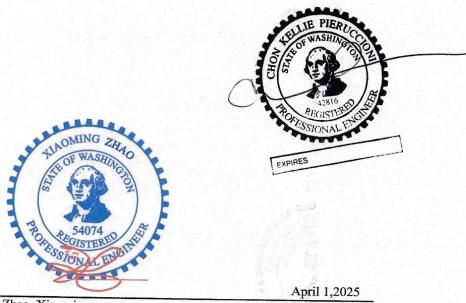


These calculations must be on site and made available by the Permittee for all inspections.

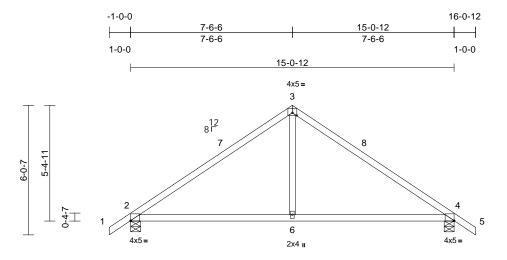

MiTek, Inc. 400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571

Re: 4449076

MKM EAST TOWN CROSSING BLDG D

The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Builders FirstSource (Arlington, WA).

Pages or sheets covered by this seal: R87439331 thru R87439409 My license renewal date for the state of Washington is September 28, 2025.



Zhao, Xiaoming

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

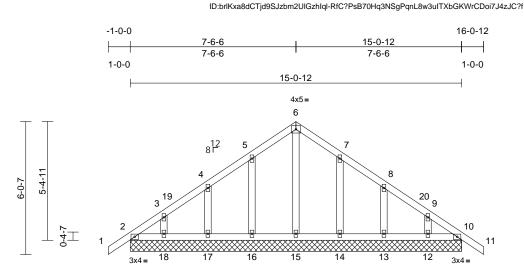
Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	A01	Common	14	1	Job Reference (optional)	R87439331

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Apr 01 13:11:40 ID:3VGr0IlwzKZIiOId9LykwJzhIrG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	7-6-6	15-0-12	I
	7-6-6	7-6-6	
Scale = 1:53.7			
Plate Offsets (X, Y): [2:Edge,0-0-4], [3:0-2-8,Edge], [4:Edge,0-0-4]			

TCLL 2 (Roof Snow = 25.0) TCDL TCDL 1 BCLL 1	ssf) Spacing Plate Grip DOL Lumber DOL 5.0 Rep Stress Incr 0.0* Code	2-0-0 1.15 1.15 YES IBC2018/TPI2014	CSI TC BC WB Matrix-SH	0.91 0.59 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.18 0.02	(loc) 2-6 2-6 4	l/defl >999 >959 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 47 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD 2x4 HF No.2 BOT CHORD 2x4 HF No.2 BOT CHORD 2x4 HF No.2 BRACING TOP CHORD Structural woo BOT CHORD Structural woo BOT CHORD Rigid ceiling d bracing. REACTIONS (size) 2=0 Max Horiz 2=9 Max Uplift 2=-3 Max Grav 2=8 FORCES (lb) - Maximun Tension	d sheathing directly app irectly applied or 10-0-0 -5-8, 4=0-5-8 6 (LC 11) 30 (LC 12), 4=-30 (LC 13 29 (LC 1), 4=829 (LC 1) 1 Compression/Maximun -901/53, 3-4=-901/53, 3=0/603 0mph (3-second gust) sf; BCDL=6.0psf; h=25ft; RS (envelope) exterior zc 0 to 2-0-0, Interior (1) 10-6 ft and right exposed ; en ed;C-C for members and ions shown; Lumber -1.60 0 psf (Lum DOL = 1.15 P h Cat B; Partially Exp.; IBC 1607.11.2 minimur juired. ted for greater of min roo es flat roof load of 25.0 j with other live loads. ted for a 10.0 psf bottom	Cat. ne -0 to 6 to 1 ate roof 1 ate 1 on the botto 3-06-00 tal chord and 2 and 30 lb 8) This truss i Internationar referenced LOAD CASE(S 1 ate 1 of 1 ate 1 ate 1 of 1 ate 1 a	has been designe om chord in all area by 2-00-00 wide w any other members s are assumed to b chanical connectio te capable of withs uplift at joint 4. s designed in accou al Building Code se standard ANSI/TPI) Standard	as where vill fit betw e HF No. n (by oth tanding 3 rdance w ection 230	a rectangle veen the bott 2 ers) of truss 0 lb uplift at ith the 2018	om to			a second s	TRO FESSION	G ZHAO

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


Page: 1

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	A02	Common Supported Gable	4	1	Job Reference (optional)	R87439332

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Apr 01 13:11:41

Page: 1

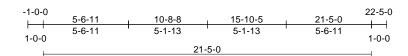
Builders FirstSource (Arlington, WA), Arlington, WA - 98223,

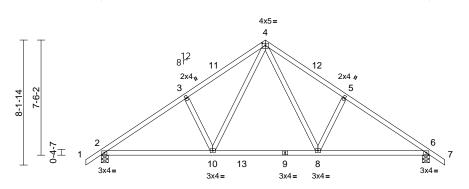
Scale = 1:52.4												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	25.0	Plate Grip DOL	1.15	тс	0.13	Vert(LL)	n/a	-	n/a	999	MT20	185/148
(Roof Snow = 25.0)		Lumber DOL	1.15	BC	0.07	Vert(CT)	n/a	-	n/a	999		
TCDL	15.0	Rep Stress Incr	YES	WB	0.06	Horz(CT)	0.00	10	n/a	n/a		
BCLL	0.0*	Code	IBC2018/TPI2014	Matrix-SH								
RCDI	10.0	1		1							Woight: 62 lb	ET - 10%

15-0-12

BCDL		10.0	Code	IDC201	0/1112014	Maultx-SFI			Weight: 63 lb	FT = 10%
LUMBER TOP CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 HF No. 2x4 HF No. Structural w 6-0-0 oc pu Rigid ceiling bracing. (size) 2 (size) 2 1 1 1 Max Horiz 2 Max Uplift 2 1 1 Max Grav 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 vood shea rifins. g directly 2=15-0-12 12=15-0-1 16=15-0-1 16=15-0-1 8=15-0-1 2=96 (LC 2=-16 (LC 3=-37 (LC 8=-26 (LC 2=2158 (LC)	11) 8), 12=-26 (LC 13), C 13), 14=-36 (LC 13), C 12), 17=-37 (LC 12) C 12) 18), 10=215 (LC 18) C 1), 13=207 (LC 1), C 1), 15=169 (LC 23) C 1), 17=207 (LC 1),), 4), 5 (, 5	Vasd=87mpH II; Exp B; En and C-C Cor to 7-6-6, Cor to 16-0-12 zc vertical left a forces & MW DOL=1.60 pl) Truss design only. For stu see Standarr or consult qu) TCLL: ASCE DOL = 1.15) Ce=1.0; Cs= live load app This truss ha load of 16.0 overhangs n All plates are Gable studs) This truss ha	7-16; Vult=110mph (3-sec 7; TCDL=4.2psf; BCDL=6.1 (closed; MWFRS (envelope ner(3E) -1-0-0 to 2-0-0, Ex- ner(3R) 7-6-6 to 10-6-6, E one; cantilever left and right reactions shown; ate grip DOL=1.60 ed for wind loads in the pl- ids exposed to wind (norm 1 ndustry Gable End Deta alified building designer a: 7-16; Pf=25.0 psf (Lum D Is=1.0; Rough Cat B; Par 1.00; Ct=1.10; IBC 1607.1 lied where required. s been designed for great psf or 2.00 times flat roof le on-concurrent with other li es continuous bottom chor spaced at 2-0-0 oc. s been designed for a 10.1	Dpsf; $h=25$ ft; Cat. e) exterior zone tterior(2N) 2-0-0 xterior(2N) 10-6-6 it exposed; end nembers and Lumber ane of the truss al to the face), ils as applicable, s per ANSI/TPI 1. OL = 1.15 Plate tially Exp.; 1.2 minimum roof er of min roof live bad of 25.0 psf on ve loads. erwise indicated. d bearing. D psf bottom	13) This truss is desig International Build referenced standa LOAD CASE(S) Star	ing Code section rd ANSI/TPI 1.	
FORCES	(lb) - Maxim		pression/Maximum	9		ad nonconcurrent with any has been designed for a liv			OMIN	Ga
TOP CHORD	4-5=-86/63,	, 5-6=-79/ , 8-9=-67/	0, 3-4=-93/61, 114, 6-7=-77/114, 33, 9-10=-77/35,		3-06-00 tall t chord and ar 0) All bearings	n chord in all areas where by 2-00-00 wide will fit betw by other members. are assumed to be HF No.	veen the bottom 2.	y e	ALAOMIN	SHINGTO
BOT CHORD	2-18=-35/88	8, 17-18= 88, 14-15	-35/88, 16-17=-35/88 =-35/88, 13-14=-35/8 =-35/88	,	bearing plate 2, 37 lb uplift	hanical connection (by oth capable of withstanding 1 at joint 16, 37 lb uplift at jo	6 lb uplift at joint bint 17, 26 lb uplift	4		
WEBS	6-15=-128/	16, 5-16= 68, 7-14=	-168/74, 4-17=-163/79 -168/74, 8-13=-163/79	<u>`</u>	and 26 lb up 2) Beveled plat	6 lb uplift at joint 14, 38 lb lift at joint 12. e or shim required to provi truss chord at joint(s) 2.		3	REGIST	TA TERED LENGTHER

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

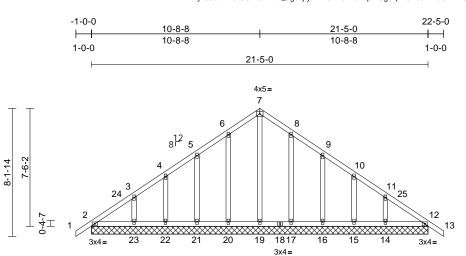

April 1,2025


Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	B01	Common	14	1	Job Reference (optional)	R87439333

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Apr 01 13:11:42 ID:OArwHu9iARUIgf_JtCS7SJzjrye-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com



Scale = 1:75.2 7-3-5 6-10-7 7-3-5

oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL	25.0	Plate Grip DOL	1.15		тс	0.41	Vert(LL)	-0.09	8-1Ó	>999	240	MT20	185/148
Roof Snow = 25.0)		Lumber DOL	1.15		BC	0.57	Vert(CT)	-0.17	6-8	>999	180		
CDL	15.0	Rep Stress Incr	YES		WB	0.13	Horz(CT)	0.04	6	n/a	n/a		
BCLL	0.0*	Code	IBC2018/	PI2014	Matrix-SH								
CDL	10.0					-						Weight: 85 lb	FT = 10%
	HF No.2		,	chord live loa	s been designed d nonconcurrent as been designe	with any	other live loa						
	HF No.2 HF No.2				n chord in all are			opsi					
	111 10.2				y 2-00-00 wide v			om					
OP CHORD Stru	ctural wood she 15 oc purlins.	athing directly applie	6)	All bearings a	y other members are assumed to b	e HF No.	2.						
brac	ing.	applied or 10-0-0 oc	, ,	pearing plate	nanical connection capable of withs plift at joint 6.								
REACTIONS (size)	2=0-5-8, 6 loriz 2=131 (L0				designed in acco	rdance w	ith the 2018						
		5 12), 6=-36 (LC 13)			Building Code se		6.1 and						
		_C 20), 6=1209 (LC 2	21)		andard ANSI/TP	11.							
ORCES (lb) - Tens		pression/Maximum		D CASE(S)	Standard								
OP CHORD 1-2=	0/72, 2-3=-1554	1/43, 3-4=-1425/86, 1554/43, 6-7=0/72											
)=0/857, 6-8=0/1219											
VEBS 4-8=		59/142, 4-10=-50/67	6,										
IOTES													
II; Exp B; Enclos and C-C Exterior 10-8-8, Exterior to 22-5-0 zone; c vertical left and r forces & MWFR DOL=1.60 plate) TCLL: ASCE 7-1	CDL=4.2psf; BC ed; MWFRS (er (2E) -1-0-0 to 2 2R) 10-8-8 to 13 cantilever left at ght exposed;C- 5 for reactions s grip DOL=1.60 6; Pf=25.0 psf (DL=6.0psf; h=25ft; C avelope) exterior zon -0-0, Interior (1) 2-0- 3-8-8, Interior (1) 13- d right exposed ; end C for members and	e 0 to 8-8 1										G ZHAO
Ce=1.0; Cs=1.00 live load applied); Ct=1.10; IBC where required	1607.11.2 minimum									3	REGIST REGIST	TERED GINES
	or 2.00 times fla	t roof load of 25.0 ps											L En oril 1,2025
Design valid for u	se only with MiTek®	ters and READ NOTES O connectors. This design in g designer must verify the	s based only up	on parameters s	hown, and is for an ir	ndividual bui	ding component	, not				N/li	Tek [®]

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	B02	Common Supported Gable	4	1	Job Reference (optional)	R87439334

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Apr 01 13:11:42 ID:VyfGa8WW6fGUHGH4eV_9gezjryA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

21-5-0

H

Scale = 1:73.3

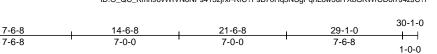
Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC20	18/TPI2014	CSI TC BC WB Matrix-SH	0.13 0.06 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 100 lb	GRIP 185/148 FT = 10%
	6-0-0 oc purl Rigid ceiling bracing. (size) 2= 15 19 22 Max Horiz 2= Max Uplift 2= 15 17 21 23 Max Grav 2= 14 16 19 21	21-5-0, 5=21-5-0, 5=21-5-0 =121-5-0 =131 (LC =-15 (LC 5=-32 (L1 3=-34 (L1 3=-44 (L1 3=-44 (L1 2=233 (LC 1=255 (L ==203 (LC 0==187 (L	 8), 14=-44 (LC 13), C 13), 16=-37 (LC 13) C 13), 20=-35 (LC 12) C 12), 22=-33 (LC 12) C 12), 12=223 (LC 1), C 1), 15=182 (LC 1), C 1), 17=207 (LC 1), C 23), 20=207 (LC 1) C 1), 22=182 (LC 1), 	1 or 5-0, 2 5-0, 3), 3), 4), 4), 7	 Vasd=87mpH II; Exp B; Enn. and C-C Cor to 10-8-8, Cc 13-8-8 to 22- end vertical II forces & MW DOL=1.60 pl Truss design only. For stu see Standarc Toruss design only. For stu see Standarc TCL: ASCE DOL = 1.15); Ce=1.0; Cs= live load app This truss hat load of 16.0 p overhangs no All plates are Gable studs : This truss hat 	7-16; Vult=110m ;; TCDL=4.2psf; closed; MWFRS her(3E) -1-0-0 to mer(3R) 10-8-8 5-0 zone; cantile eft and right expt FRS for reaction ate grip DOL=1.6 ed for wind loads ds exposed to w H ndustry Gable alified building d 7-16; Pf=25.0 pr Is=1.0; Rough C 1.00; Ct=1.10; IB ied where requir s been designed bas or 2.00 times on-con(UI) MT20 s continuous bo spaced at 2-0-0 of s been designed	BCDL=6. (envelope 2-0-0, E> to 13-8-8 vore left an osed;C-C s shown; 50 s in the pl ind (norm End Deta esigner a: sf (Lum D Cat B; Par C 1607.1 ed. for great flat roof li th other li nless oth ttom chor oc. for a 10.	Opsf; h=25ft; () exterior zon tterior(2N) 2-C Exterior(2N) dright expos for members Lumber ane of the trus al to the face) ils as applicat s per ANSI/TF tially Exp.; 1.2 minimum er of min roof pad of 25.0 ps ve loads. erwise indicat d bearing. D psf bottom	ed; ed; and ss , , PI 1. tte roof live sf on ed.	Ínte	rnationa renced	al Build standa		1 2306.1 and
FORCES TOP CHORD BOT CHORD WEBS	Tension 1-2=0/68, 2-: 4-5=-100/7, 7-8=-93/134, 10-11=-78/3 2-23=-50/99, 20-21=-50/99 12-14=-50/99 12-14=-50/99 7-19=-147/4(4-22=-149/56)	3=-134/ ² , 5-6=-92 , 8-9=-7(1, 11-12 , 22-23= 9, 19-20 9, 15-16 9 0, 6-20= 6, 3-23=	pression/Maximum 106, 3-4=-114/76, 2/96, 6-7=-93/134, 0/92, 9-10=-66/48, =-110/64, 12-13=0/68 -50/99, 21-22=-50/99 =-50/99, 17-19=-50/9 =-50/99, 14-15=-50/9 -168/59, 5-21=-161/6 -197/74, 8-17=-168/5 =-149/56, 11-14=-197	3 1 , 1 9, 9, 9, 3, 8,	 * This truss h on the bottom 3-06-00 tall b chord and ar O All bearings a Provide meci bearing plate 2, 35 lb uplift at joint 22, 44 	Id nonconcurrent as been designe n chord in all are y 2-00-00 wide v y other members are assumed to b nanical connection capable of withs at joint 20, 36 lb H buplift at joint joint 16, 32 lb up 14.	ed for a liv as where vill fit betw s. De HF No. Don (by oth standing 1 uplift at ju 23, 34 lb	e load of 20.0 a rectangle veen the botto 2. ers) of truss to 5 lb uplift at jo pint 21, 33 lb o uplift at joint 1	opsf om oint uplift 7,				THOMESSIONA	G ZHAO MGI 92 TA ERED INGT

April 1,2025

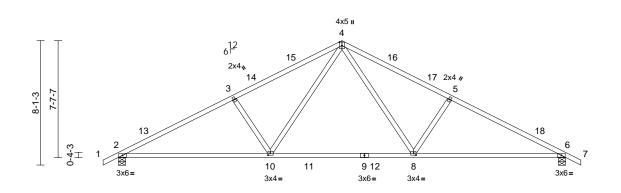
Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com


Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	C01	Common	14	1	Job Reference (optional)	R87439335

-1-0-0


1-0-0

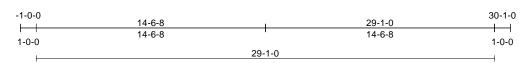
 \vdash

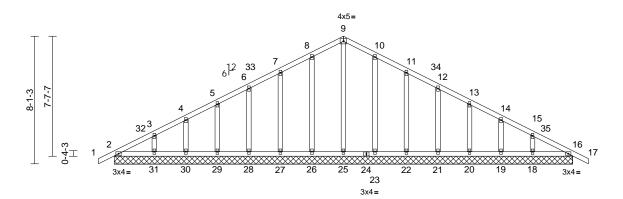
Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Apr 01 13:11:42 ID:0_QC_Kmh96vWIVN6NPs413zjrxr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

29-1-0

	L	9-10-8	19-2-8	1		29-1-0		
Scale = 1:74.9	I	9-10-8	9-4-0	I		9-10-8	I	
Plate Offsets (X, Y): [4:0-2-12,0-2-	0], [8:0-1-12,0-1-8], [10:0-1	-12,0-1-8]						
Loading (psf) TCLL 25.0 (Roof Snow = 25.0) TCDL TCDL 15.0 BCLL 0.0* BCDL 10.0	Spacing2-0Plate Grip DOL1.11Lumber DOL1.11Rep Stress IncrYESCodeIBC	5 TC 5 BC	0.79 0.78 0.25 -SH	Vert(CT) -0	in (loc) 23 8-10 46 6-8 08 6	l/defl L/d >999 240 >740 180 n/a n/a	MT20	GRIP 220/195 FT = 10%
BOT CHORD 2-2-0 oc purlins. Rigid ceiling direct bracing. REACTIONS (size) 2=0-5-8, Max Horiz Max Horiz 2=-88 (L Max Uplift 2=-50 (L Max Grav FORCES (lb) - Maximum Co Tension	E eathing directly applied or ly applied or 10-0-0 oc , 6=0-5-8	 4) This truss has been d load of 18.0 psf or 2.0 overhangs non-conct. 5) This truss has been d chord live load nonco 6) * This truss has been on the bottom chord i 3-06-00 tall by 2-00-0 chord and any other r 7) All bearings are assu 8) Provide mechanical c bearing plate capable 2 and 50 lb uplift at jo 9) This truss is designed International Building referenced standard / LOAD CASE(S) Standa 	00 times flat roof lo urrent with other liv designed for a 10.0 oncurrent with any of designed for a live in all areas where a 00 wide will fit betw members, with BC immed to be HF No.3 connection (by othe e of withstanding 5 bint 6. d in accordance wi of Code section 230 ANSI/TPI 1.	and of 25.0 psf or re loads. p psf bottom other live loads. e load of 20.0psf a rectangle reen the bottom DL = 10.0psf. 2. ers) of truss to 0 lb uplift at joint th the 2018				
 NOTES 1) Wind: ASCE 7-16; Vult=110mp Vasd=87mph; TCDL=4.2psf; B II; Exp B; Enclosed; MWFRS (e and C-C Exterior(2E) -1-0-0 to 14-6-8, Exterior(2R) 14-6-8 to to 30-1-0 zone; cantilever left a vertical left and right exposed; forces & MWFRS for reactions DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pf=25.0 psf DOL = 1.15); Is=1.0; Rough Ca Ce=1.0; Cs=1.00; Ct=1.10; IBC live load applied where require 3) Unbalanced snow loads have to design. 	CDL=6.0psf; h=25ft; Cat. envelope) exterior zone 2-0-0, Interior (1) 2-0-0 to 17-6-8, Interior (1) 17-6-8 and right exposed ; end C-C for members and shown; Lumber) (Lum DOL = 1.15 Plate at B; Partially Exp.; 1607.11.2 minimum roof d.						PROFILESSIONA	G ZHAO SHINGI A TA EBED L ENGINO TI 1,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com


Page: 1

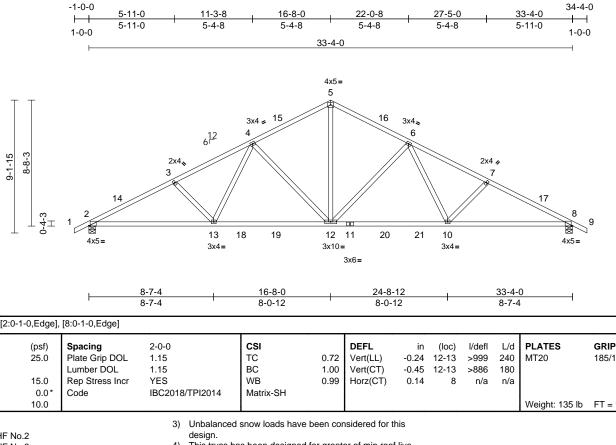
4

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	C02	Common Supported Gable	4	1	Job Reference (optional)	R87439336

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Apr 01 13:11:43 ID:w3OFLoyjO0wEDycBJm8rgRzjrxb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:73.1						29-1-0)						
Loading TCLL (Roof Snow = TCDL BCLL BCDL	(psf) 25.0 15.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IBC2018/7	TPI2014	CSI TC BC WB Matrix-SH	0.13 0.06 0.19	Vert(CT)	in n/a n/a 0.00	(loc) - - 16	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 133 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directh bracing. (size) 2=29-1- 22=29-1- 22=29-1- 22=29-1- 22=29-1- 22=29-1- 22=29-1- 22=29-1- 29=29-1- 29=29-1 22=29-1- 29=29-1 22=29-1 29=29-1 22=29-1 29=29-1 22=29-1 29=29-1 (21) 42=29-1 29=29-1 29=29-1 (21) 42=29-1 29=29-1 29=29-1 29=29-1 (21) 29=29-1 29=29-1 29=29-1 29=29-1 (21) 29=29-1 1 29=29-1 1 29=29-1 1 29=29-1 1 29=29-1 1 29=29-1 1 29=29-1 1 29=29-1 1 29=29-1 1 29=29-1 1 29=29-1 1 29=29-1 1 29=29-1 1 29=29-1 1 29=29-1 1 29=29-1 1 29=29-1 1 29=29-1 29=29-1 1 29=29-1 29=29-1 1 29=29-1 29=29-1 1 29=29-1 29=29=29-1 29=29=29-1 29=29-1 29=29=29-1 29=29=29=29-1 29=29=29-1 29=29=29=29=29=29=29=29=29=	15), 18=-28 (LC 15), LC 15), 20=-25 (LC 15), LC 15), 22=-26 (LC 15), LC 15), 26=-25 (LC 14), LC 14), 28=-25 (LC 14), LC 14), 30=-24 (LC 14), LC 14), 30=-24 (LC 20), LC 1), 19=188 (LC 22), LC 1), 21=223 (LC 22), LC 22), 23=292 (LC 22), LC 21), 28=223 (LC 21), LC 21), 28=223 (LC 21), LC 1), 30=188 (LC 21), LC 1), LC 1), 30=188 (LC 21), LC 1), LC 1),	or WEE	rES Wind: ASCI Vasd=87mJ II; Exp B; E and C-C Co to 14-6-8, C 17-6-8 to 30 end vertical forces & MI DOL=1.60 J Truss desig only. For s solution Truss desig only. For s solution TCLL: ASC DOL = 1.15 CC=1.0; CS live load ap Unbalanced	2-31=-42/93, 30. 28-29=-42/93, 22 25-26=-42/93, 22 25-26=-42/93, 22 21-22=-42/93, 21 8-19=-42/93, 10 9-25=-149/28, 8 6-28=-184/55, 5 3-31=-188/74, 11 11-22=-236/58, 1 13-20=-162/57, 1 5-18=-188/74 E 7-16; Vult=110r bh; TCDL=4.2psf; nclosed; MWFRS prier(3E) -1-0-0 tr Comer(3E) 14-60 tr 20-10 zone; cantili 1 left and right exp WFRS for reaction plate grip DOL=1. ned for wind load tuds exposed to v rd Industry Gable ualified building of E 7-16; Pf=250, canging of E 7-16; Pf=250, canging of E 7-16; Pf=250, canging of =1.00; Ct=1.10; II plied where requing of a now loads have	7-28=-42/9 3-25=-42/9 3-25=-42/9 3-18=-42/9 2-8-18=-42/9 2-8-18=-42/9 2-8-18=-42/9 2-8-18=-42/9 2-25=-252 12-21=-18 14-19=-15 12-21=-18 BCDL=6.1 (envelope 2-2-0.0, Es to 17-6-8 ever left an oosed;C-C to 17-6-8 ever left an oosed;C-C s shown; 60 is in the pl vind (norm End Deta lesigner a: sf (Lum D Cat B; Par 3C 1607.1 red.	32 26-27=-42 33 22-23=-42 33 19-20=-42 33 33 34 74 35 7-27=-236 77 4-30=-153 753 4/55 3/54, 54 cond gust) 0psf; h=25ft; abpsf; h=25ft; atterior(2N) cterior(2N) 2- cterior(2N) 2- cond gust) 10 by exterior zo 20 for members 20 Lumber ane of the tru al to the face is as applica s per ANSI/T OL = 1.15 Pl tially Exp.; 1.2 minimum	2/93, 2/93, 2/93, 2/93, 5/58, 3/54, 3/54, 3/54, 3/54, 3/54, 3/54, 3/54, 3/54, 3/54, 1/5, 1/5, 1/5, 1/5, 1/5, 1/5, 1/5, 1/5	on t 3-06 cho 11) All t 12) Pro bea 25 I join lb u join lb u 13) This Inte	he botto 5-00 tall rd and a bearings vide mering plat b uplift at t 28, 25 plift at jot t 22, 25 plift at jot t russ is rnationa renced s	m cho by 2-0 iny othe are as chanica te capa at joint lb uplif pint 31, lb uplif pint 19 s desig il Build standa	en designed for rd in all areas wi 0-00 wide will fit er members. ssumed to be HF al connection (by ble of withstand 26, 26 lb uplift at t at joint 29, 24 ll 24 lb uplift at joint 21, 25 ll and 28 lb uplift a ned in accordan ing Code sectior rd ANSI/TPI 1. ndard	a live load of 20.0psf here a rectangle between the bottom F No. 2 . y others) of truss to ing 8 lb uplift at joint 2, t joint 27, 25 lb uplift at b uplift at joint 30, 29 nt 23, 26 lb uplift at b uplift at joint 20, 24 tt joint 18. ce with the 2018
FORCES TOP CHORD	Tension 1-2=0/55, 2-3=-114 4-5=-71/65, 5-6=-59 7-8=-71/129, 8-9=-8 10-11=-71/129, 11-		5) 6) 3, 7) , 8) , 9)	load of 18.0 overhangs All plates an Gable requi Gable studs This truss h	has been designed by psf or 2.00 times non-concurrent w re 2x4 () MT20 of ires continuous bo s spaced at 2-0-0 has been designed bad nonconcurrent	s flat roof le ith other li unless oth ottom chor oc. d for a 10.	bad of 25.0 p ve loads. erwise indica d bearing. 0 psf bottom	sf on ted.				Regist Regist Storession	THE DEPENDENCE

April 1,2025


Page: 1

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	D01	Common	7	1	Job Reference (optional)	R87439337

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Tue Apr 01 13:11:43 ID:W1mzrOKA5YqrRjT8dnC6Q_zjrx6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

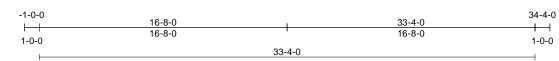
	8-7-4	8-0-12	8-0-12	8-7-4	
Scale = 1:79.4	0.1.1	0012	00.1	011	

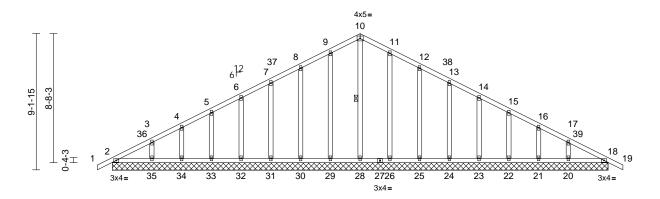
Plate Offsets (X, Y): [2:0-1-0,Edge], [8:0-1-0,Edge]

	(X, Y): [2:0-1-0,Edge], [0.0 : 0,20g0]			1	-	1					1	
oading CLL	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		TC	0.72	DEFL Vert(LL)	in -0.24	(loc) 12-13	l/defl >999	L/d 240	PLATES MT20	GRIP 185/148
Roof Snow =		Lumber DOL	1.15		BC	1.00	Vert(CT)	-0.24	12-13	>886	180	WIT20	103/140
CDL	15.0	Rep Stress Incr	YES		WB	0.99	Horz(CT)	0.14	8	n/a	n/a		
CLL	0.0*	Code	IBC201	3/TPI2014	Matrix-SH								
CDL	10.0					-						Weight: 135 lb	FT = 10%
JMBER OP CHORD OT CHORD TEBS RACING OP CHORD OT CHORD	2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural wood sh 2-2-1 oc purlins. Rigid ceiling directl bracing. (size) 2=0-5-8, Max Horiz 2=-100 (Max Uplift 2=-55 (L Max Grav 2=1804 (lb) - Maximum Con		3) 4) d or 5) 6) 7) 8)	design. This truss ha load of 18.0 overhangs n This truss ha chord live lo * This truss ha chord live lo * This truss is on the botto 3-06-00 tall chord and a All bearings Provide med bearing plat 2 and 55 lb of	snow loads have as been designed psf or 2.00 times ion-concurrent wit as been designed ad nonconcurrent has been designe m chord in all aree by 2-00-00 wide w ny other members are assumed to b chanical connection e capable of withs uplift at joint 8.	for great flat roof I h other li for a 10. with any d for a liv as where vill fit betw s, with BC e HF No e HF No n (by oth tanding f	er of min roo oad of 25.0 p ve loads. 0 psf bottom other live loa re load of 20. a rectangle veen the bott CDL = 10.0ps 2. ers) of truss 55 lb uplift at	f live osf on ads. Opsf com f. to					
OP CHORD	4-5=-2025/109, 5-6	4/85, 3-4=-2898/72, =-2025/109, -3144/86, 8-9=0/56	9)	Internationa	designed in acco I Building Code se standard ANSI/TP	ection 230							
OT CHORD	2-13=-116/2733, 12 10-12=0/2250, 8-10		-		- unduru								
VEBS		2=-857/125, 6-10=0/62 2=-857/125, 4-13=0/6											A.A.
Vasd=87m II; Exp B; I and C-C E	Enclosed; MWFRS (e Exterior(2E) -1-0-0 to 2	h (3-second gust) CDL=6.0psf; h=25ft; C envelope) exterior zone 2-4-0, Interior (1) 2-4-0	e) to								ž	TLA OMIN	S ZHAO

- 16-8-0, Exterior(2R) 16-8-0 to 20-0-0, Interior (1) 20-0-0 to 34-4-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof 2) live load applied where required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


An


April 1,2025

OFESSIONAL ENGINE

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	D02	Common Supported Gable	2	1	Job Reference (optional)	R87439338

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Apr 01 13:11:43 ID:aBi3ZLjFZNsIGewIVVncjjzjrwc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:77.5		 			33-4-0)						
Loading TCLL (Roof Snow = 2 TCDL	15.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.13 0.06 0.26	Vert(CT)	in n/a n/a 0.01	(loc) - - 18	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 185/148
BCLL BCDL	0.0* 10.0	Code	IBC2018/TPI2014	Matrix-SH							Weight: 162 lb	FT = 10%
	6-0-0 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (size) 2=33-4-0 21=33-4- 24=33-4- 24=33-4- 31=33-4- 34=33-4- Max Horiz 2=-100 (L Max Uplift 2=-8 (LC 21=-24 (L 23=-25 (L 29=-24 (L 33=-25 (L 33=-25 (L 33=-25 (L 29=-24 (L) 29=-24 (L 29=-24 (L) 29=-29 (L 29=-29 (L) 29=-29 (L) 20=-29 (L) 20=-20 (L) 20=-2	15), 20=-30 (LC 15), .C 15), 22=-25 (LC 15), .C 15), 24=-24 (LC 15), .C 15), 26=-22 (LC 15), .C 14), 30=-26 (LC 14), .C 14), 32=-25 (LC 14), .C 14), 34=-24 (LC 14), .C 14), 34=-24 (LC 14), .C 14), 18=218 (LC 20), .LC 22), 21=183 (LC 1), LC 22), 23=199 (LC 1), LC 22), 25=276 (LC 22), LC 22), 32=199 (LC 27), LC 21), 32=199 (LC 1), LC 21), 34=183 (LC 1), .C 21), 34=183 (LC 1)	BOT CHORD , , , , , , , , , , , , ,	4-5=-81/69, 5-6= 7-8=-65/119, 8-9 10-11=-102/183, 12-13=-65/119, 1 15-16=-50/32, 16 18-19=0/55	-66/81, 6- =-84/152, 11-12=-8 3-14=-51 3-17=-68/2 1-35=-48/ 22-33=-48 22-33=-48 22-33=-48 22-33=-48 22-35=-48 23-24=-48 23-24=-48 23-24=-48 23-24=-18 5-22=-16 7-20=-19 mph (3-sec BCDL=6. (envelope 2-4-0, E) to 20-0-0 yever left au osed;C-C is shown; 60 s in the pl	7=-58/97, 9-10=-102/183 4/152, /87, 14-15=-52/ 23, 17-18=-94/3 105, /126=-252/ /12, /126=-252/ /12, /126=-252/ /12, /126=-252/ /126=-256=-256=-256=-256=-256=-256=-256=-2	, 5 54, 6 9, 6 7 8 9 1 58, 1 58, 1 55, 1 51, 51, 51,	 dessible dessible dessible dessible dessible and <	sign. s truss h d of 18.0 rrhangs i plates at ble requi ble studs s truss h ord live lo hord live lo hord live lo hord and a bearings vide me aring plai buyift at jour t 26, 27	has bee o psf or non-cc re 2x4 rires coic s space m cho by 2-0 nay oth s are as chanic te capa at joint 18 uplif joint 23, 30 lb	en designed for g 2.00 times flat r nocurrent with ott () MT20 unless ntinuous bottom ed at 2-0-0 oc. en designed for a nconcurrent with een designed for a nconcurrent with een designed for a locon wide will fit er members. ssumed to be HF al connection (b able of withstand 29, 26 lb uplift at jo ft at joint 32, 25 l , 30 lb uplift at jo ft at joint 32, 25 l , 25 lb uplift at jo that joint 20, 24 l , 25 lb uplift at jo that joint 20, 24 l , 25 lb uplift at jo	s otherwise indicated. chord bearing. a 10.0 psf bottom any other live loads. a live load of 20.0psf here a rectangle between the bottom F No.2. y others) of truss to ing 8 lb uplift at joint 2, t joint 30, 25 lb uplift at b uplift at joint 33, 24 int 35, 22 lb uplift at b uplift at joint 24, 25 int 22, 24 lb uplift at
FORCES	(lb) - Maximum Con Tension	,	or consul 3) TCLL: AS DOL = 1.	t qualified building d SCE 7-16; Pf=25.0 p 15); Is=1.0; Rough (Cs=1.00; Ct=1.10; IE	esigner a sf (Lum D Cat B; Par	s per ANSI/TPI OL = 1.15 Plate tially Exp.;	1.			3	POPESSION	TERED AT

-----April 1,2025

Page: 1

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property idamage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

live load applied where required.

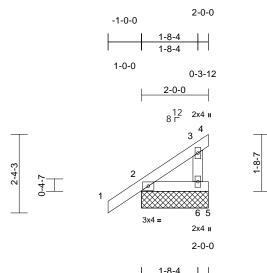
400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	D02	Common Supported Gable	2	1	Job Reference (optional)	R87439338
aulders FirstSource (Arlington, WA), Arlington, WA - 98223, Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Apr 01 13:11:43				Page: 2		

ID:aBi3ZLjFZNsIGewIVVncjjzjrwc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Builders FirstSource (Arlington, WA), Arlington, WA - 98223,

13) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.


LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	J01	Jack-Open Supported Gable	2	1	Job Reference (optional)	R87439339

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Tue Apr 01 13:11:43 ID:MmOERzxAdgHNB1OWc2EnwnzhYw1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1-8-4 1-8-4

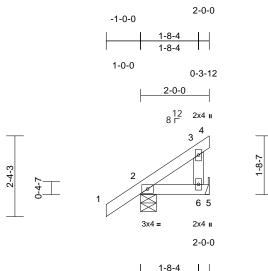
0-3-12

Scale = 1:34.5

Loading 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) Spacing in (loc) TCLL 25.0 Plate Grip DOL 1.15 TC 0.13 Vert(LL) n/a 999 MT20 185/148 n/a (Roof Snow = 25.0) BC Lumber DOL 1 15 0.02 Vert(CT) n/a n/a 999 TCDL 15.0 Rep Stress Incr YES WB 0.01 Horz(CT) n/a n/a n/a BCLL 0.0 Code IBC2018/TPI2014 Matrix-P BCDL 10.0 Weight: 8 lb FT = 10%LUMBER 4) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 25.0 psf on TOP CHORD 2x4 HF No.2 BOT CHORD 2x4 HF No.2 overhangs non-concurrent with other live loads. Gable requires continuous bottom chord bearing. 2x4 HF No.2 5) WFBS Gable studs spaced at 2-0-0 oc. 6) BRACING This truss has been designed for a 10.0 psf bottom 7) Structural wood sheathing directly applied or TOP CHORD chord live load nonconcurrent with any other live loads. 2-0-0 oc purlins. 8) * This truss has been designed for a live load of 20.0psf BOT CHORD Rigid ceiling directly applied or 10-0-0 oc on the bottom chord in all areas where a rectangle bracing. 3-06-00 tall by 2-00-00 wide will fit between the bottom REACTIONS (size) 2=2-0-0, 5=2-0-0, 6=2-0-0 chord and any other members. Max Horiz 2=49 (LC 12) All bearings are assumed to be HF No.2 . Max Uplift 2=-13 (LC 12), 5=-32 (LC 3), 6=-2 10) Provide mechanical connection (by others) of truss to (| C 12)bearing plate capable of withstanding 13 lb uplift at joint Max Grav 2=203 (LC 18), 5=-10 (LC 8), 2, 32 lb uplift at joint 5 and 2 lb uplift at joint 6. 6=114 (LC 1) 11) This truss is designed in accordance with the 2018 FORCES (lb) - Maximum Compression/Maximum International Building Code section 2306.1 and Tension referenced standard ANSI/TPI 1. TOP CHORD 1-2=0/68, 2-3=-55/28, 3-4=-23/0 LOAD CASE(S) Standard 2-6=0/0, 5-6=0/0 BOT CHORD WFBS 3-6=-71/81 NOTES Wind: ASCE 7-16; Vult=110mph (3-second gust) 1)

- Vasd=87mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3)
- TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.

OMING ZHAO ROADSIONAL ENGINE ----April 1,2025


🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not being read to be only with the experiments contractions into besigner based only upon parameters shown, and show and be only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	J02	Jack-Closed	10	1	Job Reference (optional)	R87439340

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Apr 01 13:11:44 ID:I_IaJ9J7AWPO6R8ImvqMVWzhYy7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1-8-4

0-3-12

Scale = 1:33.6

Loading Spacing 2-0-0 CSI DEFL l/defl L/d PLATES (psf) in (loc) TCLL 25.0 Plate Grip DOL 1.15 TC 0.14 Vert(LL) 0.00 2-6 >999 240 MT20 (Roof Snow = 25.0) 1 15 BC 0.04 Lumber DOL Vert(CT) 0.00 2-6 >999 180 TCDL 15.0 Rep Stress Incr YES WB 0.01 Horz(CT) n/a n/a n/a BCLL 0.0 Code IBC2018/TPI2014 Matrix-P BCDL 10.0 Weight: 8 lb * This truss has been designed for a live load of 20.0psf LUMBER 5) on the bottom chord in all areas where a rectangle TOP CHORD 2x4 HF No.2 BOT CHORD 2x4 HF No.2 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 2x4 HF No.2 WFBS All bearings are assumed to be HF No.2 . 6) BRACING Refer to girder(s) for truss to truss connections. 7) TOP CHORD Structural wood sheathing directly applied or Provide mechanical connection (by others) of truss to 8) 2-0-0 oc purlins. bearing plate capable of withstanding 14 lb uplift at joint BOT CHORD Rigid ceiling directly applied or 10-0-0 oc 2 and 11 lb uplift at joint 5. bracing. 9) This truss is designed in accordance with the 2018 **REACTIONS** (size) 2=0-5-8, 5= Mechanical International Building Code section 2306.1 and Max Horiz 2=49 (LC 12) referenced standard ANSI/TPI 1. Max Uplift 2=-14 (LC 12), 5=-11 (LC 12) LOAD CASE(S) Standard Max Grav 2=223 (LC 18), 5=76 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/69, 2-3=-55/26, 3-4=-23/0 BOT CHORD 2-6=0/0, 5-6=0/0 WEBS 3-6=-66/49

NOTES

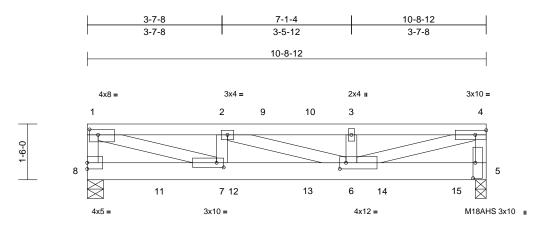
- Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.
- 3) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

TO HESSIONAL ENGINE

April 1,2025

GRIP

185/148


FT = 10%

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	L01	Flat Girder	2	3	Job Reference (optional)	R87439341

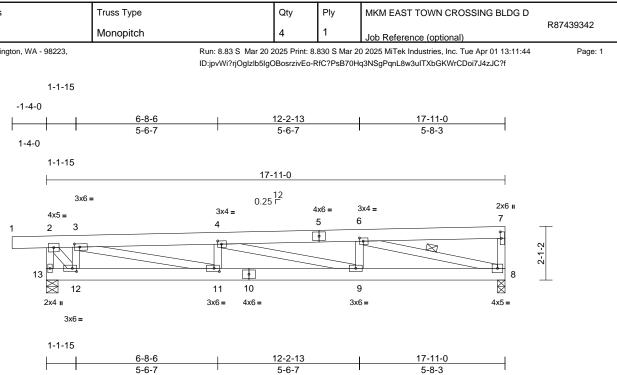
Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Apr 01 13:11:44 ID:EEU1BV_XdBenEkPNIMuXUOzitWt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	3-7-8	7-1-4	10-8-12
	3-7-8	3-5-12	3-7-8
Scale = 1:31			

Plate Offsets (X, Y): [1:0-2-12,0-1-12], [5:0-5-0,0-0-12], [6:0-2-0,0-2-0], [7:0-2-4,0-1-8]

Plate Offsets (X, Y): [1:0-2-12,0-1-	12], [5:0-5-0,0-0-12], [6:0-2	2-0,0-2-0], [7:0-2-4,0	J-1-8]		· · ·	
Loading (psf) TCLL 25.0 (Roof Snow = 25.0) TCDL TCDL 15.0 BCLL 0.0* BCDL 10.0	Plate Grip DOL1.1Lumber DOL1.1Rep Stress IncrNO	5	CSI TC 0.53 BC 0.52 WB 0.77 Matrix-SH	DEFL in Vert(LL) -0.09 Vert(CT) -0.23 Horz(CT) 0.01	(loc) l/defl L/ 6-7 >999 24 6-7 >547 18 5 n/a n/	0 MT20 185/148 0 M18AHS 145/140
5-10-1 oc purlins, Rigid ceiling direct bracing. REACTIONS (size) 5=0-3-8, Max Horiz 8=-28 (L Max Grav 5=5853 FORCES (lb) - Maximum Con Tension TOP CHORD 1-8=-3870/0, 1-2=- 3-4=-10878/0, 4-5= BOT CHORD 7-8=0/765, 6-7=0/1	eathing directly applied or except end verticals. y applied or 10-0-0 oc 8=0-5-4 C 6) (LC 1), $8=4967$ (LC 1) mpression/Maximum 11178/0, 2-3=-10878/0, -3770/0 1178, 5-6=0/849 -782/0, 1-7=0/10944, 08/0 ether with 10d vs: 2x4 - 1 row at 0-6-0 llows: 2x6 - 2 rows - 1 row at 0-9-0 oc. y applied to all plies, ack (B) face in the LOAD inections have been s noted as (F) or (B), h (3-second gust) CDL=6.0psf; h=25ft; Cat. invelope) exterior zone; d; end vertical left and	 DOL = 1.15) Ce=1.0; Cs= live load app Provide adea All plates are All plates are This truss ha chord live load * This truss load on the bottoon 3-06-00 tall line chord and are All bearings This truss is International referenced s Load case(s designer mu for the international up at 2-0-8, lb down and up at 2-0-8, lb down and up at 5-11-4 down and 14 at 8-0-8, an and 65 lb doo The design/s responsibility LOAD CASE(5) Dead + Sne Increase=1 Uniform Lo 	Standard ow (balanced): Lumber Inc .15	tially Exp.; 1.2 minimum roof water ponding. wise indicated. D psf bottom other live loads. e load of 20.0psf a rectangle ween the bottom 2. ith the 2018 36.1 and 5. Building at they are correct at hey are correct b shall be ated load(s) 1544 down and 21 lb up at 3-11-4, 61 down and 143 lb at 6-0-8, 1544 lb wy and 21 lb up up at 9-11-4, on bottom chord. n device(s) is the	(F=-1544, B	603 (F=-1544, B=-58), 12=-1603 ==-58), 13=-1603 (F=-1544, B=-58), ==-1544, B=-58), 15=-1610 (F=-1548, T=-1544, B=-58, T=-1544, B=-58, 15=-1610 (F=-1548, T=-1544, B=-58, 15=-160 (F=-1548, T=-1544, B=-58, 15=-160 (F=-1548, 15=-160) (F=-1


April 1,2025

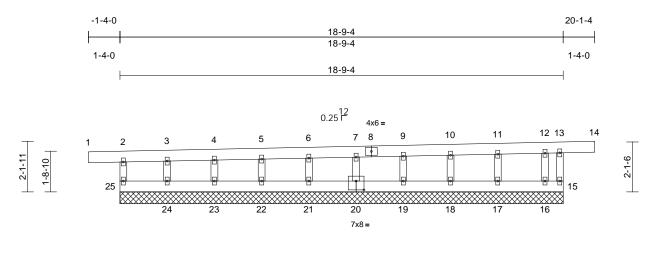
ſ	Job	Truss	Truss Type	Qty Ply		MKM EAST TOWN CROSSING BLDG D	D07100010	
	4449076	M01	Monopitch	4	1	Job Reference (optional)	R87439342	

2-1-2 1-8-10

live load applied where required.

Scale = 1:45

Plate Offsets (X, Y): [3:0-2-8,0-1-8], [4:0-1-12,0-1-8], [6:0-1-12,0-1-8], [7:0-3-1,0-1-4], [11:0-2-8,0-1-8], [12:0-2-0,0-1-8]


1-1-15

	(^, 1). [3.0-2-0,0-1-0],	[4.0-1-12,0-1-0], [0.	.0-1-12,0-1	-0], [7.0-3-1,0-	1-4], [11.0-2-6,0-1	-0], [12.	J-2-0,0-1-0j						
Loading TCLL (Roof Snow = TCDL BCLL BCDL	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC201	8/TPI2014	CSI TC BC WB Matrix-SH	0.24 0.48 0.41	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.21 0.03	(loc) 9-11 9-11 8	l/defl >999 >998 n/a	L/d 240 180 n/a		GRIP 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 DF No.2 2x4 HF No.2 Structural wood she: 4-9-8 oc purlins, ext Rigid ceiling directly bracing. 1 Row at midpt	cept end verticals. applied or 9-2-3 oc 6-8 (3=0-5-8 2 9) 12), 13=-93 (LC 8)	6) 7) 8)	load of 20.0 overhangs in Provide ade This truss ha chord live lo. * This truss l on the botto 3-06-00 tall l chord and an All bearings Provide mec bearing plate 13 and 50 lb	as been designed psf or 2.00 times f on-concurrent with quate drainage to as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w ny other members are assumed to by chanical connection e capable of withst uplift at joint 8.	ilat roof I n other li prevent for a 10. with any d for a liv as where ill fit betv e HF No n (by oth tanding s	bad of 25.0 p ve loads. water pondin 0 psf bottom other live loa te load of 20. a rectangle veen the bott 2. ers) of truss 33 lb uplift at	osf on ig. ads. Opsf to					
FORCES	(lb) - Maximum Com Tension	pression/Maximum			Building Code se standard ANSI/TPI		06.1 and						
TOP CHORD	2-13=-1087/290, 1-2 3-4=-2507/690, 4-6= 7-8=-215/100	,	· L	DAD CASE(S)	Standard								
BOT CHORD	12-13=-75/79, 11-12 9-11=-729/2501, 8-9												
WEBS	3-12=-851/324, 4-11 6-8=-2195/618, 4-9= 3-11=-465/1653, 2-1	=-315/186, 6-9=0/2 -281/90,	74,									LAOMIN E WA	G Zu
NOTES												41A WA	A A
Vasd=87r II; Exp B; and C-C (exposed ; Lumber D 2) TCLL: AS DOL = 1. Ce=1.0; C	CE 7-16; Vult=110mph mph; TCDL=4.2psf; BC Enclosed; MWFRS (en Corner (3) zone; cantile ; end vertical left and rig and forces & MWFRS DOL=1.60 plate grip DO GCE 7-16; Pf=25.0 psf (I 15); Is=1.0; Rough Cat Cs=1.00; Ct=1.10; IBC 1	DL=6.0psf; h=25ft; (ivelope) exterior zor ver left and right ght exposed;C-C for for reactions shown L=1.60 Lum DOL = 1.15 Pla B; Partially Exp.; 1607.11.2 minimum	ne ; ate									THO PESSIONA	A CHON

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	M02	Monopitch Supported Gable	2	1	Job Reference (optional)	R87439343

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Apr 01 13:11:44 ID:8IDnA4vwfjOUI7qDqsmQQPzivDQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

18-9-4

Scale = 1:48.8

Plate Offsets (X, Y): [20:0-4-0,0-4-8]

	7, 1). [20:0 1 0,0 1	~]			1	-						•	
Loading TCLL (Roof Snow = TCDL BCLL BCDL	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2018	/TPI2014	CSI TC BC WB Matrix-R	0.11 0.02 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 15	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 99 lb	GRIP 185/148 FT = 10%
	6-0-0 oc purlins, e Rigid ceiling directl bracing. (size) 15=18-9 24=18-9 24=18-9 Max Horiz 25=42 (L Max Uplift 15=-62 (17=-10 (23=-16 (25=-65 (Max Grav 15=323 17=192 (19=-20 (21=200 (y applied or 6-0-0 oc 4, 16=18-9-4, 17=18 4, 19=18-9-4, 20=18 4, 22=18-9-4, 23=18 4, 25=18-9-4 C 9) LC 9), 16=-29 (LC 18 LC 8), 18=-13 (LC 12 LC 12), 20=-12 (LC 1 LC 8), 22=-11 (LC 12 LC 8), 24=-4 (LC 9), LC 8), 16=86 (LC 2 (LC 1), 18=203 (LC 1 (LC 1), 20=200 (LC 1 (LC 1), 22=199 (LC 1 (LC 1), 24=155 (LC 1)	NC 1) ed or -9-4, 2) -9-4, 2) -9-4, 3)), 3)), 4) 1), 5)), 6)), 7)), 8)	VITES Wind: ASCE Vasd=87mp II; Exp B; En and C-C Col exposed ; er members an Lumber DOL Truss desigr only. For stu see Standar or consult qu TCLL: ASCE DOL = 1.15) Ce=1.0; Cs= live load app This truss ha load of 20.0 overhangs n Provide ader All plates are Gable requir Truss to be f braced again	3-24=-112/74, 4- 6-21=-160/78, 7- 10-18=-163/79, 1 7-16; Vult=110m h; TCDL=4.2psf; closed; MWFRS mer (3) zone; car nd vertical left and d forces & MWFI =1.60 plate grip ed for wind load- uds exposed to w d Industry Gable ualified building di 5-716; Pf=25.0 p ; Is=1.0; Rough C 1.00; Ct=1.10; IE lied where requir as been designed psf or 2.00 times on-concurrent wind quate drainage to a 2x4 () MT20 u es continuous bo vuly sheathed from that lateral moverners.	20=-160/7 1-17=-15 mph (3-sec BCDL=6. (envelope ntilever lef d right exp RS for rea DOL=1.6(s in the pl s in the pl vind (norm End Deta esigner a: s f (Lum D Cat B; Par S (1607.1 red. d for great flat roof lef p prevent vinless oth ottom chor m one fac enent (i.e. c)	8, 9-19=-159 1/75, 12-16=- cond gust) Dpsf; h=25ft;) exterior zor t and right osed;C-C for ctions shown ane of the tru al to the face ils as applica s per ANSI/TI OL = 1.15 Pli tially Exp.; 1.2 minimum er of min roof pad of 25.0 p ve loads. water ponding erwise indica d bearing. e or securely	/77, 40/73 Cat. he ss), ble, PI 1. ate roof live sf on g. ted.	bea 25, at jo 12 join 14) This Inte	aring pla 62 lb up oint 23, lb uplift a t 18, 10 s truss is ernationa erenced	te capa blift at ji 11 lb u at joint lb uplif s desig al Build standa	able of withstand oint 15, 4 lb uplif plift at joint 22, 1 20, 12 lb uplift a ft at joint 17 and uned in accordan ling Code sectior rrd ANSI/TPI 1.	2306.1 and
FORCES TOP CHORD BOT CHORD	Tension 2-25=-294/99, 1-2= 3-4=-16/15, 4-5=-1. 6-7=-10/14, 7-9=-9, 10-11=-8/15, 11-12 13-14=-4/0, 13-15= 24-25=-34/35, 23-2 21-22=-34/35, 19-2	4/14, 5-6=-12/14, /14, 9-10=-8/14, =-8/17, 12-13=-7/17,	10; 11; (35, 12; (35,) This truss ha chord live los) * This truss I on the bottor 3-06-00 tall I chord and ar	spaced at 2-0-0 as been designed ad nonconcurren nas been designe n chord in all are by 2-00-00 wide v ny other member are assumed to b	I for a 10.0 t with any ed for a liv as where will fit betv s.	other live loa e load of 20.0 a rectangle veen the botto	Opsf				Regist Propression/	74 EBED 100 LENGTH

April 1,2025

Page: 1

Job	Truss	3	1	Truss Ty	ре		Qt	у	Ply	М	KM EAS		I CRO	SSING BLDG D		
4449076	M03		1	Monopit	tch Structu	ral Gable	2		3		b Refere	ance (on	tional)		R87439344	
uilders FirstSourc	e (Arlington, WA), Arli	ington, WA - 982	23,						.830 S Ma	ar 20 20	25 MiTek	Industries	s, Inc. T	ue Apr 01 13:11:45 VrCDoi7J4zJC?f	Page	1
	<u>3-2-5</u> 3-2-5	<u>6-2-12</u> 3-0-7			<u>1-9-3</u> 5-6-7		<u>17-3-10</u> 5-6-7				<u>22-10-1</u> 5-6-7			<u>28-6-4</u> 5-8-3		
							28-6-4									
	2x4 II	3x6 =	3x6 =			4x5 =	0.25 F	4x6 =	3x4 =				3x4 :	-	2x4 II 8	
2-1-2		2	3			4		5	6				7		9	2-1-2
<u> </u>	4x5 =		14 3x4 =	*****	******	13 4x12=	12 4x6=		11 3x6=				10 3x6=		4x5 =	-
Scale = 1:51.2		-2-12 -2-12	-1-8] [13:0	ŧ	<u>1-9-3</u> 5-6-7		<u>17-3-10</u> 5-6-7				22-10-1 5-6-7			<u>28-6-4</u> 5-8-3		
		1			-0]						(1)	1/-1	1.74			
.oading TCLL Roof Snow = 25 TCDL BCLL	(psf) 25.0 5.0) 15.0 0.0*	Spacing Plate Grip I Lumber DC Rep Stress Code	DOL 1 DL 1 Incr N	2-0-0 1.15 1.15 NO	/TPI2014	CSI TC BC WB Matrix-SH	0.50 0.29 0.34	DEFI Vert(Vert(Horz	(LL) (CT)	in -0.05 -0.11 0.01	(loc) 10-11 10-11 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 185/148	
SCEL SCDL	10.0	Code		BC2010/	1112014	Maurix-SH								Weight: 478 lb	FT = 10%	
BOT CHORD WEBS BRACING TOP CHORD	2x6 DF No.2 *Exce 2.0E 2x6 DF No.2 2x4 HF No.2 Structural wood sh	eathing directly	y applied o	ŕ	(0.131"x3") Top chords oc, 2x6 - 2 1 Bottom cho staggered a Web conne	nails as follor connected as rows stagger rds connecte it 0-9-0 oc. cted as follow	ed together w ws: s follows: 2x4 ed at 0-9-0 oc d as follows: 2 ws: 2x4 - 1 row equally applie	- 1 row x6 - 2 i	/ at 0-9-0 rows -0 oc.		์ Inc Ur	ead + Sr crease= niform Lo	, iow (ba 1.15 bads (ll	alanced): Lumber		Plat
SOT CHORD	6-0-0 oc purlins, e Rigid ceiling directl bracing.	ly applied or 6-	0-0 oc		except if no CASE(S) se	ted as front (ection. Ply to	F) or back (B) ply connectior y loads noted	face in Is have	the LOA been	٩D						
Μ	15=11-0 ax Horiz 15=41 (l ax Uplift 9=-57 (L 14=-330 ax Grav 9=969 (l	_C 9) .C 12), 13=-44 (LC 12), 15=-	5 (LC 8), 148 (LC 8) 1 (LC 1),	3)	Wind: ASCI Vasd=87mp II; Exp B; E and C-C Cc exposed ; e	oh; TCDL=4.2 nclosed; MW orner (3) zone nd vertical le	110mph (3-se 2psf; BCDL=6. FRS (envelop e; cantilever le ft and right ex	0psf; h e) exte ft and r posed;(=25ft; Ca rior zone right C-C for							
	(lb) - Maximum Co Tension				Lumber DO	L=1.60 plate	IWFRS for rea grip DOL=1.6	0								
OP CHORD	1-15=-1539/313, 1 2-3=-228/1031, 3-4 4-6=-3395/647, 6-7 8-9=-238/81	4=-301/1477,	-8=-126/43	3,	DOL = 1.15 Ce=1.0; Cs live load ap); Is=1.0; Rou =1.00; Ct=1.1 plied where r	•	tially E 1.2 mii	Exp.; nimum re						44.	
BOT CHORD	9=-238/81 14-15=-576/2662, 11-13=-1416/279, 9-10=-489/2535			5) 6) 7)	This truss h chord live lo	as been desi ad nonconcu	ge to prevent gned for a 10. Irrent with any	0 psf b other l	ottom live load					TIAOMINO TIAOF WA	S ZHAO	
WEBS :	3-14=-4372/898, 4 6-11=-1215/312, 7 6-10=-879/154, 4-1 3-13=-438/78, 2-15	-10=0/418, 7-9 1=-908/4875,			on the botto 3-06-00 tall chord and a	m chord in a by 2-00-00 w iny other mer	signed for a liv Il areas where vide will fit betv nbers. d to be HE No	a recta veen th	angle						A CTON	

- NOTES

3-13=-438/78, 2-15=-2518/538,

2-14=-3885/797

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Ib uplift at joint 13.

8)

9)

referenced standard ANSI/TPI 1.

All bearings are assumed to be HF No.2

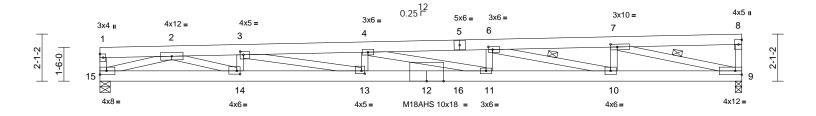
Provide mechanical connection (by others) of truss to

10) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and

bearing plate capable of withstanding 148 lb uplift at joint

15, 57 lb uplift at joint 9, 330 lb uplift at joint 14 and 445

April 1,2025


ROADSIGNAL ENGINE

TESSIONAL ENGINE

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	M04	Monopitch Girder	14	1	Job Reference (optional)	R87439345

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Tue Apr 01 13:11:45 ID:dTpTsCI?DGgsqnULJmH_7zzivkV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-2-12	11-9-3	17-3-10	22-10-1	28-6-4	
6-2-12	5-6-7	5-6-7	5-6-7	5-8-3	Т

Scale = 1:51.2

Plate Offsets (X, Y): [3	3:0-1-12,0-1-12], [6:0-2-4,0-1-8	, [7:0-3-8,0-1-8], [8:Edge,0-3-8],	[13:0-1-12,0-1-8], [14:0-1-12,0-1-12]
--------------------------	----------------------------------	------------------------------------	---------------------------------------

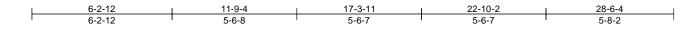
	(A, T). [3.0-1	-12,0-1-1.	2], [6:0-2-4,0-1-8], [7:	.0-3-6,0-	1-oj, [o.Euge,0-	-3-8], [13:0-1-12,0-1	1-8], [14	0-1-12,0-1-1	2]					
Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC20	18/TPI2014	CSI TC BC WB Matrix-SH	0.91 0.88 0.91	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 11-13 11-13 9	l/defl >616 >274 n/a	L/d 240 180 n/a	-	GRIP 185/148 169/162 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 DF 240 2x4 HF No. Structural v 1-8-5 oc pu Rigid ceilin bracing. 1 Row at m (size) S Max Horiz 1 Max Uplift S	00F 2.0E .2 wood shea urlins, exa g directly hidpt 9=0-3-8, 1 15=41 (LC 9=-145 (L		d or 5 5 6 6 7 7 8 8	 All plates and This truss has chord live lo * This truss on the botto 3-06-00 tall chord and a All bearings Provide met bearing plate 15 and 145 This truss is International 	quate drainage to p e MT20 plates unlet as been designed for ad nonconcurrent w has been designed m chord in all areas by 2-00-00 wide wil ny other members. are assumed to be chanical connection e capable of withsta b uplift at joint 9. designed in accord I Building Code sec standard ANSI/TPI ⁺	ss other or a 10. vith any for a liv s where I fit betw HF No. (by oth anding 1 lance w tion 23(wise indicate 0 psf bottom other live loa e load of 20. a rectangle veen the bott 2. ers) of truss 32 lb uplift a ith the 2018	ed. ads. Opsf om to					
FORCES	Tension 1-15=-213/ 2-3=-6560/	35, 8-9=-2 569, 3-4=	pression/Maximum 230/44, 1-2=-237/8, 8745/860, 4877/467, 7-8=-194,		0) Hanger(s) o provided suf lb down and 61 lb up at	r other connection c ficient to support cc 61 lb up at 15-11- 15-11-4 on bottom c such connection de	device(s oncentra 4, and 3 chord.	ated load(s) 3 319 lb down a The design/						
BOT CHORD	14-15=-341	1/3714, 13 9/8739, 10	3-14=-561/6558,)-11=-862/8410,		responsibilit 1) In the LOAD		loads a	oplied to the	face					
	3-14=-942/ 2-15=-3704 4-13=-300/ 6-10=-3748 7-9=-4857/	162, 2-14 4/363, 3-1 100, 4-11 3/425, 7-1 460 =110mph	=-234/3028, 3=-295/2386, =-497/330, 6-11=-22, 0=-20/957, (3-second gust) DL=6.0psf; h=25ft; C:	²/659, ¹	OAD CASE(S)) Dead + Sn Increase=1 Uniform Lo Vert: 9-1 Concentrat	Standard ow (balanced): Lum .15	nber Inc	. ,	Plate			4	THA OMIN	G ZHIAO

- II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate 2) DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.

min

April 1,2025

POR PEGISTEREN IN


Page: 1

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	M05	Monopitch Girder	4	1	Job Reference (optional)	R87439346

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Tue Apr 01 13:11:45 ID:JVjG_xzdunxKF1eORMqQC_zivmC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Т	2x4 ။ 1	4x5 = 2	6x16 = 3	4x5 = 0.1 4	25 4x6 5	= 3x4 = 6	3x6 = 7	2x6 II
2-1-2	15							6 2-1-2
	\bigotimes		×	13	12 16	11	10	\bigotimes
	4x5 =		14 3x4 =	6x16 =	6x8=	4x5=	3x6 =	4x6=

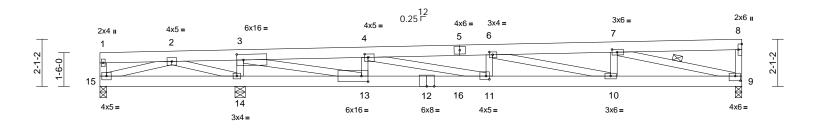
Scale = 1:51.2

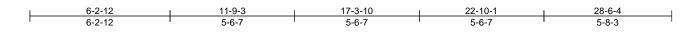
	,, 1). [0.0 0 0,0 0)], [4:0-1-12,0-2-0], [6		0], [7:0 2 12,0	1 0], [0.Euge,0	0 0], [11.	, 1 12,0 1 12	_], [10.0 \	5 0,0 0 0	<u>ب</u>		1	-
oading	(psf)	Spacing	2-0-0		CSI		DEFL	in		l/defl	L/d	PLATES	GRIP
CLL	25.0	Plate Grip DOL	1.15		TC	0.91	Vert(LL)		11-13	>999	240	MT20	185/148
oof Snow = 2	,	Lumber DOL	1.15		BC	0.87	Vert(CT)		11-13	>504	180		
DL	15.0	Rep Stress Incr	NO		WB	0.99	Horz(CT)	0.02	9	n/a	n/a		
CLL	0.0	Code	IBC201	8/TPI2014	Matrix-SH								
DL	10.0		-							-		Weight: 159 lb	FT = 10%
MBER			2)	TCLL: ASCE	E 7-16; Pf=25.0 p	osf (Lum D	OL = 1.15 Pl	late					
P CHORD	2x6 DF No.2				; Is=1.0; Rough								
T CHORD		ept* 12-9:2x6 DF 240	0F		1.00; Ct=1.10; II		1.2 minimum	n roof					
	2.0E				lied where requi								
BS	2x4 HF No.2		3)		quate drainage to			ıg.					
ACING			4)		as been designed								
P CHORD		neathing directly appli	ied or		ad nonconcurrer has been design								
		except end verticals.	5)		m chord in all are			opsi					
T CHORD		ly applied or 4-9-2 oc	;		by 2-00-00 wide			tom					
BS	bracing. 1 Row at midpt	7-9			ny other member			lom					
			6)		are assumed to		2.						
	· /	, 14=0-5-8, 15=0-3-8	7)		hanical connecti			to					
	Max Horiz 15=41 (,	, \	bearing plate	e capable of with	standing 3	18 Ib uplift a	it joint					
	15=-31	_C 8), 14=-220 (LC 8)),		ift at joint 9 and 2								
		(LC 1), 14=2366 (LC	8)		designed in acc								
	15=41 (· '),		Building Code s tandard ANSI/T		6.1 and						
ORCES		mpression/Maximum	9)	Hanger(s) o	r other connectio	n device(s							
P CHORD	Tension	=-218/43, 1-2=-23/69			ficient to support								
FUNCTION	2-3=-235/2147, 3-		,		61 lb up at 15-1			and					
	,	7=-3064/299, 7-8=-14	13/22		15-11-4 on botto								
T CHORD	14-15=-1152/106,		10/22		such connection	device(s)	is the						4.
	11-13=-255/2401,	,	1(responsibilit	CASE(S) sectio	n loade a	onlined to the	face				MIN	G Z.
	9-10=-281/3060	,	I.		are noted as fron			1000				VIAOMIN	CHA
BS	3-14=-1704/233, 2	-14=-1074/146,	14	DAD CASE(S)			on (D).				- 💉	OF WA	SHID
	2-15=-82/1155, 4-	13=-842/150,	1)		ow (balanced): L	umber Inc	roaco-1 15	Plato			-	TU OF WA	Non S
	3-13=-508/4642, 4		.,	Increase=1			10030-1.10,	iale		<u></u>		AT LA	
		10=-1657/227, 7-10=	0/449,	Uniform Lo								0	
	7-9=-3029/290				5=-20, 1-8=-80								
TES					ed Loads (lb)								
	CE 7-16; Vult=110m				=-387 (F=-193, B	=-193)						TR 540	14 5
Vasd-87m	nh: TCDI –4 2nsf: F	CDI = 6 Opsf h = 25ft	Cat		()=)=	/						7 1 8. 340	TALA

Vasd=87mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

----April 1,2025


OF REGISTERE GISTERE SIONAL ENGI


Page: 1

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	M07	Monopitch Girder	8	1	Job Reference (optional)	R87439347

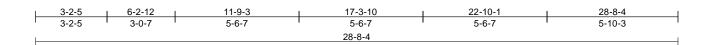
Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Tue Apr 01 13:11:46 ID:qwPSFzjWZDKiHHckOhsL5fzivg4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

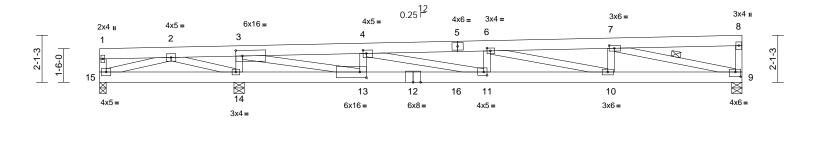
Scale = 1:51.2

Plate Offsets (X	(, Y): [3:0-3-8,0-3-0]	[4:0-1-12,0-1-12], [6:0	0-1-12,0-	1-8], [7:0-2-12,	0-1-8], [8:Edge,0-	3-8], [9:0)-2-12,0-2-8]	, [11:0-1	-12,0-1-1	2], [13:0	0-3-8,0	-3-0]	
Loading TCLL (Roof Snow = 2: TCDL BCLL BCLL BCDL	(psf) 25.0 5.0) 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC2018	3/TPI2014	CSI TC BC WB Matrix-SH	0.94 1.00 0.98	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 11-13 11-13 9	l/defl >999 >480 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 159 lb	GRIP 185/148 ET = 10%
OT CHORD VEBS RACING TOP CHORD BOT CHORD VEBS REACTIONS (1) N	3-2-7 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt size) 9=0-3-8, Max Horiz 15=41 (L0 Max Uplift 9=-96 (LC 15=-351 (applied or 4-6-12 oc 7-9 14=0-5-8, 15=0-3-8 C 33) S 8), 14=-224 (LC 8), LC 2) LC 1), 14=2407 (LC 1)	3) or 4) 5) 6) 7)	DOL = 1.15); Ce=1.0; Cs= live load app Provide aded This truss ha chord live loa * This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall b chord and ar All bearings a Provide mec bearing plate 15, 96 lb upli This truss is	7-16; Pf=25.0 ps; Is=1.0; Rough C 1.00; Ct=1.10; IB(lied where require uate drainage to s been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w and the members are assumed to b hanical connectio capable of withsi ft at joint 9 and 22 designed in accon Building Code se	at B; Par C 1607.1 d. prevent for a 10. with any d for a liv is where ill fit betv. e HF No n (by oth anding 3 24 lb upli dance w	tially Exp.; 1.2 minimum water pondin 0 psf bottom other live loa re load of 20. a rectangle veen the bott 2. ers) of truss 851 lb uplift af ft at joint 14. ith the 2018	n roof ng. ads. .0psf tom to					
FOP CHORD	3-4=-2297/256, 4-6=	23/74, 2-3=-251/2301	·	referenced s Hanger(s) or provided suff lb down and	tandard ANSI/TPI other connection icient to support of 61 lb up at 15-11	1. device(s concentra -4, and 3	s) shall be ated load(s) 3 319 lb down a						
BOT CHORD	14-15=-1237/115, 1 11-13=-244/2290, 1 9-10=-278/3039	3-14=-2294/259,		selection of s responsibility		evice(s)	is the	face				MIN	and a
WEBS	3-14=-1718/235, 2-1 2-15=-91/1240, 3-13 4-13=-857/152, 4-1	3=-513/4685,	LC 1)	of the truss a	ow (balanced): Lu .15	(F) or ba	ck (B).				1	YLA OMIN	SHINGTON
Vasd=87mp		(3-second gust) DL=6.0psf; h=25ft; Ca		Concentrate	=-80, 9-15=-20 ed Loads (lb) -387 (F=-193, B=	-193)						TH 540	14

II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


----April 1,2025


OFESSIONAL ENGI

Page: 1

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	M08	Monopitch Girder	2	1	Job Reference (optional)	R87439348

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Tue Apr 01 13:11:46 ID:RwmaLGiRhV0q?yDdhNif_KzivX3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

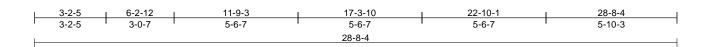
6-2-12	11-9-3	17-3-10	22-10-1	28-8-4	
6-2-12	5-6-7	5-6-7	5-6-7	5-10-3	

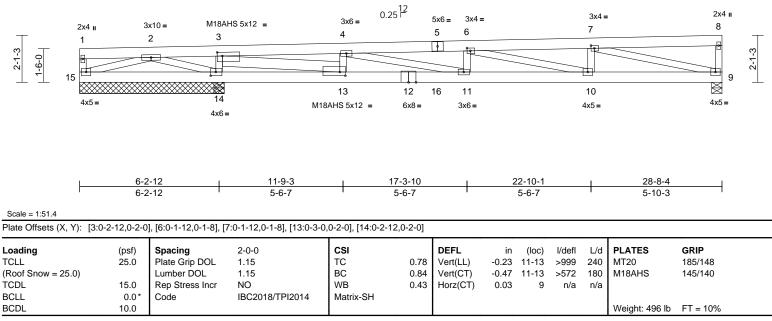
```
Scale = 1:51.4
```

Plate Offsets (X	(, Y): [3:0-3-8,0-3-0],	, [4:0-1-12,0-1-12], [6 T	5:0-1-12,0-	1-8], [7:0-2-12	,0-1-8J, [9:0-2-12, T	,0-2-8], [1	1:0-1-12,0-1-	-12], [13:	:0-3-8,0-	3-0]		1	
oading	(psf)	Spacing	2-0-0		CSI		DEFL	in		l/defl	L/d		GRIP
TCLL	25.0	Plate Grip DOL	1.15		TC	0.94	Vert(LL)		11-13	>999	240	MT20	185/148
Roof Snow = 2	,	Lumber DOL	1.15		BC	0.96	Vert(CT)		11-13	>486	180		
CDL	15.0	Rep Stress Incr	NO		WB	0.97	Horz(CT)	0.03	9	n/a	n/a	-	
BCLL	0.0*	Code	IBC201	8/TPI2014	Matrix-SH							-	
BCDL	10.0											Weight: 160 lb	FT = 10%
JMBER			2)	TCLL: ASCE	7-16; Pf=25.0 ps	sf (Lum D	OL = 1.15 PI	late					
	2x6 DF No.2				; Is=1.0; Rough C								
OT CHORD	2x6 DF No.2				:1.00; Ct=1.10; IB		1.2 minimum	n roof					
/EBS	2x4 HF No.2				lied where requir								
RACING			3)		quate drainage to								
OP CHORD	Structural wood she	athing directly applie	ed or ⁴⁾		as been designed								
	3-2-14 oc purlins, e				ad nonconcurrent								
OT CHORD	Rigid ceiling directly		_C 5)		has been designe			.0psf					
	bracing.				m chord in all are								
'EBS	1 Row at midpt	7-9			oy 2-00-00 wide v		veen the bott	tom					
EACTIONS (14=0-5-8, 15=0-3-8			ny other members		-						
	Max Horiz 15=41 (L0		6)		are assumed to b								
	Max Uplift 9=-106 (L	,	s) 7)		hanical connection								
	15=-352 (·/,		e capable of withs								
I	Max Grav 9=1101 (I		1).	15, 106 lb u	olift at joint 9 and	253 lb up	lift at joint 14	ł.					
	15=54 (L0		-,,	This towns is									
ORCES	(lb) - Maximum Com	,	8)		designed in acco								
ONOLO	Tension	ipression/maximum			Building Code se		16.1 and						
OP CHORD	1-15=-114/32, 1-2=-	25/74 2-3=-293/231	2 0		tandard ANSI/TP								
	3-4=-2237/290, 4-6=		12, 9)		other connection			210					
	6-7=-3068/336, 7-8=		15		ficient to support								
OT CHORD	14-15=-1241/141, 1				61 lb up at 15-1			anu				_	
2. 00D	11-13=-278/2230, 1				15-11-4 on botton								4.
	9-10=-319/3064			responsibilit	such connection of others	uevice(S)	15 1116					MIN	Ga
/EBS	3-14=-1703/257, 7-9	9=-3024/328.	10		CASE(S) sectior		onlied to the	face				TLAOMIN	- AHA
-	2-14=-1153/171, 2-1		I.		are noted as front			aue			- 💊	OF WA	SHO
	4-13=-856/162, 3-13											18 CT	576
	6-11=-184/376, 4-11)/430	DAD CASE(S)				Dista			-	R. S.	6
	6-10=-1531/265	-,	<i>"</i> 100, 1)		ow (balanced): Lu	umper Inc	rease=1.15,	Plate				0	in E
OTES				Increase=1									
	E 7-16; Vult=110mph	(3-second qust)		Uniform Lo									
	ph; TCDL=4.2psf; BC		Cat		=-80, 9-15=-20						2		
	nclosed: MWFRS (er				ed Loads (lb)						-	Pp \$ 540	74 5

ľ

- II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Vert: 16=-349 (F=-193, B=-155)




Page: 1

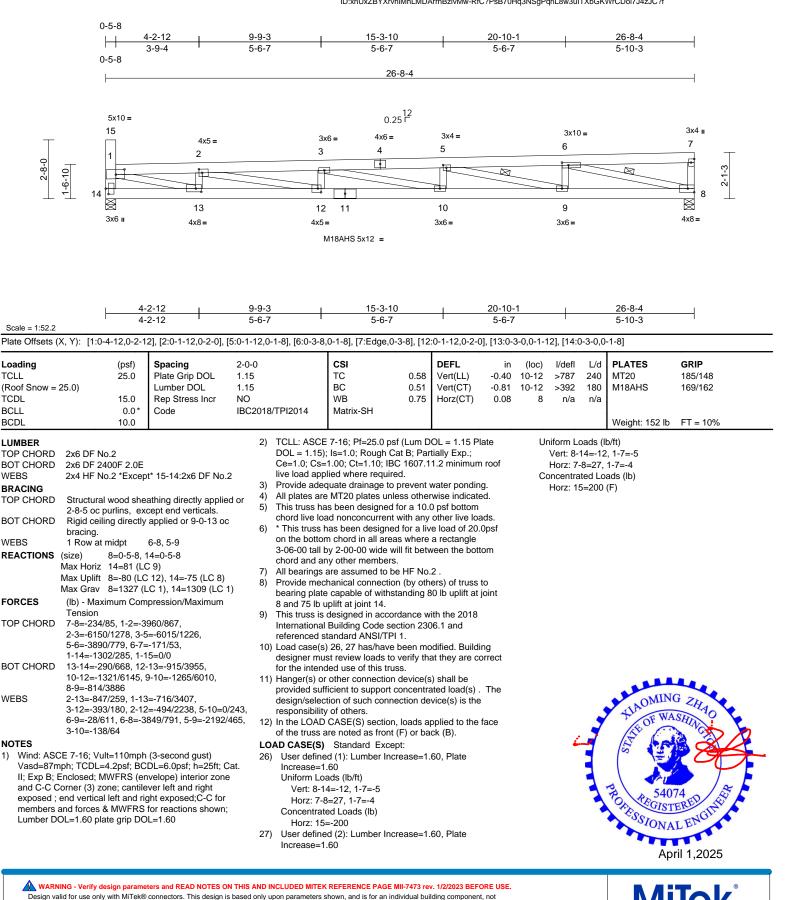
Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	M09	Monopitch Girder	2	3	Job Reference (optional)	R87439349

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Apr 01 13:11:46 ID:XnzylL896ZTAE_gSXoK1AwzivTv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LUMBER TOP CHORD BOT CHORD	2.0E 2x6 DF 2400F 2.0E *Except* 12-9:2x6 DF	1)	3-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc.	12) This truss has been designed for a total drag load of 3000 lb. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 6-5-8 for 464.5 plf.
WEBS	No.2 2x4 HF No.2 *Except* 3-13:2x6 DF 2400F 2.0E		Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Web connected as follows: 2x4 - 1 row at 0-4-0 oc, 2x6 -	 Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 294 lb down and 83 lb up at 15-11-4 on bottom chord. The
BRACING		•	2 rows staggered at 0-9-0 oc.	design/selection of such connection device(s) is the
TOP CHORD	······································	2)	All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD	responsibility of others. LOAD CASE(S) Standard
BOT CHORD	6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.		CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B),	 Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
REACTIONS	Max Horiz 15=185 (LC 27) Max Uplift 9=-220 (LC 33), 14=-1148 (LC 33),	3)	unless otherwise indicated. Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II: Exp B; Enclosed; MWFRS (envelope) exterior zone;	Uniform Loads (lb/ft) Vert: 1-5=-956, 5-8=-80, 9-15=-20 Concentrated Loads (lb)
	15=-518 (LC 44) Max Grav 9=2180 (LC 1), 14=14922 (LC 1), 15=366 (LC 33)	4)	cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate	Vert: 16=-155 (F)
FORCES	(lb) - Maximum Compression/Maximum	7)	DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.;	
TOP CHORD	Tension 1-15=-1411/109, 1-2=-299/423, 2-3=-2181/12383, 3-4=-11946/2237, 4-6=-13248/2180, 6-7=-7010/1423, 7-8=-714/615, 8-9=-283/48	5) 6)	Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required. Provide adequate drainage to prevent water ponding. All plates are MT20 plates unless otherwise indicated.	MING a
BOT CHORD		7) 8)	This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf	TINOMING ZHAO
WEBS	3-14=-11120/864, 4-13=-5381/501, 7-10=-107/1655, 6-11=-122/265, 2-15=-1190/4543, 2-14=-8613/1401, 3-13=-2061/23756, 4-11=-533/1998, 6-10=-6378/776, 7-9=-6921/754		on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. All bearings are assumed to be HF No.2. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 518 lb uplift at joint of coordinate with the method to be the short of th	54074
NOILS			15, 220 lb uplift at joint 9 and 1148 lb uplift at joint 14.	O VECTORE A

11) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1. April 1,2025

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com


Page: 1

Job	o	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
44	49076	M10	Monopitch	24	1	Job Reference (optional)	R87439350

1)

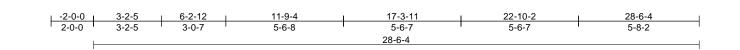
Run: 8.83 S. Mar 20 2025 Print: 8.830 S.Mar 20 2025 MiTek Industries. Inc. Tue Apr 01 13:11:47 ID:xnUxZBYXrvnIMhLMDArmBzivMw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

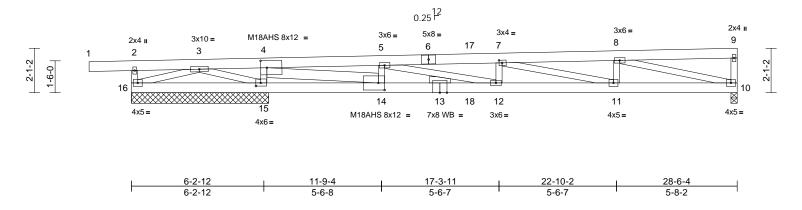
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not being read to be only with mit here contractions. This designer based only upon parameters shown, and show and broken introvidual during component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss		Truss Type			Qty	,	Ply	MKM EAS	T TOW	N CRO	SSING BLDG D	
4449076	M11		Monopitch			2		1	Job Refere	ence (or	otional)		R87439351
uilders FirstSource (A	rlington, WA), Arli	ngton, WA - 98223,										ue Apr 01 13:11:47 KWrCDoi7J4zJC?f	Page: 1
		<u>3-2-5 6-2-12</u> 3-2-5 3-0-7		<u>11-9-3</u> 5-6-7		<u>17-3-</u> 5-6- 28-8-4	7		<u>22-10</u> 5-6-			<u>28-8-4</u> 5-10-3	
2-1-3 1-6-0 1	2x6 ⊪ 2 16 ↓ 4x5=	3x6 = 3	4x8 = 4 15 3x4 =		3x6 = 5 1 14 4x12 =	0.25 4x6 = 7186 13 4xt		3x4 = 7 12 3x6 =			3x6	R	2x6 µ 9 10 4x5 =
	 	<u>6-2-12</u> 6-2-12		<u>11-9-3</u> 5-6-7		<u>17-3-</u> 5-6-7			<u>22-10</u> 5-6-			<u>28-8-4</u> 5-10-3	
Scale = 1:54.5 late Offsets (X, Y):	[4:0-2-4,0-2-0]], [5:0-2-8,0-1-8], [7:0-1	-12,0-1-8], [9	:Edge,0-3	-8], [12:0-2-8,0-1	-8], [14:0-	3-8,0-2	-0]					
OT CHORD 2x6 /EBS 2x4 RACING OP CHORD Stru 3-11 OT CHORD Rigin brac /EBS 1 Re EACTIONS (size) Max 1 Max 0 ORCES (lb) - Tens OP CHORD 2-16 3-4= 5-7= 9-10 OT CHORD 12-1 (DT CHORD 12-1 10-1 /EBS 4-15 3-16 5-14 5-12 8-10	1-0 oc purlins, d id ceiling directly cing. ow at midpt) 10=0-5-8 Horiz 16=41 (L Uplift 10=-58 (I 16=-61 (I) Grav 10=980 (16=233 (I) - Maximum Cor ision 6=-403/121, 1-2 =-367/1791, 4-5 =-3341/636, 7-8 D=-227/80 16=-975/167, 14 14=-344/1729, 14 14=-505/2630 5=-1443/349, 3-	LC 8), 15=-113 (LC 12) LC 3) (LC 1), 15=2022 (LC 1) (LC 18) mpression/Maximum 2=0/6, 2-3=-39/101, =-1736/339, =-2635/507, 8-9=-133/ 4-15=-1785/352, 11-12=-637/3337, -15=-862/216, 1=0/344, 7-12=-250/13 4=-677/3591,	Va II; ar to Ief P 2) TC DC Ca Iv 2) TC DC Ca Iv Ioz 44, 3- 44, 3- 44, 3- 6) * 1 44, 3- 6) * 1 60 * 1 60 * 1 60 * 1 60 * 1 60 * 1 61	ind: ASCE isd=87mpl Exp B; En d C-C Cor 13-6-8, Cc t and right posed;C-C actions sho D_=1.60 CLL: ASCE D_= 1.0; Cs= e load app is truss ha do f 20.0 erhangs n ovide adec is truss ha ord live loa his truss h the bottor D6-00 tall l ord and ar bearings ovide mecc aring plate , 58 lb upli is truss is ernational ernational ernational ernational ernational	CSI TC BC WB Matrix-SH 7-16; Vult=110m r; TCDL=4.2psf; closed; MWFRS ner (3) -2-0-0 to ormer (3) 13-6-8 t exposed; end v c for members ar bwn; Lumber DO 7-16; Pf=25.0 p [s=1.0; Rough (1.00; Ct=1.10; IE lied where require s been designed to sheen designed on-concurrent wi quate drainage to s been designed to shanical connection e capable of within ft at joint 10 and designed in acco Building Code s tandard ANSI/TF Standard	BCDL=6.((envelope 13-0-0, E) o 28-6-8 z ertical left hd forces & L=1.60 pla sf (Lum D Cat B; Parl 3C 1607.1 red. f for greate flat roof lo th other liv o prevent v f for a reater f for a reater f for a liv eas where will fit betw s. be HF No. on (by oth- standing 6 113 lb up ordance w ection 230	ppsf; h==) exteri terior (and rigg MWF fatte grip DL = 1. ially E5 1.2 min er of mi ad of 2 e load vater p psf bc p other li e load of a recta een the 2. ers) of 1 1 b up fifta t jo	LL) -0.: CT) -0. CT) -0. CT) 0.1 estimations resting to the second	40 12 02 10	I/defI >999 >667 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 165 lb	GRIP 185/148 FT = 10%
OTES				,									LENGTHER

April 1,2025

Job	Truss	Truss Type	Qt	/ Ply	MKM EAST TOWN CRO	DSSING BLDG D
4449076	M12	Monopitch	10			R87439352
Builders FirstSource (Arlington, W		мопоркон			Job Reference (optional 2025 MiTek Industries, Inc.	
<u> -2-0-0</u> 2-0-0	<u>3-2-5</u> <u>6-2-12</u> 3-2-5 3-0-7	<u>11-9-3</u> 5-6-7	10:pcw9JyEMRWEP167_ 17-3- 5-6- 28-6	10 7	70Hq3NSgPqnL8w3uITXbGł 22-10-1 5-6-7	28-6-4 5-8-3
	2x6 II 3x6 = 2 3	4x8 = 4 3 15 3x4 =	0.25^{12} $4x6 =$ $3x6 = 18$ $5 17 6$ 14 14 13 $4x12 = 4x6$	12	3 8 1 3x	
Scale = 1:54.3	6-2-12 6-2-12	<u>11-9-3</u> 5-6-7	<u> </u>	7	22-10-1 5-6-7	28-6-4 5-8-3
Plate Offsets (X, Y): [4:0-2-8	3,0-2-0], [5:0-2-8,0-1-8], [7:0-1	1-12,0-1-8], [9:Edge,0-3	3-8], [12:0-2-8,0-1-8], [14:0-	3-8,0-2-0]		
TCLL (Roof Snow = 25.0) TCDL BCLL	(psf)Spacing25.0Plate Grip DOLLumber DOL15.0Rep Stress Incr0.0*Code10.0	2-0-0 1.15 1.15 YES IBC2018/TPI2014	CSI TC 0.68 BC 0.59 WB 0.75 Matrix-SH	DEFL Vert(LL) -0.2 Vert(CT) -0.3 Horz(CT) 0.0	39 12-14 >679 180	PLATES GRIP MT20 185/148 Weight: 164 lb FT = 10%
3-11-4 oc pu BOT CHORD Rigid ceiling bracing. WEBS 1 Row at mic REACTIONS (size) 10 Max Horiz 16 Max Uplift 10	bood sheathing directly applied irlins, except end verticals. directly applied or 5-5-2 oc dpt 8-10 0=0-3-8, 15=0-5-8, 16=0-3-8 0=41 (LC 11) 0=58 (LC 8), 15=-111 (LC 12 0=-59 (LC 8)	Vasd=87mp II; Exp B; Er and C-C Co to 13-4-8, C left and righ exposed;C-reactions sh DOL=1.60 2) TCLL: ASCI DOL = 1.15 Ce=1.0; Css live load app), 3) This truss h load of 20.0	E 7-16; Vult=110mph (3-sec h; TCDL=4.2psf; BCDL=6. closed; MWFRS (envelopy rmer (3) -2-0-0 to 13-0-0, E orner (3) 13-4-8 to 28-4-8 a t exposed ; end vertical left C for members and forces isown; Lumber DOL=1.60 pl E 7-16; Pf=25.0 psf (Lum D b); Is=1.0; Rough Cat B; Par =1.00; Ct=1.10; IBC 1607.1 plied where required. as been designed for great psf or 2.00 times flat roof l	Dpsf; h=25ft; Cat. e) exterior zone (terior (2) 13-0-0 one; cantilever and right MWFRS for ate grip OL = 1.15 Plate tially Exp.; 1.2 minimum roof er of min roof live		


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MITek-US.com

April 1,2025

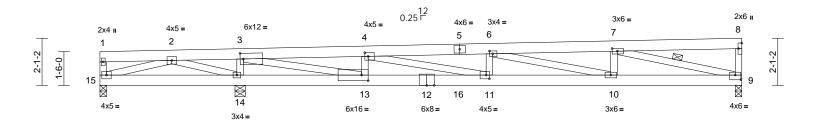
Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	M13	Monopitch Girder	2	3	Job Reference (optional)	R87439353
Builders FirstSource (Arlington, WA), Arlington, WA - 98223, Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Apr 01 13:11:48						Page: 1

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Tue Apr 01 13:11:48 ID:MU9WHeQU6YTeLOMgWv5L1AzitbU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:54.3

Plate Offsets (X, Y): [4:0-3-8.0-4-0], [7:0-1-12.0-1-8], [14:0-3-8.0-4-0], [15:0-2-12.0-1-12]

Plate Offsets (X, Y): [4:0-3-8,0-4-0], [7:0-1-12,0-1-8], [14:0-3-8,0-4-0], [15:0-2-12,0-1-12]	
TCLL 25.0 Plate Grip DOL 1.15 TC 0.94 Vert(LL) -0.26 12-14 >999 240 I (Roof Snow = 25.0) Lumber DOL 1.15 BC 0.90 Vert(LL) -0.26 12-14 >999 240 I TCDL 15.0 Rep Stress Incr Yes WB 0.47 Horz(CT) 0.03 10 n/a n/a BCLL 0.0* Code IBC2018/TPI2014 Matrix-SH Vertice Vertice Vertice	PLATES GRIP MT20 185/148 M18AHS 145/140 Weight: 510 lb FT = 10%
LUMBER TOP CHORD 2x6 DF No.2 "Except* 1-6:2x6 DF 2400F 2.0E 1) 3-ply truss to be connected together with 10d (0.131*32") nails as follows: 2x4 - 1 row at 0-9-0 2.0E 12) This truss is designed international Buildin referenced Standbows: Concernence as follows: 2x4 - 1 row at 0-9-0 c. 2x6 - 2 rows staggered at 0-9-0 cc. 12) WEBS 2x4 HF No.2 Except* 4-14:2x6 DF 2400F 2.0E 10 0.131*32") nails as follows: 2x4 - 1 row at 0-9-0 c. 2x6 - 2 rows staggered at 0-9-0 cc. 13) This truss has been 2600 Ib. Lumber DC Connect truss to responsibility of 0-0 cc. OT CHORD DO CHORD STOP CHORD Structural wood sheathing directly applied to 2-2-0 oc purifies, except end verticals. All loads are considered equally applied to all plies, except if noted as follows: 2x4 - 1 rows staggered at 0-9-0 cc. 14) Hanger(s) oc connect truss to responsibility of other provided sufficient to be add or 20-0 c. REACTIONS (size) 10=0-3-8, 15=6-5-8, 16=6-5-8 Max Horz 10=0-3-9, 15=6-5-8, 16=6-5-8 Max Horz 10=0-3-9, 15=6-5-8, 16=6-5-8 Max Horz 11=166 (IC 0.23) 11=1000+100-10-6, 15=7, 128-100-1000-6, 15=7, 128-100-1000-10-10-10-10-10-10-10-10-10-10-	hed in accordance with the 2018 ng Code section 2306.1 and d ANSI/TPI 1. In designed for a total drag load of OL=(1.33) Plate grip DOL=(1.33) usist drag loads along bottom chord for 402.6 plf. connection device(s) shall be to support concentrated load(s) 281 up at 15-11-4 on bottom chord. The such connection device(s) is the hers. dard lanced): Lumber Increase=1.15, Plate //ft) 2-17=-1066, 9-17=-80, 10-16=-20 dds (lb)



min April 1,2025

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	M14	Monopitch Girder	2	1	Job Reference (optional)	R87439354

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Tue Apr 01 13:11:48 ID:B6c8qRjtK47qiwO9HKXdNDziui5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1	6-2-12	11-9-4	17-3-11	22-10-2	28-6-4	
I	6-2-12	5-6-8	5-6-7	5-6-7	5-8-2	T

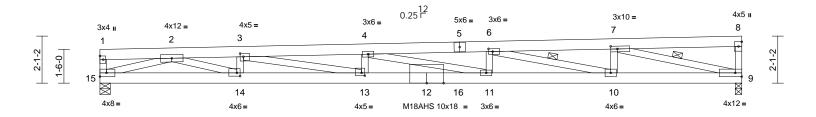
```
Scale = 1:51.2
```

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	25.0	Plate Grip DOL	1.15		TC	0.92	- ()		11-13	>999	240	MT20	185/148
Roof Snow = 2	,	Lumber DOL	1.15		BC	0.94	Vert(CT)		11-13	>499	180		
TCDL	15.0	Rep Stress Incr	NO		WB	0.95	Horz(CT)	0.03	9	n/a	n/a		
BCLL	0.0*	Code	IBC201	3/TPI2014	Matrix-SH								
BCDL	10.0											Weight: 159 lb	FT = 10%
UMBER			2)	TCLL: ASCE	7-16; Pf=25.0 psf	(Lum D	OL = 1.15 PI	late					
TOP CHORD	2x6 DF No.2				Is=1.0; Rough Ca								
OT CHORD	2x6 DF No.2				1.00; Ct=1.10; IBC		1.2 minimum	n roof					
VEBS	2x4 HF No.2				lied where require								
RACING			3)		uate drainage to p			g.					
OP CHORD	Structural wood she	athing directly applie	dor ⁴⁾		s been designed f								
	3-3-7 oc purlins, ex		F \		ad nonconcurrent v								
BOT CHORD Rigid ceiling directly applied or 4-8-1 oc bracing.					as been designed			opst					
				on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom									
WEBS 1 Row at midpt 7-9					ly other members.	i iii beli	veen me bou	UIII					
		14=0-5-8, 15=0-3-8	6)		are assumed to be	HF No	2						
	Max Horiz 15=41 (Lo	,	7)	0	hanical connection			to					
	Max Uplift 9=-113 (L), ''		capable of withsta								
	15=-332			15, 113 lb up	lift at joint 9 and 2	69 lb up	lift at joint 14						
	Max Grav 9=1088 (1),										
	15=59 (L	,	8)		designed in accord								
ORCES	(Ib) - Maximum Con	npression/Maximum			Building Code sec		06.1 and						
	Tension	00/70 0 0 044/000	^		andard ANSI/TPI								
OP CHORD	3-4=-2224/316, 4-6=	26/70, 2-3=-311/222	3, 9)		other connection								
	,	=-4393/039, =-138/23, 8-9=-219/4	3		icient to support c								
OT CHORD	14-15=-1188/153, 1		5		102 lb up at 15-1			and					
	11-13=-304/2217, 1	,			5-11-4 on bottom								4.
	9-10=-335/2961	027/7000,			such connection de	evice(S)	IS INC					MIN	G and A
/EBS	3-14=-1671/270, 7-9	9=-2933/345.	10	responsibility	CASE(S) section,	loade a	nnlied to the	face				LAOMIN TAOMIN	CHA C
-	2-15=-128/1192, 2-1		IC IC		re noted as front (IALE			- 💉	OF WA	SHID O
	,	1=-185/372, 7-10=0/4	29, 1	DAD CASE(S)		., 0. 56	Six (B).				-	A CT	STON 6
	6-10=-1532/299, 4-	11=-329/2230,	1)	• • • •	ow (balanced): Lun	abor Inc	roaco-1 15	Plato				A	6
	3-13=-635/4531		1)	Increase=1			10030=1.13,	I Idle			-	10/01-1	Z (
OTES				Uniform Lo									
Wind: ASC	E 7-16; Vult=110mph	(3-second gust)			=-80, 9-15=-20								
	ph; TCDL=4.2psf; BC				ed Loads (lb)							FP 540	74 5
III: Eve Di E	nclosed: MW/ERS (er			00.00111101									

ľ

II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

Vert: 16=-325 (F=-131, B=-193)


Page: 1

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	M15	Monopitch Girder	2	1	Job Reference (optional)	R87439355

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Tue Apr 01 13:11:48 ID:WVRBq0uDea8f7BPWeME3?Tziue?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

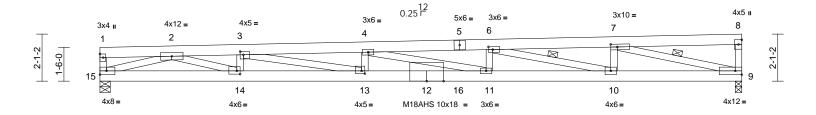
6-2-12	11-9-4	17-3-11	22-10-2	28-6-4	1
6-2-12	5-6-8	5-6-7	5-6-7	5-8-2	7

Scale = 1:51.2

Plate Offsets (X, Y):	: [3:0-1-12,0-1-12], [6:0-2-4,0-1-8], [7:0-3-8,0-1-8], [8:Edge,0-3-8], [13:0-1-12,0-1-8], [14:0-1-12,0-1-12]
-----------------------	--

	A, T). [3.0-		2j, [0.0-2-4,0-1-6j, [<i>1</i>	.0-3-8,0-	1-0], [0.Euge,0	-3-6], [13.0-1-12,0-	1-0], [14	.0-1-12,0-1-1	12]				1	
Loading		(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL		25.0	Plate Grip DOL	1.15		тс	0.91	Vert(LL)	-0.55	11-13	>616	240	MT20	185/148
(Roof Snow =	25.0)		Lumber DOL	1.15		BC	0.89	Vert(CT)	-1.24	11-13	>274	180	M18AHS	169/162
TCDL		15.0	Rep Stress Incr	NO		WB	0.91	Horz(CT)	0.13	9	n/a	n/a		
BCLL		0.0*	Code	IBC20	18/TPI2014	Matrix-SH								
BCDL		10.0											Weight: 159 lb	FT = 10%
LUMBER				3) Provide ad	equate drainage to	orevent	water pondin	a.					
TOP CHORD	2x6 DF No	0.2				re MT20 plates unle								
BOT CHORD				5) This truss h	as been designed f	or a 10.	0 psf bottom						
NEBS	2x4 HF No	0.2			chord live le	bad nonconcurrent	with any	other live loa	ads.					
BRACING				6) * This truss	has been designed	for a liv	e load of 20.	0psf					
TOP CHORD	Structural	wood she	athing directly applie	ed or		om chord in all area		0						
			cept end verticals.			by 2-00-00 wide wi		veen the bott	tom					
BOT CHORD			applied or 10-0-0 oc			any other members.								
	bracing.					are assumed to be								
VEBS	1 Row at	midpt	7-9, 6-10	٤		chanical connection								
REACTIONS	(size)	9=0-3-8, 2	15=0-5-8			te capable of withst	anding	32 ib uplift a	tjoint					
	Max Horiz	15=41 (LC	C 7)	~		lb uplift at joint 9.								
	Max Uplift	9=-145 (L	C 8), 15=-132 (LC 4) 5		s designed in accor al Building Code see								
	Max Grav	9=1628 (L	_C 1), 15=1582 (LC	1)		standard ANSI/TPI		Jo. i anu						
ORCES	(lb) - Maxi	imum Com	pression/Maximum	. 1		or other connection		shall be						
	Tension					ifficient to support c			319					
OP CHORD	1-15=-213	3/35, 8-9=-	230/44, 1-2=-237/8,			d 61 lb up at 15-11								
	2-3=-6560)/569, 3-4=	-8746/860,			15-11-4 on bottom								
	4-6=-8412	2/876, 6-7=	-4874/467, 7-8=-193	3/27		such connection d								
BOT CHORD	14-15=-34	41/3714, 13	3-14=-561/6558,			ty of others.	. ,							
			0-11=-861/8407,	1	1) In the LOA	CASE(S) section,	loads a	pplied to the	face					
	9-10=-449				of the truss	are noted as front	(F) or ba	ck (B).						
VEBS		, .	=-942/162,	L	OAD CASE(S) Standard								
		,	5=-3704/363,	1) Dead + Si	, now (balanced): Lur	nber Inc	rease=1.15,	Plate				OMIN	G ZH
		,	3=-295/2387,	050	Íncrease=								ALAOMIN	en or
			-498/328, 7-10=-20/	958,	Uniform L	oads (lb/ft)							A OF THE	add C
	6-10=-374	19/425			Vert: 9-	15=-20, 1-8=-80						1	12 6	SHENON CROW
NOTES					Concentra	ited Loads (lb)								
			(3-second gust)		Vert: 16	6=-387 (F=-193, B=-	-193)							
Vasd=87m	nph; TCDL=	4.2psf; BC	DL=6.0psf; h=25ft; C	Cat.			,							

- II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate 2) DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.


400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Page: 1

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	M16	Monopitch Girder	2	1	Job Reference (optional)	R87439356

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Tue Apr 01 13:11:49 ID:Mq0tdacHBC1VA?GpyBnMIPziubn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-2-12	11-9-4	17-3-11	22-10-2	28-6-4	1
6-2-12	5-6-8	5-6-7	5-6-7	5-8-2	7

Scale = 1:51.2

Plate Offsets (X, Y)	: [3:0-1-12,0-1-12], [6:0-2-4,0-7	I-8], [7:0-3-8,0-1-8], [8:Edge,0-3-8	3], [13:0-1-12,0-1-8], [14:0-1-12,0-1-12]
----------------------	-----------------------------------	--------------------------------------	---

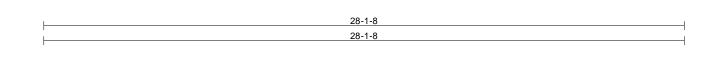
	(^, 1). [3.0-1-	-12,0-1-1.	2], [6:0-2-4,0-1-8], [7:	.0-3-8,0-	1-0], [0.Euge,0-	3-0], [13.0-1-12,0-1	-0], [14	.0-1-12,0-1-1	2]					
Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC20	8/TPI2014	CSI TC BC WB Matrix-SH	0.91 0.89 0.91	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 11-13 11-13 9	l/defl >616 >274 n/a	L/d 240 180 n/a	MT20	GRIP 185/148 169/162 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 DF 240 2x4 HF No.2 Structural w 1-8-5 oc pu Rigid ceiling bracing. 1 Row at mi (size) 9 Max Horiz 1 Max Uplift 9	0F 2.0E 2 rlins, exc g directly idpt ==0-3-8, 1 5=41 (LC ==-145 (L		7 8 9	 All plates are This truss had chord live low * This truss had the horton of the botton of the botton of the botton of the chord and an All bearings Provide mean Provide mean This truss is international 	quate drainage to p e MT20 plates unlet as been designed for ad nonconcurrent w has been designed m chord in all areas by 2-00-00 wide will ny other members. are assumed to be thanical connection e capable of withsta b uplift at joint 9. designed in accord Building Code sec tandard ANSI/TPI	ss othe or a 10. vith any for a liv s where I fit betv HF No (by oth anding 2 lance w tion 230	wise indicate 0 psf bottom other live loa e load of 20. a rectangle veen the bott 2. ers) of truss i 32 lb uplift a ith the 2018	ed. ads. Opsf com to					
FORCES	Tension 1-15=-213/3 2-3=-6561/5	35, 8-9=-2 569, 3-4=	pression/Maximum 230/44, 1-2=-237/8, 8746/860, 4874/467, 7-8=-193		provided suf lb down and 61 lb up at	other connection of ficient to support co 61 lb up at 15-11- 15-11-4 on bottom of such connection de	oncentra 4, and 3 chord.	ated load(s) 3 319 lb down a The design/						
BOT CHORD	14-15=-341	/3714, 13 /8740, 10	3-14=-561/6558,)-11=-861/8407,		responsibility 1) In the LOAD		loads a	pplied to the	face					_
	7-9=-4854/4 4-13=-299/1 6-10=-3749, 3-13=-295/2 2-14=-234/3 CE 7-16; Vult=	459, 3-14 100, 6-11 /425, 4-1 2387, 2-1 3028 =110mph	=-942/162, =-22/660, 7-10=-20/5 1=-498/328, 5=-3704/363, (3-second gust) DL=6.0psf; h=25ft; C	^{958,} 1	OAD CASE(S)) Dead + Sno Increase=1 Uniform Lo Vert: 9-1 Concentrat	Standard ow (balanced): Lum .15	nber Inc	. ,	Plate			, in the second s	THA OMIN	G ZHLAO SHIINGIDU

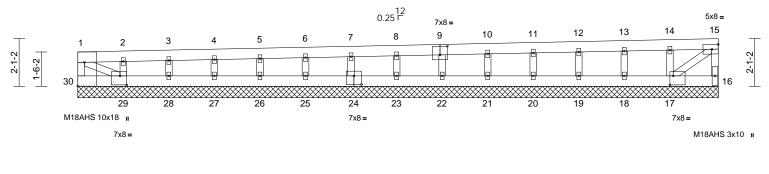
- II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate 2) DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.

PERSENTEREN CIT THE REAL April 1,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Page: 1


		I				.			
Job	Truss	Truss Type		Qty		MKM EAS	T TOWN CR	OSSING BLDG D	R87439357
4449076	M17	Monopitch		10	1		ence (optiona		
2	-9-9 5-10-09-9 3-0-7	<u>11-4-8</u> 5-6-8	ID:c_p6dzav2					. Tue Apr 01 13:11:49 SKWrCDoi7J4zJC?f 28-1-8 5-8-2	Page: 1
- 	4x12 = 4x6			28-1-8	4x6 = 5x6 =		3× 7	:10 =	4x5 II 8
2 2 4x6=	2 3 14 4x6 =		4 13 4x6 = M1	12 1 8AHS 10x18			10 4x6		9 9 4x8=
Scale = 1:50.6	5-10-0 5-10-0	<u>11-4-8</u> 5-6-8	1	<u>6-10-15</u> 5-6-7		22-5-6 5-6-7		<u>28-1-8</u> 5-8-2	
	3-1,0-0-4], [3:0-2-4,0-2-0], [7:0	-3-8,0-1-8], [8:Edge,0-3	-8], [13:0-2-4,0-2	-0], [14:0-1-	12,0-1-12]				
Loading TCLL (Roof Snow = 25.0) TCDL BCLL BCDL	(psf)Spacing25.0Plate Grip DOLLumber DOLLumber DOL15.0Rep Stress Incr0.0*Code	2-0-0 1.15 1.15 NO IBC2018/TPI2014	CSI TC BC WB Matrix-SH	0.89 0.87 0.89	Vert(CT) - Horz(CT)	in (loc) 0.52 11-13 1.18 11-13 0.12 9	l/defl L/ >637 24 >284 18 n/a n/	0 MT20 0 M18AHS	GRIP 185/148 169/162 FT = 10%
BOT CHORD 1-9-7 oc p Rigid celli bracing. WEBS 1 Row at REACTIONS (size) Max Horiz Max Uplift Max Grav FORCES (lb) - Max Tension TOP CHORD 1-15=-180 2-3=-6176 4-6=-8257 BOT CHORD 14-15=-30 11-13=-32 6-10=-447 WEBS 7-9=-4777 4-13=-327 6-10=-366 3-13=-300 2-14=-247 NOTES 1) Wind: ASCE 7-16; Vu Vasd=87mph; TCDL= II; Exp B; Enclosed; M cantilever left and righ right exposed; Lumbe 2) TCLL: ASCE 7-16; Pft DOL = 1.15); Is=10; F	400F 2.0E b.2 wood sheathing directly applie burlins, except end verticals. ng directly applied or 10-0-0 or midpt 7-9, 6-10 9=0-3-8, 15= Mechanical 15=41 (LC 33) 9=-143 (LC 8), 15=-131 (LC 4 9=1606 (LC 1), 15=1564 (LC imum Compression/Maximum y/30, 8-9=-229/44, 1-2=-195/5, 5/540, 3-4=-8469/836, 1/861, 6-7=-4795/460, 7-8=-19 y/30, 8-9=-229/44, 1-2=-195/5, 5/540, 3-4=-8469/836, 1/861, 6-7=-4795/460, 7-8=-19 y/30, 8-9=-229/44, 1-2=-195/5, 5/540, 3-4=-8469/836, 1/861, 6-7=-4795/460, 7-8=-19 y/30, 8-9=-229/44, 1-2=-195/5, 5/540, 3-4=-953/162, 7/103, 6-11=-20/637, 7-10=-18, 30/417, 4-11=-409/342, 1/2491, 2-15=-3348/328, 7/3081 It=110mph (3-second gust) 4.2psf; BCDL=6.0psf; h=25ft; 0 WFRS (envelope) exterior zor t exposed ; end vertical left an r DOL=1.60 plate grip DOL=1.1 =25.0 psf (Lum DOL = 1.15 Plate Rough Cat B; Partially Exp.; 1.10; IBC 1607.11.2 minimum	 4) All plates at 5) This truss h chord live like 6) * This truss s on the botto 3-06-00 tall chord and a 7) All bearings 8) Refer to gin 9) Provide me bearing pla 15 and 143 10) This truss is Internationa referenced 11) Hanger(s) or provided su lib down and referenced 11) Hanger(s) of such con others. 12) In the LOAI of the truss 13) Dead + Sr Increase= Uniform Li Vert: 9-Concentra Concentra 500 tet 	now (balanced): L 1.15	nless otherv d for a 10.0 nt with any of eas where a will fit betw rs. be HF No.2 be HF	vise indicated. psf bottom other live loads. e load of 20.0psf a rectangle een the bottom ections. ers) of truss to 31 lb uplift at join th the 2018 6.1 and shall be ted load(s) 319 9 lb down and 6 lesign/selection onsibility of plied to the fact k (B).	sf int 61		TROFFESSIONA	A CONTRACTOR


April 1,2025

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	M18	Monopitch Supported Gable	1	1	Job Reference (optional)	R87439358

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Apr 01 13:11:49 ID:RDGmpIQ27yZ5w4sVNNikKIzithw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

L	2-0-0	26-0-0	28-1-8	1
Г	2-0-0	24-0-0	2-1-8	I

Scale = 1:50.6

Plate Offsets (X,	, Y): [9:0-4-0,0-4-	8], [15:0-3-7,0-2-8], [17:0-1	1-12,0-4-12], [24:0-	4-0,0-4-8], [29:0-3-8	3,0-4-12],	[30:Edge,0-3	8-8]					
Loading TCLL (Roof Snow = 25 TCDL BCLL BCLL	(psf) 25.0 5.0) 15.0 0.0 10.0	Plate Grip DOL1Lumber DOL1Rep Stress IncrN	-0-0 .15 .15 IO 3C2018/TPI2014	CSI TC BC WB Matrix-SH	0.59 0.39 0.71	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a -0.02	(loc) - - 23	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES M18AHS MT20 Weight: 140 lb	GRIP 145/140 185/148 FT = 10%
UMBER OP CHORD OT CHORD VEBS DTHERS BRACING OP CHORD BOT CHORD REACTIONS (S	2x6 DF No.2 2x6 DF No.2 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural wood sl 4-1-11 oc purlins, Rigid ceiling direc bracing. size) 16=28- 19=28- 25=28- 25=28- 25=28- 28=28- Max Horiz 30=41 (Max Uplift 16=-243 32), 18: 32), 20: 32), 22: 32), 24: 32), 26: 40), 28: 41), 30: Max Grav 16=253 53), 18: 20=199 22=300 24=324	reathing directly applied or except end verticals. ly applied or 4-5-15 oc -8, 17=28-1-8, 18=28-1-8 -8, 20=28-1-8, 21=28-1-8 -8, 23=28-1-8, 21=28-1-8 -8, 29=28-1-8, 27=28-1-8 -8, 29=28-1-8, 30=28-1-8 -8, 29=28-1-8, 30=28-1-8 -22 (LC 40), 19=-17 (LC -24 (LC 41), 21=-105 (LC -210 (LC 41), 23=-266 (LC -270 (LC 41), 23=-266 (LC -270 (LC 41), 27=-16 (LC -26 (LC 32), 29=-2029 (LC -2090 (LC 32) 0 (LC 52), 17=2665 (LC -197 (LC 1), 19=201 (LC 1 (LC 1), 21=249 (LC 27), (LC 26), 23=330 (LC 27), (LC 26), 27=200 (LC 1),	BOT CHORD , , , , , , , , , , , , , , , , , , ,	1-30=-2053/2025, 2-3=-3095/3078, ; 4-5=-2138/2123, ; 6-7=-1183/1169, ; 8-10=-744/732, 10 11-12=-1697/168; 13-14=-2649/264 15-16=-2470/247, 29-30=-317/262, ; 27-28=-2577/260; 25-26=-1667/164; 22-23=-282/267, ; 20-21=-1233/121; 18-19=-2142/217; 16-17=-407/400 2-29=-172/106, 3- 5-26=-170/108, 6- 7-24=-285/262, 8- 9-22=-260/230, 11 11-20=-159/93, 12 13-18=-158/87, 14 1-29=-3830/3867, CE 7-16; Vult=110m rph; TCDL=4.2psf; E Enclosed; MWFRS (corner (3) zone; can end vertical left and and forces & MWFRS	3-4=-261 5-6=-165 7-8=-716 0-11=-12 9, 12-13= 8, 14-15= 4 28-29=-3 3, 26-27= 5, 23-25= 21-22=-7 5, 19-20= 3, 17-18= -28=-159 -25=-230 -21=-20 2-19=-16 4-17=-17 , 15-17=- ph (3-sec 3CDL=6. (envelope tilever lef inght exp S for ree S for ree	7/2600, 7/1644, 703, 20/1208, -2175/2168, -3123/3123, 104/3081, -2146/2124, -1189/1166, 54/737, -1711/1694, -2669/2651, 71, 4-27=-16 1888, 274, 3/155, D/63, 3/78, 3940/3927 cond gust) Dpsf; h=25ft; e) exterior zor t and right ossed;C-C foi ctions shown	0/73, Cat. ne	 All ¢ All ¢ All ¢ All ¢ All ¢ Trus braa B) Trus braa B) Gat 10) This cho 11) * Tr on t 3-00 cho 	blates a blates a ble requiss to be ced aga ble studs s truss h rd live k his truss the botto 6-00 tall rd and a	re MT2 re 2x4 ires co fully sl inst lat s space bad no has be bom cho by 2-0 any oth	drainage to prev drainage to prev 10 plates unless of () MT20 unless () MT20 unless () MT20 unless heathed from one eral movement (i ed at 2-0-0 oc. an designed for a nconcurrent with sen designed for rd in all areas wh	rent water ponding. otherwise indicated. otherwise indicated chord bearing. e face or securely .e. diagonal web). 10.0 psf bottom any other live loads a live load of 20.0p: here a rectangle between the bottom
	30=212	(LC 1), 29=2124 (LC 52), 5 (LC 39) mpression/Maximum	only. For see Stand or consult 3) TCLL: AS DOL = 1.1 Ce=1.0; C	igned for wind loads studs exposed to wi ard Industry Gable I qualified building de CE 7-16; Pf=25.0 ps 5); Is=1.0; Rough C s=1.00; Ct=1.10; IB pplied where require	nd (norm End Deta signer a f (Lum D at B; Par C 1607.1	al to the face ils as applica s per ANSI/TI OL = 1.15 Pla tially Exp.;), ble, Pl 1. ate				PROFISSIONA	74 ERED IL ENGINE

April 1,2025

Page: 1

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

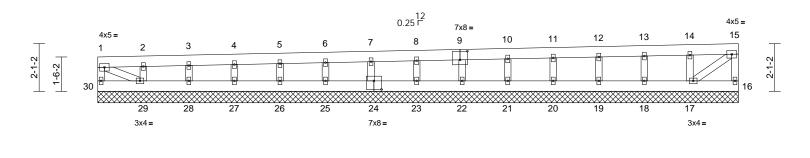
400 Sunrise Ave., Suite 270 Rosevile, CA 95661 916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	M18	Monopitch Supported Gable	1	1	Job Reference (optional)	R87439358

- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 2090 lb uplift at joint 30, 2499 lb uplift at joint 16, 2029 lb uplift at joint 29, 26 lb uplift at joint 28, 16 lb uplift at joint 27, 57 lb uplift at joint 26, 136 lb uplift at joint 25, 210 lb uplift at joint 24, 226 lb uplift at joint 23, 179 lb uplift at joint 22, 105 lb uplift at joint 21, 44 lb uplift at joint 20, 17 lb uplift at joint 19, 22 lb uplift at joint 18 and 2563 lb uplift at joint 17.
- 14) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 15) This truss has been designed for a total drag load of 6732 lb. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 28-1-8 for 239.4 plf.

LOAD CASE(S) Standard

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Apr 01 13:11:49 ID:RDGmpIQ27yZ5w4sVNNikKIzithw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 2

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	M18A	Monopitch Supported Gable	1	1	Job Reference (optional)	R87439359

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Apr 01 13:11:50 ID:8hwO2oyemT6rCrDyydV26azithE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:50.6

Plate Offsets (X, Y): [9:0-4-0,0-4-8], [24:0-4-0,0-4-8]

	7, 1). [9.0-	-4-0,0-4-0],	[24.0-4-0,0-4-0]												
Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC201	8/TPI2014	CSI TC BC WB Matrix-SH	0.03 0.01 0.02	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 16	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 140 lb	GRIP 185/148 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc p Rigid ceili bracing. (size) Max Horiz Max Uplift	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	$(2, 1)^{1}, 17=-13 (LC 8),$ (C 12), 19=-12 (LC 8), (C 12), 21=-13 (LC 8), (C 12), 23=-12 (LC 8), (C 12), 25=-11 (LC 8), (C 12), 25=-11 (LC 8), (C 12), 27=-12 (LC 12), (C 1), 17=232 (LC 1), (C 1), 17=232 (LC 1), (C 1), 19=201 (LC 1), (C 1), 21=206 (LC 1), (C 1), 23=193 (LC 1), (C 1), 25=203 (LC 1), (C 1), 27=200 (LC 1),	B d or 1-8, W 1-8, 1-8, 1-8, 1-8 N 1-8 N (, 2), 2), 2), 2), 3)	OT CHORD /EBS) Wind: ASCE Vasd=87mp II; Exp 8; Er and C-C Co exposed ; er members ar Lumber DOI) Truss desigr only. For str see Standar or consult q TCLL: ASCE DOL = 1.15) Ce=1.0; Cs= live load app) Provide ade All plates ard) Gable requir) Truss to be	1-30=-65/33, 1-2=- 3-4=-22/15, 4-5=-2 6-7=-21/20, 7-8=-1 10-11=-17/25, 11 13-14=-13/24, 14 29-30-66/60, 28 29-30-66/60, 28 20-27=-29/32, 25 22-23=-24/27, 21 19-20=-30/31, 18 16-17=-18/65 2-29=-167/65, 3-21 5-26=-160/62, 6-21 8-23=-155/60, 9-22 11-20=-159/62, 12 13-18=-158/62, 14 15-17=-23/6 7-16; Vult=110mp h; TCDL=4.2psf; B tclosed; MWFR3 and forces & MWFR3 and forces & MWFR3 and forces & MWFR3 and forces & MWFR3 and for wind loads uds exposed to wind d Industry Gable E alified building de: 7-16; Pf=25.0 psf y; Is=1.0; Rough Ca 1.00; Ct=1.10; IBC blied where require quate drainage to ja a 2x4 () MT20 un res continuous bott fully sheathed from	1/17, 5- 8/20, 8- 12=-16/2 15=-11/2 29=-29/3 26=	6=-21/18, 10=-19/25, 24, 12-13=-14, 23, 15-16=-52, 23, 27-28=-29, 32, 27-28=-29, 31, 20-21=-30, 31, 17-18=-30, 32, 4-27=-160, 32, 4-27=-160, 32, 7-24=-160, 32, 7-24=-160, 32, 7-24=-160, 32, 7-24=-160, 32, 10-21=-160, 369, 1-29=-3: 3769, 1-29=-359, 1-29=-3: 3769, 1-29=-359	/24, /27 /32, /31, /31, /62, /63, 6/64, 2/43, Cat. e ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	cha 10) * T on 3-0 cha 11) All 12) Pra bea 30, at j 111 joir 13) Thi Inte refe	brd live lo his truss the botto 6-00 tall ord and a bearings voide me aring plat 4 lb uplif oint 28, ' lb uplift at puplift at jo tt 18 and tt 18 and s truss is ernationa	ad noi has be m choo by 2-0 iny oth are as chanici e capar t at joi 12 lb u t tjoint lb uplif int 20, 13 lb i s desig I Build standa	een designed for a rd in all areas wh 00-00 wide will fit h eer members. ssumed to be HF al connection (by able of withstandii int 16, 9 lb uplift a plift at joint 27, 12 25, 12 lb uplift at ft at joint 22, 13 lb ,12 lb uplift at joir uplift at joint 17. ned in accordance ing Code section ard ANSI/TPI 1.	any other live loads a live load of 20.0p ere a rectangle between the bottor No.2. others) of truss to ng 8 lb uplift at joint 26 joint 29, 12 lb uplif lb uplift at joint 21, 1 it 19, 12 lb uplift at e with the 2018 2306.1 and	n n lift S, ft at 1
				8)		nst lateral moveme spaced at 2-0-0 of		nagonal web).						dl 1 2025	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

April 1,2025

Page: 1

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	M20	Monopitch Supported Gable	2	1	Job Reference (optional)	R87439360

1-7-10

1-6-0

1

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Apr 01 13:11:50 ID:zfujW0JkMYCc0FNFBkKu9EzjF1u-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-7-10

-2-0-0 6-5-8 6-5-8 2-0-0 12 0.25 2x4 🛛 2x4 II 2x4 II 2x4 🛛 2x4 u 56 4 3 2 0 0 0 비 10 먼 C 면 7 9 8 2x4 🛚 3x4 = 2x4 II 2x4 u 6-5-8

Scale = 1:23.4

Scale = 1:23.4												
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	25.0	Plate Grip DOL	1.15	тс	0.24	Vert(LL)	n/a	-	n/a	999	MT20	185/148
(Roof Snow =	25.0)	Lumber DOL	1.15	BC	0.03	Vert(CT)	n/a	-	n/a	999		
TCDL	15.0	Rep Stress Incr	YES	WB	0.03	Horz(CT)	0.00	7	n/a	n/a		
BCLL	0.0*	Code	IBC2018/TPI	2014 Matrix-R								
BCDL	10.0										Weight: 30 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 HF No.2 2x4 HF No.2 Structural wood sh 6-0-0 oc purlins, e Rigid ceiling direct bracing. (size) 7=6-5-8 10=6-5- Max Horiz 10=32 (I Max Uplift 7=-4 (LC (LC 18), Max Grav 7=92 (L),		DO Ce: live 4) Thi loa ed or 0ve 5) Pro 6) Ga 7) Tru bra 8) Ga 9) Thi cho cho cho 209 10) * Ti cho cho cho cho cho cho cho cho cho cho	L: ASCE 7-16; Pf=2 L = 1.15); Is=1.0; Rc 1.0; Cs=1.00; Ct=1. load applied where s truss has been des d of 20.0 psf or 2.00 rhangs non-concurry vide adequate drain ole requires continuous s to be fully sheath ced against lateral m ole studs spaced at 3 s truss has been des rd live load nonconcurs is truss has been des rd live load nonconcurs rd and onu chors des	bugh Cat B; Par 10; IBC 1607.1 required. signed for great times flat roof li- ent with other li- age to prevent '- ous bottom chor ed from one fac ovement (i.e. c 2-0-0 oc. signed for a 10.1 uurrent with any esigned for a liv all areas where wide will fit betw	tially Exp.; 1.2 minimum er of min rooi bad of 25.0 p ve loads. water pondin d bearing. te or securely liagonal web, 0 psf bottom other live loa e load of 20. a rectangle	n roof f live isf on g. /). ads. 0psf					
FORCES	(lb) - Maximum Co Tension	mpression/Maximum	11) All	rd and any other me pearings are assume	ed to be HF No.							
TOP CHORD	2-10=-474/242, 1-2	2=0/6, 2-3=-7/21, 24, 5-6=-6/17, 6-7=-73	bea Ébea	vide mechanical cor ring plate capable o 4 lb uplift at joint 7,	f withstanding 1	01 Ib uplift a	t joint					
BOT CHORD			10,	ft at joint 8.	roa in upint at j	Jin 9 anu 31	U.					
WEBS	3-9=-69/146, 4-8=-	214/165, 5-7=-76/92		s truss is designed ir	n accordance w	ith the 2018					_	
NOTES				rnational Building C								
1) Wind: AS	CE 7-16; Vult=110mp	h (3-second gust)	refe	erenced standard AN	ISI/TPI 1.						OMIN	GZ
II; Exp B; and C-C C exposed ; members Lumber D	Enclosed; MWFRS (Corner (3) zone; canti end vertical left and and forces & MWFR OL=1.60 plate grip D	right exposed;C-C for S for reactions shown	е ;	CASE(S) Standard					2	ľ	TIA OMIN	STATUS CONTRACTOR

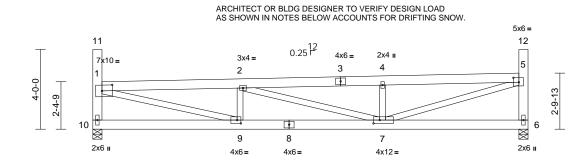
2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

A - - -April 1,2025

HO PECISTEREL INGIN

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	N01	Monopitch	2	1	Job Reference (optional)	R87439361


H

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Apr 01 13:11:50 ID:asZSz8SXWQiVgW5PfaRYzGzismV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

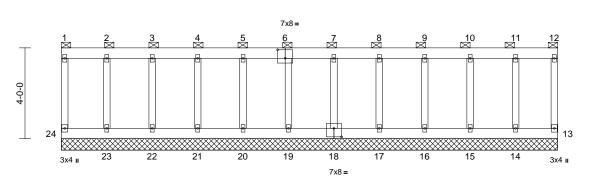
_

Page: 1

			7-4-12	14-6-		1	21-10-4			
Scale = 1:57.9		·	7-4-12	7-1-1	15	•	7-3-10		·	
Plate Offsets (X, Y): [1:0-6	6-4,0-3-8], [5:0-3-4,0-2-12], [7:0	-3-12,0-2-0], [9:0-2-4	,0-2-0]						
Loading TCLL (Roof Snow = 25.0) TCDL BCLL BCDL	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC2018/TPI2014	CSI TC BC WB Matrix-SH	0.36 Vert(LL 0.54 Vert(CT 0.91 Horz(C	,) -0.27	7-9 >	/defl L/ >999 24 >974 18 n/a n/	0 MT20 0	GRIP 220/195 FT = 10%
No.2 BRACING TOP CHORD Structural 4-4-15 oc BOT CHORD Rigid ceilin bracing. REACTIONS (size) Max Horiz Max Uplift Max Grav	b.2 wood shear purlins, exi ag directly a 6=0-5-8, 10 10=139 (LC 6=-63 (LC 6=1081 (LC	C 9) 12), 10=-71 (LC 8) C 1), 10=1063 (LC 1	d or the bo 3-06-00 ta chord and 6) All bearin 7) Provide m bearing p 10 and 63 8) This truss Internation reference 9) Load case designer 1 for the int	ss has been designed for titom chord in all areas is all by 2-00-00 wide will if any other members. gs are assumed to be h nechanical connection (late capable of withstar al bu plift at joint 6. is designed in accorda nal Building Code section d standard ANSI/TPI 1. e(s) 26, 27 has/have be must review loads to ve ended use of this truss.) or other connection designed to the section designed the section of	where a rectang fit between the IF No.2 . by others) of tri ding 71 lb uplif ince with the 20 on 2306.1 and ren modified. B rify that they an	gle bottom uss to t at joint 118 uilding e correct				
Tension TOP CHORD 1-2=-2652 4-5=-2444	/660, 2-4=-:	-998/365, 1-11=0/0	design/se responsib , 11) In the LO	sufficient to support cor lection of such connect illity of others. AD CASE(S) section, Ic	ion device(s) is bads applied to	the				
BOT CHORD 9-10=-381 WEBS 2-9=-502/3	/774, 7-9=-	817/2645, 6-7=-124 77/278, 5-7=-678/24	153 LOAD CASE	ss are noted as front (F) (S) Standard Except: fined (1): Lumber Increa =1.60	. ,					
 NOTES Wind: ASCE 7-16; Vult Vasd=87mph; TCDL=4 II; Exp B; Enclosed; MI and C-C Corner (3) zoi exposed; end vertical members and forces & Lumber DOL=1.60 plat TCLL: ASCE 7-16; Pf= DOL = 1.15); Is=1.0; R Ce=1.0; Cs=1.00; Ct=1 live load applied where Provide adequate drair This truss has been de chord live load noncon 	4.2psf; BCD WFRS (env ne; cantilev left and righ MWFRS for te grip DOL :25.0 psf (L :0ough Cat B 1.10; IBC 16 e required. nage to pre esigned for a	DL=6.0psf; h=25ft; C velope) interior zone ver left and right ht exposed;C-C for or reactions shown; L=1.60 um DOL = 1.15 Plat s; Partially Exp.; 607.11.2 minimum r vent water ponding. a 10.0 psf bottom	at. Vert: Concent Horz: 27) User def Increase Uniform e Vert: oof Horz: Concent Horz:	Loads (lb/ft) 1-5=36, 6-10=-12, 1-10: 1-5=-44, 1-10=18, 1-11 rated Loads (lb) 11=200, 12=200 (F) fined (2): Lumber Increa =1.60 Loads (lb/ft) 1-5=36, 6-10=-12, 1-10: 1-5=-44, 1-10=18, 1-11 rated Loads (lb) 11=-200, 12=-200 (F)	=71, 5-6=27, 5 ase=1.60, Plate =-18				THOMIN TURONIN REGIST REGIST	

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

April 1,2025


Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D			
4449076	N02	Monopitch Supported Gable	2	1	Job Reference (optional)	R87439362		

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Apr 01 13:11:51 ID:sJo6Tr5Hu0bOEJXt62QHQfzisoF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

_

Scale = 1:50.7

21-10-4

Plate Offsets (X, Y): [6:0)-4-0,0-4-8],	, [18:0-4-0,0-4-8]												
Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC2018	3/TPI2014	CSI TC BC WB Matrix-R	0.17 0.08 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 13	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 136 lb	GRIP 185/148 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	CHORD 2x6 DF No.2 CHORD 2x6 DF No.2 S 2x4 HF No.2 SRS 2x4 HF No.2 CING CHORD CHORD 2-0-0 oc purlins (6-0-0 max.): 1-12, except end verticals.			WI	DT CHORD EBS DTES	23-24=-89/104, 2 21-22=-89/104, 2 19-20=-89/104, 1 16-17=-87/102, 1 14-15=-87/102, 1 2-23=-161/109, 3 5-20=-158/152, 6 7-18=-173/148, 8 10-15=-163/76, 1	0-21=-89 7-19=-87 5-16=-87 3-14=-87 -22=-162 -19=-181 -17=-157	/104, /102, /102, /102 /79, 4-21=-15 /177, /93, 9-16=-16	,	 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 55 lb uplift at jo 24, 54 lb uplift at joint 13, 66 lb uplift at joint 23, 25 lb uplift at joint 22, 25 lb uplift at joint 12, 52 lb uplift at joint 22, 06 al lb uplift at joint 19, 49 lb uplift at joint 18, 23 lb uplift at joint 17, 15 lb uplift at joint 16, 22 lb uplift at joint 15 and 72 lb uplift at joint 14. 13) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1. 					
				2) 3)	 Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof 					 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard 					
Max Grav 13=64 (LC 19), 14=207 (LC 1), 16=200 (LC 1), 15=202 (LC 1), 16=200 (LC 1), 17=197 (LC 1), 18=213 (LC 1), 19=192 (LC 1), 20=198 (LC 1), 21=199 (LC 1), 22=203 (LC 1), 23=199 (LC 1), 24=97 (LC 20) FORCES (lb) - Maximum Compression/Maximum Tension			, 4) , 5) , 6) , 7) 8)						THAOMING ZHAO WASHING THAO WASHING THAO THAO THAO THAO THAO THAO THAO THAO						
TOP CHORD															

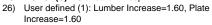
11) All bearings are assumed to be HF No.2 .

400 Suntise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MITek-US.com

April 1,2025

Job	Truss	Truss Type	Qt	/	Ply	MKM EAST TO	WN CRC	SSING BLDG D	
4449076	N03	Monopitch	2		1	Job Reference	(optional)		R87439363
Builders FirstSource (Arlington, V	WA), Arlington, WA - 98223,		Run: 8.83 S Mar 20 2025 ID:5B8xzwNmDzWWYJsg			2025 MiTek Indus	tries, Inc. 7	Tue Apr 01 13:11:51	Page: 1
<u> 3-7-0</u> 	8-6-9 4-11-9	13-6-0 4-11-7 4x8 =	20-8-0 7-2-0 35-1-8 ARC AS S	HITECT	27 7	7-9-14 -1-15 DESIGNER TO VI		34-8-0 6-10-2	35-1-8
810-0 -1 -2 -1-7 -1 -2 -1-0 -0-0-0 -1 -2 -1-7 	4x5 = 4x6 2 3 2 4x5 = 4x6 3 17 16 4x5 = 4x5 =	4 5 4 5 15 14	0.25 ¹²	4x5 = 3 6 13 4x6 =	4x8 = 7		8 11 4x12=		9 9 10 2x6 II
3-7-0	8-6-9	<u>13-6-0</u> 4-11-7	20-8-0			7-9-14 -1-15		<u>35-1-8</u> 7-3-10	———————————————————————————————————————
Scale = 1:62.9				-		-			
Plate Offsets (X, Y): [5:0-1-	12,0-2-0], [9:0-3-0,0-2-12], [13	3:0-1-12,0-2-0], [15:0-4-0,0-	-4-8], [23:0-2-0,0-0-11],	[24:0-1	-10,0-1-0]			1	
Loading TCLL (Roof Snow = 25.0) TCDL BCLL BCDL	(psf)Spacing25.0Plate Grip DOLLumber DOL15.0Rep Stress Incr0.0*Code10.0	1.15 Tr 1.15 B NO W	SI C 0.54 C 0.42 /B 0.58 Matrix-SH	DEFL Vert(L Vert(C Horz(C	L) -0. CT) -0.2		99 240	PLATES MT20 Weight: 213 lb	GRIP 185/148 FT = 10%
OTHERS 2x4 HF No.2 BRACING TOP CHORD Structural w 5-0-15 oc pr BOT CHORD Rigid ceiling bracing. REACTIONS (size) 1 Max Horiz 1 Max Uplif 1 Max Uplif 1 Max Grav 1 1 FORCES (lb) - Maxim Tension TOP CHORD 1-18=-19/72 3-5=-200/89 6-8=-2059/6 9-10=-871/1 BOT CHORD 17-18=-186, 14-16=-175, 11-13=-308, WEBS 2-17=-426/1 5-14=-1363, 8-11=-587/2 6-11=-145/2	2 2 *Except* 19-10:2x6 DF No.2 2 rood sheathing directly applied urlins, except end verticals. g directly applied or 6-0-0 oc 0=0-5-8, 14=0-5-8, 17=0-3-8, 8=0-9-0	Vasd=87mph; T II; Exp B; Enclos and C-C Corner 15-1-12 to 19-10 zone; cantilever and right expose MWFRS for reau grip DOL=1.60 2) Truss designed only. For studs see Standard In or consult qualif), TCLL: ASCE 7- DOL = 1.15); Is- Ce=1.0; Cs=1.0 live load applied 4) Provide adequa 5) All plates are 2x 6) Truss to be fully braced against I 7) Gable studs spa 8) This truss has b chord live load r 9) * This truss has on the bottom cl 3-06-00 tall by 2 chord and any c 10) All bearings are 11) Provide mechar bearing plate ca 18, 53 lb uplift a lb uplift at joint 1 12) This truss is des International Bu	een designed for a 10.0 nonconcurrent with any been designed for a liv hord in all areas where 2-00-00 wide will fit betw other members. assumed to be HF No. nical connection (by oth pable of withstanding 1 t joint 10, 28 lb uplift at	Dest; $h = 0$) exteri Exterior 12 to 34 end vec d forces DOL=1.1 ane of the all to the ls as approximation of the second second DOL = 1.1 vally Ex. 1.2 min vater pro- erwise i e or second a rectain recent the 2. ers) of to 4 lb upl joint 17 th the 2	25ft; Cat. or zone (2) I-10-12 rrtical left s & 60 plate he truss e face), oplicable, VSI/TPI 1. 15 Plate p; imum roof onding. ndicated. curely web). ttom ve loads. of 20.0psf ngle e bottom russ to ift at joint and 113 2018	designe for the ir 14) Hanger(provided design/s respons LOAD CASI 26) User d Increas Uniforr Vert Horz 9-10 Concee Horz 27) User d Increas Uniforr	must rev tended u s) or othe s officient election of bility of o C(S) State fined (1) the =1.60 h Loads (1-32=27 : 1-18=11 =27, 9-19 trated LC : 19=-200 offined (2) the =1.60 h Loads (1-32=27	view loads to verify se of this truss. r connection devic t to support conce of such connection thers. undard Except: : Lumber Increase lb/ft) ; 32-33=26, 9-33= 7, 1-32=-35, 32-33 =45 pads (lb)) : Lumber Increase	ntrated load(s) . The device(s) is the =1.60, Plate =7, 10-18=-12 =-34, 9-33=-35, =1.60, Plate 27, 10-18=-12

Job	Truss	Truss Type		Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	N03	Monopitch		2	1	Job Reference (optional)	R87439363
Builders FirstSource (Arlington,	WA), Arlington, WA - 98223,		Run: 8.83 S Mar 20 2	2025 Print: 8.	830 S Mar 20	0 2025 MiTek Industries, Inc. Tue Apr 01 13:11:51	Page: 2

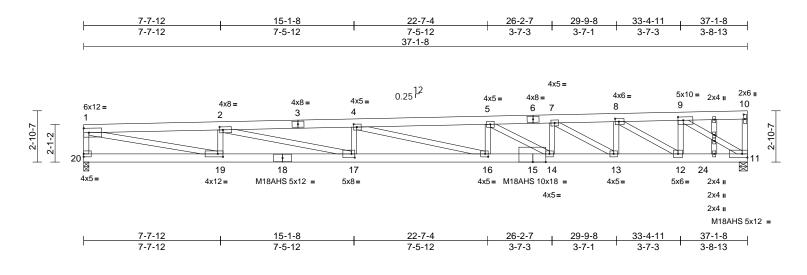

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Apr 01 13:11:51 ID:5B8xzwNmDzWWYJsgedFX5bzishR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Horz: 1-18=17, 1-32=-35, 32-33=-34, 9-33=-35, 9-10=27, 9-19=45 Concentrated Loads (lb)

Horz: 19=200

Job	Truss	Truss Type	Qty	Ply		ROSSING BLDG D	
4449076	N04	Monopitch	6	1			R87439364
Builders FirstSource (Arlington, W	-	•	-	8.830 S Mar 2	Job Reference (option 0 2025 MiTek Industries, Inc		Page: 1
<u>3-7-0</u> 3-7-0	<u>8-6-9</u> 4-11-9	13-6-0 2	20-8-0 7-2-0 35-1-8		27-9-14 7-1-15 DESIGNER TO VERIFY D	<u>34-8-0</u> 6-10-2	35-1-8
	4x5 = 4x 2 3 2 3 1 17 16 4x5 = 4x5	4 5 20 15 14	AS SHOW	x5 = 4x8 7 3 12	BELOW ACCOUNTS FOR	DRIFTING SNOW.	5x6 = 19 9 10 10 2x6 =
3-7-0	<u>8-6-9</u> 4-11-9		<u>20-8-0</u> 7-2-0		27-9-14 7-1-15	<u>35-1-8</u> 7-3-10	
Scale = 1:62.3 Plate Offsets (X, Y): [5:0-1-12	2,0-2-0], [9:0-3-0,0-2-12], [13	:0-1-12,0-2-0]				_	
TCLL (Roof Snow = 25.0) TCDL BCLL	(psf) Spacing 25.0 Plate Grip DOL Lumber DOL 15.0 Rep Stress Incr 0.0* Code	2-0-0 CSI 1.15 TC 1.15 BC NO WB IBC2018/TPI2014 Matrix-SH	0.42 Ver 0.58 Hor	t(LL) -0. t(CT) -0.	in (loc) l/defl L/ 12 11-13 >999 24 24 11-13 >999 18 01 10 n/a n/	0 MT20 0	GRIP 185/148 FT = 10%
BRACING TOP CHORD Structural 5-0-15 oc pur Rigid ceiling d bracing. BOT CHORD (size) 10: bracing. REACTIONS (size) 10: bracing. REACTIONS (size) 10: bracing. Max Horiz 18: Max Uplift 10: 17: Max Grav FORCES (lb) - Maximur Tension TOP CHORD 1.18=-19/7∠, 3-5=-200/892 6-8=-2059/64 9:10=-871/19 BOT CHORD 17-18=-18/72 14-16=-175/2/ 11-13=-308/1 WEBS 2.17=-426/13 5-14=-136/33 8:11=-587/21 3:14=-802/13	=-53 (LC 12), 14=-113 (LC 8) =-28 (LC 12), 18=-14 (LC 8) =957 (LC 1), 14=1867 (LC 1) =640 (LC 1), 18=22 (LC 20) m Compression/Maximum 1-2=-72/175, 2-3=-78/136, 2, 5-6=-1774/496, I0, 8-9=-2060/645,	 and right exposed;C-C ft MWFRS for reactions sh grip DOL=1.60 2) TCLL: ASCE 7-16; Pf=2: DOL = 1.15); Is=1.0; Roi Ce=1.0; Cs=1.00; Ct=1.⁻ live load applied where r 3) Provide adequate draina 4) This truss has been desi chord live load nonconct 5) * This truss has been desi chord live load nonconct 5) * This truss has been desi chord live load nonconct 5) * This truss has been desi chord live load nonconct 6) * This truss has been desi chord and any other mei 6) All bearings are assume 7) Provide mechanical com bearing plate capable of 18, 53 lb uplift at joint 10 lb uplift at joint 14. 8) This truss is designed in International Building Cc referenced standard AN 	2psf; BCDL=6.0psf; FRS (envelope) ext 12 to 15-1-12, Exter rmer (3) 19-10-12 to right exposed ; end or members and for nown; Lumber DOL= 5.0 psf (Lum DOL = ugh Cat B; Partially 10; IBC 1607.11.2 n required. age to prevent water igned for a 10.0 psf urrent with any othe signed for a 10.0 psf urrent with any othe signed for a live loa II areas where a rec vide will fit between mbers. d to be HF No.2. nection (by others) of withstanding 14 lb 0, 28 lb uplift at joint accordance with the das to verify that then is truss. ection device(s) shap port concentrated I connection device(h=25ft; Cat. erior zone ior (2) 34-10-12 vertical left ces & 1.60 plate 1.15 Plate Exp.; inimum roof ponding. bottom r live loads. d of 20.0psf tangle the bottom of truss to uplift at joint 17 and 113 e 2018 und d. Building y are correct II be poad(s) . The	Horz: 1-18= 9-10=27, 9- Concentrated Horz: 19=20 (27) User defined (Increase=1.60 Uniform Loads Vert: 1-20=/ Horz: 1-18= 9-10=27, 9- Concentrated Horz: 19=-2	27, 20-21=26, 9-21= 17, 1-20=-35, 20-21 19=45 Loads (lb) 00 2): Lumber Increase 5 (lb/ft) 27, 20-21=26, 9-21= 17, 1-20=-35, 20-21 19=45 Loads (lb)	=-34, 9-21=-35, ==1.60, Plate 27, 10-18=-12 =-34, 9-21=-35,

April 1,2025


Job	Truss	Truss Type	Qty	Ply	MKM EAST TOW		IG BLDG D
4449076	N05	Monopitch	16	1			R87439365
Builders FirstSource (Arlington, V	Į		8.83 S Mar 20 2025 Print:		Job Reference (or 2025 MiTek Industrie		or 01 13:11:52 Page: 1
<u>3-7-0</u> 3-7-0) 8-6-9	ID:yv 13-6-0 4-11-7	WfMolJegjIQ_E043EN6JKzł 20-8-0 7-2-0 35-1-8	nzRL-RfC?PsB	70Hq3NSgPqnL8w3ul 27-9-14 7-1-15	TXbGKWrCDo	0i7J4zJC?f 35-1-8 34-8-0 6-10-2 0-5-8
5x6 = 1 7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7		4x8 = 4x5 = 4x5 = 3 4 5 20 $4x5 = 1000$ $4x8 = 1000$ $4x8 = 1000$ $4x8 = 1000$ $4x5 = 1000$ $4x8 = 1000$	AS SHOWN 0.25 ¹² 0 21	4x5= 4x 6 7 13 1			
→ 3-7-0 3-7-0 Scale = 1:61.5		13-6-0 4-11-7	20-8-0 7-2-0	+	<u>27-9-14</u> 7-1-15		<u>35-1-8</u> 7-3-10
Plate Offsets (X, Y): [1:0-2-	0,0-2-4], [2:0-2-4,0-2-8], [9:0	-6-4,0-3-8], [10:0-3-0,0-0-8], [11:0	0-2-12,0-3-0], [16:0-2-4,	0-2-8], [17:0-	-1-12,0-2-8]		
Loading TCLL (Roof Snow = 25.0) TCDL BCLL BCDL	(psf)Spacing25.0Plate Grip DOLLumber DOLLumber DOL15.0Rep Stress Incr0.0*Code10.0Incr	2-0-0 CSI 1.15 TC 1.15 BC NO WB IBC2018/TPI2014 Matrix	0.55 Ver 0.94 Hor	t(LL) -0. t(CT) -1.	in (loc) l/defl 54 13-14 >777 08 13-14 >386 11 10 n/a	240 MT2 180 M18 n/a	ATES GRIP 20 185/148 8AHS 169/162 wight: 206 lb FT = 10%
BRACING TOP CHORD Structural w 2-2-4 oc pu Rigid ceiling bracing. BOT CHORD Rigid ceiling bracing. WEBS 1 Row at mi REACTIONS (size) 1 Max Horiz REACTIONS (size) 1 Max Upilt FORCES (lb) - Maxim Tension TOP CHORD 1-18=-1677. 2-3=-6009/6 5-6=-7116/1 8-9=-4482/7 BOT CHORD 1-17=8-201. 14-16=-999. 11-13=-108 WEBS 2-17=-1396. 3-14=-236/1 1-17=-517/6 WEBS 2-17=-1396. 3-14=-2561/6	0F 2.0E 2 *Except* 19-10:2x6 DF No vood sheathing directly appliv rlins, except end verticals. g directly applied or 9-7-15 o	 Vasd=87mph; TCDL II; Exp B; Enclosed; and C-C Corner (3) (15-1-12 to 19-10-12, zone; cantilever left i and right exposed;C MWFRS for reaction grip DOL=1.60 2) TCLL: ASCE 7-16; F DOL = 1.15); Is=1.0; Ce=1.0; Cs=1.00; Cf live load applied whe 3) Provide adequate dr 4) All plates are MT20 [5) This truss has been chord live load nonc 6) * This truss has been chord live load nonc 6) * This truss has been on the bottom chord 3-06-00 tall by 2-00- chord and any other 7) All bearings are asst 8) Provide mechanical bearing plate capabl 18 and 99 lb uplift at 9) This truss is designed International Building referenced standard 10) Load case(s) 26, 27 designer must review for the intended use 11) Hanger(s) or other c provided sufficient to design/selection of s responsibility of othe 12) In the LOAD CASE(5) 	Rough Cat B; Partially =1.10; IBC 1607.11.2 m are required. ainage to prevent water plates unless otherwise designed for a 10.0 psf oncurrent with any other n designed for a live loa- in all areas where a rec 00 wide will fit between members. uned to be HF No.2. connection (by others) of e of withstanding 106 lb joint 10. d in accordance with the g Code section 2306.1 a ANSI/TPI 1. has/have been modified w loads to verify that the of this truss. onnection device(s) sha o support concentrated le uch connection device(sr s. S) section, loads applied d as front (F) or back (B	h=25ft; Cat. erior zone ior (2) 34-10-12 vertical left ces & 1.15 Plate Exp.; hinimum roof ponding. indicated. bottom r live loads. d of 20.0psf tangle the bottom of truss to uplift at joint e 2018 and d. Building y are correct II be coad(s) . The s) is the d to the face	Increase= Uniform L Vert: 11 Horz: 1 Concentr: Horz: 1 27) User defin Increase= Uniform L Vert: 10 Horz: 1 Concentr: Horz: 1	1.60 oads (lb/ft))-18=-12, 1-5 5=17, 5-9=- ated Loads (l 9=200 red (2): Lumt 1.60 oads (lb/ft))-18=-12, 1-5 -5=17, 5-9=- ated Loads (l 9=-200 (F)	ber Increase=1.60, Plate 5=-26, 5-9=-5 -4, 9-10=27, 9-19=45

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MITEk-US.com

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	N06	Monopitch Girder	2	2	Job Reference (optional)	R87439366

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Apr 01 13:11:52 ID:Wy8fvzxJkN2oS7WIS?2xPZzhz9m-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:64.4

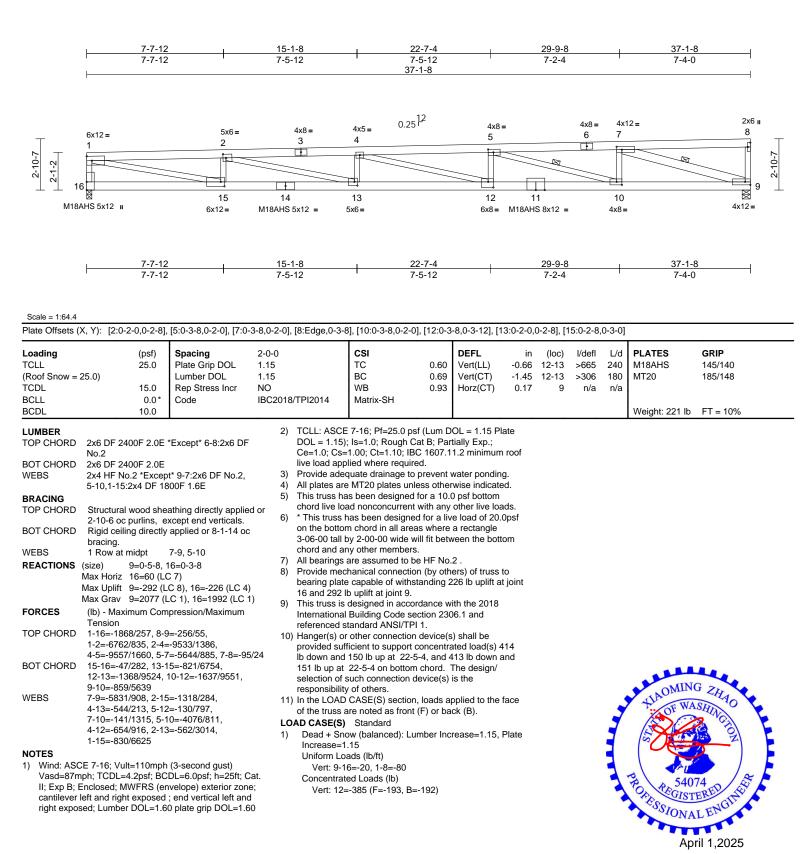
Plate Offsets	(X, Y): [2:0-2-4,0-2-0]	[4:0-2-0,0-2-0], [8:0-2-	8,0-2-0]	, [9:0-3-8,0-2-4	4], [10:0-3-1,0-1-	0], [15:0-8	-11,Edge], [1	6:0-2-0,	0-2-0], [1	17:0-2-4	,0-2-8],	[19:0-3-8,0-2-0]	
Loading TCLL (Roof Snow = TCDL BCLL BCDL	(psf) 25.0 25.0) 15.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO BC201	8/TPI2014	CSI TC BC WB Matrix-SH	0.66 0.77 0.84	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 16-17 16-17 11		L/d 240 180 n/a	PLATES MT20 M18AHS Weight: 439 lb	GRIP 185/148 145/140 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD	2x6 DF 2400F 2.0E 2x6 DF 2400F 2.0E 2x4 HF No.2 *Excep 1800F 1.6E 2x4 HF No.2 Structural wood she 3-10-5 oc purlins, e Rigid ceiling directly bracing. (size) 11=0-5-8, Max Horiz 20=214 (I Max Uplift 11=-671 Max Grav 11=7732 (Ib) - Maximum Com Tension 1-20=-3158/470, 10 1-2=-12151/1726, 2 4-5=-23102/2752, 5 7-8=-17694/1717, 8 9-10=-400/315 19-20=-168/485, 17 16-17=-2861/19486	applied or 10-0-0 oc (req. 0-6-6), 20=0-3-8 _C 31) (LC 33), 20=-444 (LC 2- (LC 1), 20=3316 (LC 1) pression/Maximum -11=-917/79, -4=-19495/2426, -7=-22132/2187, -9=-10427/1088, -19=-1559/12141, , 14-16=-3787/23363,	or 2) 4) 3)	(0.131"x3") r Top chords c oc, 2x6 - 2 rc Bottom chord staggered at Web connec Except mem All loads are except if not CASE(S) se provided to c unless other Wind: ASCE Vasd=87mpJ II; Exp B; En cantilever lef right expose Truss design only. For st see Standard or consult qu TCLL: ASCE DOL = 1.15) Ce=1.0; Cs=	ted as follows: 2 ber 5-16 2x4 - 1 considered equa ed as front (F) or ction. Ply to ply c distribute only loa wise indicated. .7-16; Vult=110n h; TCDL=4.2psf; closed; MWFRS ft and right expose d; Lumber DOL= ned for wind load das exposed to w d Industry Gable alified building d 5.7-16; Pf=25.0 p (1s=1.0; Rough (1.00; Ct=1.10; IE	lows: 2x4 t t 0-60 oc. follows: 2 x4 - 1 row row at 0-6 ally applie back (B) connection ads noted nph (3-sec BCDL=6. (envelope sed ; end 1 c1.60 plate is in the pl wind (norm End Deta designer a cat B; Para Sof (Lum D Cat B; Para SC 1607.1	1 row at 0-5 x6 - 2 rows at 0-9-0 oc, -0 oc. d to all plies, face in the Li s have been as (F) or (B), cond gust) Dpsf; h=25ft; a) exterior zo vertical left an grip DOL=1 grip DOL=1 ane of the tru al to the face ils as application s per ANSI/T OL = 1.15 Pl tially Exp.;	Cat. ne; nd .60 iss e), ible, PI 1. ate	tha 13) All 14) Pro bes 20 15) Thi Inte refe 16) Thi 300 Con fror 17) Hau pro lb c des res 18) Stu LOAD0 1) Do	n input b bearings wide me aring pla and 671 s truss is ernationa erenced s truss h 00 lb. Lu nonect tru. m 34-8-0 nger(s) o vided su down and sign/sele jonsibili ddding ap CASE(S	bearing s are as chanic te capa Ib uplit s desig al Build standa as bee mber E uss to ru to 37- or other fficient d 151 II ction o ty of ot oplied t) Stan ow (ba	red bearing size size. ssumed to be HF al connection (by able of withstand ft at joint 11. ned in accordan ing Code sectior rd ANSI/TPI 1. en designed for a OCL=(1.33) Plate esist drag loads 1-8 for 1220.3 pl r connection dev to support conco o up at 22-5-4 o f such connection hers. o ply: 1(Front) ndard alanced): Lumbe	at joint(s) 11 greater No.2 . y others) of truss to ing 444 lb uplift at joint ce with the 2018 a 2306.1 and total drag load of grip DOL=(1.33) along bottom chord f. ice(s) shall be entrated load(s) 413 n bottom chord. The n device(s) is the r Increase=1.15, Pla
WEBS NOTES	11-12=-3329/11940 1-19=-1717/11986, 5-16=-722/406, 4-17 2-19=-2491/477, 2- 4-16=-957/4592, 9- 9-12=-445/4558, 8- 7-13=-5201/749, 7- 5-14=-1441/538	8-13=-345/2765, 7=-1642/398, 17=-1340/7780, 11=-12239/1133, 12=-8574/927,	10	Provide ade All plates are Truss to be f braced agair Gable studs)) This truss ha chord live loa) * This truss f on the bottor 3-06-00 tall b	lied where requi quate drainage tr e MT20 plates ur jully sheathed fro st lateral moven spaced at 2-0-0 as been designed ad nonconcurren nas been designed n chord in all are by 2-00-00 wide ny other member	o prevent on less other orm one fac nent (i.e. c oc. d for a 10. d for a 10. d for a liv ed for a liv eas where will fit betw	wise indicate e or securely iagonal web 0 psf bottom other live loa e load of 20. a rectangle	ed. /). ads. 0psf				PROFESSION/	THE ENCOMPT

April 1,2025

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Page: 1

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	N06	Monopitch Girder	2	2	Job Reference (optional)	R87439366
Builders FirstSource (Arlington, V	VA), Arlington, WA - 98223,	Run: 8.83 S Mar	20 2025 Print: 8	.830 S Mar 2	0 2025 MiTek Industries, Inc. Tue Apr 01 13:11:52	Page: 2


Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Tue Apr 01 13:11:52 ID:Wy8fvzxJkN2oS7WIS?2xPZzhz9m-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

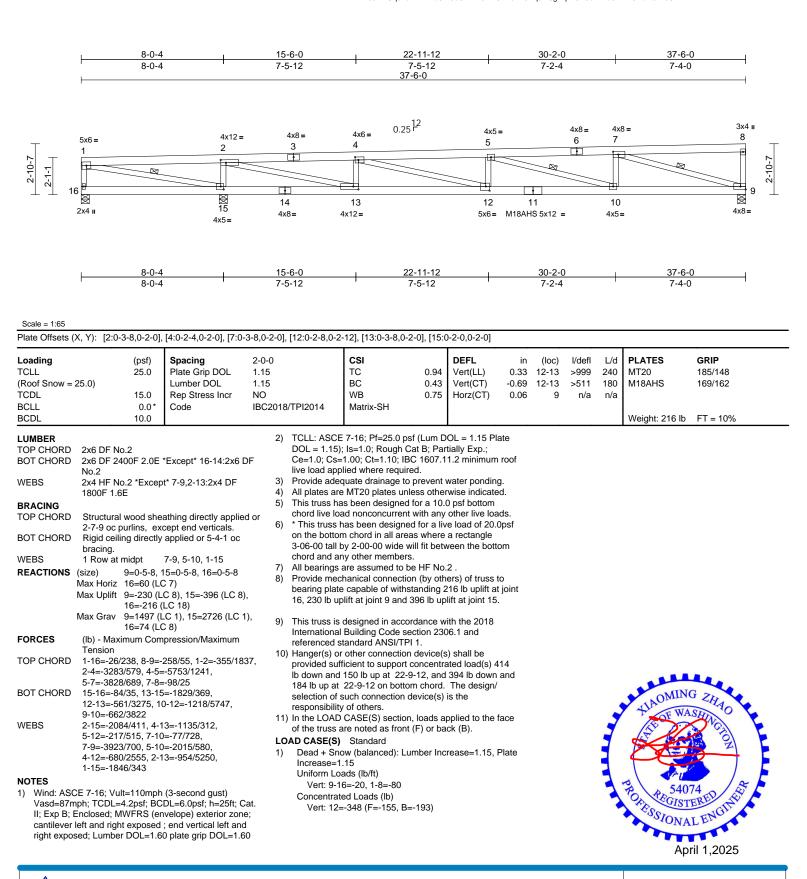
Uniform Loads (lb/ft) Vert: 11-20=-20, 1-5=-80, 5-10=-579 Concentrated Loads (lb) Vert: 16=-192 (F)

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	N07	Monopitch Girder	4	1	Job Reference (optional)	R87439367

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Apr 01 13:11:53 ID:fr274AkH3FAQi5I3BFcyVNzhz?i-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

B BEFORE USE.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oullapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality** Criteria and DSE-22 available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

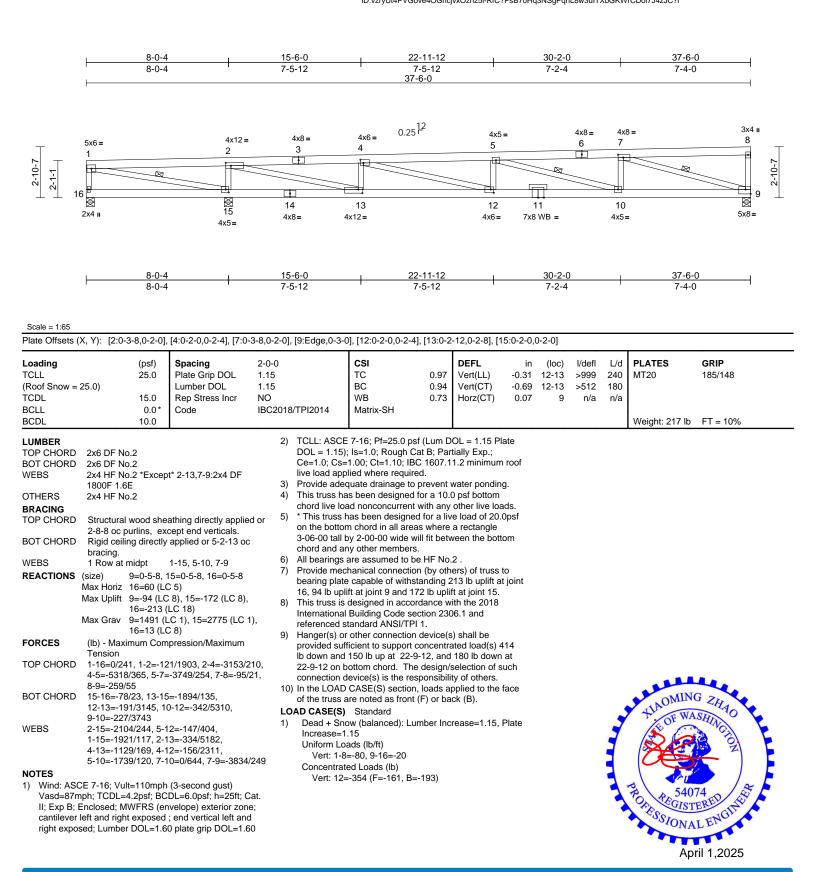

Page: 1

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	N08	Monopitch Girder	2	1	Job Reference (optional)	R87439368

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Apr 01 13:11:53 ID:le3m7Uqo10PhNzFuUnl8eGzhz29-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

400 Sunrise Ave., Suite 270 Roseville, CA, 95661

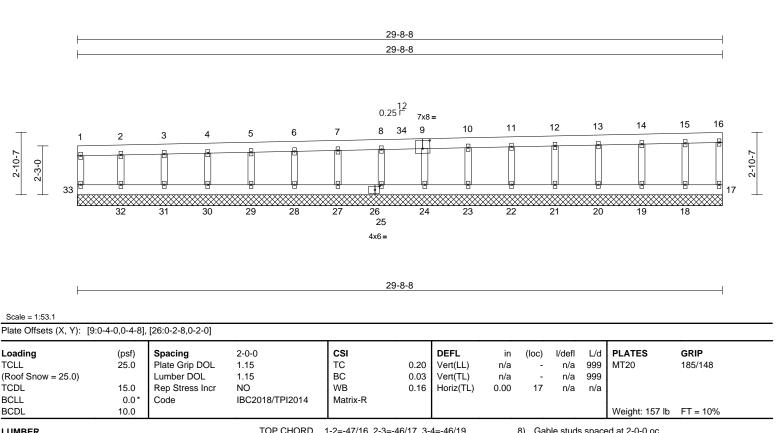
916.755.3571 / MiTek-US.com



Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	N09	Monopitch Girder	10	1	Job Reference (optional)	R87439369

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Apr 01 13:11:53 ID:vzryUt4PVGove4OGhcjvxOzhz5i-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

400 Sunrise Ave., Suite 270 Roseville, CA, 95661


916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	N10	Monopitch Supported Gable	2	1	Job Reference (optional)	R87439370

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Apr 01 13:11:54 ID:M6N259OO9rpf0QGFoKXT8mzhyvg-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f

LUMBER TOP CHORD 1-2=-47/16, 2-3=-46/17, 3-4=-46/19, 8) Gable studs spaced at 2-0-0 oc. 4-5=-46/20, 5-6=-46/22, 6-7=-46/23, 2x6 DF No 2 This truss has been designed for a 10.0 psf bottom TOP CHORD 9) 7-8=-45/25, 8-10=-47/34, 10-11=-16/33 2x6 DF No.2 chord live load nonconcurrent with any other live loads. BOT CHORD 11-12=-15/32, 12-13=-16/32, 13-14=-16/32, * This truss has been designed for a live load of 20.0psf 10) WEBS 2x4 HF No.2 OTHERS 2x4 HF No.2 14-15=-17/31. 15-16=-17/30. 16-17=-349/87. on the bottom chord in all areas where a rectangle 1-33 = -82/383-06-00 tall by 2-00-00 wide will fit between the bottom BRACING BOT CHORD 32-33=-51/78, 31-32=-51/78, 30-31=-51/78, chord and any other members. TOP CHORD Structural wood sheathing directly applied or 11) All bearings are assumed to be HF No.2 . 29-30=-51/78, 28-29=-51/78, 27-28=-51/78, 6-0-0 oc purlins, except end verticals. 25-27=-51/78, 24-25=-51/78, 23-24=-49/51, 12) Provide mechanical connection (by others) of truss to BOT CHORD Rigid ceiling directly applied or 6-0-0 oc 22-23=-49/51, 21-22=-49/51, 20-21=-49/51, bearing plate capable of withstanding 16 lb uplift at joint bracing. 19-20=-49/51, 18-19=-49/51, 17-18=-49/51 17, 17 lb uplift at joint 33, 71 lb uplift at joint 19, 22 lb **REACTIONS** (size) 17=29-8-8, 18=29-8-8, 19=29-8-8, WFBS 14-19=-1184/246. 2-32=-144/88. uplift at joint 32, 15 lb uplift at joint 31, 11 lb uplift at joint 20=29-8-8, 21=29-8-8, 22=29-8-8, 3-31=-164/63, 4-30=-159/60, 5-29=-160/60, 30, 12 lb uplift at joint 29, 12 lb uplift at joint 28, 10 lb 23=29-8-8, 24=29-8-8, 25=29-8-8, 6-28=-164/61, 7-27=-131/61, 8-25=-260/84, uplift at joint 27, 19 lb uplift at joint 25, 61 lb uplift at joint 27=29-8-8, 28=29-8-8, 29=29-8-8, 9-24=-1041/241, 10-23=-1235/261, 24, 78 lb uplift at joint 23, 69 lb uplift at joint 22, 70 lb 30=29-8-8, 31=29-8-8, 32=29-8-8, 11-22=-1142/241, 12-21=-1160/240, uplift at joint 21, 70 lb uplift at joint 20 and 75 lb uplift at 33=29-8-8 13-20=-1154/238, 15-18=-1112/230 ioint 18 Max Horiz 33=60 (LC 9) NOTES 13) This truss is designed in accordance with the 2018 Max Uplift 17=-16 (LC 12), 18=-75 (LC 8), International Building Code section 2306.1 and Wind: ASCE 7-16; Vult=110mph (3-second gust) 19=-71 (LC 12), 20=-70 (LC 8), 1) referenced standard ANSI/TPI 1. Vasd=87mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. 21=-70 (LC 8), 22=-69 (LC 12), II; Exp B; Enclosed; MWFRS (envelope) exterior zone LOAD CASE(S) Standard 23=-78 (LC 8), 24=-61 (LC 12), and C-C Corner (3) zone; cantilever left and right 25=-19 (LC 8), 27=-10 (LC 12), exposed ; end vertical left and right exposed;C-C for 28=-12 (LC 8), 29=-12 (LC 8), members and forces & MWFRS for reactions shown; 30=-11 (LC 12), 31=-15 (LC 8), AND WASE Lumber DOL=1.60 plate grip DOL=1.60 32=-22 (LC 9), 33=-17 (LC 8) Truss designed for wind loads in the plane of the truss 2) 17=347 (LC 1), 18=1167 (LC 1), Max Grav only. For studs exposed to wind (normal to the face), 19=1221 (LC 1), 20=1195 (LC 1), see Standard Industry Gable End Details as applicable. 21=1200 (LC 1), 22=1182 (LC 1), or consult gualified building designer as per ANSI/TPI 1. 23=1275 (LC 1), 24=1080 (LC 1), 25=300 (LC 1), 27=171 (LC 1),

28=204 (LC 1), 29=200 (LC 1), DOL = 1. 30=198 (LC 1), 31=210 (LC 1), Ce=1.0; C 32=159 (LC 1), 33=120 (LC 20) live load a (lb) - Maximum Compression/Maximum 4)

FORCES (Ib) - Maximum Compression/Maximum Tension

Continued on page 2

- TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 (||) MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

FORESSIONAL ENGINE

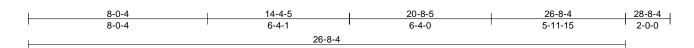
400 Sunrise Ave., Suite 270 Roseville, CA, 95661

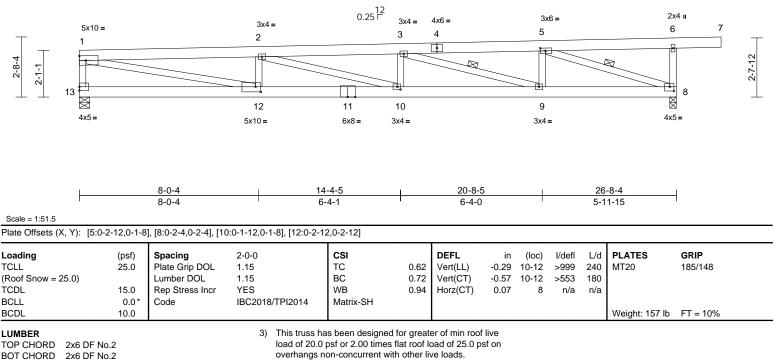
916.755.3571 / MiTek-US.com

Page: 1

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	N10	Monopitch Supported Gable	2	1	Job Reference (optional)	R87439370
Builders FirstSource (Arlington, V	NA), Arlington, WA - 98223,	Run: 8.83 S Mar 20 2	2025 Print: 8.	830 S Mar 2	0 2025 MiTek Industries, Inc. Tue Apr 01 13:11:54	Page: 2

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Apr 01 13:11:54 ID:M6N259OO9rpf0QGFoKXT8mzhyvg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft)


Vert: 1-34=-80, 16-34=-579, 17-33=-20

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	N11	Monopitch	12	1	Job Reference (optional)	R87439371

Run: 8.83 S. Mar 20 2025 Print: 8.830 S.Mar 20 2025 MiTek Industries. Inc. Tue Apr 01 13:11:54 ID:i_3Esdet?Utbyky8cbvi5Uzhywf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Provide adequate drainage to prevent water ponding. 4)

6)

8)

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

on the bottom chord in all areas where a rectangle

chord and any other members.

LOAD CASE(S) Standard

All bearings are assumed to be HF No.2 .

* This truss has been designed for a live load of 20.0psf

3-06-00 tall by 2-00-00 wide will fit between the bottom

BRACING TOP CHORD Structural wood sheathing directly applied or 3-0-5 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 8-2-0 oc bracing. WEBS 1 Row at midpt 5-8, 3-9 **REACTIONS** (size) 8=0-3-8, 13=0-5-8 Max Horiz 13=55 (LC 9) Max Uplift 8=-108 (LC 12), 13=-77 (LC 8) Max Grav 8=1498 (LC 1), 13=1313 (LC 1) (lb) - Maximum Compression/Maximum FORCES Tension TOP CHORD 1-13=-1195/294, 1-2=-4064/810, 2-3=-4488/901, 3-5=-2925/594, 5-6=-72/37,

2x4 HF No.2

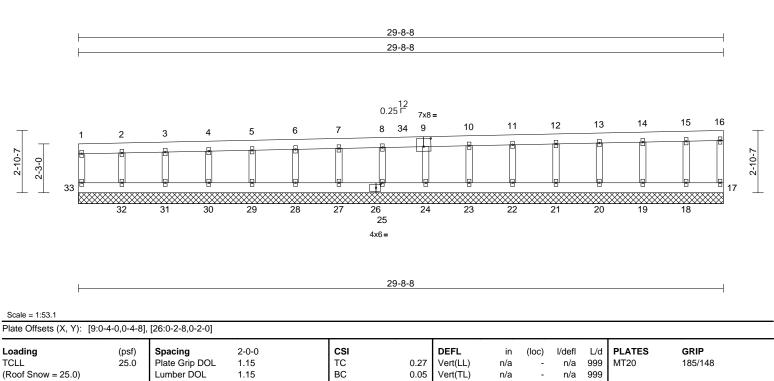
- 6-7=-6/0, 6-8=-418/152 BOT CHORD 12-13=-133/255, 10-12=-867/4056, 9-10=-933/4481, 8-9=-602/2919 WEBS 2-12=-701/271, 3-10=0/160, 5-9=-13/586, 5-8=-3030/609, 3-9=-1633/346, 2-10=-92/442, 1-12=-781/3883
- NOTES

WEBS

- 1) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate 2) DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 77 lb uplift at joint 13 and 108 lb uplift at joint 8. This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

Page: 1



Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	N12	Common Girder	2	1	Job Reference (optional)	R87439372

2-10-7

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Tue Apr 01 13:11:54 ID:ZscQNnCTbOB_6sCNzZ2lyMzhy6H-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

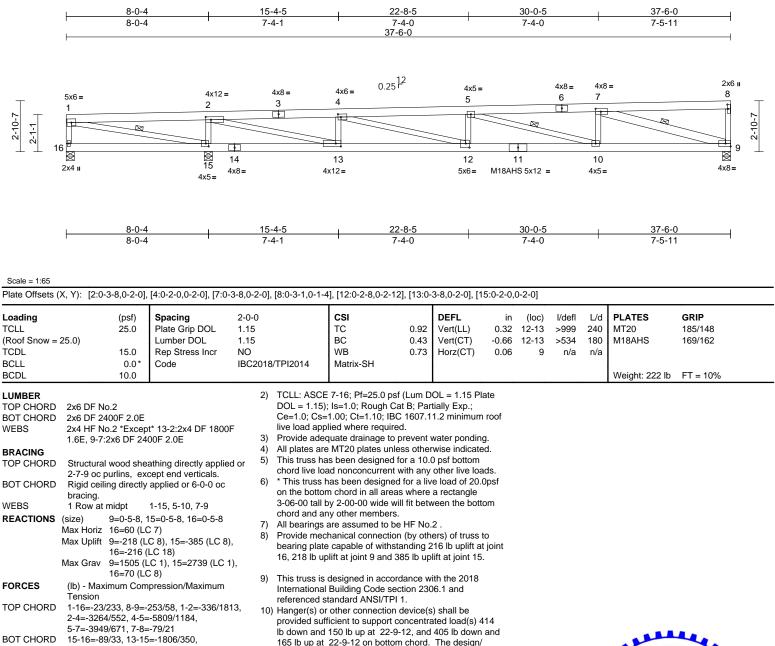
	25.0)	45.0		1.15		BC			11/a		- 11/a	999			
TCDL		15.0	Rep Stress Incr	NO		WB	0.21	Horiz(TL)	0.00	17	′n/a	n/a			
BCLL		0.0*	Code	IBC2018	/TPI2014	Matrix-R									
BCDL		10.0					-						Weight: 157	lb FT =	10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc Rigid cei bracing.	lo.2 lo.2 lo.2 lo.2 al wood she purlins, ex ling directly 17=29-8-8 20=29-8-1 23=29-8-1 27=29-8-1	athing directly applie cept end verticals. 'applied or 6-0-0 oc 8, 18=29-8-8, 19=29- 8, 21=29-8-8, 22=29- 8, 24=29-8-8, 25=29- 8, 28=29-8-8, 29=29- 8, 31=29-8-8, 32=29- 8	d or BO 8-8, WE 8-8, 8-8, 8-8, 8-8,	PP CHORD	1-33=-89/40, 1-2= 3-4=-57/21, 4-5=- 6-7=-56/26, 7-8=- 10-11=-16/39, 11 13-14=-16/38, 14 16-17=-464/108 32-33=-54/87, 21 29-30=-54/87, 28 25-27=-54/87, 24 22-23=-51/52, 21 19-20=-51/52, 18 2-32=-136/6, 6-2 8-25=-299/91, 9-2 10-23=-1642/334 12-21=-1541/308	57/22, 5- 55/27, 8- -12=-16/3 -15=-17/3 -32=-54/8 -29=-54/8 -25=-54/8 -25=-54/8 -22=-51/8 31=-165/0 28=-166/0 24=-1377, 11-22=- , 13-20=-	6=-56/24, 10=-58/40, 39, 12-13=-16, 37, 15-16=-17, 37, 30-31=-54, 37, 27-28=-54, 37, 27-28=-54, 37, 22-28=-51, 32, 27-21=-51, 33, 4-30=-159, 31, 7-27=-120, /301, 1517/308, 1532/306,	/38, /30, /30, /87, /87, /52, /52, /52 /60,	9) TI ch 10) * 3- ch 11) Al 12) Pl be 33 34 29 25 21 25 21 25 21 25 21 25 21 25 21 25 21 25 21 25 25 25 25 25 25 25 25 25 25 25 25 25	his truss hord live I This truss hord bott 06-00 tal bord and II bearing rovide me earing pla 3, 23 lb u biff at join 2, 12 lb u joint 25, 1 lb uplift	has be oad no s has b om ch I by 2- any ot s are a echani ate cap plift at nt 31, plift at 80 lb at join	uplift at joint 24,	r a 10.0 ps ith any oth for a live lo where a re fit betwee HF No.2. (by others nding 18 lt uplift at joir int 30, 12 l blift at joint , 102 lb up t at joint 21	er live loads. bad of 20.0psf ectangle n the bottom) of truss to b uplift at joint at 32, 16 lb b uplift at joint 27, 22 lb uplift lift at joint 23, 1, 93 lb uplift at
	Max Uplift	33=60 (Ld 17=-23 (L 19=-94 (L 23=-102 (25=-22 (L 28=-12 (L 30=-11 (L 32=-23 (L 17=457 (l 19=1609 21=1581 23=1682 25=339 (l 28=206 (l 30=197 (l	C 9) C 12), 18=-97 (LC 8) C 12), 20=-93 (LC 8) C 8), 22=-91 (LC 12) (LC 8), 24=-80 (LC 112) (LC 8), 24=-80 (LC 12) C 8), 29=-12 (LC 8), C 9), 33=-18 (LC 8) C 9), 33=-18 (LC 8) C 1), 83=1538 (LC 1) (LC 1), 20=1574 (LC (LC 1), 22=1557 (LC (LC 1), 24=1416 (LC 1) C 1), 24=1416 (LC 1) C 1), 24=1416 (LC 1) C 1), 24=1416 (LC 1) LC 1), 31=213 (LC 1)	, 1) ,, 1) ,, 2), ,, 2), ,, 2), ,, 2), ,, 2), ,, 3), ,, 3),	Vasd=87m II; Exp B; E and C-C C. exposed ; e members a Lumber DC Truss desig only. For s see Standa or consult C TCLL: ASC DOL = 1.15 Ce=1.0; Cs	14-19=-1573/315 E 7-16; Vult=110m ph; TCDL=4.2psf; Enclosed; MWFRS orner (3) zone; can end vertical left and and forces & MWFR DL=1.60 plate grip l gned for wind loads studs exposed to w ard Industry Gable qualified building do E 7-16; Pf=25.0 p 5); Is=1.0; Rough C s=1.00; Ct=1.10; IB	ph (3-sec BCDL=6. (envelope I right exp RS for rea S for	cond gust) Opsf; h=25ft; () exterior zon t and right oossed;C-C for cctions shown ane of the trus all to the face) ills as applicat s per ANSI/TF OL = 1.15 Pla tially Exp.;	Cat. ; ; ss), ple, Pl 1. ate	ln re	ternation	al Buil stand	ANAOMI ANAOMI COF	ING ZH	and Vo
FORCES	(lb) - Max Tension		LC 1), 33=133 (LC 20 hpression/Maximum)) 5) 6) 7)	Provide ad All plates a Gable requ Truss to be	pplied where requir lequate drainage to are 2x4 () MT20 u uires continuous bo e fully sheathed from ainst lateral movem	prevent nless oth ttom chor n one fac	erwise indicat d bearing. e or securely	ed.			2	PROFIESSION	4074 STERED VAL EN	31768

April 1,2025

Page: 1

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	R87439372
4449076	N12	Common Girder	2	1	Job Reference (optional)	107433372
Builders FirstSource (Arlington, WA), Arlington, WA - 98223,			.83 S Mar 20 2025 Prir	t: 8.830 S N	lar 20 2025 MiTek Industries, Inc. Tue Apr 01 13:11:54	Page: 2

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Apr 01 13:11:54 ID:ZscQNnCTbOB_6sCNzZ2lyMzhy6H-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft)

Vert: 1-34=-80, 16-34=-769, 17-33=-20

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	N13	Monopitch Girder	6	1	Job Reference (optional)	R87439373

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Apr 01 13:11:55 ID:6G8Bv7lpwFTPomxws?r979zhyHn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

 12-13=-534/3256, 10-12=-1161/5802,

 9-10=-644/3943

 WEBS
 2-15=-2088/401, 1-15=-1817/325,

 4-13=-1159/304, 2-13=-908/5212,

 4-12=-650/2634, 5-12=-244/512,

 5-10=-1939/538, 7-10=-62/718,

 7-9=-4063/684

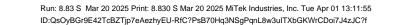
NOTES

- Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- selection of such connection device(s) is the responsibility of others. 11) In the LOAD CASE(S) section, loads applied to the face
- of the truss are noted as front (F) or back (B).

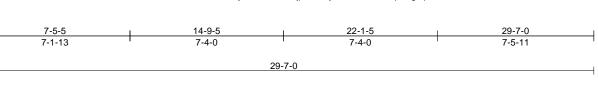
LOAD CASE(S) Standard

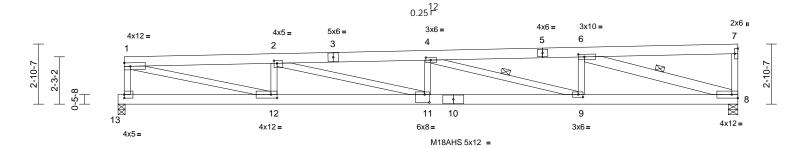
- Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft) Vert: 9-16=-20, 1-8=-80
 - Concentrated Loads (lb)
 - Vert: 12=-370 (F=-193, B=-176)

Page: 1



Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	N13A	Monopitch Girder	2	1	Job Reference (optional)	R87439374


0-3-8


 \mathbb{H}

0-3-8

Page: 1

0-5-4				
	7-5-5	14-9-5	22-1-5	29-7-0
	7-0-1	7-4-0	7-4-0	7-5-11
0-5-4				

Scale = 1:55

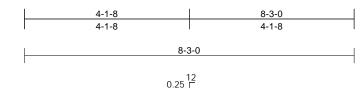
0.0000	K, Y): [2:0-1-12,0-1-8	,, ,,,,, [-1, [= 399,0	, [0:02,0	5],[.1.	,	1,210.0	2,0 2 0]		,,, L	-,	
oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL	25.0	Plate Grip DOL	1.15		TC	0.94	Vert(LL)	0.44	11-12	>788	240	MT20	185/148
Roof Snow = 2	25.0)	Lumber DOL	1.15		BC	0.59	Vert(CT)	-0.85	11-12	>409	180	M18AHS	169/162
CDL	15.0	Rep Stress Incr	NO		WB	0.90	Horz(CT)	0.10	8	n/a	n/a		
CLL	0.0*	Code	IBC201	8/TPI2014	Matrix-SH								
CDL	10.0											Weight: 177 lb	FT = 10%
JMBER			3)	Provide ade	quate drainage to	prevent	water ponding	q .					
OP CHORD	2x6 DF No.2		4)		MT20 plates unl								
OT CHORD	2x6 DF 2400F 2.0E		5)		s been designed								
EBS	2x4 HF No.2 *Excep	t* 12-1:2x4 DF 1800)F	chord live loa	ad nonconcurrent	with any	other live loa	ids.					
-	1.6E, 8-6:2x6 DF No			* This truss h	nas been designe	d for a liv	e load of 20.0	Opsf					
RACING					n chord in all area								
OP CHORD	Structural wood shea	athing directly applie	ed or	3-06-00 tall b	y 2-00-00 wide w	/ill fit betv	veen the botte	om					
	1-9-11 oc purlins, ex				y other members								
OT CHORD	Rigid ceiling directly	, 7)	All bearings	are assumed to b	e HF No.	2.							
	bracing, Except:		- 8)	Provide mec	hanical connectio	n (by oth	ers) of truss t	o					
	7-10-5 oc bracing: 9	-11.		bearing plate	capable of withs	tanding 3	14 lb uplift at	t joint					
EBS		6-8, 4-9			b uplift at joint 8.								
EACTIONS		,	9)		designed in acco								
	Max Horiz 13=60 (LC				Building Code se		6.1 and						
	Max Uplift 8=-307 (L	,)		tandard ANSI/TP								
	Max Grav 8=1794 (L				other connection								
	(,, (~)		icient to support								
DRCES	(lb) - Maximum Com	pression/iviaximum			301 lb up at 14-			n					
	Tension 1-13=-1707/343, 7-8	255/59			p at 14-10-12 on								
OP CHORD	1-13=-1707/343, 7-8				tion of such conn	ection de	vice(s) is the						
	4-6=-4969/962, 6-7=	,		responsibility		la a da							
OT CHORD	4-6=-4969/962, 6-7= 12-13=-54/175, 11-1		11		CASE(S) section			ace					
	9-11=-1754/7901, 8-				re noted as front	(F) or ba	ск (В).						4.
EBS	9-11=-1754/7901, 8- 1-12=-1064/5463, 6-			DAD CASE(S)								MIN	
LDO	2-12=-1004/3463, 6-	,	1)		ow (balanced): Lu	mber Inc	rease=1.15, I	Plate				ALAOMIN WA	AH X
	6-9=-152/1041, 4-9=			Increase=1								THE WA	SHIN
	2-11=-748/2559	-3008/032,		Uniform Lo							1	AS CO	The C
	2-11-140/2009				3=-20, 1-7=-80						7	A God	CTON 1
DTES				Concentrat	ed Loads (lb)						7		in I
Wind: ASC	E 7-16; Vult=110mph	(3-second gust)		Vort: 11-	-580 (F=-193, B=	-387)							

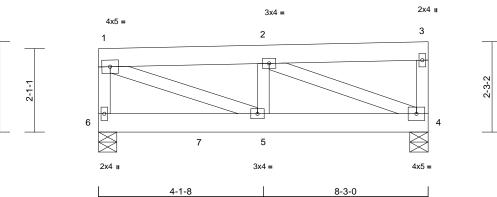
- Vasd=87mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate 2) DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

BOR 54074 EGISTERED SSIONAL ENGINE

Ann


April 1,2025


Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	N14	Monopitch Girder	1	1	Job Reference (optional)	R87439375

2-3-2

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Tue Apr 01 13:11:55 ID:_nu8B1DogE8rUgPh350kl5zhycX-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

4-1-8

Scale = 1:28.8

Loading TCLL (Roof Snow = 2 TCDL BCLL BCDL	(psf) 25.0 25.0) 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC2018	3/TPI2014	CSI TC BC WB Matrix-P	0.13 0.17 0.28	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.03 0.00	(loc) 5-6 5-6 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 49 lb	GRIP 185/148 FT = 10%
	2x6 DF No.2 2x6 DF No.2 2x4 HF No.2 Structural wood shea 6-0-0 oc purlins, exx Rigid ceiling directly bracing. (size) 4=0-5-8, 6 Max Horiz 6=44 (LC Max Uplift 4=-37 (LC Max Grav 4=510 (LC	cept end verticals. applied or 10-0-0 oc 5=0-5-8 7) 5 8), 6=-53 (LC 4)	9)	bearing plate 6 and 37 lb u This truss is International referenced s Hanger(s) or provided suff lb down and lb up at 4-2- of such conn others.	hanical connec e capable of witi plift at joint 4. designed in acc Building Code tandard ANSI/T other connecti- icient to suppor 21 lb up at 2-6 12 on bottom c ection device(s CASE(S) secti- tre noted as fro	nstanding 5 cordance w section 230 PI 1. on device(s rt concentra -4, and 140 hord. The o) is the resp on, loads ap	3 lb uplift at ith the 2018 66.1 and) shall be ited load(s) · I b down and design/selec ponsibility of opplied to the	joint 140 d 21 tion					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	LC 1)	AD CASE(S)				Plate					
TOP CHORD BOT CHORD WEBS NOTES	1-6=-472/62, 1-2=-7 3-4=-140/28 5-6=-39/29, 4-5=-51/ 1-5=-85/833, 2-5=-9/	/771	1)	Increase=1 Uniform Los Vert: 1-3 Concentrate	.15		1.13,						

4-1-8

1) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and

- right exposed; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate 2) DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.
- Provide adequate drainage to prevent water ponding. 3)
- This truss has been designed for a 10.0 psf bottom 4)
- chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be HF No.2 . 6)

Vert: 5=-140 (B), 7=-140 (B)

400 Sunrise Ave., Suite 270 Roseville CA 95661 916.755.3571 / MiTek-US.com

Page: 1

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	N14A	Monopitch Girder	1	1	Job Reference (optional)	R87439376

8-3-0

8-3-0

0 25 L

Builders FirstSource (Arlington, WA), Arlington, WA - 98223,

2-3-2

(psf)

25.0

2-1-1

Spacing

Plate Grip DOL

Lumber DOL

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Tue Apr 01 13:11:55 ID:Mx1ISo8P1hhfYu9wppTi81zhyho-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5 4 3 2 1 Ы 0 М 10 6 9 11 8 8-3-0 2-0-0 CSI DEFL l/defl L/d PLATES in (loc) 1.15 TC 0.03 Vert(LL) n/a n/a 999 MT20 BC 1 15 0.04 Vert(TL) 999 n/a n/a NO WB 0.02 Horiz(TL) 0.00 6 n/a n/a 12014 Matrix-R Weight: 42 lb CLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate OL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; e=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof e load applied where required. ovide adequate drainage to prevent water ponding. plates are 2x4 (||) MT20 unless otherwise indicated. able requires continuous bottom chord bearing. uss to be fully sheathed from one face or securely aced against lateral movement (i.e. diagonal web). able studs spaced at 2-0-0 oc. his truss has been designed for a 10.0 psf bottom ord live load nonconcurrent with any other live loads. his truss has been designed for a live load of 20.0psf

the bottom chord in all areas where a rectangle 06-00 tall by 2-00-00 wide will fit between the bottom ord and any other members.

- bearings are assumed to be HF No.2 .
- rovide mechanical connection (by others) of truss to earing plate capable of withstanding 20 lb uplift at joint , 6 lb uplift at joint 6, 26 lb uplift at joint 9, 44 lb uplift at nt 8 and 25 lb uplift at joint 7.
- is truss is designed in accordance with the 2018 ernational Building Code section 2306.1 and ferenced standard ANSI/TPI 1.
- anger(s) or other connection device(s) shall be ovided sufficient to support concentrated load(s) 156 down and 24 lb up at 2-6-4, and 156 lb down and 24 up at 4-2-12 on bottom chord. The design/selection such connection device(s) is the responsibility of hers.
- the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).
- LOAD CASE(S) Standard
- Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15
 - Uniform Loads (lb/ft)
 - Vert: 1-5=-80, 6-10=-20 Concentrated Loads (lb)
 - Vert: 8=-156 (F), 11=-156 (F)

GRIP

185/148

FT = 10%

Page: 1

400 Sunrise Ave., Suite 270 Roseville CA 95661 916.755.3571 / MiTek-US.com

(Roof Snow = 25.0)

Loading

TCLL

TCDL BCLL BCDL	20.0)	15.0 0.0* 10.0	Rep Stress Incr Code	NO IBC2	018/	/TP
LUMBER					3)	тс
TOP CHORD	2x6 DF N	lo.2				DC
BOT CHORD	2x6 DF N	lo.2				Ce
WEBS	2x4 HF N	lo.2				live
OTHERS	2x4 HF N	lo.2			4)	Pro
BRACING					5)	All
TOP CHORD	Structura	l wood she	athing directly applie	ed or	6)	Ga
			cept end verticals.		7)	Τrι
BOT CHORD			applied or 10-0-0 or	С		bra
	bracing.	0 ,			8)	Ga
REACTIONS	(size)	6=8-3-0.7	/=8-3-0, 8=8-3-0, 9=	8-3-0.	9)	Th
	. ,	10=8-3-0		,	4.00	ch
	Max Horiz	10=44 (LC	27)		10)	
	Max Uplift	6=-6 (LC 5	5), 7=-25 (LC 22), 8	=-44		on 3-(
		(LC 4), 9=	-26 (LC 5), 10=-20	(LC		ch
		22)			11)	
	Max Grav		1), 7=217 (LC 1), 8=		12)	
		(LC 1), 9=	343 (LC 1), 10=64 ((LC 1)	12)	be
FORCES	(lb) - Max	kimum Com	pression/Maximum			10
	Tension					joi
TOP CHORD			0/3, 2-3=-9/3, 3-4=-9	Э/4,	13)	
	,	5-6=-70/14			,	Int
BOT CHORD		,	5/19, 7-8=-25/19,			ref
	6-7=-25/1				14)	На
WEBS	2-9=-167	/33, 3-8=-1	56/35, 4-7=-181/43		,	pro
NOTES						İb (
			(3-second gust)			lb i
			DL=6.0psf; h=25ft; 0			of
			velope) exterior zor			oth
cantilever	left and right	nt exposed	; end vertical left an	d	15)	ln i

right exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	N15	Flat	1	1	Job Reference (optional)	R87439377

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Apr 01 13:11:56 ID:mA4IFm9zLUMHjHt90b?Uplzhyj4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:32

							-							
Loading		(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL		25.0	Plate Grip DOL	1.15		тс	0.09	Vert(LL)	-0.01	4-5	>999	240	MT20	185/148
(Roof Snow =	25.0)		Lumber DOL	1.15		BC	0.10	Vert(CT)	-0.01	4-5	>999	180		
TCDL	,	15.0	Rep Stress Incr	YES		WB	0.02	Horz(CT)	0.00	4	n/a	n/a		
BCLL		0.0*	Code	IBC2018/	TPI2014	Matrix-P								
BCDL		10.0											Weight: 19 lb	FT = 10%
LUMBER				8)	Provide med	hanical connectio	on (by oth	ers) of truss	to					
TOP CHORD	2x6 DF No.2				bearing plate	e capable of withs	standing 9	lb uplift at jo	pint 5					
BOT CHORD	2x4 HF No.2	1			and 12 lb up									
WEBS	2x4 HF No.2	2		9)		designed in acco								
BRACING						Building Code se		6.1 and						
TOP CHORD	Structural wo	ood she	athing directly applie	10 UI		tandard ANSI/TP	YI 1.							
	3-6-8 oc purl	lins.	• • • •	LO	AD CASE(S)	Standard								
BOT CHORD	Rigid ceiling bracing.	directly	applied or 10-0-0 or	0										
REACTIONS	0	= Mecha	nical, 5= Mechanica	d										
	()		9), 5=-9 (LC 8)											
		``	C 1), 5=160 (LC 1)											
FORCES		``	pression/Maximum											
	Tension													
TOP CHORD	1-2=0/0, 2-3=	=0/0												
BOT CHORD	4-5=0/0													
WEBS	1-5=-128/10 ⁻	1, 2-4=-	144/112, 1-4=0/0											
NOTES														
1) Wind: ASC	CE 7-16; Vult=1	110mph	(3-second gust)											
			DL=6.0psf; h=25ft; 0											
			velope) exterior zon	e										
			ver left and right											
			pht exposed;C-C for											
			for reactions shown	;									- ON	
	OL=1.60 plate		L=1.60 Lum DOL = 1.15 Pla	4.4									OMIN	G ZHAO
			B; Partially Exp.;	lle									THE WA	SHI
			1607.11.2 minimum	roof								- 7	R. S.	
	pplied where re			1001										
			event water ponding	I.									Ser	
			a 10.0 psf bottom	•								2		
chord live	load nonconcu	irrent wi	th any other live load	ds.									A.	
			or a live load of 20.0	psf										
			where a rectangle										PROFIESS	TERED GINED
			fit between the botto	m									PREGIST	TERL
chord and	any other men	nhers											A YOG	10

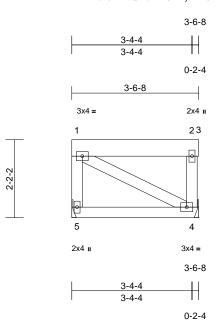
chord and any other members.

- 6) All bearings are assumed to be HF No.2.
- 7) Refer to girder(s) for truss to truss connections.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MITek-US.com

April 1,2025


SIONALEN

UNAL D

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	N16	Flat	1	1	Job Reference (optional)	R87439378

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Apr 01 13:11:56 ID:iMnnNtoDsn1maQRLdDRvSwzhyiF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

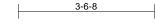
Scale = 1:32.2

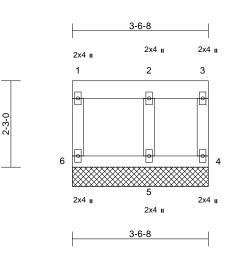
						· · · ·						
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	25.0	Plate Grip DOL	1.15	TC	0.09	Vert(LL)	-0.01	4-5	>999	240	MT20	185/148
(Roof Snow = 25.0	0)	Lumber DOL	1.15	BC	0.10	Vert(CT)	-0.01	4-5	>999	180		
TCDL	15.0	Rep Stress Incr	YES	WB	0.02	Horz(CT)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IBC2018/TPI2014	Matrix-P								
BCDL	10.0										Weight: 19 lb	FT = 10%
LUMBER			8) Provide m	echanical connection	on (by oth	ers) of truss	to					
	6 DF No.2			ate capable of withs								
BOT CHORD 2x	4 HF No.2			ıplift at joint 4.								
WEBS 2x	4 HF No.2			s designed in acco								
BRACING				al Building Code se		06.1 and						
	tructural wood she -6-8 oc purlins.	athing directly applie	ed or LOAD CASE(standard ANSI/TP S) Standard	11.							
BOT CHORD R		applied or 10-0-0 or	C									
REACTIONS (siz	ze) - 4= Mecha	anical, 5= Mechanica	al									
Ma	x Uplift 4=-12 (LC	C 9), 5=-9 (LC 8)										
Ma	x Grav 4=176 (L0	C 1), 5=160 (LC 1)										
FORCES (It	b) - Maximum Com	pression/Maximum										
	ension											
	-2=0/0, 2-3=0/0											
	-5=0/0											
	-5=-128/101, 2-4=-	144/112, 1-4=0/0										
NOTES												
1) Wind: ASCE 7		i (3-second gust) CDL=6.0psf; h=25ft; (
		velope) exterior zor										
	er (3) zone; cantile											
		ght exposed;C-C for										
		for reactions shown										
	1.60 plate grip DC										OMIN	GZD
		Lum DOL = 1.15 Pla	ate								ALA W	G ZHAO
	ls=1.0; Rough Cat									7	A CE WY	AND A
		1607.11.2 minimum	roof							_	S	
	ed where required	event water ponding										
		r a 10.0 psf bottom	j.									
		ith any other live load	ds.									
		for a live load of 20.0								2		
		where a rectangle									P 540	74 0 8 5
		fit between the botto	om								REGIST POFESSION	TERE
	other members.										SSION	TENG
All bearings ar	re assumed to be	HF No.2 .									NA	LL

All bearings are assumed to be HF No.2 . 6)

7) Refer to girder(s) for truss to truss connections.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)




April 1,2025

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	N17	Flat Supported Gable	1	1	Job Reference (optional)	R87439379

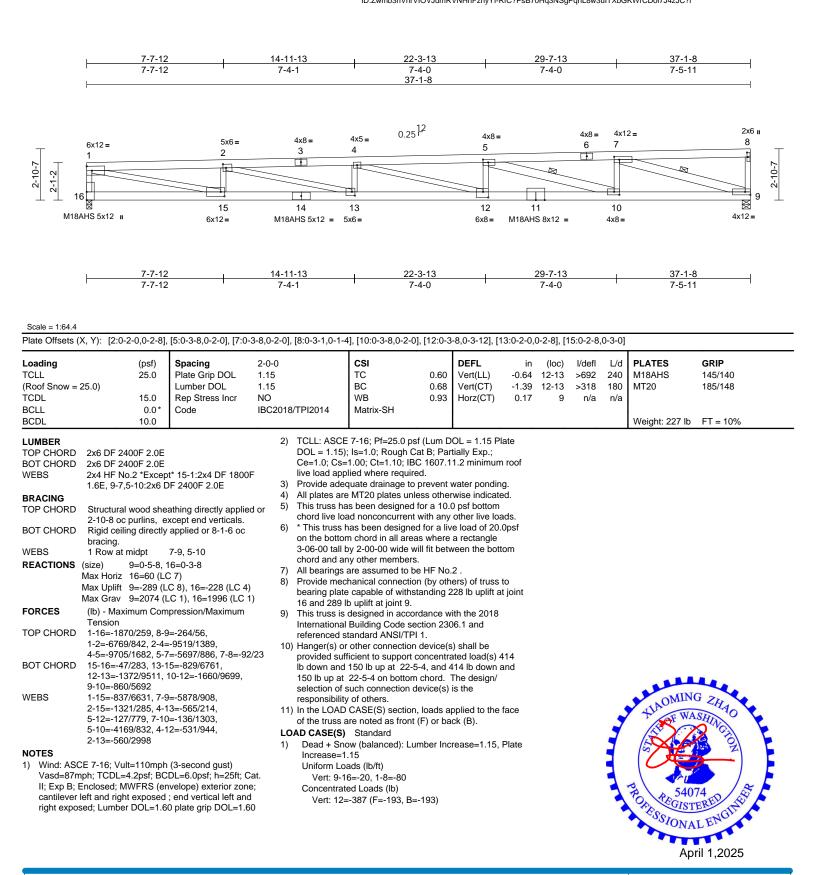
Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Apr 01 13:11:56 ID:ItCM06a_ZIDYtQvrwN69bdzhyhE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

?f

Scale = 1:30

Loading (psf) TCLL 25.0 (Roof Snow = 25.0) TCDL TCDL 15.0 BCLL 0.0* BCDL 10.0	Plate Grip DOL 1 Lumber DOL 1 Rep Stress Incr	2-0-0 1.15 1.15 YES BC2018/TPI2014	CSI TC 0.05 BC 0.04 WB 0.02 Matrix-R	DEFL Vert(LL) Vert(TL) Horiz(TL)	in (loc) n/a - n/a -).00 4	n/a n/a	L/d PLATES GRIP 999 MT20 185/148 999 n/a Weight: 17 lb FT = 10%
BOT CHORD 3-6-8 oc purlins, exc Rigid ceiling directly bracing. REACTIONS (size) 4=3-6-8, 5 Max Horiz 6=-46 (LC Max Uplift 4=-19 (LC 8)	applied or 10-0-0 oc 5=3-6-8, 6=3-6-8 10) 9), 5=-13 (LC 8), 6=-17 1), 5=190 (LC 1), 6=81	 6) Truss to be fubraced again 7) Gable studss ; 8) This truss ha chord live loa chord live loa chord live loa chord live loa chord not the bottom 3-06-00 tall be chord and an 10) All bearings ; 11) Provide mech bearing plate 6, 19 lb uplift 12) This truss is a linternational 	es continuous bottom cho ully sheathed from one fa ist lateral movement (i.e. (spaced at 2-0-0 oc. is been designed for a 10 ad nonconcurrent with any nas been designed for a li n chord in all areas where by 2-00-00 wide will fit bet ny other members. are assumed to be HF No hanical connection (by ott e capable of withstanding tat joint 4 and 13 lb uplit designed in accordance v Building Code section 23 tandard ANSI/TPI 1. Standard	ce or securely diagonal web). 0 psf bottom other live loads. ve load of 20.0psf a rectangle ween the bottom .2. ers) of truss to 17 lb uplift at joint at joint 5. vith the 2018	f		
BOT CHORD 5-6=-46/55, 4-5=-46/), 2-3=-7/9, 3-4=-44/50 /55						
WEBS 2-5=-151/119							
 NOTES 1) Wind: ASCE 7-16; Vult=110mph Vasd=87mph; TCDL=4.2psf; BCI II; Exp B; Enclosed; MWFRS (em- and C-C Corner (3) zone; cantilev exposed ; end vertical left and rig members and forces & MWFRS f Lumber DOL=1.60 plate grip DOI 2) Truss designed for wind loads in only. For studs exposed to wind see Standard Industry Gable Enc or consult qualified building desig 3) TCLL: ASCE 7-16; Pf=25.0 psf (L DOL = 1.15); Is=1.0; Rough Cat IE Ce=1.0; Cs=1.00; Ct=1.10; IBC 1 live load applied where required. 	DL=6.0psf; h=25ft; Cat. velope) exterior zone ver left and right ht exposed;C-C for for reactions shown; L=1.60 the plane of the truss (normal to the face), d Details as applicable, gner as per ANSI/TPI 1. _um DOL = 1.15 Plate B; Partially Exp.; 1607.11.2 minimum roo						TUNOMING ZHAO TUNOF WASHING SHOF WASHING ALL ALL ALL ALL SHOTA BOTTERED SSIONAL ENGINE

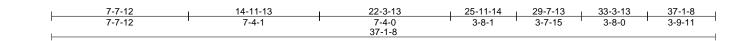
4) Provide adequate drainage to prevent water ponding.

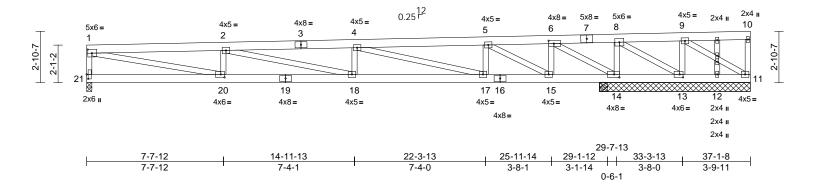

April 1,2025

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	N18	Monopitch Girder	12	1	Job Reference (optional)	R87439380

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Apr 01 13:11:56 ID:Zwmb3hVnrVIOVJdmRVNHnFzhyYI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com




Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	N19	Monopitch Girder	2	2	Job Reference (optional)	R87439381

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Apr 01 13:11:57 ID:cuJW8wYjVCtG7o_KsOzPsZzhy?N-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

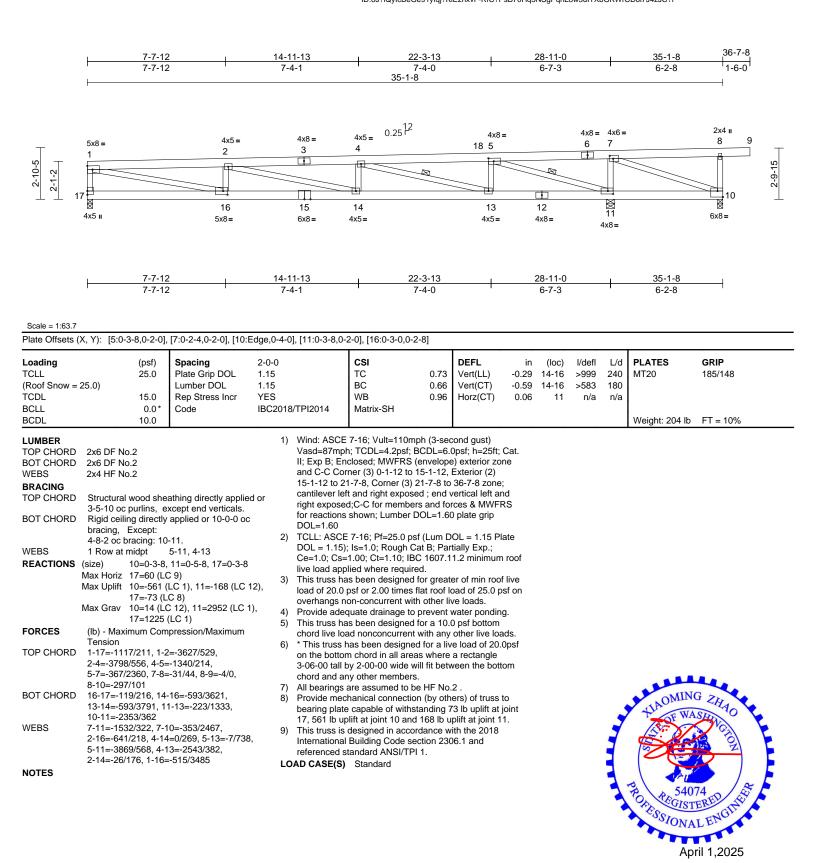
400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Scale = 1:64.4

Plate Offsets (X, Y): [1:0-2-1	2,0-2-8], [6:0-3-8,0)-2-0], [13	:0-2-4,0-2	2-0], [14:0-3-8,0	-2-0], [20:0-2-8,0	-2-0], [21	:0-3-0,0-1-0]						
TCLL (Roof Snow = 25.0) TCDL BCLL	psf) Spacing 25.0 Plate Grip Lumber D 15.0 Rep Stres 0.0* Code	OL	2-0-0 1.15 1.15 NO IBC201	8/TPI2014	CSI TC BC WB Matrix-SH	0.55 0.50 0.73	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 18-20 18-20 14	l/defl >999 >913 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 185/148
BCDL	10.0											Weight: 435	b FT = 10%
6-0-0 oc puri Rigid ceiling bracing. REACTIONS (size) 11 Max Horiz 21 Max Uplift 11 13 32 Max Grav 11 FORCES (lb) - Maximu Tension TOP CHORD 1-21=-1395/2 2-4=-5877/88 5-6=-1199/56 8-9=-592/281 10-11=-1192 BOT CHORD 20-21=-58/25 17-18=-1398 14-15=-576/1 12-13=-2791. WEBS 2-20=-8817/28 5-17=-289/81 4-17=-1478/5 1-20=-841/48 6-15=-394/15	od sheathing direc ns, except end ve directly applied or =8-5-4, 12=8-5-4, =8-5-4, 21=0-3-8 =65 (LC 30) =-879 (LC 23), 12= =-217 (LC 68), 14= 1, 21=-230 (LC 24), 12= =478 (LC 24), 12= =478 (LC 24), 12= =1739 (LC 48), 14 =1509 (LC 1) m Compression/M 61, 1-2=-4771/847 5, 4-5=-4732/1087 9, 6-8=-1462/7077 7, 9-10=-294/266, 93 0, 18-20=-839/476 5870, 15-17=-171 261, 13-14=-7042 575, 11-12=-2963 6, 4-18=-205/222, 7, 8-14=-5980/100 15, 2-18=-576/145 20, 6-14=-8696/1 ⁻ 67, 5-15=-4632/85 531, 9-13=-4722/7	rrticals. 5-8-9 oc 13=8-5-4, 27 (LC 2 1411 (L(278 (LC 1 =11101 (l laximum 7, 7, 3, 0/5179, /1355, /876 00, 94, 112, 94,	1) d or 24), 3) (), C 1), 4) (), 5) 6) 7) 8) 9)	(0.131"x3") n Top chords c oc, 2x6 - 2 rc Bottom chord staggered at Web connec Except mem All loads are except if note CASE(S) see provided to c unless othen Wind: ASCE Vasd=87mpl II; Exp B; En cantilever lef right expose Truss design only. For stu see Standard or consult qu TCLL: ASCE DOL = 1.15); Ce=1.0; Cs= live load app Provide adec Truss to be f braced again Gable studs This truss ha chord live load 0) * This truss ha	be connected to hails as follows: connected as follows: connected as follows: connected as follows: ds connected as 0-9-0 oc. ted as follows: 2: ber 5-17 2x4 - 1 considered equa ed as front (F) or tion. Ply to ply c distribute only loa wise indicated. 7-16; Vult=110m n; TCDL=4.2psf; closed; MWFRS t and right expose d; Lumber DOL= ted for wind loads ds exposed to wd d Industry Gable tailfied building d 7-16; Pf=25.0 p; (s=1-0; Rough C 1.00; Ct=1.10; IE lied where requir quate drainage to ully sheathed fro us been designed ad nonconcurrent nas been designed ad nonconcurrent nas been designed ad nonconcurrent nas been designed ad nonconcurrent py 2-00-00 wide v y other member:	ws: 2x4 - 0-9-0 oc. follows: 2 (4 - 1 row ow at 0-6 llly applie- back (B) onnection ds noted ph (3-sec BCDL=6. (envelope ed; end v 1.60 plate s in the plate ind (norm End Deta sci f (Lum D cat B; Par C 1607.1 ed. prevent v m one fac ent (i.e. d oc. for a 10. with any d for a liv as where vill fit betw	1 row at 0-9 $x_6 - 2$ rows at 0-9-0 oc, -0 oc. d to all plies, face in the LC s have been as (F) or (B), ond gust) psf; h=25ft; e) exterior zoi rertical left ar grip DOL=1. ane of the truu al to the face ils as applicat s per ANSI/PII OL = 1.15 PII OL = 1.15 PII tally Exp.; 1.2 minimum water ponding e or securely iagonal web) 0 psf bottom other live load a rectangle	DAD Cat. he; id 60 ss), ble, Pl 1. ate roof g. ds. Dpsf	bea 21, bu 13) This Interrefe 14) This 260 Corr fron 15) Har prov bb d dess resp 16) Stu LOAD (1) De Inn Ur	ring pla 879 lb u plift at jos s truss is rrnationas erenced s truss h 00 lb. Lu nnect tru. n 22-4-8 nger(s) o vided su own and ign/sele consibili dding ap CASE(S ead + Sr crease= hiform Lu	te capa iplift at iplift at s desigg al Build standa as bee mber L mber L standa as bee mber L as to 37- or othe fficient 1 2284 II 2284 II 2284 II 2284 II 2284 II 3 2284 II 3 2284 II 3 2284 II 5	able of withstar joint 11, 1411 and 27 lb upliff ined in accorda ing Code secti- ird ANSI/TPI 1. an designed for OCL=(1.33) Pla esist drag load 1-8 for 176.3 pr connection de to support cor b up at 22-5-4 f such connect hers. o ply: 1(Front) ndard alanced): Lumb b/ft) 5-10=-769, 11	nce with the 2018 on 2306.1 and a total drag load of te grip DOL=(1.33) s along bottom chord ff. wice(s) shall be icentrated load(s) 38 on bottom chord. Th ion device(s) is the per Increase=1.15, Pl -21=-20

Job	Truss	Truss Type	Qty	ty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	N19	Monopitch Girder	2		2	Job Reference (optional)	R87439381
Builders FirstSource (Arlington,	NA), Arlington, WA - 98223,	Run: 8.83	S Mar 20 2025	5 Print: 8.8	330 S Mar 20	2025 MiTek Industries, Inc. Tue Apr 01 13:11:57	Page: 2

Concentrated Loads (lb) Vert: 17=-107 (F)

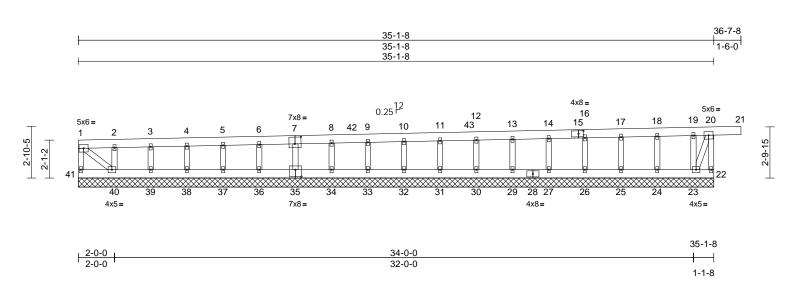

ID:cuJW8wYjVCtG7o_KsOzPsZzhy?N-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	N20	Monopitch	14	1	R87439382 Job Reference (optional)	

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Apr 01 13:11:57 ID:8J?iQyIcBeGe91yfqj?KIEzhxvF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of trusses and truss systems, see **ANS/TFPI Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



Page: 1

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	N21	Monopitch Supported Gable	1	1	Job Reference (optional)	R87439383

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Apr 01 13:11:57 ID:wYm?mqSGGKhOWOZtF6C3zmzhxsT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Scale = 1:63.7

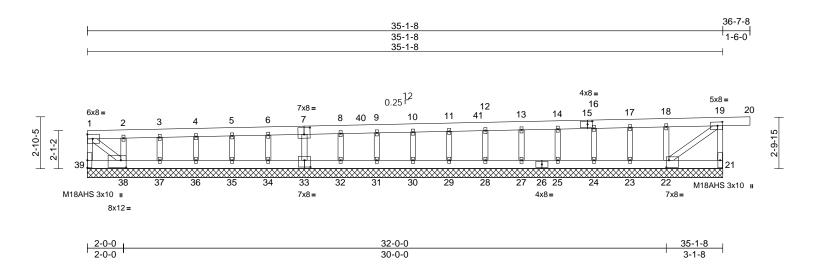
Plate Offsets (X, Y): [7:0-4-0,0-4-8], [15:0-3-4,0-2-0], [35:0-4-0,0-4-8]

	Y): [7:0-4-0,0-2	+-8], [15:0-3-4	4,0-2-0], [35:	0-4-0,0	-4-8]										
Loading TCLL (Roof Snow = 25. TCDL BCLL BCDL	(psf 25.0 .0) 15.0 0.0 10.0	0 Plate G Lumber 0 Rep Str 0* Code	Grip DOL	2-0-0 1.15 1.15 YES IBC20	18/TPI2014	CSI TC BC WB Matrix-SH	0.14 0.01 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	,		/a 9 /a 9	L/d 199 199 n/a	PLATES MT20 Weight: 192 lb	GRIP 185/148 FT = 10%
BOT CHORD 2 WEBS 2 OTHERS 2 BRACING 5 TOP CHORD 5 BOT CHORD 6 bDT CHORD 6	2x6 DF No.2 2x6 DF No.2 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural wood 6-0-0 oc purlins, Rigid ceiling dire oracing, Excep 10-0-0 oc bracin	except end ectly applied of t:	verticals.	l or	FORCES TOP CHORD BOT CHORD	(lb) - Maximum Co Tension 1-41=-53/38, 1-2= 3-4=-39/36, 4-5=-3 6-8=-35/36, 8-9=-3 10-11=-30/35, 11- 13-14=-25/34, 14- 17-18=-21/33, 18- 20-21=-4/0, 20-22 40-41=-93/86, 39- 37-38=-42/44, 36-	-42/37, 2 38/36, 5- 32/36, 9- 12=-28/3 16=-24/3 19=-19/3 =-309/77 40=-42/4 37=-42/4	2-3=-41/37, 6=-36/36, 10=-31/35, 15, 12-13=-27/ 44, 16-17=-22/ 3, 19-20=-19/ 4, 38-39=-42/ 4, 34-36=-43/	34, 33, 36, 44, 45,	4) 5) 6) 7) 8)	DOL = 1 Ce=1.0; live load This trus load of 2 overhang Provide a All plates Gable re Truss to	.15); I Cs=1. applie s has 0.0 ps gs nor adequ s are 2 quires be ful	s=1. .00; ed w bee sf or n-cor uate 2x4 (s cor lly sh	0; Rough Cat B; Ct=1.10; IBC 160 here required. n designed for gr 2.00 times flat ro ncurrent with other drainage to prevv () MT20 unless tinuous bottom one athed from one	07.11.2 minimum roof reater of min roof live of load of 25.0 psf on er live loads. ent water ponding. otherwise indicated. chord bearing.
REACTIONS (si	ize) 22=35 25=35 29=35 32=35 32=35 38=35 41=35 ax Horiz 41=60 ax Uplift 22=-4 25=-1 27=-1 30=-1 32=-1 30=-1 34=-1 34=-1 34=-1 38=-1 40=-1 24=20 26=22 33=20 35=20 35=20 37=22 39=20	5-1-8, 23=35- 5-1-8, 26=35- 5-1-8, 30=35- 5-1-8, 33=35- 5-1-8, 39=35- 5-1-8, 39=35- 5-1-8, 39=35- 5-1-8, 39=35- 2 (LC 9), 24= 3 (LC 8), 26= 2 (LC 8), 26= 2 (LC 8), 23= 2 (LC 8), 33= 2 (LC 8), 33= 2 (LC 8), 33= 2 (LC 8), 33= 2 (LC 12), 33 8 (LC 9), 41=	1-8, 27=35-1 1-8, 31=35-1 1-8, 31=35-1 1-8, 37=35-1 1-8, 40=35-1 1-8, 40=35-1 1-8, 40=35-1 1-8, 40=35-1 1-8, 40=35-1 1-12 (LC 12), 1-12 (LC 1), 1-12	-8, -8, -8, -8, -8,	Vasd=87m II; Exp B; E and C-C CC 15-1-12 to 3 cantilever la right exposi for reaction DOL=1.60 2) Truss desig only. For s see Standa	33-34=-43/45, 32- 30-31=-43/45, 29- 26-27=-43/45, 25- 23-24=-43/45, 22- 2-40=-167/57, 3-3 5-37=-160/54, 6-3 8-34=-161/54, 9-3 11-31=-160/53, 17 18-24=-160/53, 17 18-24=-160/53, 17 18-24=-158/54, 19 20-23=-73/15 E 7-16; Vult=110mp oh; TCDL=4.2psf; E nclosed; MWFRS (orner (3) 0-1-12 to 1 21-7-8, Corner (3) 2 eft and right expose ed;C-C for member s shown; Lumber D und for wind loads tuds exposed to win rd Industry Gable E qualified building de	30=-43/2 26=-43/2 23=-30/3 9=-160/5 6=-159/5 3=-160/5 (-30=-16) -27=-16 -25=-16 -25=-16 -25=-16 -25=-52 bh (3-sec GCDL=6. envelope (5-1-12, 1-7-8 to d) (3-sec GCDL=1.6(in the pl nd (norm in d) Deta	5, 27-29=-43/ 5, 24-25=-43/ 99 5, 4-38=-160/ 3, 7-35=-160/ 12, 10-32=-160/ 1/53, 2/54, 93, 1-40=-75/ 93, 1-40=-75/ 94, 1-40=-75/	45, 45, 53, 54, 0/51, 91, 91, cat. e d S S	9) 10) 11)	Gable st This trus chord liv * This tru on the be 3-06-00 chord an	uds sp s has e load uss ha ottom tall by id any	pace bee I nor is be c chor c 2-00 r other re as	ed at 2-0-0 oc. n designed for a toconcurrent with een designed for a rd in all areas wh 0-00 wide will fit I er members. issumed to be HF 100 MINI 100 MINI	any other live loads. a live load of 20.0psf ere a rectangle between the bottom No.2 .

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	N21	Monopitch Supported Gable	1	1	Job Reference (optional)	R87439383

13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 8 lb uplift at joint 41, 46 lb uplift at joint 22, 18 lb uplift at joint 40, 12 lb uplift at joint 39, 12 lb uplift at joint 38, 12 lb uplift at joint 37, 11 lb uplift at joint 36, 12 lb uplift at joint 35, 12 lb uplift at joint 34, 12 lb uplift at joint 33, 12 lb uplift at joint 32, 12 lb uplift at joint 31, 12 lb uplift at joint 30, 12 lb uplift at joint 30, 12 lb uplift at joint 29, 12 lb uplift at joint 27, 12 lb uplift at joint 25 and 10 lb uplift at joint 24.

14) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.


LOAD CASE(S) Standard

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Apr 01 13:11:57 ID:wYm?mqSGGKhOWOZtF6C3zmzhxsT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	N21A	Common Supported Gable	1	1	Job Reference (optional)	R87439384

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Tue Apr 01 13:11:58 ID:?bO4TSH_ijjz7bcubJPUaczhxq6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:63.7

		. 0,0 1 0],	, [15:0-3-4,0-2-0], [19], [22.0 1 1		.,], [. – 1				1	
Loading TCLL (Roof Snow = TCDL BCLL	25.0)	(psf) 25.0 15.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC2	018/TPI2014	CSI TC BC WB Matrix-SH	0.69 0.37 0.96	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a -0.02	(loc) - - 30	n/a n/a	L/d 999 999 n/a	PLATES M18AHS MT20	GRIP 145/140 185/148
BCDL		10.0						-					Weight: 191 lb	FI = 10%
	2x6 DF N 2x4 HF N 2x4 HF N Structura 4-3-11 oc Rigid ceil bracing. (size) Max Horiz Max Uplift	lo.2 lo.2 lo.2 lo.2 li wood she c purlins, e ling directly 21=35-1-{ 24=35-1-{ 31=35-1-{ 31=35-1-{ 37=35-1-{ 39=60 (LC 21=-2426 33), 23=- 33), 23=- 33), 28=- 34), 30=- 42), 32=- 34), 36=- 34), 38=-2 (LC 33)	(LC 42), 22=-2454 18 (LC 41), 24=-11 (13 (LC 42), 27=-12 (12 (LC 42), 29=-12 (13 (LC 33), 31=-18 (29 (LC 33), 33=-35 (28 (LC 33), 35=-18 (15 (LC 41), 37=-33 (2886 (LC 36), 39=-2	ed or -1-8, -1-8, -1-8, -1-8, -1-8, -1-8 LC LC LC LC LC LC LC LC LC LC LC LC LC	FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Co Tension 1-39=-2956/2918, 2-3=-2979/2949, 3 4-5=-2244/2217, 5 6-8=-1499/1484, f 9-10=-407/388, 10 11-12=-736/723, 1 13-14=-1465/1458 18-19=-3107/3106 19-21=-2480/2455 38-39=-339/268, 3 36-37=-2582/2592 34-35=-1886/1863 31-32=-790/765, 3 29-30=-390/366, 2 27-28=-1122/1098 24-25=-1854/1833 22-23=-2586/2525 2-38=-167/76, 3-3 5-35=-160/76, 6-3 8-32=-161/70, 9-3 11-29=-160/52, 12 13-27=-160/54, 14 16-24=-161/57, 17 18-22=-179/72, 1- 19-22=-3908/3802	1-2=-33 3-4=-26 5-6=-187 3-9=-765 0-11=-37 12-13=-1 3, 14-16= 3, 14-16= 3, 14-16= 3, 17-18= 5, 19-20= 5 37-38=-2 5, 35-36= 3, 32-34= 30-31=-4 28-29=-7 3, 25-27= 0, 23-24= 5, 21-22= 7, 21-64/ 428-29=-7 3, 25-27= 0, 23-24= 5, 21-22= 7, 21-64/ 428-29=-7 3, 25-27= 0, 23-24= 5, 21-22= 7, 21-64/ 428-29=-7 3, 25-27= 0, 23-24= 5, 21-22= 7, 21-64/ 428-21, 21-64/ 428-21-64/ 428-21, 21-64/ 428-21, 21-64/	04/3284, 1/2583, 6/1850, 7753, 1/356, 101/1090, 2562/2559, 4/0, 984/2961, 2252/2229, 1520/1497, 1520/1497, 1520/1497, 2183/2196, 2186, 218	/61, /77,	on se or 3) TC DC Cc liv 4) Tr loa ov 5) Pr 6) All 7) All 8) Ga 9) Tr br 10) Ga 11) Tr	ly. For s e Standa consult of CLL: ASC DL = 1.15 \geq =1.0; CS e load ap his truss h ad of 20.0 rerhangs ovide add l plates a l plates a lable requires to be aced aga able stud his truss h	ituds e: ard Indi qualifie E 7-16 5); Is=1 5; Is=1 5; Is=1 0;	xposed to wind (n ustry Gable End I d building design 5; Pf=25.0 psf (Lu .0; Rough Cat B; Ct=1.10; IBC 16 where required. en designed for g r 2.00 times flat rc oncurrent with oth drainage to prev (1) MT20 unless ontinuous bottom theathed from onc teral movement (i ed at 2-0-0 oc. en designed for a	07.11.2 minimum ro reater of min roof liv oof load of 25.0 psf er live loads. ent water ponding. therwise indicated. otherwise indicated chord bearing. e face or securely .e. diagonal web). 10.0 psf bottom any other live loads
	Max Grav	54), 23=1 25=199 (l 28=200 (l 30=200 (l 32=201 (l 34=199 (l 36=200 (l	(LC 53), 22=2580 (L 88 (LC 1), 24=203 (_C 1), 27=200 (LC 1 _C 1), 29=200 (LC 1 _C 1), 31=200 (LC 1 _C 1), 33=200 (LC 1 _C 1), 35=200 (LC 1 _C 1), 37=200 (LC 1 (LC 53), 39=3010 (L	LC 1),),),),),),),	Vasd=87m II; Exp B; E and C-C C 15-1-12 to cantilever right expos	E 7-16; Vult=110m ph; TCDL=4.2psf; E Enclosed; MWFRS (orner (3) 0-1-12 to ' 21-7-8, Corner (3) 2 left and right expose sed;C-C for member hs shown; Lumber E	3CDL=6. (envelope 15-1-12, 21-7-8 to ed ; end v rs and fo	Opsf; h=25ft; (e) exterior zor Exterior (2) 36-7-8 zone; /ertical left an rces & MWFR	ne d				THO PESSIONA	74 ERED LENGTRO

April 1,2025

Page: 1

400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

ntinued on page 2

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	N21A	Common Supported Gable	1	1	Job Reference (optional)	R87439384

12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

13) All bearings are assumed to be HF No.2 .

- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 2967 lb uplift at joint 39, 2426 lb uplift at joint 21, 2886 lb uplift at joint 38, 33 lb uplift at joint 37, 15 lb uplift at joint 36, 18 lb uplift at joint 35, 28 lb uplift at joint 34, 35 lb uplift at joint 33, 29 lb uplift at joint 32, 18 lb uplift at joint 31, 13 lb uplift at joint 30, 12 lb uplift at joint 29, 12 lb uplift at joint 28, 12 lb uplift at joint 27, 13 lb uplift at joint 25, 11 lb uplift at joint 24, 18 lb uplift at joint 23 and 2454 lb uplift at joint 22.
- 15) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 16) This truss has been designed for a total drag load of 6428 lb. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 35-1-8 for 183.0 plf.

LOAD CASE(S) Standard

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Tue Apr 01 13:11:58 ID:?bO4TSH_ijjz7bcubJPUaczhxq6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	P01	Flat	2	1	Job Reference (optional)	R87439385

1-6-11

1-6-11

3x4 =

1

4

1-10-0

2x4 🛛

2

0

3

Builders FirstSource (Arlington, WA), Arlington, WA - 98223,

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Tue Apr 01 13:11:58 ID:fv4rTrmAsrJQ5nEsvCJpqVzhaSN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

GRIP

185/148

FT = 10%

2x4 ı 3x4 = 1-6-11 (psf) Spacing 2-0-0 CSI DEFL in (loc) l/defl L/d PLATES 25.0 Plate Grip DOL 1.15 тс 0.10 Vert(LL) 0.00 3-4 >999 240 MT20 BC Lumber DOL 1.15 0.03 Vert(CT) 180 0.00 3-4 >999 0.05 Horz(CT) 0.00 3 n/a n/a Weight: 8 lb connections. y others) of truss to ding 74 lb uplift at joint nce with the 2018 n 2306.1 and dified. Building ify that they are correct a total drag load of 100 DOL=(1.33) Connect ttom chord from 0-0-0 er Increase=1.15. Plate THOMING ZHAO PORESSIONAL ENGINE April 1,2025 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with take Connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

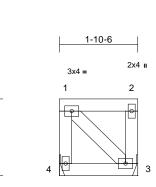
Scale = 1:27.4

(Roof Snow = 25.0)

Loading

TCLL

TCDL BCLL BCDL	15.0 0.0* 10.0	Rep Stress Incr Code	NO IBC2018	/TPI2014	WB Matrix-P	0.
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	1-6-11 oc purlins, ex Rigid ceiling directly bracing.	applied or 6-0-0 oc		Provide mec bearing plate 4 and 74 lb u This truss is International referenced s Load case(s) designer mus	er(s) for truss to hanical connect capable of with uplift at joint 3. designed in acc Building Code s tandard ANSI/T) 1 has/have be st review loads led use of this to	ion (by ordanc section PI 1. en mod to verify
	(size) 3= Mecha Max Horiz 4=38 (LC Max Uplift 3=-74 (LC Max Grav 3=303 (LC	35), 4=-74 (LC 32)	11)) This truss ha plf. Lumber [s been designe DOL=(1.33) Plat t drag loads alo	d for a e grip I
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-4=-327/82, 1-2=-13 3-4=-167/143 1-3=-229/253		LO 1)	AD CASE(S) Dead + Sno Increase=1 Uniform Loa	Standard ow (balanced): L .15	.umber
Vasd=87m II; Exp B; E and C-C C exposed ; e members a	E 7-16; Vult=110mph ph; TCDL=4.2psf; BCI inclosed; MWFRS (en orner (3) zone; cantile end vertical left and rig and forces & MWFRS - DL=1.60 plate grip DO	DL=6.0psf; h=25ft; Ca velope) exterior zone ver left and right ght exposed;C-C for for reactions shown;		voit 1 2	_ 10, 0 1- 20	


- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf
- 5) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be HF No.2 .

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	P02	Flat	40	1	Ri Job Reference (optional)	87439386

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Apr 01 13:11:59 ID:hI0Qfa7DEaKgYwBE9W6JBRzivpt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1-9-15

1-10-6

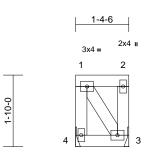
2x4 🛛 3x4 =

1-10-6

Scale = 1:27.4

oodio = merr	•													
Loading TCLL (Roof Snow = TCDL BCLL BCDL	= 25.0)	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC20	18/TPI2014	CSI TC BC WB Matrix-P	0.17 0.03 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 3-4 3-4 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 9 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORE BOT CHORE WEBS BRACING TOP CHORE BOT CHORE FORCES TOP CHORE BOT CHORE WEBS	 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural wr 1-10-6 oc pu Rigid ceiling bracing. (size) 3= Max Horiz 4= Max Uplift 3= Max Grav 3= (lb) - Maximu Tension 1-4=-351/60 	ood she Irlins, e directly = Mecha =-38 (LC =329 (LC =329 (LC um Com , 1-2=-1 1	athing directly applie xcept end verticals. applied or 6-0-0 oc nical, 4= Mechanica 10) 55), 4=-51 (LC 54) C 36), 4=329 (LC 39 pression/Maximum 61/152, 2-3=-195/0	ed or al	 a) Provide mechanism (a) bearing plate 4 and 51 lb 0. b) This truss is International referenced s (a) Load case(s designer muthor the international for the in	Standard ow (balanced): Lu .15	on (by oth standing 5 ordance w ection 230 Pl 1. n modified o verify that ss. I for a tota e grip DOL og bottom	ers) of truss i 1 lb uplift at j ith the 2018 06.1 and d. Building at they are co I drag load o .=(1.33) Con chord from 0	prrect f 100 nect -0-0					
Vasd=87 II; Exp B; and C-C exposed members Lumber I 2) TCLL: AS DOL = 1 Ce=1.0; live load 3) Provide a 4) This trus chord live 5) * This tru	; Enclosed; MWI Corner (3) zone ; end vertical lei s and forces & N DOL=1.60 plate SCE 7-16; Pf=25 .15); Is=1.0; Rou Cs=1.00; Ct=1.1 applied where r adequate draina s has been desi e load nonconcu uss has been desi	2psf; BC FRS (er e; cantile ft and rig MWFRS grip DO 5.0 psf (l ugh Cat 10; IBC equired. ge to pr gned for urrent wi signed f	DL=6.0psf; h=25ff; (velope) exterior zor ver left and right ght exposed;C-C for for reactions shown L=1.60 Lum DOL = 1.15 Pla B; Partially Exp.; 1607.11.2 minimum	ne ; ate roof g. ds.										NG ZHAO ASHINGTOU 174 TERED LU

- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be HF No.2.



Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	P03	Flat	2	1	Job Reference (optional)	R87439387

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Apr 01 13:11:59 ID:jv2md5jFam?z4mpzkd0Oq?ziui6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

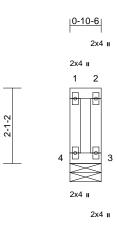
2x4 🛛

3x4 =

1-4-6

Scale = 1:29.5

Scale = 1:29.5											
Loading (psf) TCLL 25.0 (Roof Snow = 25.0) TCDL TCDL 15.0 BCLL 0.0* BCDL 10.0	Plate Grip DOL1.1Lumber DOL1.1Rep Stress IncrNC	15	BC	0.02	Vert(CT)	in 0.00 0.00 0.00	4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 8 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD 2x4 HF No.2 BOT CHORD 2x4 HF No.2 BOT CHORD 2x4 HF No.2 BRACING TOP CHORD Structural wood she 1-4-6 oc purlins, ext bracing. REACTIONS (size) 3= Mecha Max Horiz 4=-38 (LC Max Uplift 3=-94 (LC Max Grav 3=288 (LI FORCES (Ib) - Maximum Com Tension TOP CHORD 1-4=-314/101, 1-2=- BOT CHORD 3-4=-150/126 WEBS 1-3=-221/247 NOTES 1) Wind: ASCE 7-16; Vult=110mpf Vasd=87mph; TCDL=4.2psf; BC II; Exp B; Enclosed; MWFRS (er and C-C Corner (3) zone; cantile exposed ; end vertical left and ri members and forces & MWFRS Lumber DOL=1.60 plate grip DC 2) TCLL: ASCE 7-16; PI=25.0 psf (DOL = 1.15); Is=1.0; Rough Cat Ce=1.0; Cs=1.00; Ct=1.10; IBC live load applied where required 3) Provide adequate drainage to pr 4) This truss has been designed fo chord live load nonconcurrent w 5) * This truss has been designed fo chord live load nonconcurrent w 5) * This truss has been designed for chord live load nonconcurrent w 5) * This truss has been designed for chord live load nonconcurrent w 5) * This truss has been designed for chord live load nonconcurrent w 5) * This truss has been designed for chord live load nonconcurrent w 5) * This truss has been designed for chord live load nonconcurrent w 5) * This truss has been designed for chord live load nonconcurrent w 5) * This truss has been designed for chord live load nonconcurrent w 5) * This truss has been designed for chord and any other members.	x applied or 6-0-0 oc anical, 4= Mechanical C 8) C 35), 4=-94 (LC 32) C 36), 4=288 (LC 39) hpression/Maximum -116/107, 2-3=-133/0 h (3-second gust) DL=6.0psf; h=25ft; Cat. hvelope) exterior zone over left and right ght exposed;C-C for for reactions shown; DL=1.60 (Lum DOL = 1.15 Plate B; Partially Exp.; 1607.11.2 minimum roof revent water ponding. r a 10.0 psf bottom ith any other live loads. for a live load of 20.0psf where a rectangle fit between the bottom	 8) Provide mecl bearing plate 4 and 94 lb u 9) This truss is a International referenced st 10) Load case(s) designer mus for the intend 11) This truss ha plf. Lumber D truss to resis to 1-4-6 for 1 LOAD CASE(S) 1) Dead + Sno Increase=1. Uniform Load 	Standard ww (balanced): Lumbe 15	by othe ding 94 nce wit on 2306 odified. odified. a total o DOL= ottom c	ers) of truss to 4 lb uplift at join th the 2018 6.1 and . Building t they are corre drag load of 10 =(1.33) Connec thord from 0-0-0	ct 00 ct 0				TUA OMIN	FT = 10%
 All bearings are assumed to be 	HF NO.2 .									Aj	oril 1,2025


Page: 1

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	P04	Roof Special	2	1	Job Reference (optional)	R87439388

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Apr 01 13:11:59 ID:LTH3?__un9G?xqcC7UQEYMzit?J-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

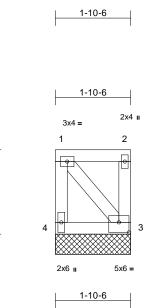
Page: 1

0-10-6

0-10-6

Scale = 1:31.9

Scale = 1.31.9												
Loading TCLL (Roof Snow = 25.0)	(psf) 25.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI TC BC	0.04	DEFL Vert(LL) Vert(TL)	in n/a n/a	(loc) -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 185/148
TCDL	15.0	Rep Stress Incr	YES	WB	0.04	Horiz(TL)	0.00	3	n/a	999 n/a		
BCLL	0.0*	Code	IBC2018/TPI2014	Matrix-R				-				
BCDL	10.0										Weight: 6 lb	FT = 10%
BOT CHORD 2x4 HI WEBS 2x4 HI BRACING TOP CHORD Struct 0-10-6 BOT CHORD Rigid 0 bracin REACTIONS (size) Max Ho Max Up Max Grit	6 oc purlins, e ceiling directly ng. 3=0-10-6, oriz 4=44 (LC olift 3=-71 (LC rav 3=78 (LC Maximum Com	athing directly applie xcept end verticals. applied or 10-0-0 or 4=0-10-6 11) 2 9), 4=-71 (LC 8) 10), 4=78 (LC 11) apression/Maximum	chord live 9) * This trus on the boi 3-06-00 ta chord and 10) All bearin c 11) Provide m bearing p 4 and 71 12) This truss Internatio	has been designer load nonconcurrer is has been design ttom chord in all are all by 2-00-00 wide any other member gs are assumed to lechanical connect late capable of with b uplift at joint 3. is designed in acc nal Building Code s d standard ANSI/TI (S) Standard	nt with any ned for a liv eas where will fit betw rs. be HF No. tion (by oth nstanding 7 cordance w section 230	other live loa e load of 20.0 a rectangle veen the botto 2. ers) of truss t '1 lb uplift at ju ith the 2018)psf om o					
TOP CHORD 1-4=-6 BOT CHORD 3-4=-4	67/73, 1-2=-6/7	7, 2-3=-67/73										
NOTES	+5/52											
 Wind: ASCE 7-16; Vasd=87mph; TCL II; Exp B; Enclosed and C-C Corner (3 exposed ; end vert members and forc Lumber DOL=1.60 Truss designed for only. For studs ex see Standard Indu or consult qualified 	DL=4.2psf; BC d; MWFRS (er 3) zone; cantile tical left and ri- xes & MWFRS 0 plate grip DC r wind loads in xposed to wind ustry Gable En d building desi	DL=6.0psf; h=25ft; (velope) exterior zor ever left and right ght exposed;C-C for for reactions shown DL=1.60 the plane of the tru: I (normal to the face d Details as applical gner as per ANSI/TF	ne ; ; ss), ble, PI 1.							J.	HAOMIN SOF W	IG ZHAO ASHINGTO
 live load applied w Provide adequate Gable requires cor Truss to be fully sh 	.0; Rough Cat Ct=1.10; IBC /here required drainage to pr ntinuous botto heathed from o eral movemen	B; Partially Exp.; 1607.11.2 minimum event water ponding	roof J.								REGIS REGIS	174 TERED AL ENGINE



April 1,2025

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	P05	Flat Supported Gable	48	1	Job Reference (optional)	R87439389

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Tue Apr 01 13:11:59 ID:QrhQkswfvpa80DY9n25MRoziv0V-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

'n

Scale = 1:28.6

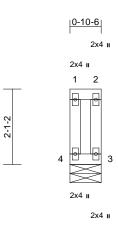
Plate Offsets (X, Y): [3:0-3-0,0-3-0]

	(X, T). [3.0-3-0,0-3-0	1											
Loading TCLL (Roof Snow = TCDL BCLL BCDL	(psf) 25.0 25.0) 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC201	8/TPI2014	CSI TC BC WB Matrix-P	0.10 0.07 0.11	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 10 lb	GRIP 185/148 FT = 10%
	2x4 HF No.2 2x4 HF No.2 Structural wood sh 1-10-6 oc purlins, Rigid ceiling direct bracing. (size) 3=1-10- Max Horiz 4=-44 (L Max Uplift 3=-451 Max Grav 3=471 (I (lb) - Maximum Co Tension 1-4=-505/461, 1-2=	LC 35), 4=-451 (LC 3 _C 36), 4=471 (LC 39 mpression/Maximum 354/344, 2-3=-63/49 h (3-second gust)	10 11 32) ⁽⁾⁾ 12 9 13	braced again Gable studs This truss ha chord live loo * This truss lo on the bottoo 3-06-00 tall l chord and as 0) All bearings 1) Provide meet bearing platt 4 and 451 lb 2) This truss is International referenced s 3) This truss ha plf. Lumber l	•	tion the second	iagonal web)) psf bottom other live load e load of 20.0 a rectangle veen the botto 2. ers) of truss t 51 lb uplift at 16.1 and I drag load of =(1.33) Con). ads. Opsf om to t joint f 234 nnect					

II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.
- Provide adequate drainage to prevent water ponding. 4)
- 5) Gable requires continuous bottom chord bearing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	P06	Roof Special	2	1	Job Reference (optional)	R87439390

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Apr 01 13:11:59 ID:tqmYxGNb?IQKOveYZvWzNJzit_o-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

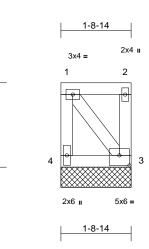
0-10-6

0-10-6

Scale = 1:31.9

Loading (psf)		0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 25.0		15	TC BC	0.04	Vert(LL) Vert(TL)	n/a	-	n/a	999	MT20	185/148
(Roof Snow = 25.0) TCDL 15.0		15 ES	WB	0.04 0.00	Horiz(TL)	n/a 0.00	- 3	n/a n/a	999 n/a		
BCLL 0.0		C2018/TPI2014	Matrix-R	0.00	110112(11)	0.00	5	n/a	11/a		
BCDL 10.0		02010/11/2014	Wath A-IX							Weight: 6 lb	FT = 10%
LUMBER TOP CHORD 2x4 HF No.2 BOT CHORD 2x4 HF No.2 WEBS 2x4 HF No.2 BRACING TOP CHORD Structural wood sl 0-10-6 oc purlins, BOT CHORD Rigid ceiling direc bracing. REACTIONS (size) 3=0-10. Max Horiz 4=44 (L Max Uplift 3=-71 (Max Grav 3=78 (L	_C 9), 4=-71 (LC 8) C 10), 4=78 (LC 11) mpression/Maximum	 chord live loa 9) * This truss h on the bottor 3-06-00 tall h chord and ar 10) All bearings 11) Provide mec bearing plate 4 and 71 lb u 12) This truss is International 	I as been designed fo ad nonconcurrent w has been designed fo n chord in all areas by 2-00-00 wide will by other members. are assumed to be hanical connection e capable of withstau uplift at joint 3. designed in accorda Building Code sect tandard ANSI/TPI 1 Standard	ith any for a liv where fit betw HF No. (by oth nding 7 ance w ion 230	other live load e load of 20.0 a rectangle veen the botto 2. ers) of truss to 1 lb uplift at jo ith the 2018	ipsf im o				weight. 0 ib	11 - 1078
 NOTES Wind: ASCE 7-16; Vult=110m Vasd=87mph; TCDL=4.2psf; E II; Exp B; Enclosed; MWFRS (and C-C Corner (3) zone; can exposed ; end vertical left and members and forces & MWFR Lumber DOL=1.60 plate grip ID Truss designed for wind loads only. For studs exposed to wi see Standard Industry Gable E or consult qualified building de 3) TCLL: ASCE 7-16; Pf=25.0 ps DOL = 1.15); Is=1.0; Rough C Ce=1.0; Cs=1.00; Ct=1.10; IBI live load applied where require Provide adequate drainage to 5) Gable requires continuous bot 6) Truss to be fully sheathed from braced against lateral movemer 7) Gable studs spaced at 2-0-0 or 	CDL=6.0psf; h=25ft; Cat. envelope) exterior zone illever left and right right exposed;C-C for S for reactions shown; ODL=1.60 in the plane of the truss ad (normal to the face), end Details as applicable, signer as per ANSI/TPI 1. f (Lum DOL = 1.15 Plate at B; Partially Exp.; 2.1607.11.2 minimum roof d. prevent water ponding. tom chord bearing. n one face or securely ent (i.e. diagonal web).								and a second sec	PROFIESSION	IG ZHLAO ASHIDICITU DIA DIA DIA DIA DIA DIA DIA DIA DIA DIA

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

April 1,2025

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	P09	Flat Supported Gable	2	1	Job Reference (optional)	R87439391

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Tue Apr 01 13:11:59 ID:ghhOi?mD3Kib_x2MzjYekMziswQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-1-2

Scale = 1:28.6

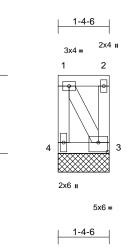
Plate Offsets (X, Y): [3:0-3-0,0-3-0]

). [3.0-3-0,0-3-0]												
Loading TCLL (Roof Snow = 25.0) TCDL BCLL BCDL	(psf) 25.0) 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC201	8/TPI2014	CSI TC BC WB Matrix-P	0.10 0.06 0.11	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 10 lb	GRIP 185/148 FT = 10%
BOT CHORD 2x4 WEBS 2x4 BRACING 2x4 TOP CHORD 5tr 1-8 BOT CHORD Rig bot REACTIONS (size Max Max Max FORCES (lb) Ter TOP CHORD 1-4 BOT CHORD 3-4	B-14 oc purlins, e gid ceiling directly acing. e) 3=1-8-14, k Horiz 4=44 (LC k Uplift 3=-453 (L Grav 3=471 (L() - Maximum Com nsion	Pathing directly applie except end verticals. v applied or 6-0-0 oc , 4=1-8-14 11) .C 35), 4=-453 (LC 3 C 36), 4=-453 (LC 3 pression/Maximum -327/317, 2-3=-58/45	1 132)) 1 5 1	 braced aga Gable studs This truss h chord live lc * This truss on the botto 3-06-00 tall Chord and a All bearings Provide me bearing plat 4 and 453 ll This truss is Internationareferenced This truss to resist to 1-8-14 for 		ment (i.e. c) oc. ed for a 10.1 nt with any need for a liv reas where will fit betw ers. be HF No. tion (by oth hstanding 2 cordance w section 23C PI 1. ed for a tota te grip DOL	iagonal web opsf bottom other live loa e load of 20. a rectangle ween the bott 2. ers) of truss 53 lb uplift a ith the 2018 06.1 and l drag load c .=(1.33) Cor). ads. 0psf tom to ti joint of 234 annect					
1) Wind: ASCE 7-) (3-second gust) DI =6 0psf: b=25ft: (OAD CASE(S) Standard								

Vasd=87mph: TCDL=4.2psf: BCDL=6.0psf: h=25ft: Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.
- Provide adequate drainage to prevent water ponding. 4)
- 5) Gable requires continuous bottom chord bearing.

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville CA 95661 916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	P10	Flat Supported Gable	2	1	Job Reference (optional)	R87439392

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Tue Apr 01 13:12:00 ID:HmGaVZ8c6gpjrz2wBfe6edzitXz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-1-2

Scale = 1:30.8

Plate Offsets (X, Y): [3:0-3-0.0-3-0]

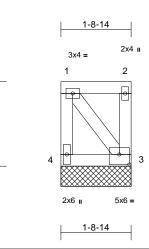
oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL	25.0	Plate Grip DOL	1.15		TC	0.10	Vert(LL)	n/a	-	n/a	999	MT20	185/148
Roof Snow = 2	25.0)	Lumber DOL	1.15		BC	0.05	Vert(TL)	n/a	-	n/a	999		
CDL	15.0	Rep Stress Incr	NO		WB	0.11	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IBC2018	3/TPI2014	Matrix-P								
BCDL	10.0											Weight: 9 lb	FT = 10%
UMBER			6)	Truss to be	fully sheathed fr	om one fac	e or securely	,					
OP CHORD	2x4 HF No.2		-,		nst lateral move								
SOT CHORD	2x4 HF No.2		7)		spaced at 2-0-0		0 ,						
VEBS	2x4 HF No.2		8)	This truss h	as been designe	d for a 10.0	0 psf bottom						
BRACING					ad nonconcurre								
OP CHORD	Structural wood sh	eathing directly appli	ed or ⁹⁾		has been desigr			0psf					
		xcept end verticals.			m chord in all ar								
BOT CHORD	· ·	ly applied or 6-0-0 oc	:		by 2-00-00 wide ny other membe		veen the bott	om					
	bracing.		10		are assumed to		2						
EACTIONS	· /	, 4=1-4-6			chanical connect			to					
	Max Horiz 4=-44 (L	,			e capable of with								
		(LC 35), 4=-461 (LC 3		01	uplift at joint 3.	J							
	•	LC 36), 4=475 (LC 39	· 12) This truss is	designed in acc	ordance w	ith the 2018						
ORCES	()	mpression/Maximum			I Building Code)6.1 and						
	Tension	0.40/000 0.0 40/0			standard ANSI/T								
OP CHORD	3-4=-294/261	=-248/238, 2-3=-43/3	4 13		as been designe								
VEBS	3-4=-294/261 1-3=-534/579				DOL=(1.33) Plat								
	1-3=-334/5/9			to 1-4-6 for	st drag loads alo	ng bollom	chora from 0	-0-0					
		h (0											
	CE 7-16; Vult=110mp			DAD CASE(S)	Stanuaru								
		CDL=6.0psf; h=25ft; envelope) exterior zo											
· · · ·	Corner (3) zone; canti	1 /											
		right exposed C-C for	-									A OMIN	IG ZD

exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss

- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.
- Provide adequate drainage to prevent water ponding. 4)
- 5) Gable requires continuous bottom chord bearing.

TIAON ZHAO PORESSIONAL ENGINE April -

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

400 Sunrise Ave., Suite 270 Roseville CA 95661 916.755.3571 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	P11	Flat Supported Gable	2	1	Job Reference (optional)	R87439393

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Tue Apr 01 13:12:00 ID:Mv0v7IqsI9YIoLpcb6g6Fdzisyw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-1-2

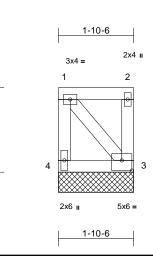
Scale = 1:28.6

Plate Offsets (X, Y): [3:0-3-0,0-3-0]

Loading	(psf)	Spacing	2-0-0		CSI	0.40	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	25.0	Plate Grip DOL	1.15		TC	0.10	Vert(LL)	n/a	-	n/a	999	MT20	185/148
(Roof Snow = 2	,	Lumber DOL	1.15		BC	0.06	Vert(TL)	n/a	-	n/a	999		
TCDL	15.0	Rep Stress Incr	NO		WB	0.11	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IBC201	8/TPI2014	Matrix-P								
BCDL	10.0											Weight: 10 lb	FT = 10%
	2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural wood she 1-8-14 oc purlins, e Rigid ceiling directly bracing. (size) 3=1-8-14, Max Horiz 4=-44 (LC Max Uplift 3=-454 (L Max Grav 3=472 (LC (lb) - Maximum Com Tension 1-4=-508/463, 1-2=- 3-4=-373/340 1-3=-577/614	xcept end verticals. applied or 6-0-0 oc 4=1-8-14 10) C 35), 4=-454 (LC 3 C 36), 4=472 (LC 39) pression/Maximum	10 11 2)) 12	braced agai Gable studs This truss h chord live lo * This truss on the botto 3-06-00 tall chord and a 1) All bearings All bearing plat 4 and 454 ll 2) This truss is Internationa referenced :	fully sheathed fr inst lateral move a spaced at 2-0-(as been designe oad nonconcurre has been designe m chord in all at by 2-00-00 wide iny other member are assumed to chanical connec te capable of wit o uplift at joint 3. a designed in acc al Building Code standard ANSI/T as been designe DOL=(1.33) Pla st drag loads alo	ment (i.e. d) oc. ed for a 10.0 nt with any need for a liv reas where e will fit betw ers. b be HF No. tion (by oth hstanding 4 cordance w section 230 PI 1. ed for a tota te grip DOL	iagonal web opsf bottom other live loa e load of 20. a rectangle ween the bott 2. ers) of truss 54 lb uplift a ith the 2018 06.1 and l drag load c =(1.33) Cor). ads. .0psf tom to ti joint of 234 nnect					
NOTES	1 0= 011/014			to 1-8-14 fo		Jing Dottom		,,,,					
1) Wind: ASC	CE 7-16; Vult=110mph nph: TCDL=4.2psf: BC			DAD CASE(S									

Vasd=87mph: TCDL=4.2psf: BCDL=6.0psf: h=25ft: Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.
- Provide adequate drainage to prevent water ponding. 4)
- 5) Gable requires continuous bottom chord bearing.


Page: 1

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	P12	Flat Supported Gable	47	1	Job Reference (optional)	R87439394

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Tue Apr 01 13:12:00 ID:1kc_0zf0tluEF97OkYMIBIzisvH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-10-6

1-2 'n

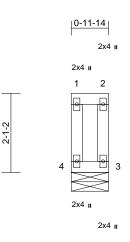
Scale = 1:28.6

Plate Offsets (X, Y): [3:0-3-0,0-3-0]

	(X, T). [3.0-3-0,0-3-0]	1	-		1								
Loading TCLL	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.10	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 185/148
(Roof Snow =	= 25.0)	Lumber DOL	1.15		BC	0.07	Vert(TL)	n/a	-	n/a	999		
TCDL	15.0	Rep Stress Incr	NO		WB	0.11	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IBC2018/	/TPI2014	Matrix-P								
BCDL	10.0											Weight: 10 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 10 WIGHTAS	2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural wood she 1-10-6 oc purlins, e Rigid ceiling directly bracing. (size) 3=1-10-6, Max Horiz 4=-44 (LC Max Uplift 3=-452 (L Max Grav 3=472 (LC (lb) - Maximum Com Tension 1-4=-506/462, 1-2=- 3-4=-399/366 1-3=-594/629	xcept end verticals. applied or 6-0-0 oc 4=1-10-6 (20) C 35), 4=-452 (LC 3 C 36), 4=-452 (LC 3 (LC 39), 9 (10), 4=472 (LC 39) (10), 4=472 (LC 39)	7) 8) ed or 9) 10) 11) 2)) 12)) 13)	braced agai Gable studs This truss hi chord live lo * This truss on the botto 3-06-00 tall chord and a All bearings Provide met bearing plat 4 and 452 lb This truss is Internationa referenced s This truss is plf. Lumber truss to resis to 1-10-6 for		ment (i.e. d) oc. d for a 10.0 nt with any need for a liv reas where will fit betw ers. b be HF No. tion (by oth hstanding 4 cordance w section 230 PI 1. d for a tota te grip DOL	iagonal web)) psf bottom other live load e load of 20. a rectangle veen the bott 2. ers) of truss : 52 lb uplift ar ith the 2018 16.1 and I drag load o =(1.33) Con). opsf om to t joint f 234 unect					
1) Wind: AS	CE 7-16; Vult=110mph	(3-second gust)	LO	AD CASE(S)	Standard								

1) Vasd=87mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.
- Provide adequate drainage to prevent water ponding. 4)
- 5) Gable requires continuous bottom chord bearing.


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	P12A	Flat Supported Gable	2	1	Job Reference (optional)	R87439395

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Apr 01 13:12:00 ID:kSt3uKvpzvFITF12MTgIS_zispn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

0-11-14

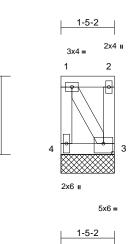
0-11-14

Scale = 1:30.5

					-							
Loading (psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
	25.0	Plate Grip DOL	1.15	TC	0.04	Vert(LL)	n/a	-	n/a	999	MT20	185/148
(Roof Snow = 25.0)		Lumber DOL	1.15	BC	0.04	Vert(TL)	n/a	-	n/a	999		
TCDL 1	15.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IBC2018/TPI2014	Matrix-R								
BCDL 1	10.0										Weight: 6 lb	FT = 10%
LUMBER TOP CHORD 2x4 HF No.2 BOT CHORD 2x4 HF No.2 WEBS 2x4 HF No.2 BRACING TOP CHORD Structural woo 0-11-14 oc pu BOT CHORD Rigid ceiling of bracing. REACTIONS (size) 3=0 Max Horiz 4=- Max Uplift 3=- Max Grav 3=6	od shea urlins, e directly 0-11-14 -44 (LC -59 (LC 69 (LC m Com	9), 4=-59 (LC 8) 19), 4=69 (LC 20) pression/Maximum	d or d or 12) This trus on the bol 3-06-00 ta chord and 10) All bearing 11) Provide m bearing pl 4 and 59 12) This truss Internation	has been designed load nonconcurrent s has been designe tom chord in all are: Il by 2-00-00 wide v any other members gs are assumed to b echanical connection ate capable of withs b uplift at joint 3. is designed in acco hal Building Code se d standard ANSI/TP S) Standard	with any ed for a liv as where vill fit betw s. be HF No bon (by oth standing st ordance we ection 230	other live load e load of 20.0 a rectangle veen the botto 2 . ers) of truss to 9 lb uplift at jo ith the 2018	psf m					
 NOTES Wind: ASCE 7-16; Vult=11 Vasd=87mph; TCDL=4.2p II; Exp B; Enclosed; MWFI and C-C Corner (3) zone; exposed ; end vertical left members and forces & MV Lumber DOL=1.60 plate g Truss designed for wind Ic only. For studs exposed t see Standard Industry Gal or consult qualified buildin TCLL: ASCE 7-16; Pf=25. DOL = 1.15); Is=1.0; Roug Ce=1.0; Cs=1.00; Ct=1.10 live load applied where red Provide adequate drainag Gable requires continuous Truss to be fully sheathed braced against lateral mov 	psf; BCI RS (en cantile and rig WFRS f prip DOI bads in to wind ble Enc on desig 0 psf (L gh Cat I 0 psf (L gh Cat I 1 quired. le to pre s botton I from o	DL=6.0psf; h=25ft; C velope) exterior zone ver left and right ht exposed;C-C for ior reactions shown; L=1.60 the plane of the trus (normal to the face), I Details as applicab iner as per ANSI/TP um DOL = 1.15 Plat 3; Partially Exp.; 607.11.2 minimum r event water ponding. n chord bearing. ne face or securely	s le, l 1. te roof							- A A A A A A A A A A A A A A A A A A A	R	IG ZHAO ASA CIONA TERED INOT

- 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 7) Gable studs spaced at 2-0-0 oc.

April 1,2025


UNAL D

Page: 1

Job	Truss	Truss Type	Qty Ply		MKM EAST TOWN CROSSING BLDG D		
4449076	P13	Flat Supported Gable	2	1	Job Reference (optional)	R87439396	

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Tue Apr 01 13:12:00 ID:nd4bU0boj0eBkqqw3p5Vjcziv?d-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-1-2

Scale = 1:30.8

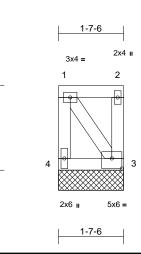
Plate Offsets (X, Y): [3:0-3-0.0-3-0]

.oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL	25.0	Plate Grip DOL	1.15		TC	0.10	Vert(LL)	n/a	-	n/a	999	MT20	185/148
Roof Snow = 2	5.0)	Lumber DOL	1.15		BC	0.05	Vert(TL)	n/a	-	n/a	999		
CDL	15.0	Rep Stress Incr	NO		WB	0.11	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IBC2018	3/TPI2014	Matrix-P								
BCDL	10.0											Weight: 9 lb	FT = 10%
UMBER			6)	Truss to be	fully sheathed f	rom one fac	e or securely						
	2x4 HF No.2		0)		nst lateral move								
	2x4 HF No.2		7)		spaced at 2-0-			,-					
	2x4 HF No.2		8)	This truss h	as been design	ed for a 10.0) psf bottom						
RACING					ad nonconcurre								
	Structural wood she	athing directly applie	ed or ⁹⁾		has been desig			0psf					
	1-5-2 oc purlins, except end verticals.				m chord in all a								
OT CHORD	Rigid ceiling directly	applied or 6-0-0 oc			by 2-00-00 wide		veen the bott	tom					
	bracing.		10		ny other memb		0						
EACTIONS (size) 3=1-5-2,	4=1-5-2			are assumed to chanical connect			to					
	Max Horiz 4=-44 (LC	,			e capable of wit								
	/lax Uplift 3=-461 (L	,, ,	,		o uplift at joint 3			it joint					
Ν	Max Grav 3=475 (L	C 36), 4=475 (LC 39) 12		designed in ac		ith the 2018						
ORCES	(lb) - Maximum Con	npression/Maximum		, Internationa	I Building Code	section 230	6.1 and						
	Tension			referenced	standard ANSI/	TPI 1.							
		-261/252, 2-3=-45/36	³ 13		as been design								
	3-4=-307/274				DOL=(1.33) Pla								
	1-3=-540/584				st drag loads al	ong bottom	chord from 0	0-0-0					
IOTES				to 1-5-2 for	•								
	E 7-16; Vult=110mph			DAD CASE(S	Standard								
	oh; TCDL=4.2psf; BC												
	nclosed; MWFRS (ei		ne										
	orner (3) zone; cantile	ever left and right abt exposed C-C for										MIN	IG ZH

exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss

- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate
- DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.
- Provide adequate drainage to prevent water ponding. 4)
- 5) Gable requires continuous bottom chord bearing.

ZHAO \$1AO PORESSIONAL ENGINE April -


Page: 1

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	P14	Flat Supported Gable	2	1	Job Reference (optional)	R87439397

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Tue Apr 01 13:12:01 ID:Mu0oCGV2QjmTtGuOmB30n4zhzLy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-1-2

Scale = 1:28.6

Plate Offsets (X, Y): [3:0-3-0.0-3-0]

Plate Offsets (X, Y): [3:0-3-0,0-3-0]											
Loading (psf) TCLL 25.0	Spacing2-0Plate Grip DOL1.1	0-0 15	CSI TC	0.10	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 185/148
Roof Snow = 25.0)	Lumber DOL 1.1	15	BC	0.06	Vert(TL)	n/a	-	n/a	999		
TCDL 15.0	Rep Stress Incr NC	C	WB	0.11	Horiz(TL)	0.00	3	n/a	n/a		
3CLL 0.0*	Code IB0	C2018/TPI2014	Matrix-P								
3CDL 10.0										Weight: 9 lb	FT = 10%
LUMBER TOP CHORD 2x4 HF No.2 30T CHORD 2x4 HF No.2 30T CHORD 2x4 HF No.2 30T CHORD 2x4 HF No.2 30T CHORD Structural wood shear 1-7-6 oc purlins, exc 30T CHORD Rigid ceiling directly bracing. REACTIONS (size) 3=1-7-6, 4 Max Horiz 4=-44 (LC Max Uplift 3=-456 (LC Max Grav 3=473 (LC FORCES (lb) - Maximum Comp Tension TOP CHORD 1-4=-511/464, 1-2=-3 30T CHORD 3-4=-346/313 WEBS 1-3=-561/600 NOTES I) Wind: ASCE 7-16; Vult=110mph Vasd=87mph; TCDL=4.2psf; BCI II: Ere B: Enclosed: MWEPS (cm	applied or 6-0-0 oc =1-7-6 8) C 35), 4=-456 (LC 32) 36), 4=473 (LC 39) pression/Maximum 301/291, 2-3=-53/41 (3-second gust) DL=6.0psf; h=25ft; Cat.	 braced agair 7) Gable studs 8) This truss ha chord live loa 9) * This truss h on the bottor 3-06-00 tall b chord and ar 10) All bearings 11) Provide mec bearing plate 4 and 456 lb 12) This truss is International referenced s 13) This truss ha plf. Lumber I 		t (i.e. d r a 10.(th any or a liv where fit betw HF No. (by oth nding 4 ance wi on 230 r a tota ip DOL	iagonal web) o psf bottom other live loa e load of 20.0 a rectangle veen the botto 2. ers) of truss t 56 lb uplift at th the 2018 6.1 and I drag load of =(1.33) Con	Opsf om joint i 234 nect					

II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.
- Provide adequate drainage to prevent water ponding. 4)
- 5) Gable requires continuous bottom chord bearing.

LAOMING ZHAO ROMESSIONAL ENGINE April -

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	P15	Flat Supported Gable	2	1	Job Reference (optional)	R87439398

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Tue Apr 01 13:12:01 ID:?JwSgpbFTTIMOBVd_H03SSzhz7d-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

4 3 2x6 🛛 5x6 = 1-10-4

MiTek 400 Sunrise Ave., Suite 270 Roseville, CA 95661 916.755.3571 / MiTek-US.com

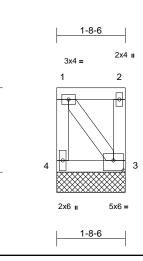
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Scale = 1:28.6

Plate Offsets	(Х,	Y):	[3:0-3-0,0-3-0
---------------	-----	-----	----------------

Plate Offsets (X, Y): [3:0-3-0,0-3-0]									
Loading (psf) TCLL 25.0 (Roof Snow = 25.0) TCDL TCDL 15.0 BCLL 0.0* BCDL 10.0	Spacing2-CPlate Grip DOL1.1Lumber DOL1.1Rep Stress IncrNCCodeIBC	5 5	CSI TC 0.10 BC 0.07 WB 0.11 Matrix-P	DEFL in Vert(LL) n/a Vert(TL) n/a Horiz(TL) 0.00	-	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 10 lb	GRIP 185/148 FT = 10%
BOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 3=1-10-4 Max Horiz 4=-59 (L Max Uplift 3=-452 (Max Grav 3=472 (L FORCES (lb) - Maximum Cor Tension	LC 35), 4=-452 (LC 32) C 36), 4=-472 (LC 39) npression/Maximum -351/342, 2-3=-63/49 h (3-second gust) CDL=6.0psf; h=25ft; Cat. nvelope) exterior zone ever left and right ight exposed; C-C for 6 for reactions shown; DL=1.60 n the plane of the truss d (normal to the face), d Details as applicable, igner as per ANSI/TPI 1. (Lum DOL = 1.15 Plate t B; Partially Exp.; 1607.11.2 minimum roof J.	 braced agair 7) Gable studs 8) This truss ha chord live loa 9) * This truss h on the bottor 3-06-00 tall h chord and ar 10) All bearings 11) Provide mec bearing plate 4 and 452 lb 12) This truss is International referenced s 13) This truss h plf. Lumber I 		liagonal web). D psf bottom other live loads. e load of 20.0psf a rectangle ween the bottom 2. ers) of truss to 152 lb uplift at joint ith the 2018 36.1 and I drag load of 234 .=(1.33) Connect			and the second se	TROPESSIONA	

1-10-4 2x4 🛚 3x4 = 1 2 0


2-1-2

1-10-4

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	P17	Flat Supported Gable	23	1	Job Reference (optional)	R87439399

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Tue Apr 01 13:12:01 ID:nd4bU0boj0eBkqqw3p5Vjcziv?d-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-1-2

Scale = 1:28.6

Plate Offsets (X, Y): [3:0-3-0.0-3-0]

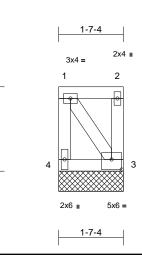
Plate Olisets (X, 1	r): [3:0-3-0,0-3-0]												
Loading TCLL	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.10	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 185/148
(Roof Snow = 25.)		Lumber DOL	1.15		BC	0.06	Vert(TL)	n/a	-	n/a	999		
TCDL	15.0	Rep Stress Incr	NO		WB	0.11	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IBC2018	8/TPI2014	Matrix-P								
BCDL	10.0											Weight: 10 lb	FT = 10%
SOT CHORD 2: WEBS 2: BRACING 1 SOP CHORD S BOT CHORD R BOT CHORD R BOT CHORD 8 BOT CHORD 1 TOP CHORD 1 SOT CHORD 1 SOT CHORD 3 WEBS 1 WEBS 1	-8-6 oc purlins, exi igid ceiling directly racing. ze) 3=1-8-6, 4 ix Horiz 4=-44 (LC ix Uplift 3=-455 (L ix Grav 3=472 (LC b) - Maximum Com ension -4=-508/463, 1-2=- -4=-364/331 -3=-571/609 7-16; Vult=110mph	applied or 6-0-0 oc 4=1-8-6 ; 10) C 35), 4=-455 (LC 3 C 36), 4=472 (LC 39 ppression/Maximum 319/309, 2-3=-56/44	10 11 2) • 12 • 13	braced agai Gable studs This truss h chord live lo * This truss on the botto 3-06-00 tall chord and a)) All bearings () Provide me bearing plat 4 and 455 ll 2) This truss is Internationa referenced 3) This truss h plf. Lumber		ment (i.e. d oc. d for a 10.1 ht with any ed for a liv eas where will fit betw rs. be HF No. ion (by oth istanding 4 ordance w section 230 Pl 1. d for a tota e grip DOL	iagonal web) o psf bottom other live loa e load of 20. a rectangle veen the bott 2. ers) of truss 55 lb uplift a ith the 2018 16.1 and I drag load o =(1.33) Cor). ads. Opsf om to t joint f 234 nnect					
		DL=6.0pst; n=25ft; (

II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.
- Provide adequate drainage to prevent water ponding. 4)
- 5) Gable requires continuous bottom chord bearing.

JAOMING ZHAO PORESSIONAL ENGINE April -

Page: 1



Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	P18	Flat Supported Gable	2	1	Job Reference (optional)	R87439400

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Tue Apr 01 13:12:01 ID:GdDFPoEPT?Bpzpow6k1hqaziv_p-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1-7-4

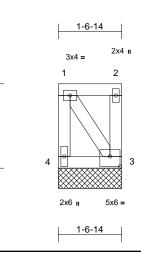
2-1-2

Scale = 1:28.6

Plate Offsets (X, Y): [3:0-3-0,0-3-0]

BCDL 10.0 LUMBER TOP CHORD TOP CHORD 2x4 HF No.2 BOT CHORD 2x4 HF No.2 BRACING TOP CHORD TOP CHORD Structural wood sheathing directly applied or 1-7-4 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. BEACTIONS (size) S=1.7.4 4=1.7.4		CSI								
(Roof Snow = 25.0) Lumber DOL 1.15 TCDL 15.0 Rep Stress Incr NO BCLL 0.0* Code IBC20 BCDL 10.0 IBC20 IBC20 LUMBER TOP CHORD 2x4 HF No.2 BOT CHORD 2x4 HF No.2 BCACING TOP CHORD Structural wood sheathing directly applied or 1-7-4 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. BCACTIONS (size) 3-1-7-4 4-11-7-4				DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCDL 15.0 Rep Stress Incr NO BCLL 0.0* Code IBC20 BCDL 10.0 IBC20 LUMBER TOP CHORD 2x4 HF No.2 BOT CHORD 2x4 HF No.2 BRACING TOP CHORD Structural wood sheathing directly applied or 1-7-4 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.	5	тс	0.10	Vert(LL)	n/a	-	n/a	999	MT20	185/148
3CLL 0.0* Code IBC20 3CDL 10.0 IBC20 LUMBER FOP CHORD 2x4 HF No.2 3OT CHORD 2x4 HF No.2 WEBS 2x4 HF No.2 SRACING FOP CHORD Structural wood sheathing directly applied or 1-7-4 oc purlins, except end verticals. 3OT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. BRACING	5	BC	0.06	Vert(TL)	n/a	-	n/a	999		
3CDL 10.0 LUMBER FOP CHORD TOP CHORD 2x4 HF No.2 SOT CHORD 2x4 HF No.2 WEBS 2x4 HF No.2 BRACING FOP CHORD TOP CHORD Structural wood sheathing directly applied or 1-7-4 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. BEACTIONS (size) 3-1-7-4 4-1-7-4		WB	0.11	Horiz(TL)	0.00	3	n/a	n/a		
UMBER COP CHORD 2x4 HF No.2 SOT CHORD 2x4 HF No.2 WEBS 2x4 HF No.2 SRACING	2018/TPI2014	Matrix-P								
TOP CHORD 2x4 HF No.2 BOT CHORD 2x4 HF No.2 BOT CHORD 2x4 HF No.2 WEBS 2x4 HF No.2 BRACING TOP CHORD Structural wood sheathing directly applied or 1-7-4 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS (size) 3-1-7-4 4-1-7-4									Weight: 9 lb	FT = 10%
Max Horiz 4=-44 (LC 10) Max Uplift 3=-456 (LC 35), 4=-456 (LC 32) Max Grav 3=473 (LC 36), 4=473 (LC 39) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-4=-511/464, 1-2=-299/289, 2-3=-53/41 BOT CHORD 3-4=-344/311 WEBS 1-3=-560/599 NOTES	 braced again Gable studs This truss ha chord live loa This truss ha on the bottom 3-06-00 tall b chord and ar All bearing plate 4 and 456 lb This truss is International referenced st This truss a plf. Lumber D 		t (i.e. di t (i.e. di th any o or a live where a fit betw HF No.2 (by othe nding 4: ance wi on 230 r a total ip DOL:	agonal web). psf bottom other live loa e load of 20.0 a rectangle een the botto 2. prs) of truss to 56 lb uplift at th the 2018 6.1 and drag load of =(1.33) Com	Opsf om joint 234 nect					

II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.
- Provide adequate drainage to prevent water ponding. 4)
- 5) Gable requires continuous bottom chord bearing.

TAOMING ZHAO FORESSIONAL ENGINE April -

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	P19A	Flat Supported Gable	1	1	Job Reference (optional)	R87439401

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Tue Apr 01 13:12:01 ID:GvRCQ0MZoUok6OdVXZsyk?zhyCX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-1-2

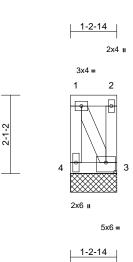
Scale = 1:28.6

Plate Offsets (X, Y): [3:0-3-0,0-3-0]

		1			1	-							
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	25.0	Plate Grip DOL	1.15		TC	0.10	Vert(LL)	n/a	-	n/a	999	MT20	185/148
(Roof Snow = 2	25.0)	Lumber DOL	1.15		BC	0.06	Vert(TL)	n/a	-	n/a	999		
TCDL	15.0	Rep Stress Incr	NO		WB	0.11	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IBC2018	/TPI2014	Matrix-P								
BCDL	10.0											Weight: 9 lb	FT = 10%
FORCES	Max Horiz 4=44 (LC Max Uplift 3=-457 (L Max Grav 3=473 (LC (Ib) - Maximum Com Tension	xcept end verticals. applied or 6-0-0 oc 4=1-6-14 11) C 35), 4=-457 (LC 3 C 36), 4=473 (LC 39) ppression/Maximum	10) 11) 2)) 12)	braced agai Gable studs This truss h chord live lo * This truss on the botto 3-06-00 tall chord and a All bearings Provide me bearing plat 4 and 457 lt This truss is International referenced	fully sheathed fr nst lateral mover spaced at 2-0-C as been designe wad nonconcurrer has been design m chord in all ar by 2-00-00 wide ny other membe are assumed to chanical connect e capable of witt o uplift at joint 3. c designed in ac designed in actor standard ANSI/T	ment (i.e. d) oc. d for a 10.0 nt with any eed for a liv eas where will fit betw ors. be HF No.0 tion (by oth histanding 4 cordance w section 230 PI 1.	iagonal web o psf bottom other live loa e load of 20. a rectangle veen the bott 2. ers) of truss 57 lb uplift a th the 2018 6.1 and). ads. .0psf tom to tt joint					
TOP CHORD BOT CHORD	1-4=-512/465, 1-2=- 3-4=-338/305	2321202, 2-3=-31/40	y 13)	plf. Lumber	as been designe DOL=(1.33) Plat	te grip DOL	.=(1.33) Cor	nnect					
WEBS	1-3=-556/596			truss to resi to 1-6-14 fo	st drag loads alo	ong bottom	chord from ()-0-0					
NOTES		(0))											
	CE 7-16; Vult=110mph nph: TCDI =4 2psf: BC			AD CASE(S)	Standard								

Vasd=87mph: TCDL=4.2psf: BCDL=6.0psf: h=25ft: Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.
- Provide adequate drainage to prevent water ponding. 4)
- 5) Gable requires continuous bottom chord bearing.


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	P20	Flat Supported Gable	1	1	Job Reference (optional)	R87439402

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Tue Apr 01 13:12:02 ID:LcQ9Ha9zFm6N1XgBPQ2QPwzhyBV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-2-14

Scale = 1:30.8

Plate Offsets (X, Y): [3:0-3-0.0-3-0]

Plate Offsets (X, Y): [3:0-3-0,0-3-0]	-											
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	25.0	Plate Grip DOL	1.15		TC	0.10	Vert(LL)	n/a	-	n/a	999	MT20	185/148
Roof Snow = 2	25.0)	Lumber DOL	1.15		BC	0.04	Vert(TL)	n/a	-	n/a	999		
TCDL	15.0	Rep Stress Incr	NO		WB	0.10	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IBC2018	/TPI2014	Matrix-P								
BCDL	10.0											Weight: 8 lb	FT = 10%
LUMBER			6)	Truss to be	fully sheathed fr	om one fac	e or securely	/					
TOP CHORD	2x4 HF No.2		-)		nst lateral move		,						
BOT CHORD	2x4 HF No.2		7)	Gable stude	spaced at 2-0-0) oc. `	0 ,						
NEBS	2x4 HF No.2		8)	This truss h	as been designe	ed for a 10.0) psf bottom						
BRACING				chord live lo	ad nonconcurre	nt with any	other live loa	ads.					
OP CHORD	Structural wood she	eathing directly appli	ed or ⁹⁾		has been desigr			0psf					
		except end verticals.			m chord in all ar								
BOT CHORD	Rigid ceiling directly	y applied or 6-0-0 oc			by 2-00-00 wide		veen the bott	om					
	bracing.		10		ny other membe		•						
REACTIONS	(size) 3=1-2-14	, 4=1-2-14			are assumed to								
	Max Horiz 4=44 (LC	5 11)	11)		chanical connect e capable of with								
	Max Uplift 3=-467 (I	LC 35), 4=-467 (LC 3	32)		o uplift at joint 3.	instantuing 4	or in uplin a	t joint					
	Max Grav 3=479 (L	C 36), 4=479 (LC 39	9) 12)		designed in acc	ordance w	ith the 2018						
ORCES	(lb) - Maximum Cor	npression/Maximum	12)		I Building Code								
	Tension				standard ANSI/T								
OP CHORD	1-4=-528/473, 1-2=	-222/212, 2-3=-38/3	0 13)	This truss h	as been designe	ed for a tota	l drag load o	f 234					
BOT CHORD	3-4=-267/234		,		DOL=(1.33) Plat								
VEBS	1-3=-524/574			truss to resi	st drag loads alo	ong bottom	chord from 0	-0-0					
NOTES				to 1-2-14 fo	r 234.0 plf.								
	CE 7-16; Vult=110mpl	h (3-second aust)	LO	AD CASE(S	Standard								
	nph; TCDL=4.2psf; BC		Cat.										
	Enclosed; MWFRS (e												
and C-C C	Corner (3) zone; cantil	ever left and right											
exposed ;	end vertical left and r	ight exposed;C-C for	r									J OMIN	IG ZHA

members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face),

- see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate
- DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.
- Provide adequate drainage to prevent water ponding. 4)
- 5) Gable requires continuous bottom chord bearing.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	P21	Flat Supported Gable	2	1	Job Reference (optional)	R87439403

1-2-0

1-2-0

Builders FirstSource (Arlington, WA), Arlington, WA - 98223,

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Tue Apr 01 13:12:02 ID:IGySBDnCdEWNfqve?zG0BtzhxxC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2x4 II 3x4 = 2 1 2-1-2

1-2-0

Scale = 1:32.2

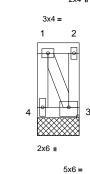
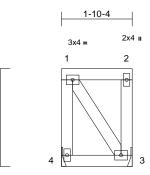

Plate Offsets (X, Y): [3:0-3-0.0-3-0]

Plate Offsets ()	X, Y): [3:0-3-0,0-3-0]												-
Loading TCLL (Roof Snow = 2 TCDL BCLL BCDL	(psf) 25.0 25.0) 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC201	8/TPI2014	CSI TC BC WB Matrix-P	0.10 0.04 0.10	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 8 lb	GRIP 185/148 FT = 10%
	2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural wood she 1-2-0 oc purlins, ex Rigid ceiling directly bracing. (size) 3=1-2-0, 4 Max Horiz 4=-44 (LC Max Uplift 3=-470 (L Max Grav 3=482 (LC (Ib) - Maximum Com Tension 1-4=-534/476, 1-2=- 3-4=-252/219 1-3=-520/573	cept end verticals. applied or 6-0-0 oc 4=1-2-0 2 10) C 35), 4=-470 (LC 32 C 36), 4=482 (LC 32 ppression/Maximum	1(1 ⁻ 32) ³⁾ 12 7 1:	braced aga Gable studs This truss h chord live ld * This truss on the botto 3-06-00 tall chord and a 2) All bearings Provide me bearing plai 4 and 470 ll 2) This truss is Internationa referenced 3) This truss h plf. Lumber truss to resis to 1-2-0 for		ment (i.e. d) oc. d for a 10.0 nt with any eed for a liv eas where will fit betw rs. be HF No. tion (by oth nstanding 4 cordance w section 230 Pl 1. d for a tota te grip DOL	iagonal web)) psf bottom other live load e load of 20.0 a rectangle veen the botto 2. ers) of truss t 70 lb uplift at ith the 2018 16.1 and I drag load of =(1.33) Con). ads. opsf om to t joint f 234 unect					
Vasd=87m II; Exp B; E and C-C C exposed ; e	E 7-16; Vult=110mph ph; TCDL=4.2psf; BC Enclosed; MWFRS (er orner (3) zone; cantile end vertical left and rig and forces & MWFRS	DL=6.0psf; h=25ft; welope) exterior zor wer left and right ght exposed;C-C for	Cat. ne	OAD CASE(S) Standard							ALAOMIN MAOMIN	

- Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required.
- Provide adequate drainage to prevent water ponding. 4)
- 5) Gable requires continuous bottom chord bearing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	P25	Flat	2	1	R Job Reference (optional)	87439404

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Apr 01 13:12:02 ID:gPFqzbclqRKeryMjf7kQ4mzhGWz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff

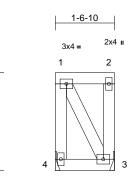
Page: 1

2-6-12

2x4 II 3x4 =

1-10-4

Scale = 1:30.2


Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL		25.0	Plate Grip DOL	1.15		TC	0.16	Vert(LL)	0.00	3-4	>999	240	MT20	185/148
(Roof Snow	= 25.0)		Lumber DOL	1.15		BC	0.04	Vert(CT)	0.00	3-4	>999	180		
TCDL		15.0	Rep Stress Incr	NO		WB	0.07	Horz(CT)	0.00	3	n/a	n/a		
BCLL		0.0*	Code	IBC20	18/TPI2014	Matrix-P		, , ,						
BCDL		10.0											Weight: 12 lb	FT = 10%
LUMBER TOP CHORI BOT CHORI WEBS BRACING TOP CHORI BOT CHORI REACTIONS	 2x4 HF No. 2x4 HF No. Structural 1-10-4 oc. Rigid ceili bracing. (size) Max Horiz Max Uplift 	 b.2 /ul>	athing directly applie xcept end verticals. applied or 6-0-0 oc anical, 4= Mechanica (10) C 35), 4=-141 (LC 3 C 36), 4=423 (LC 39	ہ ed or اا 1 2)	 Provide mec bearing plate 4 and 141 lb This truss is International referenced s Load case(s designer mu for the intend 1) This truss he plf. Lumber l 	er(s) for truss to 1 hanical connection e capable of withs uplift at joint 3. designed in acco Building Code se tandard ANSI/TP) 1 has/have beel st review loads to ded use of this tru- is been designed DOL=(1.33) Plate et drag loads alon 100.0 nif	on (by oth standing 1 ordance w ection 230 PI 1. n modified o verify that uss. I for a tota grip DOL	ers) of truss i 41 lb uplift a ith the 2018 06.1 and d. Building at they are co I drag load o .=(1.33) Con	rrect f 100 nect					
FORCES	()	mum Com	pression/Maximum	L	OAD CASE(S)									
TOP CHORI		150 1 2	160/156 2 2 404/0	. 1		ow (balanced): Lu	umber Inc	rease=1.15,	Plate					
BOT CHORE			169/156, 2-3=-194/0	,	Increase=1									
					Uniform Lo									
WEBS	1-3=-325/	364			Vert: 1-2	=-248, 3-4=-20								
NOTES														
Vasd=87 II; Exp B and C-C exposed member Lumber	7mph; TCDL= ; Enclosed; M Corner (3) zc I ; end vertical s and forces & DOL=1.60 pla	4.2psf; BC WFRS (er one; cantile left and rig MWFRS te grip DC		e									ALA OMIN	G ZHAO
DOL = 1 Ce=1.0; live load 3) Provide 4) This trus chord liv	.15); Is=1.0; F Cs=1.00; Ct= applied where adequate drai is has been de e load noncor	Rough Cat 1.10; IBC e required nage to pr esigned fo ncurrent wi	event water ponding r a 10.0 psf bottom ith any other live load	roof I. ds.							2		State Or	
,		0	or a live load of 20.0	pst									PRO REGIST	74 ERED

- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be HF No.2.

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	P26	Flat	2	1	Job Reference (optional)	R87439405

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Apr 01 13:12:02 ID:_wOu_VK_9NLLVwnCXfoyNwzhGUk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-6-12

2x4 II 3x4 =

1-6-10

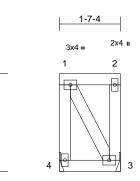
Scale = 1:30.2

Loading (psf) TCLL 25.0 (Roof Snow = 25.0) TCDL TCDL 15.0 BCLL 0.0* BCDL 10.0	Spacing2-0Plate Grip DOL1.11Lumber DOL1.11Rep Stress IncrNOCodeIBC	5 5	CSI TC BC WB Matrix-P	0.10 0.03 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 3-4 3-4 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 11 lb	GRIP 185/148 FT = 10%
BOT CHORD 1-6-10 oc purlins, ex Rigid ceiling directly bracing.	applied or 6-0-0 oc inical, 4= Mechanical (10) C 35), 4=-175 (LC 32) C 35), 4=403 (LC 39) pression/Maximum 142/129, 2-3=-156/0 (3-second gust) DL=6.0psf; h=25ft; Cat. ivelope) exterior zone ver left and right ght exposed;C-C for for reactions shown; UL=1.60 Lum DOL = 1.15 Plate B; Partially Exp.; 1607.11.2 minimum roof event water ponding. r a 10.0 psf bottom th any other live loads. or a live load of 20.0psf where a rectangle fit between the bottom	 Provide mec bearing plate 4 and 175 lb This truss is International referenced s Load case(s designer mu for the intend This truss ha plf. Lumber I truss to resis to 1-6-10 for LOAD CASE(S) Dead + Snot Increase=1 Uniform Lo 	Standard ow (balanced): Lum .15	(by oth nding 1 ance w ion 230 nodified erify that ar a tota rip DOL pottom	ers) of truss to 75 lb uplift at jo ith the 2018 66.1 and d. Building at they are corru- l drag load of 1 =(1.33) Conne chord from 0-0	ect 00 ect -0			A A A A A A A A A A A A A A A A A A A	THOMEN STONA	A CHON

6) All bearings are assumed to be HF No.2.

April 1,2025

- UNAL EN


Page: 1

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	P27	Flat	2	1	Job Reference (optional)	R87439406

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Apr 01 13:12:02 ID:xBBeNtoufYbBWWXS7ZTKnRzhGSr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2-6-12

2x4 u 3x4 =

1-7-4

Scale = 1:30.2

Scale = 1:30.2												
Loading TCLL (Roof Snow = 25.0) TCDL BCLL BCDL	(psf) 25.0 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC2018/TPI2014	CSI TC BC WB Matrix-P	0.11 0.02 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 3-4 3-4 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 11 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD 2x4 H BOT CHORD 2x4 H WEBS 2x4 H BRACING TOP CHORD Struct 1-7-4 BOT CHORD Struct braci REACTIONS (size) Max H Max G FORCES (lb) - Tens TOP CHORD 1-4=- BOT CHORD 3-4=- WEBS 1-3=- NOTES 1) Wind: ASCE 7-16 Vasd=87mph; TO II; Exp B; Enclose and C-C Corner (exposed ; end ve members and for Lumber DOL=1.6 2) TCLL: ASCE 7-16 DOL = 1.15); Is=' Ce=1.0; Cs=1.00 DOL = 1.15); Is=' Ce=1.0; Cs=1.00 J) Provide adequate 4) This truss has be chord live load applied v 5) * This truss has be on the bottom cho	IF No.2 IF No.2 IF No.2 IF No.2 IF No.2 IF No.2 It rail wood she to cpurlins, ex I ceiling directly ng. 3 = Mecha loriz 4=-56 (LC irav 3=195 (LC Maximum Corri ion -223/17, 1-2=-2 -78/81 -100/100 S; Vult=110mph DL=4.2psf; Bay -100/100 S; Vult=110mph Cb=4; MWFRS (er (3) zone; cantile ritical left and ris- ces & MWFRS (er (1.0; Rough Cat ; Ct=1.10; IBC where required a drainage to pr en designed fo onconcurrent wi been designed for ord in all areas 00-00 wide will her members. assumed to be l	C 19), 4=195 (LC 20 pression/Maximum 8/31, 2-3=-163/0 10, 2-3=-163/0 10, 2-3=-163/0 10, 2-3=-163/0 10, 2-3=-163/0 10, 2-3=-163/0 10, 2-3=-160 10, 2	Internati reference 9) Load ca designe ed or 1) Dead -t Increas al Uniforr Vert) Cat. ne ; ate roof g. ds.)psf	ss is designed in ac onal Building Code ed standard ANSI/T se(s) 1 has/have be r must review loads intended use of this E(S) Standard - Snow (balanced): se=1.15 n Loads (lb/ft) : 1-2=-248, 3-4=-20	section 23(TPI 1. een modifie to verify th truss. Lumber Inc	06.1 and d. Building at they are co				and the second sec		IG ZHAO ASTANOTO
											Ap	oril 1,2025

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	P28	Flat	2	1	Job Reference (optional)	R87439407

1-8-10

1-8-10

3x4 =

4

2x4 II

1-8-10

2-6-12

CSI

2x4 II

3

3x4 =

DEFL

in

(loc)

l/defl

L/d

PLATES

GRIP

2

Builders FirstSource (Arlington, WA), Arlington, WA - 98223,

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Tue Apr 01 13:12:02 ID:2IXPhGqYH6bM53zqRzd3ffzhyrE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Grip DOL 1.15 TC 0.13 Vert(LL) 0.00 3-4 >999 240 MT20 185/148 BC Lumber DOL 1 15 0.03 Vert(CT) 0.00 3-4 >999 180 Rep Stress Incr NO WB 0.07 Horz(CT) 0.00 3 n/a n/a IBC2018/TPI2014 Matrix-P Weight: 11 lb FT = 10%Refer to girder(s) for truss to truss connections. 7) Provide mechanical connection (by others) of truss to 8) bearing plate capable of withstanding 156 lb uplift at joint 4 and 156 lb uplift at joint 3. This truss is designed in accordance with the 2018 9) International Building Code section 2306.1 and referenced standard ANSI/TPI 1. 10) Load case(s) 1 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss. 11) This truss has been designed for a total drag load of 100 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 1-7-0 for 108.6 plf. LOAD CASE(S) Standard Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15 Uniform Loads (lb/ft) Vert: 1-2=-248, 3-4=-20 ALAOMING ZHAO ROAESSIONAL ENGINE ----April 1,2025 🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not being read to be only with mit here contractions. This designer based only upon parameters shown, and show and brok an individual automage component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) 400 Sunrise Ave., Suite 270 Roseville CA 95661 and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Scale = 1:30.2

(Roof Snow = 25.0)

Loading

TCLL

TCDL

BCLL

BCDL 10.0 LUMBER TOP CHORD 2x4 HF No.2 BOT CHORD 2x4 HF No.2 2x4 HF No.2 WFBS BRACING TOP CHORD Structural wood sheathing directly applied or 1-8-10 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. **REACTIONS** (size) 3= Mechanical, 4=0-4-0 Max Horiz 4=-68 (LC 33) Max Uplift 3=-156 (LC 35), 4=-156 (LC 32) Max Grav 3=414 (LC 36), 4=414 (LC 39) FORCES (Ib) - Maximum Compression/Maximum Tension 1-4=-455/164, 1-2=-157/144, 2-3=-177/0 TOP CHORD BOT CHORD 3-4=-205/171 WEBS 1-3=-321/362 NOTES Wind: ASCE 7-16; Vult=110mph (3-second gust) 1) Vasd=87mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) zone; cantilever left and right

(psf)

25.0

15.0

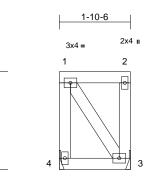
0.0

Spacing

Code

2-0-0

- exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.;
- Ce=1.0; Cs=1.00; Ct=1.10; IBC 1607.11.2 minimum roof live load applied where required. 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be HF No.2 . 6)



Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	P29	Flat	26	1	F Job Reference (optional)	R87439408

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Apr 01 13:12:03 ID:ZxpT42bxXSczEEb2vqHw_xzhysr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2-6-12

2x4 II 3x4 =

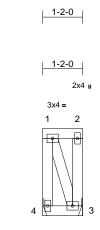
1-10-6

Scale = 1:30.2

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	25.0	Plate Grip DOL	1.15	тс	0.17	Vert(LL)	0.00	3-4	>999	240	MT20	185/148
(Roof Snow = 25.0)		Lumber DOL	1.15	BC	0.04	Vert(CT)	0.00	3-4	>999	180		
TCDL	15.0	Rep Stress Incr	NO	WB	0.07	Horz(CT)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IBC2018/TPI2014	Matrix-P								
BCDL	10.0										Weight: 12 lb	FT = 10%
1-10-6 oc p BOT CHORD Rigid ceiling bracing. REACTIONS (size) 3 Max Horiz 4 Max Horiz 4 Max Uplift 3 Max Grav 3 Max Grav 3 FORCES (lb) - Maxim Tension TOP CHORD 1-4=-463/14 BOT CHORD 1-4=-463/14 BOT CHORD 3-4=-220/18 WEBS 1-3=-325/30 NOTES 1) 1) Wind: ASCE 7-16; Vult= Vasd=87mph; TCDL=4. II; Exp B; Enclosed; MW and C-C Corner (3) zon exposed; end vertical la members and forces & Lumber DOL=1.60 platt 2) 2) TCLL: ASCE 7-16; Pf=2 DOL = 1.15); Is=1.0; RC Ce=1.0; CS=-1.00; Ct=1. 1ive load applied where 3) Provide adequate drain 4) This truss has been des chord live load nonconcord * This truss has been des chord live load nonconcord 5) * This truss has been des chord live load nonconcord * This truss has been des chord live load nonconcord	2 2 vood she urlins, e g directly = Mecha =56 (LC =-140 (L =-140 (L	C 35), 4=-140 (LC 32 C 36), 4=424 (LC 39) pression/Maximum 170/157, 2-3=-195/0 (3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zone- ver left and right ght exposed; C-C for for reactions shown; L=1.60 Lum DOL = 1.15 Plat B; Partially Exp.; 1607.11.2 minimum r event water ponding. r a 10.0 psf bottom th any other live load or a live load of 20.0p where a rectangle	 8) Provide i bearing i 4 and 14 9) This trus Internatic reference 10) Load cas designer for the in 11) This trus plf. Lumb 20 truss to r to 1-10-6 LOAD CASE 1) Dead + Increas Uniform Vert: Cat. e te roof . 	jirder(s) for truss to tr nechanical connection late capable of withst) Ib uplift at joint 3. is designed in accornal Building Code se d standard ANSI/TPI e(s) 1 has/have been must review loads to ended use of this trus is has been designed er DOL=(1.33) Plate sist drag loads along for 100.0 plf. (S) Standard Snow (balanced): Lui =1.15 Loads (Ib/ft) 1-2=-248, 3-4=-20	n (by oth tanding 1 dance w ction 23(1. modifie verify th ss. for a tota grip DOI g bottom	ers) of truss to 140 lb uplift at ju- nith the 2018 06.1 and d. Building at they are corr al drag load of 1 _=(1.33) Connu- chord from 0-0	oint rect 100 ect)-0				THOMEN THOMESSIONA	
chord and any other me	inders.											

6) All bearings are assumed to be HF No.2.

TAL


April 1,2025

Job	Truss	Truss Type	Qty	Ply	MKM EAST TOWN CROSSING BLDG D	
4449076	P30	Flat	2	1	Job Reference (optional)	R87439409

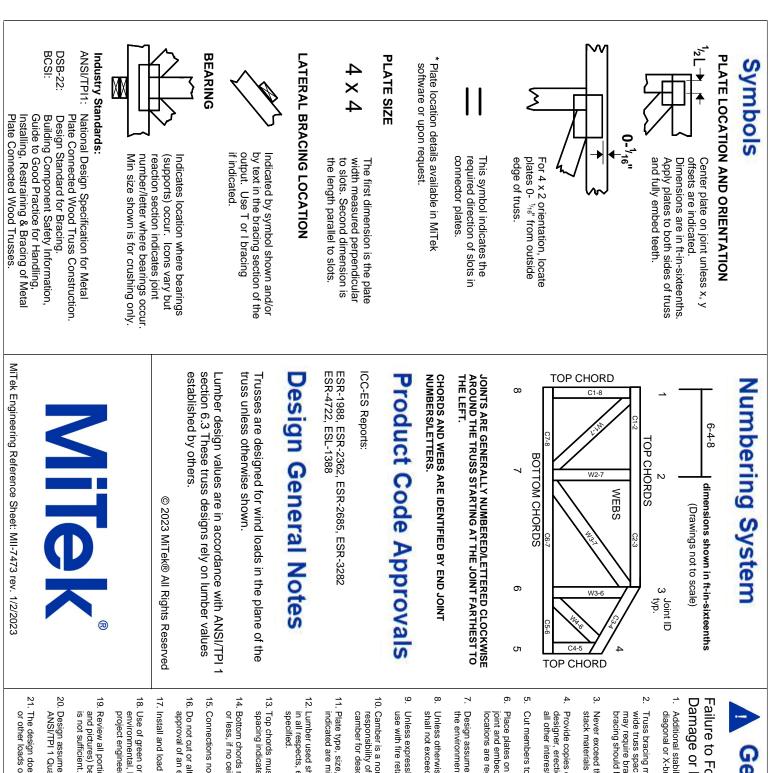
Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Apr 01 13:12:03 ID:Lu?SsISnxyaYJ3RjMpm2oCzhyVn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2-6-12

2x4 II

3x4 =


1-2-0

Scale - 1:33.8

Scale = 1:33.8												
Loading TCLL (Roof Snow = 2 TCDL BCLL BCDL	(psf) 25.0 25.0) 15.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC2018/TPI2014	CSI TC BC WB Matrix-P	0.06 0.02 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4 4 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 10 lb	GRIP 185/148 FT = 10%
LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=87m II; Exp B; E and C-C C exposed ; 6 members a Lumber DC 2) TCLL: ASC DOL = 1.15 Ce=1.0; CC IV Ce=1.0; CC IV Comments DOL = 1.15 Ce=1.0; CC DOL = 1.15 Ce=1.0; CC IV Comments S IV This truss O This truss S IV This This truss S IV This This This This This This This This	2x4 HF No.2 2x4 HF No.2 2x4 HF No.2 Structural wood she 1-2-0 oc purlins, ex Rigid ceiling directly bracing.	cept end verticals. applied or 6-0-0 oc anical, 4= Mechanica 11) C 35), 4=-229 (LC 3 C 36), 4=387 (LC 39 pression/Maximum 107/94, 2-3=-109/0 (3-second gust) DL=6.0psf; h=25ft; hvelope) exterior zor ever left and right ght exposed;C-C for for reactions shown DL=1.60 Lum DOL = 1.15 Pla B; Partially Exp.; 1607.11.2 minimum r a 10.0 psf bottom ith any other live load for a live load of 20.0 where a rectangle fit between the bottom	8) Provide bearing 4 and 2 9) This tru Internat al 11) This tru plf. Lum truss to 10) Load ca designe for the i 11) This tru plf. Lum truss to 10) to 1-2-0 LOAD CAS 1) Dead Increa Uniforn Veri	p girder(s) for truss to mechanical connect plate capable of with 29 lb uplift at joint 3. ss is designed in acc ional Building Code : ced standard ANSI/T iss(s) 1 has/have be r must review loads ntended use of this t ss has been designe iber DOL=(1.33) Plai resist drag loads alo for 100.0 plf. E(S) Standard + Snow (balanced): 1 se=1.15 m Loads (lb/ft) :: 1-2=-248, 3-4=-20	tion (by oth nstanding 2 cordance w section 230 (PI 1. en modifier to verify the russ. ed for a tota te grip DOL ong bottom	ers) of truss to 29 lb uplift at 36.1 and d. Building at they are cou I drag load of _=(1.33) Conr chord from 0-1	joint rrect 100 nect 0-0			a second s		IG ZHAO ASHINGINE THE ENGINE
o, Air bearing		III INU.Z.										vil 1 2025

April 1,2025

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor1 bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.