PIERUCCIONI E&C, LLC CHON PIERUCCIONI, PE

EAST TOWN CROSSING

LOT 1 COMMERCIAL PIONEER & SHAW PUYALLUP

REVISIONS

REVISIONS

CP

CP

2024.12.18 STRUCTURAL ANALYSIS

FNGINFFR

DATE

TITLE: S

CHECKED BY

61

# ENGINEERING ANALYSIS FOR: EAST TOWN CROSSING COMMERCIAL LOT 1 PIONEER AND SHAW PUYALLUP, WA

#### DESIGN CRITERIA

BUILDING CODE: 2021 INTERNATIONAL BUILDING CODE (IBC) AS AMENDED BY THE LOCAL JURISDICTION. VERTICAL LOADS ROOFLIVELOAD 25 PSF (SNOW) ROOF DEAD LOAD: 20 PSF 100 PSF FLOOR LIVE LOAD: FLOOR DEAD LOAD: 15 PSF SNOW DESIGN DATA (ASCE 7-16) WIND DESIGN DATA (ASCE 7-16) FLAT SNOW LOAD: 25 PSF BASIC WIND SPEED (ASD) V= 85MPH SNOW EXPOSURE FACTOR. Ce=1.0. LII TIMATE WIND SPEED V= 110MPH SNOW IMPORTANCE FACTOR, Is=1.0, RISK CATEGORY: II EXPOSURE: B THERMAL FACTOR, Ct=1.1 IMPORTANCE FACTOR, Iw= 1.0 TOPOGRAPHIC FACTOR, Kzt= 1.0 SEISMIC DESIGN DATA (ASCE7-16) SEISMIC DESIGN DATA (ASCE 710) SEISMIC RESPONSE SYSTEM: WOOD SHEARWALLS EQUIVALENT LATERAL FORCE PROCEDURE (ASCE 7-16)

EQUIVALENT LATERAL FORCE PROCEDURE (ASCE 7-16) RISK CATEGORY: II SEISMIC IMPORTANCE FACTOR, Ie= 1.0 MAPPED SPECTRAL RESPONSE ACCELERATION: Ss=1.42, S1=1.43 DESIGN SPECTRAL RESPONSE ACCELERATION: Sds=1.03, Sd1=0.61 SITE CLASS: D SEISMIC DESIGN CATEGORY: D SEISMIC RESPONSE COEFFICIENT: Cs= 0.113 DESIGN BASE SHEAR: 19,208# SOIL PROPERTIES: BEARING CAPACITY: 2,000 PSF LATERAL CAPACITY: 250 PSF/FT

## **FORTEWEB**<sup>®</sup> JOB SUMMARY REPORT Fast Town Crossing - Co

East Town Crossing - Commercial Lot 1

| Member Name                    | Results (Max UTIL %) | Current Solution                             | Comments |
|--------------------------------|----------------------|----------------------------------------------|----------|
| 13' Studs                      | Passed (43% B/C)     | 1 piece(s) 2 x 6 DF No.2 @ 16" OC            |          |
| Grid 1 - 5' Window Header      | Passed (91% R)       | 1 piece(s) 4 x 10 DF No.2                    |          |
| Grid 1 - 5' Window King Studs  | Passed (44% B/C)     | 2 piece(s) 2 x 6 HF No.2                     |          |
| Grid 1 - 10' Window Header     | Passed (87% R)       | 1 piece(s) 3 1/2" x 12" 24F-V4 DF Glulam     |          |
| Grid 1 - 10' Window King Studs | Passed (74% B/C)     | 2 piece(s) 2 x 6 HF No.2                     |          |
| Grid 2 - 5' Window Header      | Passed (78% R)       | 1 piece(s) 4 x 10 DF No.2                    |          |
| Grid 2 - 5' Window King Studs  | Passed (94% B/C)     | 1 piece(s) 2 x 6 HF No.2                     |          |
| Grid 3 - 6' Door Header        | Passed (86% M)       | 1 piece(s) 4 x 12 DF No.2                    |          |
| Grid 3 - 6' Door King Studs    | Passed (53% B/C)     | 2 piece(s) 2 x 6 HF No.2                     |          |
| Grid 3 - 4' Window Header      | Passed (91% R)       | 1 piece(s) 4 x 10 DF No.2                    |          |
| Grid 3 - 4' Window King Studs  | Passed (93% B/C)     | 1 piece(s) 2 x 6 HF No.2                     |          |
| Grid 4 - 6' Door Header        | Passed (61% M+)      | 1 piece(s) 5 1/2" x 9" 24F-V4 DF Glulam      |          |
| Grid 4 - 6' Door King Studs    | Passed (90% B/C)     | 2 piece(s) 2 x 6 HF No.2                     |          |
| Grid 4 - 7' Window Header      | Passed (59% M+)      | 1 piece(s) 3 1/2" x 9" 24F-V4 DF Glulam      |          |
| Grid 4 - 7' Window King Studs  | Passed (51% B/C)     | 2 piece(s) 2 x 6 DF No.2                     |          |
| Grid 4 - 9' Window Header      | Passed (71% M+)      | 1 piece(s) 3 1/2" x 10 1/2" 24F-V4 DF Glulam |          |
| Grid 4 - 9' Window King Studs  | Passed (62% B/C)     | 2 piece(s) 2 x 6 DF No.2                     |          |
| Grid A - 4' Window Header      | Passed (7% R)        | 1 piece(s) 4 x 10 DF No.2                    |          |
| Grid A- 4' Window King Studs   | Passed (64% B/C)     | 1 piece(s) 2 x 6 HF No.2                     |          |
| Grid A - 6' Door Header        | Passed (12% M)       | 1 piece(s) 4 x 10 DF No.2                    |          |
| Grid A - 6' Door King Studs    | Passed (94% B/C)     | 1 piece(s) 2 x 6 HF No.2                     |          |
| Grid A - 9' Window Header      | Passed (23% M)       | 1 piece(s) 4 x 10 DF No.2                    |          |
| Grid A - 9' Door King Studs    | Passed (68% B/C)     | 2 piece(s) 2 x 6 HF No.2                     |          |
| Grid D - 5' Window Header      | Passed (9% R)        | 1 piece(s) 4 x 10 DF No.2                    |          |
| Grid D- 5' Window King Studs   | Passed (76% B/C)     | 1 piece(s) 2 x 6 HF No.2                     |          |
| Grid D - 3' Door Header        | Passed (6% R)        | 1 piece(s) 4 x 10 DF No.2                    |          |
| Grid D- 3' Door King Studs     | Passed (52% B/C)     | 1 piece(s) 2 x 6 HF No.2                     |          |
| Grid D - 9' Window Header      | Passed (23% M)       | 1 piece(s) 4 x 10 DF No.2                    |          |
| Grid D- 9' Window King Studs   | Passed (60% B/C)     | 2 piece(s) 2 x 6 HF No.2                     |          |

| ForteWEB Software Operator                                                          |
|-------------------------------------------------------------------------------------|
| Chon Pieruccioni<br>Pieruccioni Engineering<br>(206) 949-7866<br>cpieru@hotmail.com |

Job Notes



12/16/2024 10:37:43 PM UTC ForteWEB v3.8 File Name: East Town Crossing - Commercial Lot 1



#### Roof Framing, 13' Studs 1 piece(s) 2 x 6 DF No.2 @ 16" OC

#### Wall Height: 13'

Member Height: 12' 7 1/2"

O. C. Spacing: 16.00"

PASSED



| Design Results          | Actual          | Allowed | Result         | LDF  | Load: Combination                |
|-------------------------|-----------------|---------|----------------|------|----------------------------------|
| Slenderness             | 28              | 50      | Passed (55%)   |      |                                  |
| Compression (lbs)       | 1497            | 4711    | Passed (32%)   | 1.15 | 1.0 D + 1.0 S                    |
| Plate Bearing (lbs)     | 1497            | 4177    | Passed (36%)   |      | 1.0 D + 1.0 S                    |
| Lateral Reaction (lbs)  | 110             |         |                | 1.60 | 1.0 D + 0.6 W                    |
| Lateral Shear (lbs)     | 102             | 1584    | Passed (6%)    | 1.60 | 1.0 D + 0.6 W                    |
| Lateral Moment (ft-lbs) | 348 @ mid-span  | 1342    | Passed (26%)   | 1.60 | 1.0 D + 0.6 W                    |
| Total Deflection (in)   | 0.24 @ mid-span | 1.26    | Passed (L/639) |      | 1.0 D + 0.6 W                    |
| Bending/Compression     | 0.43            | 1       | Passed (43%)   | 1.60 | 1.0 D + 0.45 W + 0.75 L + 0.75 S |

• Lateral deflection criteria: Wind (L/120)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

• Applicable calculations are based on NDS.

• A bearing area factor of 1.25 has been applied to base plate bearing capacity.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

| Supports Typ        |        |            | Material | System : Wall            |  |
|---------------------|--------|------------|----------|--------------------------|--|
| Тор                 | Dbl 2X |            | Hem Fir  | Member Type : Stud       |  |
| Base 2X             |        | 2X Hem Fir |          | Design Methodology : ASD |  |
| Max Unbraced Length |        |            | Comments |                          |  |

Drawing is Conceptual

| Lateral Connections |           |                            |          |                   |  |  |  |  |
|---------------------|-----------|----------------------------|----------|-------------------|--|--|--|--|
| Supports            | Connector | Type/Model                 | Quantity | Connector Nailing |  |  |  |  |
| Тор                 | Nails     | 8d (0.113" x 2 1/2") (Toe) | 2        | N/A               |  |  |  |  |
| Base                | Nails     | 8d (0.113" x 2 1/2") (Toe) | 2        | N/A               |  |  |  |  |

Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

|                |         | Dead   | Snow   |              |
|----------------|---------|--------|--------|--------------|
| Vertical Load  | Spacing | (0.90) | (1.15) | Comments     |
| 1 - Point (lb) | N/A     | 665    | 832    | Default Load |

|                   |             |         | Wind   |          |
|-------------------|-------------|---------|--------|----------|
| Lateral Load      | Location    | Spacing | (1.60) | Comments |
| 1 - Uniform (PSF) | Full Length | 16.00"  | 21.8   |          |

• ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (110), Risk Category(II), Wind Zone (4), GCpi

(+/- 0.18), Effective Wind Area determined using full member span and trib. width.

• IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

1'

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/ document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

| ForteWEB Software Operator                                                          | Job Notes |
|-------------------------------------------------------------------------------------|-----------|
| Chon Pieruccioni<br>Pieruccioni Engineering<br>(206) 949-7866<br>cpieru@hotmail.com |           |



Weverhaeuser



## Roof Framing, Grid 1 - 5' Window Header 1 piece(s) 4 x 10 DF No.2



Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal (typ.).

| Design Results        | Actual @ Location | Allowed      | Result          | LDF  | Load: Combination (Pattern) |
|-----------------------|-------------------|--------------|-----------------|------|-----------------------------|
| Member Reaction (lbs) | 2975 @ 0          | 3281 (1.50") | Passed (91%)    |      | 1.0 D + 1.0 S (All Spans)   |
| Shear (lbs)           | 1960 @ 10 3/4"    | 4468         | Passed (44%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Moment (Ft-lbs)       | 3905 @ 2' 7 1/2"  | 5166         | Passed (76%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Live Load Defl. (in)  | 0.029 @ 2' 7 1/2" | 0.175        | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |
| Total Load Defl. (in) | 0.052 @ 2' 7 1/2" | 0.262        | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |

Member Length : 5' 3" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

|                  | Bearing Length |           |          | Loads | to Support |          |             |
|------------------|----------------|-----------|----------|-------|------------|----------|-------------|
| Supports         | Total          | Available | Required | Dead  | Snow       | Factored | Accessories |
| 1 - Trimmer - HF | 1.50"          | 1.50"     | 1.50"    | 1334  | 1641       | 2975     | None        |
| 2 - Trimmer - HF | 1.50"          | 1.50"     | 1.50"    | 1334  | 1641       | 2975     | None        |

| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | 5' 3" o/c         |          |
| Bottom Edge (Lu) | 5' 3" o/c         |          |

•Maximum allowable bracing intervals based on applied load.

| Vertical Loads        | Location   | Tributary<br>Width | Dead<br>(0.90) | Snow<br>(1.15) | Comments     |
|-----------------------|------------|--------------------|----------------|----------------|--------------|
| 0 - Self Weight (PLF) | 0 to 5' 3" | N/A                | 8.2            |                |              |
| 1 - Uniform (PSF)     | 0 to 5' 3" | 25'                | 20.0           | 25.0           | Default Load |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/ document-library.

yerhaeuser

| ForteWEB Software Operator                                                          | Job Notes |    |
|-------------------------------------------------------------------------------------|-----------|----|
| Chon Pieruccioni<br>Pieruccioni Engineering<br>(206) 949-7866<br>cpieru@hotmail.com |           | We |



## PASSED

## Roof Framing, Grid 1 - 5' Window King Studs 2 piece(s) 2 x 6 HF No.2

#### Wall Height: 13'

Member Height: 12' 7 1/2"

Tributary Width: 3' 2"



Drawing is Conceptual

| Design Results          | Actual          | Allowed | Result         | LDF  | Load: Combination |
|-------------------------|-----------------|---------|----------------|------|-------------------|
| Slenderness             | 28              | 50      | Passed (55%)   |      |                   |
| Compression (lbs)       | 1497            | 7777    | Passed (19%)   | 1.15 | 1.0 D + 1.0 S     |
| Plate Bearing (lbs)     | 1497            | 6683    | Passed (22%)   |      | 1.0 D + 1.0 S     |
| Lateral Reaction (lbs)  | 262             |         |                | 1.60 | 1.0 D + 0.6 W     |
| Lateral Shear (lbs)     | 243             | 2640    | Passed (9%)    | 1.60 | 1.0 D + 0.6 W     |
| Lateral Moment (ft-lbs) | 827 @ mid-span  | 2223    | Passed (37%)   | 1.60 | 1.0 D + 0.6 W     |
| Total Deflection (in)   | 0.32 @ mid-span | 0.84    | Passed (L/468) |      | 1.0 D + 0.6 W     |
| Bending/Compression     | 0.44            | 1       | Passed (44%)   | 1.60 | 1.0 D + 0.6 W     |

• Lateral deflection criteria: Wind (L/180)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

• Applicable calculations are based on NDS.

• The column stability factor (Kf = 0.6) applied to this design assumes nailed built-up columns per NDS section 15.3.3. For Weyerhaeuser ELP products refer to the U.S. Wall Guide for multiple-member connection requirements.

| Supports | Туре   | Material | System : Wall            |
|----------|--------|----------|--------------------------|
| Тор      | Dbl 2X | Hem Fir  | Member Type : Column     |
| Base     | 2X     | Hem Fir  | Design Methodology : ASD |

**Max Unbraced Length** Comments 1'

| Lateral Connections |           |                            |          |                   |  |  |  |  |
|---------------------|-----------|----------------------------|----------|-------------------|--|--|--|--|
| Supports            | Connector | Type/Model                 | Quantity | Connector Nailing |  |  |  |  |
| Тор                 | Nails     | 8d (0.113" x 2 1/2") (Toe) | 4        | N/A               |  |  |  |  |
| Base                | Nails     | 8d (0.113" x 2 1/2") (Toe) | 4        | N/A               |  |  |  |  |

• Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

| Vertical Load  | Tributary Width | Dead<br>(0.90) | Snow<br>(1.15) | Comments     |
|----------------|-----------------|----------------|----------------|--------------|
| 1 - Point (lb) | N/A             | 665            | 832            | Default Load |

|                   |             |                 | Wind   |          |
|-------------------|-------------|-----------------|--------|----------|
| Lateral Load      | Location    | Tributary Width | (1.60) | Comments |
| 1 - Uniform (PSF) | Full Length | 3' 2"           | 21.8   |          |

• ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (110), Risk Category(II), Wind Zone (4), GCpi (+/- 0.18), Effective Wind Area determined using full member span and trib. width.
IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/ document-library

Weverhaeuser

| ForteWEB Software Operator                                                          | Job Notes |
|-------------------------------------------------------------------------------------|-----------|
| Chon Pieruccioni<br>Pieruccioni Engineering<br>(206) 949-7866<br>cpieru@hotmail.com |           |





## Roof Framing, Grid 1 - 10' Window Header 1 piece(s) 3 1/2" x 12" 24F-V4 DF Glulam



Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal (typ.).

| Design Results        | Actual @ Location         | Allowed | Result         | LDF  | Load: Combination (Pattern) |
|-----------------------|---------------------------|---------|----------------|------|-----------------------------|
| Member Reaction (lbs) | on (lbs) 5960 @ 1 1/2" 68 |         | Passed (87%)   |      | 1.0 D + 1.0 S (All Spans)   |
| Shear (lbs)           | 4541 @ 1' 3"              | 8533    | Passed (53%)   | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Pos Moment (Ft-lbs)   | 14910 @ 5' 3"             | 19320   | Passed (77%)   | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Live Load Defl. (in)  | 0.171 @ 5' 3" 0.342       |         | Passed (L/719) |      | 1.0 D + 1.0 S (All Spans)   |
| Total Load Defl. (in) | 0.311 @ 5' 3"             | 0.512   | Passed (L/396) |      | 1.0 D + 1.0 S (All Spans)   |

Member Length : 10' 6" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 10' 3".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

|                  | Bearing Length |           | Loads    | to Support |      |          |             |
|------------------|----------------|-----------|----------|------------|------|----------|-------------|
| Supports         | Total          | Available | Required | Dead       | Snow | Factored | Accessories |
| 1 - Trimmer - HF | 3.00"          | 3.00"     | 2.62"    | 2679       | 3281 | 5960     | None        |
| 2 - Trimmer - HF | 3.00"          | 3.00"     | 2.62"    | 2679       | 3281 | 5960     | None        |

| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | 10' 6" o/c        |          |
| Bottom Edge (Lu) | 10' 6" o/c        |          |

•Maximum allowable bracing intervals based on applied load.

| Vertical Loads        | Location    | Tributary | Dead<br>(0.90) | Snow<br>(1.15) | Comments     |
|-----------------------|-------------|-----------|----------------|----------------|--------------|
| 0 - Self Weight (PLF) | 0 to 10' 6" | N/A       | 10.2           |                |              |
| 1 - Uniform (PSF)     | 0 to 10' 6" | 25'       | 20.0           | 25.0           | Default Load |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/ document-library.

| ForteWEB Software Operator                                    | Job Notes |              |
|---------------------------------------------------------------|-----------|--------------|
| Chon Pieruccioni<br>Pieruccioni Engineering<br>(206) 949-7866 |           |              |
| cpieru@hotmail.com                                            |           | Weyerhaeuser |



## PASSED

## Roof Framing, Grid 1 - 10' Window King Studs 2 piece(s) 2 x 6 HF No.2

#### Wall Height: 13'

Member Height: 12' 7 1/2"

Tributary Width: 5' 8"



| Design Results          | Actual          | Allowed | Result         | LDF  | Load: Combination |
|-------------------------|-----------------|---------|----------------|------|-------------------|
| Slenderness             | 28              | 50      | Passed (55%)   |      |                   |
| Compression (lbs)       | 1497            | 7777    | Passed (19%)   | 1.15 | 1.0 D + 1.0 S     |
| Plate Bearing (lbs)     | 1497            | 6683    | Passed (22%)   |      | 1.0 D + 1.0 S     |
| Lateral Reaction (lbs)  | 459             |         |                | 1.60 | 1.0 D + 0.6 W     |
| Lateral Shear (lbs)     | 426             | 2640    | Passed (16%)   | 1.60 | 1.0 D + 0.6 W     |
| Lateral Moment (ft-lbs) | 1450 @ mid-span | 2223    | Passed (65%)   | 1.60 | 1.0 D + 0.6 W     |
| Total Deflection (in)   | 0.56 @ mid-span | 0.84    | Passed (L/273) |      | 1.0 D + 0.6 W     |
| Bending/Compression     | 0.74            | 1       | Passed (74%)   | 1.60 | 1.0 D + 0.6 W     |

• Lateral deflection criteria: Wind (L/180)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

• Applicable calculations are based on NDS.

• The column stability factor (Kf = 0.6) applied to this design assumes nailed built-up columns per NDS section 15.3.3. For Weyerhaeuser ELP products refer to the U.S. Wall Guide for multiple-member connection requirements.

Comments

| Supports | Туре   | Material | System : Wall            |
|----------|--------|----------|--------------------------|
| Тор      | Dbl 2X | Hem Fir  | Member Type : Column     |
| Base     | 2X     | Hem Fir  | Design Methodology : ASD |

Drawing is Conceptual

| Lateral Connections |           |                         |          |                   |  |  |
|---------------------|-----------|-------------------------|----------|-------------------|--|--|
| Supports            | Connector | Type/Model              | Quantity | Connector Nailing |  |  |
| Тор                 | Nails     | 10d (0.128" x 3") (End) | 6        | N/A               |  |  |
| Base                | Nails     | 10d (0.128" x 3") (End) | 6        | N/A               |  |  |

Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

|                |                 | Dead   | Snow   |              |
|----------------|-----------------|--------|--------|--------------|
| Vertical Load  | Tributary Width | (0.90) | (1.15) | Comments     |
| 1 - Point (lb) | N/A             | 665    | 832    | Default Load |

**Max Unbraced Length** 

|                   |             |                 | Wind   |          |
|-------------------|-------------|-----------------|--------|----------|
| Lateral Load      | Location    | Tributary Width | (1.60) | Comments |
| 1 - Uniform (PSF) | Full Length | 5' 8"           | 21.4   |          |

• ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (110), Risk Category(II), Wind Zone (4), GCpi (+/- 0.18), Effective Wind Area determined using full member span and trib. width.
IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

1'

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/ document-library

Weverhaeuser

| ForteWEB Software Operator                                                          | Job Notes |
|-------------------------------------------------------------------------------------|-----------|
| Chon Pieruccioni<br>Pieruccioni Engineering<br>(206) 949-7866<br>cpieru@hotmail.com |           |





## Roof Framing, Grid 2 - 5' Window Header 1 piece(s) 4 x 10 DF No.2



Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal (typ.).

| Design Results        | Actual @ Location | Allowed      | Result          | LDF  | Load: Combination (Pattern) |
|-----------------------|-------------------|--------------|-----------------|------|-----------------------------|
| Member Reaction (lbs) | 2561 @ 0          | 3281 (1.50") | Passed (78%)    |      | 1.0 D + 1.0 S (All Spans)   |
| Shear (lbs)           | 1687 @ 10 3/4"    | 4468         | Passed (38%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Moment (Ft-lbs)       | 3362 @ 2' 7 1/2"  | 5166         | Passed (65%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Live Load Defl. (in)  | 0.025 @ 2' 7 1/2" | 0.175        | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |
| Total Load Defl. (in) | 0.045 @ 2' 7 1/2" | 0.262        | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |

Member Length : 5' 3" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

|                  | Bearing Length |           |          | Loads | to Support |          |             |
|------------------|----------------|-----------|----------|-------|------------|----------|-------------|
| Supports         | Total          | Available | Required | Dead  | Snow       | Factored | Accessories |
| 1 - Trimmer - HF | 1.50"          | 1.50"     | 1.50"    | 1151  | 1411       | 2561     | None        |
| 2 - Trimmer - HF | 1.50"          | 1.50"     | 1.50"    | 1151  | 1411       | 2561     | None        |

| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | 5' 3" o/c         |          |
| Bottom Edge (Lu) | 5' 3" o/c         |          |

•Maximum allowable bracing intervals based on applied load.

| Vertical Loads        | Location   | Tributary<br>Width | Dead<br>(0.90) | Snow<br>(1.15) | Comments     |
|-----------------------|------------|--------------------|----------------|----------------|--------------|
| 0 - Self Weight (PLF) | 0 to 5' 3" | N/A                | 8.2            |                |              |
| 1 - Uniform (PSF)     | 0 to 5' 3" | 21' 6"             | 20.0           | 25.0           | Default Load |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/ document-library.

rerhaeuser

| ForteWEB Software Operator                                                          | Job Notes |   |
|-------------------------------------------------------------------------------------|-----------|---|
| Chon Pieruccioni<br>Pieruccioni Engineering<br>(206) 949-7866<br>cpieru@hotmail.com |           | W |





## PASSED

## Roof Framing, Grid 2 - 5' Window King Studs 1 piece(s) 2 x 6 HF No.2

#### Wall Height: 13'

Member Height: 12' 7 1/2"

Tributary Width: 3' 2"



| Design Results          | Actual          | Allowed | Result         | LDF  | Load: Combination                |
|-------------------------|-----------------|---------|----------------|------|----------------------------------|
| Slenderness             | 28              | 50      | Passed (55%)   |      |                                  |
| Compression (lbs)       | 1258            | 3888    | Passed (32%)   | 1.15 | 1.0 D + 1.0 S                    |
| Plate Bearing (lbs)     | 1258            | 3341    | Passed (38%)   |      | 1.0 D + 1.0 S                    |
| Lateral Reaction (lbs)  | 262             |         |                | 1.60 | 1.0 D + 0.6 W                    |
| Lateral Shear (lbs)     | 243             | 1320    | Passed (18%)   | 1.60 | 1.0 D + 0.6 W                    |
| Lateral Moment (ft-lbs) | 827 @ mid-span  | 1102    | Passed (75%)   | 1.60 | 1.0 D + 0.6 W                    |
| Total Deflection (in)   | 0.64 @ mid-span | 0.84    | Passed (L/236) |      | 1.0 D + 0.6 W                    |
| Bending/Compression     | 0.94            | 1       | Passed (94%)   | 1.60 | 1.0 D + 0.45 W + 0.75 L + 0.75 S |

• Lateral deflection criteria: Wind (L/180)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

Applicable calculations are based on NDS.

| Supports | туре   | Material | System : Wall                                        |
|----------|--------|----------|------------------------------------------------------|
| Тор      | Dbl 2X | Hem Fir  | Member Type : Column                                 |
| Base     | 2X     | Hem Fir  | Building Code : IBC 2021<br>Design Methodology : ASD |

**Max Unbraced Length** Comments 1'

| Drawing | is | Conceptual |
|---------|----|------------|
|---------|----|------------|

| Lateral Connections |                                   |                                                                                                                                    |                                                                                                                                                                         |  |  |  |  |
|---------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Connector           | Type/Model                        | Quantity                                                                                                                           | Connector Nailing                                                                                                                                                       |  |  |  |  |
| Nails               | 8d (0.113" x 2 1/2") (Toe)        | 4                                                                                                                                  | N/A                                                                                                                                                                     |  |  |  |  |
| Nails               | 8d (0.113" x 2 1/2") (Toe)        | 4                                                                                                                                  | N/A                                                                                                                                                                     |  |  |  |  |
| ĺ                   | ns<br>Connector<br>Nails<br>Nails | Connector         Type/Model           Nails         8d (0.113" x 2 1/2") (Toe)           Nails         8d (0.113" x 2 1/2") (Toe) | Connector         Type/Model         Quantity           Nails         8d (0.113" x 2 1/2") (Toe)         4           Nails         8d (0.113" x 2 1/2") (Toe)         4 |  |  |  |  |

Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

|                |                 | Dead   | Snow   |              |
|----------------|-----------------|--------|--------|--------------|
| Vertical Load  | Tributary Width | (0.90) | (1.15) | Comments     |
| 1 - Point (lb) | N/A             | 559    | 699    | Default Load |

|                   |             |                 | Wind   |          |
|-------------------|-------------|-----------------|--------|----------|
| Lateral Load      | Location    | Tributary Width | (1.60) | Comments |
| 1 - Uniform (PSF) | Full Length | 3' 2"           | 21.8   |          |

ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (110), Risk Category(II), Wind Zone (4), GCpi

(+/- 0.18), Effective Wind Area determined using full member span and trib. width.
 IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/ document-library.

| ForteWEB Software Operator                                                          | Job Notes |
|-------------------------------------------------------------------------------------|-----------|
| Chon Pieruccioni<br>Pieruccioni Engineering<br>(206) 949-7866<br>cpieru@hotmail.com |           |





#### Roof Framing, Grid 3 - 6' Door Header 1 piece(s) 4 x 12 DF No.2



Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal (typ.).

| Design Results        | Actual @ Location | Allowed      | Result          | LDF  | Load: Combination (Pattern) |
|-----------------------|-------------------|--------------|-----------------|------|-----------------------------|
| Member Reaction (lbs) | 3831 @ 1 1/2"     | 6563 (3.00") | Passed (58%)    |      | 1.0 D + 1.0 S (All Spans)   |
| Shear (lbs)           | 2483 @ 1' 2 1/4"  | 5434         | Passed (46%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Moment (Ft-lbs)       | 5995 @ 3' 4 1/2"  | 7004         | Passed (86%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Live Load Defl. (in)  | 0.038 @ 3' 4 1/2" | 0.217        | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |
| Total Load Defl. (in) | 0.069 @ 3' 4 1/2" | 0.325        | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |

Member Length : 6' 9" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

|                  | Bearing Length |           |          | Loads | to Support |          |             |
|------------------|----------------|-----------|----------|-------|------------|----------|-------------|
| Supports         | Total          | Available | Required | Dead  | Snow       | Factored | Accessories |
| 1 - Trimmer - HF | 3.00"          | 3.00"     | 1.75"    | 1722  | 2109       | 3831     | None        |
| 2 - Trimmer - HF | 3.00"          | 3.00"     | 1.75"    | 1722  | 2109       | 3831     | None        |

| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | 6' 9" o/c         |          |
| Bottom Edge (Lu) | 6' 9" o/c         |          |

•Maximum allowable bracing intervals based on applied load.

| Vertical Loads        | Location   | Tributary<br>Width | Dead<br>(0.90) | Snow<br>(1.15) | Comments     |
|-----------------------|------------|--------------------|----------------|----------------|--------------|
| 0 - Self Weight (PLF) | 0 to 6' 9" | N/A                | 10.0           |                |              |
| 1 - Uniform (PSF)     | 0 to 6' 9" | 25'                | 20.0           | 25.0           | Default Load |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/ document-library.

yerhaeuser

| ForteWEB Software Operator                                                          | Job Notes |   |
|-------------------------------------------------------------------------------------|-----------|---|
| Chon Pieruccioni<br>Pieruccioni Engineering<br>(206) 949-7866<br>cpieru@hotmail.com |           | w |



## Roof Framing, Grid 3 - 6' Door King Studs 2 piece(s) 2 x 6 HF No.2

#### Wall Height: 13'

Member Height: 12' 7 1/2"

Tributary Width: 3' 11"



| Design Results          | Actual          | Allowed | Result         | LDF  | Load: Combination |
|-------------------------|-----------------|---------|----------------|------|-------------------|
| Slenderness             | 28              | 50      | Passed (55%)   |      |                   |
| Compression (lbs)       | 1497            | 7777    | Passed (19%)   | 1.15 | 1.0 D + 1.0 S     |
| Plate Bearing (lbs)     | 1497            | 6683    | Passed (22%)   |      | 1.0 D + 1.0 S     |
| Lateral Reaction (lbs)  | 324             |         |                | 1.60 | 1.0 D + 0.6 W     |
| Lateral Shear (lbs)     | 300             | 2640    | Passed (11%)   | 1.60 | 1.0 D + 0.6 W     |
| Lateral Moment (ft-lbs) | 1022 @ mid-span | 2223    | Passed (46%)   | 1.60 | 1.0 D + 0.6 W     |
| Total Deflection (in)   | 0.40 @ mid-span | 0.84    | Passed (L/382) |      | 1.0 D + 0.6 W     |
| Bending/Compression     | 0.53            | 1       | Passed (53%)   | 1.60 | 1.0 D + 0.6 W     |

• Lateral deflection criteria: Wind (L/180)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

• Applicable calculations are based on NDS.

• The column stability factor (Kf = 0.6) applied to this design assumes nailed built-up columns per NDS section 15.3.3. For Weyerhaeuser ELP products refer to the U.S. Wall Guide for multiple-member connection requirements.

Comments

| Supports | Туре   | Material | System : Wall            |
|----------|--------|----------|--------------------------|
| Тор      | Dbl 2X | Hem Fir  | Member Type : Column     |
| Base     | 2X     | Hem Fir  | Design Methodology : ASD |

Drawing is Conceptual

| Lateral Connections |           |                            |          |                   |  |
|---------------------|-----------|----------------------------|----------|-------------------|--|
| Supports            | Connector | Type/Model                 | Quantity | Connector Nailing |  |
| Тор                 | Nails     | 8d (0.113" x 2 1/2") (Toe) | 4        | N/A               |  |
| Base                | Nails     | 8d (0.113" x 2 1/2") (Toe) | 4        | N/A               |  |

Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

| Vertical Load  | Tributary Width | Dead<br>(0.90) | Snow<br>(1.15) | Comments     |
|----------------|-----------------|----------------|----------------|--------------|
| 1 - Point (lb) | N/A             | 665            | 832            | Default Load |

**Max Unbraced Length** 

|                   |             |                 | Wind   |          |
|-------------------|-------------|-----------------|--------|----------|
| Lateral Load      | Location    | Tributary Width | (1.60) | Comments |
| 1 - Uniform (PSF) | Full Length | 3' 11"          | 21.8   |          |

• ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (110), Risk Category(II), Wind Zone (4), GCpi (+/- 0.18), Effective Wind Area determined using full member span and trib. width.
IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

1'

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/ document-library

Weverhaeuser

| ForteWEB Software Operator                                                          | Job Notes |
|-------------------------------------------------------------------------------------|-----------|
| Chon Pieruccioni<br>Pieruccioni Engineering<br>(206) 949-7866<br>cpieru@hotmail.com |           |





## Roof Framing, Grid 3 - 4' Window Header 1 piece(s) 4 x 10 DF No.2



Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal (typ.).

| Design Results        | Actual @ Location | Allowed      | Result          | LDF  | Load: Combination (Pattern) |
|-----------------------|-------------------|--------------|-----------------|------|-----------------------------|
| Member Reaction (lbs) | 2985 @ 0          | 3281 (1.50") | Passed (91%)    |      | 1.0 D + 1.0 S (All Spans)   |
| Shear (lbs)           | 1966 @ 10 3/4"    | 4468         | Passed (44%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Moment (Ft-lbs)       | 3918 @ 2' 7 1/2"  | 5166         | Passed (76%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Live Load Defl. (in)  | 0.029 @ 2' 7 1/2" | 0.175        | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |
| Total Load Defl. (in) | 0.053 @ 2' 7 1/2" | 0.262        | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |

Member Length : 5' 3" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

|                  | Bearing Length |           | Loads    | to Support |      |          |             |
|------------------|----------------|-----------|----------|------------|------|----------|-------------|
| Supports         | Total          | Available | Required | Dead       | Snow | Factored | Accessories |
| 1 - Trimmer - HF | 1.50"          | 1.50"     | 1.50"    | 1344       | 1641 | 2985     | None        |
| 2 - Trimmer - HF | 1.50"          | 1.50"     | 1.50"    | 1344       | 1641 | 2985     | None        |

| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | 5' 3" o/c         |          |
| Bottom Edge (Lu) | 5' 3" o/c         |          |

•Maximum allowable bracing intervals based on applied load.

| Vertical Loads        | Location   | Tributary<br>Width | Dead<br>(0.90) | Snow<br>(1.15) | Comments     |
|-----------------------|------------|--------------------|----------------|----------------|--------------|
| 0 - Self Weight (PLF) | 0 to 5' 3" | N/A                | 8.2            |                |              |
| 1 - Uniform (PSF)     | 0 to 5' 3" | 25'                | 20.2           | 25.0           | Default Load |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/ document-library.

yerhaeuser

| ForteWEB Software Operator                                                          | Job Notes |   |
|-------------------------------------------------------------------------------------|-----------|---|
| Chon Pieruccioni<br>Pieruccioni Engineering<br>(206) 949-7866<br>cpieru@hotmail.com |           | w |



## PASSED

## Roof Framing, Grid 3 - 4' Window King Studs 1 piece(s) 2 x 6 HF No.2

#### Wall Height: 13'

Member Height: 12' 7 1/2"

Tributary Width: 2' 8"



| Design Results          | Actual          | Allowed | Result         | LDF  | Load: Combination                |
|-------------------------|-----------------|---------|----------------|------|----------------------------------|
| Slenderness             | 28              | 50      | Passed (55%)   |      |                                  |
| Compression (lbs)       | 1497            | 3888    | Passed (39%)   | 1.15 | 1.0 D + 1.0 S                    |
| Plate Bearing (lbs)     | 1497            | 3341    | Passed (45%)   |      | 1.0 D + 1.0 S                    |
| Lateral Reaction (lbs)  | 221             |         |                | 1.60 | 1.0 D + 0.6 W                    |
| Lateral Shear (lbs)     | 205             | 1320    | Passed (15%)   | 1.60 | 1.0 D + 0.6 W                    |
| Lateral Moment (ft-lbs) | 696 @ mid-span  | 1102    | Passed (63%)   | 1.60 | 1.0 D + 0.6 W                    |
| Total Deflection (in)   | 0.55 @ mid-span | 0.84    | Passed (L/275) |      | 1.0 D + 0.6 W                    |
| Bending/Compression     | 0.93            | 1       | Passed (93%)   | 1.60 | 1.0 D + 0.45 W + 0.75 L + 0.75 S |

• Lateral deflection criteria: Wind (L/180)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

Applicable calculations are based on NDS.

|      | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | material | System . wan             |
|------|-----------------------------------------|----------|--------------------------|
| Тор  | Dbl 2X                                  | Hem Fir  | Member Type : Column     |
| Base | 2X                                      | Hem Fir  | Building Code : IBC 2021 |

| Max Unbraced Length | Comments |
|---------------------|----------|
| 1'                  |          |

Drawing is Conceptual

| Lateral Connections |                                   |                                                                                                                                    |                                                                                                                                                                         |  |  |  |
|---------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Connector           | Type/Model                        | Quantity                                                                                                                           | Connector Nailing                                                                                                                                                       |  |  |  |
| Nails               | 8d (0.113" x 2 1/2") (Toe)        | 3                                                                                                                                  | N/A                                                                                                                                                                     |  |  |  |
| Nails               | 8d (0.113" x 2 1/2") (Toe)        | 3                                                                                                                                  | N/A                                                                                                                                                                     |  |  |  |
|                     | ns<br>Connector<br>Nails<br>Nails | Connector         Type/Model           Nails         8d (0.113" x 2 1/2") (Toe)           Nails         8d (0.113" x 2 1/2") (Toe) | Connector         Type/Model         Quantity           Nails         8d (0.113" x 2 1/2") (Toe)         3           Nails         8d (0.113" x 2 1/2") (Toe)         3 |  |  |  |

Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

|                |                 | Dead   | Snow   |              |
|----------------|-----------------|--------|--------|--------------|
| Vertical Load  | Tributary Width | (0.90) | (1.15) | Comments     |
| 1 - Point (lb) | N/A             | 665    | 832    | Default Load |

|                   |             |                 | Wind   |          |
|-------------------|-------------|-----------------|--------|----------|
| Lateral Load      | Location    | Tributary Width | (1.60) | Comments |
| 1 - Uniform (PSF) | Full Length | 2' 8"           | 21.8   |          |

ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (110), Risk Category(II), Wind Zone (4), GCpi

(+/- 0.18), Effective Wind Area determined using full member span and trib. width.
 IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/ document-library.

| ForteWEB Software Operator                                                          | Job Notes |
|-------------------------------------------------------------------------------------|-----------|
| Chon Pieruccioni<br>Pieruccioni Engineering<br>(206) 949-7866<br>cpieru@hotmail.com |           |





## Roof Framing, Grid 4 - 6' Door Header 1 piece(s) 5 1/2" x 9" 24F-V4 DF Glulam



Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal (typ.).

| Design Results        | Actual @ Location | Allowed       | Result          | LDF  | Load: Combination (Pattern) |
|-----------------------|-------------------|---------------|-----------------|------|-----------------------------|
| Member Reaction (lbs) | 4915 @ 1 1/2"     | 10725 (3.00") | Passed (46%)    |      | 1.0 D + 1.0 S (All Spans)   |
| Shear (lbs)           | 3932 @ 1'         | 10057         | Passed (39%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Pos Moment (Ft-lbs)   | 10383 @ 3' 4 1/2" | 17078         | Passed (61%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Live Load Defl. (in)  | 0.065 @ 3' 4 1/2" | 0.217         | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |
| Total Load Defl. (in) | 0.118 @ 3' 4 1/2" | 0.325         | Passed (L/660)  |      | 1.0 D + 1.0 S (All Spans)   |

Member Length : 6' 9" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 6' 6".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

• Applicable calculations are based on NDS.

|                  | Bearing Length |           | Loads to Supports (lbs) |      |      |          |             |
|------------------|----------------|-----------|-------------------------|------|------|----------|-------------|
| Supports         | Total          | Available | Required                | Dead | Snow | Factored | Accessories |
| 1 - Trimmer - HF | 3.00"          | 3.00"     | 1.50"                   | 2213 | 2702 | 4915     | None        |
| 2 - Trimmer - HF | 3.00"          | 3.00"     | 1.50"                   | 2213 | 2702 | 4915     | None        |

| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | 6' 9" o/c         |          |
| Bottom Edge (Lu) | 6' 9" o/c         |          |

•Maximum allowable bracing intervals based on applied load.

|                       |            |                    | Dead   | Snow   |              |
|-----------------------|------------|--------------------|--------|--------|--------------|
| Vertical Loads        | Location   | Tributary<br>Width | (0.90) | (1.15) | Comments     |
| 0 - Self Weight (PLF) | 0 to 6' 9" | N/A                | 12.0   |        |              |
| 1 - Uniform (PSF)     | 0 to 6' 9" | 21' 6"             | 20.2   | 25.0   | Default Load |
| 2 - Point (lb)        | 3' 4 1/2"  | N/A                | 1420   | 1775   | Awning Loads |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/ document-library.

| ForteWEB Software Operator                                                          | Job Notes |              |
|-------------------------------------------------------------------------------------|-----------|--------------|
| Chon Pieruccioni<br>Pieruccioni Engineering<br>(206) 949-7866<br>cpieru@hotmail.com |           | Weyerhaeuser |



## PASSED

## Roof Framing, Grid 4 - 6' Door King Studs 2 piece(s) 2 x 6 HF No.2

#### Wall Height: 13'

Member Height: 12' 7 1/2"

Tributary Width: 7' 3"



| Design Results          | Actual          | Allowed | Result         | LDF  | Load: Combination |
|-------------------------|-----------------|---------|----------------|------|-------------------|
| Slenderness             | 28              | 50      | Passed (55%)   |      |                   |
| Compression (lbs)       | 1258            | 7777    | Passed (16%)   | 1.15 | 1.0 D + 1.0 S     |
| Plate Bearing (lbs)     | 1258            | 6683    | Passed (19%)   |      | 1.0 D + 1.0 S     |
| Lateral Reaction (lbs)  | 578             |         |                | 1.60 | 1.0 D + 0.6 W     |
| Lateral Shear (lbs)     | 536             | 2640    | Passed (20%)   | 1.60 | 1.0 D + 0.6 W     |
| Lateral Moment (ft-lbs) | 1824 @ mid-span | 2223    | Passed (82%)   | 1.60 | 1.0 D + 0.6 W     |
| Total Deflection (in)   | 0.69 @ mid-span | 0.84    | Passed (L/219) |      | 1.0 D + 0.6 W     |
| Bending/Compression     | 0.90            | 1       | Passed (90%)   | 1.60 | 1.0 D + 0.6 W     |

• Lateral deflection criteria: Wind (L/180)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

• Applicable calculations are based on NDS.

• The column stability factor (Kf = 0.6) applied to this design assumes nailed built-up columns per NDS section 15.3.3. For Weyerhaeuser ELP products refer to the U.S. Wall Guide for multiple-member connection requirements.

Comments

| Supports | Туре   | Material | System : Wall                                     |
|----------|--------|----------|---------------------------------------------------|
| Тор      | Dbl 2X | Hem Fir  | Member Type : Column                              |
| Base     | 2X     | Hem Fir  | Building Code : IBC 202<br>Design Methodology : A |

Drawing is Conceptual

| Lateral Connections: Simpson Strong-Tie |                  |            |          |                    |  |  |  |
|-----------------------------------------|------------------|------------|----------|--------------------|--|--|--|
| Supports                                | Connector        | Type/Model | Quantity | Connector Nailing  |  |  |  |
| Тор                                     | Angle Connectors | A21        | 5        | (4) - 10d x 1 1/2" |  |  |  |
| Base                                    | Angle Connectors | A21        | 5        | (4) - 10d x 1 1/2" |  |  |  |

Angle connectors are to be installed staggered each side of members < 3.00" thick.</li>

1'

|                |                 | Dead   | Snow   |              |
|----------------|-----------------|--------|--------|--------------|
| Vertical Load  | Tributary Width | (0.90) | (1.15) | Comments     |
| 1 - Point (lb) | N/A             | 559    | 699    | Default Load |

Max Unbraced Length

|                   |             |                 | Wind   |          |
|-------------------|-------------|-----------------|--------|----------|
| Lateral Load      | Location    | Tributary Width | (1.60) | Comments |
| 1 - Uniform (PSF) | Full Length | 7' 3"           | 21.0   |          |

• ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (110), Risk Category(II), Wind Zone (4), GCpi (+/- 0.18), Effective Wind Area determined using full member span and trib. width.
IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/ document-library

Weverhaeuser

| ForteWEB Software Operator                                                          | Job Notes |
|-------------------------------------------------------------------------------------|-----------|
| Chon Pieruccioni<br>Pieruccioni Engineering<br>(206) 949-7866<br>cpieru@hotmail.com |           |





Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal (typ.).

| Design Results        | Actual @ Location | Allowed      | Result         | LDF  | Load: Combination (Pattern) |
|-----------------------|-------------------|--------------|----------------|------|-----------------------------|
| Member Reaction (lbs) | 3669 @ 1 1/2"     | 6825 (3.00") | Passed (54%)   |      | 1.0 D + 1.0 S (All Spans)   |
| Shear (lbs)           | 2691 @ 1'         | 6400         | Passed (42%)   | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Pos Moment (Ft-lbs)   | 6429 @ 3' 9"      | 10868        | Passed (59%)   | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Live Load Defl. (in)  | 0.087 @ 3' 9"     | 0.242        | Passed (L/997) |      | 1.0 D + 1.0 S (All Spans)   |
| Total Load Defl. (in) | 0.159 @ 3' 9"     | 0.363        | Passed (L/547) |      | 1.0 D + 1.0 S (All Spans)   |

Member Length : 7' 6" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

PASSED

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 7' 3".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

• Applicable calculations are based on NDS.

|                  | Bearing Length |           | Loads    | to Support |      |          |             |
|------------------|----------------|-----------|----------|------------|------|----------|-------------|
| Supports         | Total          | Available | Required | Dead       | Snow | Factored | Accessories |
| 1 - Trimmer - HF | 3.00"          | 3.00"     | 1.61"    | 1654       | 2016 | 3669     | None        |
| 2 - Trimmer - HF | 3.00"          | 3.00"     | 1.61"    | 1654       | 2016 | 3669     | None        |

| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | 7' 6" o/c         |          |
| Bottom Edge (Lu) | 7' 6" o/c         |          |

•Maximum allowable bracing intervals based on applied load.

| Vertical Loads        | Location   | Tributary<br>Width | Dead<br>(0.90) | Snow<br>(1.15) | Comments     |
|-----------------------|------------|--------------------|----------------|----------------|--------------|
| 0 - Self Weight (PLF) | 0 to 7' 6" | N/A                | 7.7            |                |              |
| 1 - Uniform (PSF)     | 0 to 7' 6" | 21' 6"             | 20.2           | 25.0           | Default Load |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/ document-library.

| ForteWEB Software Operator                                                          | Job Notes |              |
|-------------------------------------------------------------------------------------|-----------|--------------|
| Chon Pieruccioni<br>Pieruccioni Engineering<br>(206) 949-7866<br>cpieru@hotmail.com |           | Weyerhaeuser |



## PASSED

## Roof Framing, Grid 4 - 7' Window King Studs 2 piece(s) 2 x 6 DF No.2

#### Wall Height: 13'

Member Height: 12' 7 1/2"

Tributary Width: 4' 2"



| Design Results          | Actual          | Allowed | Result         | LDF  | Load: Combination |
|-------------------------|-----------------|---------|----------------|------|-------------------|
| Slenderness             | 28              | 50      | Passed (55%)   |      |                   |
| Compression (lbs)       | 1258            | 9421    | Passed (13%)   | 1.15 | 1.0 D + 1.0 S     |
| Plate Bearing (lbs)     | 1258            | 6683    | Passed (19%)   |      | 1.0 D + 1.0 S     |
| Lateral Reaction (lbs)  | 345             |         |                | 1.60 | 1.0 D + 0.6 W     |
| Lateral Shear (lbs)     | 320             | 3168    | Passed (10%)   | 1.60 | 1.0 D + 0.6 W     |
| Lateral Moment (ft-lbs) | 1088 @ mid-span | 2355    | Passed (46%)   | 1.60 | 1.0 D + 0.6 W     |
| Total Deflection (in)   | 0.34 @ mid-span | 0.84    | Passed (L/446) |      | 1.0 D + 0.6 W     |
| Bending/Compression     | 0.51            | 1       | Passed (51%)   | 1.60 | 1.0 D + 0.6 W     |

• Lateral deflection criteria: Wind (L/180)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

• Applicable calculations are based on NDS.

• The column stability factor (Kf = 0.6) applied to this design assumes nailed built-up columns per NDS section 15.3.3. For Weyerhaeuser ELP products refer to the U.S. Wall Guide for multiple-member connection requirements.

Comments

| Supports | Туре   | Material | System : Wall            |
|----------|--------|----------|--------------------------|
| Тор      | Dbl 2X | Hem Fir  | Member Type : Column     |
| Base     | 2X     | Hem Fir  | Design Methodology : ASD |

**Max Unbraced Length** 1'

| Lateral Connections |           |                         |          |                   |  |  |  |
|---------------------|-----------|-------------------------|----------|-------------------|--|--|--|
| Supports            | Connector | Type/Model              | Quantity | Connector Nailing |  |  |  |
| Тор                 | Nails     | 10d (0.128" x 3") (End) | 5        | N/A               |  |  |  |
| Base                | Nails     | 10d (0.128" x 3") (End) | 5        | N/A               |  |  |  |

Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

| Vertical Load  | Tributary Width | Dead<br>(0.90) | Snow<br>(1.15) | Comments     |
|----------------|-----------------|----------------|----------------|--------------|
| 1 - Point (lb) | N/A             | 559            | 699            | Default Load |

|                   |             |                 | Wind   |          |
|-------------------|-------------|-----------------|--------|----------|
| Lateral Load      | Location    | Tributary Width | (1.60) | Comments |
| 1 - Uniform (PSF) | Full Length | 4' 2"           | 21.8   |          |

• ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (110), Risk Category(II), Wind Zone (4), GCpi (+/- 0.18), Effective Wind Area determined using full member span and trib. width.
IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/ document-library

| ForteWEB Software Operator                                                          | Job Notes |
|-------------------------------------------------------------------------------------|-----------|
| Chon Pieruccioni<br>Pieruccioni Engineering<br>(206) 949-7866<br>cpieru@hotmail.com |           |





## Roof Framing, Grid 4 - 9' Window Header 1 piece(s) 3 1/2" x 10 1/2" 24F-V4 DF Glulam



Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal (typ.).

| Design Results        | Actual @ Location | Allowed      | Result         | LDF  | Load: Combination (Pattern) |
|-----------------------|-------------------|--------------|----------------|------|-----------------------------|
| Member Reaction (lbs) | 4654 @ 1 1/2"     | 6825 (3.00") | Passed (68%)   |      | 1.0 D + 1.0 S (All Spans)   |
| Shear (lbs)           | 3552 @ 1' 1 1/2"  | 7466         | Passed (48%)   | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Pos Moment (Ft-lbs)   | 10479 @ 4' 9"     | 14792        | Passed (71%)   | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Live Load Defl. (in)  | 0.146 @ 4' 9"     | 0.308        | Passed (L/762) |      | 1.0 D + 1.0 S (All Spans)   |
| Total Load Defl. (in) | 0.266 @ 4' 9"     | 0.463        | Passed (L/418) |      | 1.0 D + 1.0 S (All Spans)   |

Member Length : 9' 6" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 9' 3".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

• Applicable calculations are based on NDS.

|                  | Bearing Length |           | Loads    | to Support |      |          |             |
|------------------|----------------|-----------|----------|------------|------|----------|-------------|
| Supports         | Total          | Available | Required | Dead       | Snow | Factored | Accessories |
| 1 - Trimmer - HF | 3.00"          | 3.00"     | 2.05"    | 2101       | 2553 | 4654     | None        |
| 2 - Trimmer - HF | 3.00"          | 3.00"     | 2.05"    | 2101       | 2553 | 4654     | None        |

| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | 9' 6" o/c         |          |
| Bottom Edge (Lu) | 9' 6" o/c         |          |

•Maximum allowable bracing intervals based on applied load.

| Vortical Loads        | Location   | Tributary | Dead<br>(0.90) | Snow<br>(1.15) | Commente     |
|-----------------------|------------|-----------|----------------|----------------|--------------|
| vertical Loads        | Location   | Width     |                |                | comments     |
| 0 - Self Weight (PLF) | 0 to 9' 6" | N/A       | 8.9            |                |              |
| 1 - Uniform (PSF)     | 0 to 9' 6" | 21' 6"    | 20.2           | 25.0           | Default Load |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/ document-library.

| ForteWEB Software Operator | Job Notes |              |
|----------------------------|-----------|--------------|
| Chon Pieruccioni           |           |              |
| (206) 949-7866             |           |              |
| cpieru@hotmail.com         |           | Weyerhaeuser |
| cpieru@hotmail.com         |           | Weyerhaeus   |



## PASSED

## Roof Framing, Grid 4 - 9' Window King Studs 2 piece(s) 2 x 6 DF No.2

#### Wall Height: 13'

Member Height: 12' 7 1/2"

Tributary Width: 5' 2"



| Design Results          | Actual          | Allowed | Result         | LDF  | Load: Combination |
|-------------------------|-----------------|---------|----------------|------|-------------------|
| Slenderness             | 28              | 50      | Passed (55%)   |      |                   |
| Compression (lbs)       | 1258            | 9421    | Passed (13%)   | 1.15 | 1.0 D + 1.0 S     |
| Plate Bearing (lbs)     | 1258            | 6683    | Passed (19%)   |      | 1.0 D + 1.0 S     |
| Lateral Reaction (lbs)  | 421             |         |                | 1.60 | 1.0 D + 0.6 W     |
| Lateral Shear (lbs)     | 391             | 3168    | Passed (12%)   | 1.60 | 1.0 D + 0.6 W     |
| Lateral Moment (ft-lbs) | 1330 @ mid-span | 2355    | Passed (56%)   | 1.60 | 1.0 D + 0.6 W     |
| Total Deflection (in)   | 0.41 @ mid-span | 0.84    | Passed (L/367) |      | 1.0 D + 0.6 W     |
| Bending/Compression     | 0.62            | 1       | Passed (62%)   | 1.60 | 1.0 D + 0.6 W     |

• Lateral deflection criteria: Wind (L/180)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

• Applicable calculations are based on NDS.

• The column stability factor (Kf = 0.6) applied to this design assumes nailed built-up columns per NDS section 15.3.3. For Weyerhaeuser ELP products refer to the U.S. Wall Guide for multiple-member connection requirements.

Comments

| Supports | Туре   | Material | System : Wall                                        |
|----------|--------|----------|------------------------------------------------------|
| Тор      | Dbl 2X | Hem Fir  | Member Type : Column                                 |
| Base     | 2X     | Hem Fir  | Building Code : IBC 2021<br>Design Methodology : ASI |

Drawing is Conceptual

| Lateral Connections |           |                         |          |                   |  |  |  |
|---------------------|-----------|-------------------------|----------|-------------------|--|--|--|
| Supports            | Connector | Type/Model              | Quantity | Connector Nailing |  |  |  |
| Тор                 | Nails     | 10d (0.128" x 3") (End) | 5        | N/A               |  |  |  |
| Base                | Nails     | 10d (0.128" x 3") (End) | 5        | N/A               |  |  |  |

Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

| Vertical Load  | Tributary Width | Dead<br>(0.90) | Snow<br>(1.15) | Comments     |
|----------------|-----------------|----------------|----------------|--------------|
| 1 - Point (lb) | N/A             | 559            | 699            | Default Load |

**Max Unbraced Length** 

|                   |             |                 | Wind   |          |
|-------------------|-------------|-----------------|--------|----------|
| Lateral Load      | Location    | Tributary Width | (1.60) | Comments |
| 1 - Uniform (PSF) | Full Length | 5' 2"           | 21.5   |          |

• ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (110), Risk Category(II), Wind Zone (4), GCpi (+/- 0.18), Effective Wind Area determined using full member span and trib. width.
IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

1'

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/ document-library

Weverhaeuser

| ForteWEB Software Operator                                                          | Job Notes |
|-------------------------------------------------------------------------------------|-----------|
| Chon Pieruccioni<br>Pieruccioni Engineering<br>(206) 949-7866<br>cpieru@hotmail.com |           |







Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal (typ.).

| Design Results        | Actual @ Location | Allowed      | Result          | LDF  | Load: Combination (Pattern) |
|-----------------------|-------------------|--------------|-----------------|------|-----------------------------|
| Member Reaction (lbs) | 241 @ 0           | 3281 (1.50") | Passed (7%)     |      | 1.0 D + 1.0 S (All Spans)   |
| Shear (lbs)           | 139 @ 10 3/4"     | 4468         | Passed (3%)     | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Moment (Ft-lbs)       | 256 @ 2' 1 1/2"   | 5166         | Passed (5%)     | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Live Load Defl. (in)  | 0.000 @ 2' 1 1/2" | 0.142        | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |
| Total Load Defl. (in) | 0.002 @ 2' 1 1/2" | 0.213        | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |

Member Length : 4' 3" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Applicable calculations are based on NDS.

|                  | Bearing Length |           | Loads to Supports (lbs) |      |      |          |             |
|------------------|----------------|-----------|-------------------------|------|------|----------|-------------|
| Supports         | Total          | Available | Required                | Dead | Snow | Factored | Accessories |
| 1 - Trimmer - HF | 1.50"          | 1.50"     | 1.50"                   | 187  | 53   | 241      | None        |
| 2 - Trimmer - HF | 1.50"          | 1.50"     | 1.50"                   | 187  | 53   | 241      | None        |

| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | 4' 3" o/c         |          |
| Bottom Edge (Lu) | 4' 3" o/c         |          |

•Maximum allowable bracing intervals based on applied load.

|                       |            |                    | Dead   | Snow   |              |
|-----------------------|------------|--------------------|--------|--------|--------------|
| Vertical Loads        | Location   | Tributary<br>Width | (0.90) | (1.15) | Comments     |
| 0 - Self Weight (PLF) | 0 to 4' 3" | N/A                | 8.2    |        |              |
| 1 - Uniform (PSF)     | 0 to 4' 3" | 1'                 | 20.0   | 25.0   | Default Load |
| 2 - Uniform (PLF)     | 0 to 4' 3" | N/A                | 60.0   | -      | Parapet      |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/ document-library.

rerhaeuser

| ForteWEB Software Operator                                                          | Job Notes |   |
|-------------------------------------------------------------------------------------|-----------|---|
| Chon Pieruccioni<br>Pieruccioni Engineering<br>(206) 949-7866<br>cpieru@hotmail.com |           | W |



PASSED

## Roof Framing, Grid A- 4' Window King Studs 1 piece(s) 2 x 6 HF No.2

#### Wall Height: 13'

Member Height: 12' 7 1/2"

Tributary Width: 2' 8"



| Design Results          | Actual          | Allowed | Result         | LDF  | Load: Combination |
|-------------------------|-----------------|---------|----------------|------|-------------------|
| Slenderness             | 28              | 50      | Passed (55%)   |      |                   |
| Compression (lbs)       | 60              | 3888    | Passed (2%)    | 1.15 | 1.0 D + 1.0 S     |
| Plate Bearing (lbs)     | 60              | 3341    | Passed (2%)    |      | 1.0 D + 1.0 S     |
| Lateral Reaction (lbs)  | 221             |         |                | 1.60 | 1.0 D + 0.6 W     |
| Lateral Shear (lbs)     | 205             | 1320    | Passed (15%)   | 1.60 | 1.0 D + 0.6 W     |
| Lateral Moment (ft-lbs) | 696 @ mid-span  | 1102    | Passed (63%)   | 1.60 | 1.0 D + 0.6 W     |
| Total Deflection (in)   | 0.52 @ mid-span | 0.84    | Passed (L/292) |      | 1.0 D + 0.6 W     |
| Bending/Compression     | 0.64            | 1       | Passed (64%)   | 1.60 | 1.0 D + 0.6 W     |

• Lateral deflection criteria: Wind (L/180)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

Applicable calculations are based on NDS.

| Supports | Туре   | Material | System : Wall            |
|----------|--------|----------|--------------------------|
| Тор      | Dbl 2X | Hem Fir  | Member Type : Column     |
| Base     | 2X     | Hem Fir  | Building Code : IBC 2021 |

**Max Unbraced Length** Comments 1'

| Drawing | is | Cor | ncen | tual |
|---------|----|-----|------|------|

| Lateral Connections |           |                            |          |                   |  |  |  |
|---------------------|-----------|----------------------------|----------|-------------------|--|--|--|
| Supports            | Connector | Type/Model                 | Quantity | Connector Nailing |  |  |  |
| Тор                 | Nails     | 8d (0.113" x 2 1/2") (Toe) | 3        | N/A               |  |  |  |
| Base                | Nails     | 8d (0.113" x 2 1/2") (Toe) | 3        | N/A               |  |  |  |

Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

|                |                 | Dead   | Snow   |              |
|----------------|-----------------|--------|--------|--------------|
| Vertical Load  | Tributary Width | (0.90) | (1.15) | Comments     |
| 1 - Point (lb) | N/A             | 27     | 33     | Default Load |

|                   |             |                 | Wind   |          |
|-------------------|-------------|-----------------|--------|----------|
| Lateral Load      | Location    | Tributary Width | (1.60) | Comments |
| 1 - Uniform (PSF) | Full Length | 2' 8"           | 21.8   |          |

ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (110), Risk Category(II), Wind Zone (4), GCpi

(+/- 0.18), Effective Wind Area determined using full member span and trib. width.
 IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/ document-library.

| ForteWEB Software Operator                                                          | Job Notes |
|-------------------------------------------------------------------------------------|-----------|
| Chon Pieruccioni<br>Pieruccioni Engineering<br>(206) 949-7866<br>cpieru@hotmail.com |           |





#### Roof Framing, Grid A - 6' Door Header 1 piece(s) 4 x 10 DF No.2



Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal (typ.).

|                       | -                 |              |                 |      |                             |
|-----------------------|-------------------|--------------|-----------------|------|-----------------------------|
| Design Results        | Actual @ Location | Allowed      | Result          | LDF  | Load: Combination (Pattern) |
| Member Reaction (lbs) | 368 @ 0           | 3281 (1.50") | Passed (11%)    |      | 1.0 D + 1.0 S (All Spans)   |
| Shear (lbs)           | 267 @ 10 3/4"     | 4468         | Passed (6%)     | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Moment (Ft-lbs)       | 598 @ 3' 3"       | 5166         | Passed (12%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Live Load Defl. (in)  | 0.003 @ 3' 3"     | 0.217        | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |
| Total Load Defl. (in) | 0.012 @ 3' 3"     | 0.325        | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |

Member Length : 6' 6" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

|                  | Bearing Length |           | Loads to Supports (lbs) |      |      |          |             |
|------------------|----------------|-----------|-------------------------|------|------|----------|-------------|
| Supports         | Total          | Available | Required                | Dead | Snow | Factored | Accessories |
| 1 - Trimmer - HF | 1.50"          | 1.50"     | 1.50"                   | 287  | 81   | 368      | None        |
| 2 - Trimmer - HF | 1.50"          | 1.50"     | 1.50"                   | 287  | 81   | 368      | None        |

| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | 6' 6" o/c         |          |
| Bottom Edge (Lu) | 6' 6" o/c         |          |

•Maximum allowable bracing intervals based on applied load.

|                       |            |                    | Dead   | Snow   |              |
|-----------------------|------------|--------------------|--------|--------|--------------|
| Vertical Loads        | Location   | Tributary<br>Width | (0.90) | (1.15) | Comments     |
| 0 - Self Weight (PLF) | 0 to 6' 6" | N/A                | 8.2    |        |              |
| 1 - Uniform (PSF)     | 0 to 6' 6" | 1'                 | 20.0   | 25.0   | Default Load |
| 2 - Uniform (PLF)     | 0 to 6' 6" | N/A                | 60.0   | -      | Parapet      |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/ document-library.

rerhaeuser

| ForteWEB Software Operator                                                          | Job Notes |   |
|-------------------------------------------------------------------------------------|-----------|---|
| Chon Pieruccioni<br>Pieruccioni Engineering<br>(206) 949-7866<br>cpieru@hotmail.com |           | W |



## PASSED

## Roof Framing, Grid A - 6' Door King Studs 1 piece(s) 2 x 6 HF No.2

#### Wall Height: 13'

Member Height: 12' 7 1/2"

Tributary Width: 3' 11"



| Design Results          | Actual          | Allowed | Result         | LDF  | Load: Combination |
|-------------------------|-----------------|---------|----------------|------|-------------------|
| Slenderness             | 28              | 50      | Passed (55%)   |      |                   |
| Compression (lbs)       | 61              | 3888    | Passed (2%)    | 1.15 | 1.0 D + 1.0 S     |
| Plate Bearing (lbs)     | 61              | 3341    | Passed (2%)    |      | 1.0 D + 1.0 S     |
| Lateral Reaction (lbs)  | 324             |         |                | 1.60 | 1.0 D + 0.6 W     |
| Lateral Shear (lbs)     | 300             | 1320    | Passed (23%)   | 1.60 | 1.0 D + 0.6 W     |
| Lateral Moment (ft-lbs) | 1022 @ mid-span | 1102    | Passed (93%)   | 1.60 | 1.0 D + 0.6 W     |
| Total Deflection (in)   | 0.76 @ mid-span | 0.84    | Passed (L/199) |      | 1.0 D + 0.6 W     |
| Bending/Compression     | 0.94            | 1       | Passed (94%)   | 1.60 | 1.0 D + 0.6 W     |

• Lateral deflection criteria: Wind (L/180)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

Applicable calculations are based on NDS.

| Top D | ol 2X | Hem Fir | Member Type : Column<br>Building Code : IBC 2021<br>Design Methodology : AS |
|-------|-------|---------|-----------------------------------------------------------------------------|
| Base  | 2X    | Hem Fir |                                                                             |

| Max Unbraced Length | Comments |
|---------------------|----------|
| 1'                  |          |

Drawing is Conceptual

| Lateral Connections |           |                            |          |                   |  |  |  |
|---------------------|-----------|----------------------------|----------|-------------------|--|--|--|
| Supports            | Connector | Type/Model                 | Quantity | Connector Nailing |  |  |  |
| Тор                 | Nails     | 8d (0.113" x 2 1/2") (Toe) | 4        | N/A               |  |  |  |
| Base                | Nails     | 8d (0.113" x 2 1/2") (Toe) | 4        | N/A               |  |  |  |

Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

|                |                 | Dead   | Snow   |              |
|----------------|-----------------|--------|--------|--------------|
| Vertical Load  | Tributary Width | (0.90) | (1.15) | Comments     |
| 1 - Point (lb) | N/A             | 27     | 34     | Default Load |

|                   |             |                 | Wind   |          |
|-------------------|-------------|-----------------|--------|----------|
| Lateral Load      | Location    | Tributary Width | (1.60) | Comments |
| 1 - Uniform (PSF) | Full Length | 3' 11"          | 21.8   |          |

ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (110), Risk Category(II), Wind Zone (4), GCpi

(+/- 0.18), Effective Wind Area determined using full member span and trib. width.
 IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/ document-library.

Weverhaeuser

| ForteWEB Software Operator                                                          | Job Notes |
|-------------------------------------------------------------------------------------|-----------|
| Chon Pieruccioni<br>Pieruccioni Engineering<br>(206) 949-7866<br>cpieru@hotmail.com |           |



#### Roof Framing, Grid A - 9' Window Header 1 piece(s) 4 x 10 DF No.2



Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal (typ.).

| Design Results        | Actual @ Location | Allowed      | Result          | LDF  | Load: Combination (Pattern) |
|-----------------------|-------------------|--------------|-----------------|------|-----------------------------|
| Member Reaction (lbs) | 524 @ 0           | 3281 (1.50") | Passed (16%)    |      | 1.0 D + 1.0 S (All Spans)   |
| Shear (lbs)           | 422 @ 10 3/4"     | 4468         | Passed (9%)     | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Moment (Ft-lbs)       | 1211 @ 4' 7 1/2"  | 5166         | Passed (23%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Live Load Defl. (in)  | 0.011 @ 4' 7 1/2" | 0.308        | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |
| Total Load Defl. (in) | 0.050 @ 4' 7 1/2" | 0.463        | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |

Member Length : 9' 3" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

|                  | Bearing Length |           |          | Loads to Supports (lbs) |      |          |             |
|------------------|----------------|-----------|----------|-------------------------|------|----------|-------------|
| Supports         | Total          | Available | Required | Dead                    | Snow | Factored | Accessories |
| 1 - Trimmer - HF | 1.50"          | 1.50"     | 1.50"    | 408                     | 116  | 524      | None        |
| 2 - Trimmer - HF | 1.50"          | 1.50"     | 1.50"    | 408                     | 116  | 524      | None        |

| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | 9' 3" o/c         |          |
| Bottom Edge (Lu) | 9' 3" o/c         |          |

•Maximum allowable bracing intervals based on applied load.

|                       |            |                    | Dead   | Snow   |              |
|-----------------------|------------|--------------------|--------|--------|--------------|
| Vertical Loads        | Location   | Tributary<br>Width | (0.90) | (1.15) | Comments     |
| 0 - Self Weight (PLF) | 0 to 9' 3" | N/A                | 8.2    |        |              |
| 1 - Uniform (PSF)     | 0 to 9' 3" | 1'                 | 20.0   | 25.0   | Default Load |
| 2 - Uniform (PLF)     | 0 to 9' 3" | N/A                | 60.0   | -      | Parapet      |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/ document-library.

rerhaeuser

| ForteWEB Software Operator                                                          | Job Notes |   |
|-------------------------------------------------------------------------------------|-----------|---|
| Chon Pieruccioni<br>Pieruccioni Engineering<br>(206) 949-7866<br>cpieru@hotmail.com |           | W |



## PASSED

## Roof Framing, Grid A - 9' Door King Studs 2 piece(s) 2 x 6 HF No.2

#### Wall Height: 13'

Member Height: 12' 7 1/2"

Tributary Width: 5' 11"



| Design Results          | Actual          | Allowed | Result         | LDF  | Load: Combination |
|-------------------------|-----------------|---------|----------------|------|-------------------|
| Slenderness             | 28              | 50      | Passed (55%)   |      |                   |
| Compression (lbs)       | 61              | 7777    | Passed (1%)    | 1.15 | 1.0 D + 1.0 S     |
| Plate Bearing (lbs)     | 61              | 6683    | Passed (1%)    |      | 1.0 D + 1.0 S     |
| Lateral Reaction (lbs)  | 478             |         |                | 1.60 | 1.0 D + 0.6 W     |
| Lateral Shear (lbs)     | 443             | 2640    | Passed (17%)   | 1.60 | 1.0 D + 0.6 W     |
| Lateral Moment (ft-lbs) | 1509 @ mid-span | 2223    | Passed (68%)   | 1.60 | 1.0 D + 0.6 W     |
| Total Deflection (in)   | 0.56 @ mid-span | 0.84    | Passed (L/270) |      | 1.0 D + 0.6 W     |
| Bending/Compression     | 0.68            | 1       | Passed (68%)   | 1.60 | 1.0 D + 0.6 W     |

• Lateral deflection criteria: Wind (L/180)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

• Applicable calculations are based on NDS.

• The column stability factor (Kf = 0.6) applied to this design assumes nailed built-up columns per NDS section 15.3.3. For Weyerhaeuser ELP products refer to the U.S. Wall Guide for multiple-member connection requirements.

Comments

| Supports | Туре   | Material | System : Wall            |
|----------|--------|----------|--------------------------|
| Тор      | Dbl 2X | Hem Fir  | Member Type : Column     |
| Base     | 2X     | Hem Fir  | Design Methodology : ASD |

Drawing is Conceptual

| Lateral Connections |           |                         |          |                   |  |  |
|---------------------|-----------|-------------------------|----------|-------------------|--|--|
| Supports            | Connector | Type/Model              | Quantity | Connector Nailing |  |  |
| Тор                 | Nails     | 10d (0.128" x 3") (End) | 6        | N/A               |  |  |
| Base                | Nails     | 10d (0.128" x 3") (End) | 6        | N/A               |  |  |

Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

| Vertical Load  | Tributary Width | Dead<br>(0.90) | Snow<br>(1.15) | Comments     |
|----------------|-----------------|----------------|----------------|--------------|
| 1 - Point (lb) | N/A             | 27             | 34             | Default Load |

**Max Unbraced Length** 

|                   |             |                 | Wind   |          |
|-------------------|-------------|-----------------|--------|----------|
| Lateral Load      | Location    | Tributary Width | (1.60) | Comments |
| 1 - Uniform (PSF) | Full Length | 5' 11"          | 21.3   |          |

• ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (110), Risk Category(II), Wind Zone (4), GCpi (+/- 0.18), Effective Wind Area determined using full member span and trib. width.
IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

1'

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/ document-library

| ForteWEB Software Operator                                                          | Job Notes |
|-------------------------------------------------------------------------------------|-----------|
| Chon Pieruccioni<br>Pieruccioni Engineering<br>(206) 949-7866<br>cpieru@hotmail.com |           |





## Roof Framing, Grid D - 5' Window Header 1 piece(s) 4 x 10 DF No.2



Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal (typ.).

| Design Results        | Actual @ Location | Allowed      | Result          | LDF  | Load: Combination (Pattern) |
|-----------------------|-------------------|--------------|-----------------|------|-----------------------------|
| Member Reaction (lbs) | 297 @ 0           | 3281 (1.50") | Passed (9%)     |      | 1.0 D + 1.0 S (All Spans)   |
| Shear (lbs)           | 196 @ 10 3/4"     | 4468         | Passed (4%)     | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Moment (Ft-lbs)       | 390 @ 2' 7 1/2"   | 5166         | Passed (8%)     | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Live Load Defl. (in)  | 0.001 @ 2' 7 1/2" | 0.175        | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |
| Total Load Defl. (in) | 0.005 @ 2' 7 1/2" | 0.262        | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |

Member Length : 5' 3" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

|                  | Bearing Length |           |          | Loads | to Support |          |             |
|------------------|----------------|-----------|----------|-------|------------|----------|-------------|
| Supports         | Total          | Available | Required | Dead  | Snow       | Factored | Accessories |
| 1 - Trimmer - HF | 1.50"          | 1.50"     | 1.50"    | 232   | 66         | 297      | None        |
| 2 - Trimmer - HF | 1.50"          | 1.50"     | 1.50"    | 232   | 66         | 297      | None        |

| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | 5' 3" o/c         |          |
| Bottom Edge (Lu) | 5' 3" o/c         |          |

•Maximum allowable bracing intervals based on applied load.

|                       |            |                    | Dead   | Snow   |              |
|-----------------------|------------|--------------------|--------|--------|--------------|
| Vertical Loads        | Location   | Tributary<br>Width | (0.90) | (1.15) | Comments     |
| 0 - Self Weight (PLF) | 0 to 5' 3" | N/A                | 8.2    |        |              |
| 1 - Uniform (PSF)     | 0 to 5' 3" | 1'                 | 20.0   | 25.0   | Default Load |
| 2 - Uniform (PLF)     | 0 to 5' 3" | N/A                | 60.0   | -      | Parapet      |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/ document-library.

rerhaeuser

| ForteWEB Software Operator                                                          | Job Notes |   |
|-------------------------------------------------------------------------------------|-----------|---|
| Chon Pieruccioni<br>Pieruccioni Engineering<br>(206) 949-7866<br>cpieru@hotmail.com |           | W |



## PASSED

## Roof Framing, Grid D- 5' Window King Studs 1 piece(s) 2 x 6 HF No.2

#### Wall Height: 13'

Member Height: 12' 7 1/2"

Tributary Width: 3' 2"



| Design Results          | Actual          | Allowed | Result         | LDF  | Load: Combination |
|-------------------------|-----------------|---------|----------------|------|-------------------|
| Slenderness             | 28              | 50      | Passed (55%)   |      |                   |
| Compression (lbs)       | 60              | 3888    | Passed (2%)    | 1.15 | 1.0 D + 1.0 S     |
| Plate Bearing (lbs)     | 60              | 3341    | Passed (2%)    |      | 1.0 D + 1.0 S     |
| Lateral Reaction (lbs)  | 262             |         |                | 1.60 | 1.0 D + 0.6 W     |
| Lateral Shear (lbs)     | 243             | 1320    | Passed (18%)   | 1.60 | 1.0 D + 0.6 W     |
| Lateral Moment (ft-lbs) | 827 @ mid-span  | 1102    | Passed (75%)   | 1.60 | 1.0 D + 0.6 W     |
| Total Deflection (in)   | 0.62 @ mid-span | 0.84    | Passed (L/246) |      | 1.0 D + 0.6 W     |
| Bending/Compression     | 0.76            | 1       | Passed (76%)   | 1.60 | 1.0 D + 0.6 W     |

• Lateral deflection criteria: Wind (L/180)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

Applicable calculations are based on NDS.

| Supports | Туре   | Material | System : Wall            |
|----------|--------|----------|--------------------------|
| Тор      | Dbl 2X | Hem Fir  | Member Type : Column     |
| Base     | 2X     | Hem Fir  | Design Methodology : ASD |

| Max Unbraced Length | Comments |
|---------------------|----------|
| 1'                  |          |

Drawing is Conceptual

| Lateral Connections |                                   |                                                                                                                                    |                                                                                                                                                                         |  |  |  |  |
|---------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Connector           | Type/Model                        | Quantity                                                                                                                           | Connector Nailing                                                                                                                                                       |  |  |  |  |
| Nails               | 8d (0.113" x 2 1/2") (Toe)        | 4                                                                                                                                  | N/A                                                                                                                                                                     |  |  |  |  |
| Nails               | 8d (0.113" x 2 1/2") (Toe)        | 4                                                                                                                                  | N/A                                                                                                                                                                     |  |  |  |  |
|                     | IS<br>Connector<br>Nails<br>Nails | Connector         Type/Model           Nails         8d (0.113" x 2 1/2") (Toe)           Nails         8d (0.113" x 2 1/2") (Toe) | Connector         Type/Model         Quantity           Nails         8d (0.113" x 2 1/2") (Toe)         4           Nails         8d (0.113" x 2 1/2") (Toe)         4 |  |  |  |  |

Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

|                |                 | Dead   | Snow   |              |
|----------------|-----------------|--------|--------|--------------|
| Vertical Load  | Tributary Width | (0.90) | (1.15) | Comments     |
| 1 - Point (lb) | N/A             | 27     | 33     | Default Load |

|                   |             |                 | Wind   |          |
|-------------------|-------------|-----------------|--------|----------|
| Lateral Load      | Location    | Tributary Width | (1.60) | Comments |
| 1 - Uniform (PSF) | Full Length | 3' 2"           | 21.8   |          |

ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (110), Risk Category(II), Wind Zone (4), GCpi

(+/- 0.18), Effective Wind Area determined using full member span and trib. width.
 IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/ document-library.

| ForteWEB Software Operator                                                          | Job Notes |
|-------------------------------------------------------------------------------------|-----------|
| Chon Pieruccioni<br>Pieruccioni Engineering<br>(206) 949-7866<br>cpieru@hotmail.com |           |





#### Roof Framing, Grid D - 3' Door Header 1 piece(s) 4 x 10 DF No.2



Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal (typ.).

| Design Results        | Actual @ Location | Allowed      | Result          | LDF  | Load: Combination (Pattern) |
|-----------------------|-------------------|--------------|-----------------|------|-----------------------------|
| Member Reaction (lbs) | 193 @ 0           | 3281 (1.50") | Passed (6%)     |      | 1.0 D + 1.0 S (All Spans)   |
| Shear (lbs)           | 92 @ 10 3/4"      | 4468         | Passed (2%)     | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Moment (Ft-lbs)       | 165 @ 1' 8 1/2"   | 5166         | Passed (3%)     | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Live Load Defl. (in)  | 0.000 @ 1' 8 1/2" | 0.114        | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |
| Total Load Defl. (in) | 0.001 @ 1' 8 1/2" | 0.171        | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |

Member Length : 3' 5" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

|                  | Bearing Length |           |          | Loads | to Support |          |             |
|------------------|----------------|-----------|----------|-------|------------|----------|-------------|
| Supports         | Total          | Available | Required | Dead  | Snow       | Factored | Accessories |
| 1 - Trimmer - HF | 1.50"          | 1.50"     | 1.50"    | 151   | 43         | 193      | None        |
| 2 - Trimmer - HF | 1.50"          | 1.50"     | 1.50"    | 151   | 43         | 193      | None        |

| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | 3' 5" o/c         |          |
| Bottom Edge (Lu) | 3' 5" o/c         |          |

•Maximum allowable bracing intervals based on applied load.

|                       |            |                    | Dead   | Snow   |              |
|-----------------------|------------|--------------------|--------|--------|--------------|
| Vertical Loads        | Location   | Tributary<br>Width | (0.90) | (1.15) | Comments     |
| 0 - Self Weight (PLF) | 0 to 3' 5" | N/A                | 8.2    |        |              |
| 1 - Uniform (PSF)     | 0 to 3' 5" | 1'                 | 20.0   | 25.0   | Default Load |
| 2 - Uniform (PLF)     | 0 to 3' 5" | N/A                | 60.0   | -      | Parapet      |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/ document-library.

rerhaeuser

| ForteWEB Software Operator                                                          | Job Notes |   |
|-------------------------------------------------------------------------------------|-----------|---|
| Chon Pieruccioni<br>Pieruccioni Engineering<br>(206) 949-7866<br>cpieru@hotmail.com |           | W |



## Roof Framing, Grid D- 3' Door King Studs 1 piece(s) 2 x 6 HF No.2

#### Wall Height: 13'

Member Height: 12' 7 1/2"

Tributary Width: 2' 2"



| Design Results          | Actual          | Allowed | Result         | LDF  | Load: Combination |
|-------------------------|-----------------|---------|----------------|------|-------------------|
| Slenderness             | 28              | 50      | Passed (55%)   |      |                   |
| Compression (lbs)       | 60              | 3888    | Passed (2%)    | 1.15 | 1.0 D + 1.0 S     |
| Plate Bearing (lbs)     | 60              | 3341    | Passed (2%)    |      | 1.0 D + 1.0 S     |
| Lateral Reaction (lbs)  | 179             |         |                | 1.60 | 1.0 D + 0.6 W     |
| Lateral Shear (lbs)     | 166             | 1320    | Passed (13%)   | 1.60 | 1.0 D + 0.6 W     |
| Lateral Moment (ft-lbs) | 566 @ mid-span  | 1102    | Passed (51%)   | 1.60 | 1.0 D + 0.6 W     |
| Total Deflection (in)   | 0.42 @ mid-span | 0.84    | Passed (L/359) |      | 1.0 D + 0.6 W     |
| Bending/Compression     | 0.52            | 1       | Passed (52%)   | 1.60 | 1.0 D + 0.6 W     |

• Lateral deflection criteria: Wind (L/180)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

Applicable calculations are based on NDS.

| Supports | Туре   | Material | System : Wall            |
|----------|--------|----------|--------------------------|
| Тор      | Dbl 2X | Hem Fir  | Member Type : Column     |
| Base     | 2X     | Hem Fir  | Design Methodology : ASD |

| Max Unbraced Length | Comments |
|---------------------|----------|
| 1'                  |          |

Drawing is Conceptual

| Lateral Connections |                                   |                                                                                                                                    |                                                                                                                                                                         |  |  |  |  |
|---------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Connector           | Type/Model                        | Quantity                                                                                                                           | Connector Nailing                                                                                                                                                       |  |  |  |  |
| Nails               | 8d (0.113" x 2 1/2") (Toe)        | 3                                                                                                                                  | N/A                                                                                                                                                                     |  |  |  |  |
| Nails               | 8d (0.113" x 2 1/2") (Toe)        | 3                                                                                                                                  | N/A                                                                                                                                                                     |  |  |  |  |
|                     | ns<br>Connector<br>Nails<br>Nails | Connector         Type/Model           Nails         8d (0.113" x 2 1/2") (Toe)           Nails         8d (0.113" x 2 1/2") (Toe) | Connector         Type/Model         Quantity           Nails         8d (0.113" x 2 1/2") (Toe)         3           Nails         8d (0.113" x 2 1/2") (Toe)         3 |  |  |  |  |

Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

|                |                 | Dead   | Snow   |              |
|----------------|-----------------|--------|--------|--------------|
| Vertical Load  | Tributary Width | (0.90) | (1.15) | Comments     |
| 1 - Point (lb) | N/A             | 27     | 33     | Default Load |

|                   |             |                 | Wind   |          |
|-------------------|-------------|-----------------|--------|----------|
| Lateral Load      | Location    | Tributary Width | (1.60) | Comments |
| 1 - Uniform (PSF) | Full Length | 2' 2"           | 21.8   |          |

ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (110), Risk Category(II), Wind Zone (4), GCpi

(+/- 0.18), Effective Wind Area determined using full member span and trib. width.
 IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

## Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/ document-library.

Weverhaeuser

| ForteWEB Software Operator                                                          | Job Notes |
|-------------------------------------------------------------------------------------|-----------|
| Chon Pieruccioni<br>Pieruccioni Engineering<br>(206) 949-7866<br>cpieru@hotmail.com |           |



## Roof Framing, Grid D - 9' Window Header 1 piece(s) 4 x 10 DF No.2



Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal (typ.).

| Design Results        | Actual @ Location | Allowed      | Result          | LDF  | Load: Combination (Pattern) |
|-----------------------|-------------------|--------------|-----------------|------|-----------------------------|
| Member Reaction (lbs) | 524 @ 0           | 3281 (1.50") | Passed (16%)    |      | 1.0 D + 1.0 S (All Spans)   |
| Shear (lbs)           | 422 @ 10 3/4"     | 4468         | Passed (9%)     | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Moment (Ft-lbs)       | 1211 @ 4' 7 1/2"  | 5166         | Passed (23%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Live Load Defl. (in)  | 0.011 @ 4' 7 1/2" | 0.308        | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |
| Total Load Defl. (in) | 0.050 @ 4' 7 1/2" | 0.463        | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |

Member Length : 9' 3" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

|                  | Bearing Length |           |          | Loads | to Support |          |             |
|------------------|----------------|-----------|----------|-------|------------|----------|-------------|
| Supports         | Total          | Available | Required | Dead  | Snow       | Factored | Accessories |
| 1 - Trimmer - HF | 1.50"          | 1.50"     | 1.50"    | 408   | 116        | 524      | None        |
| 2 - Trimmer - HF | 1.50"          | 1.50"     | 1.50"    | 408   | 116        | 524      | None        |

| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | 9' 3" o/c         |          |
| Bottom Edge (Lu) | 9' 3" o/c         |          |

•Maximum allowable bracing intervals based on applied load.

|                       |            |                    | Dead   | Snow   |              |
|-----------------------|------------|--------------------|--------|--------|--------------|
| Vertical Loads        | Location   | Tributary<br>Width | (0.90) | (1.15) | Comments     |
| 0 - Self Weight (PLF) | 0 to 9' 3" | N/A                | 8.2    |        |              |
| 1 - Uniform (PSF)     | 0 to 9' 3" | 1'                 | 20.0   | 25.0   | Default Load |
| 2 - Uniform (PLF)     | 0 to 9' 3" | N/A                | 60.0   | -      | Parapet      |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/ document-library.

rerhaeuser

| ForteWEB Software Operator                                                          | Job Notes |   |
|-------------------------------------------------------------------------------------|-----------|---|
| Chon Pieruccioni<br>Pieruccioni Engineering<br>(206) 949-7866<br>cpieru@hotmail.com |           | W |



## PASSED

## Roof Framing, Grid D- 9' Window King Studs 2 piece(s) 2 x 6 HF No.2

#### Wall Height: 13'

Member Height: 12' 7 1/2"

Tributary Width: 5' 2"



| Design Results          | Actual          | Allowed | Result         | LDF  | Load: Combination |
|-------------------------|-----------------|---------|----------------|------|-------------------|
| Slenderness             | 28              | 50      | Passed (55%)   |      |                   |
| Compression (lbs)       | 60              | 7777    | Passed (1%)    | 1.15 | 1.0 D + 1.0 S     |
| Plate Bearing (lbs)     | 60              | 6683    | Passed (1%)    |      | 1.0 D + 1.0 S     |
| Lateral Reaction (lbs)  | 421             |         |                | 1.60 | 1.0 D + 0.6 W     |
| Lateral Shear (lbs)     | 391             | 2640    | Passed (15%)   | 1.60 | 1.0 D + 0.6 W     |
| Lateral Moment (ft-lbs) | 1330 @ mid-span | 2223    | Passed (60%)   | 1.60 | 1.0 D + 0.6 W     |
| Total Deflection (in)   | 0.49 @ mid-span | 0.84    | Passed (L/306) |      | 1.0 D + 0.6 W     |
| Bending/Compression     | 0.60            | 1       | Passed (60%)   | 1.60 | 1.0 D + 0.6 W     |

• Lateral deflection criteria: Wind (L/180)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

• Applicable calculations are based on NDS.

• The column stability factor (Kf = 0.6) applied to this design assumes nailed built-up columns per NDS section 15.3.3. For Weyerhaeuser ELP products refer to the U.S. Wall Guide for multiple-member connection requirements.

Comments

| Supports | Туре   | Material | System : Wall            |
|----------|--------|----------|--------------------------|
| Тор      | Dbl 2X | Hem Fir  | Member Type : Column     |
| Base     | 2X     | Hem Fir  | Design Methodology : ASD |

Drawing is Conceptual

| Lateral Connections |           |                         |          |                   |  |  |
|---------------------|-----------|-------------------------|----------|-------------------|--|--|
| Supports            | Connector | Type/Model              | Quantity | Connector Nailing |  |  |
| Тор                 | Nails     | 10d (0.128" x 3") (End) | 5        | N/A               |  |  |
| Base                | Nails     | 10d (0.128" x 3") (End) | 5        | N/A               |  |  |

Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

| Vertical Load  | Tributary Width | Dead<br>(0.90) | Snow<br>(1.15) | Comments     |
|----------------|-----------------|----------------|----------------|--------------|
| 1 - Point (lb) | N/A             | 27             | 33             | Default Load |

**Max Unbraced Length** 

|                   |             |                 | Wind   |          |
|-------------------|-------------|-----------------|--------|----------|
| Lateral Load      | Location    | Tributary Width | (1.60) | Comments |
| 1 - Uniform (PSF) | Full Length | 5' 2"           | 21.5   |          |

• ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (110), Risk Category(II), Wind Zone (4), GCpi (+/- 0.18), Effective Wind Area determined using full member span and trib. width.
IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

1'

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/ document-library

Weverhaeuser

| ForteWEB Software Operator                                                          | Job Notes |
|-------------------------------------------------------------------------------------|-----------|
| Chon Pieruccioni<br>Pieruccioni Engineering<br>(206) 949-7866<br>cpieru@hotmail.com |           |



|                     | Project:                              | Page #            |
|---------------------|---------------------------------------|-------------------|
|                     | Engineer:                             | 10/1/2024         |
|                     | Descrip: Grid J Outer Roofing Support |                   |
| ASDIP Steel 5.6.4.1 | STEEL BEAM DESIGN                     | www.asdipsoft.com |
|                     |                                       |                   |

|         | GEOMETF    | RΥ      |        |         |        | PR  | OPERTIES |      |     |
|---------|------------|---------|--------|---------|--------|-----|----------|------|-----|
| Beam De | esignation | MC8X8.  | 5      | Area    | . 2.5  | in² | Sx       | 5.8  | in³ |
| Span    | Length     | Support | Туре   | Depth   | 8.0    | in  | Zx       | 7.0  | in³ |
| 1       | 12.50 ft   | 1       | Pinned | bf      | . 1.9  | in  | rx       | 3.05 | in  |
| 2       | N.A.       | 2       | Pinned | tw      | 0.18   | in  | ly       | 0.6  | in⁴ |
| 3       | N.A.       | 3       | N.A.   | tf      | . 0.31 | in  | Sy       | 0.4  | in³ |
| 4       | N.A.       | 4       | N.A.   | k des . | 0.81   | in  | Zy       | 0.9  | in³ |
| 5       | N.A.       | 5       | N.A.   | lx      | . 23.3 | in⁴ | ry       | 0.50 | in  |
|         |            | 6       | N.A.   | Cw      | 8.2    | in⁵ | J        | 0.06 | in⁴ |

| ASD SUPPORT REACTIONS (k | ip) |
|--------------------------|-----|
|--------------------------|-----|

| Load Comb.           | Δ   | A   |
|----------------------|-----|-----|
| D+L                  | 0.1 | 0.1 |
| D+Lr                 | 0.1 | 0.1 |
| D+S                  | 0.1 | 0.1 |
| D+0.75L+0.75Lr       | 0.1 | 0.1 |
| D+0.75L+0.75S        | 0.1 | 0.1 |
| D+0.6W               | 0.1 | 0.1 |
| D+0.7E               | 0.1 | 0.1 |
| D+0.75L+0.75Lr+0.45W | 0.1 | 0.1 |
| D+0.75L+0.75S+0.45W  | 0.1 | 0.1 |
| D+0.75L+0.75S+0.525E | 0.1 | 0.1 |
| 0.6D+0.6W            | 0.0 | 0.0 |
| 0.6D+0.7E            | 0.0 | 0.0 |
| CD                   | 0.1 | 0.1 |

## DESIGN FOR SHEAR

| Maximum Shear Force V = 0.1 kip                     | (Comb: D+L)                                       |                 |                 |
|-----------------------------------------------------|---------------------------------------------------|-----------------|-----------------|
| h = d - 3 * tf = 8.0 - 3 * 0.3 = 7.1 in             |                                                   |                 |                 |
| $Aw = d * tw = 8.0 * 0.2 = 1.4 \text{ in}^2$        | kv                                                | = 5.34          | AISC G2.1(b)    |
| $h/tw = 7.1/0.2 = 39.5 < 1.1 * \sqrt{\frac{kv}{2}}$ | $\frac{1}{Fy} = 1.1 * \sqrt{\frac{5.3 * 29}{36}}$ | 9000 = 72.1     |                 |
| <i>Cv</i> = 1.00                                    |                                                   |                 | AISC Eq. (G2-3) |
| - Shear Yielding                                    |                                                   |                 |                 |
| Nominal strength Vn = 0.6 * Fy * An                 | v = 0.6 * 36.0 * 1.4 = 30.9                       | kip             |                 |
| - Shear Buckling                                    |                                                   |                 |                 |
| Nominal strength Vn = 0.6 * Fy * An                 | v * <i>Cv</i> = 0.6 * 36.0 * 1.4 *                | 1.00 = 30.9 kip | AISC Eq. (G2-1) |
| - Controlling limit state: Shear Yieldin            | g                                                 |                 |                 |
| Shear allowable strength = $Vn / \Omega$ =          | 30.9 / 1.67 = 18.5 kip                            |                 |                 |
| Shear design ratio = $\frac{V}{Vn/\Omega}$ =        | $\frac{0.1}{18.5}$ = 0.00                         | < 1.0 OK        | AISC G1         |

|                                                                                         | Project:                                                   |                              |                 | Page #            |
|-----------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------|-----------------|-------------------|
|                                                                                         | Engineer                                                   | :                            |                 | 10/1/2024         |
|                                                                                         | Descrip:                                                   | Grid J Outer                 | Roofing Support |                   |
| ASDIP Steel 5.6.4.1                                                                     | STEEL BE                                                   | AM DESIGN                    | J               | www.asdipsoft.com |
|                                                                                         |                                                            |                              |                 |                   |
|                                                                                         | DESIGN FOR FLEX                                            | URE (Non-Comp                | osite)          |                   |
| Lateral Bracing Continu                                                                 | ous (Top) , Unbrac                                         | ed (Bottom)                  |                 |                   |
| - Max. Bending Moment M = 0.2 k-ft                                                      | (Comb: C                                                   | D)                           |                 |                   |
| Cb = Min (3.0, 12.5 Mmax * Rm / (2.5                                                    | Mmax + 3 Ma + 4 Mb + 3                                     | 8 Mc))                       |                 | AISC Eq F1-1      |
| = 12.5 * 0.2 * 1.0 / (2.5 * 0.2 + 3 *                                                   | 0.0 + 4 * 0.0 + 3 * 0.0) = 3                               | 3.00                         |                 |                   |
| - Yielding                                                                              |                                                            |                              |                 |                   |
| Plastic moment $Mpx = Fy^* Zx = 36.$                                                    | 0 * 7.0 = 250.2 k-in                                       |                              |                 | AISC Eq. F2-1     |
| Nominal strength $Mnx = Mpx = 250.2$                                                    | 2 / 12 = 20.9 k-ft                                         |                              |                 |                   |
| - Lateral-Torsional Buckling                                                            |                                                            |                              |                 |                   |
| $L\rho = 1.76 * ry \sqrt{\frac{E}{Fy}} = 1.76 * ry \sqrt{\frac{E}{Fy}}$                 | $\left  \frac{29000}{36} \right $ L                        | p = 25.0 in                  |                 | AISC Eq. F2-5     |
| $rts = \sqrt{\frac{\sqrt{Iy * Cw}}{Sx}} = \sqrt{\frac{\sqrt{0.6 * 8.2}}{5.8}}$          | rts =                                                      | 0.6 in                       |                 | AISC Eq. F2-7     |
| <i>ho = d - tf =</i> 8.0 - 0.3 = 7.7 in                                                 |                                                            |                              |                 |                   |
| $c = \frac{ho}{2 * \sqrt{\frac{Iy}{Cw}}} = \frac{7.689}{2 * \sqrt{\frac{0.624}{8.21}}}$ | c = 1.1                                                    | in                           |                 | AISC Eq. F2-8b    |
| $Lr = {1.95 * rts * E \over (0.7 * Fy)} * \sqrt{{J * c \over (Sx * ho)}} +$             | $\sqrt{(\frac{J*c}{(Sx*ho)})^2 + 6.76*}$                   | $(\frac{0.7*Fy}{E})^2$       |                 | AISC Eq. F2-6     |
| $\frac{1.95*0.6*29000}{(0.7*36)}*\sqrt{\frac{0.1*1.1}{(5.8*7.7)}}+$                     | $\sqrt{(\frac{0.1*1.1}{(5.8*7.7)})^2 + 6.76*}$             | $(\frac{0.7 * 36}{29000})^2$ | Lr = 89.0 in    |                   |
| $Fcr = \frac{Cb * \pi^2 * E}{(Lb / rts)^2} \sqrt{1 + \frac{0.078 * J}{(Sx * ho)}}$      | $(\frac{c}{b}) * (\frac{Lb}{rts})^2$                       |                              |                 | AISC Eq. F2-4     |
| $= \frac{3.00 * n^2 * 29000}{(0.0 * 12 / 0.6)^2} \sqrt{1 + \frac{0}{1 + 0}}$            | $\frac{.078 * 0.1 * 1.1}{(5.8 * 7.7)} * (\frac{0}{0.6})^2$ | Fcr = ∞ ksi                  |                 |                   |
| Plastic moment $Mpx = Fy^* Zx = 36.$                                                    | 0 * 7.0 = 250.2 k-in                                       |                              |                 |                   |
| Nominal strength $Mnx = Mpx = 250.2$                                                    | 2 / 12 = 20.9 k-ft                                         |                              |                 |                   |
| - Controlling limit state: Yielding                                                     |                                                            |                              |                 |                   |
| Flexural allowable strength = $Mnx / \Omega$                                            | ? = 20.9 / 1.67 = 12.5 k-ft                                |                              |                 |                   |
| Mv                                                                                      | 0.2                                                        |                              |                 |                   |

| Flexural design ratio = | $\frac{Mx}{Mnx/\Omega} =$ | 12.5 | = 0.01 < 7 | 1.0 OK | AISC F1 |
|-------------------------|---------------------------|------|------------|--------|---------|
|-------------------------|---------------------------|------|------------|--------|---------|

| DEFLECTIONS     |          |      |         |       |    |  |  |
|-----------------|----------|------|---------|-------|----|--|--|
| Stiffness facto | r        |      | 1.0     |       |    |  |  |
| Required Carr   | ber      |      | 0.00    | ) in  |    |  |  |
| Long-term De    | flection |      |         | N.A.  |    |  |  |
| Loading         | δ (in)   | L/δ  | L/δ Min | Ratio |    |  |  |
| CL              | 0.00     | 1200 | 180     | 0.15  | ОК |  |  |
| CD+CL           | 0.00     | 1200 | 120     | 0.10  | ОК |  |  |
| L               | 0.00     | 1200 | 180     | 0.15  | OK |  |  |
| D+L             | 0.00     | 1200 | 120     | 0.10  | ОК |  |  |

## DESIGN CODES

| Steel Design      | AISC 360-16  |
|-------------------|--------------|
| Load Combinations | ASCE 7-10/16 |

|                     | Project:                              | Page #            |
|---------------------|---------------------------------------|-------------------|
|                     | Engineer:                             | 10/1/2024         |
|                     | Descrip: Grid J Outer Roofing Support |                   |
| ASDIP Steel 5.6.4.1 | STEEL BEAM DESIGN                     | www.asdipsoft.com |



(Comb: CD)





|       | Project:<br>Engineer: |        |          |              |              |               |            | Page #<br>10/1/2024 |         |                 |
|-------|-----------------------|--------|----------|--------------|--------------|---------------|------------|---------------------|---------|-----------------|
|       |                       |        |          | De           | escrip: G    | Grid J Oute   | er Roofi   | ng Suppo            | ort     |                 |
| ASDIP | Steel 5.6.4           | 4.1    |          | STEE         | EL BEAI      | M DESIC       | GN         |                     | WWV     | v.asdipsoft.com |
|       | UNFACT                | ORED F | INAL LOA | DS (Selfweig | ht calculate | ed internally | ) (kip, ft | , k-ft, psf)        |         |                 |
|       | Start                 | End    | Width    | Dead         | Live         | RLive         | Snow       | Wind                | Seismic |                 |
|       | Dist                  | Dead   | Live     | e RLive      | Snow         | Wind          | Seis       | mic                 |         |                 |
| UNI   | FACTORED              |        | FRUCTION | I LOADS (Se  | lfweight cal | lculated inte | ernally) ( | kip, ft, k-ft,      | psf)    |                 |

| <br>Start | End | Width | Dead | Live | <br>Dist | Dead | Live |
|-----------|-----|-------|------|------|----------|------|------|
|           |     |       |      |      |          |      |      |

|                     | Proje     |                   | Page #            |          |                |       |                   |       |  |  |
|---------------------|-----------|-------------------|-------------------|----------|----------------|-------|-------------------|-------|--|--|
|                     | Engin     | eer:              |                   |          |                |       | 10/1              | /2024 |  |  |
|                     | Desci     | rip:              | Awning Outer Beam | <u>۱</u> |                |       |                   |       |  |  |
| ASDIP Steel 5.6.4.1 | STEEL     | STEEL BEAM DESIGN |                   |          |                |       | www.asdipsoft.com |       |  |  |
| GEOMETRY            | ,         |                   |                   |          | PROPE          | RTIES |                   |       |  |  |
| Beam Designation    | MC12X10.6 |                   | Area 3.1          | ii       | า <sup>2</sup> | Sx    | 9.2               | in³   |  |  |

| Beam De | esignation | NIC 12X 10.0 | Area    | 3.1  | In- | 5x | 9.2  | IU. |
|---------|------------|--------------|---------|------|-----|----|------|-----|
| Span    | Length     | Support Type | Depth   | 12.0 | in  | Zx | 11.6 | in³ |
| 1       | 12.50 ft   | 1 Pinned     | bf      | 1.5  | in  | rx | 4.22 | in  |
| 2       | N.A.       | 2 Pinned     | tw      | 0.19 | in  | ly | 0.4  | in⁴ |
| 3       | N.A.       | (3) N.A.     | tf      | 0.31 | in  | Sy | 0.3  | in³ |
| 4       | N.A.       | (4) N.A.     | k des . | 0.75 | in  | Zy | 0.6  | in³ |
| 5       | N.A.       | 5 N.A.       | lx      | 55.3 | in⁴ | ry | 0.35 | in  |
|         |            | 6 N.A.       | Cw      | 11.7 | in⁵ | J  | 0.06 | in⁴ |

| ASD SUPPORT REACTIONS (kip) |     |     |  |  |  |
|-----------------------------|-----|-----|--|--|--|
| Load Comb.                  | 2   | Δ   |  |  |  |
| D+L                         | 0.1 | 0.1 |  |  |  |
| D+Lr                        | 0.1 | 0.1 |  |  |  |
| D+S                         | 0.1 | 0.1 |  |  |  |
| D+0.75L+0.75Lr              | 0.1 | 0.1 |  |  |  |
| D+0.75L+0.75S               | 0.1 | 0.1 |  |  |  |
| D+0.6W                      | 0.1 | 0.1 |  |  |  |
| D+0.7E                      | 0.1 | 0.1 |  |  |  |
| D+0.75L+0.75Lr+0.45W        | 0.1 | 0.1 |  |  |  |
| D+0.75L+0.75S+0.45W         | 0.1 | 0.1 |  |  |  |
| D+0.75L+0.75S+0.525E        | 0.1 | 0.1 |  |  |  |
| 0.6D+0.6W                   | 0.0 | 0.0 |  |  |  |
| 0.6D+0.7E                   | 0.0 | 0.0 |  |  |  |
| CD                          | 0.1 | 0.1 |  |  |  |
|                             |     |     |  |  |  |

## DESIGN FOR SHEAR

| Maximum Shear Force V =                | <u>0.1 kip</u> (Comb: CD)                                          |                                              |
|----------------------------------------|--------------------------------------------------------------------|----------------------------------------------|
| h = d - 3 * tf = 12.0 - 3 * 0.         | 3 = 11.1 in                                                        |                                              |
| Aw = d * tw = 12.0 * 0.2 =             | 2.3 in <sup>2</sup> ki                                             | v = 5.34 AISC G2.1(b)                        |
| <i>h / tw =</i> 11.1 / 0.2 = 58.3 <    | $1.1 * \sqrt{\frac{kv * E}{Fy}} = 1.1 * \sqrt{\frac{5.3 * 2}{3y}}$ | $\frac{29000}{3}$ = 72.1                     |
| Cv = 1.00                              | ,                                                                  | AISC Eq. (G2-3)                              |
| - Shear Yielding                       |                                                                    |                                              |
| Nominal strength $Vn = 0.0$            | δ * <i>Fy</i> * <i>Aw</i> <b>=</b> 0.6 * 36.0 * 2.3 <b>=</b> 49.   | 2 kip                                        |
| - Shear Buckling                       |                                                                    |                                              |
| Nominal strength $Vn = 0.0$            | 6 * Fy * Aw * Cv <b>=</b> 0.6 * 36.0 * 2.3 *                       | <sup>4</sup> 1.00 = 49.2 kip AISC Eq. (G2-1) |
| - Controlling limit state: She         | ear Yielding                                                       |                                              |
| Shear allowable strength =             | <i>Vn / Ω</i> = 49.2 / 1.67 = 29.5 kip                             |                                              |
| Shear design ratio = $\frac{1}{V_{A}}$ | $\frac{V}{n/\Omega} = \frac{0.1}{29.5} = 0.00$                     | < 1.0 OK AISC G1                             |

|                                                                                               | Project:                                                                                                    | Page #            |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------|
|                                                                                               | Engineer:                                                                                                   | 10/1/2024         |
|                                                                                               | Descrip: Awning Outer Beam                                                                                  |                   |
| ASDIP Steel 5.6.4.1                                                                           | STEEL BEAM DESIGN                                                                                           | www.asdipsoft.com |
|                                                                                               |                                                                                                             |                   |
|                                                                                               | DESIGN FOR FLEXURE (Non-Composite)                                                                          |                   |
| Lateral Bracing Continue                                                                      | uous (Top), Unbraced (Bottom)                                                                               |                   |
| - Max. Bending Moment M = 0.2 k-ft                                                            | (Comb: CD)                                                                                                  |                   |
| Cb = Min (3.0, 12.5 Mmax * Rm / (2.5                                                          | 5 Mmax + 3 Ma + 4 Mb + 3 Mc))                                                                               | AISC Eq F1-1      |
| = 12.5 * 0.2 * 1.0 / (2.5 * 0.2 + 3 * )                                                       | 0.0 + 4 * 0.0 + 3 * 0.0) = 3.00                                                                             |                   |
| - Yielding                                                                                    |                                                                                                             |                   |
| Plastic moment $Mpx = Fy * Zx = 36.$                                                          | .0 * 11.6 = 417.6 k-in                                                                                      | AISC Eq. F2-1     |
| Nominal strength $Mnx = Mpx = 417.6$                                                          | 6 / 12 = 34.8 k-ft                                                                                          |                   |
| - Lateral-Torsional Buckling                                                                  |                                                                                                             |                   |
| $L\rho = 1.76 * ry \sqrt{\frac{E}{Fy}} = 1.76 * ry \sqrt{\frac{E}{Fy}}$                       | $\sqrt{\frac{29000}{36}}$ Lp = 17.4 in                                                                      | AISC Eq. F2-5     |
| $rts = \sqrt{\frac{\sqrt{Iy * Cw}}{Sx}} = \sqrt{\frac{\sqrt{0.4 * 11.7}}{9.2}}$               | 7 rts = 0.5 in                                                                                              | AISC Eq. F2-7     |
| <i>ho</i> = <i>d</i> - <i>tf</i> = 12.0 - 0.3 = 11.7 in                                       |                                                                                                             |                   |
| $c = \frac{ho}{2 * \sqrt{\frac{Iy}{Cw}}} = \frac{11.691}{2 * \sqrt{\frac{0.378}{11.7}}}$      | c = 1.1 in                                                                                                  | AISC Eq. F2-8b    |
| $\mathit{Lr} = \; \frac{1.95 * rts * E}{(0.7 * Fy)} * \; \sqrt{\frac{J * c}{(Sx * ho)}} + \;$ | $\sqrt{(\frac{J*c}{(Sx*ho)})^2 + 6.76*(\frac{0.7*Fy}{E})^2}$                                                | AISC Eq. F2-6     |
| $\frac{1.95*0.5*29000}{(0.7*36)}*\sqrt{\frac{0.1*1.1}{(9.2*11.7)}}+$                          | $-\sqrt{(\frac{0.1*1.1}{(9.2*11.7)})^2 + 6.76*(\frac{0.7*36}{29000})^2} \qquad \text{Lr} = 57.9 \text{ in}$ |                   |
| $Fcr = \frac{Cb * \pi^2 * E}{(Lb / rts)^2} \sqrt{1 + \frac{0.078 * J * F}{(Sx * ho)^2}}$      | $\frac{c}{b} * (\frac{Lb}{rts})^2$                                                                          | AISC Eq. F2-4     |
| $= \frac{3.00 * n^2 * 29000}{(0.0 * 12 / 0.5)^2} \sqrt{1 + \frac{0.000}{1000}}$               | $\frac{0.078 * 0.1 * 1.1}{(9.2 * 11.7)} * (\frac{0}{0.5})^2 \qquad \text{Fcr} = \infty \text{ ksi}$         |                   |
| Plastic moment $Mpx = Fy * Zx = 36.$                                                          | .0 * 11.6 = 417.6 k-in                                                                                      |                   |
| Nominal strength $Mnx = Mpx = 417.6$                                                          | 6 / 12 = 34.8 k-ft                                                                                          |                   |
| - Controlling limit state: Yielding                                                           |                                                                                                             |                   |
| Flexural allowable strength = $Mnx / \Omega$                                                  | 2 = 34.8 / 1.67 = 20.8 k-ft                                                                                 |                   |
| -                                                                                             | 0.2                                                                                                         |                   |

Flexural design ratio =  $\frac{Mx}{Mnx/\Omega} = \frac{0.2}{20.8} = 0.01 < 1.0 \text{ OK}$  AISC F1

| DEFLECTIONS          |        |      |         |       |    |  |  |  |
|----------------------|--------|------|---------|-------|----|--|--|--|
| Stiffness factor     | r      |      | 1.0     |       |    |  |  |  |
| Required Cam         | ber    | 0.00 | ) in    |       |    |  |  |  |
| Long-term Deflection |        |      |         | N.A.  |    |  |  |  |
| Loading              | δ (in) | L/δ  | L/δ Min | Ratio |    |  |  |  |
| CL                   | 0.00   | 1200 | 180     | 0.15  | ОК |  |  |  |
| CD+CL                | 0.00   | 1200 | 120     | 0.10  | OK |  |  |  |
| L                    | 0.00   | 1200 | 180     | 0.15  | OK |  |  |  |
| D+L                  | 0.00   | 1200 | 120     | 0.10  | OK |  |  |  |

DESIGN CODES

| Steel Design      | AISC 360-16  |
|-------------------|--------------|
| Load Combinations | ASCE 7-10/16 |

|                     | Project:                   | Page #            |
|---------------------|----------------------------|-------------------|
|                     | Engineer:                  | 10/1/2024         |
|                     | Descrip: Awning Outer Beam |                   |
| ASDIP Steel 5.6.4.1 | STEEL BEAM DESIGN          | www.asdipsoft.com |



MOMENT DIAGRAM (k-ft) (Comb: CD)



MOMENT DIAGRAM (k-ft) (Comb: D+L)

|       |             |        |          | Pr<br>Er      | oject:<br>ngineer: |               |               |              |         | Page #<br>10/1/2024 |
|-------|-------------|--------|----------|---------------|--------------------|---------------|---------------|--------------|---------|---------------------|
|       |             |        |          | De            | escrip: A          | wning Ou      | ter Beam      | l            |         |                     |
| ASDIP | Steel 5.6.4 | 4.1    |          | STEE          | EL BEAI            | M DESIC       | GN            |              | wwv     | v.asdipsoft.com     |
|       | UNFACT      | ORED F | INAL LOA | .DS (Selfweig | ht calculate       | ed internally | ) (kip, ft, ł | k-ft, psf)   |         |                     |
|       | Start       | End    | Width    | Dead          | Live               | RLive         | Snow          | Wind         | Seismic |                     |
|       | Dist        | Dead   | Live     | e RLive       | Snow               | Wind          | Seism         | lic          |         |                     |
| UNF   | ACTORED     | O CONS | TRUCTION | N LOADS (Se   | Ifweight ca        | Iculated inte | ernally) (ki  | p, ft, k-ft, | psf)    |                     |
|       | Start       | End    | Width    | Dead          | Live               |               | Dist          | Dead         | Live    |                     |

11/2024 C. PIERUCLIONI, PE ETC-COMMERCIALOTI) AWNING ROO p3v 33 VR. RI = RZZ (1515F+2505=) × 3'×125'= 1,500" R20p = (19158-5PSF) × 3' ×H.S'= 525-# B3v=1,50 DF Trop = 1,50 0+ / tAN330= 2,310 # T CROD = 975#/ +4N33 = 898# C TRY 14 \$ 55 ROD 3 / 13mm) TENERÓN AT= 0.763,N2 TU= 0.85Fy At= 0.85+30851 × 0.763 ~2= 19,457# TS = TUIL6= 19,457#/16= 12,160# > T=1,500# 30 OKA# COMPRESSION ABUR = (11/2) x Tr = 0.795 112 r = d/4 = 1"/4 = 0.25, N2 K=10 K4r = (1.0×36"/0.25.NZ) = 344 Fn=TT-2 Et/(Ku/r)= TT-223,000 K. / (344)2=2.34ks1 Pn=AFn= 0.78512234ks1=1,833" PU=0.8Pn= 0.8×1,933 = 1,467 > C=808 30 OKAY

2 CONNECTION ETC-COMMERCIAL (LOTI) 1024 C. PIERUCCIOUI NING 10/1 RI PLATE COMMECTION P=1,50)\* 0-354 M = 11.500 × 31/2" = 5,250 1 - H T=C= 5,25010-# 13.5"=1,500,# 315" CHECK BOLT SHERR 1/4" PIAte W/ 31/2" AIN WOOD (DF#Z) V= 1.500T USE A) 1/3" BOLTS VALION = 4 × 510 = 2,040 > V 80 04 AT

| Pieruccioni Engineering and Construction, L |                         | - Pr<br>Er     | oject:<br>ngineer:          |                |                      |             | Page<br>12/1 | e #<br>6/2024 |
|---------------------------------------------|-------------------------|----------------|-----------------------------|----------------|----------------------|-------------|--------------|---------------|
|                                             |                         | De             | escrip:                     | Grid 3B        | Footing              |             |              |               |
| ASDIP Foundation 5.5.0.1                    | SPI                     | REA            | D FOC                       | TING D         | DESIGN               | WI          | vw.asdips    | oft.com       |
| GEOME                                       | TRY                     |                |                             |                | SOIL                 | PRESSURES ( | D+S)         |               |
| Footing Length (X-dir)                      | 2.00                    | ft             |                             | Gros           | s Allow. Soil Pres   | ssure       | 2.0          | ksf           |
| Footing Width (Z-dir)                       | 2.80                    | ft             |                             | Soil F         | Pressure at Corn     | er 1        | 1.7          | ksf           |
| Footing Thickness                           | 8.0                     | in             | ок                          | Soil F         | Pressure at Corn     | er 2        | 1.7          | ksf           |
| Soil Cover                                  | 1.00                    | ft             |                             | Soil F         | Pressure at Corn     | er 3        | 1.7          | ksf           |
| Column Length (X-dir)                       | 6.0                     | in             |                             | Soil F         | Pressure at Corn     | er 4        | 1.7          | ksf           |
| Column Width (Z-dir)                        | 6.0                     | in             |                             | Beari          | ng Pressure Rat      | io          | 0.85         | ОК            |
| Offset (X-dir)                              | 0.00                    | in             | ОК                          | Ftg. A         | Area in Contact w    | vith Soil   | 100.0        | %             |
| Offset (Z-dir)                              | 0.00                    | in             | ОК                          | X-eco          | centricity / Ftg. Le | ength       | 0.00         | ОК            |
| Base Plate (L x W)                          | 6.0 x 6.0               | in             |                             | Z-eco          | centricity / Ftg. W  | /idth       | 0.00         | ОК            |
|                                             |                         |                | APPI IF                     |                |                      |             |              |               |
|                                             | Dead                    | Live           |                             | RLive          | Snow                 | Wind        | Seismic      |               |
| Axial Force P                               | 3.9                     | 0.0            |                             | 0.0            | 4.7                  | 0.0         | 0.0          | kip           |
| Moment about X Mx                           | 0.0                     | 0.0            |                             | 0.0            | 0.0                  | 0.0         | 0.0          | k-ft          |
| Moment about Z Mz                           | 0.0                     | 0.0            |                             | 0.0            | 0.0                  | 0.0         | 0.0          | k-ft          |
| Shear Force Vx                              | 0.0                     | 0.0            |                             | 0.0            | 0.0                  | 0.0         | 0.0          | kip           |
| Shear Force Vz                              | 0.0                     | 0.0            |                             | 0.0            | 0.0                  | 0.0         | 0.0          | kip           |
|                                             | OVERTUR                 | JING (         |                             | TIONS (C       | omb: 0.6D+0.6V       | V)          |              |               |
| - Overturning about X-X                     | OVENION                 |                |                             |                | 01110. 0.00 . 0.01   | •)          |              |               |
| - Moment Mx = 0.6 * 0.0 + 0.6 *             | 0.0 = 0.0 k-ft          |                |                             |                |                      |             |              |               |
| - Shear Force Vz = 0.6 * 0.0 + 0            | .6 * 0.0 = 0.0 ki       | p              |                             |                |                      |             |              |               |
| Arm = 0.00 + 8.0 / 12 = 0.67 f              | t                       |                | Мо                          | ment = 0.0     | * 0.67 = 0.0 k-ft    | t           |              |               |
| - Passive Force = 0.0 kip                   |                         | Arm =          | 0.27 ft                     |                | Moment =             | 0.0 k-ft    |              |               |
| - Overturning moment X-X = 0.0              | ) + 0.0 = 0.0 k-ft      | :              |                             |                |                      |             |              |               |
| - Resisting about X-X                       |                         |                |                             |                |                      |             |              |               |
| - Footing weight = 0.6 * W * L *            | Thick * Density         | = 0.6          | 6 * 2.80 *                  | 2.00 * 8.0 /   | 12 * 0.15 = 0.3 k    | kip         |              |               |
| Arm = $W/2 = 2.80/2 = 1.40$                 | ) ft                    |                | Moment                      | t = 0.3 * 1.4  | 0=0.5 k-ft           |             |              |               |
| - Pedestal weight = 0.6 * W * L             | * H * Density =         | 0.6 *          | 6.0 / 12 *                  | 6.0 / 12 * 0.  | 0 * 0.15 = 0.0 ki    | р           |              |               |
| Arm = W/2 - Offset = 2.80 /                 | 2 - 0.0 / 12 = 1.4      | 40 ft          |                             | Moment = (     | 0.0 * 1.40 = 0.0 k   | <-ft        |              |               |
| - Soil cover = 0.6 * W * L * S              | SC * Density <b>0=6</b> | * (2.80        | * 2.00 - 6                  | 5.0 / 12 * 6.0 | ) / 12) * 1.0 * 110  | )=0.4 kip   |              |               |
| Arm = $W/2 = 2.80/2 = 1.40$                 | ) ft                    |                | Moment                      | t = 0.4 * 1.4  | 0=0.5 k-ft           |             |              |               |
| - Buoyancy = 0.6 * W * L * γ * (            | ŚC + Thick - W          | <i>T) =</i> (  | 0.6 * 2.80                  | * 2.00 * 62    | * (0.67) = -0.1 k    | ip          |              |               |
| Arm = $W/2 = 2.80/2 = 1.40$                 | ) ft                    |                | Moment                      | t = 0.1 * 1.4  | 0 = -0.2 k-ft        |             |              |               |
| - Axial force P = 0.6 * 3.9 + 0.6 *         | * 0.0 = 2.3 kip         |                |                             |                |                      |             |              |               |
| Arm = W/2 - Offset = 2.80 /                 | 2 - 0.0 / 12 = 1.4      | 40 ft          |                             | Moment = 2     | 2.3 * 1.40 = 3.3 k   | <-ft        |              |               |
| - Resisting moment X-X = 0.5 +              | 0.0 + 0.5 + 3.3 -       | + -0.2 =       | = 4.0 k-ft                  |                |                      |             |              |               |
| - Overturning safety factor X-X             | Resisting ma            | oment<br>nomen | $\frac{1}{t} = \frac{4}{0}$ | .0<br>.0 = 40  | .45 > 1.50 OK        |             |              |               |

| Pieruccioni Engineering and Construction, L                                         | Project:                              |                                        | Page #            |
|-------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------|-------------------|
|                                                                                     | Engineer:                             |                                        | 12/16/2024        |
|                                                                                     | Descrip: G                            | rid 3B Footing                         |                   |
| ASDIP Foundation 5.5.0.1 SPR                                                        | EAD FOOT                              | ING DESIGN                             | www.asdipsoft.com |
| - Overturning about Z-Z                                                             |                                       |                                        |                   |
| - Moment Mz = 0.6 * 0.0 + 0.6 * 0.0 = 0.0 k-ft                                      |                                       |                                        |                   |
| - Shear Force Vx = 0.6 * 0.0 + 0.6 * 0.0 = 0.0 kip                                  |                                       |                                        |                   |
| Arm = 0.00 + 8.0 / 12 = 0.67 ft                                                     | Mome                                  | ent = 0.0 * 0.67 = 0.0 k-ft            |                   |
| - Passive Force = 0.0 kip Ai                                                        | rm = 0.27 ft                          | Moment = 0.0 k-ft                      |                   |
| - Overturning moment Z-Z = $0.0 + 0.0 = 0.0$ k-ft                                   |                                       |                                        |                   |
| - Resisting about Z-Z                                                               |                                       |                                        |                   |
| - Footing weight = 0.6 * W * L * Thick * Density =                                  | 0.6 * 2.80 * 2.0                      | 0 * 8.0 / 12 * 0.15 = 0.3 kip          |                   |
| Arm = L/2 = 2.00/2 = 1.00 ft                                                        | Moment =                              | 0.3 * 1.00 = 0.3 k-ft                  |                   |
| - Pedestal weight = 0.6 * W * L * H * Density = 0                                   | 0.6 * 6.0 / 12 * 6.0                  | / 12 * 0.0 * 0.15 = 0.0 kip            |                   |
| Arm = L / 2 - Offset = 2.00 / 2 - 0.0 / 12 = 1.00                                   | ft Mc                                 | ment = 0.0 * 1.00 = 0.0 k-ft           |                   |
| - Soil cover = 0.6 * W * L * SC * Density = 0.6 * (                                 | 2.80 * 2.00 - 6.0                     | / 12 * 6.0 / 12) * 1.0 * 110 = 0.4 kip |                   |
| Arm = $L/2$ = 2.00 / 2 = 1.00 ft                                                    | Moment =                              | 0.4 * 1.00 = 0.4 k-ft                  |                   |
| - Buoyancy = 0.6 * W * L * y * (SC + Thick - WT)                                    | = 0.6 * 2.80 * 2                      | .00 * 62 * (0.67) = -0.1 kip           |                   |
| Arm = $L/2$ = 2.00/2 = 1.00 ft                                                      | Moment =                              | 0.1 * 1.00 = -0.1 k-ft                 |                   |
| - Axial force P = 0.6 * 3.9 + 0.6 * 0.0 = 2.3 kip                                   |                                       |                                        |                   |
| Arm = L / 2 - Offset = 2.00 / 2 - 0.0 / 12 = 1.00                                   | ft Mc                                 | ment = 2.3 * 1.00 = 2.3 k-ft           |                   |
| - Resisting moment Z-Z = 0.3 + 0.0 + 0.4 + 2.3 + -                                  | 0.1 = 2.9 k-ft                        |                                        |                   |
| - Overturning safety factor Z-Z =<br><u>     Resisting more</u><br>Overturning more | $\frac{ment}{ment} = \frac{2.9}{0.0}$ | — = 28.89 > 1.50 OK                    |                   |

SOIL BEARING PRESSURES (Comb: D+S)

Overturning moment X-X = 0.0 + 0.0 = 0.0 k-ft

Resisting moment X-X = 0.8 + 0.0 + 0.8 + -0.3 + 12.0 = 13.3 k-ft Overturning moment Z-Z = 0.0 + 0.0 = 0.0 k-ft Resisting moment Z-Z = 0.6 + 0.0 + 0.6 + -0.2 + 8.6 = 9.5 k-ft

Resisting force = Footing + Pedestal + Soil - Buoyancy + P = 0.6 + 0.0 + 0.6 - 0.2 + 8.6 = 9.5 kip

X-coordinate of resultant from maximum bearing corner:

 $Xp = \frac{Z-Resisting moment - Z-Overturning moment}{Resisting force} = \frac{9.5 - 0.0}{9.5} = 1.00 \text{ ft}$ 

Z-coordinate of resultant from maximum bearing corner:

 $Zp = \frac{X - Resisting \ moment - X - Overturning \ moment}{Resisting \ force} = \frac{13.3 - 0.0}{9.5} = 1.40 \ \text{ft}$   $X - \text{ecc} = \ Length / 2 - Xp = 2.00 / 2 - 1.00 = 0.00 \ \text{ft}$   $Z - \text{ecc} = \ Width / 2 - Zp = 2.80 / 2 - 1.40 = 0.00 \ \text{ft}$   $Area = \ Width * \ Length = 2.80 * 2.00 = 5.6 \ \text{ft}^2$   $Sx = \ Length * \ Width^2 / 6 = 2.80 * 2.00^2 / 6 = 2.6 \ \text{ft}^3$   $Sz = \ Width * \ Length^2 / 6 = 2.80 * 2.00^2 / 6 = 1.9 \ \text{ft}^3$  - Footing is in full bearing. Soil pressures are as follows:  $P1 = \ P * (1/A + Z - \text{ecc} / Sx + X - \text{ecc} / Sz) = 9.5 * (1 / 5.6 + 0.00 / 2.6 + 0.00 / 1.9) = 1.70 \ \text{ksf}$   $P3 = \ P * (1/A - Z - \text{ecc} / Sx - X - \text{ecc} / Sz) = 9.5 * (1 / 5.6 + 0.00 / 2.6 - 0.00 / 1.9) = 1.70 \ \text{ksf}$   $P4 = \ P * (1/A + Z - \text{ecc} / Sx - X - \text{ecc} / Sz) = 9.5 * (1 / 5.6 + 0.00 / 2.6 - 0.00 / 1.9) = 1.70 \ \text{ksf}$ 



SLIDING CALCULATIONS (Comb: 0.6D+0.6W)

Internal friction angle = 28.0 deg Passive coefficient kp = 4.33 (per Coulomb) Pressure at mid-depth = kp \* Density \* (Cover + Thick / 2) = 4.33 \* 110 \* (1.00 + 8.0 / 12 / 2) = 0.63 ksfX-Passive force = Pressure \* Thick \* Width = 0.63 \* 8.0 / 12 \* 2.80 = 1.2 kip Z-Passive force = Pressure \* Thick \* Length = 0.63 \* 8.0 / 12 \* 2.00 = 0.8 kip Friction force = Resisting force \* Friction coeff. = Max (0, 2.9 \* 0.35) = 1.0 kip Use 100% of Passive + 100% of Friction for sliding resistance 1.00 \* <u>1.2 + 1.00 \* 1.0</u> = 21.95 > 1.50 OK X-Passive force + Friction - Sliding safety factor X-X = 0.0 X-Horizontal load 1.00 \* 0.8 + 1.00 \* 1.0 Z-Passive force + Friction - Sliding safety factor Z-Z = -= 18.57 > 1.50 OK Z-Horizontal load 0.0 UPLIFT CALCULATIONS (Comb: 0.6D+0.6W) Pedestal + Footing + Cover - Buoyancy 0.0 + 0.3 + 0.4 - 0.1 - Uplift safety factor = = 99.99 > 1.00 OK Uplift load 0.0 ONE-WAY SHEAR CALCULATIONS (Comb: 1.2D+1.6S+0.5W) Concrete f'c = 2.5 ksi Steel fy = 40.0 ksi Soil density = 110 pcf Use Plain Concrete Shear Strength  $\phi$ Vcx =  $4/3 * \phi * \sqrt{(fc)} * Width * t / 1000 = 4/3 * 0.60 * \sqrt{(2500)} * 2.8 * 12 * 8.0 / 1000 = 10.8 kip$ ACI 14.5.5.1  $\phi$ Vcz =  $4/3 * \phi * \sqrt{(fc)} * Length * t / 1000 = 4/3 * 0.60 * \sqrt{(2500)} * 2.0 * 12 * 8.0 / 1000 = 7.7 kip$ - Shear forces calculated as the volume of the bearing pressures under the effective areas: One-way shear Vux (- Side) = 0.5 kip < 10.8 kip OK One-way shear Vux (+ Side) = 0.5 kip < 10.8 kip OK One-way shear Vuz (- Side) = 2.1 kip < 7.7 kip OK One-way shear Vuz (+ Side) = 2.1 kip < 7.7 kip OK

#### Pieruccioni Engineering and Construction, L Project: Page # 12/16/2024 Engineer: Descrip: Grid 3B Footing ASDIP Foundation 5.5.0.1 SPREAD FOOTING DESIGN www.asdipsoft.com 2.4 ksf 2.4 ksf 2.4 ksf<sup>2.1</sup> kip 2.4 ksf 0.5 kip 0.5 kip X Х 48 ft 2.1 kip 2.4 ksf One-way Shear X 2.4 ksf 2.4 ksf One-way Shear Z 2.4 ksf

#### FLEXURE CALCULATIONS (Comb: 1.2D+1.6S+0.5W)

Plain  $\phi$ Mnx =5 \*  $\phi$  \*  $\sqrt{(fc)}$  \* L \* Thick<sup>2</sup>/6 =5 \* 0.60 \*  $\sqrt{(2500)}$  \* 2.00 \* 8.0<sup>2</sup>/6 / 1000 = 0.9 k-ft Plain  $\phi$ Mnz =5 \*  $\phi$  \*  $\sqrt{(fc)}$  \* W \* Thick<sup>2</sup>/6 =5 \* 0.60 \*  $\sqrt{(2500)}$  \* 2.80 \* 8.0<sup>2</sup>/6 / 1000 = 1.2 k-ft ACI Eq. (14.5.2.1a)

#### - Top Bars

#### No Top Reinforcement Provided at the Footing

Use Plain Concrete Flexural Strength at Top

- Top moments calculated as the overburden minus the bearing pressures times the lever arm:

| Top moment -Mux (- Side) = 0.0 k-ft | < | 3.2 | k-ft | OK |
|-------------------------------------|---|-----|------|----|
| Top moment -Mux (+ Side) = 0.0 k-ft | < | 3.2 | k-ft | ОК |
| Top moment -Muz (- Side) = 0.0 k-ft | < | 4.5 | k-ft | ОК |
| Top moment -Muz (+ Side) = 0.0 k-ft | < | 4.5 | k-ft | ОК |

- Bottom Bars

## No Bottom Reinforcement Provided at the Footing

Use Plain Concrete Flexural Strength at Bottom

- Bottom moments calculated as the bearing minus the overburden pressures times the lever arm:

| Bottom moment Mux (- Side) = 2.9 k-ft | < 3.2 k-ft OK | ratio = 0.90 |
|---------------------------------------|---------------|--------------|
| Bottom moment Mux (+ Side) = 2.9 k-ft | < 3.2 k-ft OK | ratio = 0.90 |
| Bottom moment Muz (- Side) = 1.7 k-ft | < 4.5 k-ft OK | ratio = 0.38 |
| Bottom moment Muz (+ Side) = 1.7 k-ft | < 4.5 k-ft OK | ratio = 0.39 |



| Pieruccioni Engineering and Construction, L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Project:         |                                                       | Page #            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------------------|-------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Engineer:        |                                                       | 12/16/2024        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Descrip:         | Grid 3B Footing                                       |                   |
| ASDIP Foundation 5.5.0.1 SPRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EAD FOC          | TING DESIGN                                           | www.asdipsoft.com |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                                                       |                   |
| LOAD TRANSFER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CALCULAT         | IONS (Comb: 1.2D+1.6S+0.5W)                           |                   |
| Area $A1 = co/L * co/W = 6.0 * 6.0 = 36.0$ in <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                                                       |                   |
| Sx = $co/W * co/L^2/6 = 6.0 * 6.0^2/6 = 36.0$ in <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                       |                   |
| Sz = $co/L * co/W^2/6 = 6.0 * 6.0^2/6 = 36.0$ in <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                       |                   |
| Bearing $Pbu = P/A1 + Mz/Sx + Mx/Sz = 12.2/$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36.0 + 0.0 *     | 12 / 36.0 + 0.0 * 12 / 36.0 = 0.3 ksi                 |                   |
| Min edge = Min (L / 2 - X-offset - col L / 2, W / 2 - Col L / 2, W / | Z-offset - col   | 'W/2)                                                 |                   |
| Min edge = Min (2.00 * 12 / 2 - 0.0 - 6.0 / 2, 2.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ) * 12 / 2 - 0.0 | - 6.0 / 2 = 9.0 in                                    |                   |
| Area A2 = Min [L * W, (col L + 2 * Min edge) * (co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | l W + 2 * Min    | edge)]                                                | ACI R22.8.3.2     |
| A2 = Min [2.00 * 12 * 2.8 * 12, (6.0 + 2 * 9.0) * (6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.0 + 2 * 9.0)]  | = 576.0 in <sup>2</sup>                               |                   |
| Footing $\phi Pnc = \phi * 0.85 * fc * Min [2, \sqrt{A2/A1}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = 0.65 * 0.85    | 5 * 2.5 * Min [2, $\sqrt{(576.0 / 36.0)}$ ] = 2.8 ksi |                   |
| Footing $\phi Pns = \phi * As * Fy / A1 = 0.0$ ksi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                                                       | ACI 22.8.3.2      |
| Footing bearing $\phi Pn = \phi Pnc + \phi Pns = 2.8 + 0.0 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.8 ksi >        | 0.3 psi OK                                            |                   |

| Pieruccioni Engineering and Construction, L Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page #                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Engineer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12/16/2024                      |
| Descrip: Grid 3B Footing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
| ASDIP Foundation 5.5.0.1 SPREAD FOOTING DESIGN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | www.asdipsoft.com               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |
| Hooked $Ldh = Max (8 db, 6, 1/55 * fy / (f'c))^{\frac{1}{2}} * Confining * Location * Concrete * db^{1.5})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ACI 25.4.3                      |
| Ldh = Max (8 db, 6, 1 / 55 * 60.0 * 1000 / (2500)½ * 1.6 * 1.0 * 0.8 * 0.75^1.5) = 17.4 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |
| Ld provided = <i>Dowel length</i> = 3.00 * 12 = 36.0 in > 12.0 in OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |
| Ldh provided = <i>Footing thickness - Cover</i> = 8.00 - 3.0 = 5.0 in < 17.4 in NG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |
| PUNCHING SHEAR CALCULATIONS (Comb: 1.2D+0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L+1.6S)                         |
| X-Edge = Length / 2 - Offset - Col / 2 = 2.00 * 12 / 2 - 0.0 - 6.0 / 2 = 9.0 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | asx = 10                        |
| Z-Edge = Width / 2 - Offset - Col / 2 = 2.80 * 12 / 2 - 0.0 - 6.0 / 2 = 13.8 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | asz = 10                        |
| $\alpha s = \alpha sx + \alpha sz = 10 + 10 = 20$ Col type = Corner $\beta = L / W = 6.0 / 6.0 = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .00 ACI 22.6.5.2                |
| Perimeter bo = asz / 10 * (L + d / 2 + X-Edge) + asx / 10 * (W + d / 2 + Z-Edge)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ACI 22.6.4.2                    |
| bo = 10 / 10 * (6.0 + 8.0 / 2 + 9.0) + 10 / 10 * (6.0 + 8.0 / 2 + 13.8) = 42.8 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 |
| Area Abo = (L + d / 2 + X-Edge) * (W + d / 2 + Z-Edge) #6.0 + 8.0 / 2 + 9.0) * (6.0 + 8.0 / 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | + 13.8) = 452.2 in <sup>2</sup> |
| Use Plain Concrete Shear Strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 |
| <b>φVc</b> = φ * Min (1 + 2 / β, 2) * 4/3 * √(fc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ACI 14.5.5.1                    |
| φVc = 0.60 * Min (1 + 2 / 1.00, 2) * 4/3 √(2500) = 80.0 psi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |
| Punching force F = P + Overburden * Abo - Bearing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 |
| F = 12.2 + 0.20 * 452.2 / 144 - 3.2 = 9.6 kip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |
| b1 = L + d/2 + X-Edge =6.0 + 8.0/2 + 9.0 = 19.0 in $b2 = W + d/2 + Z$ -Edge =6.0 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | + 8.0 / 2 + 13.8 = 23.8 in      |
| 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |
| $yvx \text{ factor} = 7 - \frac{1}{1 + (2/3)} \sqrt{(b2/b1)} = 1 - \frac{1}{1 + (2/3)} \sqrt{(23.8/19.0)} = 0.43$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ACI Eq. (8.4.4.2.2)             |
| 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ACI Eq. (8.4.2.3.2)             |
| $\gamma vz \text{ factor} = 1 - \frac{1}{1 + (2/3) \sqrt{(b1/b2)}} = 1 - \frac{1}{1 + (2/3) \sqrt{(19.0/23.8)}} = 0.37$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |
| $X2z = \frac{b1^2}{2} \frac{(b1 + b2)}{2} = \frac{19.0^2}{2} \frac{(19.0 + 23.8)}{4.2} = 4.2 \text{ in} \qquad X2x = \frac{b2^2}{2} \frac{(b2 + b2)}{2} \frac{(b2 + b2)}{2} = \frac{19.0^2}{2} \frac{(b2 + b2)}{2} \frac{(b2 + b2)}{$ | <i>b1) =</i> 6.6 in             |
| Jcz = b1 * d³ / 12 + b1³ * d / 12 + b1 * d * (b1 / 2 - X2z)² + b2 * d * X2z²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ACI R8.4.4.2.3                  |
| Jcz = 19.0 * 8.0 <sup>3</sup> / 12 + 19.0 <sup>3</sup> * 8.0 / 12 + 19.0 * 8.0 * (19.0 / 2 * 4.2) <sup>2</sup> + 23.8 * 8.0 * 4.2 <sup>2</sup> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | = 13012 in⁴                     |
| Jcx = b2 * d <sup>3</sup> /12 + b2 <sup>3</sup> * d/12 + b2 * d * (b2/2 - X2x) <sup>2</sup> + b1 * d * X2x <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ACI R8.4.4.2.3                  |
| Jcz = 23.8 * 8.0 <sup>3</sup> / 12 + 23.8 <sup>3</sup> * 8.0 / 12 + 23.8 * 8.0 * (23.8 / 2 * 6.6) <sup>2</sup> + 19.0 * 8.0 * 6.6 <sup>2</sup> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | = 21972 in⁴                     |
| Stress due to P = F / (bo * d) * 1000 = 9.6 / (42.8 * 8.0) * 1000 = 28.0 psi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |
| Stress due to Mx = yvx *X-OTM *X2x/Jcx = 0.43 * 0.0 * 12 * 6.6 / 21972 * 1000 = 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | osi                             |
| Stress due to Mz = yvz *Z-OTM * X2z / Jcz = 0.43 * 0.0 * 12 * 4.2 / 13012 * 1000 = 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | osi                             |
| Punching stress = <i>P-stress + Mx-stress + Mz-stress</i> = 28.0 + 0.0 + 0.0 = 28.0 psi <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80.0 psi OK                     |
| , 1.83 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |
| $\overline{1 - 1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |



| Pieruccioni Engineering and Construction, L | - Project:               | Page #            |
|---------------------------------------------|--------------------------|-------------------|
|                                             | Engineer:                | 12/16/2024        |
|                                             | Descrip: Grid 3B Footing |                   |
| ASDIP Foundation 5.5.0.1 SP                 | READ FOOTING DESIGN      | www.asdipsoft.com |

## DESIGN CODES

Concrete DesignACI 318-19Load CombinationsASCE 7-10/16



ELEVATION



ZIBIDDE C. PIERUCCIONSI, PE ETC- COMMERCIAL(LOTI) LATERAL ANALYSIS

WIND VALO = 35MPH VULF=110MPH KEL=1.0 Exp.B SLOPE=7° ZONEA = 12.205F 16.005Engl ZONEB = 5.205F B.ORSEMIN ZONECE B.LOSF B.ORSEMIN ZONED = 3.305F B.ORSEMIN

$$\frac{S \in ISMIC}{Cs} = (1.03 \ R = 6.5 \ I = 1.0$$
  

$$\frac{Cs}{Cs} = (1.03 \ (6.5/1.0) \ (1.4 = 0.113)$$
  

$$W_{ROOF} = (30 \ R = F \times 5 \ bbbs =) = (169,980)^{\#}$$
  

$$V_{S} = (169,980^{\#} \times 0.113 = 19,208^{\#})$$

GRIDI = 4,720# FW= 16 PSFX 295 F. FE= 19,208 # × (116435F/5,6665F) = 5,583# GRID'Z Fue 16PSEX 35-75E) = 5,712# = 3,546# FEZ 19,208 # × (1,0465= (5,6665=) 6R.03 = 4,816# Fur= 16PSFX 301SF) FE= 19,203 # x (1:8325= /5,6605=) E 6,211# GRIDEL = 5,344# Fue 16 PSEX 334512) FE= 19,208 # × (1,1425F/5,6665F) = 3,871#

|                | and the second states of the s | Contraction of the Contraction o |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LATERALANALYSIS 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 16/2024        | C. FIERUCLIONI, PE IETC-COMMERCIALICO, D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | GRIDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\overline{)}$ | FWE 16 PSFX 36()F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = 5,776                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                | FET 19209 TX ( 13285E/ 5.666-5P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = 6,190¢                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | CTRIDC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | FWZ 16 PSFX 7825F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | z 12,512/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                | FE= 19,20 8 #x (2,762 SF/5,666SF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = 9,363#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                | GR100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | Fu = 16 85 FX 349-51=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = 5,539#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                | F== 19 200 # / 110795 E/5 BLK -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = 3,654#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                | FEC 10(100 ~(10 10,00031)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 아님들의 여름을 물을 들는 것이다.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\sim$         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ~              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

$$\frac{2}{2} \frac{1}{16} \frac{1}{224} C_{-} Q_{15} E_{-} U(2103), 16} [ETC_{-} C_{0,0,0} E_{-} E_{-} U(200)] S_{-} E_{-} Q_{-} E_{-} U(-) S_{-} E_{-} Z_{-} Z_{$$

ETC-COMMERTIAL (LOT 1) SHEAR 5 2/16 2024 C. PIERUCCIONI, KE GRIDD FW= 3,581 FE= 3,654 # ASEGMENTS L=141-18 =13 Vw = 5.584 #/145 = 335 PIF VE = 3,654 #/145 = 252 PIF Carrow Blowild Cost PUP USE WA VWANOWE 49501F VEANOWE 353PIF 120 BROW E BUTYF Hord Downs Tw=395 PUFX13' -112 (20PSFX1'x775') -12 (12PSFx65'x7.5) = 41650# TE=252PUFX13'×1.75-1/2 (20PSFX1'x7.25')-12(12PSFx655x7.25) = 3,740# USE # 708-59575 W/ 95TUDS TWANDWE 5/820# TEANONE 5,320#210/,625,093#