-2-8.2-7-7]

	(,,, ,). [=.0 0	,ugo],	[2.1 1 0,0 1 0], [0.0	0 2 0,2 .	.1									
Loading TCLL (Roof Snow = TCDL BCLL BCDL	= 25.0)	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC20	18/TPI2014	CSI TC BC WB Matrix-P	0.52 0.00 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.00	(loc) 3-4 3-4 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 22 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD 1) Wind: AS Vasd=87 II; Exp B; cantileve right expo 2) TCLL: AS DOL = 1. Ce=1.0; (ilve load 3: DOL = 1. Ce=0.0; (ilve load 3: DOL = 0. CE DOL = 0. CE DO	 2x4 DF 18(No.2 Structural 2-8-7 oc pi 0 Rigid cellin (size) Max Horiz Max Uplift Max Uplift Max Grav (ib) - Maxin Tension 1-2=0/94, 3 4-5=-48/82 SCE 7-16; Vult mph; TCDL=4 Enclosed; MN r left and right Scet 7-16; Pf= 15); Is=1.0; R Cs=1.00; Ct=1 applied where ced snow load necked for a pl center. ss has been co thom chord in all by 2-00-00 day other m 	00F 1.6E wood she urlins. 1g directly 2=0-4-9, 32 2=147 (LC 2=-42 (LC 2=-42 (LC 2=-42 (LC 16), 5 mum Com 2-3=-130/ 2, 5-6=-56 (=110mph 2, 25-6=-56) (=10mph 2, 25-0 sf (() 0ugh Cat 1, 10; IBC 1, 10;	*Except* 2-3:2x4 HI athing directly appli applied. 3=0-2-2, 4=0-2-2, 5= C 10) C 10), 3=-60 (LC 10) C 10, 3=-62 (LC 10) C 10, 3=98 (LC 16) ;=323 (LC 16) ;pression/Maximum 14, 3-4=-75/53, (0) (3-second gust) DL=6.0psf; h=25ft; ivelope) exterior zor ; end vertical left ar 0 plate grip DOL=1. Lum DOL = 1.15 Pl B; Partially Exp.; 1607.11.2 minimum een considered for the us 0 degree rotation or a live load of 20.0 where a rectangle	F ed or =0-2-2),) 4=298 Cat. ne; id 4=298 cat. ne; id 60 ate i roof his n 0psf om	 7) Bearing at jc using ANSI/ designer sho 8) Provide mec bearing plat 9) Provide mec bearing plat 3, 42 lb uplif uplift at joint 10) Beveled plat surface with 11) This truss is Internationa referenced s 12) Hanger(s) o provided suf down and 1: up at 5-7-7, top chord. 13) In the LOAD of the truss is IOAD CASE(S) 10) Dead + Sn Increase=1 Uniform Lo Vert: 1-6 Concentrat Vert: 3=-4 	bint(s) 2 considers TPI 1 angle to gra buld verify capacit chanical connectic e at joint(s) 3, 4, 5 chanical connectic e capable of withs t at joint 2, 63 lb u 5. te or shim require truss chord at join designed in acco I Building Code se standard ANSI/TP r other connection ficient to support 33 lb up at 2-9-8, and 60 lb down a The design/selecti the responsibility 0 CASE(S) section are noted as front Standard ow (balanced): Lu .15 adds (lb/ft) i=-80 ted Loads (lb) 47 (F)	s parallel f ain formul; ty of bear on (by oth 5. on (by oth standing 6 uplift at joi d to provi d to provi nt(s) 3, 4, ordance w ection 230 l 1. on device(s concentr and 64 lk and 33 lb ion of suc of others. h, loads a ; (F) or ba umber Inc	o grain value a. Building ng surface. ers) of truss 0 lb uplift at nt 4 and 62 l de full bearin 5. de full bearin 5. rease=1.15,	to to joint b 19 18 lb 14 lb on face Plate			· · · · · · · · · · · · · · · · · · ·	THOMEN SHOWN	G ZHAO SHINGIO THERE ILENGINOS
All bearing	nos are assum	ied to he H	HE No 2										INP	

6) All bearings are assumed to be HF No.2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

-----February 17,2025

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H			
4448984	R04	Corner Rafter	8	1	Job Reference (optional)	R86730583		

Run: 8.83 E Dec 31 2024 Print: 8.830 E Dec 31 2024 MiTek Industries, Inc. Mon Feb 17 16:37:30 ID:wZZ46kVBPrLeCc?mIn0ExgzIsIv-iKTGDiGsIf1qCoPOfCvyyTzePC4h_NLLGbT3M1zk8wp

Scale = 1:44.8

Plate Offsets (X, Y): [2:1-4-3,0-1-0], [2:0-0-5,Edge], [3:0-2-8,2-7-7]

	/ .				-									
Loading		(psf) 25.0	Spacing Plate Grin DOI	2-0-0 1 15		CSI	0.52	DEFL	in -0.02	(loc) 3-4	l/defl ∽999	L/d 240	PLATES	GRIP 185/148
(Boof Sp	25.0)	20.0		1.15			0.02		-0.02	24	> 000	100	101120	103/148
	JW = 25.0)	15.0		1.15			0.00		-0.02	3-4	>999	160		
TODL		15.0	Rep Stress Incr	NU		VVB	0.00	Horz(CT)	0.00	5	n/a	n/a		
BCLL		0.0 ^	Code	IBC20	8/TPI2014	Matrix-P								
BCDL		10.0											Weight: 20 lb	FT = 10%
LUMBER 7) TOP CHORD 2x4 DF 1800F 1.6E *Except* 2-3:2x4 HF 8) BRACING TOP CHORD Structural wood sheathing directly applied or 2-8-7 oc purlins. 9) BOT CHORD Rigid ceiling directly applied. 9) REACTIONS All bearings 0-2-2. except 5=0-1-8, 2=0-4-9 10) REACTIONS All bearings 0-2-2. except 5=0-1-8, 2=0-4-9 11) (lb) - Max Horiz 2=127 (LC 10) 11 Max Grav All reactions 250 (lb) or less at joint (s) 3, 5 except 2=444 (LC 16), 4=294 (LC 16) 11 FORCES (lb) - Max. Comp./Max. Ten All forces 250 12) (lb) or less except when shown. 12) NOTES LO 1) Wind: ASCE 7-16; Vult=110mph (3-second gust) 1) Vasd=87mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 1) 2) TCLL: ASCE 7-16; Pl=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required. 3) 3) Unbalanced snow loads have been considered for this design. 4) Plates checked for a plus or minus 0 degree rotation about its center. 5) * This tr					 Provide mec bearing plate Provide mec bearing plate Provide mec bearing plate (s) 5, 2, 3, 4. Beveled plat surface with This truss is International referenced s Hanger(s) or provided suff down and 47 up at 5-77 connection d In the LOAD of the truss a OAD CASE(S) Dead + Sno Increase=1 Uniform Lo: Vert: 1-5 Concentrate Vert: 3=4 	hanical connection a tjoint(s) 5, 3, 4. hanical connection a capable of withsta e or shim required truss chord at joint designed in accorr Building Code sec tandard ANSI/TPI other connection ficient to support or of top chord. The levice(s) is the res CASE(S) section, are noted as front (Standard bw (balanced): Lun .15 ads (lb/ft) =-80 ed Loads (lb) 17 (F)	h (by oth anding 1 to provi t(s) 5, 3, dance w ction 230 1. device(s oncentra d 39 lb design/; ponsibili loads a F) or ba	ers) of truss t of truss t 00 lb uplift at de full bearin 4. th the 2018 b6.1 and) shall be ated load(s) 3 down and 34 eslection of si ty of others. oplied to the t ck (B). rease=1.15, I	to to t joint g 3 lb lb uch face Plate			A REAL PROPERTY IN THE REAL PROPERTY INTO THE REAT	Weight: 20 lb	FT = 10%
using desig	ANSI/TPI 1 angle ner should verify o	to grain f apacity o	formula. Building f bearing surface.										February	17,2025

400 Sunrise Ave., Suite 270 Rosevile, CA 95661 916.755.3571 / MITek-US.com

Page: 1

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN BLDG H	
4448984	R05	Rafter	2	1	Job Reference (optional)	R86730584

Run: 8.83 S Feb 1 2025 Print: 8.830 S Feb 1 2025 MiTek Industries, Inc. Mon Feb 17 10:17:35 ID:uScAh9j?eKA_F5EdB8w5X7zlu?g-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-----February 17,2025

Page: 1

Scale =	1:26.6
---------	--------

Plate Offsets (X, Y): [1:0-0-9,Edge], [1:1-5-9,0-2-0], [2:0-0-8,2-8-14]

Load TCLI (Roo TCD BCLI BCD	ling - f Snow = 25.0) - - L	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2018/TPI2014	CSI TC BC WB Matrix-P	0.06 0.00 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 1-2 1-2 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 7 lb	GRIP 185/148 FT = 10%
LUM TOP BRA TOP BOT REA	BER CHORD 2x4 HF No.2 CING CHORD Structural w 2-8-7 oc pur CHORD Rigid ceiling (Size) 1: Max Horiz 1: Max Uplift 1: Max Grav 1:	2 ood shea lins. directly =0-7-0, 2 =33 (LC =-16 (LC =145 (LC	athing directly applied applied. '= Mechanical 14) 14), 2=-32 (LC 14) 2 20), 2=145 (LC 20)	int(s) 1 considers p IPI 1 angle to grain juld verify capacity hanical connection a capable of withsta uplift at joint 2. designed in accord Building Code sect tandard ANSI/TPI 1 Standard	arallel formul of bear (by oth nding 1 ance w ion 230	o grain value a. Building ng surface. ers) of truss to 6 lb uplift at jo ith the 2018 16.1 and	o bint						
FOR	CES (Ib) - Maxim	um Com	pression/Maximum										
тор	CHORD 1-2=-50/50												
NOT	ES												
1) \ 	 Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; c-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 PTCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15; Is=1.0; Rough Cat B; Partially Exp.; Cat 4.0; Cot 4.0; DC 4.14.0; DE 4.14.0; misure mode 												
1 3) (ve load applied where r Inbalanced snow loads lesign.	equired. have be	en considered for this	5							7	TIACE WA	SHINCE
4) F 35) * 30 30 6) A 7) F	Plates checked for a plu bout its center. This truss has been de in the bottom chord in a i-06-00 tall by 2-00-00 w hord and any other me all bearings are assume the for to girder(s) for tru	s or minu signed fo Il areas v vide will f mbers. d to be H ss to trus	us 0 degree rotation or a live load of 20.0p where a rectangle fit between the bottor HF No.2. ss connections.	nsf								RPORESSIO	74 ERED INST

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor1 bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.