

City of Puyallup Development & Permitting Services (ISSUED PERMIT Building Planning Engineering Public Works Fire Traffic

Calculations required to be provided by the Permittee on site for all Inspections

City of Puyallup Building REVIEWED FOR COMPLIANCE BSnowden 01/13/2025 11:05:24 AM

MiTek, Inc. 400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571

Re: 4319944 2nd Street Apartments

The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Builders FirstSource (Arlington, WA).

Pages or sheets covered by this seal: R85387428 thru R85387489

My license renewal date for the state of Washington is September 28, 2025.

November 18,2024

Zhao, Xiaoming

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	A01	Common	1	1	Job Reference (optional)	R85387428

November 18,2024

400 Sunrise Ave., Suite 270 Roseville, CA, 95661

916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	A02	Common	4	1	Job Reference (optional)	R85387429

This truss has been designed for a moving concentrated

load of 250.0lb live and 40.0lb dead located at all mid

panels and at all panel points along the Top Chord,

nonconcurrent with any other live loads.

 20-21=-166/161, 19-20=-56/784,
 7

 17-19=-142/96, 15-17=-326/116,
 8

 14-15=-23/386, 13-14=-32/104
 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 44 lb uplift at joint 12, 9 lb uplift at joint 13 and 14 lb uplift at joint 14.

9)

4-19=-528/142, 4-20=-25/443, 6-17=-1085/175, 8-15=0/538, 10-15=-247/122, 11-14=-341/103, 12-14=-157/59, 10-14=-652/65, 6-19=0/791, 8-17=-897/160

WEBS

NOTES

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

LOAD CASE(S) Standard

400 Sunrise Ave., Suite 270 Roseville, CA, 95661

916.755.3571 / MiTek-US.com

Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	A03	Common	1	1	Job Reference (optional)	R85387430

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Nov 15 18:24:04 ID:tsKHfi53Otvt5h0l4fN2?lyIt8K-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

PRMU20241695

Scale = 1:74

Plate Offsets (X, Y): [6:0-3-0,0-2-2]

Loading TCLL (Roof Snow = TCDL BCLL	25.0)	(psf) 25.0 7.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2021	I/TPI2014	CSI TC BC WB Matrix-SH	0.90 0.71 0.89	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.21 -0.32 0.01	(loc) 16-18 16-18 16	l/defl >999 >791 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 185/148
BCDL		10.0											Weight: 186 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 HF No 2x4 HF No 2x4 HF No Structural 1 2-2-0 oc pr Rigid ceilir bracing. 1 Row at n (size)	.2 .2 wood she urlins, ex ng directly nidpt 12=0-5-8,	athing directly applied cept end verticals. applied or 6-0-0 oc 5-16, 7-16 13=0-5-8, 16=0-7-4,	1) d or 2)	Wind: ASCE Vasd=87mph II; Exp B; End Exterior(2E) (21-6-0, Exter to 42-10-4 zc vertical left au forces & MW DOL=1.60 pl TCLL: ASCE DOL=1.15; I CS=1.00; Ct=	7-16; Vult=110mp ; TCDL=4.2psf; B closed; MWFRS (i 0-3-6 to 4-6-13, In ior(2R) 21-6-0 to : one; cantilever left nd right exposed; FRS for reactions ate grip DOL=1.6(7-16; Pf=25.0 psl s=1.0; Rough Cat ±1.10; IBC 1607.1	bh (3-sec 3CDL=6. envelope tterior (1) 25-9-7, 1 and righ C-C for n shown; 0 f (Lum D t B; Parti 1.2 minir	cond gust) Dpsf; h=35ft; and C-C 4-6-13 to terior (1) 25 tt exposed; e nembers and Lumber OL=1.15 Pla ally Exp.; Ce num roof live	Cat. -9-7 end te =1.0; e load					
	Max Horiz Max Uplift Max Grav	20=0-3-12 20=-38 (L 12=-10 (L 12=312 (L 16=2340	+ C 15) C 36), 13=-14 (LC 15 _C 38), 13=828 (LC 2 (LC 2), 20=690 (LC 3	3) 1), 4)	applied when Unbalanced s design. This truss ha chord live loa	e required. snow loads have l s been designed f ad nonconcurrent	been cor for a 10.0 with any	nsidered for t) psf bottom other live loa	his ads.					
FORCES	(lb) - Maxir	num Com	pression/Maximum	5)	* This truss h	as been designed	d for a liv	e load of 20.	0psf					
TOP CHORD	1-2=-1045/ 5-6=-3/766 9-10=0/16 11-12=-28	/103, 2-3= 5, 6-7=0/7(1, 10-11=- 9/36	1035/147, 3-5=-535, 65, 7-9=-364/175, -32/153, 1-20=-654/98	/83, 8, 6)	on the botton 3-06-00 tall b chord and an All bearings a	n chord in all area by 2-00-00 wide wi by other members, are assumed to be	is where ill fit betv , with BC e HF No.	a rectangle veen the bott DL = 10.0ps 2 crushing	om f.					
BOT CHORD	19-20=-47/ 16-18=-13 13-14=-22	/113, 18-1 2/105, 14- /378_12-1	9=-58/798, ·16=-319/107, ·3=-32/104	7)	Provide mech bearing plate	hanical connection capable of withst	n (by oth anding 1	ers) of truss 0 lb uplift at	to joint				AOMIN	G ZHA
WEBS	6-16=-721 3-18=-533 5-16=-108 10-13=-34	/95, 2-19= /154, 3-19 9/176, 7-1 1/103, 11-	327/102, 1-19=-54/9 9=-27/437, 4=0/536, 9-14=-245/ -13=-155/59,	914, 8) 123,	 4, 8) This truss has been designed for a moving concentrated load of 250.0lb live and 40.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads. 							SHINGTON		
NOTES	9-13=-638	/58, 5-18=	3/792, 7-16=-871/16	⁵² LC	OAD CASE(S)	Standard								

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

November 18,2024

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	A04	Common	1	1	Job Reference (optional)	R85387431

November 18,2024

400 Sunrise Ave., Suite 270 Roseville CA 95661

916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	A05	Common	6	1	Job Reference (optional)	R85387432

Page: 1

0	υa	- 01	 	
		~		

Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.89 0.71 0.39	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.21 -0.32 0.01	(loc) 15-17 15-17 17	l/defl >999 >794 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 189 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 HF N 2x4 HF N 2x4 HF N 2x4 HF N 2-2-0 oc Rigid ceil bracing. 1 Row at (size) Max Horiz Max Uplift Max Grav	0.2 0.2 0.2 l wood she: burlins, exi ing directly midpt 13=-56 (L 13=-56 (L 13=-56 (L 21=658 (L	athing directly applie cept end verticals. applied or 6-0-0 oc 6-17, 5-17, 7-17 17=0-7-4, 21=0-3-1 C 19) C 11), 21=-5 (LC 14 C 22), 17=2622 (LC C 21)	1) ed or 2) 4 ; 2), 3) ; 2), 4)	Wind: ASCE Vasd=87mpl II; Exp B; En Exterior(2E) 45-0-0 zone; vertical left a forces & MW DOL=1.60 pl TCLL: ASCE DOL=1.15); Cs=1.00; Ct= applied when Unbalanced design. This truss ha	7-16; Vult=110mp ;; TCDL=4.2psf; B closed; MWFRS (i 0-3-6 to 4-7-0, Intr 21-6-0 to 25-9-10, cantilever left and nd right exposed; (FRS for reactions ate grip DOL=1.6(; 7-16; Pf=25.0 psi Is=1.0; Rough Cat =1.10; IBC 1607.1 re required. snow loads have I as been designed f	bh (3-sec CDL=6. envelope erior (1) , Interior d right ex C-C for r shown; f (Lum D f (Lum D B; Parti 1.2 minir been cor for great	cond gust) Dpsf; h=35ft; e) and C-C 4-7-0 to 21-6 (1) 25-9-10 1 posed ; end nembers and Lumber OL=1.15 Pla ally Exp.; Ce num roof live nsidered for t er of min roo	Cat. i-0, to l =1.0; ∋ load his f live					
FORCES	(lb) - Max Tension 1-2=-996 5-6=-2/97 9-10=-93	imum Com /102, 2-3=- /6, 6-7=0/97 1/96, 10-11	pression/Maximum 973/140, 3-5=-469/1 76, 7-9=-447/156, =-963/66, 11-12=0/7	50, 5) 77, 6)	load of 20.0 overhangs n This truss ha chord live loa * This truss h	psf or 2.00 times f on-concurrent with is been designed f ad nonconcurrent has been designed	lat roof long the start of the	bad of 25.0 p ve loads. D psf bottom other live loa e load of 20.	esf on ads. Opsf					
BOT CHORD	20-21=-02 20-21=-4 17-19=-3 14-15=-2	7/97, 11-13 1/114, 19-2 54/101, 15- 0/720 13-1	=-770/188 0=-49/745, 17=-357/95, 4=-165/161	7)	on the bottor 3-06-00 tall t chord and ar	n chord in all area by 2-00-00 wide wi ny other members,	s where ill fit betv , with BC	a rectangle veen the bott DL = 10.0ps	om f.					a a a a
WEBS	6-17=-84 3-19=-55 5-17=-11 10-14=-3 5-19=-4/8	7/95, 2-20= 4/154, 3-20 19/176, 7-1 15/70, 11-1 309, 7-17=-	323/101, 1-20=-53/ =-16/443, 5=0/806, 9-15=-548 4=-38/873, 9-14=-9/ 1088/175	/852, 8) /141, /446, 9)	capacity of 4 Provide mec bearing plate 21 and 56 lb This truss ba	been designed to be of psi. hanical connection capable of withst uplift at joint 13.	n (by oth anding for a mo	ers) of truss b b uplift at jo	to bint rated			Y	The Orwan	SHINGTON
NOTES	5.0 10	,		S)	load of 250.0 panels and a nonconcurre DAD CASE(S)	ble live and 40.0lb that any other li Standard	dead loo along the ive loads	Top Chord,	id				PROFESSIONA	74 ERED INST LENGING

OTATE .

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	A06	Common Structural Gable	1	1	Job Reference (optional)	R85387433

Page: 1

Scale = 1:74

Plate Offsets ((X, Y): [6:0-	3-0,0-2-2],	[13:0-1-12,0-1-8],	[15:0-3-0,0	0-3-0], [17:0-3-	0,0-3-0], [25:0-3-	0,0-3-0], [2	7:0-3-0,0-3-0]	, [29:0- <i>*</i>	1-12,0-	1-8], [41:0)-1-11,	0-1-0], [54:0-1	-11,0-1-0]	
Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC20	21/TPI2014	CSI TC BC WB Matrix-SH	0.75 0.16 0.88	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 21	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 260	GRIP 185/148 Ib FT = 10?	6
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 HF Na 2x4 HF Na 2x4 HF Na 2x4 HF Na Structural 4-1-2 oc p Rigid ceili bracing. 1 Row at (size)	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	athing directly app cept end verticals. applied or 6-0-0 o 3-24, 5-21, 7-21, 9 -6, 13=42-10-6, -6, 15=42-10-6, -6, 20=42-10-6, -6, 22=42-10-6, -6, 24=42-10-6, -6, 27=42-10-6, -6, 29=42-10-6, -6 (29=42-10-6, -6 (29=42-10-6) -6 (24)	- lied or C 2-18	TOP CHORD	$\begin{array}{l} 1-2=-1374/136\\ 3-5=-1745/1736\\ 6-7=-1293/1317\\ 9-10=-1852/187\\ 1-30=-637/653\\ 27-28=-597/605\\ 24-26=-700/737\\ 22-23=-428/455\\ 20-21=-829/843\\ 18-19=-451/465\\ 15-16=-523/536\\ 13-14=-609/65\\ 1-29=-1297/137\\ 3-27=-1240/119\\ 5-24=-1168/116\\ 6-21=-382/122,\\ 7-18=-1168/112\\ 9-15=-1241/120\\ 2-29=-858/827,\\ 10-13=-864/835\\ \end{array}$	$b_{1} = 23 = -185$ $b_{2} = -174$ $b_{1} = -174$ $b_{2} = -174$ $b_{1} = -172 = -174$ $b_{2} = -174$ $b_{2} = -174$ $b_{3} = -1744$ $b_{3} = -1744$ $b_{3} = -1744$ $b_{3} = -1744$ $b_{3} = -174$	5/1830, 5/1302, 3/1733, 1382/1351, 3/786 45/657, 29/560, 53/477, 28/852, 29/443, 03/716, 95/606, 32/641 1283/1283, 354/1365, 174/1194, 5/1174, 359/1369, 160/1178, 77/1186,		 3) TC DC DC ap 4) Ur de 5) Al 6) Ga 7) Tr br. br. 6) Ga 7) Tr br. br. 6) Ga 7) Tr br. ap <l< td=""><td>CLL: ASC DL=1.15): s=1.00; C oplied whe halanced sign. I plates an able requires the aced aga able studs his truss h ord live lo This truss h ord live lo This truss the botto 06-00 tall ord and a I bearings spacity of</td><td>E 7-16 ; Is=1.0 ; Is=1.10; ere req d snow re 2x4 irres con fully sl inst late s space bad non has be bom cho by 2-0 any oth s are as 405 ps</td><td>; Pf=25.0 psf (; Rough Cat E ; IBC 1607.11. uired. Ioads have be MT20 unless of the the distance movement ad at 2-0-0 oc. en designed for noncurrent wi been designed for inconcurrent wi been designed for a dat 2-00 wide will er members, w ssumed to be h i.</td><td>Lum DOL=1.' ; Partially Ex; 2 minimum ro en considere therwise indir n chord beari nne face or se t (i.e. diagona r a 10.0 psf b th any other I or a live load where a recta fit between th vith BCDL = 1 HF No.2 crust</td><td>15 Plate p.; Ce=1.0; of live load d for this cated. ing. ccurely il web). oftom ive loads. of 20.0psf nngle ue bottom 0.0psf. ning</td></l<>	CLL: ASC DL=1.15): s=1.00; C oplied whe halanced sign. I plates an able requires the aced aga able studs his truss h ord live lo This truss h ord live lo This truss the botto 06-00 tall ord and a I bearings spacity of	E 7-16 ; Is=1.0 ; Is=1.10; ere req d snow re 2x4 irres con fully sl inst late s space bad non has be bom cho by 2-0 any oth s are as 405 ps	; Pf=25.0 psf (; Rough Cat E ; IBC 1607.11. uired. Ioads have be MT20 unless of the the distance movement ad at 2-0-0 oc. en designed for noncurrent wi been designed for inconcurrent wi been designed for a dat 2-00 wide will er members, w ssumed to be h i.	Lum DOL=1.' ; Partially Ex; 2 minimum ro en considere therwise indir n chord beari nne face or se t (i.e. diagona r a 10.0 psf b th any other I or a live load where a recta fit between th vith BCDL = 1 HF No.2 crust	15 Plate p.; Ce=1.0; of live load d for this cated. ing. ccurely il web). oftom ive loads. of 20.0psf nngle ue bottom 0.0psf. ning
FORCES	Max Uplift Max Grav (Ib) - Max Tension	12=-768 (15=-760 (21=-57 (L 27=-763 (12=827 (L 14=127 (L 16=117 (L 19=77 (LC 21=559 (L 23=77 (LC 26=117 (L 28=129 (L 30=852 (L imum Com	LC 50), 13=-416 (I LC 42), 18=-337 (I C 40), 24=-341 (LC LC 47), 29=-385 (I LC 49) LC 59), 13=655 (LC LC 5), 13=655 (LC C 5), 18=732 (LC C 22), 20=88 (LC 5 C 22), 24=734 (LC LC 5), 27=945 (LC LC 5), 27=945 (LC LC 5), 29=620 (LC LC 56) ppression/Maximum	LC 42), LC 42), C 47), LC 47), LC 47), C 33), 33), 33), 33), 33), 32), 32), 32), 32), n	NOTES I) Wind: ASC Vasd=87m II; Exp B; E Corner(3E) 21-6-0, Con to 42-10-4. vertical left forces & MI DOL=1.60 2) Truss desig only. For s see Standa or consult of	E 7-16; Vult=110 oh; TCDL=4.2psi nclosed; MWFR 0-3-6 to 4-6-13, ner(3R) 21-6-0 t zone; cantilever 1 and right expose WFRS for reactic plate grip DOL=1 ned for wind loa tuds exposed to rd Industry Gabl uualified building	mph (3-see ; BCDL=6. S (envelope Exterior(2N o 25-9-7, E eft and righ dq;C-C for r ns shown; .60 ds in the pl wind (norm e End Deta designer a:	cond gust) Opsf; h=35ft; () and C-C J) 4-6-13 to xterior(2N) 25 tt exposed ; el nembers and hembers and humber ane of the trus al to the face) ils as applicat s per ANSI/TF	Cat. -9-7 nd ss , ple, 21 1.			· · · · · · · · · · · · · · · · · · ·	PROFILESSION	NG ZHAO VASHDENO VASHDENO VASHDENO VALENOT	

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPH1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MITek-US.com

November 18,2024

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	A06	Common Structural Gable	1	1	Job Reference (optional)	R85387433

- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 800 lb uplift at joint 30, 385 lb uplift at joint 29, 768 lb uplift at joint 12, 416 lb uplift at joint 13, 763 lb uplift at joint 27, 341 lb uplift at joint 24, 57 lb uplift at joint 21, 337 lb uplift at joint 18 and 760 lb uplift at joint 15.
- 13) This truss has been designed for a moving concentrated load of 250.0lb live and 40.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.
- 14) This truss has been designed for a total drag load of 200 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 42-10-6 for 200.0 plf.

LOAD CASE(S) Standard

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Nov 15 18:24:05 ID:?RjvfO4sJm7OJ7iJKAK1nqylt73-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	A07	Common	19	1	Job Reference (optional)	R85387434

400 Sunrise Ave., Suite 270 Roseville CA 95661

916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	A08	Common Structural Gable	3	1	Job Reference (optional)	R85387435

Builders FirstSource (Arlington, WA), Arlington, WA - 98223,


```
Scale = 1:72.5
```

Plate Offsets ((X, Y): [6:0-	-3-0,0-2-2],	[13:0-1-12,0-1-8],	[15:0-3-0,	0-3-0], [17:0-3-	0,0-3-0], [25:0-3	3-0,0-3-0], [2	7:0-3-0,0-3-0], [29:0-1	-12,0-1	-8], [41:0)-1-11,	0-1-0], [54:0-1-	11,0-1-0]	
Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC20	21/TPI2014	CSI TC BC WB Matrix-SH	0.75 0.16 0.87	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 21	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 259 II	GRIP 185/148	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 HF N 2x4 HF N 2x4 HF N 2x4 HF N Structural 4-1-2 oc p Rigid ceill bracing. 1 Row at (size)	0.2 0.2 0.2 0.2 1 wood she burlins, ex ing directly midpt 12=42-8 14=42-8 16=42-8 21=42-8 23=42-8 23=42-8 26=42-8 28=	athing directly appl cept end verticals. applied or 6-0-0 or 9-18, 3-24, 5-21, 7 12, 13=42-8-12, 12, 15=42-8-12, 12, 20=42-8-12, 12, 22=42-8-12, 12, 24=42-8-12, 12, 27=42-8-12, 12, 29=42-8-12, 12, 29=42-8-1	lied or c 7-21	TOP CHORD	$\begin{array}{c} 1-2=-1374/138\\ 3-5=-1745/172\\ 6-7=-1294/131\\ 9-10=-1887/18\\ 1-30=-832/810\\ 29-30=-837/65\\ 27-28=-598/60\\ 24-26=-701/73\\ 22-23=-429/45\\ 20-21=-828/84\\ 18-19=-453/46\\ 15-16=-528/52\\ 13-14=-627/63\\ 2-29=-858/82\\ 6-21=-382/122\\ 7-18=-1167/11\\ 9-18=-1355/13\\ 3-24=-1354/13\\ 7-21=-1174/11\\ 1-29=-1297/13\\ 11-13=-1283/12\\ \end{array}$	36, 2-3=-185; 29, 5-6=-129; 17, 7-9=-174; 320, 10-11=- 0, 11-12=-82; 32, 28-29=-6; 39, 26-27=-5; 31, 23-24=-4; 30, 11-22=-8; 40, 19-20=-4; 35, 16-18=-6; 11, 14-15=-5; 37, 12-13=-6; 7, 3-27=-123; 365, 5-21=-1; 365, 5-21=-1; 17, 10-15=-1; 317, 10-15=-1;	5/1829, 4/1301, 5/1734, 1371/1340, 8/809 46/657, 29/559, 53/476, 29/852, 28/440, 99/712, 79/589, 09/616 9/1195, 7/1162, 238/1204, 855/826, 174/1193, 159/1178, 1163/1173,		 TC DC Cs ap Un de S) All Ga 7) Tr(bra B) Ga 7) Tr(bra 8) Ga 9) Th chr 10) * T on 3-0 chr 11) All cal 	LL: ASC DL=1.15); =1.00; C plied whe balanced sign. plates an ble requi uss to be acced aga ble studk is truss h ord live lo 'his truss the botto 06-00 tall ord and a bearings pacity of	E 7-16 ; Is=1.0 t=1.10; are req d snow re 2x4 inst late s space as bee bad nor has be bod nor has be that be any oth are as 405 ps	; Pf=25.0 psf (L D; Rough Cat B; IBC 1607.11.2 uired. loads have been MT20 unless of ntinuous bottom heathed from or eral movement ad at 2-0-0 oc. en designed for mooncurrent wit seen designed for d in all areas v 0-00 wide will f er members, w ssumed to be H i.	um DOL=1.15 Partially Exp. minimum roo en considered herwise indica a chord bearin he face or sec (i.e. diagonal a 10.0 psf bot n any other liv r a live load o vhere a rectan t between the th BCDL = 10 F No.2 crushii	5 Plate ; Ce=1.0; f live load for this ated. g. urely web). tom e loads. f 20.0psf gle bottom .0psf. ng
FORCES	Max Uplift Max Grav (Ib) - Max Tension	12=-794 (15=-761 (21=-57 (L 27=-763 (30=-800 (12=851 (L 14=129 (L 16=117 (L 21=559 (L 23=77 (LC 26=117 (L 28=129 (L 30=852 (L iimum Com	LC 50), 13=-380 (L LC 42), 18=-338 (L C 39), 24=-341 (LC LC 47), 29=-385 (L LC 47), 29=-385 (L C 59), 13=620 (LC LC 5), 18=733 (LC C 5), 18=733 (LC C 2), 20=88 (LC 5 C 2), 20=88 (LC 5 C 2), 24=733 (LC LC 5), 27=945 (LC LC 5), 27=945 (LC LC 5), 29=620 (LC LC 56) appression/Maximun	C 42), C 42), C 47), C 47), C 47), C 47), S 33), 33), 33), 33), 33), 33), 33), 33),	NOTES 1) Wind: ASC Vasd=87m II; Exp B; E Corner(3E) 21-6-0, Co to 42-8-10 vertical left forces & M DOL=1.60 2) Truss desig only. For s see Standa or consult of	E 7-16; Vult=11 ph; TCDL=4.2p inclosed; MWFF 0-3-6 to 4-6-10 rner(3R) 21-6-0 zone; cantileve and right expos WFRS for react plate grip DOL= gned for wind lo tuds exposed to ard Industry Gat qualified building	0mph (3-see sf; BCDL=6.1 RS (envelope 0, Exterior(2N to 25-9-4, E left and righ sed;C-C for n ions shown; e1.60 ads in the pla o wind (norm oble End Deta g designer as	cond gust) Opsf; h=35ft; 1 a) and C-C J) 4-6-10 to xterior(2N) 25 tt exposed ; e nembers and Lumber ane of the tru al to the face ils as applical s per ANSI/Tf	Cat. 5-9-4 nd ss), ble, PI 1.				THO PERSION	NG ZHAO ASH VOID 1074 TERED AL ENGIN	and the second sec

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - Verify design parameters and KEAD NO IES ON THIS AND INCLOLED MILER KETEKINGE PAGE MIL-(4/3 fev. 1/2/2/2/3 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

November 18,2024

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments
4319944	A08	Common Structural Gable	3	1	R85387435 Job Reference (optional)

- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 800 lb uplift at joint 30, 794 lb uplift at joint 12, 385 lb uplift at joint 29, 763 lb uplift at joint 27, 57 lb uplift at joint 21, 341 lb uplift at joint 24, 338 lb uplift at joint 18, 761 lb uplift at joint 15 and 380 lb uplift at joint 13.
- 13) This truss has been designed for a moving concentrated load of 250.0lb live and 40.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.
- 14) This truss has been designed for a total drag load of 200 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 42-8-12 for 200.0 plf.

LOAD CASE(S) Standard

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Nov 15 18:24:06 ID:niZdgSMYHd?Na6oOHr23QtyIstC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

City of Puyallup Development & Permitting Services ISSUED PERMIT Building Planning Engineering Public Works Fire Traffic

Page: 2

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	A09	Common	22	1	Job Reference (optional)	R85387436

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Nov 15 18:24:07 ID:bC_brVrGq0PWBtUDm4TsvdyIx7?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

PRMU20241695

- (lb) Maximum Compression/Maximum chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 5) 1-2=-982/94, 2-3=-971/137, 3-5=-459/143, on the bottom chord in all areas where a rectangle 5-6=-25/969, 6-7=-20/969, 7-9=-460/142, 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. All bearings are assumed to be HF No.2 crushing 6)
 - capacity of 405 psi. Provide mechanical connection (by others) of truss to 7)
 - bearing plate capable of withstanding 3 lb uplift at joint 20 and 9 lb uplift at joint 12. This truss has been designed for a moving concentrated
 - 8) load of 250.0lb live and 40.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads

LOAD CASE(S) Standard

WEBS

FORCES

TOP CHORD

BOT CHORD

Tension

9-10=-971/124. 10-11=-982/81.

1-20=-625/93, 11-12=-625/86

19-20=-48/112, 18-19=-53/734

16-18=-346/92, 14-16=-346/85,

13-14=-48/735, 12-13=-34/112

6-16=-843/109, 2-19=-327/102,

5-16=-1092/177, 7-14=-6/809,

7-16=-1092/176

9-14=-553/158, 10-13=-327/102,

1-19=-45/843, 3-18=-553/155, 3-19=-20/453,

11-13=-33/842, 9-13=-24/452, 5-18=-4/809,

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	A10	Common	16	1	Job Reference (optional)	R85387437

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Nov 15 18:24:07 ID:Gop_sUpp0V6L_ZzSJ2CCHByIsrK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

COLUMN . November 18,2024

> 400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

PRMU20241695

Scale = 1:72.5

Plate Offsets (X, Y): [6:0-3-0,0-2-2]

Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC202	1/TPI2014	CSI TC BC WB Matrix-SH	0.90 0.71 0.68	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.20 -0.32 0.01	(loc) 14-16 14-16 12	l/defl >999 >651 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 186 lb	GRIP 185/148 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 HF N 2x4 HF N 2x4 HF N Structural 2-2-0 oc p Rigid ceili bracing. 1 Row at (size) Max Horiz Max Uplift Max Grav (lb) - Max Tension	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	athing directly applied cept end verticals. applied or 6-0-0 oc 5-16, 7-16 4, 13=0-5-8, 16=0-7-4 20=0-3-14 20=0-3-14 C 36), 13=-1 (LC 15) C 36), 13=910 (LC 4 (LC 2), 19=909 (LC 3 .C 29) pression/Maximum	1) d or 2) i, 3)), 4)), 5)	Wind: ASCE Vasd=87mph II; Exp B; Enn Exterior(2E) 21-6-0, Exter to 42-8-10 zc vertical left a forces & MW DOL=1.60 pl TCLL: ASCE DOL=1.15); I Cs=1.00; Ct= applied wher Unbalanced design. This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an	7-16; Vult=110mp n; TCDL=4.2psf; BG closed; MWFRS (e 0-3-6 to 4-6-10, Int ior(2R) 21-6-0 to 2 nne; cantilever left i nd right exposed;C FRS for reactions ate grip DOL=1.60 7-16; Pf=25.0 psf s=1.0; Rough Cat at an log is the second for the required. snow loads have b s been designed for an onconcurrent w that been designed in chord in all areas by 2-00-00 wide will y other members	h (3-sec CDL=6.0 erior (1) 5-5-9-4, li and right c-C for n shown; (Lum D B; Partis B; Partis B; Partis a minir een cor or a 10.0 vith any for a liv s where l fit betw with BC	ond gust) Dpsf; h=35ft; and C-C 4-6-10 to hterior (1) 25 t exposed; hembers and Lumber OL=1.15 Pla ally Exp.; Ce num roof live asidered for t D psf bottom other live loa e load of 20. a rectangle veen the bott DL = 10.0ns	Cat. 5-9-4 end d tte ==1.0; e load this ads. 0psf tom						
TOP CHORD BOT CHORD WEBS NOTES	1-2=-26/1 5-6=0/490 9-10=0/16 11-12=-28 19-20=-4 16-18=-76 13-14=-26 6-16=-556 3-18=-172 5-16=-847 10-13=-34 9-13=-736	58, 2-3=0// 0), 6-7=0/49 359, 10-11=- 85/37 7/93, 18-19 6/221, 14-1 6/444, 12-1 6/444, 12-1 6/444, 12-1 2/114, 3-19 7/159, 7-14 41/104, 11- 5/79, 5-18=	168, 3-5=-465/77, 0, 7-9=-465/76, -27/158, 1-20=-285/3 I=-34/444, 6=-76/221, 3=-31/93 -341/104, 1-19=-155 I=-734/76, =0/467, 9-14=-172/1 -13=-156/58, -0/467, 7-16=-847/15	6) 8, 7) 8) /64, 17, L(7	All bearings a capacity of 4 Provide mecl bearing plate 20, 17 lb upli This truss ha load of 250.0 panels and a nonconcurrer DAD CASE(S)	are assumed to be 05 psi. hanical connection capable of withsta ft at joint 12 and 1 s been designed fo lb live and 40.01b of t all panel points a nt with any other liv Standard	HF No. (by oth anding 1 lb uplift or a mov dead loc long the ve loads	2 crushing ers) of truss 7 lb uplift at at joint 13. <i>v</i> ing concent ated at all m Top Chord,	to joint rated iid				HORESSIONA	A ENGINO	

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	A11	Common	1	1	Job Reference (optional)	R85387438

Page: 1

November 18,2024

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Builders FirstSource (Arlington, WA), Arlington, WA - 98223,


```
Scale = 1:72.9
```

Plate Offsets	Offsets (X, Y): [6:0-3-0,0-2-2], [13:0-1-12,0-1-8], [15:0-3-0,0-3-0], [17:0-3-0,0-3-0], [25:0-3-0,0-3-0], [27:0-3-0,0-3-0], [29:0-1-12,0-1-8], [41:0-1-11,0-1-0], [54:0-1-11,0-1-0]														
Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2	021/TPI2014	CSI TC BC WB Matrix-SH	0.75 0.16 0.88	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.01 0.01	(loc) 14-15 14-15 21	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 260	G 18 0 lb F	RIP 85/148 T = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 HF N 2x4 HF N 2x4 HF N 2x4 HF N Structura 4-1-2 oc Rigid ceil bracing. 1 Row at (size) Max Horiz Max Uplift	o.2 o.2 o.2 o.2 I wood she purlins, ex ing directly midpt 12=43-0-(15=43-0-(22=43-0-(26=43-0-(26=43-0-(26=43-0-(26=43-0-(26=43-0-(26=43-0-(26=43-0-(26=43-0-(26=5-7))))) 12=-770 (21=-770 (21=-770 (athing directly app cept end verticals. applied or 6-0-0 c 3-24, 5-21, 7-21, 0, 13=43-0-0, 14=- 0, 20=43-0-0, 21=- 0, 23=43-0-0, 24=- 0, 27=43-0-0, 24=- 0, 27=43-0-0, 24=- 0, 30=43-0-0 C 50) LC 50), 13=-416 (LC 42), 18=-337 (C 39), 24=-341 (L LC 47), 29=-425 (Diled or 	TOP CHORD BOT CHORD WEBS	1-2=-1376/1367 3-5=-1738/1723 6-7=-1298/1321 9-10=-1856/182 1-30=-802/779, 29-30=-638/653 27-28=-602/615 24-26=-695/726 22-23=-420/444 40-21=-839/852 18-19=-445/459 15-16=-521/534 13-14=-609/60 1-29=-1288/130 3-27=-1244/120 5-24=-1171/116 6-21=-382/124, 7-18=-1168/113 9-15=-1242/120 10-15=-1178/11 10-13==865/836	, 2-3=-184 , 5-6=-129 , 7-9=-174 0, 10-11=- 11-12=-80 , 28-29=-6 , 26-27=-5 , 23-24=-4 , 16-18=-7 , 14-15=-5 , 12-13=-6 5, 11-13=- 0, 3-24=-1 6, 5-21=-1 7-21=-117 7, 9-18=-1 8, 2-27=-1 87, 2-29=-	3/1817, 0/1298, 8/1738, 1385/1353, 5/787 44/657, 38/569, 63/488, 21/845, 37/451, 09/723, 98/609, 34/643 1285/1285, 360/1371, 178/1198, 5/1173, 360/1370, 175/1193, 868/837,		 TC DC Cs app Un designed Tr bra Tribra Tribra Thibra Cho Thibra Thibr	LL: ASC DL=1.15); =1.00; C Jiled whe balanced sign. plates an sto be ced aga ble studs the studs the struss the botto of and a bearings bacity of	E 7-16 ; Is=1.1 t=1.10 ere req d snow re 2x4 fully si inst lat s space baad no has be om choo by 2-0 any oth s are a: 405 ps	; Pf=25.0 psf ; Rough Cat ; IBC 1607.1 uired. loads have t MT20 unless heathed from eral moveme eral moveme ed at 2-0-0 or an designed fn nconcurrent to een designed rd in all area: 0-00 wide wi ter members, ssumed to be si.	(Lum D B; Parti 1.2 minin been col otherwi one fac nt (i.e. c 2 or a 10. with any l for a liv s where ll fit bett with BC HF No	DOL=1.15 Plate ially Exp.; Ce=1.0; mum roof live load nsidered for this ise indicated. ce or securely diagonal web). 0 psf bottom v other live loads. ve load of 20.0psf a rectangle ween the bottom CDL = 10.0psf. .2 crushing
FORCES	Max Grav (Ib) - Max Tension	30=-768 (12=829 (l 14=127 (L 16=117 (L 21=559 (l 23=77 (L 26=117 (l 28=127 (l 30=822 (l timum Corr	LC 49) LC 59), 13=656 (L) LC 5), 15=945 (LC LC 5), 18=733 (LC C 22), 20=88 (LC 4 LC 1), 22=88 (LC 4 C 2), 24=734 (LC LC 5), 27=946 (LC LC 5), 29=658 (LC LC 60) hpression/Maximum	C 33), 33), 33), 5), 5), 32), 32), 32), 32),	 Vasd=87m II; Exp B; E Corner(3R 42-10-4 zo vertical left forces & M DOL=1.60 2) Truss desii only. For s see Stands or consult of 	ph; TCDL=4.2psf Enclosed; MWFRS 0.1-12 to 4-5-6, 0.21-6-0 to 25-9-1 ne; cantilever left and right expose WFRS for reactio plate grip DOL=1 gned for wind load studs exposed to and Industry Gable qualified building of the state of the state of the state of the state of the state of the state state of the state of the state of the state state of the state of the state of the state state of the state of the state of the state state of the state of the state of the state state of the state of the state of the state state of the state of the state of the state state of the state of the state of the state state of the state of the state of the state state of the state of the state of the state of the state state of the state of the state of the state of the state state of the state of the state of the state of the state state of the state of the state of the state of the state state of the state of the state of the state of the state state of the state of the state of the state of the state of the state state of the state of the stat	() SCDL=6. (envelope Exterior(2) 0, Exterior and right e d;C-C for r ns shown; .60 ds in the pl wind (norm e End Deta designer a	Opsf; h=35ft; e) and C-C y) 4-5-6 to 21 (2N) 25-9-10 exposed ; end nembers and Lumber ane of the tru al to the face ils as applica s per ANSI/T	Cat. -6-0, to d ss s), bble, PI 1.			· · · · · · · · · · · · · · · · · · ·	PROPESSIO	ING WASH 54074 ISTEB	EN GINU

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	A11	Common	1	1	Job Reference (optional)	R85387438

- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 768 lb uplift at joint 30, 425 lb uplift at joint 29, 770 lb uplift at joint 12, 416 lb uplift at joint 13, 763 lb uplift at joint 27, 341 lb uplift at joint 24, 57 lb uplift at joint 21, 337 lb uplift at joint 18 and 760 lb uplift at joint 15.
- 12) This truss has been designed for a moving concentrated load of 250.0lb live and 40.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.
- 13) This truss has been designed for a total drag load of 200 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 42-10-6 for 200.6 plf.

LOAD CASE(S) Standard

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Nov 15 18:24:07 ID:xpon3j0z9Q2WpXuR_GTtfZyIsoU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	A12	California Girder	1	2	Job Reference (optional)	R85387439
Builders FirstSource (Arlington, V	VA), Arlington, WA - 98223.	Run: 8.63 S Sep 26 2	2024 Print: 8.	630 S Sep 2	6 2024 MiTek Industries, Inc. Fri Nov 15 18:24:08	Page: 1

Scale = 1:80.2

Plate Offsets ((X, Y): [2:0-10-5	,Edge], [15:0-	-10-5,Edge], [1	17:0-4-0,0	-3-12], [19:0-4	-0,0-4-12], [21:0-4-0	0,0-4-1	2], [23:0-4-0,0)-3-12]						
Loading TCLL (Roof Snow = TCDL BCLL	(p 25.0)	sf) Spaci 5.0 Plate Lumbo 7.0 Rep S 0.0* Code	ing Grip DOL er DOL Stress Incr	2-0-0 1.15 1.15 NO IBC2021	/TPI2014	CSI TC BC WB Matrix-SH	0.80 0.89 0.76	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.17 -0.23 0.04	(loc) 21-23 21-23 15	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 185/148	
BCDL	10	0.0											Weight: 503 lb	FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD	2x4 DF 1800F DF No.2 2x6 DF No.2 2x4 HF No.2 Left 2x8 DF SS 2-0-9 Structural woo 5-10-1 oc purlin 2-0-0 oc purlin	1.6E *Except 5 2-0-9, Rig d sheathing d ns, except s (6-0-0 max.	t* 5-8,8-12:2xt ht 2x8 DF SS directly applied .): 5-12.	NC 5 1) 1 or 2)	2-ply truss to (0.131"x3") n Top chords c oc, 2x6 - 2 ro Bottom choro staggered at Web connect All loads are except if note CASE(S) sec	be connected toge ails as follows: onnected as follows ws staggered at 0- ls connected as foll 0-9-0 oc. ed as follows: 2x4 - considered equally ed as front (F) or ba tion. Ply to ply con-	ether wi s: 2x4 - 9-0 oc. lows: 2 - 1 row applied ick (B) nection	th 10d 1 row at 0-9- x6 - 2 rows at 0-9-0 oc. d to all plies, face in the LC s have been c (C) ar (D)	0 DAD	 12) Pro bea 2, 2 13) This load pan non 14) Gra or ti botti 	vide med ring plat 5 lb uplif s truss ha d of 250. els and a concurre phical pu ne orient com chor	chanica e capa it at joi as bee Olb live at all p ent with urlin re ation o d.	al connection (by ble of withstandii nt 20 and 63 lb u in designed for a a and 40.0lb deac anel points along in any other live lo presentation doe of the purlin along	others) of truss i 19 62 lb uplift at j 10 ff at joint 15. moving concentri 1 located at all m 1 the Top Chord, 1 ads. 5 not depict the s 1 the top and/or	to joint rated id size
BOT CHORD	Rigid ceiling di bracing.	rectly applied	1 or 6-0-0 oc		unless otherv	vise indicated.	noteu	as (i) oi (b),							
REACTIONS	(size) 2=0 0-7- Max Horiz 2=22 Max Uplift 2=-6 20=- Max Grav 2=22 20=1	-5-8, 15=0-5-{ 13) 2 (LC 14) 32 (LC 6), 15= -25 (LC 6) 281 (LC 33), - 9471 (LC 30)	8, 20=0-7-4, (1 =-63 (LC 7), 15=2281 (LC 5	req. 3) 35), 4)	Wind: ASCE Vasd=87mph II; Exp B; End and right exp Lumber DOL TCLL: ASCE DOL=1.15); I	7-16; Vult=110mph ; TCDL=4.2psf; BC closed; MWFRS (er osed ; end vertical =1.60 plate grip DC 7-16; Pf=25.0 psf (s=1.0; Rough Cat E	n (3-sec DL=6.0 nvelope left and DL=1.60 (Lum D 3; Partia	cond gust) Dpsf; h=35ft; (contilever l d right expose OL=1.15 Plat ally Exp.; Ce=	Cat. eft d; e =1.0;						
FORCES	(lb) - Maximum Tension	Compressio	on/Maximum	5)	applied wher	e required.	.2 minir		ioad						
TOP CHORD	1-2=-13/0, 2-4: 5-6=-3809/119 7-9=-160/5713 10-11=-2384/6 12-13=-3990/1 15-16=-13/0	=-3653/99, 4- , 6-7=-2384/5 , 9-10=-160/5 5, 11-12=-38 17, 13-15=-3	5=-3990/114, 59, 5713, 09/121, 653/102,	5) 6) 7)	design. This truss ha load of 20.0 p overhangs no Provide adeo	s been designed fo osf or 2.00 times fla on-concurrent with o uate drainage to pi	een cor or greate it roof lo other liv revent v	er of min roof bad of 25.0 ps /e loads. water ponding	live sf on J.			نو	THAOMIN THAOMIN SECTION	3 ZHAO	
BOT CHORD	2-23=-64/3147 20-21=-767/62 17-19=-62/318	, 21-23=-71/3 , 19-20=-767 7, 15-17=-53	3187, 7/51, 5/3147	8) 9)	* This truss ha	as been designed to as been designed for a chord in all areas	ith any for a liv	other live load e load of 20.0	ds.)psf				Ø		
NEBS	4-23=-20/1009 9-20=-534/55, 12-17=0/790, 1 6-23=-29/1128 7-21=-80/4404 11-19=-1240/8	, 5-23=0/790, 10-20=-6217, 13-17=-20/100 , 6-21=-1240, , 10-19=-79/4 3, 11-17=-26,	, 7-20=-6217/2 /200, 09, /85, 4404, /1128	202, 10) 11)	3-06-00 tall b chord and an) WARNING: F than input be) All bearings a capacity of 4	y 2-00-00 wide will y other members. Required bearing siz aring size. are assumed to be 1 05 psi.	fit betw ze at jo HF No.	int(s) 20 grea	om ter				REGIST	74 ERED LENGINE	E

November 18,2024

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	A12	California Girder	1	2	Job Reference (optional)	R85387439

15) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 99 lb down and 50 lb up at 7-11-12, and 99 lb down and 50 lb up at 35-0-4 on top chord, and 94 lb down at 2-0-12, 95 lb down at 4-0-12, 579 lb down and 55 lb up at 6-0-12, 418 lb down and 14 lb up at 8-0-12, 752 lb down and 36 lb up at 10-0-12, 671 lb down and 31 lb up at 12-0-12, 593 lb down and 25 lb up at 14-0-12, 538 lb down and 19 lb up at 16-0-12, 530 lb down and 12 lb up at 18-0-12, 530 lb down at 20-0-12, 530 lb down at 22-11-4, 530 lb down and 12 lb up at 24-11-4, 538 lb down and 19 lb up at 26-11-4, 593 lb down and 25 lb up at 28-11-4, 671 lb down and 31 lb up at 30-11-4, 752 lb down and 36 lb up at 32-11-4, 418 lb down and 14 lb up at 34-11-4, 579 lb down and 55 lb up at 36-11-4, and 95 lb down at 38-11-4, and 94 lb down at 40-11-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft) Vert: 1-5=-64, 5-12=-64, 12-16=-64, 2-15=-20

Concentrated Loads (lb) Vert: 21=-593 (B), 19=-593 (B), 36=-88 (B), 37=-47 (B), 38=-579 (B), 39=-418 (B), 40=-752 (B), 41=-671 (B), 42=-538 (B), 43=-530 (B), 44=-530 (B), 45=-530 (B), 46=-530 (B), 47=-538 (B), 48=-671 (B), 49=-752 (B), 50=-418 (B), 51=-579 (B), 52=-47 (B), 53=-88 (B) Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Nov 15 18:24:08 ID:eX4BlbJ2kKbVcpFl?Z4OvgyItZ9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

PRMU20241695									
City of P Development & Pe ISSUED	Puyallup ermitting Services PERMIT								
Building	Planning								
Engineering	Public Works								
Fire	Traffic								

Page: 2

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	A13	California	1	1	Job Reference (optional)	R85387440

Scale = 1:80.3

Plate Offsets	[2:0-2-8,0-1-12 (X, Y): [21:0-2-12,0-1-], [4:0-4-0,0-1-8], [7:0- 8]	4-0,0-1-8	8], [9:0-4-0,0-1-	8], [11:0-2-8,0-1-	12], [13:0)-2-12,0-1-8],	[16:0-2	8,0-1-12	:], [17:0-	2-4,0-1	-0], [18:0-2-0,	0-1-12],	
Loading TCLL (Roof Snow = TCDL BCLL BCDL	(psf) 25.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2021	I/TPI2014	CSI TC BC WB Matrix-SH	0.84 0.63 0.66	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.21 -0.42 0.03	(loc) 13-14 13-14 13	l/defl >999 >604 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 185	GRIP 185/148 Ib FT = 10%	
LUMBER TOP CHORE BOT CHORE BOT CHORE BOT CHORE REACTIONS FORCES TOP CHORE BOT CHORE BOT CHORE WEBS	 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural wood she 2-6-7 oc purlins, ex 2-0-0 oc purlins (4-4 Rigid ceiling directly bracing. (size) 13=0-5-8, Max Horiz 21=13 (LC Max Uplift 13=-66 (L 21=-65 (L Max Grav 13=1119 21=1119 (lb) - Maximum Com Tension 1-2=0/77, 2-3=-272/ 4-5=-527/124, 5-7=-8-9=-525/111, 9-10=10-11=-272/108, 11: 11-13=-369/121 20-21=-173/1154, 11: 17-18=-876/197, 16: 14-16=-46/902, 13-1 20-2348/175, 4-22 5-18=-567/148, 9-16: 10-14=-348/172, 3-2: 10-13=-1385/288 	athing directly applied cept end verticals, and -14 max.): 4-9. applied or 5-10-10 oc 17=0-7-4, 21=0-5-8 C 102) C 11), 17=-142 (LC 10 C 10) (LC 39), 17=2397 (LC (LC 37) pression/Maximum 108, 3-4=-1044/150, 527/124, 7-8=-525/11 -1044/155, -12=0/77, 2-21=-369/1 3-20=-55/902, 17=-876/197, 4=-151/1154 !=0/324, 4-18=-682/85 !=-216/1621, 6=-222/1621, :=-682/79, 9-14=0/324 t1=-1385/282,	1) or 2) (34), 3) 4) 1, 5) (6) 21, 7) 5, 8) 9) 4, 10	Wind: ASCE Vasd=87mph II; Exp B; End Exterior(2E) · 9-6-12, Exter 15-7-12 to 33 Interior (1) 39 right exposed for members Lumber DOL TCLL: ASCE DOL=1.15); I Cs=1.00; Ct= applied wher Unbalanced : design. This truss ha load of 20.0 p overhangs no Provide aded This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and an All bearings a capacity of 44 Provide med bearing plate joint 17, 65 la 0 an onconcurrent	7-16; Vult=110m n; TCDL=4.2psf; E closed; MWFRS (-2-0-0 to 2-3-10, (-3-4, Exterior(2R 9-5-11 to 45-0-0 z d; end vertical lef and forces & MW =1.60 plate grip [7-16; Pf=25.0 ps s=1.0; Rough Ca =1.10; IBC 1607.1 e required. snow loads have s been designed dosf or 2.00 times s been designed do nonconcurrent wit juate drainage to s been designed do nonconcurrent wit juate drainage to s been designed do nonconcurrent as been designed to b psi. hanical connection capable of withs o uplift at joint 21 s been designed lb live and 40.0lb t all panel points nt with any other	ph (3-sec 3CDL=6.0 (envelope interior (1 15-7-12,) 33-5-4 + cone; can t and righ /FRS for DOL=1.66 ff (Lum D t B; Partii 1.2 minir been cor for great flat roof k h other lix prevent v for a liv as where with any d for a liv as where e HF No. n (by oth tanding 1 and 66 lb for a mov dead loc along the live loads	cond gust) Dpsf; h=35ft; (a) and C-C) 2-3-10 to Interior (1) to 39-5-11, tilever left and t exposed;C- reactions sho D OL=1.15 Plat ally Exp.; Ce= mum roof live nsidered for th er of min roof pad of 25.0 py ve loads. water ponding D psf bottom other live loa e load of 20.0.0 a rectangle veen the botto 2 crushing ers) of truss t 42 lb uplift at joint ving concentri- vated at all mi Top Chord, 3.	Cat. d -C -C -D 	 11) Gra or ti bott 12) Har prov lb d up a lb d up a lb d up a lb d 10 d up a lb d 11 Det 11 d up a lb d 12 d up a lb d 13 d up a lb d 14 d up a lb d 15 d up a lb d 16 d up a lb d 16 d up a lb d 17 d up a lb d 18 d up a lb d 19 d up a lb d 10 d up a lb d 10 d up a lb d 10 d up a lb d 11 d up a lb d 12 d up a lb d 12 d up a lb d 13 d up a lb d 14 d up a lb d<!--</td--><td>phical p he orient om chor iger(s) o vided su own and at 12-0- own and at 12-0- own and p at 30- 0-4 on to nection CASE(S) ead + Sn crease= iiform Lo Vert: 1-2 11-12=-</td><td>urlin re tation of d. r otheu fficienti 12, 40 178 lb 12, 38 173 lb 14, 38 173 lb 11-4, 4 100 (ba 1.15 00 (ba 1.15 00 (ba 1.15 00 (ba 1.15 00 (ba 1.15 00 (ba 1.15 00 (ba 1.15 00 (ba 1.15) 00 (b) 00 (b) 00</td><td>presentation of the purlin all connection d to support co to up at 9-11-1 lb down and 7 up at 16-0-12 lb down and 7 up at 28-11-4 lb down and 7 up at 28-11-4 nd 108 lb dow d. The design (s) is the resp hadrd lanced): Lum offt) 2-4=-64, 4-9=-21=-20</td><td>loes not depict the size ong the top and/or avice(s) shall be ncentrated load(s) 108 2, 38 lb down and 65 lb '3 lb up at 14-0-12, 38 , 38 lb down and 83 lb '8 lb up at 20-0-12, 38 yight be up at 20-0-12, 38 yight be up at 20-0-12, 38 lb up at 20-0-12, 38 lb up at 20-0-12, 38 yight be up at 20-11-4, 40 , and 38 lb down and 63 vin and 221 lb up at viselection of such onsibility of others. Der Increase=1.15, Plate -64, 9-11=-64,</td><td>) 5 e</td>	phical p he orient om chor iger(s) o vided su own and at 12-0- own and at 12-0- own and p at 30- 0-4 on to nection CASE(S) ead + Sn crease= iiform Lo Vert: 1-2 11-12=-	urlin re tation of d. r otheu fficienti 12, 40 178 lb 12, 38 173 lb 14, 38 173 lb 11-4, 4 100 (ba 1.15 00 (ba 1.15 00 (ba 1.15 00 (ba 1.15 00 (ba 1.15 00 (ba 1.15 00 (ba 1.15 00 (ba 1.15) 00 (b) 00	presentation of the purlin all connection d to support co to up at 9-11-1 lb down and 7 up at 16-0-12 lb down and 7 up at 28-11-4 lb down and 7 up at 28-11-4 nd 108 lb dow d. The design (s) is the resp hadrd lanced): Lum offt) 2-4=-64, 4-9=-21=-20	loes not depict the size ong the top and/or avice(s) shall be ncentrated load(s) 108 2, 38 lb down and 65 lb '3 lb up at 14-0-12, 38 , 38 lb down and 83 lb '8 lb up at 20-0-12, 38 yight be up at 20-0-12, 38 yight be up at 20-0-12, 38 lb up at 20-0-12, 38 lb up at 20-0-12, 38 yight be up at 20-11-4, 40 , and 38 lb down and 63 vin and 221 lb up at viselection of such onsibility of others. Der Increase=1.15, Plate -64, 9-11=-64,) 5 e

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

1 November 18,2024

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	A14	California	1	1	Job Reference (optional)	R85387441

Scale = 1:80.4

Plate Offsets ([2:0-3-0,0- (X, Y): [21:0-2-0,0	-1-12], [4: 0-0-8]	:0-4-0,0-1-8], [5:0)-1-12,0-1	-8], [6:0-1-12,0	-1-8], [7:0-4-0,0-1	-8], [9:0-	3-0,0-1-12], [[·]	11:0-2-0),0-1-0], [[15:0-1-1	12,0-1-	8], [17:0-1-12,)-1-8],	
Loading TCLL (Roof Snow = TCDL BCLL BCDL	(ps 25 25.0) 7 0 10	sf) Sp 1.0 Pla 1.0 Re 1.0* Co 1.0	pacing ate Grip DOL Imber DOL sp Stress Incr ode	2-0-0 1.15 1.15 YES IBC202	1/TPI2014	CSI TC BC WB Matrix-SH	0.86 0.34 0.81	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.11 0.02	(loc) 19-20 12-13 11	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 193	GRIP 185/148 lb FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 HF No.2 *E 1.6E 2x4 HF No.2 2x4 HF No.2 Structural wood 4-2-2 oc purlins 2-0-0 oc purlins Rigid ceiling dir bracing. (size) 11=0 Max Uplift 11=- Max Uplift 11=- 21=- Max Grav 11=1	xcept* 4- d sheathin s, except s (6-0-0 m ectly appl -5-8, 16= 18 (LC 19 52 (LC 11 51 (LC 10 134 (LC 3)	7:2x4 DF 1800F ng directly applied end verticals, an nax.): 4-7. lied or 6-0-0 oc :0-7-4, 21=0-5-8 3) 1), 16=-7 (LC 10) 2) 39), 16=2795 (LC 20)	1) d or id 2) , 3) C 35), 4)	Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=6.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -2-0-0 to 2-3-10, Interior (1) 2-3-10 to 11-6-12, Exterior(2R) 11-6-12 to 17-7-12, Interior (1) 17-7-12 to 31-5-4, Exterior(2R) 31-5-4 to 37-3-13, Interior (1) 37-3-13 to 45-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required. Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on					12) Gra or th bott 13) Har prov lb d lb u 122 lb u 122 68 l 28- cho (s) i LOAD (1) De	phical p he orient tom chorn nger(s) o vided su own and p at 14- 1 b dowr b up at 20- 1 b dowr b up at 11-4, an rd. The is the res CASE(S) ead + Sr prease=	urlin re tation o d. or other fficient J 94 lb 0-12, f a and 6 0-12, 8 a and 6 26-11- d 104 l desigr sponsil) Star ow (ba 1,15	presentation of of the purlin alor to support cor up at 11-11-1 132 lb down and 88 lb up at 18- 88 lb down and 98 lb up at 24- 4, and 125 lb of b down and 94 n/selection of s bility of others. ndard alanced): Lumb	oes not depict ft ing the top and/c vice(s) shall be icentrated load(s 2, 125 lb down a d 68 lb up at 16 D-12, 88 lb down f 68 lb up at 22 J1-4, 132 lb down d 64 lb u bown and 64 lb u t lb up at 31-0-4 uch connection of ber Increase=1.1	 is) 104 ind 64 ind 64 ind 68 i11-4, in and ip at i on top device 5, Plate
FORCES	(lb) - Maximum	Compres	ssion/Maximum	_`	load of 20.0 p	osf or 2.00 times f on-concurrent with	lat roof lo	bad of 25.0 ps /e loads.	sf on	Uniform Loads (lb/ft) Vert: 1-2=-64, 2-4=-64, 4-7=-64, 7-9=-64, 9-10=-64					
TOP CHORD	1-2=0/77, 2-3=- 4-5=-124/132, 5 7-8=-831/119, 8 2-21=-1078/218	-1413/136 5-6=-65/13 3-9=-1413 3, 9-11=-1	6, 3-4=-831/112, 395, 6-7=-124/13 3/143, 9-10=0/77 1078/215	5) 6) 31, 7) ,	All plates are This truss ha chord live loa	Juate drainage to 3x4 MT20 unless s been designed ad nonconcurrent	prevent v s otherwis for a 10.0 with any	water ponding se indicated.) psf bottom other live load	j. ds.	Co	11-21=- oncentra	20 ted Lo	ads (lb)	NG	
BOT CHORD	20-21=-147/265 17-19=0/702, 1 15-16=-639/122 12-13=-61/1262	5, 19-20=- 6-17=-639 2, 13-15=0 2, 11-12=-	-82/1262, 9/111, 0/702, -147/265	o) 9)	on the botton 3-06-00 tall b chord and an	n chord in all area y 2-00-00 wide w y other members	ill fit betw	a rectangle veen the botto	om			ż	TIAONIA Steer	VASH NGT	e e
WEBS NOTES	3-20=-83/159, 3 4-17=-977/126, 5-16=-1533/192 6-15=-37/984, 7 8-13=-616/109, 2-20=-86/1194,	8-19=-616 5-17=-41 2, 6-16=-1 7-15=-977 8-12=-83 9-12=-83	6/111, 4-19=0/36 1/983, 1533/196, 7/121, 7-13=0/36 3/159, 3/1194	9, ³⁾ 10 9, 11	 capacity of 44 Provide mech bearing plate 21, 7 lb uplift This truss ha load of 250.0 panels and a nonconcurrent 	of psi. nanical connectio capable of withsi at joint 16 and 52 s been designed lb live and 40.0lb t all panel points nt with any other I	n (by othe anding 5 2 lb uplift for a mov dead loc along the ive loads	ers) of truss t i1 lb uplift at ju at joint 11. ving concentra ated at all mine Top Chord, i.	o oint ated d				RROFFISSION	1074 STERED TAL ENGINE	A A

...... November 18,2024

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	A14	California	1	1	Job Reference (optional)	R85387441

Vert: 25=-5, 26=-59, 28=-62, 30=-52, 31=-18, 34=-18, 35=-52, 37=-62, 39=-59, 40=-5

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Nov 15 18:24:10 ID:ykaX37dvVvho3eQrNPv1O2yltPj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	A15	California	1	1	Job Reference (optional)	R85387442

Scale = 1:80.6

Plate Offsets ((X, Y): [2:0-3-0,0-0-8],	[11:0-3-0,0-0-8], [15	:0-3-8,0-3-	·0], [17:0-3-8,0	-3-0]									
Loading TCLL (Roof Snow = TCDL BCLL BCDL	(psf) 25.0 25.0) 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2021	I/TPI2014	CSI TC BC WB Matrix-SH	0.80 0.42 0.92	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.12 0.03	(loc) 14-15 14-15 13	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 192 lb	GRIP 185/148 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 *Excep Structural wood shee 4-2-15 oc purlins, e: 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (size) 13=0-5-8, Max Horiz 19=23 (LC Max Uplift 13=-53 (LL Max Grav 13=1074 (35), 19=11	t* 16-6,16-7:2x4 DF athing directly applie xcept end verticals, a -0 max.): 5-8. applied or 6-0-0 oc 16=0-7-4, 19=0-5-8 C 18) C 11), 19=-51 (LC 10 (LC 39), 16=2976 (LC 074 (LC 37)	1) No.2 d or and 2) 0) C 3)	Wind: ASCE Vasd=87mpl II; Exp B; En Exterior(2E) 29-5-4, Exter to 45-0-0 zor vertical left a forces & MW DOL=1.60 pl TCLL: ASCE DOL=1.15); Cs=1.00; Ct= applied when Unbalanced	ond gust) Dpsf; h=35ft; C) and C-C 2-3-7 to 13-6 r (1) 19-7-12 t hterior (1) 35- exposed ; enc nembers and Lumber OL=1.15 Plate ally Exp.; Ce= num roof live l sidered for th	Cat. -12, to 6-4 d d :1.0; load	12) Har prov lb d lb u 134 68 l 24- 172 des resp LOAD (1) De Inc	nger(s) o vided sui own and p at 16- lb down b up at lb down ign/selec consibilit CASE(S) ad + Sn crease=1 iform Lc Vert: 1-2	r other fficient 94 b 0-12, 1 and 6 22-11- d 125 1 and 9 ction of y of oth y of oth y of oth b 1.15 ads (ll $2=-64,$	connection devi to support conce up at 13-11-12, 132 lb down and 8 lb up at 20-0 4, 132 lb down a b down and 64 lt 4 lb up at 29-0-4 f such connection hers. ndard alanced): Lumber b/ft) 2-5=-64, 5-8=-64	ce(s) shall be intrated load(s) 125 lb down an 68 lb up at 18-1 2, 134 lb down nd 68 lb up at 0 up at 26-11-4 on top chord. 1 device(s) is th Increase=1.15 4, 8-11=-64,	172 d 64 0-12, and , and The e		
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=0/77, 2-3=-144// 4-5=-616/95, 5-6=-57 7-8=-513/120, 8-9=-(9-10=-1338/120, 10- 11-12=0/77, 2-19=-3 18-19=-93/1089, 16- 14-16=-495/1134, 12 5-17=-317/76, 6-17= 6-16=-1616/202, 7-1 7-15=-78/1233, 8-15 3-19=-1440/167, 10- 3-18=-114/246, 4-18 9-15=-760/143, 9-14	pression/Maximum 128, 3-4=-1338/111, 13/108, 6-7=-46/129, 616/105, 11=-144/128, 136/117, 11-13=-336/ 18=-495/1134, 3-14=-72/1089 -84/1233, 6=-1616/207, i=-317/77, 13=-1440/163, i=0/255, 4-17=-760/1 =0/255, 10-14=-114/	4) 4, 5) 6) /117 7) 8) 9) 45, /246	This truss ha load of 20.0 overhangs n Provide adee This truss ha chord live loa * This truss ha chord of live loa * This truss ha chord and ar All bearings i capacity of 4 Provide mec bearing plate 19 and 53 lb	design. This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads. Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. All bearings are assumed to be HF No.2 crushing capacity of 405 psi. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 51 by uplift at joint									
NOTES	, o		10 11	 and 33 lb This truss has load of 250.0 panels and a nonconcurre Graphical pu or the orienta bottom chore 	up in a joint 13. Is been designed for 1b live and 40.0b c t all panel points al nt with any other liv rlin representation ation of the purlin al 1.	or a mov lead loc long the ve loads does no long the	ving concentra ated at all mic Top Chord, of depict the si top and/or	ated d				REGIST Novembe	74 ERED LENGTHER 18,2024	Ā

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	A16	California	1	1	Job Reference (optional)	R85387443

Scale = 1:80.7

Plate Offsets (X, Y): [2:0-2-8,0-1-12], [5:0-3-8,Edge], [7:0-3-8,Edge], [9:0-0-0,0-0-0], [10:0-2-8,0-1-12]															
Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC20	21/TPI2014	CSI TC BC WB Matrix-SH	0.95 0.49 0.71	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.12 -0.25 0.04	(loc) 17-19 17-19 12	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 195 lb	GRIP 185/148 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x4 HF N 2x4 HF N 2x0	0.2 0.2 0.2 wood she purlins, ex purlins (2-2 ng directly midpt 12=0-5-8, 20=-28 (L 12=-51 (L 12=984 (I 20=984 (I 20=986 (I 20=986 (I 20=986 (I 20=986 (I 20=986 (I 20=986 (I 20=986 (I 20	athing directly appl cept end verticals, i -0 max.): 5-7. applied or 6-0-0 oc 5-16, 7-16 16=0-7-4, 20=0-5- C 19) C 11), 20=-48 (LC C 39), 16=3073 (L C 37) npression/Maximum 160, 3-4=-1227/102 17/1225, 6-7=-17/1 1227/112, 1=0/77, 2-20=-362 -19=-20/753, -16=-139/178, 3=-55/1239 =-1676/133, 3=-1676/133, 3=-1676/127, =-1389/125, 15=-824/158, 8-13= 3=-247/112, 4-19=0	ied or and 2 8 10) 3 2, 4 225, 4 /152, 8 0/481, 7	 Wind: ASCE Vasd=87mp II; Exp B; Er Exterior(2E) 15-6-12, Ext 21-6-0 to 27 (1) 33-6-4 to exposed; er members an Lumber DOI TCLL: ASCE DOL=1.15); Cs=1.00; Ct applied whe TCLS: ASCE Unbalanced design. This truss ha load of 20.0 overhangs n This truss ha load of 20.0 overhangs n This truss ha load of 20.0 overhangs n All plates are This truss ha chord live lo All bearings capacity of 4 Provide mec bearing plate 20 and 51 lb This truss ha load of 250.0 panels and a 	7-16; Vult=110m h; TCDL=4.2psf; closed; MWFRS -2-0-0 to 2-3-10, erior(2R) 15-6-12 -5-4, Exterior(2R) 45-0-0 zone; can d vertical left and d forces & MWFI =1.60 plate grip 7-16; Pf=25.0 p; Is=1.0; Rough Cz =1.10; IBC 1607. re required. snow loads have as been designed psf or 2.00 times on-concurrent wi quate drainage to a 3x4 MT20 unles as been designed ad nonconcurrent n chord in all are by 2-00-00 wide v hy other members are assumed to b 105 psi. thanical connectifie e capable of withs uplift at joint 12. as been designed Dib live and 40.0lit at all panel points	aph (3-sec BCDL=6. (envelope Interior (1 2 to 21-6-C) 27-5-4 tc trillever lef d right exp RS for rea DOL=1.6(sf (Lum D at B; Partit 11.2 minir e been cor l for great flat roof ld to the ther lin o prevent with a swhere will for a 10.0 t with any d for a 10.0 t with any d for a liv as where will fit betw s. Don (by oth standing 4 l for a movo o dead loc along the	cond gust) cond gust) pops; h=35ft; (a) and C-C) 2-3-10 to , Interior (1) 33-6-4, Interior t and right oosed;C-C for ctions shown) OL=1.15 Plata ally Exp.; Ce= num roof live asidered for the er of min roof bad of 25.0 ps water ponding se indicated. D psf bottom other live load e load of 20.0 a rectangle veen the bottod 2 crushing ers) of truss t 8 lb uplift at ji ving concentri- vated at all min Top Chord,	Cat. rior ; ; =1.0; load nis live sf on g. ds. Opsf om oint ated d	12) Gra or ti bott 13) Har pro lb d lb u 136 and at : con LOAD (1) De Ind Ur	phical phe orient index of the orient own and part 18- body the own and part 18- body the own own and part 18- body the own own own own the own the ow	urlin ref (ation of d. r other fficient 1 94 lb 0 -0.12, ; n top c device 0 at 2 ² n top c device 0 Stat 0 w (b2 1.15 0 Stat 0 w (b2 1.15 0 Stat 0 w (b2 1.15 0 Stat 0 -0.2, ; n top c device 0	ppresentation do of the purlin alon r connection dev t to support conc up at 15-11-12, 136 lb down and 88 lb up at 22-11 4-11-4, and 200 thord. The desig (s) is the respon ndard alanced): Lumbe b/ft) 2-5=-64, 5-7=-6 -20=-20 ads (lb) 28=-59, 30=-66	es not depict 1 g the top and/ ice(s) shall be entrated load 125 lb down 1 25 lb do	the size (or (s) 200 and 64 0-0-12, o down 14 Ib up (such rs. 15, Plate -59,
NOTES		100			load of 250.0 panels and a nonconcurre	as been designed Olb live and 40.0lb at all panel points int with any other	o dead loc along the live loads	ated at all mi Top Chord,	ated d			3	POFESSION	TERED LENGTHE	

OINTE -November 18,2024

> 400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	A17	California	2	1	Job Reference (optional)	R85387444

Builders FirstSource (Arlington, WA), Arlington, WA - 98223,

Scale = 1:80.8

Plate Offsets (X, Y): [2:0-2-8,0-1-12]	, [7:0-4-0,0-1-8], [11	:0-2-8,0-1-	8], [12:0-2-8,0	-1-12], [14:0-1-8,0-	1-8], [1	7:0-2-8,0-1-12	2], [19:0	-2-0,0-1	-12], [22:	0-1-8,	0-1-8]		
Loading TCLL (Roof Snow = TCDL BCLL BCDL	(psf) 25.0 25.0) 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2021	/TPI2014	CSI TC BC WB Matrix-SH	0.92 0.60 0.71	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.16 -0.33 0.03	(loc) 19-21 19-21 14	l/defl >999 >779 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 201 I	GRIP 185/148 b FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural wood shee 2-2-0 oc purlins, exc 2-0-0 oc purlins (6-0- Rigid ceiling directly bracing. 1 Row at midpt (size) 14=0-5-8, Max Horiz 22=-33 (LC Max Uplift 14=-53 (LI Max Grav 14=968 (L 22=953 (L	athing directly applie cept end verticals, an -0 max.): 6-8. applied or 5-6-12 oc 5-19, 7-18, 9-17 18=0-7-4, 22=0-5-8 C 75) C 11), 22=-49 (LC 10 C 39), 18=2765 (LC C 37)	1) d or (d 2) () (2) () (3) (3) (4)	 Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=6.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -2-0-0 to 2-3-10, Interior (1) 2-3-10 to 17-6-12, Exterior(2R) 17-6-12 to 23-7-12, Interior (1) 23-7-12 to 25-5-4, Exterior(2R) 25-5-4 to 31-6-4, Interior (1) 31-6-4 to 45-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required. Unbalanced snow loads have been considered for this design. 								vice(s) shall be centrated load(and 129 lb dov own and 83 lb 'selection of su nsibility of othe er Increase=1. ² 64, 8-12=-64,	s) 129 vn and up at ch rs. 15, Plate	
TOP CHORD	(ib) - Maximum Com Tension 1-2=0/77, 2-3=-296/1 5-6=-81/337, 6-7=-65 8-9=-111/277, 9-11= 11-12=-297/148, 12-	pression/Maximum 148, 3-5=-1123/96, 5/299, 7-8=-94/236, -1159/108, 13=0/77, 2-22=-363/	5) 6) 141, 7)	load of 20.0 p overhangs no Provide adeo This truss ha chord live loa * This truss h	osf or 2.00 times fla on-concurrent with quate drainage to p s been designed fo ad nonconcurrent w as been designed	at roof k other liv revent v or a 10.0 vith any for a liv	bad of 25.0 ps ve loads. water ponding 0 psf bottom other live load e load of 20.0	sfon g. ds.)psf						
BOT CHORD	12-14=-363/141 21-22=-98/1196, 19- 18-19=-963/174, 17- 15-17=-9/740, 14-15	21=-25/703, 18=-963/174, =-79/1225	8)	on the botton 3-06-00 tall b chord and an All bearings	n chord in all areas by 2-00-00 wide will by other members. are assumed to be	where I fit betv	a rectangle veen the botto 2 crushing	om				XIAOMII DE W	NG ZHAO	
WEBS NOTES	3-21=-285/129, 5-21 6-19=-352/81, 7-19= 7-18=-2716/270, 7-1 8-17=-419/78, 9-17= 11-15=-280/129, 3-2 11-14=-1396/160	=0/482, 5-19=-1000/ -112/1368, 7=-107/1443, -994/173, 9-15=0/48 2=-1365/170,	2172, 9) 2, 10	capacity of 44 Provide mech bearing plate 22 and 53 lb) This truss ha load of 250.0 panels and a	05 psi. hanical connection capable of withsta uplift at joint 14. s been designed fo lb live and 40.0lb o t all panel points al	(by oth inding 4 or a movilead loc	ers) of truss to 9 lb uplift at jo ving concentra ated at all mic Top Chord,	o oint ated d			HZ A		074	
			11	nonconcurrer) Graphical pu	nt with any other liv rlin representation	ve loads does no	ot depict the s	ize			2	FESSION	AL ENGINE	6

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

OINTE -

November 18,2024

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	A18	California	2	1	Job Reference (optional)	R85387445

Builders FirstSource (Arlington, WA), Arlington, WA - 98223,

Scale = 1:81

NOTES

Plate Offsets ((X, Y): [2:0-3-0,0-2	-0], [6:0-4-0,0-1-8], [7	:0-4-0,0-1-8]	, [11:0-3-0,0-2	-0]									
Loading TCLL (Roof Snow = TCDL BCLL BCDL	(psf) 25.0) 7.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr * Code	2-0-0 1.15 1.15 YES IBC202 ⁻	1/TPI2014	CSI TC BC WB Matrix-SH	0.94 0.41 0.74	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.15 0.02	(loc) 21-22 14-15 13	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 209 lb	GRIP 185/148 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD	2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 2-2-0 oc purlins, 2-0-0 oc purlins (Rigid ceiling dire bracing, Except 10-0-0 oc bracing 1 Row at midpt (size) 13=0-3 Max Horiz 23=-3 Max Horiz 23=-3 Max Horiz 23=-3 Max Uplift 13=-55 Max Grav 13=86 23=84 (lb) - Maximum C Tension 1-2=0/77, 2-3=-1 5-6=0/855, 6-7=0	sheathing directly app except end verticals, 10-0-0 max.): 6-7. ctly applied or 6-0-0 o g: 21-22,14-15. 5-19, 6-18, 7-18, 8 i-8, 18=0-7-4, 23=0-5 i (LC 11), 23=-51 (LC 7 (LC 39), 18=3032 (L 6 (LC 37) compression/Maximun 117/87, 3-5=-569/192 /1085, 7-8=-5/801,	1) lied or and c 3-17 -8 (68) (C 35), 4) n 5) (C 35), 4) n (C 35), 4) (C 35), 5) (C 35), 4) (C 35), 5) (C 35), 7) (C 35),	Wind: ASCE Vasd=87mpl II; Exp B; En Exterior(2E) 19-9-1, Exterior(2E) 23-2-15 to 25 cantilever lef right exposed for reactions DOL=1.60 TCLL: ASCE DOL=1.15); Cs=1.00; Ct= applied wher Unbalanced design. This truss ha load of 20.0 overhangs n Provide adec All plates are This truss ha	7-16; Vult=110m ;; TCDL=4.2psf; closed; MWFRS -2-0-0 to 2-3-10, rior(2E) 19-9-10, orior(2E) 19-9-11, Interior (1 t and right exposed d;C-C for member shown; Lumber I 7-16; Pf=25.0 ps Is=1.0; Rough Ca =1.10; IBC 1607.1 re required. snow loads have us been designed ps for 2.00 times on-concurrent wit quate drainage to 3x4 MT20 unles the shown designed the shown designed	ph (3-sec BCDL=6.((envelope Interior (1 23-2-15,) 29-3-15 ed; end v rs and fol DOL=1.60 sf (Lum D at B; Parti 11.2 minir been cor for great flat roof l th other lin prevent v s otherwi for a 10.0	cond gust) psf; h=35ft; i and C-C) 2-3-10 to Exterior(2R) to 45-0-0 zoi vertical left an ces & MWFF) plate grip OL=1.15 Plata ally Exp.; Ce- num roof live asidered for the er of min roof bad of 25.0 pi ve loads. water ponding se indicated. D psf bottom	Cat. ne; id RS =1.0; load his f live sf on g.	12) Gra or ti bott 13) Har pro lb d dess resp LOAD (1) De Inc Ur	phical p he orien com choi nger(s) c vided su own and ign/sele consibili CASE(S aad + Sr crease= iform Lu Vert: 1- 11-12=- oncentra Vert: 7=	urlin re tation o rd. or other fficient 115 II tction o ty of ot) Stat 2=-64, 64, 13. ted Loc -215	presentation doe of the purlin along connection devic to support connection hers. adard alanced): Lumber o/ft) 2-6=-64, 6-7=-64 -23=-20 ads (lb)	s not depict the size the top and/or ce(s) shall be intrated load(s) 314 on top chord. The n device(s) is the Increase=1.15, Plate , 7-11=-64,	
	8-10=-625/129, 1	0-11=-1161/92, 11-12	2=0/77,	chord live loa	ad nonconcurrent	with any	other live loa	ds					-	

* This truss has been designed for a live load of 20.0psf

3-06-00 tall by 2-00-00 wide will fit between the bottom

bearing plate capable of withstanding 51 lb uplift at joint

11) This truss has been designed for a moving concentrated

panels and at all panel points along the Top Chord, nonconcurrent with any other live loads

load of 250.0lb live and 40.0lb dead located at all mid

on the bottom chord in all areas where a rectangle

All bearings are assumed to be HF No.2 crushing

10) Provide mechanical connection (by others) of truss to

chord and any other members.

23 and 55 lb uplift at joint 13.

capacity of 405 psi.

8-10=-625/129, 10-11=-1161/92, 11-12=0/77, 2-23=-799/198, 11-13=-820/192 BOT CHORD 22-23=-165/233, 21-22=-39/1015, 19-21=-147/468, 18-19=-768/185, 17-18=-717/182, 15-17=-88/521, 14-15=-15/1057, 13-14=-165/233 WEBS 5-19=-1224/155, 6-19=-23/797, 6-18=-1390/148, 7-18=-1616/139, 7-17=-23/794, 8-17=-1221/154, 2-22=-68/1013, 11-14=-58/1053, 3-22=-47/189, 3-21=-633/74, 5-21=0/442, 8-15=0/442, 10-15=-622/74, 10-14=-54/188

👠 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with the connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

8)

9)

LAOMING ZHAO

PORESSIONAL ENGINE

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	A19	Roof Special Girder	1	2	Job Reference (optional)	R85387446

Builders FirstSource (Arlington, WA), Arlington, WA - 98223,

2x4 HF No.2 *Except* 8-12:2x4 DF 1800F Top chords connected as follows: 2x4 - 1 row at 0-9-0 1.6E BOT CHORD 2x6 DF No.2 OC. Bottom chords connected as follows: 2x6 - 2 rows WEBS 2x4 HF No.2 staggered at 0-9-0 oc. SLIDER Right 2x8 DF SS -- 2-0-8 Web connected as follows: 2x4 - 1 row at 0-9-0 oc. BRACING All loads are considered equally applied to all plies, 2) TOP CHORD Structural wood sheathing directly applied or except if noted as front (F) or back (B) face in the LOAD 3-9-12 oc purlins, except end verticals, and CASE(S) section. Ply to ply connections have been 2-0-0 oc purlins (5-6-5 max.): 1-8. provided to distribute only loads noted as (F) or (B), BOT CHORD Rigid ceiling directly applied or 6-0-0 oc unless otherwise indicated. bracing. Wind: ASCE 7-16; Vult=110mph (3-second gust) **REACTIONS** (size) 11=0-5-8, 16=0-7-4, 17=0-7-12, Vasd=87mph; TCDL=4.2psf; BCDL=6.0psf; h=35ft; Cat. 18=0-3-15 II; Exp B; Enclosed; MWFRS (envelope); cantilever left Max Horiz 18=-74 (LC 6) and right exposed; end vertical left and right exposed; Max Uplift 11=-73 (LC 7), 17=-90 (LC 7), Lumber DOL=1.60 plate grip DOL=1.60 18=-100 (LC 6) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate 4) Max Grav 11=2593 (LC 18), 16=6872 (LC DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; 27), 17=805 (LC 27), 18=276 (LC Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load 41) applied where required. FORCES (Ib) - Maximum Compression/Maximum 5) Unbalanced snow loads have been considered for this Tension desian. TOP CHORD 1-18=-373/121, 1-2=-41/38, 2-3=0/427, 6) This truss has been designed for greater of min roof live 3-5=-79/3202, 5-6=-79/3202, 6-7=-3804/105, load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on 7-8=-4593/144, 8-9=-4822/141, overhangs non-concurrent with other live loads. 9-11=-4336/123, 11-12=-13/0 Provide adequate drainage to prevent water ponding. 7) BOT CHORD 17-18=-427/27, 16-17=-1674/75 This truss has been designed for a 10.0 psf bottom 8) 14-16=-15/1295, 13-14=-96/4358, chord live load nonconcurrent with any other live loads. 11-13=-72/3770 9) * This truss has been designed for a live load of 20.0psf WEBS 2-17=-924/203, 3-17=-67/1674, on the bottom chord in all areas where a rectangle 3-16=-2008/82, 5-16=-367/55, 8-13=0/1038, 3-06-00 tall by 2-00-00 wide will fit between the bottom 9-13=-26/1207, 2-18=-3/521, chord and any other members. 6-16=-5573/177, 6-14=-62/3826, 10) All bearings are assumed to be HF No.2 crushing 7-14=-844/73, 7-13=-23/702 capacity of 405 psi. NOTES

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint 18, 90 lb uplift at joint 17 and 73 lb uplift at joint 11. panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

Page: 1

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

400 Sunrise Ave., Suite 270 Roseville CA 95661 916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	A19	Roof Special Girder	1	2	Job Reference (optional)	R85387446

14) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 308 Ib down and 143 lb up at 1-10-7, 131 lb down and 54 lb up at 3-10-7, and 248 lb down and 68 lb up at 5-10-7, and 91 lb down and 50 lb up at 26-10-0 on top chord, and 5 lb down at 1-10-7, 32 lb down at 3-10-7, 570 lb down and 34 lb up at 7-10-7, 530 lb down and 12 lb up at 9-10-7, 530 lb down at 11-10-7, 530 lb down at 14-8-15, 530 lb down and 12 lb up at 16-8-15, 538 lb down and 19 lb up at 18-8-15, 593 lb down and 25 lb up at 20-8-15, 671 lb down and 31 lb up at 22-8-15, 752 lb down and 36 lb up at 24-8-15, 418 lb down and 14 lb up at 26-8-15, 579 lb down and 55 lb up at 28-8-15, and 95 lb down at 30-8-15, and 94 lb down at 32-8-15 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft) Vert: 1-8=-64, 8-12=-64, 11-18=-20

Concentrated Loads (lb)

- Vert: 15=-530 (F), 2=-178, 19=-141, 21=-61, 31=-16 (F), 32=-570 (F), 33=-530 (F), 34=-530 (F), 35=-530
- (F), 32=-570 (F), 33=-530 (F), 34=-530 (F), 35=-530 (F), 36=-538 (F), 37=-593 (F), 38=-671 (F), 39=-752
- (F), 40=-418 (F), 41=-579 (F), 42=-47 (F), 43=-88 (F)

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Nov 15 18:24:12 ID:TvrF5OK1GVWUfcbNSvGvkRyIsb9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	A20	California	1	1	Job Reference (optional)	R85387447

Builders FirstSource (Arlington, WA), Arlington, WA - 98223,

Scale = 1:69.5

Plate Offsets ((X, Y): [6:0-	-1-12,0-2-0], [8:0-4-0,0-1-8], [10	0:0-2-8,0-1	-12], [12:0-2-1:	2,0-1-8], [14:0-4-8,	,0-1-8]							
Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC202	1/TPI2014	CSI TC BC WB Matrix-SH	0.86 0.64 0.52	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.21 -0.43 0.02	(loc) 12-13 12-13 12	l/defl >999 >600 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 170 lb	GRIP 185/148 D FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 HF N 2x4 HF N 2x4 HF N Structural 2-2-0 oc p Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav	0.2 0.2 0.2 0.2 1 wood shea burlins, exit burlins (3-8 ing directly 12=0-5-8, 20=0-4-12 20=-72 (L 12=-69 (L 12=-69 (L 12=-126 (L 12=-126 (L)	athing directly applie cept end verticals, a -2 max.): 2-8. applied or 6-0-0 oc 16=0-7-4, 18=0-7-1 2 C 12) C 12) C 11), 16=-119 (LC C 11), 20=-14 (LC 1 (LC 39), 16=1800 (L E 4 (L 24) 20, 216	1) ed or nd (2, 2) (11), 3) (-C 4)	Wind: ASCE Vasd=87mpl II; Exp B; En Exterior(2E) 15-7-12, Inte 33-5-4 to 39 cantilever lef right expose for reactions DOL=1.60 TCLL: ASCE DOL=1.15); Cs=1.00; Ct= applied when Unbalanced design. This truss ha	7-16; Vult=110mp h; TCDL=4.2psf; B closed; MWFRS (¢ 6-4-1 to 9-6-12, E: prior (1) 15-7-12 to 5-11, Interior (1) 3 it and right expose d;C-C for members shown; Lumber D cr-16; Pf=25.0 psf Is=1.0; Rough Cat =1.10; IBC 1607.1* re required. snow loads have to as been designed f	ch (3-sec CDL=6.0 envelope xterior(2 33-5-4, 39-5-11 t d; end v s and foo OL=1.60 f (Lum D B; Parti 1.2 minir been cor	cond gust) Dpsf; h=35ft; C e) and C-C R) 9-6-12 to Exterior(2R) o 45-0-0 zone vertical left and cces & MWFR: 0 plate grip OL=1.15 Plate ally Exp.; Ce= num roof live I nsidered for th er of min roof I	Cat. ; d S e 1.0; load is live	 11) Gratoria or to bot 12) Harror loc loc up loc up 38 and sele res LOAD 1) Do 	aphical p he orien tom cho nger(s) c vided su lown and at 14-0- lown and at 20-0- lown and at 20-1- lb down d 22-1 lb ection of ponsibili CASE(S ead + S	urlin re tation of rd. or othe fficient d 104 ll 12, 10 d 83 lb 12, 38 d 83 lb 1-4, 40 and 65 up at 3 such of ty of ot) Sta now (ba	presentation de of the purlin alor r connection devic to support cond b up at 12-0-12 lb down and 18 up at 18-0-12, lb down and 73 5 lb up at 30-11 33-0-4 on top ch connection devic hers. ndard alanced): Lumbe	es not depict the size ing the top and/or vice(s) shall be centrated load(s) 294 , 63 lb down and 53 lb 16 lb up at 16-0-12, 38 38 lb down and 88 lb 38 lb down and 78 lb 38 lb down and 78 lb 38 lb down and 78 lb 30 lb up at 28-11-4, and -4, and 108 lb down hord. The design/ ce(s) is the er Increase=1.15. Plate
FORCES TOP CHORD	Table 11/5, 20=114 (LC 101) Max Grav 12=1126 (LC 39), 16=1800 (LC 34), 18=866 (LC 34), 20=316 (LC 50) (lb) - Maximum Compression/Maximum Tension 0 1-2=-111/50, 2-3=-111/62, 3-4=-123/102, 4-6=-123/102, 6-7=-768/156, 7-8=-768/156, 8-9=-1136/182, 9-10=-275/96, 10-11=0/77,				load of 20.0 overhangs n Provide aded This truss ha chord live loa * This truss h on the bottor	psf or 2.00 times fl on-concurrent with quate drainage to p is been designed f ad nonconcurrent v nas been designed n chord in all area:	bad of 25.0 ps ve loads. water ponding 0 psf bottom other live load e load of 20.0 a rectangle	f on ds. psf	In Ui Co	crease= hiform L Vert: 1- 12-20=- oncentra	b/ft) 2-8=-64, 8-10=- ads (lb)	-64, 10-11=-64,		
BOT CHORD	19-20=-28 19-20=-69 17-18=-14 14-16=-50 12-13=-10	9/129, 10-12 9/129, 18-1 45/114, 16- 04/136, 13- 68/1192	9=-145/114, 17=-504/136, 14=-74/995,	8)	3-06-00 tall t chord and ar All bearings capacity of 4	by 2-00-00 wide wi by other members. are assumed to be 05 psi.	HF No.	veen the botto 2 crushing	m			ž	ALAOMIN TIAOF W	ASHINGI
WEBS NOTES	2-19=-29 4-17=-42 6-16=-16 9-13=-30 8-14=-56 6-14=-19 3-19=-46/	3/77, 8-13= 7/136, 3-17 53/284, 7-1 4/182, 9-12 4/61, 6-17= 8/1491, 3-1 /300	:0/313, 1-19=-40/13; '=-60/337, 4=-563/147, :=-1418/308, :-72/606, 8=-800/121,	2, ⁹⁾	bearing plate 20, 69 lb upl lb uplift at joi)) This truss ha load of 250.0 panels and a nonconcurre	e capable of withsta ff at joint 12, 119 I nt 18. Is been designed f Ib live and 40.0lb at all panel points a nt with any other li	for a mor dead loc along the	4 lb uplift at jc t joint 16 and ving concentra ated at all mic Top Chord,	o bint 54 ated d				PROFESSION	074 TERED AL ENGINE

November 18,2024

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	A20	California	1	1	Job Reference (optional)	R85387447

Vert: 3=-224, 26=30

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Nov 15 18:24:12 ID:S09G6iuOlxWNtK?VzQd?PLyIsd0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	A21	California	1	1	Job Reference (optional)	R85387448

Builders FirstSource (Arlington, WA), Arlington, WA - 98223,

Scale = 1:73 ~ "

Plate Offsets ((X, Y): [2:0·	1-12,0-2-0], [4:0-4-0,0-1-8], [7:0)-4-0,0-1-8	3], [9:0-3-0,0-1	-12], [11:0-2-0,0-1	-0], [12:0)-2-8,0-1-8]							
Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2021	I/TPI2014	CSI TC BC WB Matrix-SH	0.79 0.36 0.99	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.11 0.02	(loc) 12-13 12-13 11	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 183 II	GRIP 185/148 b FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 HF N 1.6E 2x4 HF N 2x4 HF N Structura 3-7-0 oc J	0.2 *Excep 0.2 0.2 I wood shea purlins, exc	t* 4-7:2x4 DF 1800F athing directly applied cept end verticals, an of max): 4-7	1) d or id	Wind: ASCE Vasd=87mph II; Exp B; En Exterior(2E) 11-6-12, Exte 15-5-5 to 31- (1) 35-3-13 te exposed ; en members an	7-16; Vult=110m h; TCDL=4.2psf; E closed; MWFRS (4-2-5 to 8-0-14, Ir erior(2R) 11-6-12 -5-4, Exterior(2R) o 45-0-0 zone; ca d vertical left and d forces & MWFR	oh (3-sec 3CDL=6.0 envelope nterior (1) to 15-5-5 31-5-4 to ntilever lo right exp S for rea	cond gust) Opsf; h=35ft; (e) and C-C 0 8-0-14 to 5, Interior (1) 0 35-3-13, Inte eft and right posed;C-C for ctions shown	Cat. erior	12) Gra or ti bott 13) Har prov Ib d up a Ib d up a	phical prine orient om choringer(s) o vided sur own and at 16-0- own and at 22-11	urlin re tation o d. fr other fficient 104 ll 12, 12 168 lb -4, 12	presentation de of the purlin alo r connection de to support con o up at 14-0-12 2 lb down and 6 up at 20-0-12, 2 lb down and 6	bes not depict the ng the top and/or vice(s) shall be centrated load(s) 2, 63 lb down and 38 lb up at 18-0- 88 lb down and (58 lb up at 24-11	294 53 lb 12, 88 68 lb -4,
BOT CHORD	Rigid ceil bracing. (size) Max Horiz Max Uplift Max Grav	11=0-5-8, 20=0-9-10 20=-49 (Li 11=-47 (Li 19=-15 (Li 11=1106 (applied or 6-0-0 oc 16=0-7-4, 19=0-7-12 C 10) C 10), 20=-14 (LC 76 (LC 39), 16=-2244 (LC C 37), 20=343 (LC 51 C 37), 20=343 (LC 51)	2) 2, 3) 3) 2 35), 4)	Lumber DOL TCLL: ASCE DOL=1.15); I Cs=1.00; Ct= applied where Unbalanced design. This truss ha load of 20.0 p	=1.60 plate grip E 7-16; Pf=25.0 ps Is=1.0; Rough Ca =1.10; IBC 1607.1 re required. snow loads have as been designed psf or 2.00 times f	DOL=1.60 f (Lum D t B; Parti 1.2 minir been cor for greate lat roof lo) OL=1.15 Plat ally Exp.; Ce= num roof live nsidered for th er of min roof bad of 25.0 ps	re =1.0; load his live sf on	132 and at 3 con LOAD (1) De Ind Ur	Ib down 64 lb up 31-0-4 of nection CASE(S) ad + Sn crease= iform Lo Vert: 1-2	n and 6 o at 28 n top c device) Stan now (ba 1.15 oads (II 2=-64,	88 Ib up at 26-1 3-11-4, and 104 shord. The desi (s) is the respondard alanced): Lumb b/ft) 2-4=-64, 4-7=-1	1-4, and 125 lb c lb down and 94 gn/selection of si nsibility of others. er Increase=1.15 64, 7-9=-64, 9-10	lown lb up uch , Plate =-64,
FORCES TOP CHORD	(lb) - Max Tension 1-2=0/93, 4-5=-36/1 7-8=-960, 2-2028	2-3=-40/14 94, 5-6=-32 (124, 8-9=-1	pression/Maximum 47, 3-4=-104/77, 2/984, 6-7=-239/77, 1512/138, 9-10=0/77 -1049/217	5) 6) 7) , 8)	 overhangs non-concurrent with other live loads. Provide adequate drainage to prevent water ponding. All plates are 3x4 MT20 unless otherwise indicated. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 								30=-18, 33=-18,		
BOT CHORD	20-21=0/0 17-18=-49 14-16=-9 12-135	0, 19-20=-3 9/107, 16-1 0/122, 13-1 7/1360, 11-	20/88, 18-19=-92/82, 7=-304/91, 4=0/826, 12145/267	9)	on the bottor 3-06-00 tall b chord and ar All bearings	m chord in all area by 2-00-00 wide w by other members are assumed to be	is where ill fit betv e HF No.	a rectangle veen the botto 2 crushing	om			y	TIAOMII	ASHING	
WEBS NOTES	2-19=-15 5-17=0/3 6-16=-15 7-13=0/3 9-12=-96	4/37, 4-18= 18, 5-16=-1 54/174, 6-1 62, 8-13=-5 /1244, 3-19		^{47,} 10 /90, , / ⁴⁰⁹ 11	capacity of 4) Provide mec bearing plate 19, 39 lb upli uplift at joint) This truss ha load of 250.0 panels and a nonconcurre	US pSI. hanical connectio e capable of withsi iff at joint 16, 14 lk 11. Is been designed blb live and 40.0lb at all panel points a nt with any other l	n (by oth tanding 1 o uplift at for a mov dead loo along the ive loads	ers) of truss t 5 lb uplift at ji joint 20 and 4 ving concentra ated at all mi Top Chord,	o oint 47 lb ated d				PROFILESSION	074 TERED AL ENGING	Å

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	A22	California	1	1	Job Reference (optional)	R85387449

Builders FirstSource (Arlington, WA), Arlington, WA - 98223,

Scale = 1:76.1

Plate Olisets (A, T). [2.0-	-1-8,0-2-0],	[6:0-1-8,0-1-8], [10:	0-3-0,0-0-	12], [14:0-3-8,0	0-3-0], [16:0-3-8,0-	-3-0]							
Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC202	1/TPI2014	CSI TC BC WB Matrix-SH	0.78 0.44 0.85	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.14 0.02	(loc) 15-16 15-16 12	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 186	GRIP 185/148 6 lb FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 HF N 2x4 HF N 2x4 HF N Structural 4-0-3 oc p 2-0-0 oc p Rigid ceili bracing.	o.2 o.2 *Excep I wood shea ourlins, exc ourlins (5-7 ing directly	t* 15-5,15-6:2x4 DF athing directly applie cept end verticals, a -1 max.): 4-7. applied or 6-0-0 oc	1 No.2 ed or nd 2	Wind: ASCE Vasd=87mpi II; Exp B; En Exterior(2E) 29-5-4, Exte to 45-0-0 zoi vertical left a forces & M0 DOL=1.60 TCI L: ASCE	7-16; Vult=110mp h; TCDL=4.2psf; B closed; MWFRS (2-2-5 to 6-3-4, Intr 13-6-12 to 19-4-0, rior(2R) 29-5-4 to 3 ne; cantilever left a und right exposed; /FRS for reactions late grip DOL=1.6(5-7.16; Pf=25.0 ps]	ph (3-sec 3CDL=6.0 envelope erior (1) , Interior 35-2-8, I and right C-C for n s shown; 0 f (1 um D	ond gust) Opsf; h=35ft; () and C-C 6-3-4 to 13-6- (1) 19-4-0 to nterior (1) 35- exposed ; en nembers and Lumber OI =1 15 Plat	Cat. -12, -2-8 d	 11) Gra or t bott 12) Har pro lb d lb u 134 68 l 26- cho 	phical p the orient com choinger(s) c vided su own and p at 18- b dowr b up at 11-4, an rd. The	urlin re tation of d. r other fficient 1 104 II 0-12, n and 6 24-11- d 172 design	epresentation of the purlin al r connection o t to support co b up at 16-0- 134 lb down a 58 lb up at 22 -4, and 125 lb lb down and 9 0/selection of	does not depict the size long the top and/or levice(s) shall be oncentrated load(s) 294 12, 132 lb down and 68 and 68 lb up at 20-0-12, l-11-4, 132 lb down and down and 64 lb up at 94 lb up at 29-0-4 on top such connection device
REACTIONS	(size) Max Horiz Max Uplift Max Grav	12=0-5-8, 18=0-7-12 19=-29 (Lu 12=-48 (Lu 17=-21 (Lu 12=1078 (35), 17=62 37), 19=34	15=0-7-4, 17=0-7-1 2, 19=0-4-12 C 19) C 11), 15=-29 (LC 1 C 10), 19=-4 (LC 76 (LC 39), 15=2501 (L 29 (LC 37), 18=375 41 (LC 50)	2, 2, 1), 3). C 4 (LC 4	 DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required. 3) Unbalanced snow loads have been considered for this design. 4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on 26-11-4, and 172 lb down and the sign/selection of characteristic characteristic design/selection of (s) is the responsibility of others. LOAD CASE(S) Standard Dead + Snow (balanced): Lum Increase=1.15 Uniform Loads (lb/ft) Vert: 1-2=-64, 2-4=-64, 4-7 10-11=-64, 12-20=-20 								:. iber Increase=1.15, Plate =-64, 7-10=-64,	
FORCES	(lb) - Max Tension 1-2=0/93, 4-5=-239/ 7-8=-733/	imum Com 2-3=-41/18 /96, 5-6=-7/ /120, 8-9=- ⁻	pression/Maximum 34, 3-4=-328/82, /887, 6-7=-628/134, 1408/131,	5 6 7	 overhangs non-concurrent with other live loads. Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. This truss has been designed for a live load of 20.0psf 								-64, 30=-64, 32=-62,	
BOT CHORD	9-10=-146 10-12=-33 19-20=0/0 15-17=-32 12-13=-78	6/127, 10-1 38/117 0, 18-19=-6 23/98, 13-1 8/1109	1=0/77, 2-19=-295/ /138, 17-18=-65/63, 5=-152/1215,	66, 8	3-06-00 tall I chord and an All bearings capacity of 4	by 2-00-00 wide wi by other members. are assumed to be 05 psi.	ill fit betv e HF No.	veen the botto 2 crushing	om			ż	TIAOM	ING ZHAO WASHING
WEBS NOTES	4-16=-37; 5-15=-119 6-14=-70/ 9-12=-147 3-18=-274 8-13=0/23	3/95, 7-14= 95/177, 6-1 /1107, 2-18 70/175, 5-1 4/58, 3-16= 37, 9-13=-8	-291/70, 5=-1489/192, =-216/59, 6=-30/595, -12/276, 8-14=-719, 6/272, 3-17=-561/99	/139, ¹ / 9	bearing plate 19, 48 lb upl uplift at joint 0) This truss ha load of 250.0 panels and a nonconcurre	e capable of withst iff at joint 12, 29 lb 17. as been designed f 0lb live and 40.0lb at all panel points a int with any other li	for a movide dead local dead local along the ive loads	ving concentration ated at all mi	ated				RHOFESSIO	4074 ISTERED NALENGING

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

November 18,2024

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	A23	California	1	1	Job Reference (optional)	R85387450

Page: 1

Builders FirstSource (Arlington, WA), Arlington, WA - 98223,

Scale = 1:79.3

Plate Offsets	(X, Y): [1:Ed	dge,0-1-12], [6:0-3-8,Edge], [9	:0-2-8,0-1	-12]										
Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC20	21/TPI2014	CSI TC BC WB Matrix-SH	0.93 0.49 0.71	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.12 -0.25 0.04	(loc) 16-18 16-18 11	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 192 II	GRIP 185/148 b FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS FORCES TOP CHORD BOT CHORD WEBS NOTES	2x4 HF No 2x4 HF	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	athing directly appli 2ept end verticals, a -0 max.): 4-6. applied or 6-0-0 oc 6-15, 4-15 15=0-7-4, 19=0-4-7 C 19), 15=2941 (LC C 39), 15=2941 (LC C 37) pression/Maximum 183/117, 3-4=-204/7 16/1175, 6-7=-301/ -286/160, 9-10=0/7 -362/151 18=-24/704, 15=-113/203, =-51/1237 -21/736, 5-15=-674 8=-263/134, =0/475, 8-12=-241/ 8=-1/495, =-1393/116,	ied or and ; 12 4) ; 246, ; 113, ; 17, ; 4/156, ; /112, ;	 Wind: ASCE Vasd=87mpl II; Exp B; En Exterior(2E) Exterior(2E) Exterior(2E) Exterior(2R) 27-5-4, Exte 33-5-14 to 4: exposed ; er members an Lumber DOL TCLL: ASCE DOL=1.15); Cs=1.00; Ct- applied whee DL=1.15); Cs=1.00; Ct- applied whee OLD=1.15); Cs=1.00; Ct- applied whee This truss ha load of 20.0 overhangs n Provide adeat All plates are This truss ha chord live loat All bearings capacity of 4 Provide mec bearing plate 11 and 1 b 0 This truss ha load of 250.0 panels and a 	7-16; Vult=110mp 7-16; Vult=110mp 7; TCDL=4.2psf; Bi closed; MWFRS (6 0-4-1 to 4-8-7, Inte 15-6-12 to 21-6-0, rior(2R) 27-5-4 to 3 5-0-0 zone; cantile d vertical left and id d forces & MWFRS =1.60 plate grip Di s=1.0; Rough Cat =1.10; IBC 1607.11 e required. snow loads have b as been designed find part of 2.00 times fil on-concurrent with quate drainage to p 3x4 MT20 unless as been designed find an onconcurrent with quate drainage to p 3x4 MT20 unless as been designed find n chord in all areas y 2-00-00 wide will y other members. are assumed to be 05 psi. hanical connection e capable of withsta uplift at joint 19. Is been designed find b live and 40.016 of ta all panel points a	h (3-sec CDL=6.1 CDL=6.1 Interior 33-5-14, ver left a right exp S for rea OL=1.6((Lum D B; Parti I.2 minir Deen cor or great at roof la other li orevent to other with any for a liv s where I fit betw HF No. a (by oth anding 5 or a modead loc long the	cond gust) cond gust) pops; h=35ft; (a) and C-C 4-8-7 to 15-6- (1) 21-6-0 to Interior (1) and right bosed;C-C for citions shown 0 OL=1.15 Plata ally Exp.; Ce- num roof live asidered for the er of min roof boad of 25.0 ps we loads. water ponding se indicated. 0 psf bottom other live loa e load of 20.0 a rectangle veen the bottof 2 crushing ers) of truss t 52 lb uplift at ji ving concentri- vitated at all min 5 Top Chord,	Cat. -12, ; =1.0; load nis live sf on g. ds. opsf om oint ated d	12) Gra or ti botti 13) Har pro' lb d up a and dow sele resp LOAD (1) De Inc Ur	phical p ne orient om chor oger(s) o vided su own and at 20-0- 125 lb o vn and 9 ection of boonsibilit CASE(S) ad + Sr crease= iform Lo Vert: 1-4 11-19=- nocentra Vert: 26	urlin ref tation (d. r othe fficient 12, 13 down a 4 lb up such c ty of ot) Sta ow (bt 1.15 0) Sta ow (bt 1.15 20 ted Lo =-59, 2	ppresentation de of the purlin alo r connection de t to support con up at 18-0-12, 6 lb down and 6 and 64 lb up at o at 27-0-4 on t connection devi hers. ndard alanced): Lumb b/ft) 4-6=-64, 6-9=-1 ads (lb) 28=-66, 29=-66	ves not depict the s ng the top and/or vice(s) shall be centrated load(s) 1: 136 lb down and 6 8 lb up at 22-11-4 24-11-4, and 200 lt op chord. The desi ce(s) is the er Increase=1.15, F 34, 9-10=-64, 31=-59, 32=-101	25 88 lb ign/ Plate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

NAL D November 18,2024

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	B01	Common Supported Gable	6	1	Job Reference (optional)	R85387451

24-9-8

Scale = 1:51.1		1												
Loading TCLL (Roof Snow = TCDL	25.0)	(psf) 25.0 7.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.24 0.03 0.27	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 185/148
BCLL BCDL		0.0* 10.0	Code	IBC202	1/TPI2014	Matrix-R	-						Weight: 116 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 HF N 2x4 HF N 2x4 HF N 2x4 HF N 2x4 HF N Structura 6-0-0 oc Rigid ceil	lo.2 lo.2 lo.2 lo.2 lo.2 l wood she purlins, ex ling directly	athing directly applied cept end verticals.	B W dor N	OT CHORD	26-27=-28/39, 25 23-24=-28/39, 21 19-20=-28/39, 18 16-17=-28/39, 15 7-20=-290/40, 6-2 4-24=-306/64, 3-2 8-19=-304/59, 9- 11-16=-308/59, 1	-26=-28/3 -23=-28/3 -19=-28/3 -16=-28/3 21=-304/5 25=-308/5 18=-303/6 2-15=-31	39, 24-25=-28, 39, 20-21=-28, 39, 17-18=-28, 39, 14-15=-28, 39, 5-23=-303, 39, 2-26=-318, 35, 10-17=-30, 8/114	/39, /39, /39, /39 /65, /113, 6/64,	11) All t cap 12) Pro bea 27, at jo Ib u joint 29 I 13) This	bearings acity of vide me ring plat 8 lb upli bint 23, plift at jo t 18, 11 b uplift at	are as 405 ps chanic te capa ft at joi 11 lb u pint 26, lb uplit at joint	ssumed to be HF si. al connection (by able of withstandi int 14, 8 lb uplift at plift at joint 24, 3 8 lb uplift at joint ft at joint 17, 4 lb 15. an designed for a	No.2 crushing r others) of truss to ng 14 lb uplift at joint at joint 21, 10 lb uplift lb uplift at joint 25, 31 t 19, 10 lb uplift at uplift at joint 16 and moving concentrated
REACTIONS	bracing. (size)	14=24-9-4 17=24-9-4 20=24-9-4 24=24-9-4 27=24-9-4	8, 15=24-9-8, 16=24-§ 8, 18=24-9-8, 19=24-§ 8, 21=24-9-8, 23=24-§ 8, 25=24-9-8, 26=24-§ 8	1) 9-8, 9-8, 9-8, 9-8, 9-8,	 Wind: ASCE Vasd=87mp II; Exp B; Er Corner(3E) 12-4-12, Co 15-4-12 to 2 	27-16; Vult=110m oh; TCDL=4.2psf; nclosed; MWFRS 0-1-12 to 3-1-12, prner(3R) 12-4-12 24-7-12 zone; cant	nph (3-sec BCDL=6.0 (envelope Exterior(2 to 15-4-12 tilever left	cond gust) Opsf; h=35ft; (e) and C-C :N) 3-1-12 to 2, Exterior(2N and right	Cat.)	loac pan non	of 250. els and concurr CASE(S	.0lb live at all p ent wit) Sta	e and 40.0lb deal panel points along h any other live k ndard	d located at all mid the Top Chord, bads.
	Max Horiz Max Uplift	27=69 (L0 14=-8 (L0 16=-4 (L0 18=-10 (L 21=-8 (L0 24=-11 (L	C 13) 14), 15=-29 (LC 15), 15), 17=-11 (LC 15), C 15), 19=-8 (LC 15), C 15), 23=-10 (LC 14), C 14), 25=-3 (LC 14),	2)	exposed ; e members ar Lumber DO Truss desig only. For st see Standar	nd vertical left and nd forces & MWFF L=1.60 plate grip ned for wind loads tuds exposed to w rd Industry Gable	d right exp RS for rea DOL=1.60 s in the pla ind (norm End Deta	bosed;C-C for actions shown ane of the trus al to the face) ils as applicat	; ss , ole,					
	Max Grav	26=-31 (L 14=326 (l 16=346 (l 18=343 (l 20=330 (l 23=343 (l	(C 14), 27=-14 (LC 10 (C 42), 15=365 (LC 5 (C 52), 17=347 (LC 5 (C 50), 19=344 (LC 4 (C 48), 21=344 (LC 4 (C 46), 24=347 (LC 4	() 3), 3) 1), 9), 7), 4) 5), 4)	or consult q TCLL: ASC DOL=1.15); Cs=1.00; Ct applied whe Unbalanced	ualified building de E 7-16; Pf=25.0 ps ; Is=1.0; Rough Ca t=1.10; IBC 1607. ere required. d snow loads have	esigner as sf (Lum D at B; Partis 11.2 minir been cor	s per ANSI/TF OL=1.15 Plat ally Exp.; Ce= num roof live nsidered for th	ମ 1. e ⊧1.0; load iis				ALA OMIN	G ZHAO
FORCES	(lb) - Max Tension 1-27=-30	25=346 (l 27=326 (l kimum Com 6/37, 1-2=-	LC 44), 26=365 (LC 4 LC 29) hpression/Maximum 91/53, 2-3=-92/67.	3), 5) 6) 7)	design.) All plates ar) Gable requi) Truss to be braced agai	e 2x4 MT20 unles res continuous bo fully sheathed froi inst lateral movem	s otherwi ttom chor m one fac ent (i.e. d	se indicated. d bearing. e or securely liagonal web).						
	3-4=-79/1 6-7=-104 9-10=-78 12-13=-9	0.01, 4-5=-7 /207, 7-8=- /136, 10-11 1/53, 13-14	8/136, 5-6=-86/173, 104/207, 8-9=-86/173 I=-79/101, 11-12=-92/ I=-306/34	8) 3, 9) /67, 10	 Gable studs This truss h chord live lc This truss on the botto 3-06-00 tall 	s spaced at 2-0-0 of as been designed bad nonconcurrent has been designed om chord in all area by 2-00-00 wide v	bc. for a 10.0 with any d for a liv as where vill fit betw	D psf bottom other live load e load of 20.0 a rectangle veen the botto	ds. Ipsf				PROFESSIONA	74 ERED IL ENGINE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

chord and any other members.

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

November 18,2024

Page: 1

13

14

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	C01	Common Supported Gable	1	1	Job Reference (optional)	R85387452

Page: 1

November 18,2024

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

22-7-8

Scale = 1:48.6														⊣
Loading TCLL (Roof Snow = TCDL	25.0)	(psf) 25.0 7.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.21 0.03 0.23	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 185/148
BCLL BCDL		0.0* 10.0	Code	IBC2021	1/TPI2014	Matrix-R							Weight: 103 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 HF N 2x4 HF N 2x4 HF N 2x4 HF N 2x4 HF N Structura 6-0-0 oc I Rigid ceil	o.2 o.2 o.2 o.2 I wood she purlins, ex ing directly	athing directly applie cept end verticals. applied or 6-0-0 oc	BC Wi d or NC	EBS	26-27=-29/37, 25- 23-24=-29/37, 21- 19-20=-29/37, 18- 16-17=-29/37, 15- 7-20=-293/26, 6-2 4-24=-307/62, 3-2 8-19=-306/60, 9-1: 11-16=-311/82, 12	26=-29/3 23=-29/3 19=-29/3 16=-29/3 1=-306/6 5=-311/8 8=-304/6 2-15=-30	37, 24-25=-29/ 37, 20-21=-29/ 37, 17-18=-29/ 37, 14-15=-29/ 30, 5-23=-304/ 32, 2-26=-305/ 35, 10-17=-307 5/98	/37, /37, /37, /37 /66, /97, 7/62,	11) All t cap 12) Prov bea 27, uplit 25, uplit 16 a 13) This	pearings acity of vide me ring plat 36 lb up ft at join 38 lb up ft at join and 35 ll s truss h	are as 405 ps chanic te capa lift at ju t 23, 10 lift at ju t 18, 10 b uplift as bee	ssumed to be HF i. al connection (by able of withstand bint 14, 9 lb uplift 0 lb uplift at joint oint 26, 9 lb uplift 0 lb uplift at joint 15. m designed for a	No.2 crushing vothers) of truss to ing 36 lb uplift at joint at joint 21, 10 lb 24, 6 lb uplift at joint at joint 19, 10 lb 17, 6 lb uplift at joint moving concentrated
REACTIONS	bracing. (size) Max Horiz Max Uplift Max Grav	14=22-7-{ 17=22-7-{ 20=22-7-{ 27=2-7-{ 27=-65 (L 14=-36 (L 16=-6 (LC 18=-10 (L 21=-9 (LC 24=-10 (L 26=-38 (L 14=301 (L 14=301 (L 14=301 (L 16=352 (L 18=345 (L 20=333 (L 25=352 (L 27=301 (L	$\begin{array}{c} 3, 15 = 22 - 7 - 8, 16 = 22 \\ 3, 18 = 22 - 7 - 8, 19 = 22 \\ 3, 21 = 22 - 7 - 8, 23 = 22 \\ 3, 25 = 22 - 7 - 8, 26 = 22 \\ 3, 25 = 22 - 7 - 8, 26 = 22 \\ 4, 25 = 25 - 7 - 8, 26 = 22 \\ 5, 15, 17 = -10 \ (LC 15 \\ 5, 14), 25 = -5 \ (LC 14 \\ 5, 14), 25 = -6 \ (LC 14 \\ 5, 14), 25 = -6 \ (LC 14 \\ 5, 14), 25 = -6 \ (LC 14 \\ 5, 14), 25 = -6 \ (LC 14 \\ 5, 14), 25 = -6 \ (LC 14 \\ 5, 14), 25 = -6 \ (LC 14 \\ 5, 14), 25 = -6 \ (LC 14 \\ 5, 14), 25 = -6 \ (LC 14 \\ 5, 14), 25 = -6 \ (LC 14 \\ 5, 14), 25 = -6 \ (LC 14 \\ 5, 14), 25 = -6 \ (LC 14 \\ 5, 14), 25 = -6 \ (LC 14 \\ 5, 14), 25 = -6 \ (LC 14 \\ 5, 14), 25 = -6 \ (LC 14 \\ 5, 14), 25 = -6 \ (LC 14 \\ 5, 14), 25 = -6 \ (LC 14 \\ 5, 14), 25 = -6 \ (LC 14 \\ 5, 14), 26 = -6 \ (LC 14 \\ 5, 14), 26 = -6 \ (LC 14 \\ 5, 14), 26 = -6 \ (LC 14 \\ 5, 14), 26 = -6 \ (LC 14 \\ 5, 14), 26 = -6 \ (LC 14 \\ 5, 14), 26 = -6 \ (LC 14 \\ 5, 14), 26 = -6 \ (LC 14 \\ 5, 14), 26 = -6 \ (LC 14 \\ 5, 14), 26 = -6 \ (LC 14 \\ 5, 14), 26 = -6 \ (LC 14 \\ 5, 14), 26 = -6 \ (LC 14 \\ 5, 15 = -26 \ (LC 14 \\ 5, 14), 26 = -26 \ (LC 14 \\ 5, 14), 26 = -26 \ (LC 14 \\ 5, 14), 26 = -26 \ (LC 14 \\ 5, 15 = -26 \ (LC 14 \\ 5, 14), 26 = -26 \ (LC 14 \ (LC 14 \\ 5, 14), 26 = -26 \ (LC 14 \ (LC 14 \ (LC 1$	1) 7-8, 7-8, 7-8, 7-8, 7-8, 5), 1, 2), 1, 2), 3), 3), 10, 11, 13, 5), 4) 13), 5), 5), 5), 5), 5), 5), 5), 5	Vind: ASC Vasd=87mj II; Exp B; E Corner(3E) 11-3-12, Cc 14-3-12 to 2 exposed ; e members a Lumber DC Truss desig only. For s see Standa or consult c TCLL: ASC DOL=1.15) Cs=1.00; C applied whe Unbalanced design. All plates a	► 7-16; VUIE=110mg pb; TCDL=4.2psf; E nclosed; MWFRS (0-1-12 to 3-3-12, E pmer(3R) 11-3-12 to 22-5-12 zone; canti and vertical left and nd forces & MWFR DL=1.60 plate grip D yned for wind loads tuds exposed to win rd Industry Gable E yualified building de E 7-16; Pf=25.0 ps; ; Is=1.0; Rough Cat t=1.10; IBC 1607.1 ere required. d snow loads have I re 2x4 MT20 unless	on (3-see GCDL=6. envelope exterior(2 o 14-3-1; lever left right exp S for rea OCL=1.6(in the pland of (Lum D B; Parti 1.2 minir been cor	yond gust) opps; h=35ft; C and c-C N) 3-3-12 to 2, Exterior(2N) and right boosed;C-C for ctions shown; and of the trus at to the face) ils as applicab s per ANS/ITP OL=1.15 Plate ally Exp.; Ce= num roof live I hsidered for th	Cat.) ss , ble, tl 1. e :1.0; load is	load pan non LOAD (i of 250 els and concurre CASE(S)	Olb live at all pent witi) Sta	e and 40.01b dea panel points along h any other live l ndard	G ZHAO
FORCES TOP CHORD	(lb) - Max Tension 1-27=-29 3-4=-74/7 6-7=-86/1 9-10=-73 12-13=-7	ximum Com 3/46, 1-2=- 76, 4-5=-73 81, 7-8=-8 /110, 10-11 3/64, 13-14	pression/Maximum 73/64, 2-3=-72/70, /110, 5-6=-72/147, 6/181, 8-9=-72/147, =-74/75, 11-12=-72/ I=-293/46	6) 7) 8) 9) 70, 10	Gable requi Truss to be braced aga Gable studs This truss h chord live k) * This truss on the botto 3-06-00 tall	ires continuous bott fully sheathed from inst lateral moveme s spaced at 2-0-0 o has been designed bad nonconcurrent has been designed om chord in all area by 2-00-00 wide w	tom chor one fac ent (i.e. d c. for a 10.0 with any d for a liv s where ill fit betv	d bearing. e or securely liagonal web). 0 psf bottom other live load e load of 20.0 a rectangle veen the botto	ds. psf				PROFIESSIONA	74 ERED LLENGINE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

chord and any other members.

Job		Truss		Truss Ty	ре		Qty	Ply	2nd Street A	partments		
4319944		D01		Commo	n Supported	Gable	1	1	Job Referen	ice (optional	D)	R85387453
Builders FirstSou	urce (Arlington, W	/A), Arling	ton, WA - 98223,			Run: 8.63 S Sep 26 2	2024 Print: 8.	630 S Sep 2	6 2024 MiTek Ir	ndustries, Inc.	Fri Nov 15 18:24:14	Page: 1
PRMU	2024169	25				ID:nhWlg5GObfgorCq	7pW8QDByl	sYf-RfC?Ps	370Hq3NSgPqr	hL8w3ulTXbG	KWrCDoi7J4zJC?f	
	2024100		L		8-1-8				16-	-3-0		
City of Development & ISSUE	Puyallup Permitting Servic D PERMIT	es	Γ		8-1-8				8-	1-8		
Building Engineering	Planning Public Works						4x5 👟					
Fire	Traffic						5					
						23 🦯		24				
					1 <u>2</u>	4	$\langle \uparrow \rangle$	6				
					22	P		R	25			
					3				\searrow	7		
	-12		2	21 20	P					26	27	
	5-2		19 7								° 28	
			1	1								9
		_	P									The second secon
	1-2-1									1		
			^{KXXXXXXXXXXXXXX} 1	^{xxxxxx} 7	16	15	14	13	1:	2	11	XXX
			I			1	16-3-0					1
Scale = 1:36.1												
Loading		(psf)	Spacing	2-0-0		CSI	DEFL	-	in (loc)	l/defl L/d	PLATES	GRIP
TCLL (Roof Snow = 1	25.0)	25.0	Plate Grip DOL	1.15 1.15		TC 0. BC 0	.21 Vert(I	LL) I	n/a - n/a -	n/a 999 n/a 999) MT20	185/148
TCDL	20.0)	7.0	Rep Stress Incr	YES		WB 0.	13 Horiz	(TL) 0.	00 10	n/a n/a	a l	
BCLL BCDL		0.0*	Code	IBC2021/	TPI2014	Matrix-R					Weight: 66 lb	FT = 10%
				1)	Wind: ASCE	7-16: Vult=110mph (3	-second au	ist)	13) This	truss has be	een designed for a	moving concentrated
TOP CHORD	2x4 HF No.2			,	Vasd=87mph	; TCDL=4.2psf; BCDL	=6.0psf; h	=35ft; Cat.	load	of 250.0lb li	ve and 40.0lb dea	d located at all mid
WEBS	2x4 HF No.2 2x4 HF No.2				Corner(3E) 0	-1-12 to 3-1-12, Exteri	or(2N) 3-1	-12 to	nonc	oncurrent w	vith any other live l	pads.
OTHERS BRACING	2x4 HF No.2				16-1-4 zone;	cantilever left and righ	Exterior(2N it exposed	; end	LOAD C	ASE(S) St	andard	
TOP CHORD	Structural wo	od shea	thing directly applied	or	vertical left ar forces & MW	nd right exposed;C-C f FRS for reactions sho	for membe wn; Lumbe	rs and r				
BOT CHORD	Rigid ceiling	directly a	applied or 10-0-0 oc	2)	DOL=1.60 pla	ate grip DOL=1.60	e plane of	the truce				
REACTIONS	bracing. (size) 10)=16-3-0	. 11=16-3-0. 12=16-3	-0.	only. For stu	ds exposed to wind (n	ormal to th	e face),				
	13	s=16-3-0	, 14=16-3-0, 15=16-3	-0,	or consult qua	I Industry Gable End L alified building designe	Details as a er as per A	pplicable, NSI/TPI 1.				
	Max Horiz 18	8=10-3-0 8=52 (LC	11)	-0 3)	TCLL: ASCE DOL=1.15); I	7-16; Pf=25.0 psf (Lu s=1.0; Rough Cat B; F	m DOL=1.1 Partially Exp	15 Plate .; Ce=1.0;				
	Max Uplift 10)=-6 (LC ?=-7 (LC	14), 11=-21 (LC 15), 15), 13=-11 (LC 15),		Cs=1.00; Ct=	1.10; IBC 1607.11.2 n	ninimum ro	of live load	I			
	15 17	5=-11 (LC '=-22 (LC	C 14), 16=-7 (LC 14), C 14), 18=-10 (LC 10)	4)	Unbalanced s	snow loads have been	considere	d for this				
	Max Grav 10	=320 (L	C 38), 11=358 (LC 45), 5)	All plates are	2x4 MT20 unless othe	erwise indi	cated.				
	14	=336 (L	C 42), 15=350 (LC 43), 6)), 7)	Gable require Truss to be fu	es continuous bottom of ally sheathed from one	chord beari a face or se	ng. curelv				
	16 18	5=348 (L) 3=320 (L)	C 40), 17=358 (LC 39 C 29)), [,] 2)	braced again	st lateral movement (i.	.e. diagona	l web).				
FORCES	(lb) - Maximu Tension	um Comp	pression/Maximum	9)	This truss ha	s been designed for a	10.0 psf bo	ottom				are.
TOP CHORD	1-18=-303/38	8, 1-2=-8	88/55, 2-3=-71/73,	10)	chord live loa * This truss h	a nonconcurrent with as been designed for	any other li a live load	ive loads. of 20.0psf			TAOMIN	G ZHA
	3-4=-77/116, 6-7=-77/116,	4-5=-86 7-8=-71	/158, 5-6=-86/158, /74, 8-9=-88/55,		on the bottom 3-06-00 tall b	n chord in all areas wh v 2-00-00 wide will fit	ere a recta	ingle e bottom		1	T DF WA	SHIN
	9-10=-303/30	6 9 16-17-	=-23/29 15-16=-23/20)	chord and an	y other members.	Na O	in a		- 7	A CA	
201 01010	14-15=-23/2	9, 13-14	=-23/29, 12-13=-23/29), 11)),	capacity of 40	are assumed to be HF 05 psi.	INO.2 Crush	nng		1		
WEBS	5-14=-296/1	9, 10-11= 1, 4-15=-	23/29 ·309/79, 3-16=-308/79	12)),	Provide mech bearing plate	nanical connection (by capable of withstandi	others) of ng 10 lb un	truss to lift at joint		3	A AN	
	2-17=-315/10 8-11=-315/10	04, 6-13= 05	=-309/78, 7-12=-308/7	′ 8,	18, 6 lb uplift	at joint 10, 11 lb uplift	at joint 15,	7 lb uplift			PO 8540	74
NOTES					lb uplift at joir	nt 12 and 21 lb uplift at	t joint 11.	.,			ESSI	ENGIN
											INA	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

MiTek[®] 400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

ESSIONAL ENG

November 18,2024

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	E01	Common	5	1	Job Reference (optional)	R85387454

- II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -2-0-0 to 1-0-0, Interior (1) 1-0-0 to 5-5-8, Exterior(2R) 5-5-8 to 8-5-8, Interior (1) 8-5-8 to 12-11-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- nonconcurrent with any other live loads.
 14) No notches allowed in overhang and 20000 from left end and 20000 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.

load of 250.0lb live and 40.0lb dead located at all mid

panels and at all panel points along the Top Chord,

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of trusses and truss systems, see **ANS/TFPI Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com) 400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MITek-US.com

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	E02	Common	1	1	Job Reference (optional)	R85387455

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	F01	Common	2	1	Job Reference (optional)	R85387456

Loading TCLL (Roof Snow = TCDL BCLL BCDL	(psf) 25.0 25.0) 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2027	I/TPI2014	CSI TC BC WB Matrix-SH	0.69 0.21 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.04 0.00	(loc) 6-7 6-7 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 67 lb	GRIP 185/148 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 *Excep 2x4 HF No.2 *Excep 2x4 HF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 6=0-5-8, Max Horiz 8=48 (LC Max Uplift 6=-1 (LC Max Grav 6=709 (L	Dt* 8-2,6-4:2x6 DF Not eathing directly applie coept end verticals. / applied or 6-0-0 oc 8=0-5-8 : 13) 15), 8=-2 (LC 14) C 22), 8=709 (LC 21)	3) .2 4) d or 5) 6) 7) 8) 9)	TCLL: ASCE DOL=1.15); Cs=1.00; Ct= applied wher Unbalanced design. This truss ha load of 18.0 overhangs n All plates are Truss to be f braced agair Gable studs This truss ha chord live loa	57-16; Pf=25.0 psf is=1.0; Rough Cat i =1.10; IBC 1607.11 er equired. snow loads have b is been designed for psf or 2.00 times fla on-concurrent with e 2x4 MT20 unless ully sheathed from ist lateral movemer spaced at 2-0-0 oc is been designed for ad nonconcurrent with	(Lum D 3; Parti .2 minir een cor or great at roof lo other liv other liv oth	OL=1.15 Plai ally Exp.; Cei- num roof live nsidered for the er of min roof pad of 25.0 p ve loads. se indicated. e or securely iagonal web) 0 psf bottom other live loa	te =1.0; i load his f live sf on /).						
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: AS(Vasd=87n II; Exp B; Exterior(2 12-11-8 zr vertical lef forces & N DOL=1.6C 2) Truss des	(lb) - Maximum Con Tension 1-2=0/111, 2-3=-52 4-5=0/116, 2-8=-70 7-8=-173/353, 6-7= 3-7=0/179, 2-7=-64. CE 7-16; Vult=110mpt mph; TCDL=4.2psf; BC Enclosed; MWFRS (e Enclosed; MWFRS (e E) -2-0-0 to 1-0-0, Inte R) 5-5-12 to 8-5-12, Ir one; cantilever left and ft and right exposed; C MWFRS for reactions s 0 plate grip DOL=1.60 igned for wind loads ir	npression/Maximum 6/104, 3-4=-522/104, 7/214, 4-6=-722/208 -148/363 /287, 4-7=-73/267 n (3-second gust) DDL=6.0psf; h=35ft; C nvelope) and C-C rior (1) 1-0-0 to 5-5-1 nterior (1) 8-5-12 to d right exposed ; end -C for members and shown; Lumber n the plane of the trus	10 11 12 5at. 13 2, 14 s) * This truss h on the bottor 3-06-00 tall b chord and ar) All bearings capacity of 4) Provide mec bearing plate and 1 lb uplif) This truss ha load of 250.0 panels and a nonconcurre) No notches end and 200 scarf, whicher required at 2	has been designed in chord in all areas by 2-00-00 wide will by other members. are assumed to be 05 psi. hanical connection e capable of withsta it at joint 6. Is been designed fo bl live and 40.01b d it all panel points al nt with any other liv allowed in overhang 00 from right end o ver is larger. Minir -0-0 o.c. maximum	for a liv where fit betv HF No. (by oth nding 2 or a mov lead loc ong the re loads and 20 r 12" al num 1.3 betwee	e load of 20.0 a rectangle veen the both 2 crushing ers) of truss i 2 lb uplift at jo ving concentr ated at all mi 2 Top Chord, 5 0000 from lef pong rake from 5x4 tie plates en the stackin	Opsf om to sint 8 rated id it n s s				TLAOMIN TLAOMIN TLAOF WA	G ZHAO	
only. For	studs exposed to wind lard Industry Gable Fr	d (normal to the face),	le	chords. For plate betwee	edge-wise notching n each notch.	, provid	de at least on	ne tie			3	P 540	14 0 2	

see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

LOAD CASE(S) Standard

PREGISTERUSI REGISTER

UNAL L November 18,2024

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	J01	Jack-Open	3	1	Job Reference (optional)	R85387457

-2-0-0

2-0-0

Builders FirstSource (Arlington, WA), Arlington, WA - 98223,

PRMU20241695										
City of Puyallup Development & Permitting Services										
Building	Building Planning									
Engineering	Public Works									

Traffic

Fire

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Nov 15 18:24:15 ID:gVrLthXTVb0JMrX5ONKbmlylu1s-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-10-15

1-10-15

2-0-0

2-0-0

Page: 1

$4 \frac{12}{1}$

Scale = 1:25

Plate Offsets (X, Y): [5:0-3-0,0-1-4]

Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC20	21/TPI2014	CSI TC BC WB Matrix-R	0.53 0.15 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 -0.02	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 8 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 HF N 2x4 HF N 2x4 HF N Structural 2-0-0 oc p Rigid celli bracing. (size) Max Horiz Max Uplift Max Grav	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	athing directly applie cept end verticals. applied or 10-0-0 oc nical, 4= Mechanica 11) : 20), 4=-23 (LC 20), : 10) C 32), 4=30 (LC 5), 5	d or (; , 7 , 8 , 9 , 9 , 1, 1 , 1, 1 , 1 , 1 , 1 , 1 , 1 , 1 ,	 This truss ha load of 20.0 overhangs n This truss ha chord live loa * This truss lo on the botton 3-06-00 tall l chord and ar All bearings capacity of 4 Refer to gird Provide mect bearing place Z 3 lb uplif This truss ha 	as been designed f psf or 2.00 times fl on-concurrent with as been designed f ad nonconcurrent v nas been designed m chord in all areas by 2-00-00 wide wi ny other members. are assumed to be 05 psi. er(s) for truss to tr thanical connection e capable of withst t at joint 4 and 94 ll as been designed f	or greate at roof lo or a 10.0 with any for a liv s where Il fit betv HF No. uss con h (by oth anding 6 b uplift a or a mo	er of min roo pad of 25.0 p ve loads.) psf bottom other live load e load of 20. a rectangle veen the bott 2 crushing nections. ers) of truss i0 lb uplift at t joint 3. ving concenti	f live sf on ads. Opsf om to joint rated					
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: AS(Vasd=87n II; Exp B; Exterior(2 zone; cani	(Ib) - Max Tension 2-5=-367/ 4-5=0/0 CE 7-16; Vu nph; TCDL= Enclosed; M E) -2-0-0 to tilever left ar	It=110mph 4.2psf; BC WFRS (en 1-0-0, Inter nd right exp	pression/Maximum /77, 2-3=-60/39 (3-second gust) DL=6.0psf; h=35ft; C ivelope) and C-C rior (1) 1-0-0 to 1-10- bosed ; end vertical I	I Cat. -13 eft	Dad of 250.0 panels and a nonconcurre	at all panel points a at all panel points a nt with any other li Standard	long the	ated at all m Top Chord,	Id			نو	ALA OMIN	G ZHAO

zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOI = 1.15) le=1 0; Paugh Cat B: Partially Exp : Ca=1 0;

DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.

3) Unbalanced snow loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MITek-US.com

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	J02	Jack-Open	3	1	Job Reference (optional)	R85387458

PRMU2	PRMU20241695									
City of P Development & Po ISSUED	Puyallup ermitting Services PERMIT									
Building	Planning									
Engineering	Public Works									

Traffic

2-5-10

-2-0

Fire

4

Page: 1

Scale = 1:23.1

Plate Offsets (X, Y): [2:0-2-4,0-1-8], [5:0-2-0,0-0-8]

	() [. , ,												
Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC202	1/TPI2014	CSI TC BC WB Matrix-R	0.48 0.22 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.01 -0.03	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 10 lb	GRIP 185/148 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 HF No 2x4 HF No 2x4 HF No Structural 2-0-0 oc p Rigid ceilii bracing. (size) Max Horiz Max Uplift Max Grav	0.2 0.2 0.2 0.2 3= Mecha 5=0-5-8 5=38 (LC 3=-23 (LC 5=-55 (LC 3=309 (LC 5=465 (LC	athing directly applie cept end verticals. applied or 10-0-0 oc anical, 4= Mechanica 10) 2 14), 4=-42 (LC 20), 2 10) 2 32), 4=-66 (LC 31), 2 21)	4 d or 6 ; I, 7 8 9 9 1	 This truss ha load of 20.0 overhangs n This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar All bearings capacity of 4 Refer to gird Provide mec bearing plate 5, 23 lb uplift This truss ha load of 250 (f 	as been designed for psf or 2.00 times fits on-concurrent with as been designed for ad nonconcurrent we has been designed in chord in all areas by 2-00-00 wide will by other members. are assumed to be 05 psi. er(s) for truss to tru- hanical connection a capable of withstat at joint 3 and 42 lit is been designed for blue and 40 0lb c	or greate at roof le orter li or a 10.0 vith any for a liv s where Il fit betw HF No. uss con (by oth anding 5 o uplift a or a mov	er of min roof bad of 25.0 p re loads.) psf bottom other live loa e load of 20.1 a rectangle reen the bott 2 crushing nections. ers) of truss i 5 lb uplift at j t joint 4. ring concentr	live sf on ds. Dpsf om oom vid						
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: AS Vasd=87r II; Exp B; Exterior(2 zone; can and right MWFRS I	(lb) - Maxi Tension 2-5=-432/ 4-5=0/0 CE 7-16; Vul mph; TCDL=- Enclosed; M (E) -2-0-0 to tillever left ar exposed;C-C for reactions	mum Com 234, 1-2=0 t=110mph 4.2psf; BC WFRS (er 1-0-0, Inte id right exp : for memb shown; Lu	pression/Maximum 0/77, 2-3=-72/42 (3-second gust) DL=6.0psf; h=35ft; C ivelope) and C-C rior (1) 1-0-0 to 3-10- posed ; end vertical li- pors and forces & imber DOL=1.60 plat	L Cat. -3 eft re	panels and a nonconcurre OAD CASE(S)	and the points a nt with any other liv Standard	long the	Top Chord,				يو.	TLA OMIN	G ZHAO	

3x4 🛛

2-0-0

- grip DOL=1.60 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.
- Unbalanced snow loads have been considered for this 3) design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	J03	Jack-Open	3	1	Job Reference (optional)	R85387459

Page: 1

Plate Offsets (X, Y): [2:0-2-9.Edge]

	, (,, , ,). [<u>2</u> .0	2 0,2090]												
Loading TCLL (Roof Snow TCDL BCLL	= 25.0)	(psf) 25.0 7.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC202	1/TPI2014	CSI TC BC WB Matrix-R	0.79 0.34 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.01 0.05	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 185/148
BCDL		10.0											Weight: 13 lb	FT = 10%
LUMBER TOP CHORI BOT CHORI WEBS BRACING TOP CHORI BOT CHORI REACTIONS	 2x4 HF N 2x4 HF N 2x4 HF N 2x4 HF N Structura 2-0-0 oc Rigid ceil bracing. (size) Max Horiz Max Uplift Max Grav 	0.2 0.2 0.2 I wood she purlins, ex- purlins,	athing directly applie cept end verticals. applied or 10-0-0 oc inical, 4= Mechanica 10) 2 14), 4=-46 (LC 20), 2 10) 2 32), 4=121 (LC 31)	4) 5) d or 6) : 1, 7) 8) 9)	This truss ha load of 20.0 overhangs n This truss ha chord live loo * This truss I on the botton 3-06-00 tall I chord and at All bearings capacity of 4 Refer to gird Provide mec bearing plate 5, 35 lb uplif	as been designed psf or 2.00 times on-concurrent wit as been designed ad nonconcurrent has been designe n chord in all area y 2-00-00 wide w ny other members are assumed to b 05 psi. er(s) for truss to hanical connection e capable of withs a tipint 3 and 46	for greate flat roof lc h other lin i for a 10.0 with any d for a liv as where will fit betw s. be HF No. truss conion (by oth standing 5 lb uplift a	er of min rool pad of 25.0 p (e loads.) psf bottom other live loa e load of 20.1 a rectangle veen the bott 2 crushing nections. ers) of truss i 0 lb uplift at j t joint 4.	f live isf on ads. Opsf om to joint					
FORCES	(lb) - Max Tension	5=446 (LC imum Com	C 21) pression/Maximum		load of 250.0 panels and a	blb live and 40.0lb at all panel points at with any other	dead loc along the	ated at all m Top Chord,	id					
TOP CHORE BOT CHORE	2-5=-495/ 2 4-5=0/0	/266, 1-2=0)/77, 2-3=-102/53	L	DAD CASE(S)	Standard	iive loads							
NOTES														
 Wind: AS Vasd=87 II; Exp B Exterior(zone; ca and right MWFRS grip DOL TCLL: A 	SCE 7-16; Vu 7mph; TCDL= ; Enclosed; M 2E) -2-0-0 to ntilever left a t exposed;C-(for reactions _=1.60 SCE 7-16; Pf	It=110mph 4.2psf; BC 1WFRS (en 1-0-0, Intel nd right exp C for memb shown; Lu =25.0 psf (l	(3-second gust) DL=6.0psf; h=35ft; C ivelope) and C-C rior (1) 1-0-0 to 5-10- bosed ; end vertical I bers and forces & mber DOL=1.60 plat Lum DOL=1.15 Plate	Cat. -3 eft ee								4	TUNOMIN Stranger	G ZHAO SHINGTON

2-0-0

- DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.
- 3) Unbalanced snow loads have been considered for this design.

Job	Truss		Truss T	уре		Qt	у	Ply	2nd Stree	t Apartm	ents		
4319944	J04		Jack-C	Open		3		1	Job Refe	ence (or	tional		R85387460
Builders FirstSource (Arlingtor	, WA), Arlin	gton, WA - 98223,			Run: 8	3.63 S Sep 26 2024	Print: 8.	630 S Sep 2	6 2024 MiTe	k Industrie	s, Inc. F	ri Nov 15 18:24:15	Page: 1
PRMI 1202416	95				ID:duz	5INZj1CG1c8hUVo	M3rjylu1	q-RfC?PsB7	'0Hq3NSgPq	nL8w3ulT	XbGKW	rCDoi7J4zJC?f	
		-2-0-0		1-10-15	5			8	8-0-0				
Development & Permitting Se ISSUED PERMIT Building Plannir	rvices	2-0-0		1-10-15	5			6	6-1-1				
Engineering Public We	orks												
Fire				12 4 Г									
				4x5 u	0								
				6	3	M							
				2									
6-10				0									9-10
1-2-0		1										Π	,
			5									X	
				\bigotimes		7		8		9		4	
				4x5 II									
				1-10-15	5			8	8-0-0				
Scale = 1:23.7				1-10-15	5			6	6-1-1				
Plate Offsets (X, Y): [2:0-	2-8,0-1-12], [5:0-2-8,0-0-4]											
Loading	(psf)	Spacing	2-0-0		CSI		DEFL		in (loc)	l/defl	L/d	PLATES	GRIP
TCLL (Roof Snow = 25.0)	25.0	Plate Grip DOL Lumber DOL	1.15 1.15		TC BC	0.53 0.51	Vert(I	L) -0. CT) -0.	.15 4-5 .30 4-5	>627 >311	240 180	MT20	185/148
TCDL	7.0	Rep Stress Incr	YES	1/TDI2014	WB Motrix	0.00	Horz(CT) 0.	.04 3	n/a	n/a		
BCDL	10.0	Code	IBC202	1/1912014	Matrix-	ĸ						Weight: 15 lb	FT = 10%
LUMBER			5)	This truss has	s been d	esigned for a 10.	0 psf bo	ottom					
TOP CHORD 2x4 HF No BOT CHORD 2x4 HF No).2).2		6)	chord live loa * This truss h	d nonco as been	ncurrent with any designed for a liv	other li /e load	ve loads. of 20.0psf					
WEBS 2x4 HF No	0.2			on the bottom 3-06-00 tall b	n chord ii v 2-00-0	n all areas where 0 wide will fit bet	a recta ween th	ngle e bottom					
TOP CHORD Structural	wood she	athing directly applied	lor 7)	chord and an	y other n	nembers. med to be HF No	2 crush	nina					
BOT CHORD Rigid ceili	urlins, exe ng directly	cept end verticals. applied or 10-0-0 oc	•	capacity of 40)5 psi.								
bracing. REACTIONS (size)	3= Mecha	anical, 4= Mechanical,	9)	Provide mech	nanical c	onnection (by oth	ners) of	truss to					
Max Horiz	5=0-5-8 5=28 (I C	11)		5 and 62 lb u	capable plift at jo	of withstanding a	51 Ib up	lift at joint					
Max Uplift	3=-62 (LC	20), 5=-51 (LC 10)	10)) This truss has load of 250.0	s been d Ib live ar	esigned for a mo nd 40.0lb dead lo	ving co cated a	ncentrated					
wax Grav	5=349 (LC 5=427 (LC	C 20)		panels and at nonconcurrer	t all pane nt with ar	el points along the	e Top C s.	hord,					
FORCES (lb) - Maxi Tension	mum Com	pression/Maximum	11	 Hanger(s) or provided suffi 	other co	nnection device(s) shall ated loa	be ad(s) 7 lb					
TOP CHORD 2-5=-336/ BOT CHORD 4-5=0/0	257, 1-2=0)/77, 2-3=-44/61		down and 24	lb up at	2-0-12, and 8 lb	down a	nd 10 lb					
NOTES				bottom chord	. The de	esign/selection of	such c	onnection					
 Wind: ASCE 7-16; Vul Vasd=87mph; TCDL= 	t=110mph 1.2psf; BC	(3-second gust) DL=6.0psf; h=35ft; Ca	at. 12	device(s) is tr 2) In the LOAD	ne respo CASE(S	nsibility of others) section, loads a	pplied t	o the face					
II; Exp B; Enclosed; M Exterior(2E) -2-0-0 to	WFRS (en	velope) and C-C rior (1) 1-0-0 to 1-10-3	× ۱۵	of the truss a	re noted Standa	as front (F) or ba	ick (B).					OMIN	GZ
zone; cantilever left ar	d right exp	posed ; end vertical le	ft 1)	Dead + Sno	w (balan	iced): Lumber Ind	rease=	1.15, Plate	•			ALA F WA	SHIG
MWFRS for reactions	shown; Lu	imber DOL=1.60 plate		Increase=1. Uniform Loa	າວ ids (lb/ft)	1					3	ST.	A Carl
grip DOL=1.60 2) TCLL: ASCE 7-16; Pf=	25.0 psf (Lum DOL=1.15 Plate		Vert: 1-2= Concentrate	=-64, 2-3 ed Loads	=-64, 4-5=-20 (lb)							
DOL=1.15); Is=1.0; Ro Cs=1.00; Ct=1.10; IBC	ugh Cat B 1607.11.	3; Partially Exp.; Ce=1 2 minimum roof live lo	.0; ad	Vert: 7=5	(F), 8=2	(F), 9=-65 (F)							
applied where required 3) Unbalanced snow load	l. Is have be	en considered for this	5								1	F 540	74 5 2
design.	eignod for	r greater of min roof !!									2	FESC	ERECITY
load of 20.0 psf or 2.0) times flat	t roof load of 25.0 psf	on									-SIONA	TRU
overnangs non-concu	rent with c	DUTIEF IIVE IOADS.										November	18,2024

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	J05	Jack-Open	3	1	Job Reference (optional)	R85387461

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville, CA, 95661

916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	J06	Roof Special	3	1	Job Reference (optional)	R85387462

PRMU20241695

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Nov 15 18:24:15

Page: 1

Scale = 1:33.6

applied where required.

3)

design.

Unbalanced snow loads have been considered for this

Plate Offsets (X, Y): [3:0-3-0.0-0-12], [7:0-1-8.0-1-8]

	(, .). [0.0 0 0,0 0]	, [e . e,e . e]											
Loading TCLL	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.95	DEFL Vert(LL)	in -0.03	(loc) 8-9	l/defl >999	L/d 240	PLATES MT20	GRIP 185/148
(ROOT Show =	= 25.0) 7.0	Rep Stress Incr	1.15 YES		BC WB	0.20	Horz(CT)	-0.06	8-9 7	>999 n/a	180 n/a		
BCH	0.0*	Code	IBC2021	/TPI2014	Matrix-P	0.14	11012(01)	0.00	'	n/a	Π/a		
BCDL	10.0											Weight: 38 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural wood she except end verticals, 3-5. Rigid ceiling directly	athing directly applie , and 2-0-0 oc purlins applied or 10-0-0 oc	4) 5) 6) 4, 2) 7)	This truss ha load of 20.0 p overhangs no Provide adec This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b	s been designed f osf or 2.00 times fl on-concurrent with juate drainage to p s been designed f d nonconcurrent v ias been designed n chord in all areas by 2-00-00 wide wi	or great at roof lo other liv orevent or a 10.0 with any for a liv s where Il fit betv	er of min roo bad of 25.0 p ve loads. water pondin 0 psf bottom other live loa e load of 20. a rectangle veen the bott	f live osf on g. ads. Opsf					
	bracing.		8)	chord and an All bearings a	y other members.	HE No	2 crushing						
REACTIONS	Max Horiz 9=67 (LC Max Uplift 7=-43 (LC Max Grav 7=601 (LC	inical, 9=0-5-8 11) : 11), 9=-61 (LC 10) C 48), 9=707 (LC 32)	9) 10)	capacity of 4 Refer to girde Provide mech bearing plate	05 psi. er(s) for truss to tru hanical connection capable of withsta	uss conr i (by oth anding 4	ections. ers) of truss 3 lb uplift at	to ioint					
FORCES	(lb) - Maximum Com	pression/Maximum		7 and 61 lb u	plift at joint 9.	Ū							
TOP CHORD BOT CHORD WEBS	1-2=0/77, 2-3=-497/4 4-7=-353/63, 2-9=-60 8-9=-177/86, 7-8=-10 3-8=0/179, 3-7=-614	49, 3-4=-35/38, 4-5=(62/267 01/396, 6-7=0/0 4/119, 2-8=0/403	11))/0, 12)	This truss ha load of 250.0 panels and a nonconcurre Graphical pu	s been designed f Ib live and 40.0lb t all panel points a nt with any other li rlin representation	or a mov dead loo long the ve loads does no	ated at all m Top Chord, depict the	rated iid size					
NOTES			,	or the orienta	ation of the purlin a	long the	top and/or						
 Wind: AS Vasd=87r, II; Exp B; Exterior(2 Exterior(2 right expo for memb Lumber D TCLL: AS DOL=1.1! Cs=1.00; 	CE 7-16; Vult=110mph mph; TCDL=4.2psf; BC Enclosed; MWFRS (en 2E) -2-0-0 to 1-0-0, Inter 2E) 5-6-12 to 8-0-0 zone based ; end vertical left a eres and forces & MWFF DOL=1.60 plate grip DO CCE 7-16; Pf=25.0 psf (I 5); Is=1.0; Rough Cat B Ct=1.10; IBC 1607.11.2	(3-second gust) DL=6.0psf; h=35ft; C velope) and C-C rior (1) 1-0-0 to 5-6-1. ; cantilever left and nd right exposed;C-C RS for reactions show L=1.60 Lum DOL=1.15 Plate ; Partially Exp.; Ce= 2 minimum roof live le	at. 13) 2, ; vn; LO . 1) .0; pad	bottom chord Hanger(s) or provided suff Ib down and design/select responsibility AD CASE(S) Dead + Snot Increase=1. Uniform Loo Vert: 1-2:	I. other connection of icient to support of 122 Ib up at 5-11- tion of such conne of others. Standard ww (balanced): Lun 15 ads (Ib/ft) =-64, 2-3=-64, 3-4:	device(s oncentra 12 on to ction de nber Inc =-64, 4-4) shall be ited load(s) ² up chord. Th vice(s) is the rease=1.15, 5=-64, 6-9=-2	428 e Plate 20			A A A	TUNOMIN TUNOMIN TUNOTINA TUNOTINA TUNOTINA TUNOTINA	G ZHAO SHINCTON

Concentrated Loads (lb) Vert: 14=-360

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	J07	Jack-Closed	3	1	Job Reference (optional)	R85387463

Page: 1

Builders FirstSource (Arlington, WA), Arlington, WA - 98223,

Scale = 1:33.5

Plate Offsets (X, Y): [2:0-2-8,0-1-12], [4:0-3-0,0-0-8], [8:0-2-0,0-0-12]

	.). [2:0 2 0,0 : 12]; [e e e;e e e]; [e:	0 2 0,0 0 .2]											
Loading TCLL (Roof Snow = 25. TCDL BCLL BCDL	(psf) 25.0 0) 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2021/TPI	12014	CSI TC BC WB Matrix-SH	0.58 0.40 0.11	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.11 -0.21 0.00	(loc) 7-8 7-8 7	l/defl >840 >431 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 31 lb	GRIP 185/148 FT = 10%	
LUMBER TOP CHORD 2: BOT CHORD 2: WEBS 2: BRACING TOP CHORD S BOT CHORD R b REACTIONS (si: Ma Ma FORCES ((TOP CHORD 2: MA FORCES ((TOP CHORD 2: MA BOT CHORD 7 WEBS 3 BOT CHORD 7 WEBS 3 NOTES 1) Wind: ASCE 1 Vasd=87mph II; Exp B; Enc Exterior(2E) - zone; cantilev and right expy MWFRS for m grip DOL=1.6 2) TCLL: ASCE DOL=1.15); Is CS=1.00; CL= applied where 3) Unbalanced s design. 4) This truss has load of 20.0 p overhangs no	x4 HF No.2 x4 HF No.2 x4 HF No.2 x4 HF No.2 x4 HF No.2 structural wood she -0-0 oc purlins, es ligid ceiling directly racing. ze) 7= Mecha ax Horiz 8=88 (LC ax Uplift 7=-2 (LC ax Uplift 7=-2 (LC ax Grav 7=438 (LC b) - Maximum Con ension -8=-481/276, 1-2=- -4=-93/28, 4-5=-5/ -8=-212/313, 6-7=- -7=-331/219 7-16; Vult=110mpf ; TCDL=4.2psf; BC dosed; MWFRS (e 2-0-0 to 1-0-0, Inte ver left and right ex psed;C-C for mem eactions shown; Lu 0 7-16; Pf=25.0 psf s=1.0; Rough Cat I 1.10; IBC 1607.11 e required. show loads have bi s been designed fo so for 2.00 times fla on-concurrent with	eathing directly applie copt end verticals. / applied or 6-0-0 oc anical, 8=0-5-8 : 13) 14), 8=-45 (LC 10) C 21), 8=566 (LC 21 npression/Maximum 0/77, 2-3=-406/98, 0, 4-7=-313/104 0/0 n (3-second gust) DL=6.0psf; h=35ft; (nvelope) and C-C invelope) and C-C invelo	5) Thi cha 6) * Ti on 3-00 bed or 7) All cap 8) Re 9) Pro- bez 8 a 10) Thi loa 10) Thi loa par par nor LOAD Cat. te e =1.0; load his live sf on	is truss has ord live load his truss has the bottom 06-00 tall by ord and any bearings a pacity of 40 efer to girde and 2 lb upl is truss has ad of 250.01 nels and at nconcurrer CASE(S)	s been designed f d nonconcurrent t as been designed o chord in all area y 2-00-00 wide wi y other members. are assumed to be 5 psi. fr(s) for truss to the nanical connection capable of withst lift at joint 7. s been designed f b live and 40.0lb all panel points a tt with any other li Standard	for a 10. with any d for a liv s where ill fit betv. e HF No. russ conn n (by oth anding 2 for a mo dead loc along the ive loads	D psf bottom other live loa e load of 20. a rectangle veen the bott 2 crushing nections. ers) of truss t 5 lb uplift at j ving concentri ving concentri ated at all m a Top Chord, s.	ads. Opsf com to joint rated id			and the second se	HORESSIONA Novembe	G ZHLAO SHUNGING TA ERED IL EMONIO T 18,2024	

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	J08	Jack-Closed	3	1	Job Reference (optional)	R85387464

Page: 1

Builders FirstSource (Arlington, WA), Arlington, WA - 98223,

Plate Offsets (X, Y): [7:0-2-4.0-1-8]

	(X, 1). [7.0	2 4,0 1 0]												
Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC202	21/TPI2014	CSI TC BC WB Matrix-P	0.86 0.66 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.21 -0.43 -0.42	(loc) 7-8 7-8 5	l/defl >427 >214 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 33 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 HF N 2x4 HF N 2x4 HF N Structura 2-8-10 oc Rigid ceil bracing. (size) Max Horiz Max Uplift	0.2 0.2 0.2 I wood she purlins, e ing directly 5= Mecha 8=0-5-8 8=98 (LC 5=-170 (L	athing directly applie xcept end verticals. applied or 10-0-0 oc inical, 7= Mechanica 11) C 35), 7=-24 (LC 14	4 5 2d or 6 3 1, 7 1, 8 9), 9	 This truss ha load of 20.0 overhangs n This truss ha chord live loa * This truss h on the bottor 3-06-00 tall t chord and ar All bearings capacity of 4 Refer to gird Provide med bearing plate 	as been designed for psf or 2.00 times fla on-concurrent with as been designed for ad nonconcurrent with as been designed m chord in all areas by 2-00-00 wide will by other members. are assumed to be 05 psi. er(s) for truss to tru hanical connection a canable of withsta	or great at roof le other li or a 10. vith any for a liv where l fit betw HF No. uss con (by oth	er of min rooi pad of 25.0 p /e loads.) psf bottom other live loa e load of 20. a rectangle ween the bott 2 crushing nections. ers) of truss 0 lb uplift at	f live sf on ads. 0psf om to					
FORCES	Max Grav (lb) - Max	8=-40 (LC 5=273 (LC 8=463 (LC imum Corr	C 10) C 36), 7=772 (LC 21) C 21) npression/Maximum	^{),} 1	8, 170 lb upl 0) This truss ha load of 250.0 panels and a	ift at joint 5 and 24 as been designed fo blb live and 40.0lb o at all panel points al	lb uplift or a mo lead loo ong the	at joint 7. ving concenti ated at all m Top Chord.	rated id					
TOP CHORD	Tension 2-8=-387/ 3-4=-88/1	/262, 1-2=0 21, 4-5=-9)/77, 2-3=-79/91, 7/36, 4-7=-690/118	L	nonconcurre OAD CASE(S)	nt with any other liv Standard	e loads							
BOT CHORD WEBS	7-8=-254/ 3-7=-112/	/132, 6-7=0 /259	0/0											
NOTES 1) Wind: AS(Vasd=87r II; Exp B; Exterior(2 zone; can and right of	CE 7-16; Vu nph; TCDL= Enclosed; M E) -2-0-0 to tilever left a exposed;C-0	It=110mph 4.2psf; BC 1WFRS (er 1-0-0, Inte nd right ex C for memb	(3-second gust) DL=6.0psf; h=35ft; C ivelope) and C-C rior (1) 1-0-0 to 9-10- posed ; end vertical I pers and forces &	Cat. -3 eft								2	TIAOMIN TIAOMIN	G ZHAO SHINGTON

MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate 2) DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.

3) Unbalanced snow loads have been considered for this design.

> 400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

ROADSIGISTERED ASSIONAL ENGINE

November 18,2024

STONAL ENGINE

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	J09	Jack-Closed	3	1	Job Reference (optional)	R85387465

Builders FirstSource (Arlington, WA), Arlington, WA - 98223,

Loading TCLL (Roof Snow = TCDL BCLL BCDL	(psf) 25.0 25.0) 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC202 ⁻	1/TPI2014	CSI TC BC WB Matrix-P	0.87 0.66 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.21 -0.43 -0.43	(loc) 8-9 8-9 6	l/defl >427 >214 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 36 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural wood she 2-2-0 oc purlins, ex Rigid ceiling directly bracing. (size) 5=0-1-8, (Mechanic Max Horiz 9=108 (L0 Max Uplift 5=-136 (L 8=-19 (L0 Max Grav 5=290 (L0 8=691 (L0	athing directly applied cept end verticals. applied or 9-11-7 oc 6= Mechanical, 8= cal, 9=0-5-8 C 11) C 36), 6=-12 (LC 10) C 14), 9=-36 (LC 10) C 37), 6=303 (LC 38) C 21), 9=444 (LC 30)	3) 4) d or 5) 6) 7) , 8) 9)	Unbalanced design. This truss ha load of 20.0 overhangs n This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings capacity of 4 Refer to gird Provide mec bearing plate	snow loads have b s been designed fi psf or 2.00 times fl on-concurrent with is been designed fi ad nonconcurrent v has been designed in chord in all areas by 2-00-00 wide will y other members. are assumed to be 05 psi. er(s) for truss to tr hanical connection at joint(s) 5.	or great at roof li other li or a 10. vith any for a liv s where Il fit betw HF No. uss con i (by oth	nsidered for the er of min roof bad of 25.0 p: ve loads. D psf bottom other live loa e load of 20.0 a rectangle veen the botto 2 crushing nections. ers) of truss t	his Flive sf on ds. Dpsf om to					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASS	(lb) - Maximum Com Tension 2-9=-369/253, 1-2=(3-4=-114/108, 4-5=- 4-8=-610/89 8-9=-284/144, 7-8=(3-8=-126/295 CE 7-16; Vult=110mph	npression/Maximum 0/77, 2-3=-73/88, 85/37, 5-6=-49/49, 0/0	11	 bearing plate 9, 12 lb uplift uplift at joint Beveled plate surface with This truss has load of 250.0 panels and a nonconcurre 	e capable of withsta at joint 6, 19 lb up 5. e or shim required truss chord at joint is been designed fo blb live and 40.0lb of t all panel points a nt with any other li	to provi (s) 5. or a mo dead loo long the	kie of truss of truss of truss is and 136 de full bearing ving concentr cated at all mi Top Chord, 5.	oint Ib g rated				LAOMIN TA OMIN	G ZHAO

- (1) Wind: ASCE 7-16; Vull=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=6.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -2-0-0 to 1-0-0, Interior (1) 1-0-0 to 11-10-3 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MITek-US.com

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	J10	Jack-Closed	3	1	Job Reference (optional)	R85387466

Plate Offsets (X, Y): [9:0-2-4,0-1-8]

		-												
Loading TCLL (Roof Snow = TCDL BCLL BCDL	- 25.0)	(psf) 25.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2021	/TPI2014	CSI TC BC WB Matrix-P	0.86 0.66 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.21 -0.43 -0.43	(loc) 9-10 9-10 7	l/defl >427 >214 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 38 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural wo 2-2-0 oc purli Rigid ceiling bracing.	ood shea ins, exc directly	athing directly applied ept end verticals. applied or 9-5-12 oc	2) 3) ¹ or 4) al 5)	TCLL: ASCE DOL=1.15); Cs=1.00; Ct= applied when Unbalanced design. This truss ha load of 20.0 overhangs n This truss ha	: 7-16; Pf=25.0 psf Is=1.0; Rough Cat =1.10; IBC 1607.11 re required. snow loads have b as been designed for psf or 2.00 times flat on-concurrent with as been designed for	(Lum D B; Parti 2 minin een con or great at roof I other li or a 10.	OL=1.15 Pla ally Exp.; Ce num roof live nsidered for t er of min roo bad of 25.0 p ve loads. 0 psf bottom	tte =1.0; e load this f live osf on					
REACTIONS	(Size) 3= 9= Max Horiz 10 Max Uplift 5= 10 Max Grav 5= 7= 10	:-13, 0 -118 (L -134 (L0 -12 (LC -12 (LC -31 (L0 -303 (LC -303 (LC -444 (L	=0+10, 7= Mechanical 10=0-58 C 11) C 37), 6=-26 (LC 10), 10), 9=-13 (LC 14), C 10) 3 8), 6=317 (LC 39), 2 40), 9=613 (LC 21), C 30)	6) 7) 8) 9)	chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar All bearings capacity of 4 Refer to gird Provide mec	ad nonconcurrent was been designed in chord in all areas by 2-00-00 wide wil by other members. are assumed to be 05 psi. er(s) for truss to tru banical connection	vith any for a liv where I fit betv HF No uss cor	other live load re load of 20. a rectangle veen the both 2 crushing nections.	ads. Opsf tom					
FORCES	(lb) - Maximu Tension 2-10=-369/24 3-4=-140/100	ım Com∣ 43, 1-2=), 4-5=-9	pression/Maximum 0/77, 2-3=-73/85, 93/37, 5-6=-49/49,	3) 10)	bearing plate Provide mec bearing plate 10, 12 lb upli	e at joint(s) 5, 6. hanical connection capable of withsta ift at joint 7, 13 lb u	(by oth (by oth anding 3 plift at j	ers) of truss 31 lb uplift at oint 9, 134 lb	to joint					44.
BOT CHORD WEBS	9-10=-314/15 3-9=-139/330	+- <i>9</i> =-53 55, 8-9=)	0/0	11)	uplift at joint Beveled plat surface with	5 and 26 lb uplift at e or shim required truss chord at joint	t joint 6 to provi (s) 5, 6	de full bearin	ng				JAOMIN	G ZHAO
NOTES 1) Wind: ASV Vasd=87r II; Exp B; Exterior(2 zone; can and right (MV/EPS f	CE 7-16; Vult=1 mph; TCDL=4.2 Enclosed; MWF 2E) -2-0-0 to 1-0 tillever left and r exposed;C-C fo for reactions sho	10mph psf; BCI FRS (en -0, Inter right exp r memb	(3-second gust) DL=6.0psf; h=35f; Ca velope) and C-C ior (1) 1-0-0 to 13-10- losed ; end vertical le ers and forces & mber D0 =1 60 plate	12) at. -3 LO ft) This truss ha load of 250.0 panels and a nonconcurre PAD CASE(S)	as been designed fo blb live and 40.0lb o at all panel points al nt with any other liv Standard	or a mo dead loo long the ve loads	ving concent cated at all m Top Chord, S.	rated iid					TA JE

MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

PEGISTEREY OF

UNAL L. November 18,2024

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	J11	Jack-Closed	3	1	Job Reference (optional)	R85387467

Plate Offsets (X, Y): [10:0-1-8.0-1-8]

	(, .). [1											
Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2021	/TPI2014	CSI TC BC WB Matrix-P	0.86 0.66 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.21 -0.43 -0.43	(loc) 10-11 10-11 8	l/defl >427 >214 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 41 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural w 2-2-0 oc pur Rigid ceiling bracing. (size) 5= Max Horiz 11 Max Uplift 5= 7= 10 Max Grav 5= 7= 10	e e e e e e e c h e e c h e c h e c t e e c h e c t e c t e c h e c h e c h e c t e c h e c t y e c t o c t o c t o c c t o c c t o c c t o c c c c	athing directly applie cept end verticals. applied or 9-0-15 oc 3=0-1-8, 7=0-1-8, 8= al, 10= Mechanical, .C 11) C 38), 6=-28 (LC 10), 10), 8=-12 (LC 10), 14), 11=-27 (LC 10), C 39), 6=318 (LC 40) C 41), 8=303 (LC 42), C 21), 11=444 (LC 2)	2) 3) d or 4) 5) 6) , , , , , , , , , , , , ,	TCLL: ASCE DOL=1.15); Cs=1.00; Ct applied whe Unbalanced design. This truss ha load of 20.0 overhangs n This truss ha chord live lo * This truss ha chord live lo * This truss ha chord and an All bearings capacity of 4 Refer to gird Provide med	E 7-16; Pf=25.0 p Is=1.0; Rough C =1.10; IBC 1607 re required. snow loads have as been designed psf or 2.00 times on-concurrent w as been designed ad nonconcurrer has been designed ad nonconcurrer has been designed and nonconcurrer has been designed and nonconcurrer has been designed to py 2-00-00 wide py other membel are assumed to 105 psi. ler(s) for truss to thanical connect	esf (Lum D Cat B; Parti .11.2 minir e been cor d for great s flat roof I with other lin d for a 10. t with any ed for a liv eas where will fit betv rs. be HF No. o truss con ion (by oth 7	OL=1.15 Pla ally Exp.; Ce num roof live sidered for t er of min roof bad of 25.0 p re loads.) psf bottom other live loa e load of 20. a rectangle reen the bott 2 crushing nections. ers) of truss	te =1.0; + load his f live sf on ads. 0psf om					
FORCES	(lb) - Maximu Tension 2-11=-369/2 3-4=-165/11 6-7=-49/49,	um Com 34, 1-2= 0, 4-5=- 7-8=-49/	pression/Maximum 0/77, 2-3=-73/82, 130/42, 5-6=-78/49, /49, 4-10=-477/24	10	 Provide mec bearing plate 11, 12 lb upl at joint 5, 28 Beveled plate 	chanical connecti e capable of with ift at joint 8, 7 lb lb uplift at joint 6	ion (by oth standing 2 uplift at joi 6 and 26 lb ed to provi	ers) of truss 7 lb uplift at nt 10, 134 lb uplift at join de full bearin	to joint uplift t 7. q				OMIN	G Zh
BOT CHORD WEBS NOTES 1) Wind: AS(Vasd=87r II; Exp B; Exterior(2 zone; can and right e MWFRS f grip DOL=	10-11=-344/ 3-10=-153/3 CE 7-16; Vult=: mph; TCDL=4.2 Enclosed; MWI (E) -2-0-0 to 1-C tillever left and exposed;C-C fc for reactions sh =1.60	167, 9-1 65 2psf; BC FRS (en D-0, Inter right exp or memb lown; Lu	0=0/0 (3-second gust) DL=6.0psf; h=35ft; C vvelope) and C-C rior (1) 1-0-0 to 15-11 posed ; end vertical I vers and forces & mber DOL=1.60 plat	12 cat. D-3 eft e	surface with) This truss ha load of 250. panels and a nonconcurre DAD CASE(S)	truss chord at jo as been designe Dib live and 40.0 at all panel points int with any othe Standard	bint(s) 5, 6, d for a mov lb dead loo s along the r live loads	7. ing concent ated at all m Top Chord,	rated id				HORESSIONA November	TA DI

5

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	J12	Jack-Closed	4	1	Job Reference (optional)	R85387468

Plate Offsets (X, Y): [12:0-1-8,0-1-8]

Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2027	I/TPI2014	CSI TC BC WB Matrix-P	0.86 0.66 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.21 -0.43 -0.43	(loc) 12-13 12-13 10	l/defl >427 >214 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 43 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 HF N 2x4 HF N 2x4 HF N Structural 2-2-0 oc ț Rigid ceil bracing. (size) Max Horiz Max Uplift Max Grav	o.2 o.2 o.2 l wood she burlins, exi ing directly 5=0-1-8, 7 9=0-1-8, 1 Mechanic 13=138 (L 5=-134 (L 8=-28 (LC 10=-12 (L 5=292 (LC 8=318 (LC 10=303 (L 10=303 (L 13=444 (L	athing directly applie cept end verticals. applied or 8-7-3 oc 7=0-1-8, 8=0-1-8, 10= Mechanical, 12= al, 13=0-5-8 	2) 3) d or 4) 5) 6)), 7) , 8) 9) 32), 10	TCLL: ASCE DOL=1.15); Cs=1.00; Ct= applied where Unbalanced design. This truss ha load of 20.0 overhangs n This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar All bearings capacity of 4 Refer to gird Provide mec	7-16; Pf=25.0 ps is=1.0; Rough Ca =1.10; IBC 1607.1 e required. snow loads have is been designed psf or 2.00 times f on-concurrent with is been designer in chord in all area by 2-00-00 wide w any other members are assumed to be 05 psi. er(s) for truss to t hanical connectio e at join(s) 5, 7, 8 hanical connectio	f (Lum D t B; Parti 1.2 minir been cor for great flat roof k h other li for a 10.1 with any d for a liv as where ill fit betv e HF No. russ con n (by oth , 9. n (by oth	OL=1.15 Pla ally Exp.; Ce num roof live sidered for t er of min roof bad of 25.0 p re loads.) psf bottom other live loa e load of 20. a rectangle reen the bott 2 crushing nections. ers) of truss ers) of truss	te =1.0; e load his f live esf on ads. Opsf .om to					
FORCES	(lb) - Max Tension	imum Com	pression/Maximum	10	bearing plate	capable of withs	tanding 2	3 lb uplift at	joint					
TOP CHORD	2-13=-369 3-4=-201/ 7-8=-90/4 4-12=-47	9/224, 1-2= /120, 4-5=- \9, 8-9=-54, 3/0	=0/77, 2-3=-73/79, 179/53, 5-7=-122/55 /49, 9-10=-49/49,	, 11	i 3, 12 lb upli uplift at joint joint 9.) Beveled plat	rt at joint 10, 134 7, 28 lb uplift at jo e or shim required	b uplift a bint 8 and	26 lb uplift a	D at Ig				ALAOMIN TIAOMIN	G ZHAO
BOT CHORD WEBS NOTES 1) Wind: AS(Vasd=87n II; Exp B; Exterior(2 zone; can	4-12=-47 12-13=-38 3-12=-16; Vu nph; TCDL= Enclosed; M E) -2-0-0 to tillever left a	86/179, 11- 7/414 It=110mph 44.2psf; BC IWFRS (en 1-0-0, Intel nd right exp	-12=0/0 (3-second gust) DL=6.0psf; h=35ft; C nvelope) and C-C rior (1) 1-0-0 to 17-10 posed ; end vertical lo	12 Cat. LC D-3 eft	surface with) This truss ha load of 250.0 panels and a nonconcurre DAD CASE(S)	truss chord at join s been designed llb live and 40.0lb t all panel points nt with any other I Standard	nt(s) 5, 7, for a mov dead loc along the live loads	8, 9. <i>v</i> ing concentri ated at all m Top Chord,	rated id				PROPERTY SAU	74 EBED CULICO
and right e	exposed;C-0	tor memb	pers and forces &	0									SIONA	LEN

MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

THE PARTY OF

November 18,2024

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	J13	Jack-Closed	4	1	Job Reference (optional)	R85387469

Plate Offsets (X, Y): [13:0-1-8,0-1-8]

Loading TCLL (Roof Snow = 2 TCDL BCLL BCDL	25.0)	(psf) 25.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2021	/TPI2014	CSI TC BC WB Matrix-P	0.86 0.66 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.21 -0.43 -0.43	(loc) 13-14 13-14 11	l/defl >427 >214 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 46 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 HF N 2x4 HF N 2x4 HF N Structural 2-2-0 oc p Rigid ceili bracing.	0.2 0.2 0.2 I wood shea purlins, exo ing directly	athing directly applie cept end verticals. applied or 8-3-8 oc	1) d or 2)	Wind: ASCE Vasd=87mph II; Exp B; En Exterior(2E) zone; cantile and right exp MWFRS for I grip DOL=1.6 TCLL: ASCE DOL=1.15)	7-16; Vult=110mph n; TCDL=4.2psf; BC closed; MWFRS (er -2-0-0 to 1-0-0, Inte ver left and right ex osed;C-C for memt reactions shown; Lu 60 7-16; Pf=25.0 psf (s=10: Rough Cat E	i (3-sec DL=6.0 nvelope rior (1) posed pers an imber [Lum D	ond gust) Opsf; h=35ft; () and C-C 1-0-0 to 19-1 ; end vertical d forces & DOL=1.60 pla OL=1.15 Plat	Cat. 10-3 left ate	12) This load pan non LOAD (s truss h d of 250. lels and lconcurre CASE(S)	as bee Olb live at all p ent with Star	en designed for a e and 40.0lb deac anel points along n any other live lo ndard	moving concentrated l located at all mid the Top Chord, ads.
REACTIONS	(size) Max Horiz Max Uplift Max Grav	5=0-1-8, 7 9=0-1-8, 1 Mechanic: 14=0-5-8 14=148 (L 5=-134 (Lu 8=-28 (LC 10=-26 (L 14=-19 (Lu 5=292 (LC 8=318 (LC 10=317 (L 13=555 (L	'=0-1-8, 8=0-1-8, 0=0-1-8, 11= al, 13= Mechanical, C 11) C 40), 7=-28 (LC 10) (10), 9=-28 (LC 10), C 10), 11=-12 (LC 10) C 10), 11=-12 (LC 10) C 43), 9=318 (LC 42) C 43), 9=318 (LC 44) C 45), 11=-303 (LC 42) C 32), 14=444 (LC 3)	3) , 4)), 5) ; 6) 46), 30)	Cs=1.00; Ct applied wher Unbalanced design. This truss ha load of 20.0 g overhangs no This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an	s1.10; IBC 1607.11. e required. snow loads have be s been designed fo posf or 2.00 times fla on-concurrent with s been designed fo ad nonconcurrent w ias been designed in n chord in all areas y 2-00-00 wide will w other members	2 minir een cor r greate t roof lo other liv r a 10.0 ith any for a liv where fit betw	num roof live asidered for the or of min roof pad of 25.0 p: ve loads.) psf bottom other live loa e load of 20.0 a rectangle veen the botto	load nis live sf on ds. Opsf					
FORCES	(lb) - Max Tension	imum Com	pression/Maximum	7)	All bearings a	are assumed to be	HF No.	2 crushing					MIN	and a
TOP CHORD BOT CHORD WEBS NOTES	2-14=-369 3-4=-227/ 7-8=-122/ 10-11=-49 13-14=-49 3-13=-180	9/215, 1-2= (129, 4-5=-2 (49, 8-9=-90 9/49, 4-13= 16/190, 12- 0/449	0/77, 2-3=-73/76, 215/67, 5-7=-153/57, 0/49, 9-10=-54/49, -473/0 13=0/0	8) 9) 10	Refer to girde Provide mecl bearing plate) Provide mecl bearing plate 14, 12 lb upli uplift at joint and 26 lb upl	er (s) for truss to tru hanical connection at joint(s) 5, 7, 8, 9 hanical connection capable of withstai ft at joint 11, 134 lb 7, 28 lb uplift at joint if at joint 10.	iss con (by oth), 10. (by oth nding 1 uplift a t 8, 28	nections. ers) of truss t ers) of truss t 9 lb uplift at j t joint 5, 28 lt lb uplift at join	io oint o nt 9			Y	TLA OINIII	AHAO ANGTON

11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 5, 7, 8, 9, 10.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

54074

INAL DI November 18,2024

OF REGISTERE

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	J14	Monopitch Structural Gable	2	1	Job Reference (optional)	R85387470

3-10-0

Scale = 1:37.3

Plate Offsets (X, Y): [6:0-3-0,0-3-0]

Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2021/	TPI2014	CSI TC BC WB Matrix-P	0.53 0.18 0.27	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 -0.02	(loc) 8-9 8-9 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 41 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 HF No 2x4 HF No 2x4 HF No 2x4 HF No Structural v 5-6-12 oc p Rigid ceilin bracing. (size) 4 Max Horiz Max Uplift Max Grav	2 2 2 2 2 3 3 3 5=8-0-0, 6 5=8-0-0, 6 5=8-0-0, 9 3=143 (LC 5=-466 (Li 3=-400 (Li 5=108 (LC 7=50 (LC LC 33)	athing directly applied ccept end verticals. applied or 5-6-4 oc =8-0-0, 7=8-0-0, =8-0-0 43) C 74), 6=-463 (LC 41 C 48), 9=-568 (LC 40 73), 6=679 (LC 74), 5), 8=642 (LC 33), 9=	3) 4) 1 or 5) 6) 7) 8)), 9) =670	TCLL: ASCE DOL=1.15); I Cs=1.00; Ct= applied wher Unbalanced design. This truss ha load of 20.0 p overhangs no Truss to be fit braced again Gable studs This truss ha chord live loa * This truss ha on the botton 3-06-00 tall b chord and an	7-16; Pf=25.0 psf s=1.0; Rough Cat I 1.10; IBC 1607.11 e required. snow loads have b s been designed fc osf or 2.00 times fla on-concurrent with ully sheathed from st lateral movemer spaced at 2-0-0 oc s been designed fc d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide will y other members.	(Lum D B; Parti .2 minir een cor or great at roof lo other lin one fac other lin one fac other lin or a 10.0 vith any for a lin of value vite it betw	OL=1.15 Pla ally Exp.; Ce num roof live isidered for t er of min roof vad of 25.0 p re loads. e or securely iagonal web)) psf bottom other live loa e load of 20. a rectangle reen the bott	te =1.0; I load his f live sf on / ads. Opsf om					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASI Vasd=87r II; Exp B; Exterior(2 zone; can and right Q WWFRS f grip DOL= 2) Truss des only. For see Stanc or consult	(lb) - Maxir Tension 1-2=0/77, 2 4-5=-148/9 8-9=-1065/ 2-8=-919/1 CE 7-16; Vult mph; TCDL=4 Enclosed; MV E) -2-0-0 to 1 tilever left and exposed; C-C or reactions s =1.60 iigned for wind studs expose tand Industry qualified buil	num Com 2-3=-1000 9, 4-6=-6! 826, 7-8= 052, 3-6= =110mph .2psf; BCI VFRS (en -0-0, Inter J right exp for memb hown; Lu J loads in d to wind Gable Enc ding desig	Pression/Maximum /945, 3-4=-917/844, 51/241, 2-9=-651/632 -440/332, 6-7=-752/6 -799/875, 3-8=-730/7 (3-second gust) DL=6.0psf; h=35ft; G velope) and C-C ior (1) 1-0-0 to 8-0-0 vosed ; end vertical le ers and forces & mber DOL=1.60 plate the plane of the truss (normal to the face), d Details as applicabl iner as per ANSI/TPI iner as per ANSI/TPI	10) 11) 343 716 12) at. 13) at. 13) at. 13) et. 5 5 6, 1.	An beamings a capacity of 4 Provide med bearing plate joint 5, 463 IL 400 Ib uplift a This truss ha load of 250.0 panels and a nonconcurrei This truss ha plf. Lumber E truss to resis to 8-0-0 for 2 AD CASE(S)	of a southed to be of psi. aanical connection capable of withsta ouplift at joint 8. s been designed fc lb live and 40.0lb d t all panel points al nt with any other liv s been designed fc DOL=(1.33) Plate g t drag loads along l 00.0 plf. Standard	(by oth Inding 4 8 lb upl ar a movilead loc ong the re loads or a tota hottom	ers) of truss 66 lb uplift a ift at joint 9 a ving concentr ated at all m Top Chord, drag load o =(1.33) Cor chord from 0	to t ind id f 200 inect -0-0				HOMESSIONA	G ZHAO SHUNGINE EBED LENGIND

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

November 18,2024

Job	Truss Truss Type		Qty	Ply	2nd Street Apartments	
4319944	J18	Jack-Open	1	1	Job Reference (optional)	R85387471

1-6-1 1-6-1 1-6-1 0-3-10 1-10-15

Builders FirstSource (Arlington, WA), Arlington, WA - 98223,

PRMU20241695

City of Puyallup Development & Permitting Services											
Building Planning											
Engineering	Public Works										
Fire Traffic											

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Nov 15 18:24:17 ID:atDX7akpsB2hLDfC7JJqsyyIthf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:35.4

Loading TCLL (Roof Snow = 2 TCDL BCLL BCDL	25.0)	(psf) 25.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC202	1/TPI2014	CSI TC BC WB Matrix-P	0.36 0.02 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 -0.01	(loc) 5-6 5-6 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 14 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 HF No. 2x4 HF No. 2x4 HF No. 2x4 HF No. Structural w 6-0-0 oc pu Rigid ceiling bracing. (size) 3	2 2 2 rlins, exc g directly =0-1-8, 5	athing directly applied sept end verticals. applied or 10-0-0 oc i= Mechanical. 6=0-5	5 d or 7 5-8 9	 This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings capacity of 4 Refer to gird Provide mecc 	s been designed for ad nonconcurrent v has been designed in chord in all areas by 2-00-00 wide will by other members. are assumed to be 05 psi. er(s) for truss to tr hanical connection	or a 10. with any for a liv s where Il fit betw HF No. russ con a (by oth	0 psf bottom other live loa e load of 20. a rectangle veen the bott 2 crushing nections. ers) of truss	ads. .0psf tom to					
	Max Horiz 6 Max Uplift 3 Max Grav 3 (I	=65 (LC =-145 (LC =336 (LC _C 30)	11) C 11), 6=-84 (LC 20) C 20), 5=33 (LC 5), 6	1) =305 1	bearing plate 0) Provide mec bearing plate 6 and 145 lb 1) Beveled plat	at joint(s) 3. hanical connection capable of withstauplift at joint 3. or shim required	1 (by oth anding 8 to provi	ers) of truss i4 lb uplift at de full bearir	to joint					
FORCES TOP CHORD BOT CHORD	(lb) - Maxim Tension 1-6=-288/10 3-4=-67/0 5-6=0/0	um Com)1, 1-2=-{	pression/Maximum 58/62, 2-3=-131/84,	1:	surface with 2) This truss ha load of 250.0 panels and a	truss chord at joint s been designed fo lb live and 40.0lb o t all panel points a pt with any other liv	(s) 3. or a mo dead loo long the	ving concent ated at all m Top Chord,	rated nid					
WEBS	2-6=-295/11	1		L	OAD CASE(S)	Standard	ve loaus							
NOTES					()									
 Wind: ASC Vasd=87m II; Exp B; E Exterior(2E zone; canti and right e MWFRS fc grip DOL= TCLL: ASC DOL=1.15; Cs=1.00; C applied wh Unbalance design. This truss 	CE 7-16; Vult= ph; TCDL=4. Enclosed; MW E) 6-4-1 to 9-4 illever left and exposed;C-C f or reactions si reactions si to CE 7-16; Pf=2); Is=1.0; Rou Ct=1.10; IBC ⁻¹ here required. ds now loads has been des	:110mph 2psf; BCI (FRS (en I-1, Interii right exp or memb hown; Lui 5.0 psf (I gh Cat B 1607.11.2 have be igned for	(3-second gust) DL=6.0psf; h=35ft; C velope) and C-C or (1) 9-4-1 to 9-10-1 bosed ; end vertical le ers and forces & mber DOL=1.60 plate : Partially Exp.; Ce=1 2 minimum roof live le en considered for this greater of min roof li	at. 5 e 1.0; poad s								· · · · · · · · · · · · · · · · · · ·	HOPESSIONA	G ZHAO MANO TA ERED INST

4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.

> 400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

UNAL L

November 18,2024

Job	Truss	Truss Type Qty Ply 2nd Street Apartments		2nd Street Apartments		
4319944	J19	Jack-Open	1	1	Job Reference (optional)	R85387472

5-1-10

2-6-12

PRMU20241695

City of P Development & Po ISSUED	Puyallup ermitting Service PERMIT									
Building	Planning									
Engineering	Public Works									
Fire Traffic										

Scale = 1:33.6

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL		25.0	Plate Grip DOL	1.15		TC	0.58	Vert(LL)	-0.01	6-7	>999	240	MT20	185/148
(Roof Snow =	25.0)		Lumber DOL	1.15		BC	0.13	Vert(CT)	-0.02	6-7	>999	180		
TCDL		7.0	Rep Stress Incr	YES		WB	0.10	Horz(CT)	0.01	4	n/a	n/a		
BCLL		0.0*	Code	IBC202	1/TPI2014	Matrix-P								
BCDL		10.0											Weight: 22 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 HF N 2x4 HF N 2x4 HF N Structural 6-0-0 oc p Rigid ceill bracing.	o.2 o.2 o.2 I wood she purlins, exi ing directly	athing directly applic cept end verticals. applied or 10-0-0 o	4) 5) ed or 6) c	This truss ha load of 20.0 j overhangs no This truss ha chord live loa * This truss f on the bottor 3-06-00 tall b chord and ar	s been designed for option 2.00 times file on-concurrent with is been designed for ad nonconcurrent w has been designed in chord in all areas by 2-00-00 wide will by other members.	or great at roof le other liv or a 10. vith any for a liv where I fit betw	er of min root bad of 25.0 p ve loads.) psf bottom other live loa e load of 20.1 a rectangle veen the bott	f live sf on ads. Opsf om					
REACTIONS	(size) Max Horiz Max Uplift Max Grav	3=0-1-8, 4 7=0-5-8 7=73 (LC 3=-58 (LC 3=298 (LC 6=72 (LC	4=0-1-8, 6= Mechan 11) : 14), 4=-59 (LC 11) C 32), 4=352 (LC 21 5), 7=352 (LC 30)	ical, ⁷⁾ 8) 9)), 1(All bearings a capacity of 4 Refer to gird Provide mec bearing plate) Provide mec	are assumed to be 05 psi. er(s) for truss to tru- hanical connection at joint(s) 3, 4. hanical connection	HF No. uss con (by oth (by oth	2 crushing nections. ers) of truss ers) of truss	to to					
FORCES	(lb) - Max Tension	imum Com	pression/Maximum	1.	bearing plate 3 and 59 lb u 1) Beveled plate	capable of withsta plift at joint 4.	to provi	de full bearin	a					
TOP CHORD BOT CHORD WEBS NOTES	1-7=-316/ 3-4=-74/5 6-7=0/0 2-7=-235/	/114, 1-2=-: 6, 4-5=-67, /85	56/72, 2-3=-138/94, /0	12	2) This truss ha load of 250.0 panels and a nonconcurre	truss chord at joint(is been designed fo llb live and 40.0lb d it all panel points al nt with any other liv	(s) 3, 4. or a more lead loo long the ve loads	ving concentr ated at all m Top Chord,	ated id					
1) Wind: ASC	CE 7-16; Vu	It=110mph	(3-second gust)	L	DAD CASE(S)	Standard								4.

Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=6.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 4-4-1 to 7-4-1, Interior (1) 7-4-1 to 11-10-15 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.
- 3) Unbalanced snow loads have been considered for this design.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Job	Truss	Truss Type Qty Ply 2nd Street Apr		2nd Street Apartments		
4319944	J20	Jack-Open	1	1	Job Reference (optional)	R85387473

5-9-11

Builders FirstSource (Arlington, WA), Arlington, WA - 98223,

5-9-10

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Nov 15 18:24:18 ID:xBfZ?MpGfrOw82YVPCxxWxyItgF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

11-8-10

Page: 1

PRMU20241695 Iding City of Puyallup Building Engineering Public Works Traffic Fire

4-5-5 0-0-6

2-4-10

Scale = 1:39.7

Loading	(pst) Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	25.) Plate Grip DOL	1.15		TC	0.90	Vert(LL)	-0.01	8-9	>999	240	MT20	185/148
(Roof Snow =	25.0)	Lumber DOL	1.15		BC	0.13	Vert(CT)	-0.02	8-9	>999	180		
TCDL	7.0) Rep Stress Incr	YES		WB	0.06	Horz(CT)	0.22	5	n/a	n/a		
BCLL	0.0)* Code	IBC202	1/TPI2014	Matrix-P								
BCDL	10.0)										Weight: 27 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD	2x4 HF No.2 2x4 HF No.2		4)	This truss ha load of 20.0 overhangs n	as been designe psf or 2.00 time ion-concurrent v	ed for great es flat roof le with other li	er of min roo oad of 25.0 p ve loads.	f live osf on					
WEBS	2x4 HF No.2		5)	I NIS TRUSS Na	as been designe	ed for a 10.	U psr bottom						
BRACING TOP CHORD BOT CHORD REACTIONS	Structural wood 2-2-0 oc purlins, Rigid ceiling dire bracing. (size) 3=0-1 7=0-4 Max Horiz 9=85 Max Uplift 3=-74 5=-59 Max Grav 3=344 5=352 8=193	sheathing directly appli except end verticals. ctly applied or 10-0-0 c -8, 4=0-1-8, 5=0-1-8, -14, 8=0-7-12, 9=0-4-1: [LC 11] (LC 14), 4=-69 (LC 20] (LC 11), 7=-44 (LC 5) -(LC 36), 4=306 (LC 33) -(LC 21), 7=-13 (LC 10) -(LC 5), 9=365 (LC 30)	ed or 6) pc 7) 2 8)), 9) 7),), 10	* This truss I on the botto 3-06-00 tall I chord and al All bearings capacity of 4 Provide mec bearing plate 7, 74 lb uplift at joint) Beveled plat	has been desig m chord in all a by 2-00-00 wide ny other membe are assumed to 105 psi. shanical connec e at joint(s) 3, 4 chanical connec e capable of wit t at joint 3, 69 lt 5. te or shim requi	ned for a liv reas where will fit betw ers. b be HF No. tion (by oth , 5. tion (by oth hstanding 4 b uplift at joi red to provi	ere load of 20. a rectangle ween the bott .2 crushing ers) of truss ers) of truss 14 lb uplift at int 4 and 59 l de full bearin	to to joint b					
FORCES	(lb) - Maximum (Tension	Compression/Maximum	11) This truss ha	truss chord at j	oint(s) 3, 4, ed for a mo	5.	rated					
TOP CHORD	1-9=-330/228, 1- 3-4=-96/49, 4-5=	2=-84/97, 2-3=-177/77 -72/56, 5-6=-67/0	,	load of 250.0 panels and a	Olb live and 40.0 at all panel poin	Dib dead loo ts along the	cated at all m Top Chord,	id					
BOI CHORD	8-9=0/0, 7-8=0/0			nonconcurre	ent with any othe	er live loads	3.						
NOTES	2-9=-300/109		LC	DAD CASE(S)	Standard								

- 1) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=6.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 11-8-10 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate 2) DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.
- 3) Unbalanced snow loads have been considered for this design.

👠 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - Verify design parameters and KEAD NO ISO ON THIS AND INCLUED MILER KETEKINGE PAGE MIL/4/3 16V. 1/2/2/2/3 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville CA 95661 916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	J21	Jack-Closed	1	1	Job Reference (optional)	R85387474

1

2x4

10 X

1-2-12

6-7	0-3-4

Scale = 1:42.3

Plate Offsets (X, Y): [9:0-1-8,0-1-8]

TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	7.0 0.0*	Plate Grip DOL Lumber DOL Rep Stress Incr Code	1.15 1.15 YES IBC202	1/TPI2014	TC BC WB Matrix-P	0.87 0.62 0.05	Vert(LL) Vert(CT) Horz(CT)	-0.19 -0.38 -0.42	9-10 9-10 9-10 4	>461 >231 n/a	240 180 n/a	MT20 Weight: 38 lb	185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 HF N 2x4 HF N 2x4 HF N Structural 2-2-0 oc p Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav	0.2 0.2 0.2 0.2 0.2 0 wood shea 0 urlins, exc ing directly 4=0-1-8, 5 Mechanica 10=127 (L 4=-133 (L 6=-59 (LC 4=288 (LC 6=352 (LC 6=352 (LC	athing directly applie sept end verticals. applied or 9-4-6 oc 5=0-1-8, 6=0-1-8, 9= al, 10=0-5-8 C 11) C 37), 5=-69 (LC 20) 11), 9=-22 (LC 10) C 38), 5=306 (LC 39) C 21), 9=590 (LC 21) C 30)	3) 4) d or 5) 6) 7) , 8) 9) , 9)	Unbalanced design. This truss ha load of 20.0 overhangs n This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar All bearings a capacity of 4 Refer to gird Provide mec bearing plate	snow loads have s been designed performed to the second soft of 2.00 times on-concurrent will s been designed ad nonconcurrent has been designed to been designed to hord in all are by 2-00-00 wide v by other members are assumed to b 05 psi. er(s) for truss to hanical connectif e at joint(s) 4, 5, 6 hanical connection	been cor flar roof k th other link other link as where will fit betw s. be HF No. truss con on (by oth 3. on (by oth	asidered for f er of min roo oad of 25.0 p ve loads.) psf bottom other live loa e load of 20. a rectangle veen the bott 2 crushing nections. ers) of truss 0 b to ff truss	this of live osf on ads. .0psf tom to					
FORCES	(lb) - Max Tension	imum Com	pression/Maximum		9, 133 lb upli uplift at joint	ft at joint 4, 69 lb	uplift at jo	bint 5 and 59	joint 9 lb					
TOP CHORD BOT CHORD WEBS NOTES	1-10=-33 3-4=-133/ 6-7=-67/0 9-10=-32 2-9=-143/	2/88, 1-2=- ⁻ '43, 4-5=-8!), 3-9=-511/ 5/159, 8-9= '343	72/34, 2-3=-187/100, 9/49, 5-6=-66/56, /134 0/0	, 11 12	 Beveled plate surface with This truss ha load of 250.0 panels and a nonconcurre 	e or shim require truss chord at joi s been designed Ib live and 40.0lt t all panel points nt with any other	d to provi nt(s) 4, 5, l for a mov o dead loo along the live loads	de full bearir 6. ving concent ated at all m Top Chord,	ng trated hid				ALAOMIN ALAOMIN	G ZHAO
 Wind: ASC Vasd=87rr II; Exp B; I Exterior(21 zone; cant and right e MWFRS fr 	CE 7-16; Vu nph; TCDL= Enclosed; M E) 0-4-1 to 3 tilever left an exposed;C-0 or reactions	It=110mph 4.2psf; BC IWFRS (en 3-4-1, Interi nd right exp C for memb shown: Lu	(3-second gust) DL=6.0psf; h=35ft; C velope) and C-C or (1) 3-4-1 to 15-10 posed ; end vertical lu ers and forces & mber DOL=1.60 plat	L(cat. -15 eft e	DAD CASE(S)	Standard								

grip DOL=1.60 TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; 2) Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

54074

PREGISTERE

NALL

November 18,2024

Job	Truss	Truss Type	s Type Qty Ply 2nd Street Apartments		2nd Street Apartments	
4319944	P01	Blocking	38	1	Job Reference (optional)	R85387475

PRMU20241695

City of Puyallup Development & Permitting Services ISSUED PERMIT									
Building	Planning								
Engineering	Public Works								
Fire	Traffic								

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Nov 15 18:24:18 ID:OsKrAH6OG2YUZWCdS2NhNjyluFJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:26.9

Plate Offsets (X, Y): [4:0-3-0,0-3-0]

			-												
Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC2021/	TPI2014	CSI TC BC WB Matrix-P	0.18 0.07 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 -0.01	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 11 lb	GRIP 185/148 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: AS(Vasd=87n I); Exp B; Corner (3) vertical lef forces & M DOL=1.6C 2) TCLL: AS DOL=1.15 CS=1.00; applied wi 3) Provide ax 4) This truss chord live	2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural w 1-10-6 oc pr Rigid ceiling bracing. (size) 3 Max Horiz 5 Max Uplift 3 5 Max Grav 3 (lb) - Maxim Tension 1-5=-598/54 2-4=-308/90 4-5=-397/35 1-4=-652/70 CE 7-16; Vult= mph; TCDL=4.1 Enclosed; MW) zone; cantilee tf and right exp MWFRS for rea D plate grip DC CE 7-16; Pi=2 5); Is=1.0; Rou CE=1.10; IBC 1 here required. dequate draina has been des load nonconci	2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	athing directly applied xcept end verticals. applied or 6-0-0 oc 4=1-10-6, 5=1-10-6 320 C 65), 4=-535 (LC 35 C 32) 66), 4=549 (LC 36), C 39) pression/Maximum 346/329, 2-3=-54/54, (3-second gust) DL=6.0psf; h=35ft; Ca velope) and C-C nd right exposed; end C for members and hown; Lumber Lum DOL=1.15 Plate 3; Partially Exp.; Ce=1 2 minimum roof live Ic event water ponding. r a 10.0 psf bottom th any other live loads	5) 6) 1 or 7) 8)), 9) LOA at. d .0; aad s.	* This truss h on the bottor 3-06-00 tall b chord and ar All bearings a: capacity of 4 Provide mec bearing plate joint 5, 125 lt This truss ha load of 250.0 panels and a nonconcurre This truss ha load of 250.0 panels and a nonconcurre truss to resis to 1-10-6 for AD CASE(S)	has been designed in chord in all area by 2-00-00 wide will y other members. are assumed to be 05 psi. hanical connection capable of withst o uplift at joint 3 ar is been designed f 10 bive and 40.0lb bit all panel points a nt with any other li is been designed f 00L=(1.33) Plate of t drag loads along 200.0 plf. Standard	d for a liv s where ill fit betv e HF No. h (by oth anding 5 nd 535 lb for a mov dead loc along the ive loads for a tota grip DOL bottom	e load of 20.0 a rectangle veen the botto 2 crushing ers) of truss t 36 lb uplift at uplift at joint 'ring concentr ated at all mi Top Chord, I drag load of =(1.33) Con chord from 0-	Dpsf om to t 4. ated dd f 200 nect -0-0			and the second sec	HOMEN HOMEN STORESSIONA November	G ZHAO SHINGING ERED INGO L ENGING	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Job	Truss	Truss Type Qty Ply 2nd Street Apartments		2nd Street Apartments		
4319944	P02	Blocking	2	1	Job Reference (optional)	R85387476

PRMU20241695

City of Puyallup Development & Permitting Services ISSUED PERMIT										
Building	Planning									
Engineering	Public Works									
Fire										

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Nov 15 18:24:18 ID:SZJo1svojKs6UgFJJvZA2eyluEH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

2-6-0

Scale = 1:26.9

Plate Offsets (X, Y): [4:0-3-0,0-3-0]

Loading		(psf)	Spacing Plate Grip DOI	2-0-0		CSI	0.14	DEFL	in 0.00	(loc)	l/defl	L/d	PLATES	GRIP
(Roof Snow -	- 25 0)	25.0		1.15		BC	0.14	Vert(CT)	0.00	4-5	~999	180	101120	100/140
	23.0)	70	Ren Stress Incr	YES		WB	0.03	Horz(CT)	-0.01		>333 n/a	n/a		
BCU		0.0*	Code	IBC2021	/TPI2014	Matrix-P	0.10	11012(01)	0.01	0	n/a	n/a		
BCDL		10.0		1002021	/11 12014								Weight: 11 lb	FT = 10%
				5)	* This truss h	as been designed	for a liv	e load of 20	Opsf					
TOP CHORD	2x4 HF No	2		0)	on the bottor	n chord in all areas	s where	a rectangle	opoi					
BOT CHORD	2x4 HF No	.2			3-06-00 tall b	by 2-00-00 wide wi	ll fit betv	veen the bott	om					
WEBS	2x4 HF No	.2			chord and ar	y other members.								
BRACING				6)	All bearings	are assumed to be	HF No.	2 crushing						
TOP CHORD	2-0-0 oc p	urlins: 1-3	, except end verticals		capacity of 4	05 psi.								
BOT CHORD	Rigid ceilir	ng directly	applied or 6-0-0 oc	7)	Provide mec bearing plate	hanical connectior e capable of withsta	ו (by oth anding 5	ers) of truss 48 lb uplift a	to t					
PEACTIONS	(size)	3-1-8-6	1-1-8-6 5-1-8-6		joint 5, 93 lb	uplift at joint 3 and	542 lb	uplift at joint	4.					
REACTIONS	(Size) Max Horiz	5=-89 (I C	(32)	8)	This truss ha	is been designed f	or a mov	ing concent	rated					
	Max Liplift	3=-93 (LC	(65) 4 = -542 (1 C 35)		load of 250.0	Ib live and 40.0lb	dead loo	ated at all m	id					
		5=-548 (L	C 32)		panels and a	at all panel points a	long the	Top Chord,						
	Max Grav	3=89 (LC	66), 4=555 (LC 36),	9)	This truss ha	nt with any other in as been designed f	ve loads or a tota	I drag load o	f 200					
		5=563 (LC	C 39)	,	plf. Lumber I	DOL=(1.33) Plate g	grip DOL	.=(1.33) Cor	nnect					
FORCES	(lb) - Maxii	mum Com	pression/Maximum		truss to resis	t drag loads along	bottom	chord from 0	-0-0					
	Tension				to 1-8-6 for 2	200.0 plf.								
TOP CHORD	1-5=-613/5 2-4=-271/7	56, 1-2=- 76	316/299, 2-3=-54/54,	10)	Graphical pu or the orient:	Irlin representation	does no	ot depict the s	size					
BOT CHORD	4-5=-367/3	321			bottom chore	d.								
WEBS	1-4=-644/7	702		LO	AD CASE(S)	Standard								
NOTES														
 Wind: AS Vasd=87r II; Exp B; Corner (3 vertical le forces & I DOL=1.6(TCLL: AS 	CE 7-16; Vult mph; TCDL=4 Enclosed; MV) zone; cantill ft and right ex MWFRS for re 0 plate grip D SCE 7-16: Pf=	=110mph 4.2psf; BC WFRS (er ever left a kposed;C- eactions s OL=1.60 (25.0 psf ((3-second gust) DL=6.0psf; h=35ft; Ca ivelope) and C-C nd right exposed ; end C for members and hown; Lumber Lum DOL=1.15 Plate	at.									TIAOMIN TIAON WA	G ZHAO SHINCFION

- TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.
- 3) Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

HOMING ZHAO HOMING ZHAO WASHING TO FORESSIONAL ENGINE November 18,2024

Job	Truss	Truss Type Qty Ply 2nd Street Apartments		2nd Street Apartments		
4319944	P03	Blocking	65	1	Job Reference (optional)	R85387477

PRMU20241695

City of Puyallup Development & Permitting Service ISSUED PERMIT									
Building	Planning								
Engineering	Public Works								
Fire	Traffic								

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Nov 15 18:24:18 ID:eleWIVHg6254Y101R85g7TyIuCW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:61.9

Plate Offsets (X, Y): [4:0-3-0,0-3-0]

| | | | | | |

 | |
 |
 | |
 | • | |
|---|---|---|---|---|---
--
--|--
--
--
--
---|---|--
--|
| 25.0) | (psf)
25.0
7.0
0.0*
10.0 | Spacing
Plate Grip DOL
Lumber DOL
Rep Stress Incr
Code | 2-0-0
1.15
1.15
NO
IBC2021 | I/TPI2014 | CSI
TC
BC
WB
Matrix-P | 0.41
0.06
0.32

 | DEFL
Vert(LL)
Vert(CT)
Horz(CT) | in
0.00
0.00
0.14
 | (loc)
4-5
4-5
3
 | l/defl
>999
>999
n/a | L/d
240
180
n/a
 | PLATES
MT20
Weight: 33 lb | GRIP
185/148
FT = 10% |
| 2x4 HF No
2x4 HF No
2x4 HF No
Structural
1-10-6 oc
Rigid ceilir
bracing.
1 Row at n
1 Brace at
(size)
Max Horiz
Max Uplift
Max Grav | .2
.2
.2
wood shea
purlins, ex
g directly
hidpt
Jt(s): 6
3=1-10-6,
5=42 (LC
3=-343 (LI
5=-1774 (I
3=344 (LC
5=1800 (L | athing directly appliec
kcept end verticals.
applied or 6-0-0 oc
1-5
4=1-10-6, 5=1-10-6
53), 4=-1433 (LC 3
LC 32)
5 2), 4=1458 (LC 52
C 53) | 4)
5)
f or 6)
7)
8)
3), 9) | This truss ha
chord live loa
* This truss h
on the bottor
3-06-00 tall k
chord and ar
All bearings
capacity of 4
Provide mec
bearing plate
joint 5, 343 II
This truss ha
load of 250.0
panels and a
nonconcurre
This truss ha
plf. Lumber [| as been designed
as been designed
nas been designe
n chord in all are
by 2-00-00 wide v
y other member
are assumed to t
055 psi.
hanical connection
e capable of withs
b uplift at joint 3 a
as been designed
DIb live and 40.011
at all panel points
int with any other
as been designed
DOL=(1.33) Plate
t drag loads alor | d for a 10.0
t with any
ed for a live
was where
will fit betw
s.
be HF No.
on (by oth
standing 1
and 1433
d for a mov
b dead loc
a along the
b dead loc
a along the
c live loads
d for a tota
e grip DOL
a bottom

 |) psf bottom
other live load
e load of 20.0
a rectangle
veen the botto
2 crushing
ers) of truss t
774 lb uplift at
b uplift at joir
ring concentr
Top Chord,
I drag load of
=(1.33) Con | ds.
)psf
pm
ot
at
tt 4.
ated
d
 |
 | |
 | | |
| (lb) - Maxir
Tension | | pression/Maximum | LC | to 1-10-6 for
AD CASE(S) | 200.0 plf.
Standard | .g 20110111

 | |
 |
 | |
 | | |
| 1-2=-312/3
2-6=-421/4
4-5=-316/3
1-6=-995/9
CE 7-16; Vult
nph; TCDL=4
Enclosed; MV | :=110mph
I-2, 2-3=-{
I-52
I-52
I-52
I-52
I-52
I-52
I-52
I-52 | | 5
at. | | |

 | |
 |
 | | y y
 | TIN OMIN | G ZHAO |
| | 25.0)
2x4 HF No
2x4 HF No
2x4 HF No
2x4 HF No
2x4 HF No
Structural
1-10-6 oc
Rigid ceilir
bracing.
1 Row atr
1 Brace at
(size)
Max Horiz
Max Horiz
Max Uplift
Max Grav
(lb) - Maxin
Tension
5-7=-1793
1-2=-312/2
2-6=-421/2
4-5=-316/2
1-6=-995/C
CE 7-16; Vult
ph; TCDL=4
Enclosed; MM | 25.0)
7.0
0.0*
10.0
2x4 HF No.2
2x4 HF No.2
2x4 HF No.2
2x4 HF No.2
2x4 HF No.2
Structural wood shear
1-10-6 oc purlins, ex
Rigid ceiling directly
bracing.
1 Row at midpt
1 Brace at Jt(s): 6
(size) 3=1-10-6,
Max Horiz 5=42 (LC
Max Uplift 3=-343 (LI)
5=-1774 (I
Max Grav 3=344 (LC
5=1800 (L
(lb) - Maximum Com
Tension
5-7=-1793/1828, 1-7
1-2=-312/312, 2-3=-4
2-6=-421/452
4-5=-316/316
1-6=-995/995, 6-7=-5
CE 7-16; Vult=110mph
hph; TCDL=4.2psf; BCI
Enclosed; MWFRS (en
zone; cantilever left ai | 25.0)
7.0
0.0*
10.0
2x4 HF No.2
2x4 HF No.2
2x4 HF No.2
2x4 HF No.2
2x4 HF No.2
Structural wood sheathing directly applied
1-10-6 oc purlins, except end verticals.
Rigid ceiling directly applied or 6-0-0 oc
bracing.
1 Row at midpt 1-5
1 Brace at Jt(s): 6
(size) $3=1-10-6, 4=1-10-6, 5=1-10-6$
Max Horiz $5=42$ (LC 53)
Max Uplift $3=-343$ (LC 33), $4=-1433$ (LC 32)
Max Grav $3=344$ (LC 52), $4=1458$ (LC 52)
5=1800 (LC 53)
(lb) - Maximum Compression/Maximum
Tension
5-7=-1793/1828, 1-7=-890/924,
1-2=-312/312, 2-3=-54/54, 4-6=-549/581,
2-6=-421/452
4-5=-316/316
1-6=-995/995, 6-7=-336/336, 4-7=-967/96
CE 7-16; Vult=110mph (3-second gust)
nph; TCDL=4.2psf; BCDL=6.0psf; h=35ft; Ca
Enclosed; MWFRS (envelope) and C-C
zone; cantilever left and right exposed (2-C)
zone; cantilever l | 25.0)
The analysis of the second gust)
The analysis of the second gust of the sec | 25.0)
The answer of the answ | 25.0) 25.0) 7.0
0.0*
10.0 1.15
Rep Stress Incr NO
Code IBC2021/TPI2014 WB
Matrix-P Matrix-P Matrix-P<td> 25.0) 25.0) 1.00 Lumber DOL 1.15
Rep Stress Incr NO
Code IBC2021/TPI2014 BC 0.06
WB 0.32
Matrix-P 4) This truss has been designed for a 10.0
chord live load nonconcurrent with any
x4 HF No.2 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 3tructural wood sheathing directly applied or
1-10-6 oc purlins, except end verticals.
Rigid ceiling directly applied or 6-0-0 oc
bracing. 1 Row at midpt 1-5
1 Brace at Jt(s): 6 (size) 3=1-10-6, 4=1-10-6, 5=1-10-6
Max Horiz 5=42 (LC 53) Max Grav 3=344 (LC 52), 4=1458 (LC 52),
5=1800 (LC 53) Max Grav 3=344 (LC 52), 4=1458 (LC 52),
5=1800 (LC 53) Max Grav 3=344 (LC 52), 4=1458 (LC 52),
5=1800 (LC 53) (b) - Maximum Compression/Maximum
Tension 5-7=-1793/1828, 1-7=-890/924,
1-2=-312/312, 2-3=-54/54, 4-6=-549/581,
2-6=-421/452 4-5=-316/316 1-6=-995/995, 6-7=-336/336, 4-7=-967/965 CE 7-16; Vult=110mph (3-second gust)
nph; TCDL=4.2psf; BCDL=6.0psf; h=35ft; Cat.
Enclosed; MWFRS (envelope) and C-C
zone; cantilever left and right exposed ;C-C
ers and forces & MWFRS for reactions shown; </td><td> 25.0) 25.0) 1.115 Rep Stress Incr NO
Code IBC2021/TPI2014 25.0) 7.0 Code IBC2021/TPI2014 25.0) 26.0 0.06 WB
WB
Matrix-P 27.0 Code IBC2021/TPI2014 27.0 This truss has been designed for a 10.0 psf bottom
chord live load nonconcurrent with any other live load
of 0.0 tall by 2:00-00 wide will fit between the bottor
chord and any other members. 28.1 Code 11.1 - 5 29.1 Code 11.1 - 5 20.0 Col tall by 2:00-00 wide will fit between the bottor
chord and any other members. 20.0 Col tall by 2:00-00 wide will fit between the bottor
chord and any other members. 20.0 Col tall by 2:00-00 wide will fit between the bottor
chord and any other members. 20.0 Col tall by 2:00-00 wide will fit between the bottor
chord and any other members. 20.0 Col tall by 2:00-00 wide will fit between the bottor
chord and any other members. 20.0 Col tall by 2:00-00 wide will fit between the bottor
chord and any other members. 20.0 Dib live and 40.0 bd ead located at all mi
panels and at all panel points along the Top Chord,
nonconcurrent with any other live loads. 20.0 Col tall by 2:00-00 uid by 2:00-00 20.0 Col tall by 2:00-00<!--</td--><td> 25.0) 25.0) 100 100 115 Rep Stress Incr NO Code IBC2021/TPI2014 WB 0.32 Veri(CT) 0.06 Veri(CT) 0.07 Veri(CT) 0.06 Horz(CT) 0.06 Horz(CT) 0.07 Horz(CT) 0.06 Veri(CT) 0.06 Veri(CT) 0.06 Veri(CT) 0.06 Horz(CT) 0.14 Horz(CT) 0.06 Horz(CT) 0.00 Horz(CT)<!--</td--><td>25.0) Lumber DOL 1.15
Rep Stress Incr NO
Code IBC2021/TPI2014 BC 0.06
WB 0.32
WB 0.32
WB 0.32
Watrix-P Horz(CT) 0.00 4-5
WB 0.32
Watrix-P Horz(CT) 0.14 3
Matrix-P Horz(CT) 0.14 4
Matrix-P Horz(CT) 0.10 Horz(CT) 0.10 Horz(CT) 1.15 Horz(CT) 0.10 Horz(CT) 0.10 Horz(CT) 1.15 Horz(CT) 0.10 Horz(CT) 1.15 Horz(CT) 0.10 Horz(CT) 1.15 Horz(CT) 0.10 Horz(CT) 1.15 Horz(CT) 1.15</td><td> 25.0) 25.0) 100 100<!--</td--><td> 25.0) Lumber DOL 1.15
Rep Stress Incr NO
Code IBC2021/TPI2014 WB 0.32
Watrix-P WB 0.32
Watrix-P Wert(CT) 0.00 4.5 >999 180
Wert(CT) 0.00 4.5 >999 180
Wert(CT) 0.01 4.3 n/a n/a Horz(CT) 0.14 3 n/a n/a Horz(CT) 0.14 3 n/a n/a Matrix-P 4) This truss has been designed for a 10.0 psf bottom
chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a 10.0 psf bottom
chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf
on the bottom chord in all areas where a rectangle
3-06-00 tall by 2-00-00 wide will fit between the bottom
chord and any other members. 6) All bearings are assumed to be HF No.2 crushing
capacity of 405 psi. 7) Provide mechanical connection (by others) of truss to
bearing plate capable of withstanding 1774 lb uplift at
joint 5, 343 lb uplift at joint 3. 7) Provide mechanical connection (by others) of truss to
bearing plate capable of withstanding tr74 lb uplift at
joint 5, 343 lb uplift at joint 4. 8) This truss has been designed for a total drag load of 200
plf. Lumber DOL=(1.33) Connect
trus to resist drag loads along bottom chord from 0-0-0
to 1-10-6 for 200.0 plf. LOAD CASE(S) Standard </td><td> 25.0) 25.0) 1.00 1.15 Rep Stress Incr NO Code IBC2021/TPI2014 Matrix-P BC 0.06 VerifCT 0.00 4.5 9.99 180 Weight: 33 lb Weight: 33 lb 2x4 HF No.2 5.1 This truss has been designed for a 10.0 psf bottom chord for 10.0 psf bottom chord in all areas where a rectangle 3-06-00 tall by 2:00-00 vide will fit between the bottom chord and any other members. All bearings are assumed to be HF No.2 crushing capacity of 405 psi. Provide mechanical connection (by others) of truss to been designed for a noving concentrated load of 20.0 pdf to a public tal joint 5, 343 lb uplit at joint 6, 300 condet trass to resist drag loads along bottom chord from 0-0-0 to 11-0-8 for 200.0 pf. LOAD CASE(S) Stand</td></td></td></td> | 25.0) 25.0) 1.00 Lumber DOL 1.15
Rep Stress Incr NO
Code IBC2021/TPI2014 BC 0.06
WB 0.32
Matrix-P 4) This truss has been designed for a 10.0
chord live load nonconcurrent with any
x4 HF No.2 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 3tructural wood sheathing directly applied or
1-10-6 oc purlins, except end verticals.
Rigid ceiling directly applied or 6-0-0 oc
bracing. 1 Row at midpt 1-5
1 Brace at Jt(s): 6 (size) 3=1-10-6, 4=1-10-6, 5=1-10-6
Max Horiz 5=42 (LC 53) Max Grav 3=344 (LC 52), 4=1458 (LC 52),
5=1800 (LC 53) Max Grav 3=344 (LC 52), 4=1458 (LC 52),
5=1800 (LC 53) Max Grav 3=344 (LC 52), 4=1458 (LC 52),
5=1800 (LC 53) (b) - Maximum Compression/Maximum
Tension 5-7=-1793/1828, 1-7=-890/924,
1-2=-312/312, 2-3=-54/54, 4-6=-549/581,
2-6=-421/452 4-5=-316/316 1-6=-995/995, 6-7=-336/336, 4-7=-967/965 CE 7-16; Vult=110mph (3-second gust)
nph; TCDL=4.2psf; BCDL=6.0psf; h=35ft; Cat.
Enclosed; MWFRS (envelope) and C-C
zone; cantilever left and right exposed ;C-C
ers and forces & MWFRS for reactions shown; | 25.0) 25.0) 1.115 Rep Stress Incr NO
Code IBC2021/TPI2014 25.0) 7.0 Code IBC2021/TPI2014 25.0) 26.0 0.06 WB
WB
Matrix-P 27.0 Code IBC2021/TPI2014 27.0 This truss has been designed for a 10.0 psf bottom
chord live load nonconcurrent with any other live load
of 0.0 tall by 2:00-00 wide will fit between the bottor
chord and any other members. 28.1 Code 11.1 - 5 29.1 Code 11.1 - 5 20.0 Col tall by 2:00-00 wide will fit between the bottor
chord and any other members. 20.0 Col tall by 2:00-00 wide will fit between the bottor
chord and any other members. 20.0 Col tall by 2:00-00 wide will fit between the bottor
chord and any other members. 20.0 Col tall by 2:00-00 wide will fit between the bottor
chord and any other members. 20.0 Col tall by 2:00-00 wide will fit between the bottor
chord and any other members. 20.0 Col tall by 2:00-00 wide will fit between the bottor
chord and any other members. 20.0 Dib live and 40.0 bd ead located at all mi
panels and at all panel points along the Top Chord,
nonconcurrent with any other live loads. 20.0 Col tall by 2:00-00 uid by 2:00-00 20.0 Col tall by 2:00-00<!--</td--><td> 25.0) 25.0) 100 100 115 Rep Stress Incr NO Code IBC2021/TPI2014 WB 0.32 Veri(CT) 0.06 Veri(CT) 0.07 Veri(CT) 0.06 Horz(CT) 0.06 Horz(CT) 0.07 Horz(CT) 0.06 Veri(CT) 0.06 Veri(CT) 0.06 Veri(CT) 0.06 Horz(CT) 0.14 Horz(CT) 0.06 Horz(CT) 0.00 Horz(CT)<!--</td--><td>25.0) Lumber DOL 1.15
Rep Stress Incr NO
Code IBC2021/TPI2014 BC 0.06
WB 0.32
WB 0.32
WB 0.32
Watrix-P Horz(CT) 0.00 4-5
WB 0.32
Watrix-P Horz(CT) 0.14 3
Matrix-P Horz(CT) 0.14 4
Matrix-P Horz(CT) 0.10 Horz(CT) 0.10 Horz(CT) 1.15 Horz(CT) 0.10 Horz(CT) 0.10 Horz(CT) 1.15 Horz(CT) 0.10 Horz(CT) 1.15 Horz(CT) 0.10 Horz(CT) 1.15 Horz(CT) 0.10 Horz(CT) 1.15 Horz(CT) 1.15</td><td> 25.0) 25.0) 100 100<!--</td--><td> 25.0) Lumber DOL 1.15
Rep Stress Incr NO
Code IBC2021/TPI2014 WB 0.32
Watrix-P WB 0.32
Watrix-P Wert(CT) 0.00 4.5 >999 180
Wert(CT) 0.00 4.5 >999 180
Wert(CT) 0.01 4.3 n/a n/a Horz(CT) 0.14 3 n/a n/a Horz(CT) 0.14 3 n/a n/a Matrix-P 4) This truss has been designed for a 10.0 psf bottom
chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a 10.0 psf bottom
chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf
on the bottom chord in all areas where a rectangle
3-06-00 tall by 2-00-00 wide will fit between the bottom
chord and any other members. 6) All bearings are assumed to be HF No.2 crushing
capacity of 405 psi. 7) Provide mechanical connection (by others) of truss to
bearing plate capable of withstanding 1774 lb uplift at
joint 5, 343 lb uplift at joint 3. 7) Provide mechanical connection (by others) of truss to
bearing plate capable of withstanding tr74 lb uplift at
joint 5, 343 lb uplift at joint 4. 8) This truss has been designed for a total drag load of 200
plf. Lumber DOL=(1.33) Connect
trus to resist drag loads along bottom chord from 0-0-0
to 1-10-6 for 200.0 plf. LOAD CASE(S) Standard </td><td> 25.0) 25.0) 1.00 1.15 Rep Stress Incr NO Code IBC2021/TPI2014 Matrix-P BC 0.06 VerifCT 0.00 4.5 9.99 180 Weight: 33 lb Weight: 33 lb 2x4 HF No.2 5.1 This truss has been designed for a 10.0 psf bottom chord for 10.0 psf bottom chord in all areas where a rectangle 3-06-00 tall by 2:00-00 vide will fit between the bottom chord and any other members. All bearings are assumed to be HF No.2 crushing capacity of 405 psi. Provide mechanical connection (by others) of truss to been designed for a noving concentrated load of 20.0 pdf to a public tal joint 5, 343 lb uplit at joint 6, 300 condet trass to resist drag loads along bottom chord from 0-0-0 to 11-0-8 for 200.0 pf. LOAD CASE(S) Stand</td></td></td> | 25.0) 25.0) 100 100 115 Rep Stress Incr NO Code IBC2021/TPI2014 WB 0.32 Veri(CT) 0.06 Veri(CT) 0.07 Veri(CT) 0.06 Horz(CT) 0.06 Horz(CT) 0.07 Horz(CT) 0.06 Veri(CT) 0.06 Veri(CT) 0.06 Veri(CT) 0.06 Horz(CT) 0.14 Horz(CT) 0.06 Horz(CT) 0.00 Horz(CT)<!--</td--><td>25.0) Lumber DOL 1.15
Rep Stress Incr NO
Code IBC2021/TPI2014 BC 0.06
WB 0.32
WB 0.32
WB 0.32
Watrix-P Horz(CT) 0.00 4-5
WB 0.32
Watrix-P Horz(CT) 0.14 3
Matrix-P Horz(CT) 0.14 4
Matrix-P Horz(CT) 0.10 Horz(CT) 0.10 Horz(CT) 1.15 Horz(CT) 0.10 Horz(CT) 0.10 Horz(CT) 1.15 Horz(CT) 0.10 Horz(CT) 1.15 Horz(CT) 0.10 Horz(CT) 1.15 Horz(CT) 0.10 Horz(CT) 1.15 Horz(CT) 1.15</td><td> 25.0) 25.0) 100 100<!--</td--><td> 25.0) Lumber DOL 1.15
Rep Stress Incr NO
Code IBC2021/TPI2014 WB 0.32
Watrix-P WB 0.32
Watrix-P Wert(CT) 0.00 4.5 >999 180
Wert(CT) 0.00 4.5 >999 180
Wert(CT) 0.01 4.3 n/a n/a Horz(CT) 0.14 3 n/a n/a Horz(CT) 0.14 3 n/a n/a Matrix-P 4) This truss has been designed for a 10.0 psf bottom
chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a 10.0 psf bottom
chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf
on the bottom chord in all areas where a rectangle
3-06-00 tall by 2-00-00 wide will fit between the bottom
chord and any other members. 6) All bearings are assumed to be HF No.2 crushing
capacity of 405 psi. 7) Provide mechanical connection (by others) of truss to
bearing plate capable of withstanding 1774 lb uplift at
joint 5, 343 lb uplift at joint 3. 7) Provide mechanical connection (by others) of truss to
bearing plate capable of withstanding tr74 lb uplift at
joint 5, 343 lb uplift at joint 4. 8) This truss has been designed for a total drag load of 200
plf. Lumber DOL=(1.33) Connect
trus to resist drag loads along bottom chord from 0-0-0
to 1-10-6 for 200.0 plf. LOAD CASE(S) Standard </td><td> 25.0) 25.0) 1.00 1.15 Rep Stress Incr NO Code IBC2021/TPI2014 Matrix-P BC 0.06 VerifCT 0.00 4.5 9.99 180 Weight: 33 lb Weight: 33 lb 2x4 HF No.2 5.1 This truss has been designed for a 10.0 psf bottom chord for 10.0 psf bottom chord in all areas where a rectangle 3-06-00 tall by 2:00-00 vide will fit between the bottom chord and any other members. All bearings are assumed to be HF No.2 crushing capacity of 405 psi. Provide mechanical connection (by others) of truss to been designed for a noving concentrated load of 20.0 pdf to a public tal joint 5, 343 lb uplit at joint 6, 300 condet trass to resist drag loads along bottom chord from 0-0-0 to 11-0-8 for 200.0 pf. LOAD CASE(S) Stand</td></td> | 25.0) Lumber DOL 1.15
Rep Stress Incr NO
Code IBC2021/TPI2014 BC 0.06
WB 0.32
WB 0.32
WB 0.32
Watrix-P Horz(CT) 0.00 4-5
WB 0.32
Watrix-P Horz(CT) 0.14 3
Matrix-P Horz(CT) 0.14 4
Matrix-P Horz(CT) 0.10 Horz(CT) 0.10 Horz(CT) 1.15 Horz(CT) 0.10 Horz(CT) 0.10 Horz(CT) 1.15 Horz(CT) 0.10 Horz(CT) 1.15 Horz(CT) 0.10 Horz(CT) 1.15 Horz(CT) 0.10 Horz(CT) 1.15 | 25.0) 25.0) 100 100<!--</td--><td> 25.0) Lumber DOL 1.15
Rep Stress Incr NO
Code IBC2021/TPI2014 WB 0.32
Watrix-P WB 0.32
Watrix-P Wert(CT) 0.00 4.5 >999 180
Wert(CT) 0.00 4.5 >999 180
Wert(CT) 0.01 4.3 n/a n/a Horz(CT) 0.14 3 n/a n/a Horz(CT) 0.14 3 n/a n/a Matrix-P 4) This truss has been designed for a 10.0 psf bottom
chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a 10.0 psf bottom
chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf
on the bottom chord in all areas where a rectangle
3-06-00 tall by 2-00-00 wide will fit between the bottom
chord and any other members. 6) All bearings are assumed to be HF No.2 crushing
capacity of 405 psi. 7) Provide mechanical connection (by others) of truss to
bearing plate capable of withstanding 1774 lb uplift at
joint 5, 343 lb uplift at joint 3. 7) Provide mechanical connection (by others) of truss to
bearing plate capable of withstanding tr74 lb uplift at
joint 5, 343 lb uplift at joint 4. 8) This truss has been designed for a total drag load of 200
plf. Lumber DOL=(1.33) Connect
trus to resist drag loads along bottom chord from 0-0-0
to 1-10-6 for 200.0 plf. LOAD CASE(S) Standard </td><td> 25.0) 25.0) 1.00 1.15 Rep Stress Incr NO Code IBC2021/TPI2014 Matrix-P BC 0.06 VerifCT 0.00 4.5 9.99 180 Weight: 33 lb Weight: 33 lb 2x4 HF No.2 5.1 This truss has been designed for a 10.0 psf bottom chord for 10.0 psf bottom chord in all areas where a rectangle 3-06-00 tall by 2:00-00 vide will fit between the bottom chord and any other members. All bearings are assumed to be HF No.2 crushing capacity of 405 psi. Provide mechanical connection (by others) of truss to been designed for a noving concentrated load of 20.0 pdf to a public tal joint 5, 343 lb uplit at joint 6, 300 condet trass to resist drag loads along bottom chord from 0-0-0 to 11-0-8 for 200.0 pf. LOAD CASE(S) Stand</td> | 25.0) Lumber DOL 1.15
Rep Stress Incr NO
Code IBC2021/TPI2014 WB 0.32
Watrix-P WB 0.32
Watrix-P Wert(CT) 0.00 4.5 >999 180
Wert(CT) 0.00 4.5 >999 180
Wert(CT) 0.01 4.3 n/a n/a Horz(CT) 0.14 3 n/a n/a Horz(CT) 0.14 3 n/a n/a Matrix-P 4) This truss has been designed for a 10.0 psf bottom
chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a 10.0 psf bottom
chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf
on the bottom chord in all areas where a rectangle
3-06-00 tall by 2-00-00 wide will fit between the bottom
chord and any other members. 6) All bearings are assumed to be HF No.2 crushing
capacity of 405 psi. 7) Provide mechanical connection (by others) of truss to
bearing plate capable of withstanding 1774 lb uplift at
joint 5, 343 lb uplift at joint 3. 7) Provide mechanical connection (by others) of truss to
bearing plate capable of withstanding tr74 lb uplift at
joint 5, 343 lb uplift at joint 4. 8) This truss has been designed for a total drag load of 200
plf. Lumber DOL=(1.33) Connect
trus to resist drag loads along bottom chord from 0-0-0
to 1-10-6 for 200.0 plf. LOAD CASE(S) Standard | 25.0) 25.0) 1.00 1.15 Rep Stress Incr NO Code IBC2021/TPI2014 Matrix-P BC 0.06 VerifCT 0.00 4.5 9.99 180 Weight: 33 lb Weight: 33 lb 2x4 HF No.2 5.1 This truss has been designed for a 10.0 psf bottom chord for 10.0 psf bottom chord in all areas where a rectangle 3-06-00 tall by 2:00-00 vide will fit between the bottom chord and any other members. All bearings are assumed to be HF No.2 crushing capacity of 405 psi. Provide mechanical connection (by others) of truss to been designed for a noving concentrated load of 20.0 pdf to a public tal joint 5, 343 lb uplit at joint 6, 300 condet trass to resist drag loads along bottom chord from 0-0-0 to 11-0-8 for 200.0 pf. LOAD CASE(S) Stand |

Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.

3) Provide adequate drainage to prevent water ponding.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Job	Truss	Truss Type Qty Ply 2nd Street Apartments		2nd Street Apartments		
4319944	P04	Blocking	1	1	R853 Job Reference (optional)	387478

PRMU20241695

City of Puyallup Development & Permitting Service ISSUED PERMIT											
Building	Planning										
Engineering	Public Works										
Fire	Traffic										

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Nov 15 18:24:18 ID:3yRMem8COs20ZxJg5YsJVSyluBP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:67.4

Plate Offsets (X, Y): [4:0-3-0,0-3-0]

Loading TCLL (Roof Snow = TCDL	25.0)	(psf) 25.0 7.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.47 0.04 0.32	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.24	(loc) 5 5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 185/148
BCLL BCDL		0.0* 10.0	Code	IBC2021	/TPI2014	Matrix-P		(0.)		-			Weight: 30 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS JOINTS REACTIONS	2x4 HF No 2x4 HF No 2x4 HF No 2x4 HF No 2x4 HF No 2x4 HF No Prigid ceili bracing. 1 Row at 1 Brace a 7 (size) Max Horiz Max Uplift Max Grav (lb) - Max	5.2 5.2 burlins: 1-3 ng directly midpt t Jt(s): 1, 3=1-2-14, 5=-42 (LC 3=-448 (L 5=-1873 (3=448 (L 5=1888 (I mum Com	, except end vertical applied or 6-0-0 oc 1-5 4=1-2-14, 5=1-2-14 32) C 33), 4=-1426 (LC 3 C 32), 4=1441 (LC 52 C 53) ppression/Maximum	4) 5) 8) 7) 8) 33), 2), 9)	This truss ha chord live loa * This truss h on the botton 3-06-00 tall I chord and an All bearings capacity of 4 Provide mec bearing plate joint 5, 448 I This truss ha load of 250.0 panels and a nonconcurre This truss ha plf. Lumber I truss to resis to 1-2-14 for	as been designed ad nonconcurrent has been designe m chord in all area by 2-00-00 wide w ny other members are assumed to b 105 psi. chanical connectio e capable of withs b uplift at joint 3 a as been designed Dib live and 40.0lb at all panel points ent with any other as been designed DOL=(1.33) Plate st drag loads alone 200.0 plf.	for a 10.0 with any d for a liv as where vill fit betw s. e HF No. on (by oth tanding 1 ind 1426 i for a mov dead loc along the live loads for a tota grip DOL g bottom	D psf bottom other live loa e load of 20.0 a rectangle veen the botto 2 crushing ers) of truss t 873 lb uplift at joir ing concentra ated at all mi Top Chord, I drag load of =(1.33) Coni chord from 0-	ds.)psf om at att d 200 nect 0-0					
TOP CHORD	5-6=-1885 1-2=-198/ 2-7=-596/	5/1907, 1-6 198, 2-3=- 608	5=-888/909, 54/54, 4-7=-439/451,	10) ,	or the orienta bottom chore	ation of the purlin d.	along the	top and/or	iize					•
BOT CHORD WEBS	4-5=-205/ 4-6=-1022 1-7=-1043	205 2/1021, 6-7 3/1043	/=-212/212,	20		Otanuaru							ALAOMIN	G ZHAO
NOTES 1) Wind: ASK Vasd=87m II; Exp B; Corner (3) for member Lumber D 2) TCLL: AS DOL=1.15 Cs=1.00; applied wil 3) Provide act	CE 7-16; Vu nph; TCDL= Enclosed; M) zone; canti ers and forca OL=1.60 pla CE 7-16; Pf- 5); Is=1.0; Ro Ct=1.10; IBC here require dequate drai	t=110mph 4.2psf; BC WFRS (er lever left a es & MWF te grip DC =25.0 psf (bugh Cat E C 1607.11.1 d. nage to pr	(3-second gust) DL=6.0psf; h=35ft; C welope) and C-C nd right exposed ;C-1 RS for reactions show L=1.60 Lum DOL=1.15 Plate ; Partially Exp.; Ce= 2 minimum roof live I event water ponding.	rat. C wn; 1.0; oad									HORESSIONA	74 ERED NOTE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

November 18,2024

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments
4319944	P05	Blocking	1	1	R85387479 Job Reference (optional)

PRMU20241695

City of Puyallup Development & Permitting Service ISSUED PERMIT											
Building	Planning										
Engineering	Public Works										
Fire	Traffic										

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Nov 15 18:24:18 ID:ZJC8Pco87yIZV?I?dqpRZLylu9G-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:69.3

Plate Offsets (X, Y): [4:0-3-0,0-3-0]

Loading TCLL (Roof Snow = TCDL BCLL BCDL	(psf) 25.0 25.0) 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2021/TI	PI2014	CSI TC BC WB Matrix-P	0.45 0.04 0.31	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.21	(loc) 5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 31 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS JOINTS REACTIONS	2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 2-0-0 oc purlins: 1-3 Rigid ceiling directly bracing. 1 Row at midpt 1 Brace at Jt(s): 1, 7 (size) 3=1-4-0, 4 Max Horiz 3=-42 (L 5=-1850 (Max Grav 3=430 (LC 5=1867 (L	8, except end vertica applied or 6-0-0 oc 1-5 4=1-4-0, 5=1-4-0 C 54) (C 33), 4=-1422 (LC (LC 32) C 52), 4=1439 (LC 5) LC 53)	4) T cl 5) * 0 3 3 3 6) A 6) A 6) A 6) 7) P b 6 7) P b 7 8) T 1 (33), p 1 2), 9) T 7	his truss ha hord live loa This truss h n the botton -06-00 tall b hord and an all bearings a apacity of 40 Provide mech earing plate earing plate earing plate bint 5, 429 lb his truss ha bad of 250.0 anels and a onconcurree his truss ha lf. Lumber E russ to resis	s been designed i id nonconcurrent has been designed n chord in all area y 2-00-00 wide w yo other members are assumed to be 05 psi. hanical connection capable of withst o uplift at joint 3 ar s been designed i lb live and 40.0lb t all panel points a nt with any other 1 s been designed i DoL=(1.33) Plate t drag loads along	for a 10. with any d for a liv is where ill fit betv e HF No. n (by oth tanding 1 nd 1422 for a mov dead loc along the ive loads for a tota grip DOL bottom	D psf bottom other live load e load of 20.0 a rectangle veen the botto 2 crushing ers) of truss to 850 lb uplift at bib uplift at join ing concentri- trated at all mit Top Chord, I drag load of =(1.33) Connichord from 0-	ds. Dpsf om ot tt t4. ated d 2000 nect 0-0					
TOP CHORD	(ib) - Maximum Com Tension 5-6=-1864/1888, 1-6 1-2=-215/215, 2-3=-	6=-890/913, 54/54, 4-7=-459/473	10) G 0 3, b	o 1-4-0 for 2 Graphical pu or the orienta ottom chord	00.0 plf. rlin representatior ation of the purlin a I.	n does no along the	ot depict the s top and/or	ize					
BOT CHORD WEBS	2-7=-558/572 4-5=-222/222 4-6=-1004/1003, 6-7 1-7=-1028/1029	7=-231/231,	LOAD	D CASE(S)	Standard							A LAOMIN	G ZHAO
NOTES 1) Wind: AS(Vasd=87r II; Exp 8; Corner (3) for membi- Lumber D 2) TCLL: AS DOL=1.1E Cs=1.00; applied wi 3) Provide au	CE 7-16; Vult=110mph nph; TCDL=4.2psf; BC Enclosed; MWFRS (er J zone; cantilever left a ers and forces & MWFI OL=1.60 plate grip DC CE 7-16; Pf=25.0 psf (5); Is=1.0; Rough Cat E Ct=1.10; IBC 1607.11 here required. dequate drainage to pr	n (3-second gust) DL=6.0psf; h=35ft; C nvelope) and C-C nund right exposed ;C- RS for reactions sho DL=1.60 Lum DOL=1.15 Plat 3; Partially Exp.; Ce= 2 minimum roof live revent water ponding	Cat. -C wwn; e =1.0; load J.									THE SSIONA	74 EBER GING

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

November 18,2024

Job	Truss	uss Truss Type Qty Ply 2nd Street Apartments		2nd Street Apartments		
4319944	P06	Blocking	1	1	Job Reference (optional)	R85387480

PRMU20241695

City of Puyallup Development & Permitting Services ISSUED PERMIT										
Building	Planning									
Engineering	Public Works									
Fire OF W	Traffic									

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Nov 15 18:24:19 ID:G2OCCTXPmh_wJNSjh8QIXCyIu8J-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:67.4

Plate Offsets (X, Y): [4:0-3-0,0-3-0]

Loading TCLL (Roof Snow = TCDL BCLL BCDL	(psf) 25.0 25.0) 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2021	I/TPI2014	CSI TC BC WB Matrix-P	0.43 0.05 0.31	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.17	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 31 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS JOINTS REACTIONS	2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 2-0-0 oc purlins: 1-3 Rigid ceiling directly bracing. 1 Row at midpt 1 Brace at Jt(s): 1, 7 (size) 3=1-6-14, Max Horiz 5=42 (LC Max Uplift 3=-387 (L 5=-1808 (L) 5=-1808 (L) 5=1829 (L)	 i, except end vertical applied or 6-0-0 oc 1-5 4=1-6-14, 5=1-6-14 33), 4=-1423 (LC 32) C 52), 4=1444 (LC 52-053) 	4) 5) Is. 6) 7) 8) 33), 2), 9)	This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings capacity of 4 Provide mec bearing plate joint 5, 387 ll This truss ha load of 250.0 panels and a nonconcurre This truss ha plf. Lumber D truss to resis	as been designed as been designed has been designed n chord in all area by 2-00-00 wide w by 2-00-00 wide wide by 2-00-00 wide wide by 2-00-00 wid	for a 10. with any d for a liv as where vill fit betv s. be HF No. on (by oth standing 1 and 1423 for a moro o dead loc along the live loads for a tota grip DOL g abottom) psf bottom other live loz e load of 20. a rectangle veen the bott 2 crushing ers) of truss i 808 lb uplift b uplift at join ving concentri ated at all m Top Chord, I drag load o =(1.33) Con	to both to to tat tat tat tat f 200 f 200 inect -0-0					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	10)	to 1-6-14 for) Graphical pu	200.0 plf. Irlin representatio	n does no	ot depict the	size					
TOP CHORD	5-6=-1824/1853, 1-6 1-2=-259/259, 2-3=- 2-7=-484/504	6=-891/919, 54/54, 4-7=-505/525	,	or the orienta	ation of the purlin d.	along the	top and/or						_
BOT CHORD WEBS	4-5=-264/264 4-6=-977/975, 6-7=-	278/278, 1-7=-1005/	1005	AD CASE(S)	Sidiluaru							OMIN	G ZH
NOTES												ALA WIA	er AO
 Wind: ASC Vasd=87n II; Exp B; Corner (3) for member Lumber D TCLL: AS DOL: 4.45 	CE 7-16; Vult=110mph nph; TCDL=4.2psf; BC Enclosed; MWFRS (er) zone; cantilever left a ers and forces & MWFI OL=1.60 plate grip DO CE 7-16; Pf=25.0 psf ((3-second gust) DL=6.0psf; h=35ft; C welope) and C-C nd right exposed ;C-1 RS for reactions sho DL=1.60 Lum DDL=1.15 Plate b. Particilly Exp. ; Co	C C wn;										T4

TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load 2) applied where required.

3) Provide adequate drainage to prevent water ponding.

November 18,2024

POR PEGISTERED * ESSIONAL EN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	P07	Blocking	1	1	Job Reference (optional)	R85387481

PRMU20241695

Development & Permitting Services									
Building	Planning								
Engineering	Public Works								
Fire OF M	Traffic								

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Nov 15 18:24:19 ID:dpnNydDXav2z1zkUzuQto0yIu7R-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:64.6

Plate Offsets (X, Y): [4:0-3-0,0-3-0]

Loading TCLL (Roof Snow = TCDL BCLL BCDL	(psf) 25.0) 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2021	I/TPI2014	CSI TC BC WB Matrix-P	0.42 0.05 0.31	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.15	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 32 lb	GRIP 185/148 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS JOINTS REACTIONS	2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 2-0-0 oc purlins: 1-3 Rigid ceiling directly bracing. 1 Row at midpt 1 Brace at Jt(s): 1, 7 (size) 3=1-8-6, Max Horiz 5=42 (LC Max Uplift 3=-367 (L 5=-1792 Max Grav 3=368 (L 5=1815 (a, except end vertical applied or 6-0-0 oc 1-5 4=1-8-6, 5=1-8-6 33), 4=-1427 (LC 3) (LC 32) C 52), 4=1449 (LC 52) LC 53) 	4) 5) s. 6) 7) 8) 33), 9)	This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings capacity of 4 Provide mec bearing plate joint 5, 367 II This truss ha load of 250.0 panels and a nonconcurre This truss ha plf. Lumber I truss to resis	is been designed ad nonconcurrent has been designe n chord in all area by 2-00-00 wide w yo ther members are assumed to 05 psi. hanical connectio capable of withs o uplift at joint 3 a is been designed blo live and 40.0lb it all panel points nt with any other is been designed OOL=(1.33) Plate t drag loads along	for a 10.0 with any d for a liv as where vill fit betw s. e HF No. on (by oth tanding 1 ind 1427 for a mov o dead loc along the live loads for a tota grip DOL a bottom) psf bottom other live loa e load of 20.0 a rectangle veen the botto 2 crushing ers) of truss t 792 lb uplift at b uplift at joir ring concentr Top Chord, I drag load of =(1.33) Con	ds. Opsf om to at ti 4. rated id f 200 nect -0-0						
FORCES	(lb) - Maximum Con Tension 5-6=-1809/1841, 1-6 1-2=-282/282, 2-3=-	npression/Maximum 5=-891/921, •54/54, 4-7=-525/550,	10	to 1-8-6 for 2) Graphical pu or the orienta bottom chore	200.0 plf. Irlin representation ation of the purlin d.	n does no along the	ot depict the s top and/or	size						
3OT CHORD WEBS NOTES 1) Wind: ASC Vasd=87n II; Exp B; Corner (3) for membe Lumber D	2-7=-454/479 4-5=-286/286 4-6=-970/969, 6-7= CE 7-16; Vult=110mph nph; TCDL=4.2psf; BC Enclosed; MWFRS (ei) zone; cantilever left a ers and forces & MWF OL=1.60 plate grip DC	303/303, 1-7=-998/99 (3-second gust) CDL=6.0psf; h=35ft; C nvelope) and C-C und right exposed ;C-(RS for reactions show DL=1.60	LC 99 at. C vn;	OAD CASE(S)	Standard						Y	ALAOMINA OF WA	3 ZHAO SHINGTON	

- TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.
- 3) Provide adequate drainage to prevent water ponding.

November 18,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Job	Truss	Truss Type Qty Ply 2nd Street Apartments		2nd Street Apartments		
4319944	P08	Monopitch	2	1	Job Reference (optional)	R85387482

PRMU20241695

City of Puyallup Development & Permitting Services ISSUED PERMIT										
Building	Planning									
Engineering	Public Works									
Fire	Traffic									

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Nov 15 18:24:19 ID:3F8tfJ4ziBhPYIG4TGVnNfylvbs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:40.2

Plate Offsets (X, Y): [4:0-3-0,0-3-0]

Loading TCLL (Roof Snow = TCDL BCLL BCDL	= 25.0)	(psf) 25.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2021/	/TPI2014	CSI TC BC WB Matrix-P	0.26 0.05 0.26	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a -0.04	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 17 lb	GRIP 185/148 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES	 2x4 HF Nc 3x1 Gelir bracing. (size) Max Horiz Max Horiz Max Grav (lb) - Maxin Tension 1-2=-329/3 1-5=-1012 4-5=-328/3 1-4=-934/1 	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	athing directly applied cept end verticals. applied or 6-0-0 oc 4=1-8-12, 5=1-8-12 40) 72), 4=-841 (LC 40) C 61) C 73), 4=836 (LC 59) C 44) pression/Maximum 71/67, 2-4=-220/92,	6) 7) 8) 9) , 10) LO	* This truss h on the bottor 3-06-00 tall b chord and ar All bearings a capacity of 4 Provide mec bearing plate 3, 841 lb upli This truss ha load of 250.0 panels and a nonconcurre This truss ha plf. Lumber D truss to resis to 1-8-12 for AD CASE(S)	has been designed in chord in all area by 2-00-00 wide win yother members. are assumed to be 05 psi. hanical connection e capable of withst ff at joint 4 and 93 is been designed f 0bl live and 40.01b ti all panel points a ant with any other li is been designed f DOL=(1.33) Plate et t drag loads along 200.0 plf. Standard	d for a livi s where ill fit betv e HF No. h (by oth anding 5 2 Ib uplit for a mo dead loc along the ive loads for a tota grip DOL bottom	e load of 20.0 a rectangle veen the botto 2 crushing ers) of truss t i2 lb uplift at ji t at joint 5. ving concentr. vated at all mi T Top Chord, I drag load of =(1.33) Con chord from 0-	Opsf om oint ated d ² 200 nect -0-0						
 Wind: AS Vasd=87 II; Exp B; Corner(3) for memb Lumber D TCLL: AS DOL=1.1 Cs=1.00; applied w Unbalanc design. Gable rec This truss chord live 	CE 7-16; Vuli mph; TCDL=/ Enclosed; MI E) zone; canti ers and force DOL=1.60 plai SCE 7-16; Pf= 5); Is=1.0; RO Ct=1.10; IBC chere required and shas been de load noncon	t=110mph 4.2psf; BC WFRS (er ilever left a ss & MWFI te grip DO 250.0 psf ((ugh Cat B : 1607.11.1 shave be ious botton signed for current wi	(3-second gust) DL=6.0psf; h=35ft; C ivelope) and C-C and right exposed ;C-RS for reactions show iL=1.60 Lum DOL=1.15 Plate B; Partially Exp.; Ce= 2 minimum roof live live een considered for thi m chord bearing. r a 10.0 psf bottom th any other live load	at. •C vvn; • 1.0; poad s s									HORESSIONA	G ZHAO SHILO A ERED L ENGINE	

November 18,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MITFek-US.com

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	P09	Monopitch	2	1	R853874 Job Reference (optional)	83

PRMU20241695

City of Puyallup Development & Permitting Services ISSUED PERMIT										
Building	Planning									
Engineering	Public Works									
Fire	Traffic									

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Nov 15 18:24:19 ID:HgZmcLmOk1rRY2FKgZFgfiylu6j-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:40.8

Plate Offsets (X, Y): [4:0-3-0,0-3-0]

		-												
Loading TCLL (Roof Snow =	: 25.0)	(psf) 25.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.40 0.06	DEFL Vert(LL) Vert(TL)	in n/a n/a	(loc) -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 185/148
TCDL		7.0	Rep Stress Incr	YES		WB	0.40	Horiz(TL)	-0.06	3	n/a	n/a		
BCLL		0.0*	Code	IBC2021	/TPI2014	Matrix-P								
BCDL		10.0		-							-		Weight: 19 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural w 6-0-0 oc pur Rigid ceiling bracing. (size) 3: Max Horiz 5: Max Uplift 3: 5: Max Grav 3: 5: (lb) - Maxim Tension 1-2=-357/33 1-5=-1165/1 4-5=-356/32 1-4=-1071/1	cood shea lins, exc directly =1-10-6, =53 (LC =-61 (LC =-1071 (I =126 (LC =1124 (L um Com 5, 2-3=-7 096 5 162	athing directly applied cept end verticals. applied or 6-0-0 oc 4=1-10-6, 5=1-10-6 40) 72), 4=-974 (LC 40), LC 61) 273), 4=966 (LC 59), C 44) pression/Maximum 72/68, 2-4=-230/102,	6) or 8) 9) 10) LO	* This truss h on the bottor 3-06-00 tall b chord and ar All bearings : capacity of 4 Provide mec bearing plate 3, 974 lb upli This truss ha load of 250.0 panels and a nonconcurre This truss ha plf. Lumber D truss to resis to 1-10-6 for AD CASE(S)	has been designed in chord in all area by 2-00-00 wide w by other members are assumed to be 05 psi. hanical connection is been designed blb live and 40.01b ti all panel points a ant with any other I is been designed DOL=(1.33) Plate t drag loads along 200.0 plf. Standard	d for a liv is where ill fit betv e HF No. n (by oth tanding 6 71 lb up for a mor dead loc along the ive loads for a tota grip DOL g bottom	e load of 20.0 a rectangle veen the botto 2 crushing ers) of truss t if the uplift at j lift at joint 5. ving concentr vated at all mi T Top Chord, a. al drag load of .=(1.33) Con chord from 0-	Dpsf om oint ated d 2200 nect -0-0					
 Wind: AS' Vasd=87r II; Exp B; Corner(3E for memb Lumber D TCLL: AS DOL=1.1(Cs=1.00; applied w Unbalanc design. Gable reco 50 This truss chord live 	CE 7-16; Vult= mph; TCDL=4.2 Enclosed; MW =) zone; cantile ers and forces OCL=1.60 plate CE 7-16; Pf=2: 5); Is=1.0; Rou Ct=1.10; IBC 1 here required. ted snow loads quires continuous bas been desis load nonconct	110mph 2psf; BCl FRS (en ver left a & MWFF grip DO 5.0 psf (I gh Cat B 607.11.2 have be us bottor gned for urrent wi	(3-second gust) DL=6.0psf; h=35ft; Ca velope) and C-C and right exposed ;C-(RS for reactions show L=1.60 Lum DOL=1.15 Plate t; Partially Exp.; Ce=1 2 minimum roof live lo ten considered for this m chord bearing. a 10.0 psf bottom th any other live loads	at. C n; .0; ad									HOMEN BOMESSIONA	G ZHAO MGTOO THE EBED LENGTIO

November 18,2024

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Job	Truss	Truss Type Qty Ply 2		2nd Street Apartments				
4319944	P10	Monopitch	2	1	Job Reference (optional)	R85387484		

PRMU20241695

City of Puyallup Development & Permitting Service ISSUED PERMIT											
Building	Planning										
Engineering	Public Works										
Fire	Traffic										

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Nov 15 18:24:19 ID:pIXpzqzQzysATVUPcwXQJ4yIu6T-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:43.7

Plate Offsets (X, Y): [4:0-3-0,0-3-0]

Loading TCLL (Roof Snow = 25.0) TCDL BCLL BCDL	(psf) 25.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2021	I/TPI2014	CSI TC BC WB Matrix-P	0.53 0.05 0.51	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 22 lb	GRIP 185/148 FT = 10%	
LUMBER TOP CHORD 2x4 HF 30T CHORD 2x4 HF 30T CHORD 2x4 HF BRACING TOP CHORD Structu 6-0-0 o 30T CHORD Rigid c bracing REACTIONS (size) Max Hor Max Upli Max Gra FORCES (lb) - M Tension TOP CHORD 1-2e-3(MEBS 1-4e-1(NOTES 1) Wind: ASCE 7-16; 1 Vasd=87mph; TCD NOTES 1) Wind: ASCE 7-16; 1 Vasd=87mph; TCD DL=1.15); Is=1.0; Cs=1.00; Ct=1.10; 1 applied where requilable and the second 1) Gable requires cond 5) This truss has been chord live load none	No.2 No.2 No.2 No.2 ral wood she c purlins, ex 4=1-10-6, z $5=24$ (LC z $5=24$ (LC aximum Com 1/279, 2-3=- 44/1061 1/271 31/1134 /ult=110mph L=4.2psf; BC MWFRS (er antilever left; cress & MWF olate grip DC Pf=25.0 psf (Rough Cat E BC 1607.11. red. bads have be inuous botto designed fo concurrent wi	athing directly applie cept end verticals. applied or 6-0-0 oc 5=1-10-6 39) C 40), 5=-1032 (LC 6 C 59), 5=1089 (LC 44 pression/Maximum 7/0, 2-4=-303/73, (3-second gust) DL=6.0psf; h=35ft; C twelope) and C-C and right exposed ;C-RS for reactions show twelope) and C-C and right exposed ;C-RS for reactions show the 1.60 Lum DOL=1.15 Plate ; Partially Exp.; Ce= 2 minimum roof live I een considered for thi m chord bearing. r a 10.0 psf bottom th any other live load	6) 7) d or 8) 9) 51) 10 LC at. -C vn; 5 1.0; baad s.	* This truss I on the bottor 3-06-00 tall I chord and ar All bearings capacity of 4 Provide mec bearing plate joint 4 and 1 This truss ha load of 250.0 panels and a nonconcurre J This truss ha plf. Lumber I truss to resis to 1-10-6 for DAD CASE(S)	has been designed in chord in all areas by 2-00-00 wide wi by other members. are assumed to be 05 psi. hanical connection e capable of withst 032 lb uplift at joint is been designed f 01b live and 40.01b at all panel points a nt with any other li is been designed f 00L=(1.33) Plate <u>c</u> td rag loads along 200.0 plf. Standard	I for a liv s where II fit betw HF No. (by oth anding S t 5. or a moo dead loc long the ve loads or a tota grip DOL bottom	e load of 20.0 a rectangle veen the botto 2 crushing ers) of truss tr 91 lb uplift at ing concentri- ated at all mir- Top Chord, I drag load of =(1.33) Conr chord from 0-	Opsf om ated d 2200 nect -0-0			and the second sec	HORESSIONA	G ZHAO SHINGIOL TA ERED INGT	

SONAL EN November 18,2024

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments			
4319944	P11	Monopitch	2	1	Job Reference (optional)	R85387485		

PRMU20241695

City of Puyallup Development & Permitting Services ISSUED PERMIT										
Building	Planning									
Engineering	Public Works									
Fire	Traffic									

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Nov 15 18:24:19 ID:XIEILVvLcwh6qUROAIxjTXylu5F-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:55.3

BOT CHORD

REACTIONS (size)

JOINTS

FORCES

TOP CHORD

BOT CHORD

WEBS

NOTES

1)

2)

3)

4)

design

bracing.

Max Grav

Tension

4-5=-355/325

Lumber DOL=1.60 plate grip DOL=1.60

applied where required.

Wind: ASCE 7-16; Vult=110mph (3-second gust)

Vasd=87mph; TCDL=4.2psf; BCDL=6.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner(3E) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown;

TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load

Unbalanced snow loads have been considered for this

Gable requires continuous bottom chord bearing.

1 Brace at Jt(s): 6

Max Horiz 5=53 (LC 40)

Rigid ceiling directly applied or 6-0-0 oc

Max Uplift 3=-185 (LC 40), 4=-1117 (LC 40),

5=-1355 (LC 61)

5=1415 (LC 40)

(lb) - Maximum Compression/Maximum

1-2=-349/327. 2-3=-125/116. 4-6=-250/299.

2-6=-233/245, 5-7=-1483/1389, 1-7=-516/499

1-6=-565/613, 6-7=-381/351, 4-7=-960/1041

3=1-10-6, 4=1-10-6, 5=1-10-6

3=180 (LC 59), 4=1105 (LC 59),

Plate Offsets ()	late Offsets (X, Y): [4:0-3-0,0-3-0], [6:0-2-8,0-1-12]													
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	25.0	Plate Grip DOL	1.15		TC	0.96	Vert(LL)	n/a	-	n/a	999	MT20	185/148	
(Roof Snow $= 2$	25.0)	Lumber DOL	1.15		BC	0.06	Vert(TL)	n/a	-	n/a	999			
TCDL	7.0	Rep Stress Incr	YES		WB	0.29	Horiz(TL)	-0.07	3	n/a	n/a			
BCLL	0.0	Code	IBC202	1/TPI2014	Matrix-P									
BCDL	10.0											Weight: 26 lb	FT = 10%	
LUMBER TOP CHORD BOT CHORD	2x4 HF No.2 2x4 HF No.2		5) 6)	This truss ha chord live lo * This truss	as been design ad nonconcurr has been desig m chord in all a	ed for a 10.0 ent with any gned for a liv) psf bottom other live loa e load of 20.	ads. Opsf						
BRACING TOP CHORD	Structural wood s	3-06-00 tall chord and a All bearings	by 2-00-00 wid ny other memb are assumed t	e will fit betw ers. to be HF No.	veen the bott 2 crushing	om								

capacity of 405 psi. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 185 lb uplift at joint 3, 1117 lb uplift at joint 4 and 1355 lb uplift at joint 5. This truss has been designed for a moving concentrated

- This truss has been designed for a moving concentrated load of 250.0lb live and 40.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.
- 10) This truss has been designed for a total drag load of 200 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 1-10-6 for 200.0 plf.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouldapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Vauility** Criteria and DSE-22 available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Mitek[®]

Roseville, CA 95661 916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	P12	Monopitch	2	1	Job Reference (optional)	R85387486

PRMU20241695

City of Puyallup Development & Permitting Service ISSUED PERMIT								
Building	Planning							
Engineering	Public Works							
Fire	Traffic							

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Nov 15 18:24:20 ID:B84Y7rtXmVmlQnZms5MTjPyIu4?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:58.2

Plate Offsets (X, Y): [4:0-3-0,0-3-0]

			1											
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL		25.0	Plate Grip DOL	1.15		TC	0.31	Vert(LL)	n/a	-	n/a	999	MT20	185/148
(Roof Snov	<i>i</i> = 25.0)		Lumber DOL	1.15		BC	0.06	Vert(TL)	n/a	-	n/a	999		
TCDL		7.0	Rep Stress Incr	YES		WB	0.29	Horiz(TL)	-0.09	3	n/a	n/a		
BCLL		0.0*	Code	IBC202	/TPI2014	Matrix-P								
BCDL		10.0											Weight: 28 lb	FT = 10%
LUMBER TOP CHOF BOT CHOF WEBS BRACING TOP CHOF BOT CHOF WEBS JOINTS REACTION	 2x4 HF No 2x4 HF No 2x4 HF No 2x4 HF No 6-0-0 oc p Rigid ceilin bracing. 1 Row at n 1 Brace at IS (size) Max Horiz Max Grav 	.2 .2 .2 wood shee g directly hidpt Jt(s): 6 33-1-10-6, 5=53 (LC 33-234 (LC 5=-1500 (33-227 (LC	athing directly applie cept end verticals. applied or 6-0-0 oc 1-5 4=1-10-6, 5=1-10-6 40) C 40), 4=-1218 (LC LC 61) C 59), 4=1203 (LC 59	5) 6) ed or 7) 8) 9) 40), 99), 10	This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an All bearings a capacity of 4 Provide meci bearing plate joint 3, 1218 5. This truss ha load of 250.0 panels and a nonconcurree) This truss ha	s been designed for da nonconcurrent w has been designed in chord in all areas y 2-00-00 wide will by other members. are assumed to be 05 psi. hanical connection capable of withsta lb uplift at joint 4 a s been designed for the live and 40.01b of the live and 40.01b of the live and yother live s been designed for with any other live s been designed for	or a 10. vith any for a liv s where I fit betv HF No. (by oth anding 2 nd 1500 or a moo dead loc long the ve loads or a tota	D psf bottom other live loa e load of 20.1 a rectangle veen the bott 2 crushing ers) of truss : 34 lb uplift a: 0 lb uplift at jc ving concentri ated at all m Top Chord, 5. 1 drag load o	ads. Opsf om to t int rated id					
FORCES	: (Ib) - Maxir Tension	num Com	pression/Maximum		plf. Lumber E truss to resis	OOL=(1.33) Plate g t drag loads along 200.0 plf	prip DOL bottom	.=(1.33) Con chord from 0	nect -0-0					
TOP CHOP	RD 1-2=-344/3 2-6=-286/2	22, 2-3=- 91, 5-7=-	142/131, 4-6=-350/4 1645/1539, 1-7=-675	06, LC 5/644	DAD CASE(S)	Standard								
BOT CHOP	RD 4-5=-356/3	26												
WEBS	1-6=-693/7	53, 6-7=-3	378/349, 4-7=-961/1	042										and a second
NOTES													OMIN	GZA
 Wind: A Vasd=8 II; Exp Corner for mer Lumbe TCLL: A DOL=1 	ASCE 7-16; Vult 37mph; TCDL=4 B; Enclosed; MV (3E) zone; canti nbers and force r DOL=1.60 plat ASCE 7-16; Pf= .15); Is=1.0; Ro	=110mph 2psf; BC WFRS (en lever left a s & MWFf e grip DO 25.0 psf (l ugh Cat B	(3-second gust) DL=6.0psf; h=35ft; C ivelope) and C-C and right exposed; C RS for reactions sho iL=1.60 Lum DOL=1.15 Plate b; Partially Exp.; Ce=	Cat. c-C wn; e :1.0;								Y		AND
Cs=1.0 applied 3) Unbala	0; Ct=1.10; IBC where required nced snow load	1607.11.2 s have be	2 minimum roof live	load iis								3	POFESSIONA	ERED
design. 4) Gable i	equires continu	ous bottor	m chord bearing.											

November 18,2024

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MTrek-US.com

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	P13	Monopitch	2	1	R8538748 Job Reference (optional)	37

|--|

City of Puyallup Development & Permitting Service ISSUED PERMIT								
Building	Planning							
Engineering	Public Works							
Fire	Traffic							

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Nov 15 18:24:20 ID:YB_8SpmKawyOh?eoexAbAoyIu2s-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:63.9

Plate Offsets (X, Y): [4:0-3-0,0-3-0]

	-													
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL		25.0	Plate Grip DOL	1.15		тс	0.71	Vert(LL)	n/a	-	n/a	999	MT20	185/148
(Roof Snow =	25.0)		Lumber DOL	1.15		BC	0.06	Vert(TL)	n/a	-	n/a	999		
TCDL		7.0	Rep Stress Incr	YES		WB	0.29	Horiz(TL)	-0.11	3	n/a	n/a		
BCLL		0.0*	Code	IBC2021	/TPI2014	Matrix-P								
BCDL		10.0											Weight: 30 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS JOINTS REACTIONS	2x4 HF No. 2x4 HF No. 2x4 HF No. 2x4 HF No. Structural w 6-0-0 oc pu Rigid ceiling bracing. 1 Row at m 1 Brace at v (size) 3 Max Horiz 5 Max Uplift 3 5 Max Grav 3	2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	athing directly applie cept end verticals. applied or 6-0-0 oc 1-5 4=1-10-6, 5=1-10-6 40) C 40), 4=-1323 (LC 4 LC 61) C 59), 4=1305 (LC 59	5) 6) (d or 7) 8) 9) 40), 10	This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an All bearings a capacity of 4 Provide mech bearing plate joint 3, 1323 5. This truss ha load of 250.0 panels and a nonconcurrer This truss ha	s been designed for d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide wil y other members. are assumed to be 05 psi. nanical connection capable of withsta lb uplift at joint 4 al s been designed for lb live and 40.01b of t all panel points al nt with any other live s been designed for	or a 10. vith any for a liv s where I fit betw HF No. (by oth anding 2 nd 1646 or a moi dead loo long the ve loads or a tota	D psf bottom other live load e load of 20.1 a rectangle veen the bott 2 crushing ers) of truss (280 lb uplift at b uplift at jc ving concentr vated at all mi Top Chord, a. I drag load of	ds. Dpsf om to timt rated id					
FORCES	5 (Ib) - Maxim Tanaian	=1716 (L num Com	.C 40) pression/Maximum		plf. Lumber E truss to resis	OL=(1.33) Plate g t drag loads along	rip DOL bottom	.=(1.33) Con chord from 0	nect -0-0					
TOP CHORD	1-2=-339/3 2-6=-334/33	18, 2-3=-´ 33, 5-7=-´	158/146, 4-6=-453/5 1809/1690, 1-7=-837	17, LC 7/794	to 1-10-6 for AD CASE(S)	200.0 pit. Standard								
BOT CHORD	4-5=-358/32	27												
WEBS	1-6=-833/90	04, 6-7=-3	377/347, 4-7=-962/1	044										and a second
NOTES 1) Wind: ASG Vasd=87m II; Exp B; Corner(3E for membe Lumber D 2) TCLL: AS DOL=1.15 Cs=1.00; applied wi 3) Unbalance design. 4) Gable req	CE 7-16; Vult Enclosed; MW 2) zone; cantill ers and forces OL=1.60 plate CE 7-16; Pf=2 2); Is=1.0; Rou Ct=1.10; IBC nere required. ed snow loads uires continuc	=110mph 2psf; BCI /FRS (en ever left a & & MWFF e grip DO 25.0 psf (l ugh Cat B 1607.11.2 s have be ous bottor	(3-second gust) DL=6.0psf; h=35ft; C velope) and C-C and right exposed ;C. RS for reactions shou L=1.60 .um DOL=1.15 Plate ; Partially Exp.; Ce= 2 minimum roof live I en considered for thi n chord bearing.	Cat. -C wn; 2 1.0; load is									HORESSIONA	74 LENGING

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

November 18,2024

Page: 1

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	P14	Half Hip	2	1	Job Reference (optional)	R85387488

PRMU20241695

City of F Development & Po ISSUED	Puyallup ermitting Service: PERMIT
Building	Planning
Engineering	Public Works
Fire	Traffic

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Nov 15 18:24:20 ID:ZG5rj3azZpXIrSqtdDOXx8yIu1o-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 1-10-6

1-3-11 1-3-9 0-5-5 H− 0-5-5 +0-10-4 0-10-4 0-0-2 4-0-6-11 2x4 II 4x5 ≤ 2 7 8-3-12 8-0-4 7-10-8 ø -9 -9 Λ ××× 2x6 II 5x6= 1-10-6 |<u>1-7-2</u>|| |1-7-2

0-3-4

8-3-12

8 8 8

Scale = 1:67.9

Plate Offsets (X, Y): [3:0-3-0,0-3-0]

Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC20	21/TPI2014	CSI TC BC WB Matrix-P	0.31 0.05 0.24	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 34 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS JOINTS REACTIONS FORCES TOP CHORD BOT CHORD	2x6 DF No. 2x4 HF No. 2x4 HF No. 2x4 HF No. Structural v 6-0-0 oc pu Rigid ceilin bracing. 1 Row at m 1 Brace at (size) 3 Max Horiz 4 Max Uplift 3 Max Grav 3 (lb) - Maxim Tension 1-2=-292/2 4-5=-1675/ 3-4=-298/2	2 2 2 wood shea urlins, exa g directly didpt Jt(s): 6 3=1-10-6, 4=22 (LC 3=-1494 (3=-1494 (3=1470 (L num Com 75, 3-6=- ⁻¹ 1566, 1-5 72	athing directly applie cept end verticals. applied or 6-0-0 oc 1-4 4=1-10-6 39) LC 40), 4=-1526 (LC LC 59), 4=1592 (LC 4 pression/Maximum 774/864, 2-6=-300/5 i=-866/820	ed or s 61) 40) 1 4, L	 a) This truss ha chord live loa b) This truss ha on the bottor c) * This truss ha on the bottor c) * Of and a c) All bearings capacity of 4 c) Provide mec bearing plate joint 3 and 1 c) This truss ha load of 250.0 panels and a nonconcurre c) This truss ha plf. Lumber I truss to resis to 1-10-6 for c) CAD CASE(S) 	is been designed ad nonconcurrent has been designe in chord in all aree by 2-00-00 wide yo other members are assumed to b 05 psi. hanical connectic de capable of withs 526 lb uplift at join is been designed 01b live and 40.0lb at all panel points is been designed 00L=(1.33) Plate t drag loads alon 200.0 plf. Standard	for a 10.0 with any do for a liv as where vill fit betv s. be HF No. be HF No. be along the live loads for a tota g gip DOL g bottom) psf bottom other live loa e load of 20.0 a rectangle veen the botto 2 crushing ers) of truss t 494 lb uplift a ving concentr ated at all mi Top Chord, I drag load of =(1.33) Con chord from 0-	ds. Dpsf om at ated d ² 200 nect -0-0					
WEBS NOTES 1) Wind: AS Vasd=87r II; Exp B; Corner(3B for memb Lumber D	3-5=-801/8 CE 7-16; Vulta nph; TCDL=4 Enclosed; MV E) zone; cantil ers and forces OCL=1.60 plate	69, 5-6=- =110mph .2psf; BC VFRS (en ever left a s & MWFf e arip DO	310/286, 1-6=-803/8 (3-second gust) DL=6.0psf; h=35ft; C ivelope) and C-C and right exposed ;C RS for reactions shor L=1.60	72 Cat. :-C wn;									TLA OMIN	G ZHAO SHINGIO

- TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate 2) DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.
- 3) Unbalanced snow loads have been considered for this design.
- 4) Provide adequate drainage to prevent water ponding.
- 5) Gable requires continuous bottom chord bearing.

FORESSIONAL ENGINE

Page: 1

Job	Truss	Truss Type	Qty	Ply	2nd Street Apartments	
4319944	R01	Corner Rafter	3	1	Job Reference (optional)	R85387489

Page: 1

Builders FirstSource (Arlington, WA), Arlington, WA - 98223,

Scale =	1:56
---------	------

Hate Unsets (X, Y): [2:0-10-2,0-0-14], [2:2-2-2,0-8-10], [3:⊏dge,8-3-13], [3:4-3-15,0-8-10], [3:6-5-11,0-8-10]															
Loading TCLL (Roof Snow = TCDL BCLL BCDL	(p 25.0) 7 (10	sf) 5.0 7.0 0.0* 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC20	21/TPI	2014	CSI TC BC WB Matrix-P	0.51 0.00 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.04 0.00	(loc) 3-4 3-4 10	l/defl >999 >837 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 78 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD BRACING TOP CHORD BOT CHORD REACTIONS	2x4 HF No.2 *Except* 2-3:2x12 DF SS Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied. (size) 2=0-4-14, 3=0-2-2, 4=0-4-7, 5=0-2-2, $6=0-2-2$, $7=0-2-2$, 8=0-2-2, $9=0-2-2$, $10=0-2-2Max Horiz 2=161 (LC 63)Max Uplift 2=-82 (LC 6), 3=-87 (LC 10), 4=-36 (LC 6), 5=-67 (LC 60), 6=-36 (LC 6),9=-31$ (LC 6), 10=-53 (LC 7) Max Grav 2=508 (LC 1), 3=541 (LC 1), 4=330 (LC 38), 7=362 (LC 39), 8=362 (LC 40), 9=353 (LC 41), 10=396 (LC 16) (lb) - Maximum Compression/Maximum Tension 1-2=0/38, 2-3=-154/72, 3-4=-99/37, 4-5=-85/37, 5-6=-72/37, 6-7=-58/37, 7-8=-44/37, 8-9=-37/37, 9-10=-35/47, 10-11=-44/0 CE 7-16; Vult=110mph (3-second gust) mph; TCDL=4.2psf; BCDL=6.0psf; h=35ft; Cat. Enclosed; MWFRS (envelope); cantilever left exposed; end vertical left and right exposed; 00L=1.60 plate grip D0L=1.60 CE 7-16; PI=25.0 psf (Lum D0L=1.15 Plate 5); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Ct=1.10; IBC 1607.11.2 minimum roof live load here required. ed snow loads have been considered for this			, 4=-36 5 (LC 6), , 4=330 362 (LC LC 40), 16)	 Pla abc abc * Ti on 3-0 chc chc 6) All cap cap 7) Bea usin des 3) Pro bea 9) Pro bea 2, 8 at ju upli 	 Plates checked for a plus or minus 0 degree rotation about its center. Plates checked for a plus or minus 0 degree rotation about its center. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. All bearings are assumed to be HF No.2 crushing capacity of 405 psi. Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. Provide mechanical connection (by others) of truss to bearing plate at joint(s) 3, 5, 6, 7, 8, 9, 10. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 82 lb uplift at joint 7, 36 lb uplift at joint 3, 36 lb uplift at joint 7, 36 lb uplift at joint 5, 36 lb uplift at joint 5, 36 lb uplift at joint 5, 36 lb uplift at joint 9 and 53 lb uplift at joint 10. 								er Increase=1.15, Plate -2 (B), 7=-2 (B), 8=-2 3 (F=20, B=-34),	
FORCES TOP CHORD NOTES 1) Wind: AS: Vasd=87r II; Exp 8; and right Lumber D 2) TCLL: AS DOL=1.1 Cs=1.00; applied w 3) Unbalanc design.				; Cat. r left sed; ate e=1.0; e load this	join 10) Bev sur 11) Thi load par nor 12) Hai pro dov lb c at anc at anc 25- chc (s) 13) In t	t 10. veled platti acc with s truss had d of 250.C uels and a concurre nger(s) or vided suff vn at 2-9- lown and 2-7-7, 177 l 197 lb up 11-3, 51 l 118 lb up 5-0, and 5 rd. The c is the resp he LOAD he truss a	e or shim required truss chord at joint is been designed f lb live and 40.01b of t all panel points a nt with any other li other connection of cicient to support co 8, 31 lb down and 17 lb up at 5-7-7, b lb down and 37 ll b at 14-1-4, 51 lb b down and 18 lb of at 22-7-1, and 51 33 lb down and 18 design/selection of ponsibility of others CASE(S) section, are noted as front (to provi ((s) 3, 4, or a mov dead loc long the ve loads device(s oncentra 100 lb 0 85 lb dc o up at down ar up at 19 lb dowr lb up at such cc s. loads a F) or ba	de full bearing 5, 6, 7, 8, 9, ' ving concentra ated at all mic Top Chord, ated load(s) 93 up at 2-9-8, 1 bear 2-9-8, 1 constant 2-9-8, 1	g 10. ated d 3 lb 02 up wn at p cce ace			and a second sec	THO PERSION/	AST CLOSE AST CLOSE THE REP CLOSE AL ENGINEST

General Safety Notes

Failure to Follow Could Cause Property

 Additional stability bracing for truss system, e.g diagonal or X-bracing, is always required. See BCSI

PRMU20241695

- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other

City of Puyallup ment & Permitting Servic ISSUED PERMIT

Planning

Traffi

Public Works

Building

Engineering Fire

- joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1. Place plates on each face of truss at each
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumbe shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the camber for dead load deflection responsibility of truss fabricator. General practice is to
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable project engineer before use. environmental, health or performance risks. Consult with
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.