

BRADLEY HEIGHTS SS LLC

FULL SIZED LEDGIBLE COLOR REPORT IS REQUIRED TO BE PROVIDED BY THE PERMITTEE ON SITE FOR ALL INSPECTIONS

> City of Puyallup Building ACCEPTED JMontgomery 05/16/2024 11:12:09 AM

SUBMITTAL #2

Alliance Job # N0652

Date: Sept. 17, 2024

Representative: Craig Westerberg

MiTek Canada, Inc. 240 Stirling Crescent Bradford, ON. Canada L3Z 4L5 Phone (905) 952-2900 Toll Free (800) 268-3434

Re: N0652A Clubhouse

The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Alliance Truss (CA).

Pages or sheets covered by this seal: U1531705 thru U1531748

My license renewal date for the state of Washington is February 17, 2026.

September 17,2024

Garcia, Juan

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Clubhouse			
					U1531705			
N0652A	A1	GABLE	1	1				
					Job Reference (optional)			
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,	8.820 s Aug 30 2024 MiTek Industries, Inc. Mon Sep 16 11:43:02 2024 Page 2						
		ID:JK8PGhL IZFBZzFF0A0pRZzDHFa-nmsu4xQd66QVEM2GbNSbAl18DPJdhU95Li8po3vd3dd						

NOTES-

- 12) No notches allowed in overhang and 10408 from left end and 10408 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.
 13) The loading on this truss has been modified to reflect the roof profile, the ridgeline is located 6-4-1 from joint 1 and has a slope of 10.000 on the left and -10.000 on the
- right.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPII Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

- will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) M, H.
- 6) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 8) The loading on this truss has been modified to reflect the roof profile, the ridgeline is located 6-4-1 from joint 1 and has a slope of 10.000 on the left and -10.000 on the right.

MiTek 240 Stirling Crescent Bradford, ON. L3Z 4L5

September 17,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Wleft=13-10-0, Wright=12-5-8

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) L, G.
- 6) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 8) The loading on this truss has been modified to reflect the roof profile, the ridgeline is located 6-4-1 from joint 1 and has a slope of 10.000 on the left and -10.000 on the right.

MiTek 240 Stirling Crescent Bradford, ON. L3Z 4L5

September 17,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Clubhouse	14504700
N0652A	A4	Roof Special	4	1		01531708
Alliance Truss (CA), A	Abbotsford, BC - V2S 7P6,			320 s Aug	Job Reference (option 30 2024 MiTek Industrie	al) es, Inc. Mon Sep 16 11:43:04 2024 Page 1
	-1-4-8, 2-2-12	4-9-7 7-4-2 9-10-13 12-5	ID:JK8PGhI_IZFI	BZzFFoAC	OpRZzDHFg-k8_fVdStd	kgDUfCejoU3Fj7VzCnU9GDOo1dvtxyd3db
	1-4-8 2-2-12	2-6-11 2-6-11 2-6-11 2-6-1	11 2-6-11 2-6	i-11 2·	-6-11 2-6-11 2-2	2-12
		7x	10 MT18HS			Scale = 1:68.9
				DUE TO T	THE LATERAL MOVEME	
			0	SHOULD	BE GIVEN TO THE SUF	PPORTING STRUCTURE(S). MS IS NOT PART OF
	Ī		G A	THIS TRU	ISS COMPONENT DESI	
				DESIGN F	PROFESSIONAL TO ADI	DRESS THIS ISSUE.
		F	H			I
	10	0.00 12	∠ a ∕∕∕	Ν.		
	(E	8x10			
	10-9-6	R	P	\bigvee		
		D				6 6 8
	3x5 🥢	, in the second se		0 \	3x	.5 🔨
	C State	T 10.00 12			N	
	е в	4x4 1/		4	4x4 🗞	
	A A				V/	
	5	x6 🥢			5x6 ∾ ^M	
	2-2-12	<u>4-9-7 7-4-2 9-10-13 12-5</u>	i-8 <u>15-0-3</u> 17-6	6-14 20	0-1-10 22-8-5 24-	11-0
Plate Offsets (X,Y) [B:	<u>2-2-12</u> D-2-1,0-1-8], [C:0-2-4,0-1-8],	2-6-11 2-6-11 2-6-11 2-6- [K:0-2-4,0-1-8], [L:0-2-1,0-1-8], [M:0-3	11 2-6-11 2-6 3-0,0-2-1], [N:0-2-0,0	-11 2 -1-12], [T	-6-11 2-6-11 2-2 :0-2-0,0-1-12], [U:0-3-	0,0-2-1]
LOADING (psf)	SPACING- 2-	0-0 CSI .	DEFL.	in (loc)	l/defl L/d	PLATES GRIP
ICLL 25.0 (Roof Snow=25.0)	Plate Grip DOL 1	.15 TC 0.29	Vert(LL) -0.4	6 Q	>644 360	MT20 197/144
TCDL 12.0 BCU 0.0 *	Rep Stress Incr Y	ES WB 0.66	Horz(CT) -0.8	7 Q 3 L	>342 240 n/a n/a	MT18HS 197/144
BCDL 10.0	Code IBC2018/TPI20	14 Matrix-MS	Wind(LL) 0.2	0 Q	>999 240	Weight: 121 lb FT = 20%
LUMBER- TOP CHORD 2x4 SPE 2	100F 1 8F		BRACING-	Structur	al wood sheathing dire	ectly applied or 3-3-2 oc purlins
BOT CHORD 2x4 SPF N	lo.2 *Except*		BOT CHORD	Rigid ce	iling directly applied o	r 10-0-0 oc bracing, Except:
Q-U,M-Q: WEBS 2x3 SPF N	2x6 SPF No.2 Io.2 *Except*			2-2-0 oc 1-4-12 c	c bracing: Q-R bc bracing: P-Q.	
G-Q: 2x4 \$	SPF 2100F 1.8E					
REACTIONS. (size)	L=0-5-8, B=0-5-8					
Max Holz Max Uplift	L=-78(LC 9), B=-103(LC 8)					
Max Grav	L=1168(LC 1), B=1276(LC	1)				
FORCES. (lb) - Max. Con	mp./Max. Ten All forces 25	0 (lb) or less except when shown.	184/85			
G-H=-50	84/100, H-I=-5058/164, I-J=-	4413/192, J-K=-3317/165, K-L=-1675	5/117			
BOT CHORD B-0=-176 P-Q=-8/4	8/1214, T-U=-229/1545, S-T= 1945, O-P=-80/4372, N-O=-1	=-393/3232, R-S=-378/4351, Q-R=-2 03/3260, M-N=-80/1590, L-M=-59/12	14/4935, 50			
WEBS G-Q=-73 K-N=-24	/6237, H-Q=-213/382, I-P=-5 /1321, K-M=-983/65, E-R=0/	1/556, I-O=-538/12, J-O=0/864, J-N= 504. E-S=-543/17. D-S=0/869. D-T=-1	780/43, 788/108.			
C-T=-12	9/1337, C-U=-971/169					
NOTES-						
1) Wind: ASCE 7-16; Vult= Enclosed; MWFRS (env	115mph (3-second gust) Value (elope) gable end zone; cantil	ICDL=4.2pst; BCDL=5.0 lever left and right exposed ; end ver	psf; h=30ft; Ke=1.00 tical left and right exp	; Cat. II; E posed; Lu	схр В; imber	
DOL=1.33 plate grip DC 2) TCLL: ASCE 7-16: Pf=2	DL=1.33 25.0 psf (Lum DOL = 1.15 Pla	ite DOL = 1 15): Is=1 0: Rough Cat B	· Partially Exp · Ce=	1 0 [.] Cs=1	00 [.] Ct=1 10	N GAD
3) This truss has been des	signed for greater of min roof	live load of 14.0 psf or 2.00 times flat	roof load of 25.0 pst	f on overh	nangs	JUAN SINCIA
 All plates are MT20 plat 	es unless otherwise indicate	d.				A COS AND
 All plates are 3x4 MT20 This truss has been des 	unless otherwise indicated.	hord live load nonconcurrent with an	v other live loads.			
 7) * This truss has been de will fit between the botto 	esigned for a live load of 20.0	psf on the bottom chord in all areas v	where a rectangle 3-6	6-0 tall by	2-0-0 wide	
8) Provide mechanical con	nection (by others) of truss to	bearing plate capable of withstandir	ng 100 lb uplift at joir	nt(s) L exc	cept (jt=lb)	
B=103. 9) This truss is designed ir	n accordance with the 2018 li	nternational Building Code section 23	06.1 and referenced	standard	ANSI/TPI 1.	TOP REGISTERED
						CSSIONAL ENGIN
						A A A A A A A A A A A A A A A A A A A
						September 17,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

PRCNC20240278

240 Stirling Crescent Bradford, ON. L3Z 4L5

MÜ

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

PRCNC20240278

MiTek 240 Stirling Crescent Bradford, ON. L3Z 4L5

Job	Truss	Truss Type	Qty	Ply	Clubhouse				
N0652A	A6	Roof Special	6	1		01531710			
Alliance Truss (CA).	Abbotsford, BC - V2S 7P6.		8.8	320 s Aua	Job Reference (optional) 30 2024 MiTek Industries, Inc. Mon Sep 16	6 11:43:05 2024 Page 1			
	1-11-10 4-6 1-11-10 2-6	ID:JK8 <u>6-5 7-1-0 9-7-11 12-2-6 14-9-1</u> -11 2-6-11 2-6-11 2-6-11 2-6-11	PGhI_IZFB 17-3-12 2-6-11	ZzFFoAO + <u>19-10-8</u> + <u>2-6-11</u>	RZzDHFg-CLY1izTVO1045pmrGV?lowfgz <u>22-5-3</u> 24-7-14 26-0-6 2-6-11 2-2-12 1-4-8	zcGouklX1hNTPNyd3da			
		7x10 MT18HS				Scale = 1:69.2			
	Ţ	F		DUE TO T BY SCISS SHOULD E CONSIDE THIS TRU RESPONS DESIGN P	HE LATERAL MOVEMENT DEVELOPED OR TYPE TRUSSES, CAREFUL CONSIDER 3E GIVEN TO THE SUPPORTING STRUCT RATION OF THESE ITEMS IS NOT PART O SS COMPONENT DESIGN AND IS NOT THI BIBILITY OF THE TRUSS ENGINEER. REGIS ROFESSIONAL TO ADDRESS THIS ISSUE	ATION URE(S). F E STERED			
	۵۰ ۲۰ ۲	00 12 E Q Q C R 8x10 II P	G	H	2				
	3x5 // B 4	S T 10.00 12 3x5 1/2	0	۸ 3x5 م					
	U 5x6 / 3x6 1-11-10 4-6	∕∕ 3-5 , 7-1-0 , 9-7-11 , 12-2-6 , 14-9-1	17-3-12	19-10-8	5x6 ♥ ^M				
Plate Offsets (X Y) [A:	1-11-10 2-6 1-2-12 0-0-8] [B:0-2-4 0-1-8]	-11 2-6-11 2-6-11 2-6-11 2-6-11 2-6-11	2-6-11	⁺ 2-6-11 0-1-81 [T·	2-6-11 2-2-12 0-2-4 0-1-8] [U:0-3-0 0-2-1]				
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL 12.0 BCDL 0.0 * BCDL 10.0 % 10.0 % 10.0 % 10.0 % 10.0 % 10.0 </td <td>SPACING- 2- Plate Grip DOL 1 Lumber DOL 1 Rep Stress Incr Y Code IBC2018/TPI20</td> <td>0-0 CSI. DEFL .15 TC 0.27 Vert(I .15 BC 0.42 Vert(0 ES WB 0.64 Horz(14 Matrix-MS Wind()</td> <td>L) -0.4 CT) -0.7 CT) 1.1 LL) 0.1</td> <td>in (loc) 2 Q 8 Q 0 K 7 Q</td> <td>I/defl L/d PLATES >711 360 MT20 >378 240 MT18HS n/a n/a >999 240 Weight: 12'</td> <td>GRIP 197/144 197/144 1 lb FT = 20%</td>	SPACING- 2- Plate Grip DOL 1 Lumber DOL 1 Rep Stress Incr Y Code IBC2018/TPI20	0-0 CSI. DEFL .15 TC 0.27 Vert(I .15 BC 0.42 Vert(0 ES WB 0.64 Horz(14 Matrix-MS Wind()	L) -0.4 CT) -0.7 CT) 1.1 LL) 0.1	in (loc) 2 Q 8 Q 0 K 7 Q	I/defl L/d PLATES >711 360 MT20 >378 240 MT18HS n/a n/a >999 240 Weight: 12'	GRIP 197/144 197/144 1 lb FT = 20%			
BCDL 10.0 Code isoberies in term Industries LUMBER- TOP CHORD 2x4 SPF 2100F 1.8E BRACING- TOP CHORD BOT CHORD 2x4 SPF No.2 *Except* Q-U,M-Q: 2x6 SPF 2100F 1.8E BOT CHORD WEBS 2x3 SPF No.2 *Except* F-Q: 2x4 SPF 2100F 1.8E BOT CHORD WEDGE Left: 2x4 SPF No.2									
REACTIONS. (size) Max Horz Max Uplift Max Grav	K=0-5-8, A=Mechanical A=-215(LC 4) : K=-103(LC 9), A=-75(LC 8) K=1264(LC 1), A=1156(LC	1)							
FORCES. (lb) - Max. Con TOP CHORD A-B=-144 F-G=-49. BOT CHORD A-U=-16. P-Q=0/4. WEBS F-Q=0/60. J-N=-7/1 C-T=-802.	mp./Max. Ten All forces 25 90/108, B-C=-3118/305, C-D 47/14, G-H=-4950/93, H-I=-4 9/1109, T-U=-217/1408, S-T: 836, O-P=-10/4274, N-O=-55 066, G-Q=-229/401, H-P=-43 308, J-M=-953/47, E-Q=-24/ 2/96, B-T=-105/1353, B-U=-5	0 (lb) or less except when shown. =-4259/356, D-E=-4915/246, E-F=-4947/0, 315/142, I-J=-3232/136, J-K=-1620/97 =-353/3115, R-S=-314/4230, Q-R=-129/4815, 5/3177, M-N=-44/1521, K-M=-31/1199 /573, H-O=-531/1, I-O=0/851, I-N=-777/33, 260, D-R=0/541, D-S=-548/3, C-S=0/870, 121/155							
J-N=-7/1308, J-M=-953/47, E-Q=-24/260, D-R=0/541, D-S=-548/3, C-S=0/870, C-T=-802/96, B-T=-105/1353, B-U=-921/155 NOTES 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) This truss has been designed for greater of min roof live load of 14.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads. 4) All plates are MT20 plates otherwise indicated. 5) All plates are MT20 plates otherwise indicated. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 8) Refer to girder(s) for truss to truss connections. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A except (jt=lb) K=103. 10) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1. Experiment 1.									
VARVNING - Verify desig Design valid for use only w a truss system. Before use building design. Bracing ir is always required for stabi fabrication, storage, delive Safety Information availa	In parameters and KEAD NOLES ON ith MiTek® connectors. This design, the building designer must verify th idicated is to prevent buckling of indi ility and to prevent collapse with pos- ry, erection and bracing of trusses a able from Truss Plate Institute, 2670	I THS AND INCLUDED MILEN KEPERANCE PAGE MIL-7473 is based only upon parameters shown, and is for an individu e applicability of design parameters and properly incorporatividual truss web and/or chord members only. Additional ten sible personal injury and property damage. For general guid d truss systems, see ANSUTPH Quality Criteria Crain Highway, Suite 203 Waldorf, MD 20601	al building co this design in porary and p ance regarding DSB-89 an	mponent, no nto the over ermanent br ng the d BCSI Build	ding Component	Crescent N. L32 4L5			

PRCNC20240278

.

Job		Truss	Truss Type	C	ty	Ply	Clubhouse				
N0652A		A7	Roof Special	1		1			01531711		
Alliance Truss ((CA). A	bbotsford, BC - V2S 7P6.			8.8	320 s Aug	Job Reference (optiona 30 2024 MiTek Industrie	l) s. Inc. Mon Sep 16 11:43:06 20	24 Page 1		
	(,,	-1-4-9 2.2.12 4-	0.7 7.4.2 0.10.13 12.5	ID:JK8PGhl	_IZFBZ	zFFoAOpl	RZzDHFg-gX6PwJU79Lv	wxjzL1qDWXK8Crc0bydAqhGL6	60xqyd3dZ		
		1-4-8 2-2-12 2-6	-11 2-6-11 2-6-11 2-6-1	1 2-6-11	2-6-11	2-6-1	10 22-0-3 24-11-0	1-4-8			
			7x1	10 MT18HS	DL BY SH CC	JE TO THE SCISSOF OULD BE	E LATERAL MOVEMENT R TYPE TRUSSES, CARE GIVEN TO THE SUPPO TION OF THESE ITEMS	DEVELOPED FUL CONSIDERATION RTING STRUCTURE(S). IS NOT PART OF	Scale = 1:68.9		
		I		G	RE	SPONSIB	OCOMPONENT DESIGN BILITY OF THE TRUSS EN OFESSIONAL TO ADDRE	AND IS NOT THE NGINEER. REGISTERED ESS THIS ISSUE.			
			F	B	н			I			
		10.00 دې	E S	8×10 Q	$\langle \rangle$	-					
		6 	D to T		F		L	୫ ୧୦ 2			
		C	U 10.00 12				зхб Х К О	S			
		E B C V	/ 3x5 //			3x5	N N	0 13 13			
$V \\ 5x6 \checkmark \\ + \frac{2 \cdot 2 \cdot 12}{2 \cdot 2 \cdot 12} + \frac{4 \cdot 9 \cdot 7}{2 \cdot 2 \cdot 12} + \frac{7 \cdot 4 \cdot 2}{2 \cdot 6 \cdot 11} + \frac{9 \cdot 10 \cdot 13}{2 \cdot 6 \cdot 11} + \frac{12 \cdot 5 \cdot 8}{2 \cdot 6 \cdot 11} + \frac{15 \cdot 0 \cdot 3}{2 \cdot 6 \cdot 11} + \frac{17 \cdot 6 \cdot 14}{2 \cdot 6 \cdot 11} + \frac{20 \cdot 1 \cdot 10}{2 \cdot 6 \cdot 11} + \frac{22 \cdot 8 \cdot 5}{2 \cdot 6 \cdot 11} + \frac{24 \cdot 11 \cdot 0}{2 \cdot 2 \cdot 12} + \frac{11 \cdot 2 \cdot 6 \cdot 11}{2 \cdot 6 \cdot 11} + \frac{26 \cdot 11}{2 \cdot $											
Plate Offsets (X	(,Y) [B:(<u>-2-1,0-1-8], [L:0-2-1,0-1-8], [</u>	N:0-3-0,0-2-1], [O:0-2-4,0-1-8], [U:0	0-2-4,0-1-8], [V:	0-3-0,0	-2-1]					
LOADING (psf TCLL 2 (Roof Snow=25 TCDL 1) 25.0 5.0) 12.0	SPACING- 2-(Plate Grip DOL 1. Lumber DOL 1.	0-0 CSI. 15 TC 0.28 15 BC 0.43	DEFL. Vert(LL) Vert(CT)	i -0.4 -0.8	in (loc) 3 R 1 R	l/defl L/d >696 360 >369 240	PLATES GRIP MT20 197/14 MT18HS 197/14	14 14		
BCLL BCDI 1	0.0 *	Code IBC2018/TPI201	4 Matrix-MS	Wind(LL)	0.1	2 L 8 R	>999 240	Weight: 124 lb FT =	= 20%		
BCDL 10.0 LUMBER- TOP CHORD 2x4 SPF 2100F 1.8E BOT CHORD 2x4 SPF No.2 *Except* R-V,N-R: 2x6 SPF 2100F 1.8E BOT CHORD Structural wood sheathing directly applied or 3-3-7 oc purlins. BOT CHORD BOT CHORD BRACING- TOP CHORD BOT CHORD Structural wood sheathing directly applied or 3-3-7 oc purlins. BOT CHORD R-V,N-R: 2x6 SPF 2100F 1.8E BOT CHORD											
WEBS	2x3 SPF N G-R: 2x4 S	o.2 *Except* SPF 2100F 1.8E, K-N,C-V: 2x	4 SPF No.2								
REACTIONS.	(size) Max Horz Max Uplift Max Grav	B=0-5-8, L=0-5-8 B=223(LC 7) B=-103(LC 8), L=-103(LC 9) B=1273(LC 1), L=1273(LC 1)								
FORCES. (Ib) TOP CHORD	- Max. Cor B-C=-16 G-H=-50	np./Max. Ten All forces 250 34/99, C-D=-3267/300, D-E≕ 27/10. H-I=-5016/90. I-J=-430) (lb) or less except when shown. 4364/350, E-F=-5016/241, F-G=-5 5/139. J-K=-3267/134. K-L=-1634	5027/0, /98							
BOT CHORD WEBS	B-V=-163 Q-R=0/49 G-R=0/6	8/1227, U-V=-206/1527, T-U= 901, P-Q=-8/4323, O-P=-54/3 169, H-R=-222/401, I-Q=-41/3	348/3229, S-T=-309/4335, R-S=- 3210, N-O=-43/1509, L-N=-31/1212 584, I-P=-541/0, J-P=0/864, J-O=-	125/4901, 2 785/33,							
	n-∪=-8/1 D-U=-78	5/97, C-U=-111/1346, C-V=-9	209, E-0=0/029, E-1=-541/4, D-1= 958/155	:U/004,							
NOTES- 1) Wind: ASCE Enclosed; M	7-16; Vult= WFRS (env	115mph (3-second gust) Vas elope) gable end zone; canti	d=91mph; TCDL=4.2psf; BCDL=5 ever left and right exposed ; end v	i.0psf; h=30ft; K rertical left and r	e=1.00 ight exp	; Cat. II; E bosed; Lu	Exp B; mber				
 DOL=1.33 pi TCLL: ASCE This truss ha non-concurre All plates are 	ate grip DC 7-16; Pf=2 as been des ent with oth MT20 plat	5.0 psf (Lum DOL = 1.15 Pla igned for greater of min roof er live loads. es unless otherwise indicated	te DOL = 1.15); Is=1.0; Rough Cat ive load of 14.0 psf or 2.00 times f I.	t B; Partially Ex lat roof load of 2	o.; Ce=′ 25.0 psl	1.0; Cs=1 on overh	.00; Ct=1.10 nangs	JUAN GARCIA			
 5) All plates are 6) This truss ha 7) * This truss has the will fit between 	e 3x4 MT20 as been des nas been de en the botto	unless otherwise indicated. igned for a 10.0 psf bottom c signed for a live load of 20.0 m chord and any other memi	hord live load nonconcurrent with a psf on the bottom chord in all areas pers.	any other live lo s where a recta	ads. ngle 3-6	6-0 tall by	2-0-0 wide		<u>Î</u>		
 8) Provide med B=103, L=10 9) This truss is 	hanical con)3. designed ir	nection (by others) of truss to accordance with the 2018 Ir	bearing plate capable of withstan	ding 100 lb upli 2306.1 and refe	ft at joir erenced	it(s) exce standard	pt (jt=lb) ANSI/TPI 1.	PR 39586 PEGISTERED ESSIONNEENCE	IT IS		
								Septemb	oer 17,2024		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

PRCNC20240278

240 Stirling Crescent Bradford, ON. L3Z 4L5

MÜ

Job	Truss	Truss Type	Qtv	Plv	Clubhouse	
N0652A	48	Roof Special	7	1		U1531712
				'	Job Reference (option	nal)
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,		8.8 ID:JK8PGhI_IZFBZz	320 s Aug FFoAOpF	30 2024 Millek Industri RZzDHFg-8jgn7fUmwf2	ies, Inc. Mon Sep 16 11:43:07 2024 Page 1 coL7wDOw1mtLl?dQxWMd2qV_saTGyd3dY
	0-5-8	5-1-5 7-6-11 10-0-2 12- 2-5-6 2-5-6 2-5-6 2-5	5-8 14-10-15 17-4-5	19-9-1 2-5-f	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1-0 <u>26-3-8</u> 14 1-4-8
	0-5-8	200 200 200 20	5x10	200	200 271	Scale = 1:67.1
		10.00 12 F	G H S	DUE TO BY SCISS SHOULD CONSIDE THIS TRU RESPON DESIGN	THE LATERAL MOVEM SOR TYPE TRUSSES, (BE GIVEN TO THE SL ERATION OF THESE IT JSS COMPONENT DES SIBILITY OF THE TRUS PROFESSIONAL TO AL	IENT DEVELOPED CAREFUL CONSIDERATION JPPORTING STRUCTURE(S). EMS IS NOT PART OF SIGN AND IS NOT THE SS ENGINEER. REGISTERED DDRESS THIS ISSUE.
	21-E-0 4x6 4x6 C C C C	E T D U 3x5 /10.00 12 W 3x5 /2	8x10 R	3x5	J 7x8 K P % 0 3x5 %	4x6 L L 10-0-0
	0 582-7-14 0582-2-6	5-1-5 7-6-11 10-0-2 12- 2-5-6 2-5-6 2-5-6 2-5	5-8 14-10-15 17-4-5 5-6 2-5-6 2-5-6	19-9-1	11 <u>22-3-2</u> 24-5-8 6 2-5-6 2-2-6	N 324 ₁ 11-0 0-5-8
Plate Offsets (X,Y)	[B:0-2-4,0-2-0], [C:0-4-0,0-3-4	, [G:0-4-4,0-2-8], [K:0-4-0,0-3-4], [L	:0-2-4,0-2-0], [N:0-1-8,0	-1-8], [O:(0-2-4,0-1-8], [W:0-2-4	,0-1-8], [X:0-1-8,0-1-8]
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL TCDL 12.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2018/TPI2	Co-0 CSI. 1.15 TC 0.33 1.15 BC 0.40 YES WB 0.65 014 Matrix-MS	DEFL. Vert(LL) -0.3 Vert(CT) -0.6 Horz(CT) 1.1 Wind(LL) 0.1	in (loc) 5 S 6 S 9 N 3 S	l/defl L/d >845 360 >448 240 n/a n/a >999 240	PLATES GRIP MT20 197/144 Weight: 153 lb FT = 20%
LUMBER- TOP CHORD 2x6 S A-C,I BOT CHORD 2x6 S WEBS 2x3 S G-S:	PF 2100F 1.8E *Except* (-M: 2x4 SPF No.2 PF 2100F 1.8E PF No.2 *Except* 2x4 SPF 2100F 1.8E, B-X,L-N: 2	x6 SPF No.2	BRACING- TOP CHORD BOT CHORD	Structur except e Rigid ce 6-0-0 oc	al wood sheathing dir end verticals. illing directly applied c bracing: W-X,N-O.	rectly applied or 4-2-10 oc purlins, or 10-0-0 oc bracing, Except:
REACTIONS. (si Max Max Max	ze) X=0-5-8, N=0-5-8 Horz X=-271(LC 6) Uplift X=-98(LC 8), N=-98(LC 9) Grav X=1268(LC 1), N=1268(LC	; 1)				
FORCES. (Ib) - Ma: TOP CHORD B-C G-H L-N	Comp./Max. Ten All forces 2 =-1832/230, C-D=-3359/359, D- =-5164/41, H- =-5044/0, I-J=-44 =-1210/105	50 (lb) or less except when shown. E=-4490/342, E-F=-5102/172, F-G= 36/70, J-K=-3314/98, K-L=-1805/81	5139/19, I, B-X=-1216/189,			
BOT CHORD W-J R-S WEBS G-S K-F D-U	(=-345/342, V-W=-353/2055, U- =0/4905, Q-R=0/4405, P-Q=0/3 =-35/6293, H-S=-251/402, I-R= =0/1176, K-O=-998/36, L-O=-8/ =0/830, D-V=-814/56, C-V=-41/	/=-364/3564, T-U=-321/4633, S-T= 324, O-P=-20/1809 86/551, I-Q=-546/31, J-Q=-11/853, 319, F-S=-21/294, E-T=0/448, E-U 1176, C-W=-998/126, B-W=-120/13	-231/5112, J-P=-814/12, =-531/4, 19			
NOTES- 1) Wind: ASCE 7-16; Enclosed; MWFRS DOL=1.33 plate gr 2) TCLL: ASCE 7-16 3) This truss has bee non-concurrent wii 4) All plates are 3x4 I 5) This truss has bee 6) * This truss has bee 6) * This truss has bee 7) Bearing at joint(s) capacity of bearing 8) Provide mechanic: 9) This truss is desig	Vult=115mph (3-second gust) V i (envelope) gable end zone; cai ip DDL=1.33 Pf=25.0 psf (Lum DDL = 1.15 F in designed for greater of min roc h other live loads. AT20 unless otherwise indicated in designed for a 10.0 psf bottom en designed for a 10.0 psf bottom en designed for a live load of 20 bottom chord and any other me K, N considers parallel to grain v surface. al connection (by others) of truss and in accordance with the 2018	asd=91mph; TCDL=4.2psf; BCDL= titlever left and right exposed ; end late DOL = 1.15); Is=1.0; Rough Ca f live load of 14.0 psf or 2.00 times chord live load nonconcurrent with .0psf on the bottom chord in all area mbers. alue using ANSI/TPI 1 angle to grai to bearing plate capable of withstan International Building Code section	5.0psf; h=30ft; Ke=1.00 vertical left and right exp at B; Partially Exp.; Ce= flat roof load of 25.0 psi any other live loads. as where a rectangle 3- n formula. Building des nding 100 lb uplift at joir 2306.1 and referenced	; Cat. II; E bosed; Lu 1.0; Cs=1 5-0 tall by igner sho ht(s) X, N. standard	Exp B; mber .00; Ct=1.10 hangs 2-0-0 wide uuld verify ANSI/TPI 1.	HORESSIONAL ENGINE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

PRCNC20240278

Job	Trus	s	Truss Type			Qty	Ply	Clubhou	ise		
N0652A	۵۵		Roof Specia			1	1				U1531713
100327						'		Job Refe	erence (optiona	I)	
Alliance Truss (CA), Abbots	sford, BC - V2S 7P6			ID:JK8PG	8 hl IZFB2	8.820 s Aug ZzFFoAOp	30 2024 N RZzDHFq-∤	/liTek Industrie: 8jgn7fUmwf2ol	s, Inc. Mon Sep 16 1 _7wDOw1mtLl?dQxV	11:43:07 2024 Page 1 NMd2qV saTGyd3dY
		0-5-8 1-1-4-8 1 2-7-14	ı 5-1-5 _I 7-6	11 10-0-2 12-	5-8 14-10-15	 17-4-	-5 ₁ 19-9-	-11 22-	3-2 1 24-11-0	126-3-8	1 - 7
		1-4-8 2-2-6 0-5-8	2-5-6 2-5	-6 2-5-6 2-	5-6 2-5-6	2-5-6	6 2-5	-6 2-5	5-6 2-7-14	1-4-8	
					5x10		DUE TO				Scale = 1:67.
							SHOUL	D BE GIVE	EN TO THE SU	PORTING STRUCT	URE(S).
	т				G		THIS TH	RUSS COM	IPONENT DESI	GN AND IS NOT THE	
				,			RESPO DESIGN	NSIBILITY VPROFES	OF THE TRUS SIONAL TO AD	S ENGINEER. REGIS DRESS THIS ISSUE.	STERED
			10.00 12	- F//		н					
					s					Ī	
				E		$\langle \!\!\! \rangle$	<u> </u>				
				т	8x10 R						
	÷		D					L /			
	12-	7x8 🥢		υ			0		778	. P	
		C							K	10-0	
		4x6 1/	V V					P		lx6 ∕∖	
		в	3x	5 10.00 12			3x5	*	$\langle \rangle$	<u> </u>	
			w							M _o	
	12		3x5 🕢					3x	5 %		
	1 4										
		0r 5- 8 2-7-14	, 5-1-5 , 7-6	11 10-0-2 12-	5-8 14-10-15	17-4-	-5 19-9	-11 22-	3-2 24-5-82	N 4 ₁ 11-0	
Plate Offsets (X	(Y) [B:0-2-4	<u>0¹5-8 2-2-6</u> 0-2-0]. [C:0-4-0.0-3	2-5-6 2-5 3-4], [G:0-4-4,0-2-	-6 2-5-6 2-5 8]. [K:0-4-0.0-3-4]. [L	5-6 <u>2-5-6</u> :0-2-4.0-2-0].	2-5- N:0-1-8.	6 ¹ 2-5	-6 ¹ 2-5	5-6 ¹ 2-2-6 -8], [W:0-2-4.0	0 [!] 5-8)-1-8], [X:0-1-8,0-1-	81
LOADING (psf))			<u></u>							
TCLL 2	25.0	Plate Grip DOL	2-0-0	TC 0.33	Vert(Ll	_) -0.	in (loc) .35 S	1/defi >845	L/d 360	MT20	GRIP 197/144
TCDL 1	.0) 12.0	Lumber DOL	1.15	BC 0.40	Vert(C	Τ́) -0.	.66 S	>448	240 p/0		
BCLL	0.0 *	Code IBC2018/T	PI2014	Matrix-MS	Wind(L	.L) 0.	.19 N .13 S	>999	240	Weight: 153 I	b FT = 20%
LUMBER-	10.0				BRACIN	G-					
TOP CHORD	2x6 SPF 2100F	1.8E *Except*			TOP CH	ORD	Structu	ral wood s	sheathing dire	ctly applied or 4-2-1	10 oc purlins,
BOT CHORD	A-C,K-M: 2x4 S 2x6 SPF 2100F	PF No.2 1.8E			BOT CH	ORD	except Rigid c	end vertic eilina direa	als. ctlv applied or	10-0-0 oc bracing.	Except:
WEBS	2x3 SPF No.2 *	Except*					6-0-0 o	c bracing:	W-X,N-O.		
	G-S: 2x4 SPF 2	100F 1.8E, B-X,L-I	N: 2x6 SPF No.2								
REACTIONS.	(size) X=0	-5-8, N=0-5-8									
	Max Horz X=-2 Max Uplift X=-9	98(LC 8), N=-98(LC	; 9)								
	Max Grav X=1	268(LC 1), N=1268	(LC 1)								
FORCES. (lb)	- Max. Comp./M	lax. Ten All force	s 250 (lb) or less	except when shown.							
TOP CHORD	B-C=-1832/23 G-H=-5164/41	0, C-D=-3359/359,	D-E=-4490/342, -4436/70 J-K=-3	E-F=-5102/172, F-G: 314/98 K-I =-1805/81	=-5139/19, 1 B-X=-1216/1	89					
	L-N=-1210/10)5			I, D X= 1210/1	00,					
BOT CHORD	W-X=-345/342 R-S=0/4905	2, V-W=-353/2055, D-R=0/4405_P-O=	U-V=-364/3564, 0/3324 O-P=-20/	Г-U=-321/4633, S-T= 1809	-231/5112,						
WEBS	G-S=-35/6293	8, H-S=-251/402, I-	R=-86/551, I-Q=-5	546/31, J-Q=-11/853,	J-P=-814/12,						
	K-P=0/1176, F D-U=0/830, D	<-O=-998/36, L-O= -V=-814/56, C-V=-/	-8/1319, F-S=-21/ 41/1176, C-W=-9	294, E-T=0/448, E-U 98/126, B-W=-120/13	l=-531/4, 319						
NOTES	,-		,								
1) Wind: ASCE	7-16; Vult=115r	nph (3-second gus	i) Vasd=91mph; T	CDL=4.2psf; BCDL=	5.0psf; h=30ft;	Ke=1.0	0; Cat. II;	Exp B;			
Enclosed; M	WFRS (envelope	e) gable end zone;	cantilever left and	I right exposed ; end	vertical left an	d right e	xposed; Li	umber		A B B B B B B B B B B B B B B B B B B B	
2) TCLL: ASCE	7-16; Pf=25.0 p	osf (Lum DOL = 1.1	5 Plate DOL = 1.1	5); Is=1.0; Rough Ca	at B; Partially E	xp.; Ce	=1.0; Cs=′	1.00; Ct=1	.10	JUAN	VARCIA
3) This truss ha	s been designed	d for greater of min	roof live load of 1	4.0 psf or 2.00 times	flat roof load o	of 25.0 p	sf on over	hangs		J GOF W	ASHIN
4) All plates are	3x4 MT20 unle	ss otherwise indica	ted.								
5) This truss ha	s been designed	d for a 10.0 psf bott	om chord live loa	d nonconcurrent with	any other live	loads.	1-6-0 tall b	1 2-0-0 wit	he	~ /2	
	as seen uesign	ord and any other	members			angie 0		, _ 5 5 wit			

7) Bearing at joint(s) X, N considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify

- capacity of bearing surface. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) X, N.
- 9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

People Sontember 17

MiTek 240 Stirling Crescent Bradford, ON. L3Z 4L5

September 17,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPII Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component</u> **Safety information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20001

PRCNC20240278

240 Stirling Crescent Bradford, ON. L3Z 4L5

MiTek

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

PRCNC20240278

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

PRCNC20240278

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

PRCNC20240278

	9-5-4	17-8-5	27-1-9	1							
	9-5-4	8-3-0	9-5-4								
Plate Offsets (X,Y) [B:0-3-0,0-2-0], [E:0-2-0,0-0-4], [E:0-1-8,0-2-0], [H:0-3-0,0-2-0], [J:0-2-8,0-2-0], [D:0-2-0,0-2-0], [O:0-1-11,0-0-12], [Y:0-1-11,0-0-12]											

LOADING (psf) TCLL 25.0 (Roof Snow=25.0) 12.0 TCDL 12.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2018/TPI2014	CSI. TC 0.38 BC 0.72 WB 0.31 Matrix-MS	DEFL. Vert(LL) -0 Vert(CT) -0 Horz(CT) 0 Wind(LL) 0	in (loc) l/defi L/d .13 J-AM >999 360 .27 L-AJ >403 240 .02 H n/a n/a .02 L-AJ >999 240	PLATES GRIP MT20 197/144 Weight: 157 lb FT = 20%
LUMBER- TOP CHORD 2x4 SPF N BOT CHORD 2x4 SPF N WEBS 2x4 SPF N G-J,C-L: 2 OTHERS OTHERS 2x3 SPF N	lo.2 lo.2 lo.2 *Except* x3 SPF No.2 lo.2		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathing Rigid ceiling directly applied 1 Row at midpt	directly applied or 4-6-10 oc purlins. d or 6-0-0 oc bracing. E-L
REACTIONS. (size) Max Horz Max Uplift Max Grav	B=0-5-8, L=0-5-8, H=0-5-8 B=100(LC 10) B=-37(LC 10), L=-163(LC 10), H=-870 B=466(LC 17), L=1542(LC 2), H=901	LC 11) (LC 4)			
FORCES. (lb) - Max. Control TOP CHORD B-C=-28 BOT CHORD J-L=0/30 WEBS E-J=-134 C-L=-456	mp./Max. Ten All forces 250 (lb) or le 9/98, C-D=-108/389, D-E=-30/386, E-F 13, H-J=-74/1292 I/1062, F-J=-483/142, G-J=-493/141, E 8/138	ss except when shown. =-1068/145, F-G=-1045/ :-L=-1038/131, D-L=-476	/68, G-H=-1448/141 5/140,		
 NOTES- 1) Wind: ASCE 7-16; Vulta Enclosed; MWFRS (env DOL=1.33 plate grip DC 2) Truss designed for wind Gable End Details as ag 3) TCLL: ASCE 7-16; Pf=2 4) Unbalanced snow loads 5) This truss has been des non-concurrent with oth 6) All plates are 1.5x4 MT2 7) Gable studs spaced at 2 8) This truss has been des 9) * This truss has been des 9) * This truss has been des 9) * This truss is designed 1. 12) No notches allowed in Minimum 1.5x4 tie plat one tie plate between 	e115mph (3-second gust) Vasd=91mpi relope) gable end zone; cantilever left : DL=1.33 I loads in the plane of the truss only. F oplicable, or consult qualified building of 5.0 psf (Lum DOL = 1.15 Plate DOL = a have been considered for this design. signed for greater of min roof live load of er live loads. 20 unless otherwise indicated. 2-0-0 oc. signed for a 10.0 psf bottom chord live segined for a 10.0 psf bottom chord live segined for a live load of 20.0psf on the om chord and any other members, with onnection (by others) of truss to bearing in accordance with the 2018 Internatio overhang and 1008 from left end and tes required at 2-0-0 o.c. maximum bef each notch.	and right exposed ; end v or studs exposed to wind lesigner as per ANSI/TPI 1.15); Is=1.0; Rough Ca of 18.0 psf or 2.00 times oad nonconcurrent with b bottom chord in all area BCDL = 10.0psf. g plate capable of withsta nal Building Code sectio 1008 from right end or 12 ween the stacking chord	5.0psf; h=30ft; Ke=1.0 vertical left and right e d (normal to the face), l 1. t B; Partially Exp.; Ce flat roof load of 25.0 p any other live loads. is where a rectangle 2 anding 100 lb uplift at n 2306.1 and reference 2" along rake from sca s. For edge-wise not	0; Cat. II; Exp B; exposed; Lumber a see Standard Industry =1.0; Cs=1.00; Ct=1.10 asf on overhangs 3-6-0 tall by 2-0-0 wide joint(s) B, H except ced standard ANSI/TPI arf, whichever is larger. ching, provide at least	TUNN GARCIA TO THE OF WASSA BOSS OF THE DUNCTION TO THE SOLONAL ENCIRT September 17,2024
WARNING - Verify desig Design valid for use only w a truss system. Before use building design. Bracing in is always required for stab fabrication, storage, delive Safety Information availa	In parameters and READ NOTES ON THIS AND IN ith MITek® connectors. This design is based only the building designer must verify the applicabilit dicated is to prevent buckling of individual truss lifty and to prevent coulapse with possible persons yr, erection and bracing of trusses and truss syst able from Truss Plate Institute, 2670 Crain Highw	ICLUDED MITEK REFERANCE v upon parameters shown, and y of design parameters and pro veb and/or chord members only il injury and property damage. ms, see ANS/TP11 ay, Suite 203 Waldorf, MD 2060	PAGE MII-7473 rev. 6/30/20 is for an individual building perly incorporate this desig , Additional temporary and For general guidance regar Quality Criteria, DSB-89 a 01	220 BEFORE USE. component, not n into the overall J permanent bracing ding the and BCSI Building Component	240 Stirling Crescent Bradford, ON. L32 4L5

L	9-5-4			17-8-5				27-1-9			
I	9-5-4	9-5-4			8-3-0		1			9-5-4	
Plate Offsets (X,Y) [E:	:0-2-8,0-1-12], [J:0-2-8,0-2	2-0], [L:0-2-0,0-2	2-0]								
LOADING (psf) TCLL 25.0 (Roof Snow=25.0)	SPACING- Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI. TC BC	0.43 0.75	DEFL. Vert(LL) Vert(CT)	in -0.15 -0.32	(loc) J-R J-R	l/defl >999 >663	L/d 360 240	PLATES MT20	GRIP 197/144
TCDL 12.0 BCLL 0.0 * BCDL 10.0	Rep Stress Incr Code IBC2018/TP	YES PI2014	WB Matrix	0.34 <-MS	Horz(CT) Wind(LL)	0.02 0.04	H J-R	n/a >999	n/a 240	Weight: 104 lb	FT = 20%
LUMBER- TOP CHORD 2x4 SPF I BOT CHORD 2x4 SPF I	No.2 No.2				BRACING- TOP CHORI BOT CHORI	D 8 D F	Structura Rigid ce	al wood s iling dire	sheathing dir	ectly applied or 4-5-8 o or 6-0-0 oc bracing.	c purlins.

WEBS

1 Row at midpt

F-I

WEBS 2x4 SPF No.2 *Except* G-J,C-L: 2x3 SPF No.2

REACTIONS. (size) B=0-5-8, L=0-5-8, H=0-5-8 Max Horz B=-94(LC 15) Max Uplift B=-27(LC 10), L=-142(LC 10), H=-94(LC 11) Max Grav B=350(LC 17), L=1664(LC 2), H=865(LC 4)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD C-D=-69/462, D-E=0/450, E-F=-958/175, F-G=-938/96, G-H=-1306/159
- BOT CHORD H-J=-83/1141
- WEBS E-J=-140/1051, F-J=-478/142, G-J=-445/138, E-L=-1091/90, D-L=-482/143, C-L=-453/139

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

- 4) This truss has been designed for greater of min roof live load of 18.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) B, H except (jt=lb) L=142.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

240 Stirling Crescent Bradford, ON. L3Z 4L5

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component</u> **Safety information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20001

	1-11-10 1-11-10								
Plate Offsets (X,Y) [B:0-5-4,Edge]									
LOADING (psf) SPACING- 2-0-0 TCLL 25.0 Plate Grip DOL 1.15 (Roof Snow=25.0) Lumber DOL 1.15 TCDL 12.0 Rep Stress Incr YES BCLL 0.0 Code IBC2018/TPI2014 10.0	CSI. TC 0.09 BC 0.05 WB 0.00 Matrix-MP	DEFL. in (loc) l/defl L/d Vert(LL) -0.00 E >999 360 Vert(CT) -0.00 E >999 240 Horz(CT) 0.00 D n/a n/a Wind(LL) 0.00 E >999 240	PLATES GRIP MT20 197/144 Weight: 5 lb FT = 20%						

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2

REACTIONS. (size) B=0-5-8, D=Mechanical

Max Horz B=15(LC 6)

Max Uplift B=-45(LC 6), D=-6(LC 10) Max Grav B=205(LC 17), D=83(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs
- non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) B, D.
- 9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 1-10-9 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component</u> **Safety information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20001 Milek[°]

240 Stirling Crescent Bradford, ON. L3Z 4L5

	⊢—		<u>2-0-0</u> 2-0-0		
Plate Offsets (X,Y) [B:	0-5-4,Edge]				
LOADING (psf) TCLL 25.0 (Roof Snow=25.0)	SPACING- Plate Grip DOL	2-0-0 1.15	CSI. TC 0.09	DEFL. in (loc) I/defl L/d Vert(LL) -0.00 E >999 360	PLATES GRIP MT20 197/144

TCLL 25.0 (Roof Snow=25.0) TCDL 12.0 BCLL 0.0 * BCDL 10.0 *	Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	TC 0.09 BC 0.12 WB 0.00 Matrix-MP	Vert(LL) -0.00 Vert(CT) -0.00 Horz(CT) -0.00 Wind(LL) 0.00	E > G > C E >	999 360 999 240 n/a n/a 999 240	MT20 Weight: 8 lb	FT = 20%	
LUMBER-			BRACING-					

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2

2

TOP CHORD Structural wood sheathing directly applied or 2-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) C=Mechanical, B=0-5-8, D=Mechanical

Max Horz B=25(LC 6) Max Uplift C=-20(LC 6), B=-42(LC 6), D=-32(LC 10)

Max Grav C=83(LC 17), B=213(LC 17), D=192(LC 17)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs
- non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) C, B, D.
- 9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component</u> **Safety information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20001

	 	<u>2-0-0</u> 2-0-0									
Plate Offsets (X,Y) [B	:0-4-12,Edge]										
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL 12.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2018/TF	2-0-0 1.15 1.15 YES Pl2014	CSI. TC BC WB Matrix	0.36 0.25 0.00 (-MP	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.00 -0.00 -0.00 0.00	(loc) G G C E	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 10 lb	GRIP 197/144 FT = 20%

LUMBER-

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2

BRACING-TOP CHORD

 TOP CHORD
 Structural wood sheathing directly applied or 2-0-0 oc purlins.

 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) C=Mechanical, B=0-5-8, D=Mechanical

Max Horz B=36(LC 6) Max Uplift C=-38(LC 6), B=-27(LC 6), D=-76(LC 10)

Max Grav C=159(LC 17), B=161(LC 16), D=377(LC 17)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs
- non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) C, B, D.
- 9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component</u> **Safety information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20001

L	8-3-6	16-0-5		23-9-3	I	32-0-9
Plata Offacta (X V) [P:	<u>8-3-6</u>	7-8-14		7-8-14	I	8-3-6
LOADING (psf) TCLL 25.0 (Roof Snow=25.0)	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.56 BC 0.79	DEFL. Vert(LL)	in (loc) I/d -0.18 J-L >9 -0.37 I-l >9	lefl L/d 99 360 99 240	PLATES GRIP MT20 197/144
TCDL 12.0 BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IBC2018/TPI2014	WB 0.80 Matrix-MS	Horz(CT) Wind(LL)	0.11 H r 0.09 L-M >9	n/a n/a 99 240	Weight: 193 lb FT = 20%
LUMBER- TOP CHORD 2x4 SPF 1 BOT CHORD 2x4 SPF 1 WEBS 2x3 SPF 1 F-L,D-L: 2 OTHERS 2x3 SPF 1	No.2 No.2 No.2 *Except* x4 SPF No.2 No.2		BRACING- TOP CHOR BOT CHOR	D Structural wo D Rigid ceiling	ood sheathing dire directly applied o	ectly applied or 2-11-9 oc purlins. r 10-0-0 oc bracing.
REACTIONS. (size) Max Horz Max Uplif Max Grav	B=0-5-8, H=0-5-8 B=116(LC 10) t B=-163(LC 10), H=-143(LC 11) B=1637(LC 1), H=1567(LC 1)					
FORCES. (lb) - Max. Co TOP CHORD B-C=-29 G-H=-29 BOT CHORD B-M=-26 WEBS E-L=-73 C-M=-46	mp./Max. Ten All forces 250 (lb) or le 185/256, C-D=-2648/222, D-E=-1819/17 176/253 180/2651, L-M=-162/2068, J-L=-65/2065 /1185, F-L=-852/173, F-J=-22/518, G-J 19/148	ess except when shown. '9, E-F=-1819/180, F-G= , H-J=-170/2641 =-484/146, D-L=-855/17	2641/219, 4, D-M=-25/526,			
 NOTES- 1) Wind: ASCE 7-16; Vult: Enclosed; MWFRS (em DOL=1.33 plate grip D0 2) Truss designed for wind Gable End Details as a 3) TCLL: ASCE 7-16; Pf=/ 4) Unbalanced snow loadi 5) This truss has been dean non-concurrent with oth 6) All plates are 1.5x4 MT 7) Gable studs spaced at 8) This truss has been dean non-concurrent with oth 6) All plates are 1.5x4 MT 7) Gable studs spaced at 8) This truss has been dean non-concurrent with oth 6) All plates are 1.5x4 MT 7) Gable studs spaced at 8) This truss has been dean non-concurrent with oth 9) * This truss has been dean non-concurrent with oth 10) Provide mechanical or B=163, H=143. 11) This truss is designed 1. 12) No notches allowed in Minimum 1.5x4 tie pla on the between the thermore 	=115mph (3-second gust) Vasd=91mpi velope) gable end zone; cantilever left DL=1.33 d loads in the plane of the truss only. F pplicable, or consult qualified building of 25.0 psf (Lum DOL = 1.15 Plate DOL = s have been considered for this design signed for greater of min roof live load er live loads. 20 unless otherwise indicated. 2-0-0 oc. signed for a 10.0 psf bottom chord live esigned for a live load of 20.0psf on the om chord and any other members. onnection (by others) of truss to bearin in accordance with the 2018 Internation overhang and 1008 from left end and tes required at 2-0-0 o.c. maximum be overhang the constant of the constant of the constant of the constant overhang and 1008 from left end and tes required at 2-0-0 o.c. maximum be	n; TCDL=4.2psf; BCDL= and right exposed ; end for studs exposed to win designer as per ANSI/TP 1.15); Is=1.0; Rough Ca of 18.0 psf or 2.00 times load nonconcurrent with a bottom chord in all area g plate capable of withstanal Building Code sectio 1008 from right end or 1 ween the stacking chord	5.0psf; h=30ft; Ke vertical left and rig d (normal to the fa l 1. tt B; Partially Exp. flat roof load of 25 any other live load as where a rectand anding 100 lb uplit in 2306.1 and refe 2" along rake from ls. For edge-wise	=1.00; Cat. II; Exp E pht exposed; Lumbe ace), see Standard II ; Ce=1.0; Cs=1.00; f 5.0 psf on overhangs ds. gle 3-6-0 tall by 2-0- ft at joint(s) except (j renced standard AN a scarf, whichever is notching, provide a	B; r Ct=1.10 S 0 wide it=lb) ISI/TPI larger. t least	HUAN GARCIA BORNASSIONAL ENGINE SSIONAL ENGINE September 17,2024
WARNING - Verify desir Design valid for use only va a truss system. Before usi building design. Bracing i is always required for stab fabrication, storage, delive Safety Information avail	gn parameters and READ NOTES ON THIS AND II with MITEK® connectors. This design is based on a, the building designer must verify the applicabili ndicated is to prevent buckling of individual truss illity and to prevent buckling of individual truss with possible person: ry, erection and bracing of trusses and truss syst able from Truss Plate Institute, 2670 Crain Highw	CLUDED MITEK REFERANCE y upon parameters shown, and y of design parameters and pro web and/or chord members onl al injury and property damage. ms, see <u>ANS//TPH</u> ay, Suite 203 Waldorf, MD 206	PAGE MII-7473 rev. 6/ is for an individual buil operly incorporate this of y. Additional temporar For general guidance <i>Quality Criteria, DSE</i> 01	30/2020 BEFORE USE. ding component, not design into the overall y and permanent bracing regarding the 1-89 and BCSI Building (Component	240 Stirling Crescent Bradford, ON. L3Z 4L5

<u> </u>	8-3-6	16-0-5	23-9-3	32-0-9					
Diata Offacta (X V)		7-8-14	7-8-14	8-3-6					
	[B.0-2-12,0-1-6], [H.0-2-12,0-1-6]	1							
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL 12.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 * Rep Stress Incr YES * Code IBC2018/TPI2014	CSI. TC 0.56 BC 0.99 WB 0.82 Matrix-MS	DEFL. in (loc) l/defl Vert(LL) -0.21 L-M >999 Vert(CT) -0.37 L-M >999 Horz(CT) 0.12 H n/a Wind(LL) 0.07 M-P >999	L/d PLATES GRIP 360 MT20 197/144 240					
LUMBER- TOP CHORD 2x4 SPF No.2 BRACING- TOP CHORD BOT CHORD 2x4 SPF No.2 TOP CHORD Structural wood sheathing directly applied or 2-9-4 oc purlins. BOT CHORD 2x4 SPF No.2 BOT CHORD Rigid ceiling directly applied or 2-9-0 oc bracing. WEBS 2x3 SPF No.2 *Except* F-L,D-L: 2x4 SPF No.2 FL,D-L: 2x4 SPF No.2									
REACTIONS. Ma Ma Ma	REACTIONS. (size) B=0-5-8, H=0-5-8 Max Horz B=-110(LC 11) Max Uplift B=-139(LC 10), H=-139(LC 11) Max Grav B=1632(LC 2), H=1632(LC 2)								
FORCES. (lb) - N TOP CHORD E BOT CHORD E WEBS E	FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD B-C=-2942/242, C-D=-2718/221, D-E=-1881/182, F-G=-2718/221, G-H=-2942/242 BOT CHORD B-M=-262/2597, L-M=-152/2099, J-L=-60/2099, H-J=-152/2597 WEBS E-L=-78/1317, F-L=-822/173, F-J=-29/622, G-J=-390/142, D-L=-822/173, D-M=-29/622, C-M=-390/142								
NOTES- 1) Wind: ASCE 7-1 Enclosed; MWF DOL=1.33 plate 2) TCLL: ASCE 7- 3) Unbalanced sno 4) This truss has b	16; Vult=115mph (3-second gust) Vasd=91mp RS (envelope) gable end zone; cantilever left grip DOL=1.33 16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = bw loads have been considered for this design been designed for greater of min roof live load	h; TCDL=4.2psf; BCDL=5.0ps and right exposed ; end vertic 1.15); Is=1.0; Rough Cat B; F of 18.0 psf or 2.00 times flat ro	if; h=30ft; Ke=1.00; Cat. II; Exp B; al left and right exposed; Lumber Partially Exp.; Ce=1.0; Cs=1.00; Ct=1. pof load of 25.0 psf on overhangs	0					

non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)

B=139, H=139.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

MiTek 240 Stirling Crescent Bradford, ON. L3Z 4L5

September 17,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to be only with with with every connectors. This design is based only upon parameters shown, and is to an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

L	8-4-8	15-6-1	22-7-9	31-0-1
	8-4-8	7-1-9	7-1-9	8-4-8
Plate Offsets (X,Y) [B	:0-2-12,0-1-8], [F:0-2-12,0-1-8]			
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL TCLL 0.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.64 BC 0.94 WB 0.35 Matrix-MS	DEFL. in (loc) I/defl Vert(LL) -0.16 K-N >999 Vert(CT) -0.36 K-N >999 Horz(CT) 0.11 F n/a Wind(LL) 0.11 K-N >999	L/d PLATES GRIP 360 MT20 197/144 240 n/a 240 Weight: 108 lb FT = 20%

DODL	10.0				
LUMBER-			BRACING-		
TOP CHORD	2x4 SPF 2	2100F 1.8E	TOP CHORD	Structural wood sheathing	directly applied or 3-10-7 oc purlins.
BOT CHORD	2x4 SPF N	No.2	BOT CHORD	Rigid ceiling directly applied	d or 2-2-0 oc bracing.
WEBS	2x3 SPF N	No.2 *Except*	WEBS	1 Row at midpt	E-J, C-J
	E-J.C-J: 2	x4 SPF No.2		·	

REACTIONS. (size) B=0-5-8, F=0-5-8 Max Horz B=-107(LC 15) Max Uplift B=-135(LC 10), F=-135(LC 11) Max Grav B=1522(LC 1), F=1522(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD B-C=-2618/206, C-D=-1782/174, D-E=-1782/174, E-F=-2618/206

BOT CHORD B-K=-204/2246, J-K=-204/2246, H-J=-97/2246, F-H=-97/2246

WEBS D-J=-44/1029, E-J=-1007/198, E-H=0/338, C-J=-1007/197, C-K=0/338

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 18.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) B=135. F=135.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

MiTek 240 Stirling Crescent Bradford, ON. L3Z 4L5

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

L	7-11-3	1	14-2-13			1		20-9-0	I
Plate Offects (X V) [P:(6-3-11			I		6-6-3	I
	<u></u>								
LOADING (pst) TCLL 25.0 (Roof Snow=25.0) TCDL 12.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15	CSI. TC 0.86 BC 0.45	DEFL. Vert(LL) Vert(CT)	in 0.07 0.13	(loc) A A	l/defl n/r n/r	L/d 120 90	PLATES MT20	GRIP 197/144
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IBC2018/TPI2014	WB 0.12 Matrix-S	Horz(CT)	-0.00	G	n/a	n/a	Weight: 96 lb	FT = 20%
LUMBER- TOP CHORD 2x4 SPF N BOT CHORD 2x4 SPF N WEBS 2x4 SPF N C-L,E-J: 2x OTHERS 2x3 SPF N REACTIONS. All bearin (lb) - Max Horz Max Uplift Max Grav	o.2 o.2 *Except* (3 SPF No.2 o.2 mgs 20-9-0. B=99(LC 9) All uplift 100 lb or less at joint(s) G, All reactions 250 lb or less at joint(s) 17)	B, L, J except I=-148(LC I H except G=312(LC 17)	BRACING- TOP CHORD BOT CHORD 5)), B=374(LC 1), L=	9 S e; 9 R 6- 810(LC	tructura xcept e igid cei -0-0 oc 17), J=	al wood s nd vertic ling direc bracing: 698(LC	sheathing dire als. ctly applied or B-L.	ectly applied or 6-0-0 r 10-0-0 oc bracing,	oc purlins, Except:
FORCES. (Ib) - Max. Cor TOP CHORD F-G=-264 WEBS C-L=-626	np./Max. Ten All forces 250 (lb) or la 4/59 5/172, E-J=-602/129	ess except when shown.							
 NOTES- Wind: ASCE 7-16; Vult= Enclosed; MWFRS (env DOL=1.33 plate grip DC Truss designed for wind Gable End Details as ag TCLL: ASCE 7-16; Pf=2 Unbalanced snow loads This truss has been des non-concurrent with oth All plates are 1.5x4 MT2 Gable requires continuo Gable studs spaced at 2 This truss has been des This truss has been des * This truss is designed This truss is designed 1. No notches allowed in Minimum 1.5x4 tie plat one tie plate between e 	115mph (3-second gust) Vasd=91mp elope) gable end zone; cantilever left IL=1.33 loads in the plane of the truss only. F plicable, or consult qualified building , 5.0 psf (Lum DOL = 1.15 Plate DOL = have been considered for this design igned for greater of min roof live load er live loads. 20 unless otherwise indicated. us bottom chord bearing. 2-0-0 oc. igned for a 10.0 psf bottom chord live lesigned for a live load of 20.0psf on t iom chord and any other members. nnection (by others) of truss to bearin in accordance with the 2018 Internation overhang and 1008 from left end and es required at 2-0-0 o.c. maximum be each notch.	n; TCDL=4.2psf; BCDL= and right exposed ; end v for studs exposed to wind designer as per ANSI/TP 1.15); Is=1.0; Rough Ca of 20.0 psf or 2.00 times load nonconcurrent with ne bottom chord in all are g plate capable of withsta nal Building Code sectio 0 from right end or 12" al tween the stacking chord	5.0psf; h=30ft; Ke= vertical left and righ d (normal to the fac l 1. t B; Partially Exp.; flat roof load of 25. any other live load eas where a rectan anding 100 lb uplift n 2306.1 and refer long rake from sca ls. For edge-wise f	e1.00; Ca nt expose ce), see Ce=1.0; 0 psf or s. gle 3-6- at joint(enced s rf, which notching	at. II; E: sed; Lur Standa ; Cs=1. o overha 0 tall by (s) G, B standard never is g, provid	xp B; mber ard Indus 00; Ct=1 angs y 2-0-0 w s, L, J exe d ANSI/T larger. de at leas	itry .10 /ide cept 'PI st	PROFILESSIONA	BARCIA ASHING BARCIA SHING BERED TER
WARNING - Verify desig Design valid for use only w a truss system. Before use building design. Bracing in is always required for stabi fabrication, storage, deliver Safety Information availa	n parameters and READ NOTES ON THIS AND I ith MITek® connectors. This design is based on in the building designer must verify the applicabili dicated is to prevent buckling of individual truss ity and to prevent collapse with possible person y, erection and bracing of trusses and truss sysi- ble from Truss Plate Institute, 2670 Crain Highw	NCLUDED MITEK REFERANCE y upon parameters shown, and y of design parameters and pro web and/or chord members only al injury and property damage. ems, see ANS/TPI1 ay, Suite 203 Waldorf, MD 2066	PAGE MII-7473 rev. 6/3 is for an individual build portly incorporate this de y. Additional temporary For general guidance re <i>Quality Criteria, DSB</i> - 01	0/2020 BE ling compo- esign into and perm egarding th 89 and BC	FORE US onent, no the overa lanent bra ne CSI Build	SE. t all acing ding Comp	ponent	240 Stirling Cree Bradford, ON, L	scent 3Z 4L5

240 Stirling Crescent Bradford, ON. L3Z 4L5

	7-11-3	1	14-2-13			20-9-0	
Plate Offsets (X,Y)	7-11-3 [B:0-3-8.Edge]. [F:0-0-11.0-1-8]. [H:0-1-8.	.0-1-8]	6-3-11			6-6-3	
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL TCDL 12.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.68 BC 1.00 WB 0.55 Matrix-MS	DEFL. Vert(LL) -0 Vert(CT) -0 Horz(CT) 0 Wind(LL) 0	in (loc) l/c .31 J-M >8 .56 J-M >4 .09 G .17 J-M >9	defi L/d 306 360 139 240 n/a n/a 999 240	PLATES MT20 MT18HS Weight: 69 lb	GRIP 197/144 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 S A-D: 2 BOT CHORD 2x4 S B-1: 22 WEBS 2x4 S C-J,E	PF No.2 *Except* x4 SPF 2100F 1.8E PF No.2 *Except* 4 SPF 2100F 1.8E PF No.2 *Except* H: 2x3 SPF No.2		BRACING- TOP CHORD BOT CHORD WEBS	Structural w except end Rigid ceiling 1 Row at mi	ood sheathing dire verticals. directly applied o dpt C	ectly applied or 2-9-14 or 2-2-0 oc bracing. -H, E-G	4 oc purlins,
REACTIONS. (siz Max Max Max	e) B=0-5-8, G=Mechanical lorz B=108(LC 9) Jplift B=-146(LC 6), G=-126(LC 10) Grav B=1092(LC 17), G=1143(LC 17)						
FORCES.(lb) - MaxTOP CHORDB-CBOT CHORDB-J=WEBSC-J=	Comp./Max. Ten All forces 250 (lb) or le 4152/460, C-E=-2286/244, F-G=-265/58 -479/4074, H-J=-479/4074, G-H=-232/221 0/287, C-H=-1900/253, E-H=0/533, E-G=-	ess except when shown. 6 2313/269					
NOTES- 1) Wind: ASCE 7-16; Enclosed; MWFRS DOL=1.33 plate gri 2) TCLL: ASCE 7-16; 3) Unbalanced snow I 4) This truss has beer non-concurrent witi 5) All plates are MT2C 6) This truss has beer 7) * This truss has beer will fit between the 8) Refer to girder(s) for 9) Provide mechanic	/ult=115mph (3-second gust) Vasd=91mpl (envelope) gable end zone; cantilever left o DOL=1.33 Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = bads have been considered for this design designed for greater of min roof live load of o ther live loads. plates unless otherwise indicated. designed for a 10.0 psf bottom chord live en designed for a live load of 20.0psf on the bottom chord and any other members. r truss to truss connections.	h; TCDL=4.2psf; BCDL=5 and right exposed ; end v 1.15); Is=1.0; Rough Cat of 20.0 psf or 2.00 times f load nonconcurrent with a e bottom chord in all area	5.0psf; h=30ft; Ke=1.0 rertical left and right e t B; Partially Exp.; Ce ilat roof load of 25.0 p any other live loads. s where a rectangle 3	 i0; Cat. II; Exp E ixposed; Lumbe =1.0; Cs=1.00; isf on overhang 3-6-0 tall by 2-0- 	3; er Ct=1.10 s -0 wide	JUAN C	ARCIA ASHINGTON

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) B=146, G=126.

10) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

PRCNC20240278

240 Stirling Crescent Bradford, ON. L3Z 4L5

MiTek

Job	Truss	Truss Type	Qty	Ply	Clubhouse
					U1531728
N0652A	JM1	Jack-Open	1	1	
					Job Reference (optional)
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,		8.8	320 s Aug	30 2024 MiTek Industries, Inc. Mon Sep 16 11:43:16 2024 Page 1
ID:JK8PGhI_IZFBZzFFoAOpRZzDHFg-NSjB0kbPpQAWwV6yQJiukFdcz22?zsQ9ZuX1					RZzDHFg-NSjB0kbPpQAWwV6yQJiukFdcz22?zsQ9ZuXYIFyd3dP
	0 40 0 4 40 0				

Scale = 1:17.1

-3-8

Е

1-10-9

0-10-8

			<u>8-0-0</u> 8-0-0	
Plate Offsets (X,Y) [B	:0-5-4,Edge]			
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL TCDL 12.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.10 BC 0.32 WB 0.00 Matrix-MP	DEFL. in (loc) l/defl L/d Vert(LL) -0.04 E-H >999 360 Vert(CT) -0.08 E-H >999 240 Horz(CT) 0.00 C n/a n/a Wind(LL) 0.00 H >999 240	PLATES GRIP MT20 197/144 Weight: 12 lb FT = 20%

LUMBER-

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2

BRACING-TOP CHORD

TOP CHORDStructural wood sheathing directly applied or 1-10-9 oc purlins.BOT CHORDRigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) B=0-5-8, E=Mechanical, C=Mechanical

Max Horz B=15(LC 6) Max Uplift B=-67(LC 6)

Max Grav B=154(LC 17), E=96(LC 5), C=293(LC 5)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs
- non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) B.
- 9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

240 Stirling Crescent Bradford, ON. L3Z 4L5

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component</u> **Safety information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20001

	8-0-0		
Plate Offcots (X X) [B:0.2.0 Edge]	8-0-0		1
LOADING (psf) SPACING- 2-0-0 TCLL 25.0 Plate Grip DOL 1.15 (Roof Snow=25.0) Lumber DOL 1.15 TCDL 12.0 Rep Stress Incr YES BCLL 0.0 Code IBC2018/TPI2014 YES	CSI. DEFL. TC 0.47 Vert(LL) -0.0 BC 0.32 Vert(CT) -0.1 WB 0.00 Horz(CT) 0.0 Matrix-MP Wind(LL) 0.0	in (loc) l/defl L/d)7 D-G >999 360 15 D-G >634 240 00 B n/a n/a 02 D-G >999 240	PLATES GRIP MT20 197/144 Weight: 15 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-10-9 oc purlins.
 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) C=Mechanical, B=0-5-8, D=Mechanical

Max Horz B=25(LC 6)

Max Uplift C=-11(LC 10), B=-47(LC 6) Max Grav C=212(LC 17), B=334(LC 17), D=108(LC 5)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs
- non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) C, B.
- 9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

240 Stirling Crescent Bradford, ON. L3Z 4L5

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component</u> **Safety information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20001

			8-0-0						
Plate Offsets (X,Y) [B:	0-4-4,Edge]								
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL TCDL 12.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCodeIBC2018/TPI2014	CSI. TC 0.95 BC 0.86 WB 0.24 Matrix-MP	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.18 -0.34 0.01 0.07	(loc) E-H E-H E E-H	l/defl >529 >281 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 22 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 SPF 1 BOT CHORD 2x4 SPF 1 WEBS 2x3 SPF 1	No.2 No.2 No.2		BRACING- TOP CHORE BOT CHORE	D Si ex D R	tructura xcept e igid cei	al wood s nd vertic iling dire	sheathing dire als. ctly applied or	ectly applied or 2-7-9 or 10-0-0 oc bracing.	oc purlins,
REACTIONS. (size) Max Horz Max Uplif Max Grav	B=0-5-8, E=Mechanical B=33(LC 44) t B=-85(LC 6), E=-78(LC 6) r B=659(LC 28), E=696(LC 28)								
FORCES.(lb) - Max. CoTOP CHORDB-C=-10BOT CHORDB-E=-14WEBSC-E=-11	mp./Max. Ten All forces 250 (lb) or le 76/154 4/1041 83/172	ss except when shown.							
 NOTES- 1) Wind: ASCE 7-16; Vult: Enclosed; MWFRS (en DOL=1.33 plate grip DC 2) TCLL: ASCE 7-16; Pf=: 3) Unbalanced snow load: 4) This truss has been de: non-concurrent with ott 5) Provide adequate drain 6) This truss has been de: 7) * This truss has been de: 7) * This truss has been de: 7) * This truss has been de: 8) Refer to girder(s) for tru 9) Provide mechanical con 10) This truss is designed 1. 11) Hanger(s) or other con 60-0 on top chord. T 12) In the LOAD CASE(S) LOAD CASE(S) Standare Uniform Loads (plf) Vert: A-C=-74, 	=115mph (3-second gust) Vasd=91mph velope) gable end zone; cantilever left a DL=1.33 25.0 psf (Lum DOL = 1.15 Plate DOL = s have been considered for this design. signed for greater of min roof live load o rer live loads. age to prevent water ponding. signed for a 10.0 psf bottom chord live I esigned for a 10.0 psf bottom chord live I is to truss connections. Innection (by others) of truss to bearing I in accordance with the 2018 Internation nection device(s) shall be provided suf he design/selection of such connection is section, loads applied to the face of the d d): Lumber Increase=1.15, Plate Increase C-D=-74, E-F=-20	; TCDL=4.2psf; BCDL=5 ind right exposed ; end v 1.15); Is=1.0; Rough Ca f 20.0 psf or 2.00 times f oad nonconcurrent with bottom chord in all area blate capable of withstan hal Building Code section ficient to support concer device(s) is the respons e truss are noted as fron se=1.15	5.0psf; h=30ft; Ke vertical left and rig t B; Partially Exp.; flat roof load of 25. any other live load is where a rectang nding 100 lb uplift a n 2306.1 and refer ntrated load(s) 451 ibility of others. t (F) or back (B).	e1.00; C2 ht expos Ce=1.0; .0 psf on ls. le 3-6-0 at joint(s; renced s lb dowr	at. II; E ed; Lui ; Cs=1. a overh tall by) B, E. tandard a and 1	xp B; mber 00; Ct=1 angs 2-0-0 wi d ANSI/T 22 lb up	.10 de Pl at	JUAN G	ARCIA BARCIA BARCIA BERED IL ENGINE EDEPHOEMEE IL ENGINE EDEPHOEMEE IL ENGINE

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

PRCNC20240278

MiTek[®] 240 Stirling Crescent Bradford, ON. L3Z 4L5

Job	Truss	Truss Type	Qty	Ply	Clubhouse		
						U1531730	
N0652A	JM3	JACK-CLOSED GIRDER	1	1			
					Job Reference (optional)		
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,		8.8	20 s Aug	30 2024 MiTek Industries, Inc. Mon Sep 16 11:43:17 2024	Page 2	
		ID:JK8PGhI_IZFBZzFFoAOpRZzDHFg-reGZE3c1ZjINXfh8z1D7HS9aPSFoiGsloYH5qhyd3dO					

LOAD CASE(S) Standard Concentrated Loads (lb) Vert: C=-419(B)

> WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent touble personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	1		8-0-0	1
			8-0-0	
Plate Offsets (X,Y) [B:	0-3-12,Edge], [C:0-1-4,0-0-12]			
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL 12.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.49 BC 0.54 WB 0.25 Matrix-MP	DEFL. in (loc) l/defl L/d Vert(LL) -0.09 E-H >999 360 Vert(CT) -0.20 E-H >481 240 Horz(CT) 0.01 E n/a n/a Wind(LL) 0.04 E-H >999 240	PLATES GRIP MT20 197/144 Weight: 22 lb FT = 20%
LUMBER- TOP CHORD 2x4 SPF I BOT CHORD 2x4 SPF I WEBS 2x3 SPF I	No.2 No.2 No.2		BRACING- TOP CHORD Structural wood sheathin BOT CHORD Rigid ceiling directly appl	g directly applied or 4-8-9 oc purlins. ied or 10-0-0 oc bracing.

REACTIONS. (size) D=Mechanical, B=0-5-8, E=Mechanical Max Horz B=46(LC 6)

Max Uplift D=-30(LC 6), B=-73(LC 6), E=-20(LC 10) Max Grav D=79(LC 17), B=552(LC 17), E=375(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

(· /	
TOP CHORD	B-C=-1052/131
BOT CHORD	B-E=-149/1034
WEBS	C-E=-1078/155

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

- 4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.

8) Refer to girder(s) for truss to truss connections.

- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) D, B, E.
- 10) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

240 Stirling Crescent Bradford, ON. L3Z 4L5

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly. Additional temporary and permanent bracing building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MIS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) This truss has been designed for greater of min roof live load of 14.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs

- non-concurrent with other live loads.
- 5) All plates are 1.5x4 MT20 unless otherwise indicated.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Bearing at joint(s) H, J considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) H, J. 11) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI
- 1 12) No notches allowed in overhang and 10408 from left end and 10408 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

September 17,2024

BORESSIONAL ENGINE Ann Sept-September 17,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

240 Stirling Crescent Bradford, ON. L3Z 4L5

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **Ans/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Clubhouse	
						U1531735
N0652A	K4	COMMON GIRDER	1	2		
				–	Job Reference (optional)	
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,		8.	820 s Aug	30 2024 MiTek Industries, Inc. Mon Sep 16 11:43:20 2024	Page 2
		ID:JK8	Ghl_IZFB2	zFFoAOp	RZzDHFg-GDyis5evsehyO7Qjf9mqu5nF2fPovYZkUWVmR0	yd3dL

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: A=-1144(F) I=-1136(F) J=-1136(F) K=-1136(F) L=-1136(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component</u> Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Scale = 1:20.5

L		8-0-0				11-4-15	
		8-0-0			I	3-4-15	1
Plate Offsets (X,Y) [B:0	0-5-4,0-0-3], [F:Edge,0-3-8], [G:0-2-4,0	-2-0]					
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL TCDL 12.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCode IBC2018/TPI2014	CSI. TC 0.55 BC 0.61 WB 0.91 Matrix-MS	DEFL. Vert(LL) -0.1 Vert(CT) -0.2 Horz(CT) 0.0 Wind(LL) 0.0	in (loc) 3 G-I 6 G-I 2 F 7 G-I	I/defl L/d >999 360 >505 240 n/a n/a >999 240	PLATES MT20 Weight: 43 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 SPF N D-E: 2x6 S BOT CHORD 2x6 SPF 2 WEBS 2x3 SPF N E-F: 2x4 S REACTIONS. (size) Max Horz Max Uplift Max Grav	No.2 *Except* SPF No.2 100F 1.8E No.2 *Except* SPF No.2 F=0-3-8, B=0-5-8 B=39(LC 9) i; F=-203(LC 6), B=-91(LC 6) F=1434(LC 1), B=1160(LC 28)		BRACING- TOP CHORD BOT CHORD	Structura except e Rigid ce	al wood sheathin nd verticals. iling directly appl	ig directly applied or 2-7-12	2 oc purlins,
FORCES. (lb) - Max. Con TOP CHORD B-C=-36 BOT CHORD B-G=-39 WEBS C-G=-93	mp./Max. Ten All forces 250 (lb) or le 75/405, C-D=-2784/344, D-E=-2689/32 2/3622 0/76, D-G=-432/225, E-G=-295/2658	ss except when shown. 3, E-F=-1191/170					
 NOTES- Wind: ASCE 7-16; Vulta Enclosed; MWFRS (env DOL=1.33 plate grip DC TCLL: ASCE 7-16; Pf=2 Unbalanced snow loads This truss has been des This truss has been des * This truss is designed in Hanger(s) or other cor 8-0-0 on top chord. Th In the LOAD CASE(S) LOAD CASE(S) Standard Load + Snow (balanced Uniform Loads (plf) Vert: A-D=-74, Continued on page 2	=115mph (3-second gust) Vasd=91mpf velope) gable end zone; cantilever left a D_{L} =1.33 25.0 psf (Lum DOL = 1.15 Plate DOL = s have been considered for this design. signed for greater of min roof live load of er live loads. age to prevent water ponding. signed for a 10.0 psf bottom chord live l esigned for a 10.0 psf bottom chord live l esigned for a 10.0 psf bottom chord live l esigned for a 10.0 psf bottom chord live l accord and any other members. nnection (by others) of truss to bearing n accordance with the 2018 Internation nnection device(s) shall be provided su he design/selection of such connection section, loads applied to the face of th d J): Lumber Increase=1.15, Plate Increas D-E=-111(F=-37), B-G=-50(F=-30), F-G	a; TCDL=4.2psf; BCDL=5 and right exposed ; end v 1.15); Is=1.0; Rough Ca of 20.0 psf or 2.00 times f oad nonconcurrent with a bottom chord in all area plate capable of withstan al Building Code section ficient to support concer device(s) is the responsi e truss are noted as fron se=1.15 G=-124(F=-104)	5.0psf; h=30ft; Ke=1.00 rertical left and right exp t B; Partially Exp.; Ce= ilat roof load of 25.0 ps any other live loads. s where a rectangle 3-1 ding 100 lb uplift at joir 2306.1 and referenced trated load(s) 735 lb do bility of others. t (F) or back (B).	; Cat. II; E cosed; Lu 1.0; Cs=1. f on overh 6-0 tall by nt(s) B exc standard own and 1	Exp B; mber .00; Ct=1.10 aangs 2-0-0 wide cept (jt=lb) ANSI/TPI 1. 96 lb up at	THUAN CONTROL OF WAR	ARCIA 86 EBRED IL ENGINE Eptember 17,2024
WARNING - Verify desig Design valid for use only w a truss system. Before use building design. Bracing ir is always required for stab fabrication, storage, delive Safety Information availa	In parameters and READ NOTES ON THIS AND IN with MiTek® connectors. This design is based only e, the building designer must verify the applicabilit dicated is to prevent buckling of individual truss v litly and to prevent collapse with possible persona ry, erection and bracing of trusses and truss syst able from Truss Plate Institute, 2670 Crain Highw	ICLUDED MITEK REFERANCE v upon parameters shown, and i y of design parameters and proj veb and/or chord members only l injury and property damage. I ms, see ANSUTPI1 ay, Suite 203 Waldorf, MD 2060	PAGE MII-7473 rev. 6/30/2021 is for an individual building co perly incorporate this design i . Additional temporary and p or general guidance regardin <i>Quality Criteria, DSB-89 an</i> 11	D BEFORE U imponent, no nto the over- ermanent br ng the d BCSI Build	JSE. ot all racing ding Component	240 Stirling Cree Bradford, ON. Li	icent 32 4L5

Job	Truss	Truss Type	Qty	Ply	Clubhouse	
						U1531736
N0652A	M1	Half Hip Girder	1	1		
					Job Reference (optional)	
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,		8.8	320 s Aug 3	30 2024 MiTek Industries, Inc. Mon Sep 16 11:43:20 2024	Page 2

ID:JK8PGhI_IZFBZzFFoAOpRZzDHFg-GDyis5evsehyO7Qjf9mqu5nAwfKKvS9kUWVmR0yd3dL

LOAD CASE(S) Standard Concentrated Loads (Ib) Vert: D=-641(F)

> WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component</u> Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Scale = 1:20.7

	<u> </u>	<u> </u>				11-4-15 5-0-0						
Plate Offsets (X,Y)	B:0-4-12,Edge], [D:0-3-0,0-1-12], [G:0-1-	12,0-1-8]										
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL 12.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.52 BC 0.86 WB 0.49 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.13 -0.22 0.02 0.05	(loc) G-J G-J F G-J	l/defl >999 >607 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 34 lb	GRIP 197/144 FT = 20%			
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x3 SP E-F: 2x	BRACING- TOP CHORD Structural wood sheathing directly applied or 3-3-3 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0 oc bracing.						oc purlins,					
REACTIONS. (size Max Ho Max U Max Gi) B=0-5-8, F=0-3-8 rz B=49(LC 9) lift B=-94(LC 6), F=-67(LC 6) av B=768(LC 28), F=603(LC 28)											
FORCES.(lb) - Max.TOP CHORDB-C=-BOT CHORDB-G=-WEBSC-G=-	Comp./Max. Ten All forces 250 (lb) or le 2147/215, C-D=-1834/167 213/2103, F-G=-49/469 552/117, D-G=-109/1437, D-F=-733/107	ess except when shown.										
NOTES-	ut 115mmh (2 accord quat) \/acd_01mm		Oneful 20th Ka	1 00: 0		um Di						

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.

5) Provide adequate drainage to prevent water ponding.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) B, F.

9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

PRCNC20240278

	 	6-5-0							1	1-4-15 5-0-0	
Plate Offsets (X	(,Y) [B:0)-5-4,Edge]									
LOADING (psf) TCLL 2 (Roof Snow=25. TCDL 1 BCLL BCDL 1) 25.0 .0) 12.0 0.0 * 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC BC WB Matri:	0.55 0.90 0.82 k-MS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.15 -0.25 0.03 0.07	(loc) F-I F-I E F-I	l/defl >914 >545 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 35 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS	2x4 SPF N 2x4 SPF N 2x4 SPF N 2x4 SPF N C-F: 2x3 S	0.2 0.2 0.2 *Except* PF No.2			BRACING- TOP CHORI BOT CHORI		Structur except e Rigid ce	al wood s and vertic iling direc	sheathing dire als. ctly applied or	ectly applied or 3-4-2 r 10-0-0 oc bracing.	oc purlins,
REACTIONS.	(size) Max Horz Max Uplift Max Grav	E=0-3-8, B=0-5-8 B=60(LC 9) E=-68(LC 10), B=-93(LC 6) E=648(LC 17), B=688(LC 17)									
FORCES. (Ib) TOP CHORD BOT CHORD WEBS	- Max. Cor B-C=-198 B-F=-195 C-E=-189	np./Max. Ten All forces 250 (ll 50/191 5/1905, E-F=-195/1905 96/208) or less except w	hen shown.							

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
 - 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 - 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
 - 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) E, B.
 - 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

PRCNC20240278

2x3 SPF No.2 *Except* BOT CHORD Rigid ceiling directly applied or 5-8-15 oc bracing. WFBS D-E: 2x4 SPF No.2

REACTIONS. (size) E=8-0-0, B=8-0-0, F=8-0-0 Max Horz B=43(LC 35)

Max Uplift E=-152(LC 34), B=-244(LC 33), F=-312(LC 41) Max Grav E=243(LC 29), B=375(LC 30), F=659(LC 30)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD B-C=-1169/1151, C-D=-964/938

BOT CHORD B-E=-1055/1046 E-E=-665/655

WFBS C-F=-561/361, C-E=-760/769

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs
- non-concurrent with other live loads. 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) E=152, B=244, F=312.
- 11) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 12) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 8-0-0 for 240.0 plf.

MiTek 240 Stirling Crescent Bradford, ON. L3Z 4L5

September 17,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Scale = 1:26.8

	8-5-0						15-0-0	1		
Plate Offsets (X,Y) [B	.0-4-12,Edge], [D:0-3-0,0-1-12], [F:0-1-1	2,0-1-8], [G:0-1-12,0-1-8]					6-7-0			
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL 12.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.73 BC 0.64 WB 0.49 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.22 -0.39 0.04 0.09	(loc) G-J G-J F G-J	l/defl >802 >457 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 45 lb	GRIP 197/144 FT = 20%	
LUMBER- TOP CHORD 2x4 SPF BOT CHORD 2x4 SPF WEBS 2x3 SPF E-F: 2x4	I No.2 2100F 1.8E No.2 *Except* SPF No.2		BRACING- TOP CHORI BOT CHORI	D S e D R	structura xcept e Rigid cei	al wood s nd vertic iling direc	sheathing dire als. ctly applied o	ectly applied or 2-2-12 r 10-0-0 oc bracing.	2 oc purlins,	
REACTIONS. (size) Max Hora Max Uplii Max Grav	B=0-5-8, F=Mechanical z B=59(LC 9) it B=-115(LC 6), F=-89(LC 6) y B=971(LC 28), F=735(LC 28)									
FORCES.(lb) - Max. CoTOP CHORDB-C=-30BOT CHORDB-G=-33WEBSC-G=-93	FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD B-C=-3076/331, C-D=-2303/195 BOT CHORD B-G=-330/3015, F-G=-113/968 WEBS C-G=-930/193, D-G=-68/1436, D-F=-1150/160									
NOTES- 1) Wind: ASCE 7-16; Vult Enclosed; MWFRS (en DOL=1.33 plate grip D 2) TCLL: ASCE 7-16; Pf= 3) Unbalanced snow load 4) This truss has been de non-concurrent with ot 5) Provide adequate drair 6) This truss has been de 7) * This truss	=115mph (3-second gust) Vasd=91mph velope) gable end zone; cantilever left a OL=1.33 25.0 psf (Lum DOL = 1.15 Plate DOL = s have been considered for this design. signed for greater of min roof live load c ner live loads. hage to prevent water ponding. signed for a 10.0 psf bottom chord live l lesigned for a live load of 20.0psf on the om chord and any other members. Just to truss connections. nnection (by others) of truss to bearing	a; TCDL=4.2psf; BCDL=5. and right exposed ; end ve 1.15); Is=1.0; Rough Cat of 20.0 psf or 2.00 times fl oad nonconcurrent with a bottom chord in all areas plate capable of withstand	.0psf; h=30ft; Kea ertical left and rig B; Partially Exp.; at roof load of 25 any other live load s where a rectang ding 100 lb uplift :	=1.00; C ht expos Ce=1.0 .0 psf or ds. gle 3-6-0 at joint(s	at. II; E sed; Lui ; Cs=1. n overh tall by ;) F exc	xp B; mber 00; Ct=1 angs 2-0-0 wid ept (jt=lb	.10 de)	IUAN C	ARCIA ASHINGIO	

10) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

240 Stirling Crescent Bradford, ON. L3Z 4L5

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Clubhouse
					U1531741
N0652A	P3	Half Hip	1	1	
					Job Reference (optional)
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,		8.8	320 s Aug 3	30 2024 MiTek Industries, Inc. Mon Sep 16 11:43:23 2024 Page 1
		ID:JK8	PGhI_IZFBZ	zFFoAOpF	RZzDHFg-goeqU7ho9Z3XGa9IKHKXWjPbzsJK6qcBAUkQ2Lyd3dl
-0-10-8	7-	9-12		-	14-0-0 15-0-0
0-10-8	7-	9-12			6-2-4 1-0-0

Scale = 1:26.8

L	8-4-10			15-0-0					
1	8-4-10		I	6-7-6					
Plate Offsets (X,Y) [B	:0-5-4,Edge], [F:0-1-8,0-1-8], [G:0-1-12,	0-2-0]							
LOADING (psf) TCLL 25.0 (Roof Snow=25.0)	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.94 BC 0.78	DEFL. Vert(LL)	in (lo -0.31 0	oc) I/defl 3-J >583	L/d 360 240	PLATES GRIP MT20 197/144 MT48HS 197/144		
TCDL 12.0 BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IBC2018/TPI2014	WB 0.80 Matrix-MS	Horz(CT) Wind(LL)	0.03 0.12	F n/a F >999	n/a 240	Weight: 45 lb FT = 20%		
LUMBER- TOP CHORD 2x4 SPF BOT CHORD 2x4 SPF WEBS 2x3 SPF E-F: 2x4	No.2 2100F 1.8E No.2 *Except* SPF No.2		BRACING- TOP CHORE BOT CHORE	D Stru D Rigio	ctural wood d ceiling dire	sheathing dire	ectly applied, except end verticals. r 10-0-0 oc bracing.		
REACTIONS. (size) Max Hor Max Upli Max Gra	B=0-5-8, F=Mechanical z B=70(LC 9) ft B=-114(LC 6), F=-89(LC 6) v B=986(LC 28), F=843(LC 28)								
FORCES.(lb) - Max. CdTOP CHORDB-C=-24BOT CHORDB-G=-24WEBSC-G=-74	omp./Max. Ten All forces 250 (lb) or le 928/288, C-D=-2619/250 92/2862, F-G=-31/366 45/160, D-G=-206/2340, D-F=-993/154	ss except when shown.							
 NOTES- 1) Wind: ASCE 7-16; Vult Enclosed; MWFRS (er DOL=1.33 plate grip 02) 1) TCLL: ASCE 7-16; Pf= 3) Unbalanced snow load 4) This truss has been de non-concurrent with of 5) Provide adequate draii 6) All plates are MT20 pla 7) This truss has been de 8) * This truss has been de 8) * This truss has been de 8) * This truss has been de 9) Refer to girder(s) for tr 10) Provide mechanical of B=114. 11) This truss is designed 1. 	=115mph (3-second gust) Vasd=91mph velope) gable end zone; cantilever left a OL=1.33 25.0 psf (Lum DOL = 1.15 Plate DOL = Is have been considered for this design. signed for greater of min roof live load of her live loads. hage to prevent water ponding. Ites unless otherwise indicated. signed for a 10.0 psf bottom chord live I designed for a live load of 20.0psf on the iom chord and any other members. uss to truss connections. ionnection (by others) of truss to bearing d in accordance with the 2018 Internation	; TCDL=4.2psf; BCDL=5 and right exposed ; end vo 1.15); Is=1.0; Rough Cat if 20.0 psf or 2.00 times fl oad nonconcurrent with a bottom chord in all areas plate capable of withstar nal Building Code section	.0psf; h=30ft; Ke= ertical left and rig B; Partially Exp.; lat roof load of 25 any other live load s where a rectang nding 100 lb uplift a 2306.1 and refer	=1.00; Cat. ht exposed Ce=1.0; C: .0 psf on ov ls. le 3-6-0 tal t at joint(s) renced star	II; Exp B; ; Lumber s=1.00; Ct= ⁻ /erhangs I by 2-0-0 wi F except (jt= ndard ANSI/ ⁻	l.10 de lb)	TUAN GARCIA TO PEORESSIONAL ENGINE		

September 17,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS//TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

PRCNC20240278

nponent 240 Stirling Crescent Bradford, ON. L3Z 4L5

MiTek[®]

Scale = 1:25.9

F		8-2-8						15-0-0				
Plate Offsets ()	(V) [B·(0-5-4 Edge] [C:0-2-4 0-1	8-2-8	0_1_8]			0-9-8					
LOADING (psf TCLL 2 (Roof Snow=25 TCDL 3 BCLL 3 BCDL 3 CDL 3	f) 25.0 5.0) 12.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2018/TF	2-0-0 1.15 1.15 YES Pl2014	CSI. TC BC WB Matrix	0.84 0.69 0.61 (-MS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.24 -0.44 0.05 0.13	(loc) F-l F-l E F-l	l/defl >736 >402 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 46 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS	2x4 SPF N 2x4 SPF 2 2x4 SPF N C-F: 2x3 S	No.2 2100F 1.8E No.2 *Except* SPF No.2				BRACING- TOP CHORE BOT CHORE WEBS) S 6 0 F 1	Structura except e Rigid ce Row a	al wood s nd vertic iling direc t midpt	sheathing dire als. ctly applied or C-	ectly applied or 2-2-10 r 10-0-0 oc bracing. ·E) oc purlins,
REACTIONS.	(size) Max Horz Max Uplift Max Grav	E=Mechanical, B=0-5-8 B=78(LC 9) t E=-91(LC 10), B=-114(E=840(LC 17), B=834(L	LC 6) _C 17)									
FORCES. (Ib) TOP CHORD BOT CHORD WEBS) - Max. Con B-C=-26 B-F=-276 C-F=0/33	mp./Max. Ten All force 22/269, D-E=-263/60 6/2564, E-F=-276/2564 38, C-E=-2543/292	s 250 (lb) or le	ss except wl	hen shown.							

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) E except (jt=lb) B=114.

9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component</u> **Safety information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20001

REACTIONS. All bearings 12-3-15.

(lb) - Max Horz A=-87(LC 4)

Max Uplift All uplift 100 lb or less at joint(s) A, C, F, G, H, D Max Grav All reactions 250 lb or less at joint(s) A, C, G, H, E, D except F=322(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS B-F=-263/43

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) All plates are 1.5x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 2-0-0 oc.

- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A, C, F, G, H, D.
- 10) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 12) No notches allowed in overhang and 0 from left end and 0 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.

240 Stirling Crescent Bradford, ON. L3Z 4L5

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

- 3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A, G, F except (it=lb) J=135, H=134.
- 7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y)--[B:0-6-15.0-0-1], [B:0-1-1.2-0-7]

LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL 12.0 BCLL 0.0 *	SPACING- 1-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IBC2018/TPI2014	CSI. TC 0.71 BC 0.14 WB 0.00 Matrix-MP	DEFL. in (loc) l/defl L/d Vert(LL) -0.21 D >472 360 Vert(CT) -0.38 D >263 240 Horz(CT) 0.00 B n/a n/a Wind(LL) 0.10 D >984 240	PLATES GRIP MT20 197/144 Weight: 28 lb FT = 20%						
BCDL 10.0	Code 1002010/1112014	Matrix-IVII	Wild(EE) 0.10 D >984 240	Weight: 2010 11 = 2078						

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF 2100F 1.8E BOT CHORD 2x4 SPF No.2

REACTIONS. (size) C=Mechanical, B=0-7-0 Max Horz B=18(LC 27) Max Uplift C=-33(LC 10), B=-56(LC 6) Max Grav C=318(LC 17), B=495(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES

- 1) 2-ply truss to be connected together as follows:
- Top chords connected with 10d (0.131"x3") nails as follows: 2x4 1 row at 0-9-0 oc.
- Bottom chords connected with 10d (0.131"x3") nails as follows: 2x4 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 4) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members
- 9) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi.
- 10) Refer to girder(s) for truss to truss connections.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 33 lb uplift at joint C and 56 lb uplift at joint B.
- 12) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 64 lb down and 18 lb up at 2-8-2, 292 lb down and 37 lb up at 2-9-7, and 92 lb down at 5-5-13, and 59 lb down and 23 lb up at 5-5-13 on top chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a duss system: project a dust of the system in a syste Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

PRCNC20240278

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

September 17,2024

Job	Truss	Truss Type	Qty	Ply	Clubhouse
100501		DAFTER			U153174
N0652A	RM1	RAFIER	1	2	lab Bafaranaa (antianal)
				-	
Alliance Truss (CA).	Abbotsford, BC - V2S 7P6.			8	.810 s May 16 2024 MiTek Industries, Inc. Tue Sep 17 10:15:19 2024 Page 2
		ID:JK8PGhI_IZFBZzFFoAOpRZzDHFg-u9QdiT?qrDmeMQAPIsCobhmDx18yuFf4xTQmpgycwMs			

LOAD CASE(S) Standard

Uniform Loads (plf) Vert: A-C=-37, D-E=-10

Concentrated Loads (lb)

Vert: H=-307(B=-39) I=-73(F=-38, B=-34)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

2x4 ⋍

2x4 📚

Rigid ceiling directly applied or 10-0-0 oc bracing.

			<u>5-2-0</u> 5-2-0	
Plate Offsets (X,Y) [B:0)-2-0,Edge]			
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL 12.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2018/TPI2014	CSI. TC 0.10 BC 0.37 WB 0.00 Matrix-P	DEFL. in (loc) I/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) 0.00 C n/a n/a	PLATES GRIP MT20 197/144 Weight: 10 lb FT = 20%
LUMBER-	o 2		BRACING- TOP CHORD Structural wood sheathing di	rectly applied or 5-2-0 oc purlins

BOT CHORD

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x3 SPF No.2

REACTIONS. (size) A=5-2-0, C=5-2-0

Max Horz A=13(LC 14) Max Uplift A=-16(LC 10), C=-16(LC 11)

Max Grav A=213(LC 16), C=213(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

4) Gable requires continuous bottom chord bearing.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A, C.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

2x4 ⋍

2x4 📚

Rigid ceiling directly applied or 10-0-0 oc bracing.

			4-6-8 4-6-8	I
Plate Offsets (X,Y) [B:0)-2-0,Edge]			
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL TCDL 12.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2018/TPI2014	CSI. TC 0.07 BC 0.26 WB 0.00 Matrix-P	DEFL. in (loc) l/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) 0.00 C n/a n/a	PLATES GRIP MT20 197/144 Weight: 8 lb FT = 20%
LUMBER- TOP CHORD 2x4 SPF N	10.2		BRACING- TOP CHORD Structural wood sheathing d	irectly applied or 4-6-8 oc purlins.

BOT CHORD

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x3 SPF No.2

REACTIONS. (size) A=4-6-8, C=4-6-8

Max Horz A=11(LC 14) Max Uplift A=-13(LC 10), C=-13(LC 11)

Max Grav A=178(LC 16), C=178(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

Gable requires continuous bottom chord bearing.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A, C.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component</u> **Safety information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20001

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A, C.

7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

