

Job Name	: ETC Building E
Drawing	: FP-3.0
Location	: 2902 E PIONEER PUYALLUP, WA 98372
Remote Area	: RA#1
Contract	: 24-093CM
Data File	: ETC Building E Area 1.WXF

HYDRAULIC CALCULATIONS for

JOB NAME East Town Crossing Building E Location 2902 E PIONEER PUYALLUP, WA 98372 Drawing # FP-3.0 Contract # 24-093CM Date 3/21/2025

DESIGN

Remote area # RA#1 Remote area location UNIT 301 - LIVING ROOM Occupancy classification RESIDENTIAL NFPA 13R Density 0.05 - Gpm/SqFt Area of application 256 - SqFt Coverage/sprinkler 256 16'X16' - SqFt Type of sprinkler calculated VIKING VK468 RESIDENTIAL PENDENT K=4.9 # Sprinklers calculated 4 In-rack demand N/A - GPM Hose streams N/A - GPM Total water required (including hose streams) 55.4349 - GPM @ 34.5571 - Psi Type of system WET-CPVC Volume of system (dry or pre-action) N/A - Gal

WATER SUPPLY INFORMATION

Test date4/16/2024Location2902 E PIONEERSource of infoCITY OF PUYALLUP WATER DIVISON

CONTRACTOR INFO SPRINX FIRE PROTECTION Address 2709 JAHN AVE. / SUITE H2 / GIG HARBOR Phone # 253-853-7780 Name of designer ALEXANDER J PARADIS Authority having jurisdiction CITY OF PUYALLUP NOTES:

SPRINX FIRE PROTECTION INC. ETC Building E		Page 2 Date 3/21/2025
City Water Supply: C1 - Static Pressure : 40 C2 - Residual Pressure: 25 C2 - Residual Flow : 1560		Demand: D1 - Elevation : 13.677 D2 - System Flow : 55.435 D2 - System Pressure : 34.557 Hose (Demand) : D3 - System Demand : 55.435 Safety Margin : 5.412
150		
140		
130		
P 120		
R ¹¹⁰		
s 90		
s 80		
υ 70		
R ⁶⁰		
30		22
20	0	
10		
t imlandi 100 600 800 100	0 1200 1400 1 FLOW (N ^ 1.85)	600 1800
	, , , , , , , , , , , , , , , , , , ,	

Water Supply Curve

Flow Diagram

SPRINX FIRE PROTECTION INC. ETC Building E

Page	3
Date	3/21/2025

1	13 ← 2	← 3 13	26 ← 4	← 5 40.3	40.3 ← 6	← 6A 55.4	33.5 ← UP9 ← 33	19 → UP8 3.5	9.2 • UP7 ← 7 19.2	7.8 ← 28	44 ← 28A ← 19.3	29	55 ← TOR ← 55.4	5.4 BOR 55	55 ■ BKV ← 5.4	.4 WM1 5	. TEST 5.4
8	13 ← 9	← 3 13															
10	14.3 ← 11	← 12 14.3	14.3 ← 4														
13	15.1 ← 14	← 6 15.1															
6A	21.9 ← 20	← 21 21.9	21.9 ← 22	← 24 18.1	10.6 ← 24	A ← UP 14.5	14.5 6← UP5 ← 24	24 - UP4 ← 1.8	1.8 28A								
UF ∪P	4 2→ 25 ↑ 7.5 7.5 23← UP	→ 27 12 4 2← UF 11.5	14.3 → UP 11.5 21← 28	8													
22	3.8 ← 23	← 24 3.8	A														
25	8 ← 25 /	4 → 26 2.3	2.3 → 27														
7	11.4 ← 7A	← 29 11.4															
UP	10.3 25→ 254	4															

Fittings Used Summary

SPRINZ ETC Bu	X FIRE PROTECTION INC. uilding E																	Pa Da	ige 2 ite 3	1 3/21/20:	25
Fitting Le Abbrev.	egend Name	1/2	3/4	1	1¼	1½	2	21⁄2	3	3½	4	5	6	8	10	12	14	16	18	20	24
В	NFPA 13 Butterfly Valve	0	0	0	0	0	6	7	10	0	12	9	10	12	19	21	0	0	0	0	0
E	NFPA 13 90' Standard Elbow	1	2	2	3	4	5	6	7	8	10	12	14	18	22	27	35	40	45	50	61
G	NFPA 13 Gate Valve	0	0	0	0	0	1	1	1	1	2	2	3	4	5	6	7	8	10	11	13
N *	CPVC 90'Ell Harvel-Spears		7	7	8	9	11	12	13	0	0	0	0	0	0	0	0	0	0	0	0
0 *	CPVC Tee - Branch	3	3	5	6	8	10	12	15	0	0	0	0	0	0	0	0	0	0	0	0
R*	CPVC Coupling Tee - Run	1	1	1	1	1	1	2	2	0	0	0	0	0	0	0	0	0	0	0	0
S	NFPA 13 Swing Check	0	0	5	7	9	11	14	16	19	22	27	32	45	55	65					
Т	NFPA 13 90' Flow thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101	121
Ziw	Wilkins 350AST	Fittin	g gener	ates a F	ixed Los	s Basec	l on Flo	w													

Units Summary

Diameter Units	
Length Units	
Flow Units	
Pressure Units	

Inches Feet US Gallons per Minute Pounds per Square Inch

Note: Fitting Legend provides equivalent pipe lengths for fittings types of various diameters. Equivalent lengths shown are standard for actual diameters of Sched 40 pipe and CFactors of 120 except as noted with *. The fittings marked with a * show equivalent lengths values supplied by manufacturers based on specific pipe diameters and CFactors and they require no adjustment. All values for fittings not marked with a * will be adjusted in the calculation for CFactors of other than 120 and diameters other than Sched 40 per NFPA.

SPRINX FIRE PROTECTION INC. ETC Building E

Page 5 Date 3/21/2025

Node at Source	Static Pressure	Residual Pressure	Flow	Available Pressure	Total Demand	Required Pressure
TEST	40.0	25	1560.0	39.969	55.43	34.557

NODE ANALYSIS

Node Tag	Elevation	Node Type	Pressure at Node	Discharge at Node	٨	lotes	
1	109.58	4.9	7.04	13.0	0.05	256	
2	110.08		6.99				
3	110.08		7.27				
4	110.08		8.99				
5	110.08		9.65				
6	110.08		9.95				
6A	110.08		10.42				
UP9	110.08		10.57				
UP8	99.83		15.12				
UP7	89.58		19.6				
7	89.58		19.99				
28	89.58		20.01				
28A	89.58		20.02				
29	89.58		20.43				
TOR	89.58		22.5				
BOR	80.0		27.41				
BKV	78.0		34.55				
WM1	78.0		34.56				
TEST	78.0		34.56				
8	109.58	4.9	7.05	13.01	0.05	256	
9	110.08		7.01				
10	108.58	4.9	8.55	14.33	0.05	256	
11	110.08		8.21				
12	110.08		8.45				
13	109.58	4.9	9.48	15.09	0.05	256	
14	110.08		9.49				
20	110.08		10.61				
21	110.08		10.71				
22	110.08		10.81				
24	110.08		10.89				
Z4A	110.08		10.9				
	110.08		10.93				
	99.83		15.39				
	89.58		19.95				
0P2	99.83		15.4				
20 27	99.00 00 00		10.00				
	99.00 110.00		10.04				
	110.00 80.59		10.90				
0F I 22	09.00		19.07				
23 25A	00.83		10.00				
254	99.03 00.83		15.30				
20	59.00		10.07				

Flow Summary	- NFPA
--------------	--------

89.58

7A

SPRINX FIRE ETC Building E	Page Date	6 3/21/2025				
Node Tag	Elevation	Node Type	Pressure at Node	Discharge at Node	Notes	

20.21

SPRINX FIRE PROTECTION INC. ETC Building E

Page	7
Date	3/21/2025

ETC Buil	ding E									Date 3/21/2025	
Node1 to	Elev1	К	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	****** Notes *****	r
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf		
1 to	109.580	4.90	13.00	1	0	5.0	0.500	150	7.040		
2	110.080)	13.0	1.101			5.500	0.0307	0.169	Vel = 4.38	
2	110.080		0.0	1	R	1.0	8.000	150	6.992		
to							1.000		0.0		
3	110.080		13.0	1.101			9.000	0.0307	0.276	Vel = 4.38	
3 to	110.080		13.01	1	0	5.0	10.550	150	7.268		
4	110.080)	26.01	1.101			15.550	0.1107	1.721	Vel = 8.77	
4	110.080		14.33	1.25	R	1.0	7.420	150	8.989		
to							1.000		0.0		
5	110.080	<u> </u>	40.34	1.394		4.0	8.420	0.0790	0.665	Vel = 8.48	
5 to	110.080		0.0	1.25	R	1.0	2.750	150	9.654		
6	110.080)	40.34	1.394			3.750	0.0789	0.296	Vel = 8.48	
6	110.080		15.09	2	0	10.0	9.250	150	9.950		
to			10				10.000	0.0044	0.0		
6A	110.080	<u> </u>	55.43	2.003		44.0	19.250	0.0244	0.469	Vel = 5.64	
6A to	110.080		-21.92	2	N	11.0	5.080 11.000	150	10.419		
UP9	110.080	1	33.51	2.003			16.080	0.0096	0.154	Vel = 3.41	
UP9	110.080)	0.0	2	R	1.0	10.250	150	10.573		
to	00.000		00 F4	0.000			1.000	0.0000	4.439	$V_{2} = 0.44$	
	99.830		33.51	2.003		1.0	10.250	0.0096	0.108	Vel = 3.41	
to	99.630		-14.33	2	К	1.0	1.000	150	4.439		
UP7	89.580		19.18	2.003			11.250	0.0035	0.039	Vel = 1.95	
UP7	89.580		0.0	2	10R	10.0	74.080	150	19.598		
to 7	00 500		10.10	2 002	30	30.0	40.000	0.0024	0.0	$V_{0} = 1.05$	
7	80 580		11 30	2.003	3D	3.0	26.000	150	10.088	Vei – 1.95	—
to	09.000		-11.59	2	51	5.0	3.000	150	0.0		
28	89.580		7.79	2.003			29.000	0.0006	0.018	Vel = 0.79	
28	89.580		11.47	2	R	1.0	3.000	150	20.006		
to 28∆	89 580		10.26	2 003			1.000	0 0035	0.0	$V_{el} = 1.96$	
 28A	89 580		24 78	2.000	3R	3.0	23 000	150	20.020	VCI - 1.00	
to	00.000		24.70	2	ÖN	0.0	3.000	100	0.0		
29	89.580		44.04	2.003			26.000	0.0159	0.413	Vel = 4.48	
29	89.580		11.39	2	0	10.0	36.000	150	20.433		
ιο ΤΟR	89 580		55 43	2 003	6K 3N	6.0 33.0	49.000 85.000	0 0243	0.0 2.069	Vel = 5.64	
TOR	89,580		0.0	2	B	8.183	9,500	120	22.502		
to	20.000		0.0	-	S	15.003	23.186	0	4.149		
BOR	80		55.43	2.203			32.686	0.0231	0.756	Vel = 4.67	
BOR	80		0.0	6	T 2E	43.037	66.000	140	27.407	* * Eived Less = 0.001	
BKV	78		55.43	6.16	s⊏ Ziw	0.252	169.289	0.0001	0.020	Vel = 0.60	

SPRINX FIRE PROTECTION INC. ETC Building E

ETC Buil	lding E									Date	e 3/21/	2025
Node1 to	Elev1	K	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	*****	Notes	*****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf			
BKV	78		0.0	8	т	55.354	45.000	140	34.554			
to	70		FF 40	0.07	G	6.326	61.680	0	0.0		20	
	78 78		55.43	8.27 8			25.000	140	34 556	vei = 0	33	
to	70		0.0	0			23.000	140	0.0			
TEST	78		55.43	8.27			25.000	0	0.001	Vel = 0.3	33	
TEST			0.0 55.43						34.557	K Factor	= 9.43	
8	109.580	4.90	13.01	1	0	5.0	0.500	150	7.053			
to	110 090		12 01	1 101			5.000	0 0200	-0.217	$V_{0} = 4$	20	
9	110.080)	0.0	1.101	0	5.0	3 540	150	7 006	VEI - 4.	50	
to	110.000	,	0.0		0	0.0	5.000	100	0.0			
3	110.080		13.01	1.101			8.540	0.0307	0.262	Vel = 4.3	38	
3			0.0 13.01						7.268	K Factor	= 4.83	
10	108.580	4.90	14.33	1	Ν	7.0	1.500	150	8.552			
to	110.000		14.00	1 101			7.000	0.0269	-0.650		22	
11	110.000)	14.33	1.101	0	5.0	1 500	150	8 215	Vei – 4.0	55	
to	110.000		0.0		0	0.0	5.000	100	0.0			
12	110.080)	14.33	1.101			6.500	0.0368	0.239	Vel = 4.8	33	
12 to	110.080)	0.0	1	20	10.0	4.580	150	8.454			
4	110.080)	14.33	1.101			14.580	0.0367	0.535	Vel = 4.8	33	
4			0.0 14.33						8 989	K Factor	= 478	
13	109.580	4.90	15.09	1	0	5.0	0.500	150	9.484	TTT dotor	1.70	
to							5.000		-0.217			
14	110.080)	15.09	1.101	•		5.500	0.0405	0.223	Vel = 5.0	09	
14 to	110.080)	0.0	1	0	5.0	6.390 5.000	150	9.490 0.0			
6	110.080)	15.09	1.101			11.390	0.0404	0.460	Vel = 5.0	09	
6			0.0 15.09						9 950	K Factor	= 478	
6A	110.080)	21.92	2	4R	4.0	30.000	150	10.419		1.70	
to				_	0	10.0	14.000		0.0			
20	110.080)	21.92	2.003			44.000	0.0044	0.192	Vel = 2.2	23	
20 to	110.080)	0.0	2	3R	3.0	19.000 3.000	150	10.611 0.0			
21	110.080)	21.92	2.003			22.000	0.0044	0.096	Vel = 2.2	23	
21	110.080)	0.0	2	4R	4.0	20.170	150	10.707			
to	110 000		24.00	2 000			4.000	0.0044	0.0		22	
22	110.080)	21.92	2.003	30	3.0	24.170	0.0044	0.100	vei = 2.2	23	
to	110.000	,	-3.01	۷	JN	5.0	3.000	100	0.0			
24	110.080)	18.11	2.003			25.000	0.0031	0.077	Vel = 1.8	34	

Page 8

SPRINX FIRE PROTECTION INC. ETC Building E Е

SPRINX ETC Buil	FIRE PRO	OTECTIO	ON INC.							Page 9 Date 3/21/2025
Node1	Elev1	K	Qa	Nom	Fitting		Pipe	CFact	Pt	
to Node2	Flev2	Fact	Qt	Act	or Faiv	len	Ftngs Total	Pf/Ft	Pe Pf	******* Notes *****
				,	- 4					
24 to	110.080		-7.47	2	0	10.0	3.000 10.000	150	10.890 0.0	
24A	110.080)	10.64	2.003			13.000	0.0012	0.015	Vel = 1.08
24A	110.080)	3.82	2	Ν	11.0	2.670	150	10.905	
to UP6	110.080)	14.46	2.003			11.000 13.670	0.0020	0.0 0.027	Vel = 1.47
			0.0							
UP6			14.46						10.932	K Factor = 4.37
UP6 to	110.080)	14.46	2	R	1.0	10.250 1.000	150	10.932 4 439	
UP5	99.830		14.46	2.003			11.250	0.0020	0.023	Vel = 1.47
UP5	99.830		10.33	2	Ν	11.0	10.250	150	15.394	
to UP4	89.580		24.79	2.003			11.000 21.250	0.0055	4.439 0.117	Vel = 2.52
UP4	89.580		0.0	2	0	10.0	2.670	150	19.950	
to	00 500		24 70	2 002			10.000	0.0055	0.0	$V_{\rm el} = 0.50$
_28A	89.580		24.79	2.003			12.070	0.0055	0.070	vei = 2.52
28A			24.79						20.020	K Factor = 5.54
UP2	99.830		-3.99	2	10R	10.0	76.080	150	15.398	
to 25	99.830		-3.99	2.003	20	20.0	30.000 106.080	-0.0002	0.0 -0.020	Vel = 0.41
25	99.830		-8.04	2	3R	3.0	21.580	150	15.378	
to	00.920		10.00	2 002			3.000	0.0014	0.0	$V_{\rm el} = 1.00$
27	99.630		-12.03	2.003	10R	10.0	24.560	-0.0014	-0.035	vei = 1.22
to	00.000		2.00	2	20	20.0	41.000	100	0.0	
UP8	99.830		-14.33	2.003	Ν	11.0	111.830	-0.0020	-0.223	Vel = 1.46
UP8			0.0 -14.33						15.120	K Factor = -3.69
UP3	110.080)	7.47	2	R	1.0	10.250	150	10.952	
to	00.020		7 47	2 002			1.000	0.0006	4.439	$V_{0} = 0.76$
	99.630		3 99	2.003	N	11 0	10.250	150	15 398	vei = 0.76
to	55.000		0.00	2	IN .	11.0	11.000	100	4.439	
UP1	89.580		11.46	2.003			21.250	0.0013	0.028	Vel = 1.17
UP1 to	89.580		0.0	2	11R 20	11.0 20.0	76.000 31.000	150	19.865 0.0	
28	89.580		11.46	2.003	20	20.0	107.000	0.0013	0.141	Vel = 1.17
28			0.0						20.006	K Factor = 2.56
20	110 080)	3.81	1 25	5R	5.0	47 250	150	10.813	NT AULUI - 2.00
to			0.01	0	20	12.0	17.000		0.0	
23	110.080)	3.81	1.394	40	4.0	64.250	0.0010	0.065	Vel = 0.80
23 to	110.080)	0.0	1.25	4K	4.0	23.080	150	10.878 0.0	
24A	110.080		3.81	1.394			27.080	0.0010	0.027	Vel = 0.80

SPRINX ETC Buil	FIRE PR ding E	OTECTI	ON INC.							Page 10 Date 3/21/2025
Node1 to	Elev1	К	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	****** Notes *****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf	
24A			3.81						10.905	K Factor = 1.15
25 to	99.830		8.03	2	R	1.0	2.920 1.000	150	15.378 0.0	
25A	99.830		8.03	2.003			3.920	0.0008	0.003	Vel = 0.82
25A to	99.830		-10.33	1.25	3R O	3.0 6.0	23.080 9.000	150	15.381 0.0	
26	99.830		-2.3	1.394			32.080	-0.0004	-0.013	Vel = 0.48
26 to	99.830		0.0	1.25	5R 20	5.0 12.0	47.580 17.000	150	15.368 0.0	
27	99.830		-2.3	1.394			64.580	-0.0004	-0.025	Vel = 0.48
27			0.0 -2.30						15.343	K Factor = -0.59
7 to	89.580		11.39	1.25	3R	3.0	26.000 3.000	150	19.988 0.0	
7A	89.580		11.39	1.394			29.000	0.0076	0.220	Vel = 2.39
7A to	89.580		0.0	1.25	2R O	2.0 6.0	21.580 8.000	150	20.208 0.0	
29	89.580		11.39	1.394			29.580	0.0076	0.225	Vel = 2.39
29			0.0 11.39						20.433	K Factor = 2.52
UP5 to	99.830		-10.33	2	0	10.0	2.670 10.000	150	15.394 0.0	
25A	99.830		-10.33	2.003			12.670	-0.0010	-0.013	Vel = 1.05
25A			0.0 -10.33						15.381	K Factor = -2.63
UP3 to	110.080)	-7.47	2	10R 20	10.0 20.0	74.080 30.000	150	10.952 0.0	
24	110.080)	-7.47	2.003	-		104.080	-0.0006	-0.062	Vel = 0.76
24			0.0 -7.47						10.890	K Factor = -2.26

SPRIN	ΙΧ
FIRE PROTEC	TION EST. 1999
2709 Jahn Ave NW, Suite H2, Gig Harbor WA 98 Ph. (253) 853-7780– <u>www.SprinxFire.com</u>	WASHINGTON STATE DEC 31, 25 WASHINGTON STATE CERTIFICATE OF COMPETENCY FIRE SPRINKLER SYSTEMS
Hydraulic Calculations	Joseph G. Faulkner 9491-0699-CEG Level 3 Sprinx Fire Protection, Inc. SPRINFP011LS Joeuf D Jumfmu 04/03/2025 Signature Date
SPRINX FIRE PROTECTION INC. 2709 JAHN AVE NW SUITE H2 GIG HARBOR, WA 98335 253-853-7780	

Job Name Drawing Location Remote Area Contract Data File	 ETC Building E FP-3.0 2902 E PIONEER PUYALLUP, WA 98372 RA#3 24-093CM ETC Building E Area 3.WXF
---	--

HYDRAULIC CALCULATIONS for

JOB NAME East Town Crossing Building E Location 2902 E PIONEER PUYALLUP, WA 98372 Drawing # FP-3.0 Contract # 24-093CM Date 3/24/2025

DESIGN

Remote area # RA#3 Remote area location STAIRWELL Occupancy classification LIGHT HAZARD Density 0.10 - Gpm/SqFt Area of application 273 - SqFt Coverage/sprinkler 4 HEADS - SqFt Type of sprinkler calculated VIKING VK178 QR CHROME DRY HORIZ. SIDEWALL # Sprinklers calculated 4 In-rack demand N/A - GPM Hose streams N/A - GPM Total water required (including hose streams) 60.1092 - GPM @ 33.6961 - Psi Type of system WET-CPVC Volume of system (dry or pre-action) N/A - Gal

WATER SUPPLY INFORMATION

Test date4/16/2024Location2902 E PIONEERSource of infoCITY OF PUYALLUP WATER DIVISON

CONTRACTOR INFO SPRINX FIRE PROTECTION Address 2709 JAHN AVE. / SUITE H2 / GIG HARBOR Phone # 253-853-7780 Name of designer ALEXANDER J PARADIS Authority having jurisdiction CITY OF PUYALLUP NOTES:

Water Supply: C1 - Static Press C2 - Residual Pre C2 - Residual Flo	ure : 40 essure: 25 w : 1560				D	emand: D1 - Elevation D2 - System Flo D2 - System Pre Hose (Demand D3 - System De Safety Margin	: 13.426 w : 60.109 essure : 33.696) : mand : 60.109 : 6.268
D2							
					C2		
Ľ D1							
<u>ill</u>	<u>. </u>	<u> </u>	<u> </u> 1200	<u> </u> 1400	<u> </u> 1600	<u> </u>	

Water Supply Curve

Flow Diagram

SPRINX FIRE PROTECTION INC. ETC Building E

Page	3
Date	3/24/2025

15.1 30 ← 5 ← 6 15.1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \begin{array}{c} 19.4 \\ \leftarrow \ \textbf{28} \end{array} \begin{array}{c} \textbf{28A} \leftarrow \ \textbf{29} \\ 6 \end{array} \begin{array}{c} 47.9 \end{array}$	60.1 60.1 ← TOR ← BOR ← BKV ← W 60.1 60.1	60.1 / M1 — TEST
15.1 40 ← 20				
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$				
15 60 ← 51				
$\begin{array}{c} \textbf{14.2} \\ \textbf{6A} \ \rightarrow \textbf{20} \ \leftarrow \textbf{21} \\ 0.9 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			
3.1 $UP2 \rightarrow 25 \rightarrow 27$ ↑ 9.4 10.3 3.1 ↓ 10.3 $UP3 \leftarrow UP2 \leftarrow UP$ 13.4	$\begin{array}{c} 11.2 \\ \rightarrow \ UP8 \end{array}$ $\begin{array}{c} 13.4 \\ P1 \leftarrow 28 \\ \uparrow \end{array}$			
20.4 UP6← UP5← UP 28.5	19.4 28. \$ 2 4 ← 28A			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A			
$\begin{array}{c} \textbf{6.3}\\ \textbf{25} \hspace{0.1 cm} \leftarrow \hspace{0.1 cm} \textbf{25A} \hspace{1 cm} \rightarrow \hspace{1 cm} \textbf{26}\\ 1.8\end{array}$	1.8 → 27			
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$				
8.1 UP5 → 25A				
10.3 UP3 → 24				

Fittings Used Summary

SPRIN ETC B	PRINX FIRE PROTECTION INC. C Building E									Pa Da	Page 4 Date 3/24/2025										
Fitting Lo Abbrev.	egend Name	1/2	3/4	1	1¼	1½	2	21⁄2	3	3½	4	5	6	8	10	12	14	16	18	20	24
В	NFPA 13 Butterfly Valve	0	0	0	0	0	6	7	10	0	12	9	10	12	19	21	0	0	0	0	0
Е	NFPA 13 90' Standard Elbow	1	2	2	3	4	5	6	7	8	10	12	14	18	22	27	35	40	45	50	61
G	NFPA 13 Gate Valve	0	0	0	0	0	1	1	1	1	2	2	3	4	5	6	7	8	10	11	13
N *	CPVC 90'Ell Harvel-Spears		7	7	8	9	11	12	13	0	0	0	0	0	0	0	0	0	0	0	0
0 *	CPVC Tee - Branch	3	3	5	6	8	10	12	15	0	0	0	0	0	0	0	0	0	0	0	0
R*	CPVC Coupling Tee - Run	1	1	1	1	1	1	2	2	0	0	0	0	0	0	0	0	0	0	0	0
S	NFPA 13 Swing Check	0	0	5	7	9	11	14	16	19	22	27	32	45	55	65					
Т	NFPA 13 90' Flow thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101	121
Ziw	Wilkins 350AST	Fittin	g gener	ates a F	ixed Los	s Basec	l on Flo	w													

Units Summary

Diameter Units Length Units Flow Units Pressure Units Inches Feet US Gallons per Minute Pounds per Square Inch

Note: Fitting Legend provides equivalent pipe lengths for fittings types of various diameters. Equivalent lengths shown are standard for actual diameters of Sched 40 pipe and CFactors of 120 except as noted with *. The fittings marked with a * show equivalent lengths values supplied by manufacturers based on specific pipe diameters and CFactors and they require no adjustment. All values for fittings not marked with a * will be adjusted in the calculation for CFactors of other than 120 and diameters other than Sched 40 per NFPA.

SPRINX FIRE PROTECTION INC. ETC Building E

Page 5 Date 3/24/2025

			SUPPLY	ANALYSIS		
Node at Source	Static Pressure	Residual Pressure	Flow	Available Pressure	Total Demand	Required Pressure
TEST	40.0	25	1560.0	39.964	60.11	33.696

NODE ANALYSIS

30 109.0 5.6 7.3 15.13 0.1 130.24 5 110.08 9.1 9.1 9.15 110.08 9.15 9.19 110.08 9.31 9.31 100.00	
5 110.08 9.1 6 110.08 9.15 6A 110.08 9.19 UP9 110.08 9.31	
6 110.08 9.15 6A 110.08 9.19 UP9 110.08 9.31	
6A 110.08 9.19 UP9 110.08 9.31	
UP9 110.08 9.31	
UP8 99.83 13.84	
UP7 89.58 18.31	
7 89.58 18.67	
28 89.58 18.68	
28A 89.58 18.69	
29 89.58 19.17	
TOR 89.58 21.58	
BOR 80.0 26.6	
BKV 78.0 33.69	
WM1 78.0 33.7	
TEST 78.0 33.7	
40 109.0 5.6 7.28 15.11 0.1 82.25	
50 109.0 5.6 7.0 14.82 0.1 123.37	
51 110.08 7.96	
60 109.0 5.6 7.22 15.05 0.1 73.5	
20 110.08 9.11	
21 110.08 9.11	
22 110.08 9.31	
24 110.08 9.45	
24A 110.08 9.48	
UP2 99.83 14.01	
25 99.83 14.0 27 00.92 12.09	
UP3 110.00 9.50 UD1 90.59 19.40	
UFI 09.30 10.49 UDG 110.09 0.52	
25 10.00 $3.4525\Delta 00.83 14 0$	
26 00.83 13.00	
7A 89.58 18.92	

SPRINX FIRE PROTECTION INC. ETC Building E

Page	6
Date	3/24/2025

Node1	Elev1	K	Qa	Nom	Fitting		Pipe Etnas	CFact	Pt Pe	*****	Notes *****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf		Notes
30	109	5.60	15.13	1	4N	28.0	20.830	150	7.303		
to 5	110.080)	15.13	1.101	2R O	2.0 5.0	35.000 55.830	0.0406	-0.468 2.268	Vel = 5.	10
5	110.080)	0.0	1.25	R	1.0	2.750	150	9.103		
to 6	110.080)	15.13	1.394			1.000 3.750	0.0131	0.0 0.049	Vel = 3.	18
6 to	110.080		0.0	2	0	10.0	9.250	150	9.152		
6A	110.080)	15.13	2.003			19.250	0.0022	0.042	Vel = 1.	54
6A	110.080)	14.24	2	Ν	11.0	5.080	150	9.194		
to UP9	110.080)	29.37	2.003			11.000 16.080	0.0075	0.0 0.121	Vel = 2.	99
UP9	110.080)	0.0	2	R	1.0	10.250	150	9.315		
to UP8	99.830		29.37	2.003			1.000 11.250	0.0076	4.439 0.085	Vel = 2.	99
UP8	99.830		-11.16	2	R	1.0	10.250	150	13.839		
to UP7	89.580		18.21	2.003			1.000 11.250	0.0031	4.439 0.035	Vel = 1.	85
UP7	89.580		0.0	2	10R	10.0	74.080	150	18.313		
to 7	89.580		18.21	2.003	30	30.0	40.000 114.080	0.0031	0.0 0.354	Vel = 1.	85
7	89.580		-12.22	2	3R	3.0	26.000	150	18.667		
to 28	89.580		5.99	2.003			3.000 29.000	0.0004	0.0 0.011	Vel = 0.	61
28	89.580		13.39	2	R	1.0	3.000	150	18.678		
to 28A	89.580		19.38	2.003			1.000 4.000	0.0035	0.0 0.014	Vel = 1.	97
28A	89.580		28.51	2	3R	3.0	23.000	150	18.692		
to 29	89.580		47.89	2.003			3.000 26.000	0.0186	0.0 0.483	Vel = 4.	88
29	89.580		12.22	2	0	10.0	36.000	150	19.175		
to TOR	89 580		60 11	2 003	6R 3N	6.0 33.0	49.000 85.000	0 0283	0.0 2 402	Vel = 6	12
TOR	89.580		0.0	2	B	8.183	9.500	120	21.577		
to BOR	80		60 11	2 203	S	15.003	23.186 32.686	0 0269	4.149 0.878	Vel= 5	06
BOR	80		0.0	6	Т	43.037	66.000	140	26.604	<u>vei 0</u> .	00
to BKV	78		60 11	6 16	3E Ziw	60.252	103.289 169 289	0 0001	7.065	* * Fixed	Loss = 6.199
BKV	78		0.0	8	T	55.354	45.000	140	33.692	<u>vei – 0</u> .	00
to	79		60 11	o 07	G	6.326	61.680	0	0.0	Val = 0	26
 WM1	78		0.0	<u> </u>			25.000	140	33.695	vei – 0.	30
to	70		60.14	0 07			25.000	0	0.0	Val - 0	26
151	/٥		0.11	ŏ.21			∠5.000	U	0.001	vei = 0	30
TEST			60.11						33.696	K Factor	= 10.36
40 to	109	5.60	15.11	1	4N 3R	28.0 3.0	20.580	150	7.283 -0.468		
20	110.080)	15.11	1.101	0	5.0	56.580	0.0405	2.292	Vel = 5.	09

7 Page 3/24/2025 ETC Building E Date Node1 Elev1 Κ Qa Fitting Pipe CFact Pt Nom Pe ***** to or Ftngs Notes Node2 Elev2 Fact Qt Act Eqiv Total Pf/Ft Pf Len 0.0 20 15.11 9.107 K Factor = 5.0150 7.000 109 5.60 14.82 1 3N 21.0 10.670 150 26.000 -0.468 to 0 5.0 14.82 110.080 1.101 0.0391 1.433 51 36.670 Vel = 4.9951 1.25 2R 17.250 7.965 110.080 15.04 2.0 150 to 0 6.0 8.000 0.0 21 110.080 29.86 1.394 25.250 0.0453 1.143 Vel = 6.28 0.0 21 29.86 9.108 K Factor = 9.89 60 109 5.60 15.05 1 ЗN 21.0 150 7.220 4.170 5.0 -0.468 to Ο 26.000 51 110.080 15.05 1.101 30.170 0.0402 1.213 Vel = 5.07 0.0 51 15.05 7.965 K Factor = 5.33 2 4R 6A 110.080 -14.244.0 30.000 150 9.194 to Ο 10.0 14.000 0.0 2.003 44.000 20 110.080 -14.24 -0.0020 -0.087 Vel = 1.4520 2 3R 9.107 110.080 15.12 3.0 19.000 150 3.000 0.0 to 0.88 2.003 22.000 0 0.001 21 110.080 Vel = 0.09 21 29.86 2 4R 20.170 150 9.108 110.080 4.0 4.000 0.0 to 22 110.080 30.74 2.003 24.170 0.0082 0.197 Vel = 3.13 22 2 110.080 -5.35 3R 3.0 22.000 150 9.305 3.000 0.0 to 2.003 0.0058 24 110.080 25.39 25.000 0.144 Vel = 2.59 2 24 110.080 -10.34 0 10.0 3.000 150 9.449 10.000 0.0 to 24A 110.080 15.05 2.003 13.000 0.0022 0.028 Vel = 1.53 24A 2 9.477 110.080 5.35 Ν 11.0 2.670 150 to 11.000 0.0 UP6 20.4 2.003 110.080 13.670 0.0038 0.052 Vel = 2.08 0.0 UP6 20.40 9.529 K Factor = 6.61 UP2 99.830 -3.06 2 10R 10.0 76.080 150 14.013 20 20.0 30.000 0.0 to -3.06 2.003 -0.0001 25 99.830 106.080 -0.012 Vel = 0.31 25 2 14.001 99.830 -6.31 3R 3.0 21.580 150 3.000 0.0 to 27 -9.37 2.003 -0.0009 99.830 24.580 -0.022 Vel = 0.95 2 10R 10.0 13.979 27 99.830 -1.79 70.830 150 20 20.0 41.000 0.0 to UP8 2.003 Ν 11.0 -0.0013 -0.140 99.830 -11.16 111.830 Vel = 1.14 0.0 UP8 -11.16 13.839 K Factor = -3.00 UP3 2 R 10.250 9.562 110.080 10.33 1.0 150 1.000 4.439 to

Final Calculations : Hazen-Williams

SPRINX FIRE PROTECTION INC.

UP2

99.830

10.33

2.003

11.250

0.0011

0.012

Vel = 1.05

SPRINX FIRE PROTECTION INC.

SPRINX ETC Buil	FIRE PR ding E	OTECTIO	ON INC.							Page 8 Date 3/24/2025
Node1	Elev1	К	Qa	Nom	Fitting		Pipe Etnas	CFact	Pt Pe	****** Notes *****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf	Notes
UP2 to	99.830		3.07	2	N	11.0	10.250 11.000	150	14.013 4.439	
	89.580		13.4	2.003		44.0	21.250	0.0018	0.038	Vel = 1.36
UP1 to	89.580		0.0	2	11R 20	11.0 20.0	76.000 31.000	150	18.490 0.0	
_28	89.580		13.4	2.003			107.000	0.0018	0.188	Vel = 1.36
28			0.0 13.40						18.678	K Factor = 3.10
UP6	110.080	C	20.40	2	R	1.0	10.250	150	9.529	
to	00 020		20.4	2 002			1.000	0 0020	4.439	
	99.830		20.4	2.003	NI	11.0	10.250	0.0039	0.044	vel = 2.08
UP5 to	99.830		8.10	2	IN	11.0	10.250	150	14.012	
UP4	89.580		28.5	2.003			21.250	0.0071	0.151	Vel = 2.90
UP4	89.580		0.0	2	0	10.0	2.670	150	18.602	
to							10.000		0.0	
28A	89.580		28.5	2.003			12.670	0.0071	0.090	Vel = 2.90
284			0.0 28.50						18 602	K Eactor = 6.50
204	110 080	า	5 35	1 25	5R	5.0	17 250	150	0 305	NT actor = 0.39
to	110.000	5	0.00	1.20	20	12.0	17.000	100	0.0	
23	110.080	2	5.35	1.394			64.250	0.0019	0.121	Vel = 1.12
23	110.080	C	0.0	1.25	4R	4.0	23.080	150	9.426	
to	110 000	h	E 2E	1 204			4.000	0.0010	0.0	$V_{0} = 1.12$
_24A	110.060	J	0.0	1.394			27.060	0.0019	0.051	ver= 1.12
24A			0.0 5.35						9.477	K Factor = 1.74
25	99.830		6.31	2	R	1.0	2.920	150	14.001	
to							1.000		0.0	
25A	99.830		6.31	2.003			3.920	0.0005	0.002	Vel = 0.64
25A	99.830		-8.10	1.25	3R	3.0	23.080	150	14.003	
10 26	99 830		-1 79	1 394	0	6.0	32 080	-0 0002	0.0 -0.008	Vel = 0.38
26	99.830		0.0	1.25	5R	5.0	47.580	150	13.995	
to					20	12.0	17.000		0.0	
27	99.830		-1.79	1.394			64.580	-0.0002	-0.016	Vel = 0.38
07			0.0						40.070	K Faster - 0.40
	00 500		-1.79	1.05	20	2.0	26.000	150	13.979	K = -0.48
7 to	89.580		12.22	1.25	3R	3.0	26.000	150	18.007	
7A	89.580		12.22	1.394			29.000	0.0087	0.251	Vel = 2.57
7A	89.580		0.0	1.25	2R	2.0	21.580	150	18.918	
to	00 500		40.00	4 00 4	0	6.0	8.000	0.0007	0.0	
29	89.580		12.22	1.394			29.580	0.0087	0.257	vei = 2.57
29			0.0 12 22						19 175	K Factor = 2.79
 UP5	99,830		-8.10	2	0	10.0	2.670	150	14.012	
to			5.10	-	-		10.000		0.0	
25A	99.830		-8.1	2.003			12.670	-0.0007	-0.009	Vel = 0.82

SPRINX ETC Buil	FIRE PR ding E	OTECTIO	ON INC.							Page Date	e 9 3/24/2	2025
Node1 to	Elev1	K	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	*****	Notes	****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf			
251			0.0						14 003	K Eactor -	- 2.16	
	110.090	<u> </u>	-0.10	2	100	10.0	74.090	150	0.562	r Faciul -	2.10	
to	110.000)	-10.55	Z	20	20.0	30.000	150	9.502 0.0			
24	110.080)	-10.33	2.003			104.080	-0.0011	-0.113	Vel = 1.0	5	
			0.0									
24			-10.33						9.449	K Factor =	-3.36	

MEMORANDUM

TO:	BRIAN JOHNSON, WATER SYSTEM
	SPECIALIST
FROM:	KERRI SIDEBOTTOM, P.E.
DATE:	APRIL 16, 2024
SUBJECT:	EAST TOWN CROSSING ADDITIONAL
	FIRE FLOW AVAILABILITY
	CITY OF PUYALLUP, PIERCE COUNTY,
	WASHINGTON
	G&O #21415.19

Per your request, I have analyzed the available fire flow at the proposed East Town Crossing development, in the central part of the City's water service area. Fire flow at this location was previously analyzed in a memo from Gray & Osborne, dated February 14, 2024. The Developer has proposed a Revised Water Piping Plan for the site, which has been analyzed in this memo. The setup of the hydraulic model and the assumptions used to determine the static pressure and available fire flow are noted as follows.

- The available fire flows and pressures are measured at 14 nodes, corresponding to the proposed hydrants within the development, as shown in the attached figure.
- Water system demands are based on projected 2038 demands and reservoirs are depleted of fire suppression and equalizing storage, as established in the *2019 Water System Plan* (WSP), approved by the Department of Health (DOH). The City's water model was updated in 2021 to reflect additional system improvements since the WSP was developed.
- All pump stations are idle, and the Salmon Springs source is operating at 1,100 gallons per minute (gpm).

The development is located in Zone 1, which is supplied by Maplewood Springs and the 15th Avenue SE Reservoirs. The system was modeled as-is, with the proposed piping indicated on the attached figure. The model was run for two different scenarios, all of which include new 8-inch piping. The new piping for Scenario 1 includes the Phase 1 piping shown on the attached figure in pink. Scenario 2 includes additional piping for Phase 2 of the development is shown in orange on the attached figure.

The available pressure under 2038 peak hour demands at the hydrants is included in Table 1.

TABLE 1

Node	Hydrant	Elevation, feet	Peak Hour Pressure, psi
J2238	J	71	41
J2240	L	72	41
J2242	М	72	40
J2244	N	76	39
J2246	Н	76	39
J2248	Ι	76	41
J2250	F	73	40
J2252	D	69	42
J2254	С	67	43
J2256	В	66	43
J2258	A	66	43
J2260	E	72	41
J2274	G	75	39
J2276	K	71	41

Peak Hour Pressure

The peak hour pressures within the development are essentially the same under either of the proposed scenarios, and the looping does not appreciably impact the pressures.

SCENARIO 1

Scenario 1 includes the piping planned for Phase 1, shown in pink on the attached figure. The piping includes 8-inch mains, mostly dead-ends, extending from the existing 8-inch main running from north to south through the site, as well as a connection to the 16-inch main on Shaw Road, to the west. Part of the existing 8-inch main will be replaced during construction of the development.

Available fire flow was modeled at 12 of the proposed hydrants in the development; Hydrants A through L. The hydrants are located on 8-inch pipes throughout the development, many of which are dead-ends. The results of this modeling are included in Table 2. The modeled fire flow is available at any hydrant individually, but not simultaneously.

TABLE 2

				Minimum System
		Available Fire	Residual Pressure at	Pressure at Available
Node	Hydrant	Flow, gpm	Available Fire Flow, psi	Fire Flow, psi
J2238	J	$2,140^{(1)}$	25	25
J2240	L	1,560 ⁽¹⁾	23	23
J2246	Н	1,560 ⁽¹⁾	22	22
J2248	Ι	$2,580^{(1)}$	23	23
J2250	F	1,560 ⁽¹⁾	25	25
J2252	D	$2,170^{(1)}$	28	28
J2254	С	1,920 ⁽¹⁾	29	28
J2256	В	2,230 ⁽¹⁾	26	26
J2258	А	1,560 ⁽¹⁾	28	28
J2260	Е	1,560 ⁽¹⁾	23	23
J2274	G	1,560 ⁽¹⁾	25	25
J2276	K	1,560 ⁽¹⁾	27	27

Modeled Fire Flow Availability, Scenario 1

(1) Limited by maximum system-wide velocity of 10 feet per second.

Fire flow to all of the hydrants is limited by the 10-fps maximum velocity through the existing and proposed 8-inch pipes in this scenario.

SCENARIO 2

Scenario 2 includes the piping indicated for Phases 1 and 2, shown in pink and orange on the attached figure. The piping includes 8-inch pipes extending from the existing 8-inch main running from north to south through the site, a connection to the existing 16-inch main on Shaw Road to the west, and improved looping as compared with Scenario 1.

Available fire flow was measured at the 14 proposed hydrants in the development; Hydrants A through N. The hydrants are located on 8-inch pipes throughout the development. The results of this modeling are included in Table. The modeled fire flow is available at any hydrant individually, but not simultaneously.

TABLE 3

			Residual Pressure	Minimum System
		Available Fire	at Available Fire	Pressure at Available Fire
Node	Hydrant	Flow, gpm	Flow, psi	Flow, psi
J2238	J	2,430 ⁽¹⁾	25	25
J2240	L	$2,340^{(1)}$	21	21
J2242	М	$2,320^{(2)}$	20	20
J2244	Ν	$2,120^{(2)}$	20	20
J2246	Н	2,330 ⁽¹⁾	20	20
J2248	Ι	$2,540^{(1)}$	24	24
J2250	F	$1,560^{(1)}$	26	26
J2252	D	$2,230^{(1)}$	28	28
J2254	С	1,980 ⁽¹⁾	29	28
J2256	В	2,340 ⁽¹⁾	26	26
J2258	А	1,560 ⁽¹⁾	38	38
J2260	Е	1,560 ⁽¹⁾	23	23
J2274	G	1,980 ⁽¹⁾	25	25
J2276	K	2,040 ⁽¹⁾	25	25

Modeled Fire Flow Availability, Scenario 2

(1) Limited by maximum system-wide velocity of 10 fps.

(2) Limited by minimum system-wide pressure of 20 psi at all service locations.

Fire flow to the hydrants is limited by the 10-fps maximum velocity through the existing and proposed 8-inch pipes.

It should be noted that the dead-end 8-inch mains within the proposed site can only provide 1,560 gpm, due to the City's 10-fps velocity limitation considered for the fire flow analysis. Therefore, if 1,500 gpm is required at the hydrant, located on a dead-end main, there is essentially no additional flow available for the sprinkler system supplied by the same dead-end main. This impacts Hydrants A, E, and F in both scenarios, and additionally Hydrants G and H in Scenario 1 only.

The Department of Health and City Standards for water distribution systems are to meet the peak hourly demand of the system while providing a minimum pressure of 30 psi, system-wide. Under peak daily demand with a fire flow, the system is designed to maintain a minimum pressure of 20 psi, system-wide. Although the peak hourly demand pressure may currently be higher than these standards, the Developer must recognize that

the City may not provide pressure higher than 30 psi in the future. The flows and pressures determined in this memo are based on the approximate hydrant elevation at ground level. The Developer may design their sprinkler system for whatever pressure they wish, however they must recognize and be responsible for conditions when the pressure may be less than currently exists.

KS/sr

