

Job No. 24-1374

By JKC

Sheet No. Cover

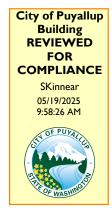
Date 10/2024

CLIENT:

FUZION

9096 E Bahia Dr Ste 103 Scottsdale, AZ 85260

PROJECT:


T-Mobile TI - #8022 4227 S. MERIDIAN SUITE E PUYALLUP, WA 98373

Calculations required to be provided by the Permittee on site for all Inspections

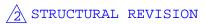
GENERAL INFORMATION:

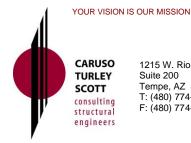
BUILDING CODE: 2021 INTERNATIONAL BUILDING CODE

PRCTI20241902

1215 W. Rio Salado Pkwy. Suite 200 Tempe, AZ 85281 480.774.1700 www.ctsaz.com

STRUCTURAL SOLUTIONS SINCE 1963


1215 W. Rio Salado Pkwy. Suite 200 Tempe, AZ 85281 480.774.1700 www.ctsaz.com


Job Name		T-Mobile	
Job No	24-1374	Sheet No.	
Ву	JKC	Date	11/2024

CALCULATION INDEX SHEET

SHEET#	DESCRIPTION
3-7	Basis of Design
8-14	Threaded Rod and Unistrut Framing
15-26	Digital Portal and Welcome Cloud Support
27-43	Mechanical Unit Support
44	Structural Survey by Apex Tech Solutions

↑ STRUCTURAL REVISION

1215 W. Rio Salado Pkwy. Suite 200 Tempe, AZ 85281 T: (480) 774-1700 F: (480) 774-1701

Job Name:	T-Mobile				
Job No. :	24-1374	_ Sheet No.:	BASIS		
Ву:	JKC	Date:	10/2024		

BASIS OF DESIGN

BUILDING CODE:

2021 EDITION OF THE INTERNATIONAL BUILDING CODE AND STANDARDS REFERENCED THEREIN, WITH CITY OF PUYALLUP AMENDMENTS.

PROJECT SCOPE:

NEW DIGITAL PORTALS AND WELCOME CLOUD SUPPORTED BY EXISTING ROOF FRAMING:

EXISTING ROOF FRAMING CONSISTS OF WOOD TRUSSES AT 24" O.C.. ALL PORTALS AND CLOUDS WILL BE SUPPORTED AND BRACED WITH UNISTRUT FRAMING SUSPENDED FROM NEW GLULAM BEAMS WITH THREADED RODS.

LARGE DIGITAL PORTAL CLOUD WEIGHT = 400 LB SMALL DIGITAL WELCOME CLOUD WEIGHT = 650 LB

LOADS:

GRAVITY:

ROOF LIVE LOAD = 20 PSF (NON-REDUCIBLE). ROOF DEAD LOAD = 18 PSF (ASSUMED). GROUND SNOW LOAD = 25 PSF

WIND:

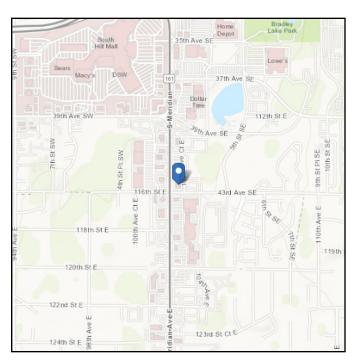
ULTIMATE DESIGN WIND SPEED (3-SECOND GUST), V(ult) = 110 MPH. RISK CATEGORY, II. EXPOSURE C.

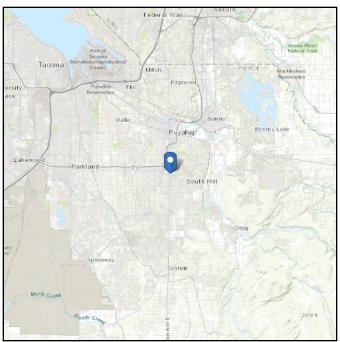
SEISMIC:

RISK CATEGORY, II.
SEISMIC IMPORTANCE FACTOR, I = 1.0.
MAPPED SHORT PERIOD SPECTRAL ACCELERATION, Ss = 1.26.
MAPPED ONE SECOND SPECTRAL ACCELERATION, S1 = 0.435.
SOIL SITE CLASS, D.
DESIGN SHORT PERIOD SPECTRAL ACCELERATION, Sds = 1.008.
SEISMIC DESIGN CATEGORY, D.

Address:

4227 S Meridian Puyallup, Washington


98373


ASCE Hazards Report

Standard: ASCE/SEI 7-16 Latitude: 47.15151
Risk Category: II Longitude: -122.292339

Soil Class: D - Default (see Elevation: 441.03603823060683 ft

Section 11.4.3) (NAVD 88)

Wind

Results:

Wind Speed 97 Vmph 10-year MRI 67 Vmph 25-year MRI 73 Vmph 50-year MRI 78 Vmph 100-year MRI 83 Vmph

Data Source: ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2

Date Accessed: Thu Nov 07 2024

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is not in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2.

Seismic

Site Soil Class: D - Default (see Section 11.4.3)

Results:

 $S_{\mbox{\scriptsize S}}$: S_{D1} : 1.26 N/A T_L : S₁ : 6 0.435 F_a : 1.2 PGA: 0.5 F_v : N/A PGA_M: 0.6 S_{MS} : 1.512 F_{PGA} : 1.2 S_{M1} : N/A I_e : 1 S_{DS} : 1.008 C_{ν} : 1.352

Ground motion hazard analysis may be required. See ASCE/SEI 7-16 Section 11.4.8.

Data Accessed: Thu Nov 07 2024

Date Source: USGS Seismic Design Maps

Residential Design Criteria

For 2021 International Codes & PCC 17C.20.170

This bulletin establishes the design criteria used in designing buildings using the current International Residential Code (IRC).

It is the responsibility of the property owner to verify all design criteria for their specific site.

Ground	Wind D	esign	Seismic	Subject to Da	mage Fron	n	Winter	Ice Barrier	-	Air	Mean
Snow Load	Speed (mph)	Topographic Effects	Design Category	Weathering	Frostline Depth	Termite	Design Temp	UnderLayment Required	Flood Hazard	Freezing Index	Annual Temp
See below	110 Mph Ult	No	D1 / D2	Moderate	See below	Slight to Moderate	26	No	Ask Engineering	50	50

Table items above in **bold** vary depending on your location. Read below for more information.

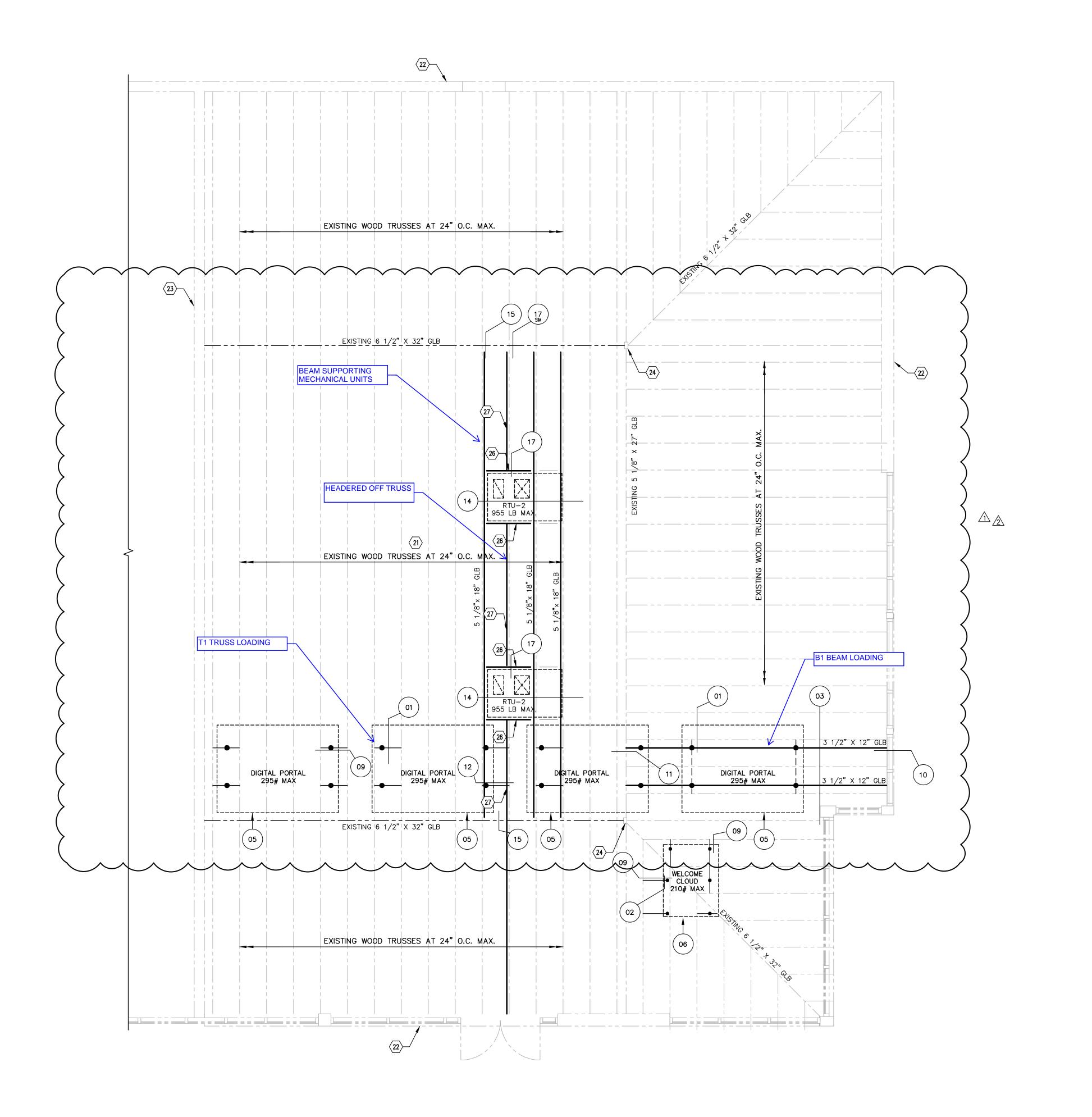
Ground Snow Loads

- All structural tables in the International Residential Code (IRC) have a minimum ground snow load of 30 pounds per square foot (psf). Projects designed to the IRC must be designed to a minimum of 30 psf.
- If plans are designed by engineer using the International Building Code (IBC) then a minimum ground snow load of 25psf may be used.
- Higher elevations (above 700 feet) may have a higher snow load.
- Ground snow loads greater than 70psf require structural calculations prepared by a WA state registered engineer (2021 IRC section R301.2.3).

Wind Design Criteria

- 110 mph Ultimate with a 3-second gust
- Exposure B (assumed unless the site meets the definition of another type)

Exposure A: Not used for residential construction.


Exposure B: Urban and suburban areas, wooded areas, or other terrain with numerous closely spaced obstructions having the size of single-family dwellings or larger.

Exposure C: Open terrain with scattered obstructions, including hills or other landscape features less than 30 feet extending more than 1,500 feet from the building site in any direction.

Exposure D: Flat, unobstructed areas exposed to wind flowing over open water for a horizontal distance of at least 5000 feet.

Seismic Design Categories

The majority of Pierce County is Category D1. The area of Pierce County abutting Kitsap County (Gig Harbor area) is designated as D2 on the IRC map.

PARTIAL ROOF FRAMING PLAN

SCALE: 1/4" = 1'-0"

T Mobile

BELLEVUE, WA 98006 WWW.T-MOBILE.COM

THESE DRAWINGS AND SPECIFICATIONS ARE COPYRIGHTED AND SUBJECT TO COPYRIGHT PROTECTION AS AN "ARCHITECTURAL WORK" UNDER SEC. 102 OF THE COPYRIGHT ACT, 17 U.S.C. AS AMENDED JANUARY 2003. THE PROTECTION INCLUDES, WITHOUT LIMITATION, THE OVERALL FORM, ARRANGEMENT AND COMPOSITION OF SPACES AND ELEMENTS OF THE DESIGN. UNDER SUCH PROTECTION, UNAUTHORIZED USE OF THESE DRAWINGS AND SPECIFICATIONS MAY RESULT IN CESSATION OF CONSTRUCTION, BUILDING SEIZURE, AND/OR MONETARY LIABILITY.

43RD

TH MERIDIAN
AVE SE

4227 S MERIDIAN SUIT
PUYALLUP, WA 9837

940-11

City of Puyallup Building

REVIEWED

FOR

COMPLIANCE SKinnear 05/19/2025 9:59:02 AM

8022

NEW

PROJECT CORP |

PROTOTYPE RELEASE: Q3 2024

S

PRCTI20241902

FUZION SCOTTSDALE, AZ 85255

The approved construction plans, documents, and all engineering must be posted on the job at all inspections in a visible and readily accessible location.

Approval of submitted plans is not an

regulations of local government. The

codes and regulations of the local

government.

approval of omissions or oversights by this office or non compliance with any applicable

contractor is responsible for making sure that the building complies with all applicable

Full sized legible color plans are required to be provided by the permitee on site for inspection.

##	DESCRIPTION	DATE
1	STRUCTURAL REVISIONS	4-2-25
2	STRUCTURAL REVISIONS	5-6-25
DATE:		11.18.202

DATE: DRAWN BY:

PARTIAL ROOF FRAMING PLAN

S201

FOR ADDITIONAL INFORMATION SHOWN BUT NOT NOTED, SEE GENERAL STRUCTURAL NOTES ON SHEET S101 AND TYPICAL DETAIL SHEETS. THESE DRAWINGS/CALCULATIONS ARE CONSIDERED PRELIMINARY -NOT FOR CONSTRUCTION OR RECORDING UNLESS THE STRUCTURAL ENGINEER OF

RECORD'S SEAL IS AFFIXED WITH WRITTEN SIGNATURE. PROJECT NUMBER 24-1374 PROJECT MANAGER JKC PROJECT DRAFTER PROJECT ENGINEER

ROOF FRAMING NOTES - TYP U.N.O.:

AND OTHER TRADES.

ENGINEER IF OTHERWISE.

23 EXISTING INTERIOR DEMISING WALL.

25) BRACE WOOD BEAM PER DETAIL 12.

(22) EXISTING EXTERIOR WALL.

(24) EXISTING STEEL COLUMN.

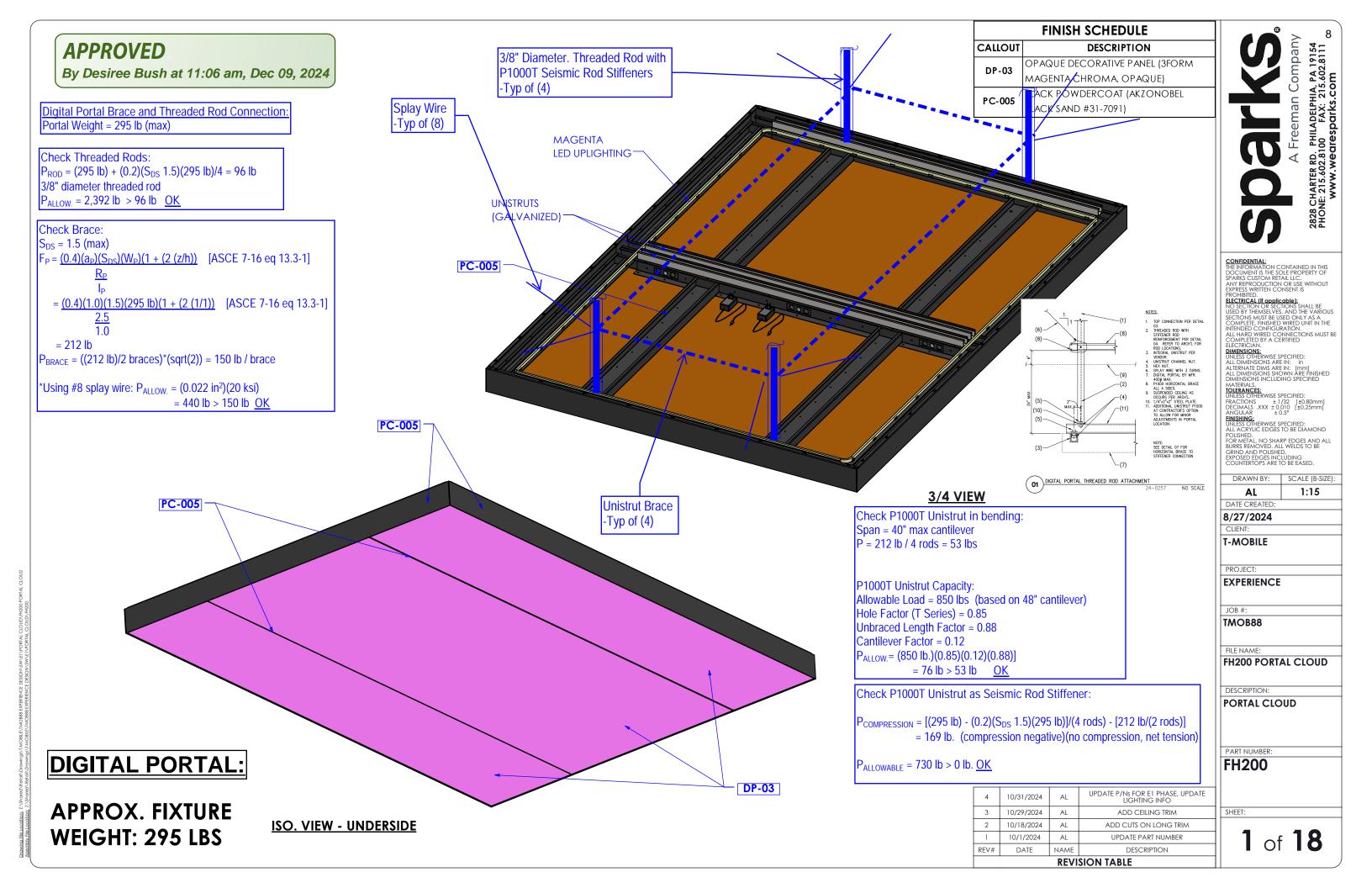
(26) 4×12 WOOD HEADER.

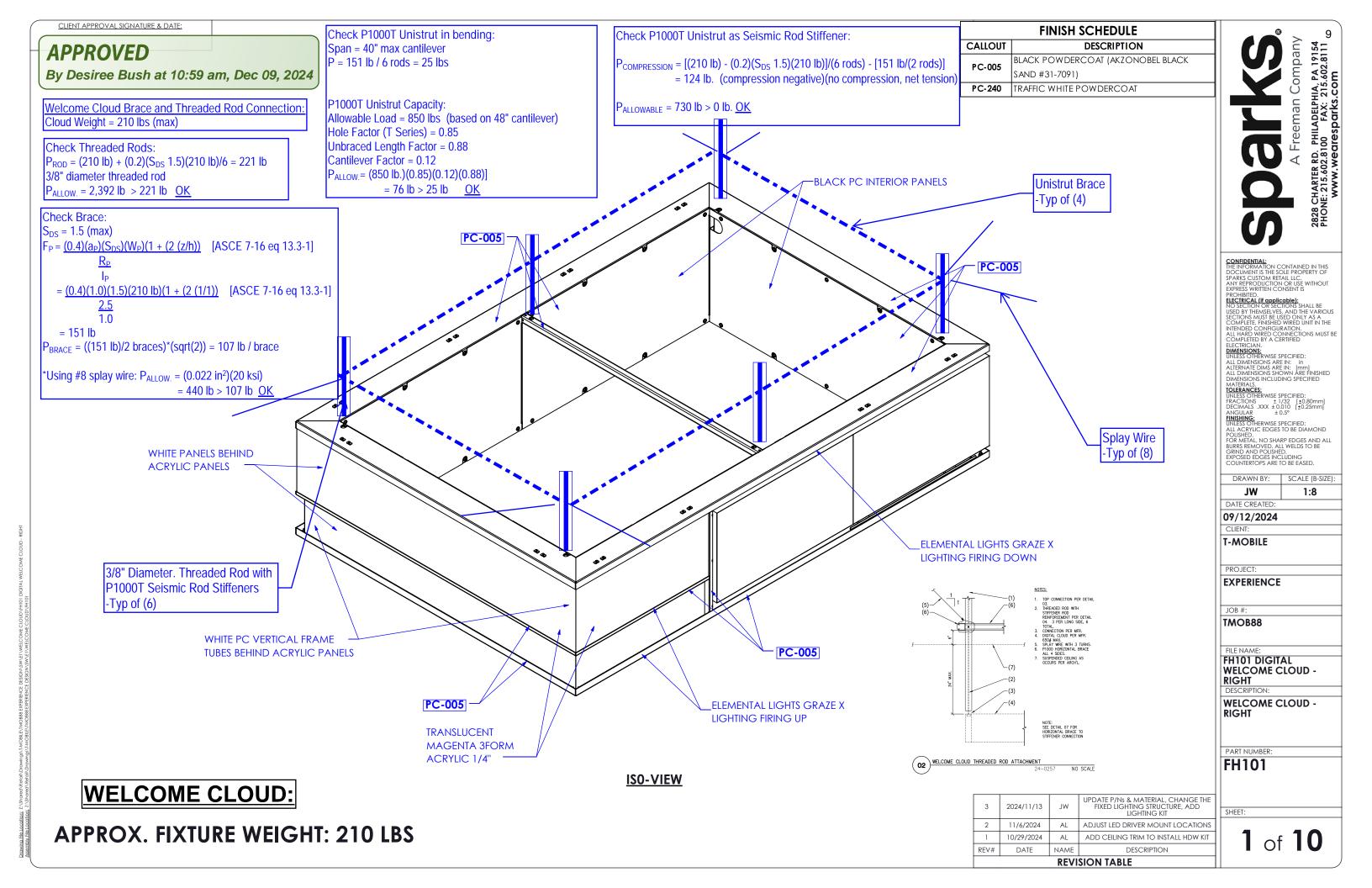
VERIFY ALL DIMENSIONS AND ELEVATIONS WITH THE ARCHITECTURAL DRAWINGS AND FIELD CONDITIONS. BUILDING DIMENSIONS AND ELEVATIONS, WHERE SHOWN, WERE PROVIDED BY THE ARCHITECT AND IT IS THE CONTRACTOR'S RESPONSIBILITY TO VERIFY AND COORDINATE ALL DIMENSIONS PRIOR TO PROCEEDING WITH THE WORK. ANY DISCREPANCIES SHALL BE RESOLVED THROUGH THE ARCHITECT.

FOR CLARITY, DETAILS MAY SHOW ONLY ONE SIDE OF FRAMING CONDITIONS. ALL OPENINGS MAY NOT BE SHOWN ON THIS PLAN. FOR EXACT SIZE, NUMBER AND LOCATION OF OPENINGS, SEE ARCHITECTURAL, MECHANICAL, PLUMBING, ELECTRICAL, SPRINKLER AND THEIR RELATED DRAWINGS. FOR FRAMING AT OPENINGS, SEE TYPICAL

VERIFY EXACT SIZE, WEIGHT AND LOCATION OF EQUIPMENT AND SUPPORTS INDICATED ON PLAN WITH ARCHITECTURAL, MECHANICAL, PLUMBING, ELECTRICAL, SPRINKLER AND THEIR RELATED DRAWINGS. EQUIPMENT INDICATED ARE ONLY THOSE THAT EXCEED LOADS SPECIFIED IN THE G.S.N. FOR SUPPORT OF EQUIPMENT, SEE TYPICAL DETAILS

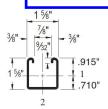
THE EXISTING CONDITIONS DEPICTED ON THESE DRAWINGS ARE BASED ON APEX TECH SOLUTIONS SURVEY DATA DATED 10/15/2024 AND SHALL BE VERIFIED BY THE CONTRACTOR PRIOR TO CONSTRUCTION. ANY DISCREPANCIES SHALL BE BROUGHT TO

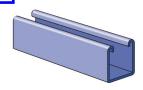

FRAMING KEYNOTES


(21) CONTRACTOR TO VERIFY TRUSSES ARE 35'-10" LONG (MAX). NOTIFY

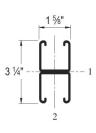
27 2x12 WOOD BEAM. ATTACH WOOD BEAM TO TRUSS PER DETAIL 17.

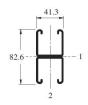
THE ATTENTION OF THE STRUCTURAL ENGINEER IMMEDIATELY.

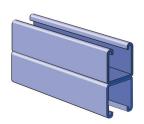

CARUSO 1215 West Rio Salado Parkway **TURLEY** Suite 200 Tempe, Arizona 85281 SCOTT (480) 774-1700 structural www.ctsaz.com engineers



FOR REFERENCE ONLY; EXCERTS FROM UNISTRUT P1000® **GENERAL ENGINEERING CATALOG NO. 17**

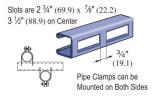






Wt/100 Ft:189 Lbs (281 kg/100 m) Allowable Moment 5,070 In-Lbs (570 N·m) 12 Gauge Nominal Thickness .105" (2.7mm)

P1001



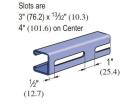

Wt/100 Ft: 378 Lbs (562 kg/100 m) Allowable Moment 14,360 In-Lbs (1,620 N·m) 12 Gauge Nominal Thickness .105" (2.7mm)

P1000 DS

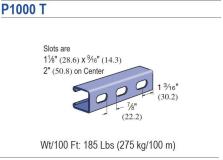
P1000 H3

P1000 HS

Wt/100 Ft: 173 Lbs (257 kg/100 m)


Wt/100 Ft: 175 Lbs (260 kg/100 m)

Wt/100 Ft:185 Lbs (275 kg/100 m)


P1000 KO

P1000 SL

Wt/100 Ft: 185 Lbs (275 kg/100 m)

Wt/100 Ft: 190 Lbs (283 kg/100 m)

CHANNEL NUTS (REFER TO HARDWARE SECTION FOR DETAILS)

P1008T P1006T1420 P1010T

P1024 P1012S P1023S

P3006-0832 P3006-1024 P3006-1420 P3007 P3008 P3009 P3010

P3016-0632 P3016-0832 P3016-1024 P3016-1420

Channel Finishes: PL, GR, HG, PG, ZD; Standard Lengths: 10' & 20'

UNISTRUT¹

r 1000 & r 1001 Chamileis

P1000 - BEAM LOADING

	Max. Allowable	Defl. at Uniform	Uniform Loading at Deflection			
Span In	Uniform Load Lbs	Load In	Span/180 Lbs	Span/240 Lbs	Span/360 Lbs	
24	1,690	0.06	1,690	1,690	1,690	
36	1,130	0.13	1,130	1,130	900	
48	850	0.22	850	760	500	
60	680	0.35	650	480	320	
72	560	0.50	450	340	220	
84	480	0.68	330	250	160	
96	420	0.89	250	190	130	
108	380	1.14	200	150	100	
120	340	1.40	160	120	80	
144	280	2.00	110	80	60	
168	240	2.72	80	60	40	
192	210	3.55	60	50	NR	
216	190	4.58	50	40	NR	
240	170	5.62	40	NR	NR	

P1001 - BEAM LOADING

	Max. Allowable	Defl. at Uniform	eflection		
Span In	Uniform Load Lbs	Load In	Span/180 Lbs	Span/240 Lbs	Span/360 Lbs
24	3,500*	0.02	3,500*	3,500*	3,500*
36	3,190	0.07	3,190	3,190	3,190
48	2,390	0.13	2,390	2,390	2,390
60	1,910	0.20	1,910	1,910	1,620
72	1,600	0.28	1,600	1,600	1,130
84	1,370	0.39	1,370	1,240	830
96	1,200	0.51	1,200	950	630
108	1,060	0.64	1,000	750	500
120	960	0.79	810	610	410
144	800	1.14	560	420	280
168	680	1.53	410	310	210
192	600	2.02	320	240	160
216	530	2.54	250	190	130
240	480	3.16	200	150	100

P1000 - COLUMN LOADING

Unbraced	Max. Allowable Load at						
Height In	Slot Face Lbs	K = 0.65 Lbs	K = 0.80 Lbs	K =1.0 Lbs	K = 1.2 Lbs		
24	3,550	10,740	9,890	8,770	7,740		
36	3,190	8,910	7,740	6,390	5,310		
48	2,770	7,260	6,010	4,690	3,800		
60	2,380	5,910	4,690	3,630	2,960		
72	2,080	4,840	3,800	2,960	2,400		
84	1,860	4,040	3,200	2,480	1,980		
96	1,670	3,480	2,750	2,110	1,660		
108	1,510	3,050	2,400	1,810	**		
120	1,380	2,700	2,110	**	**		
144	1,150	2,180	1,660	**	**		

P1001 - COLUMN LOADING

Unbraced	Max. Allowable Load	Maximum Column Load Applied at C.G.					
Height In	at Slot Face Lbs	K = 0.65 Lbs	K = 0.80 Lbs	K =1.0 Lbs	K = 1.2 Lbs		
24	6,430	24,280	23,610	22,700	21,820		
36	6,290	22,810	21,820	20,650	19,670		
48	6,160	21,410	20,300	18,670	16,160		
60	6,000	20,210	18,670	15,520	12,390		
72	5,620	18,970	16,160	12,390	8,950		
84	5,170	16,950	13,630	9,470	6,580		
96	4,690	14,890	11,190	7,250	5,040		
108	4,170	12,850	8,950	5,730	3,980		
120	3,690	10,900	7,250	4,640	**		
144	2,930	7,630	5,040	**	**		

FOR REFERENCE ONLY; EXCERTS FROM UNISTRUT GENERAL ENGINEERING CATALOG NO. 17

P1000/P1001 - ELEMENTS OF SECTION

Parameter	P100	0	P100	1
Area of Section	0.555	ln ²	1.111	ln ²
Axis 1-1				
Moment of Inertia (I)	0.185	In ⁴	0.928	In ⁴
Section Modulus (S)	0.202	ln ³	0.571	In ³
Radius of Gyration (r)	0.577	In	0.914	ln
Axis 2-2				
Moment of Inertia (I)	0.236	In ⁴	0.471	In ⁴
Section Modulus (S)	0.290	ln^3	0.580	In ³
Radius of Gyration (r)	0.651	In	0.651	ln

Notes:

* Load limited by spot weld shear.

** KL/r > 200

NR = Not Recommended.

- Beam loads are given in <u>total</u> uniform load (W Lbs) not uniform load (w lbs/ft or w lbs/in)
- Beam loads are based on a simple span and assumed to be adequately laterally braced. Unbraced spans can reduce beam load carrying capacity. Refer to Page 56 for reduction factors for unbraced lengths.
- 3. For pierced channel, multiply beam loads by the following factor:

"KO" Series.	95%	
"HS" Series .	90%	
"H3" Series	90%	

"T" Series85%	
"SL" Series85%	
"DS" Series70%	

- 4. Deduct channel weight from the beam loads.
- For concentrated midspan point loads, multiply beam loads by 50% and the corresponding deflection by 80%. For other load conditions refer to page 18.
- b. All beam loads are for bending about Axis 1-1.

LATERAL BRACING LOAD REDUCTION CHARTS

Sp	an	Sin	Single Channel						Double Channel										
Ft. (m)	In. (cm)	P1000	P1100	P2000	P3000	P3300	P4000	P4100	P5000	P5500	P1001	P1101	P2001	P3001	P3301	P4001	P4101	P5001	P5501
2 (0.61)	24 (61)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
3 (0.91)	36 (91)	0.94	0.89	0.88	0.96	1.00	0.94	0.98	0.85	0.89	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
4 (1.22)	48 (122)	0.88	0.78	0.75	0.91	1.00	0.88	0.94	0.70	0.77	1.00	0.98	0.98	1.00	1.00	0.98	1.00	0.97	0.98
5 (1.52)	60 (152)	0.82	0.68	0.61	0.88	0.98	0.83	0.91	0.55	0.67	0.97	0.93	0.92	0.98	1.00	0.93	0.96	0.90	0.93
6 (1.83)	72 (183)	0.78	0.59	0.48	0.84	0.97	0.79	0.89	0.44	0.58	0.93	0.87	0.85	0.95	0.97	0.88	0.92	0.83	0.87
7 (2.13)	84 (213)	0.75	0.52	0.41	0.82	0.96	0.75	0.86	0.38	0.51	0.89	0.82	0.78	0.92	0.95	0.83	0.89	0.76	0.81
8 (2.44)	96 (244)	0.71	0.47	0.35	0.79	0.94	0.72	0.84	0.33	0.46	0.85	0.76	0.71	0.88	0.92	0.79	0.85	0.68	0.76
9 (2.74)	108 (274)	0.69	0.43	0.32	0.77	0.93	0.69	0.82	0.30	0.42	0.81	0.70	0.64	0.85	0.90	0.74	0.81	0.61	0.70
10 (3.05)	120 (305)	0.66	0.40	0.29	0.75	0.92	0.66	0.80	0.28	0.40	0.78	0.65	0.57	0.82	0.87	0.69	0.78	0.54	0.64
12 (3.66)	144 (366)	0.61	0.36	0.25	0.70	0.89	0.60	0.76	0.24	0.36	0.70	0.54	0.45	0.76	0.82	0.60	0.71	0.43	0.53
14 (4.27)	168 (427)	0.55	0.32	0.23	0.66	0.86	0.55	0.73	0.22	0.32	0.63	0.45	0.38	0.70	0.78	0.51	0.64	0.35	0.45
16 (4.88)	192 (488)	0.51	0.30	0.21	0.62	0.84	0.50	0.69	0.21	0.30	0.56	0.39	0.32	0.64	0.73	0.44	0.57	0.30	0.39
18 (5.49)	216 (549)	0.47	0.28	0.19	0.58	0.81	0.47	0.65	0.19	0.28	0.49	0.34	0.28	0.58	0.68	0.39	0.50	0.27	0.34
20 (6.10)	240 (610)	0.44	0.26	0.18	0.54	0.78	0.43	0.61	0.18	0.26	0.44	0.31	0.25	0.52	0.63	0.35	0.45	0.24	0.30

FOR REFERENCE ONLY; EXCERTS FROM UNISTRUT **GENERAL ENGINEERING CATALOG NO. 17**

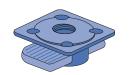
BEARING LOADS ON UNISTRUT CHANNEL

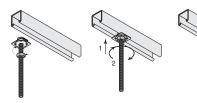
Loads are calculated based on 2007 Specification For The Design Of Cold Formed Steel Structural Members published by AISI	LOAD	LOAD	LOAD
Channel	Bearing Length 1%" (41 mm) Maximum Allowable Loads Lbs (kN)	Bearing Length 1%" (41 mm) Maximum Allowable Loads Lbs (kN)	Bearing Length 3¼" (82 mm) Maximum Allowable Loads Lbs (kN)
P1000	6,700	3,100	7,700
	29.80	13.79	34.25
P1100	3,500	1,700	4,000
	15.57	7.56	17.79
P2000	2,500	1,200	3,000
	11.12	5.34	13.34
P3000	6,700	3,200	7,700
	29.80	14.23	34.25
P3300	6,800	3,200	7,800
	30.25	14.23	34.70
P4000	2,600	1,200	3,000
	11.57	5.34	13.34
P4100	3,500	1,800	4,100
	15.57	8.01	18.24
P5000	6,500	3,000	7,500
	28.91	13.34	33.36
P5500	6,600	3,100	7,600
	29.36	13.79	33.81

70

FOR REFERENCE ONLY; EXCERTS FROM UNISTRUT **GENERAL ENGINEERING CATALOG NO. 17**

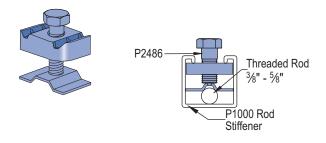
Hardware


SLOT ADAPTER TM

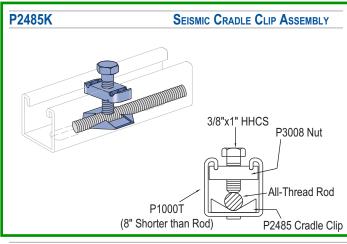


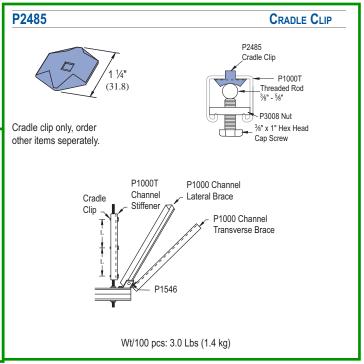
Part No.	Bolt Size	Wt/100 pcs Lbs (kg)
HOCW025	1/4" (6.4)	1 (0.5)
HOCW037	3/8 " (9.5)	1.5 (0.7)

KWIK WASHER TM



Overhead installation with one hand. Available in zinc plated and hot dip galvanized




Part No.	Size In <i>(mm)</i>	Load Lbs (kN)	Wt/100 pcs Lbs (kg)
K1062	1/4" (6.4)	250 (1.11)	1.2 (0.5)
K1063	¾" (9.5)	610 (2.71)	2.6 (1.2)
K1064	1/2" (12.7)	1,130 (5.03)	9.3 (4.2)

P2486 SEISMIC ROD STIFFENER

Wt/100 pcs: 16 Lbs (7.3 kg)

P2485 & P2486 - Spacing Chart

Ī						.Rod Stiffener C	Clip Spacing (L)	
	Rod Size In (mm)	Root Area In2 (mm2)	Radius of Gyration In <i>(mm)</i>	Design Load Lbs (kN)	Rod Stress @100% 10,700 PSI In <i>(mm)</i>	Rod Stress @75% 8,025 PSI In <i>(mm)</i>	Rod Stress @50% 5,350 PSI In (mm)	Rod Stress @35% 3,745 PSI In <i>(mm)</i>
	3/8	0.068	0.074	730	9	11	13	15
	9.5	49.5	1.99	3.25	228.6	279.4	330.2	381.0
İ	1/2	0.126	0.100	1,350	12	14	17	21
	12.7	72.4	2.40	6.01	304.8	355.6	431.8	533.4
	5/8	0.202	0.127	2,160	15	18	22	26
	15.9	138.3	3.32	9.61	381.0	457.2	558.8	660.4

- 1. Minimum Tensile Stress is 50,000 psi (345MPa)
- 2. Working Stress is 10,700 psi (73.9 MPa) - Same as for Tension
- 3. Compression Will Only Occur During a Seismic Event
- 4. Compression Requires the Use of Rod
- 5. KL/r = 200 When Rod Stress is at 35%

Refer to seismic bracing systems catalog for more detailed information.

Nuts & Hardware

1215 W. Rio Salado Pkwy. Suite 200 Tempe, AZ 85281 480.774.1700

Job Name:	T- MOBILE
Job No. :	Sheet No.:
Ву:	Date:

3/8" ASTM A36 THREADED ROD CAPACITY (IN TENSION):

3/8" Dia. Threaded Rod, ASTM A36,

Fy = 36 ksi [PER AISC 2-4; Table J3.2]

FU = 58 ksi [PER AISC 2-4; Table J3.2]

Ab = $(\pi)(0.375 \text{ in})^2/4$

 $= 0.11 in^2$

Rod Capacity:

Rn = FnAb [PER AISC J3-1; Table J3.2]

$$Fn = 0.75Fu = (0.75)(58 \text{ ksi}) = 43.5 \text{ ksi}$$

 $Rn = (43.5 \text{ ksi})(0.11 \text{ in}^2) = 4.785 \text{ k}$

Rn / Ω_{ASD} = (4.758 k)(1000 lb / 1 k) / 2.00 = <u>2392 lb allowable</u>

Job NameT-Mobile	15
Job No	Sheet No
Ву	Date

Trusses Supporting Digital Portals (T1):

Truss Span = 35'-10"
Truss Trib Width = 2'-0"

Portal Loads:

- * The portal is supported by (4) threaded rods: $P_rod = 295 \# portal / 4$
- * Truss takes load from approximately (2'-0.58')/2' = 0.71 threaded rods at 2 locations

P_portal = 0.71 * 74 lb = 53 lb

Existing Joist Capacity:

* Per IEBC, additional loadings must be less than or equal to 5% of the existing DL acting on the truss

Existing DL per joist = 18 psf * 2' * 35.83' = 1290 lb

* Assume a portion of the added load is part of a 0.5 psf miscellaneous load trusses are typically designed for

Total added load to joist = 2(53 lb) - 0.5(2')(35.83')

= 70 lb --> Equivalent to 5% increase <= 5%

--> OKAY TO LOAD TRUSS

A	
	CARUSO TURLEY SCOTT
	structural engineers
	1215 W. Rio Salado Parkway, Suite 200
	Tempe, AZ 85281
<i> </i> <i>V</i>	480.774.1700 www.cisaz.com
V	WWW.Cl3d2.com

Job Name	
Job No	Sheet No.
Ву	Date

16

Beam Supporting Digital Portals (B1):

Beam Span = 19'-6"

Portal Loads:

- * The portal is supported by (4) threaded rods: P_rod = 295# portal / 4 = 74#
- * Beam takes load from 1 threaded rods at 3 locations P_portal = 74 lb
- * See Enercalc:

Project Title: T-Mobile #8022 TI

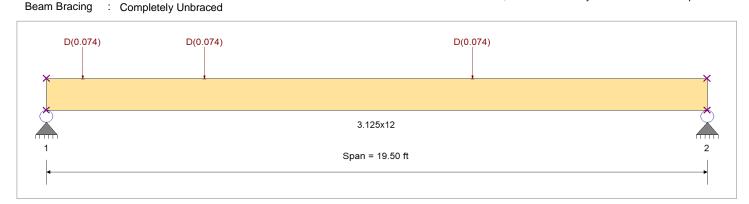
Engineer: JKC Project ID: 24-1374

Project Descr:

 Wood Beam
 Project File: 241374 T Mobile.ec6

 LIC#: KW-06016452, Build:20.24.12.17
 CARUSO TURLEY SCOTT
 (c) ENERCALC, LLC 1982-2025

DESCRIPTION: Beam Supporting Digital Portals


CODE REFERENCES

Calculations per NDS 2018, IBC 2021, SDPWS 2021

Load Combination Set: IBC 2021

Material Properties

Analysis Method: Allowable Stress Design	Fb+	2,400.0 psi	E : Modulus of Elasticity		
Load Combination : IBC 2021	Fb -	1,850.0 psi	Ebend- xx	1,800.0ksi	
	Fc - Prll	1,650.0 psi	Eminbend - xx	950.0 ksi	
Wood Species : DF/DF	Fc - Perp	650.0 psi	Ebend- yy	1,600.0 ksi	
Wood Grade : 24F-V4	Fv	265.0 psi	Eminbend - yy	850.0ksi	
	Ft	1,100.0 psi	Density	31.210pcf	
			•	•	

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Beam self weight calculated and added to loading

Point Load : D = 0.0740 k @ 1.080 ft Point Load : D = 0.0740 k @ 4.670 ft Point Load : D = 0.0740 k @ 12.580 ft

DESIGN SUMMARY						Design OK
Maximum Bending Stress Ratio Section used for this span	=	0.071: 1 3.125x12		um Shear Stress Ratio ection used for this span	=	0.037 : 1 3.125x12
fb: Actual	=	137.01ps	i	fv: Actual	=	8.94 psi
F'b	=	1,939.99ps	i	F'v	=	238.50 psi
Load Combination		•	Lo	ad Combination		·
		D	Only			D Only
Location of maximum on span	=	10.319ft	Lo	cation of maximum on span	=	0.000 ft
Span # where maximum occurs	=	Span # 1	Sp	an # where maximum occurs	=	Span # 1
Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection		0 in Ratio = 0 in Ratio =	0 <360 0 <360	n/a n/a		
Max Downward Total Deflection Max Upward Total Deflection		0.075 in Ratio = 0 in Ratio =	3123>=240 0<240	Span: 1 : D Only n/a		

Maximum Forces & Stresses for Load Combinations

ilia/tillialii i		••															
Load Combination		Max Stress Ratios									Moment Values				Shear Values		
Segment Length	Span #	ŧ M	V	CD	СМ	ct	CLx	C_V	Cfu	c i	C _r	М	fb	F'b	V	fv	F'v
D Only														0.0	0.00	0.0	0.0
Length = 19.50 ft	1	0.071	0.037	0.90	1.00	1.00	0.90	1.000	1.00	1.00	1.00	0.86	137.0	1,940.0	0.22	8.9	238.5
+0.60D					1.00	1.00	0.90	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 19.50 ft	1	0.032	0.013	1.60	1.00	1.00	0.66	1.000	1.00	1.00	1.00	0.51	82.2	2,545.2	0.13	5.4	424.0

Job NameT-Mobile	18
Job No	Sheet No.
Ву	Date

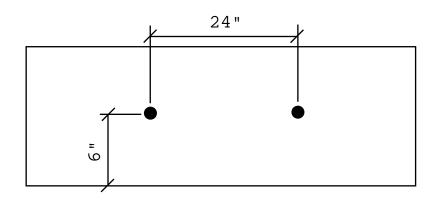
New Beam at Existing Masonry Wall:

* Use 12" deep ledger at masonry wall

Max Beam Rxcn at Ledger = 0.423 k_DL Worst Case LC: 1.2D = 0.5 k

* Load is distributed to two anchors 24" O.C.

Shear per anchor = 0.5k / 2 anchors = 0.25k


e = .5(7.625") + 3.5" thick ledger = 7.3"

M = (0.5k / 2) * 7.3"

= 1.825 k-in

Tension per anchor = M/d = 1.825 k-in / (12"/2)= 0.3k

* See Hilti Results: Use (2) 3/4" epoxy threaded rods

www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: | E-Mail:

Design: Masonry - Nov 18, 2024 Date: 11/20/2024

Fastening point:

Specifier's comments:

1 Input data

Anchor type and diameter: HY 270 + threaded rod 5.8 1/2

Item number: 385424 HAS 5.8 1/2"x6-1/2" (element) / 2194247 HIT-HY

270 (adhesive)

Specification text: Hilti HIT-V 5.8 threaded rod with HIT-HY 270

injection mortar with 4.5 in embedment hef, 1/2, Steel galvanized, Hammer drilled installation per instruction for use

Effective embedment depth: $h_{ef} = 4.500 \text{ in.}$

Material: 5.8

Evaluation Service Report: Hilti Technical Data

Issued I Valid: - | -

Proof: Design Method ASD Masonry

Stand-off installation:

Profile:

Base material: Grout-filled CMU, L x W x H: 16.000 in. x 8.000 in. x 8.000 in.;

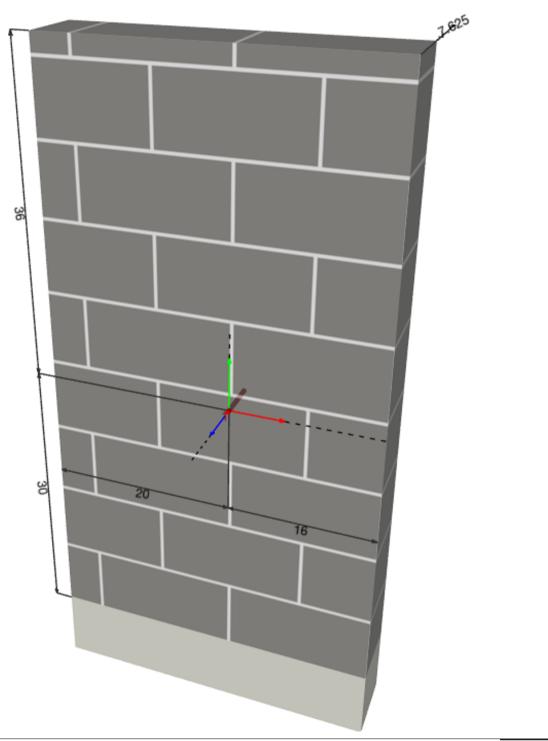
Joints: vertical: 0.375 in.; horizontal: 0.375 in.

Base material temperature: 68 °F

Installation: Face installation

Seismic loads no

2


Hilti PROFIS Engineering 3.1.5

www.hilti.com

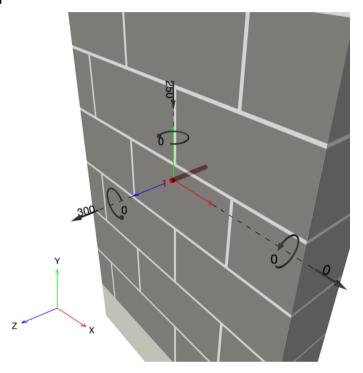
Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

Design: Masonry - Nov 18, 2024 Date: 11/20/2024
Fastening point:

Geometry [in.]

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2024 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

3


Hilti PROFIS Engineering 3.1.5

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

Design: Masonry - Nov 18, 2024 Date: 11/20/2024 Fastening point:

Geometry [in.] & Loading [lb, in.lb]

1.1 Design results

Case	Description	Forces [lb] / Moments [in.lb]	Seismic	Max. Util. Anchor [%]	
1	Combination 1	$N = 300; V_x = 0; V_y = -250;$	no	17	
		$M_{x} = 0; M_{y} = 0; M_{z} = 0;$			

2 Load case/Resulting anchor forces

Load case: Service loads

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	300	250	0	-250

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

Design: Masonry - Nov 18, 2024 Date: 11/20/2024

Fastening point:

3 Tension load (Most utilized anchor 1)

	Load P _s [lb]	Capacity P _t [lb]	Utilization $\beta_P = P_s/P_t$ [%]	Status
Steel strength	300	4,700	7	OK
Bond strength	300	1,913	16	OK

3.1 Steel strength

 $\mathbf{P}_{\mathrm{t,s}}$ = Value $$\operatorname{refer}$ to Hilti Technical Data $\mathbf{P}_{\mathrm{t,s}} \geq \mathbf{P}_{\mathrm{s}}$

Results

 $\begin{array}{ccc} & P_{t,s} \, [lb] & P_s \, [lb] \\ \hline 4,700 & 300 \\ \end{array}$

3.2 Bond strength

P_{t,b,Base} = Value refer to Hilti Technical Data

 $P_{t,b} = P_{t,b,Base} \cdot f_{red,E} \cdot f_{red,s} \cdot f_{red,Temp} \cdot f_{red,Bedjoint}$

 $P_{t,b}$ $\geq P_s$

Variables

c _{min} [in.]	c _{cr} [in.]	s _{min} [in.]	s _{cr} [in.]	Temperature [°F]
4 000	20 000	4 000	18 000	68

Results

P _{t,b} [lb]	P _{t,b,Base} [lb]	P _s [lb]	$f_{\rm red,E}$	$f_{red,S}$	$f_{red,Temp}$	$f_{red,Bedjoint}$
1,913	2,035	300	0.940	1.000	1.000	1.000

5

Hilti PROFIS Engineering 3.1.5

www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: | E-Mail:

Design: Masonry - Nov 18, 2024 Date: 11/20/2024

Fastening point:

4 Shear load (Most utilized anchor 1)

	Load V _s [lb]	Capacity V _t [lb]	Utilization $\beta_V = V_s/V_t$ [%]	Status	
Steel strength	250	2,420	11	OK	
Bond strength para and perp, (Dir. x-) ¹	-	-	17	OK	

¹Shear utilization may result from parallel and perpendicular shear (see details)

4.1 Steel strength

 $\begin{aligned} & \textbf{V}_{t,s} = \textbf{Value} & \text{refer to Hilti Technical Data} \\ & \textbf{V}_{t,s} \geq \textbf{V}_{s} \end{aligned}$

Results

V _{t,s} [lb]	V _s [lb]
2.420	250

4.2 Bond strength parallel

$$\begin{array}{ll} V_{t,b,\mathsf{Base},\parallel} = \mathsf{Value} & \mathsf{refer} \ \mathsf{to} \ \mathsf{Hilti} \ \mathsf{Technical} \ \mathsf{Data} \\ V_{t,b,\parallel} &= V_{t,b,\mathsf{Base},\parallel} \cdot f_{\mathsf{red},\mathsf{E},\parallel} \cdot f_{\mathsf{red},\mathsf{S},\parallel} \cdot f_{\mathsf{red},\mathsf{Temp}} \\ V_{t,b,\parallel} &\geq V_{s,\parallel} \end{array}$$

Variables

c _{min} [in.]	c _{cr} [in.]	s _{min} [in.]	s _{cr} [in.]	Temperature [°F]
4.000	12.000	4.000	18.000	68

Results

$V_{t,b,\parallel}$ [lb]	$V_{t,b,Base,\parallel}$ [lb]	$V_{s,\parallel}$ [lb]	$f_{red,E,\parallel}$	$f_{red,S,\parallel}$	$f_{red,Temp}$	Utilization $\beta_{V,\parallel}$ [%]
1.495	1.495	-250	1.000	1.000	1.000	17

4.3 Bond strength perpendicular

$$\begin{array}{l} V_{t,b,Base,\perp} = \text{Value} & \text{refer to Hilti Technical Data} \\ V_{t,b,\perp} &= V_{t,b,Base,\perp} \cdot f_{\text{red},E,\perp} \cdot f_{\text{red},s,\perp} \cdot f_{\text{red,Temp}} \end{array}$$

$$V_{t,b,\perp}$$
 $\geq V_{s,\perp}$

c_{min} [in.] c_{cr} [in.] s_{min} [in.] s_{cr} [in.] Temperature [°F] 4.000 12.000 4.000 18.000 68

Results

Variables

$V_{t,b,\perp}$ [lb]	$V_{t,b,Base,\perp}$ [lb]	$V_{s,\perp}$ [lb]	$f_{red,E,\perp}$	$f_{red,S,\perp}$	$f_{red,Temp}$	Utilization $\beta_{V,\perp}$ [%]
0	1,495	0	0.000	0.000	1.000	0

www.hilti.com

 Company:
 Page:
 6

 Address:
 Specifier:

 Phone I Fax:
 |
 E-Mail:

 Design:
 Masonry - Nov 18, 2024
 Date:
 11/20/2024

 Fastening point:
 11/20/2024
 11/20/2024

4.4 Shear interaction

$$\beta_{V,\parallel} = \frac{V_{s,\parallel}}{V_{t,\parallel}} \qquad \beta_{V,\perp} = \frac{V_{s,\perp}}{V_{t,\perp}} \qquad \qquad \delta \qquad \qquad \text{Utilization } \beta_{V} \, [\%] \qquad \text{Status}$$

$$0.167 \qquad 0.000 \qquad 1.667 \qquad 17 \qquad \text{OK}$$

$$\beta_{V} = \beta_{V,\parallel}^{\delta} + \beta_{V,\perp}^{\delta} \le 1.0$$

5 Combined tension and shear loads (Most utilized anchor 1)

$\beta_{\rm p} = \frac{{\sf P}_{\sf s}}{{\sf P}_{\sf s}}$	$\beta_{\text{VII}} = \frac{V_{\text{s, }}}{V_{\text{s, }}}$	$\beta_{V,\perp} = \frac{V_{s,\perp}}{V_s}$				
P _t	$P_{V,\parallel} - V_{t,\parallel}$	$P_{V,\perp} - V_{t,\perp}$	α	Utilization β _{P,V} [%]	Status	
0.046	0.167	0.000	1.667	10	OK	

$$\beta_{PV} = \beta_{P}^{\alpha} + \beta_{V\parallel}^{\alpha} + \beta_{V\parallel}^{\alpha} <= 1.0$$

6 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Refer to the manufacturer's product literature for cleaning and installation instructions.
- · For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- The min. sizes of the bricks, the masonry compressive strength, the type / strength of the mortar and the grout (in case of fully grouted CMU walls) has to fulfill the requirements given in the relevant ESR-approval or in the PTG.
- Only the local load transfer from the anchor(s) to the wall is considered, a further load transfer in the wall is not covered by PROFIS!
- Wall is assumed as being perfectly aligned vertically checking required(!): Noncompliance can lead to significantly different distribution of forces and higher tension loads than those calculated by PROFIS. Masonry wall must not have any damages (neither visible nor not visible)! While installation, the positioning of the anchors needs to be maintained as in the design phase i.e. either relative to the brick or relative to the mortar joints.
- · The effect of the joints on the compressive stress distribution on the plate / bricks was not taken into consideration.
- If no significant resistance is felt over the entire depth of the hole when drilling (e.g. in unfilled butt joints), the anchor should not be set at this position or the area should be assessed and reinforced. Hilti recommends the anchoring in masonry always with sieve sleeve. Anchors can only be installed without sieve sleeves in solid bricks when it is guaranteed that it has not any hole or void.
- The accessories and installation remarks listed on this report are for the information of the user only. In any case, the instructions for use provided with the product have to be followed to ensure a proper installation.
- The compliance with current standards (e.g. 2018, 2015, 2012, 2009 and 2006 IBC) is the responsibility of the user.
- · Drilling method (hammer, rotary) to be in accordance with the approval!
- · Masonry needs to be built in a regular way in accordance with state-of the art guidelines!

Fastening meets the design criteria!

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

Design: Masonry - Nov 18, 2024 Date: 11/20/2024
Fastening point:

Anchor type and diameter: HY 270 + threaded rod 5.8 1/2 Item number: 385424 HAS 5.8 1/2"x6-1/2" (element) /

2194247 HIT-HY 270 (adhesive)

7 Installation data

Profile: -

Hole diameter in the fixture: - Maximum installation torque: 90 in.lb

Plate thickness (input):
Hole diameter in the base material: 0.562 in.

Hole depth in the base material: 4.500 in.

Drilling method: Drilled in hammer mode Minimum thickness of the base material: 7.625 in.

Hilti HIT-V 5.8 threaded rod with HIT-HY 270 injection mortar with 4.5 in embedment hef, 1/2, Steel galvanized, Hammer drilled installation per instruction for use

Coordinates Anchor in.

Anchor	X	у	C _{-x}	C+x	C _{-y}	C _{+y}	
1	0.000	0.000	20.000	16.000	30.000	36.000	

www.hi	ITI.(COIT
--------	-------	------

Company:		Page:	3
Address:		Specifier:	
Phone I Fax:	1	E-Mail:	
Design:	Masonry - Nov 18, 2024	Date:	11/20/2024
Fastening point:	·		

8 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each
 case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data
 or programs, arising from a culpable breach of duty by you.

CARUSO TURLEY SCOTT

structural engineers
1215 W. Rio Salado Parkway, Suite 200
Tempe, Arizona 85281
T: 480 774-1700 F: 480 774-1701
www.ctsaz.com

Job Name: <u>T-Mobile TI</u>.

Job No.: <u>24-1374</u> Sheet No.: <u>27</u>.

v: JKC. Date: Nov-24

By: <u>JKC</u> Date: <u>Nov-24</u>

MECHANICAL UNIT OVERTURNING: RECTANGULAR BASE WITH NO LEGS

ASCE 7-16 / 7-10

					AJUL 1-	10/7-10				
<u>Unit info:</u>										
Weigh		lb X 1.2=	1146	lb			Effective Dimensio			
Lengt		in					Effective Length=	94.0	in	
Widt		in					Effective Width=	56.0	in	
Heigh		in					Effective Height=	48.0	in	
Curb height	t = 12	in				Heigl	nt to CGS of unit=	36.0	in	
Seismic:	Per ASCE	7 Chapter 13								
S_D										
	_P = 2.5	Ip	= 1							
	_P = 6	z/h		(conserva	tive)					
F	_{p=} <u>(.4*ap*Sd</u> :	s*W) * (1+2*z/h)	=	0.504	W	< Govern	S			
	Rp/lp									
	F _{DMAV} = 1	$6*S_{DS}*I_{P}*W =$	1.613	W						
		$S_{DS}^*I_P^*W =$	0.302	W			F _{V SEISMIC} =	193	± 0.2 S _{DS} W	
	I PMIN5	ODS IP W -	0.302	VV			*included in M _{OT (BA}			P
_	_P = 481	lb @	27	i.e.			included in MOT (BA	(SE) allu iv	OT (CURB)	
'	_P = 481	lb @	36	in						
M _{OT (BASE)} =	22718	in*lb * 0.7=	15902.8	in*lb			M _{OT (CURB)} =	16942	in*lb * .7=	11859.7 in*lb
M _R =	26740		16044.0				M _R = Weight * Widt		III ID .1-	11057.7 111 10
		in*lb * 0.6=		in*lb					lla	*Topolopio
$T_{(BASE)}=$	-3	lb	*Tension is	+			T _(CURB) =	-75	lb	*Tension is +
Sliding:	V=	481	lb * 0.7=	337	lb					
Wind:										
110	mph 3- se	c gust wind speed	I	Risk Cate	gory	II				
Exposure	С									
А	_{lf} = 39	ft ²	$A_v =$	37	ft^2					
			A _f < 0.1Bh	therefore	$G_{Cr}(h)=$	1.9				
					$G_{Cr}(v)=$	1.5				
K	z= 0.95	Kz	= 1.0	K_d		K _e =	1.00			
q _z = 0.00256 K _z		24.9	psf	ū			/ 7-10 Eqn 30.3-1			
42	<u>21</u> u -	2,	psi		7,002 7 1	o Eq. 20.10 1	7 7 TO Eq. 100.0 T			
$F_h = q_h(G_{Cr}) A_f =$	=	1852	lbs	ASCE-7 E	Eqn 29.5-2					
$F_v = q_v(G_{Cr}) A_v =$		1365	lbs		Eqn 29.5-3					
					'					
M _{OT (BASE)} =	104888	in*lb * 0.6=	62933	in*lb			M _{OT (CURB)} =	82663	in*lb * 0.6=	49598 in*lb
M _R =	26740	in*lb * 0.6=	16044	in*lb			M _R = Weight * Widt			
T _(BASE) =	837	lb	*Tension is				T _(CURB) =	599	lb	*Tension is +
· (DASE)	007	10	1 0113101113				(COND)	5//	II.	. 5115161115
Sliding:	V=	1852	lb * .6=	1111	lb					
J					-					Template Undated 00/0

Template Updated 09/09/20

CARUSO TURLEY SCOTT structural engineers 1215 W. Rio Salado Parkway, Suite 200 Tempe, Arizona 85281 T: 480 774-1700 F: 480 774-1701 www.ctsoz.com

Job Name: T-Mobile TI Job No.: 24-1374 Sheet No.: By: JKC Date: Nov-24

NOTES: NEW RTU. #2 SCREWS AT 12 O.C. ALL ARDUND. CURB BY DTHERS. (1) (2)

Attachment of Mechanical unit to curb:

Screw spacing unit to curb:

#12 screw spacing = 10 in o.c.

> $V_{\text{MAX}} =$ 1111 lb

30 screws V _{ALLOW/SCREW} (20 gage material)=

> $V_{ALLOW} =$ 5640 lb

188 OK

 $T_{MAX} =$ 599 lb

> N= screws

T ALLOW/SCREW (20 gage material)=

 $T_{ALLOW} =$ 855 lb

95 lb OK

lb

 V_{ACTUAL} Seismic OK 337 T_{ACTUAL} 0 0.06 $V_{\rm ALLOW}$ $\mathsf{T}_{\mathsf{ALLOW}}$ Unity 5640 855 V_{ACTUAL} $\mathsf{T}_{\mathsf{ACTUAL}}$ 599 OK Wind 1111 0.90 VALLOW 5640 855 Unity T_{ALLOW}

	Allowable Screw Connection Capacity (lbs)																	
					#8 Sorew #8 Sorew #10 Sorew			ų į		#12 Screw	ri .	14" Sorew						
Thickness (Mils)	the later with the la	Py Yield (ksl)	Fu Tensile (ksl)	(Pcc = 643 lbc, Pfc = 418 lbc) 0.138" dia, 0.272" Head		(Pss= 1278 lbs, Pis = 688 lbs) 0.184" dla, 0.272" Head		(Pec= 1844 lbc, Pfc = 1168 lbc) 0.190" dla, 0.340" Head		(Pec= 2330 lbc, Ptc = 2325 lbc 0.218" dla, 0.340" Head			(Pes=3048 lbs, Pfs =3201 lbs) 0.250" dla, 0.400" Head					
				Shear	Pull-Out	Pull-Over	Shear	Pull-Out	Pull-Over	Shear	Pull-Out	Pull-Over	Shear	Pull-Out	Pull-Over	Shear	Pull-Out	Pull-Over
18	0.0188	33	33	44	24	84	48	29	84	52	33	105	55	38	105	60	44	127
27	0.0283	33	33	82	37	127	89	43	127	96	50	150	102	57	159	110	66	191
30	0.0312	33	33	95	40	140	103	48	140	111	55	175	118	63	175	127	73	211
33	0.0346	33	45	151	61	140	154	72	195	177	84	265	188	95	265	203	110	318
43	0.0451	33	45	214	79	140	244	94	195	263	109	345	280	124	345	302	144	415
54	0.0586	33	45	214	100	140	344	118	195	370	137	385	394	158	433	424	180	521
68	0.0713	33	45	214	125	140	425	149	195	523	173	385	557	196	545	600	227	656
97	0.1017	33	45	214	140	140	425	195	195	548	245	386	777	280	775	1,016	324	936
118	0.1242	33	45	214	140	140	425	195	195	548	301	386	777	342	775	1,016	396	1,067
54	0.0586	50	65	214	140	140	426	171	195	534	198	386	509	225	625	613	261	752
68	0.0713	50	05	214	140	140	425	195	195	548	249	386	777	284	775	855	328	948
97	0.1017	50	05	214	140	140	425	195	195	548	356	386	777	405	775	1,016	458	1,067
118	0.1242	50	65	214	140	140	425	195	195	548	385	386	777	494	775	1,016	572	1,067

Template Updated 09/09/20

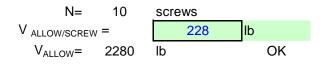
CARUSO TURLEY SCOTT
structural engineers
1215 W. Rio Salado Parkway, Suite 200
Tempe, Arizona 85281
T: 480 774-1700 F: 480 774-1701
www.ctsaz.com

 Job Name:
 T-Mobile TI

 Job No.:
 24-1374

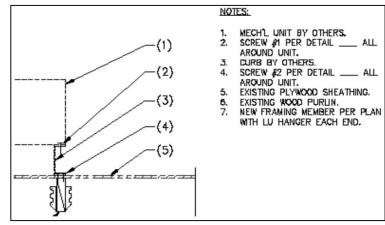
 Sheet No.:
 29

 By:
 JKC


 Date:
 Nov-24

Attachment of curb to wood framing:

Screw spacing curb to wood:


#12 screw spacing = 31.33333333 in o.c.

x 2 1/2" long wood screws

 $T_{MAX} = 837$ lb

Seismic	V_{ACTUAL}	337	ı	T_{ACTUAL}	0	_	0.15	OK
Unity	V _{ALLOW}	2280	+ '	T _{ALLOW}	1230	- =	0.13	
Wind	V_{ACTUAL}	1111		T_{ACTUAL}	599		0.97	OK
Unity	V _{ALLOW}	2280	+ '	T _{ALLOW}	1230	- =	0.97	

	Allowable Screw Connection Capacity (lbs)										apacity	(IDS)						
Thickness Decign (Mile) Thickness		Py Yield (ksl)	Fu Tencile (ksl)	#8 20rew (Pec = 843 lbs, Pts = 419 lbs) 0.138" dia, 0.272" Head			#8 Sorew (Pss= 1278 lbs, Pls = 588 lbs) 0.184" dla, 0.272" Head		\$10 Screw (Pcc= 1844 lbc, Pfc = 1158 lbc) 0.190" dla, 0.340" Head		#12 Screw () (Pss= 2330 lbs, Pfs = 2325 lbs) 0.218" dla, 0.340" Head			%" Sorew () (Pos= 3048 lbs, Pts = 3201 lbs 0.250" dla, 0.400" Head				
				Shear	Pull-Out	Pull-Over	Shear	Pull-Out	Pull-Over	Shear	Pull-Out	Pull-Over	Shear	Pull-Out	Pull-Over	Shear	Pull-Out	Pull-Over
18	0.0188	33	33	44	24	84	48	29	84	52	33	105	55	38	105	60	44	127
27	0.0283	33	33	82	37	127	89	43	127	96	50	150	102	57	159	110	66	191
30	0.0312	33	33	95	40	140	103	48	140	111	55	175	118	63	175	127	73	211
33	0.0346	33	45	151	61	140	154	72	105	177	84	265	188	95	205	203	110	318
43	0.0451	33	45	214	79	140	244	94	195	263	109	345	280	124	345	302	144	415
54	0.0566	33	45	214	100	140	344	118	195	370	137	386	394	156	433	424	180	521
68	0.0713	33	45	214	125	140	426	149	195	523	173	386	557	196	545	600	227	656
97	0.1017	33	45	214	140	140	426	195	195	548	245	386	777	280	775	1,016	324	935
118	0.1242	33	45	214	140	140	426	195	195	548	301	386	777	342	775	1,016	396	1.057
54	0.0566	50	65	214	140	140	426	171	195	534	198	386	589	225	625	613	261	752
68	0.0713	50	65	214	140	140	426	195	195	548	249	386	777	284	775	855	328	948
97	0.1017	50	65	214	140	140	426	195	195	548 548	356	386	777	405	775	1,016	458	1,057
118	0.1242	50	05	214	140	140	426	195	195	548	385	386	777	494	775	1,016	572	1,057

 Job Name: T-Mobile TI
 .

 Job No.: 24-1374 Sheet No.: 30
 .

 By: JKC Date: Nov-24
 .

Design Method Allowable Stress Design (ASD)

Connection Type Withdrawal loading

Fastener Type Wood Screw

Loading Scenario N/A

Submit Initial Values

Main Member Type Douglas Fir-Larch

Main Member Type	Douglas Fir-Larch						
Main Member Thickness	3.5 in.						
Side Member Type	Steel						
Side Member Thickness	20 gage						
Wood Screw Number	12 (D = 0.216 in.)						
Length	2.5 in.						
Load Duration Factor	C_D = 1.6						
Wet Service Factor	C_M = 1.0						
Temperature Factor	C_t = 1.0						
Calcula	Calculate Connection Capacity						
Connection Yield	Mode Descriptions	Limits of Use					
Diaphragm Factor Help	Load Duration Factor Help	Technical Help					

Adjusted ASD Capacity 410 lbs.

The Adjusted ASD Capacity does not apply for wood screws installed in the end grain of wood members.

Show Printable View

The Adjusted ASD Capacity only applies to withdrawal of the fastener from the main member. It does not address head pull capacity of the fastener in the side member.

While every effort has been made to insure the accuracy of the information presented, and special effort has been made to assure th information reflects the state-of-the-art, neither the American Wood Council nor its members assume any responsibility for any par prepared from this on-line Connection Calculator. Those using this on-line Connection Calculator assume all liability from its use.

The Connection Calculator was designed and created by Cameron Knudson, Michael Dodson and David Pollock at Washington Str Support for development of the Connection Calculator was provided by <u>American Wood Council</u>.

Provides users with a web-based approach to calculating capacities for single bolts, nails, lag screws and wood screws per the 2005 NDS. Both lateral (single and double shear) and withdrawal capacities can be determined. Wood-to-wood, wood-to-concrete, and wood-to-steel connections are possible.

Connection Calculator available for the iPhone.

2 of 3 8/16/2018, 4:44 PM

Connection Calculator

 Job Name: T-Mobile TI
 .

 Job No.: 24-1374
 Sheet No.: 31

 By: JKC
 Date: Nov-24

https://www.awc.org/codes-standards/calculators-software/connectioncalc

Design Method	Allowable Stress Design (ASD)
Connection Type	Lateral loading
Fastener Type	Wood Screw
Loading Scenario	Single Shear
	Submit Initial Values

Main Member Type	Douglas Fir-Larch
Main Member Thickness	
Main Member: Angle of Load to Grain	0
Side Member Type	Steel
Side Member Thickness	20 gage
Side Member: Angle of Load to Grain	0
Wood Screw Number	12 (D = 0.216 in.)
Length	2.5 in.
Load Duration Factor	C_D = 1.6
Wet Service Factor	C_M = 1.0
End Grain Factor	C_eg = 1.0
Temperature Factor	C_t = 1.0

Calcula	te Connection Capacity		
Connection Yield	Mode Descriptions	Limits of Use	
Diaphragm Factor Help	Load Duration Factor Help	Technical Help	į
Show Printable View			

Connection Yield Modes

Im	1418 lbs.	
Is	276 lbs.	
п	577 lbs.	
IIIm	602 lbs.	
IIIs	228 lbs.	
IV	322 lbs.	

Adjusted ASD Capacity	228 lbs.
-----------------------	----------

- · Wood Screw bending yield strength of 80000 psi is assumed.
- Dowel bearing strengths for wood screws with nominal diameter greater than 1/4 in. are calculated and rounded to the neare accordance with NDS Table 11.3.2.
- . Length of tapered tip is assumed to be two times the nominal wood screw diameter for calculating dowel bearing length in t
- ASTM A36 Steel is assumed for steel side members 1/4 in. thick, and ASTM A653 Grade 33 Steel is assumed for steel side than 1/4 in. thick.

While every effort has been made to insure the accuracy of the information presented, and special effort has been made to assure the

2 of 3 8/16/2018, 4:49 PM

Job Name	
	Sheet No.
Ву	Date

New Beam Supporting Mech Units:

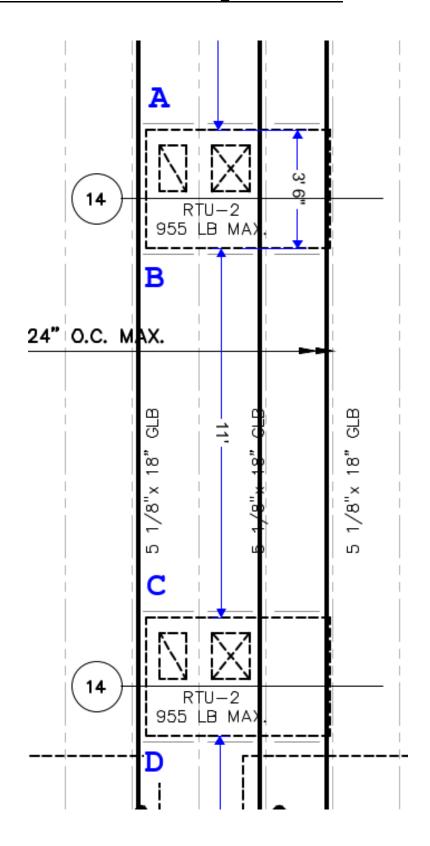
```
Unit Weight = 955 lb * 1.2
= 1146 lb
* Assume beam takes 1/3 of unit weight
```

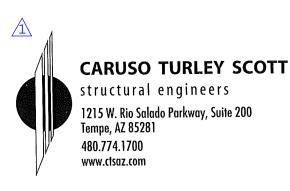
* Assume beam takes 1/3 of unit weight as distributed load w_mech = 1146 lb / 3 / 3.67' long = 104 plf

```
Existing Roof Loads:
```

- * See next pages for SL loading and headered off truss loadings
- * See Enercalc: Use 5 1/8" x 18" Glulam Beam

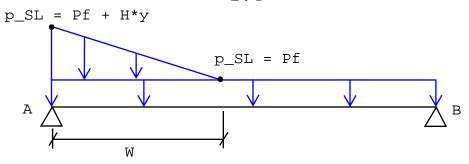
Job Name	
L.L. NI-	Sheet No
Job No	Sileer 140.
Ву	Date

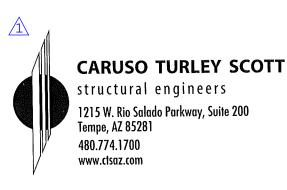

Headered Off Truss Loads to Glulam Beams:


```
Point A:
DL = 0.5 * 18 psf * 2' trib * 9.5' long / 2
   = 86 lb
LL = 0.5 * 20 psf * 2' trib * 9.5' / 2
   = 95 lb
SL (bal) = 0.5 * 18 psf * 2' trib * 9.5' long / 2
         = 86 lb
SL (E/W drift) = 0.5 * 27 psf * 2' trib * 9.5' long / 2
               = 128 lb
SL (N/S drift) = 13 lb
Point B and C:
DL = 0.5 * 18 psf * 2' trib * 11' long / 2
   = 99 lb
LL = 0.5 * 20 psf * 2' trib * 11' / 2
   = 110 lb
SL (bal) = 0.5 * 18 psf * 2' trib * 11' long / 2
         = 99 lb
SL (E/W drift) = 0.5 * 27 psf * 2' trib * 11' long / 2
               = 149 lb
SL (N/S drift) = 0 lb
Point D:
DL = 0.5 * 18 psf * 2' trib * 7.67' long / 2
   = 69 lb
LL = 0.5 * 20 psf * 2' trib * 7.67' / 2
   = 77 lb
SL (bal) = 0.5 * 18 psf * 2' trib * 7.67' long / 2
         = 69 lb
SL (E/W drift) = 0.5 * 27 psf * 2' trib * 7.67' long / 2
               = 104 lb
SL (N/S drift) = 16 lb
```


Job Name	
Job No	Sheet No
Ву	Date

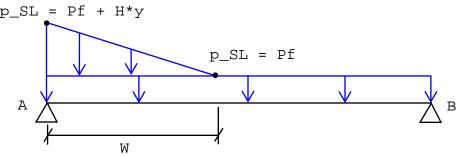
Header Point Loads Key Plan:




Job Name	
Job No	Sheet No.
Ву	Date

Existing Snow Drift at Roof Level (Plan E/W Direction):

```
Pq = 25 psf
Pf = 25 psf * 0.7
   = 18 psf
Snow Drift:
Lu = 143'
hd = 0.75 * [(0.43 * (Lu)^0.33 * (Pg + 10)^0.25) - 1.5]
   = 2.9'
Snow Density, y = 0.13(Pg)+14
               = 17 pcf
hb = Pf / y
   = 1.1'
hc = 3.5' tall parapet - 1.1'
   = 2.4'
*hc < hd --> Drift Length, W = min[8*hc , 4*hd^2/hc]
                              = 14.0'
             Drift Height, H = hc
                              = 2.4'
```



Beam is 4.75' away from parapet and runs parallel to parapet p_SL (drift only) = (14'-4.75') * 2.4' * 17 pcf / 14' = 27 psf

Job Name	
Job No	Sheet No.
Ву	Date

Existing Snow Drift at Roof Level (Plan N/S Direction):

```
Pq = 25 psf
Pf = 25 psf * 0.7
   = 18 psf
Snow Drift:
Lu = 35'
hd = 0.75 * [(0.43 * (Lu)^0.33 * (Pg + 10)^0.25) - 1.5]
   = 1.4'
Snow Density, y = 0.13(Pg)+14
                = 17 pcf
hb = Pf / y
   = 1.1'
hc = 3.5' tall parapet - 1.1'
   = 2.4'
*hc > hd --> Drift Length, W = min[8*hc , 4*hd]
                              = 5.6'
             Drift Height, H = hd
                              = 1.4'
           p_SL = Pf + H*y
```


CARUSO TURLEY SCOTT, INC. 1215 W. RIO SALADO PKWY, SUITE 200 TEMPE, AZ 85281

Project Title: T-Mobile #8022 TI Engineer: JKC

24-1374

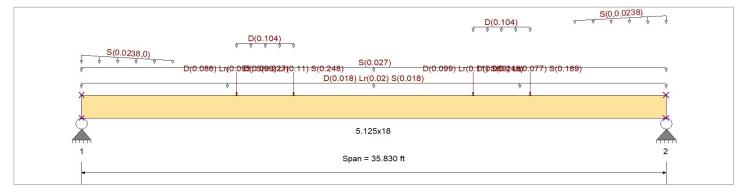
Project ID:

Project Descr:

Wood Beam Project File: 241374 T Mobile.ec6

LIC#: KW-06016452, Build:20.24.12.17 CARUSO TURLEY SCOTT (c) ENERCALC, LLC 1982-2025

DESCRIPTION: Copy of Beam Supporting RTU 1 and 2


CODE REFERENCES

Calculations per NDS 2018, IBC 2021, SDPWS 2021

Load Combination Set: IBC 2021

Material Properties

Analysis Method: Allowable Stress Design	Fb+	2,400.0 psi	E : Modulus of Elas	ticity
Load Combination : IBC 2021	Fb -	1,850.0 psi	Ebend- xx	1,800.0 ksi
	Fc - Prll	1,650.0 psi	Eminbend - xx	950.0 ksi
Wood Species : DF/DF	Fc - Perp	650.0 psi	Ebend- yy	1,600.0 ksi
Wood Grade : 24F-V4	Fv	265.0 psi	Eminbend - yy	850.0ksi
	Ft	1,100.0 psi	Density	31.210pcf
Beam Bracing : Completely Unbraced			·	·

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Beam self weight calculated and added to loading

Uniform Load: D = 0.0180, Lr = 0.020, S = 0.0180, Tributary Width = 1.0 ft, (Existing DL, LL, and SL (balanced))

Uniform Load: S = 0.0270, Tributary Width = 1.0 ft, (SL (E-W Drift))

Varying Uniform Load: S= 0.02380->0.0 k/ft, Extent = 0.0 -->> 5.60 ft, Trib Width = 1.0 ft, (SL (N-S Drift))

Uniform Load: D = 0.1040 k/ft, Extent = 9.50 -->> 13.0 ft, Tributary Width = 1.0 ft, (Mech) Uniform Load: D = 0.1040 k/ft, Extent = 24.0 -->> 27.50 ft, Tributary Width = 1.0 ft, (Mech)

Varying Uniform Load: S= 0.0->0.02380 k/ft, Extent = 30.230 -->> 35.830 ft, Trib Width = 1.0 ft, (SL (N-S Drift))

Point Load: D = 0.0860, Lr = 0.0950, S = 0.2270 k @ 9.50 ft, (Added Load from Truss (Point A))

Point Load: D = 0.0990, Lr = 0.110, S = 0.2480 k @ 13.0 ft, (Added Load from Truss (Point B))

Point Load: D = 0.0990, Lr = 0.110, S = 0.2480 k @ 24.0 ft, (Added Load from Truss (Point C))

Point Load: D = 0.0690, Lr = 0.0770, S = 0.1890 k @ 27.50 ft, (Added Load from Truss (Point D))

DESIGN SUMMARY						Design OK
Maximum Bending Stress Ratio Section used for this span	=	0.468 1 5.125x18		m Shear Stress Ratio ction used for this span	=	0.129 : 1 5.125x18
fb: Actual	=	1,049.62psi		fv: Actual	=	39.34 psi
F'b	=	2,242.26psi		F'v	=	304.75 psi
Load Combination			Lo	ad Combination		·
		+0)+S			+D+S
Location of maximum on span	=	17.392ft	Lo	cation of maximum on span	=	34.392 ft
Span # where maximum occurs	=	Span # 1	Sp	an # where maximum occurs	=	Span # 1
Maximum Deflection Max Downward Transient Deflection May University Transient Deflection		0.649 in Ratio =	662 >= 360 0 < 360	Span: 1 : S Only		
Max Upward Transient Deflection Max Downward Total Deflection		1.281 in Ratio =	•	Span: 1 : +D+S		
Max Upward Total Deflection		0 in Ratio =	335 >=240 0 <240	n/a		

CARUSO TURLEY SCOTT, INC. 1215 W. RIO SALADO PKWY, SUITE 200 TEMPE, AZ 85281

Project Title: Engineer: Project ID: Project Descr:

T-Mobile #8022 TI

24-1374

Wood Beam Project File: 241374 T Mobile.ec6

LIC#: KW-06016452, Build:20.24.12.17 CARUSO TURLEY SCOTT (c) ENERCALC, LLC 1982-2025

DESCRIPTION: Copy of Beam Supporting RTU 1 and 2

Maximum	Forces &	& Stresses	for Load	Combinations
IVIANIIIIUIII	I UICES (は しいてろうてろ	IUI LUAU	Combinations

Load Combination		Max S	tress Ra	tios								Momer	t Values		Sh	ear Val	ues
Segment Length	Span #	М	V	CD	CM	Ct	CLx	C_V	Cfu	c i	C _r	М	fb	F'b	V	fv	F'v
D Only														0.0	0.00	0.0	0.0
Length = 35.830 ft	1	0.268	0.080	0.90	1.00	1.00	0.89	0.910	1.00	1.00	1.00	11.91	516.4	1,927.8	1.18	19.2	238.5
+D+Lr					1.00	1.00	0.89	0.910	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 35.830 ft	1	0.322	0.084	1.25	1.00	1.00	0.78	0.910	1.00	1.00	1.00	17.26	748.4	2,326.2	1.71	27.8	331.3
+D+S					1.00	1.00	0.78	0.910	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 35.830 ft	1	0.468	0.129	1.15	1.00	1.00	0.81	0.910	1.00	1.00	1.00	24.21	1,049.6	2,242.3	2.42	39.3	304.8
+D+0.750Lr					1.00	1.00	0.81	0.910	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 35.830 ft	1	0.297	0.077	1.25	1.00	1.00	0.78	0.910	1.00	1.00	1.00	15.92	690.4	2,326.2	1.58	25.6	331.3
+D+0.750S					1.00	1.00	0.78	0.910	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 35.830 ft	1	0.409	0.113	1.15	1.00	1.00	0.81	0.910	1.00	1.00	1.00	21.13	916.3	2,242.3	2.11	34.3	304.8
+0.60D					1.00	1.00	0.81	0.910	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 35.830 ft	1	0.124	0.027	1.60	1.00	1.00	0.65	0.910	1.00	1.00	1.00	7.15	309.9	2,496.0	0.71	11.5	424.0

Overall Maximum Deflections

Span	Load Combination	Max. "-" Defl	Location in Span	Load Combination	Max. "+" Defl	Location in Span
1 +D+S		1.2807	17.915		0.0000	0.000

Vertical Reactions Support notation : Far left is #1 Values in KIPS

Load Combination	Support 1 St	upport 2
Max Upward from all Load Conditions	2.531	2.569
Max Upward from Load Combinations	2.531	2.569
Max Upward from Load Cases	1.323	1.334
D Only	1.208	1.235
+D+Lr	1.760	1.791
+D+S	2.531	2.569
+D+0.750Lr	1.622	1.652
+D+0.750S	2.200	2.235
+0.60D	0.725	0.741
Lr Only	0.552	0.556
S Only	1.323	1.334

Job Name	
Job No	Sheet No
Ву	Date

New Header Supporting Truss:

* Worst case load to header is the point loads from truss at points \backslash B or C

```
DL = 2 * 99 lb
= 198 lb
LL = 2 * 110 lb
= 220 lb
SL = 2 * (99 lb + 149 lb)
= 496 lb
```

* See Enercalc: Use 4x6 (minimum size)

```
What truss hanger to use?

* Try Simpson THA426 hanger

Design Load = D + S

= 198 lb + 496 lb

= 694 lb
```

Hanger Capacity = 4315 lb > 694 lb --> OKAY

New Beam in Place of Truss:

* See Enercalc: Use 2x10 Wood Beam

CARUSO TURLEY SCOTT, INC. 1215 W. RIO SALADO PKWY, SUITE 200 TEMPE, AZ 85281

Project Title: T-Mobile Engineer: JKC Project ID: 24-1374

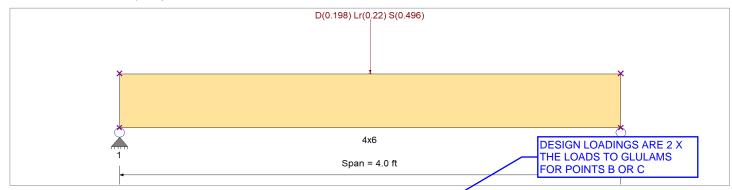
T-Mobile #8022 TI JKC

Project ID: Project Descr:

 Wood Beam
 Project File: 241374 T Mobile.ec6

 LIC#: KW-06016452, Build:20.24.12.17
 CARUSO TURLEY SCOTT
 (c) ENERCALC, LLC 1982-2025

DESCRIPTION: Header Beam


CODE REFERENCES

Calculations per NDS 2018, IBC 2021, SDPWS 2021

Load Combination Set: ASCE 7-16

Material Properties

E: Modulus of Elasticity Analysis Method: Allowable Stress Design 850.0 psi Fb+ Load Combination : ASCE 7-16 Fb -850.0 psi Ebend- xx 1,600.0ksi Fc - Prll 1,400.0 psi Eminbend - xx 580.0ksi Fc - Perp 625.0 psi Wood Species : Douglas Fir-Larch (North) Fν 180.0 psi Wood Grade : No. 1/No. 2 Ft 500.0 psi 30.590 pcf Density Beam Bracing : Completely Unbraced

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Beam self weight NOT internally calculated and added

Point Load: D = 0.1980, Lr = 0.220, S = 0.4960 k @ 2.0 ft

DECICAL CLIMINA DV						Docian OK
DESIGN SUMMARY						Design OK
Maximum Bending Stress Ratio	=	0.373 1	Maximu	m Shear Stress Ratio	=	0.131 : 1
Section used for this span		4x6	Se	ction used for this span		4x6
fb: Actual	=	471.95psi		fv: Actual	=	27.04 psi
F'b	=	1,265.45psi		F'v	=	207.00 psi
Load Combination		·	Lo	ad Combination		
		+	D+S			+D+S
Location of maximum on span	=	2.000ft	Lo	cation of maximum on span	=	0.000 ft
Span # where maximum occurs	=	Span # 1	Sp	an # where maximum occurs	=	Span # 1
Maximum Deflection						
Max Downward Transient Deflection		0.015 in Ratio =	3243 >= 360	Span: 1 : S Only		
Max Upward Transient Deflection		0 in Ratio =	0<360	n/a		
Max Downward Total Deflection		0.021 in Ratio =	2318>=240	Span: 1 : +D+S		
Max Upward Total Deflection		0 in Ratio =	0<240	n/a		

Maximum Forces & Stresses for Load Combinations

Load Combination		Max S	tress Ra	tios								Moment	Values		Sh	ear Valı	Jes
Segment Length	Span #	М	V	CD	CM	C _t	CLx	C_F	Cfu	c i	C _r	М	fb	F'b	V	fv	F'v
D Only														0.0	0.00	0.0	0.0
Length = 4.0 ft	1	0.136	0.048	0.90	1.00	1.00	1.00	1.300	1.00	1.00	1.00	0.20	134.6	991.3	0.10	7.7	162.0
+D+Lr					1.00	1.00	1.00	1.300	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 4.0 ft	1	0.207	0.072	1.25	1.00	1.00	1.00	1.300	1.00	1.00	1.00	0.42	284.3	1,374.9	0.21	16.3	225.0
+D+S					1.00	1.00	1.00	1.300	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 4.0 ft	1	0.373	0.131	1.15	1.00	1.00	1.00	1.300	1.00	1.00	1.00	0.69	472.0	1,265.4	0.35	27.0	207.0
+D+0.750Lr					1.00	1.00	1.00	1.300	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 4.0 ft	1	0.180	0.063	1.25	1.00	1.00	1.00	1.300	1.00	1.00	1.00	0.36	246.9	1,374.9	0.18	14.1	225.0
+D+0.750S					1.00	1.00	1.00	1.300	1.00	1.00	1.00			0.0	0.00	0.0	0.0

(c) ENERCALC, LLC 1982-2025

CARUSO TURLEY SCOTT, INC. 1215 W. RIO SALADO PKWY, SUITE 200 TEMPE, AZ 85281 Project Title: Engineer: Project ID: Project Descr:

T-Mobile #8022 TI JKC

: 24-1374

Wood Beam Project File: 241374 T Mobile.ec6

CARUSO TURLEY SCOTT

DESCRIPTION: Header Beam

LIC#: KW-06016452, Build:20.24.12.17

Maximum Forces & Stresses for Load Combinations

Load Combination		Max S	tress Ra	tios								Moment	Values		Sh	near Valu	ues
Segment Length	Span #	# M	V	CD	СМ	ct	CLx	C_{F}	Cfu	C i	C _r	М	fb	F'b	V	fv	F'v
Length = 4.0 ft	1	0.306	0.107	1.15	1.00	1.00	1.00	1.300	1.00	1.00	1.00	0.57	387.6	1,265.4	0.29	22.2	207.0
+0.60D					1.00	1.00	1.00	1.300	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 4.0 ft	1	0.046	0.016	1.60	1.00	1.00	0.99	1.300	1.00	1.00	1.00	0.12	80.8	1,757.4	0.06	4.6	288.0

Overall Maximum Deflections

Span	Load Combination	Max. "-" Defl	Location in Span	Load Combination	Max. "+" Defl	Location in Span
1 +D+S		0.0207	2.000		0.0000	0.000

Vertical Reactions	Support notation : Far left is #1	Values in KIPS
--------------------	-----------------------------------	----------------

Load Combination	Support 1 St	ирроп 2			
Max Upward from all Load Conditions	0.347	0.347			
Max Upward from Load Combinations	0.347	0.347			
Max Upward from Load Cases	0.248	0.248			
D Only	0.099	0.099			
+D+Lr	0.209	0.209			
+D+S	0.347	0.347			
+D+0.750Lr	0.182	0.182			
+D+0.750S	0.285	0.285			
+0.60D	0.059	0.059			
Lr Only	0.110	0.110			
S Only	0.248	0.248			

CARUSO TURLEY SCOTT, INC. 1215 W. RIO SALADO PKWY, SUITE 200 TEMPE, AZ 85281

Project Title: T-Mobile #8022 TI Engineer: JKC

Project ID: 24-1374

Project Descr:

 Wood Beam
 Project File: 241374 T Mobile.ec6

 LIC#: KW-06016452, Build:20.24.12.17
 CARUSO TURLEY SCOTT
 (c) ENERCALC, LLC 1982-2025

DESCRIPTION: New Beam in Place of Truss

CODE REFERENCES

Calculations per NDS 2018, IBC 2021, SDPWS 2021

Load Combination Set: ASCE 7-16

Material Properties

E: Modulus of Elasticity Analysis Method: Allowable Stress Design 850.0 psi Fb+ Load Combination : ASCE 7-16 Fb -850.0 psi Ebend- xx 1,600.0ksi Fc - Prll 1,400.0 psi Eminbend - xx 580.0ksi Fc - Perp 625.0 psi Wood Species : Douglas Fir-Larch (North) 180.0 psi Fν Wood Grade : No. 1/No. 2 500.0 psi Ft 30.590 pcf Density Beam Bracing : Beam is Fully Braced against lateral-torsional buckling

2x8

Span = 11.0 ft

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Beam self weight NOT internally calculated and added

Uniform Load: D = 0.0180, Lr = 0.020, S = 0.0450, Tributary Width = 1.0 ft, (New Beam in Place of Truss)

DESIGN SUMMARY						Design OK
Maximum Bending Stress Ratio Section used for this span	=	0.742 1 2x8		m Shear Stress Ratio ction used for this span	=	0.206 : 1 2x8
fb: Actual	=	870.16psi		fv: Actual	=	42.56 psi
F'b	=	1,173.00 psi		F'v	=	207.00 psi
Load Combination		•	Loa	ad Combination		
		+D-	+S			+D+S
Location of maximum on span	=	5.500ft	Lo	cation of maximum on span	=	10.398 ft
Span # where maximum occurs	=	Span # 1	Sp	an # where maximum occurs	=	Span # 1
Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection		0 in Ratio =	674 >=360 0 <360 481 >=180 0 <180	Span: 1 : S Only n/a Span: 1 : +D+S n/a		

Maximum Forces & Stresses for Load Combinations

Load Combination		Max S	tress Ra	tios								Moment	Values		Sh	iear Vali	ues
Segment Length	Span #	М	V	CD	CM	C _t	CLx	C_F	Cfu	c i	C _r	М	fb	F'b	V	fv	F'v
D Only														0.0	0.00	0.0	0.0
Length = 11.0 ft	1	0.271	0.075	0.90	1.00	1.00	1.00	1.200	1.00	1.00	1.00	0.27	248.6	918.0	0.09	12.2	162.0
+D+Lr					1.00	1.00	1.00	1.200	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 11.0 ft	1	0.412	0.114	1.25	1.00	1.00	1.00	1.200	1.00	1.00	1.00	0.57	524.9	1,275.0	0.19	25.7	225.0
+D+S					1.00	1.00	1.00	1.200	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 11.0 ft	1	0.742	0.206	1.15	1.00	1.00	1.00	1.200	1.00	1.00	1.00	0.95	870.2	1,173.0	0.31	42.6	207.0
+D+0.750Lr					1.00	1.00	1.00	1.200	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 11.0 ft	1	0.357	0.099	1.25	1.00	1.00	1.00	1.200	1.00	1.00	1.00	0.50	455.8	1,275.0	0.16	22.3	225.0
+D+0.750S					1.00	1.00	1.00	1.200	1.00	1.00	1.00			0.0	0.00	0.0	0.0

CARUSO TURLEY SCOTT, INC. 1215 W. RIO SALADO PKWY, SUITE 200 TEMPE, AZ 85281

Project Title: Engineer: Project ID: T-Mobile #8022 TI JKC

Project ID: 24-1374 Project Descr:

Wood Beam Project File: 241374 T Mobile.ec6

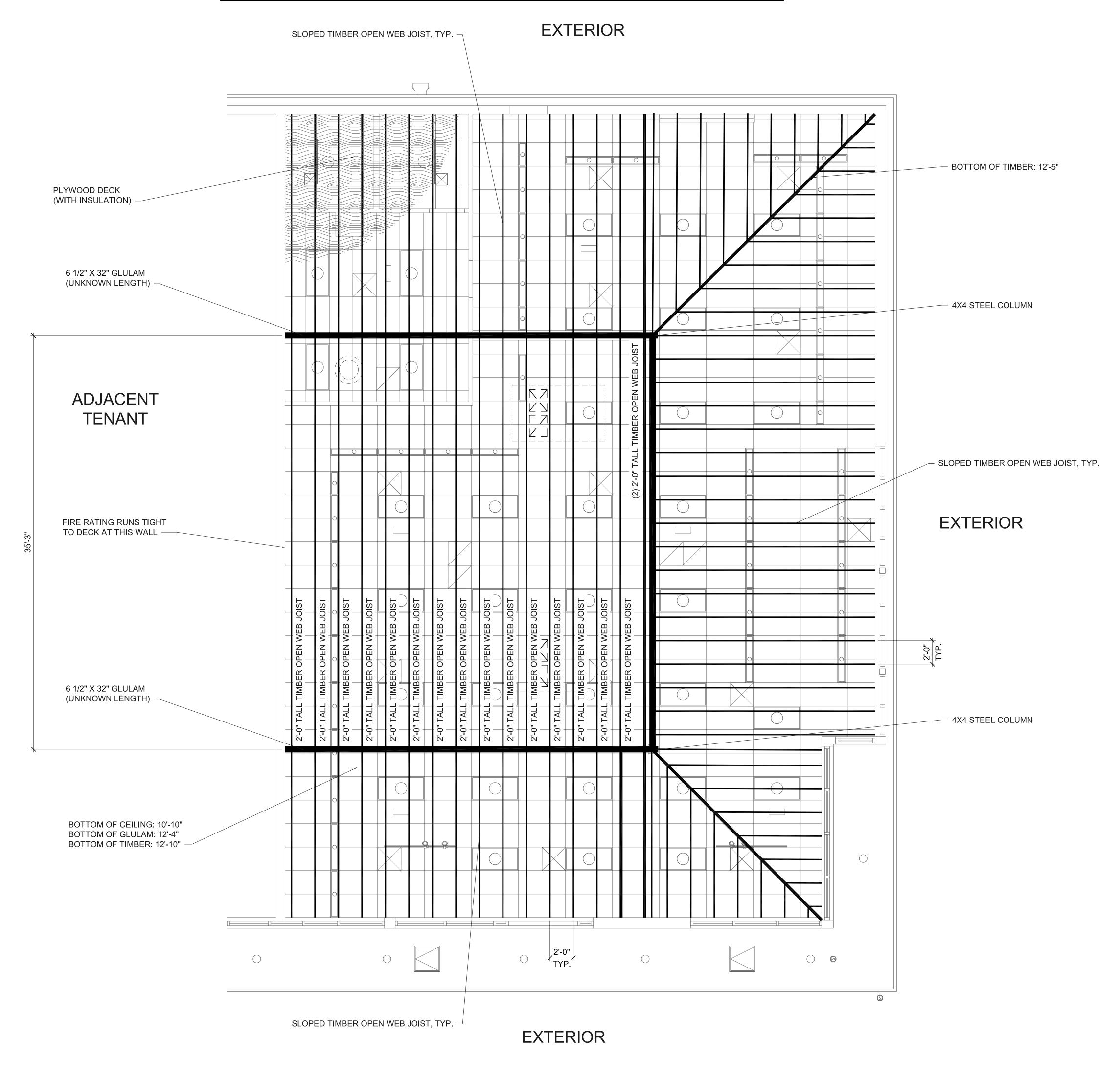
LIC#: KW-06016452, Build:20.24.12.17 CARUSO TURLEY SCOTT (c) ENERCALC, LLC 1982-2025

DESCRIPTION: New Beam in Place of Truss

Maximum Forces & Stresses for Load Combinations

Load Combination		Max S	tress Ra	tios								Moment	Values		Sh	near Valu	Jes
Segment Length	Span #	# M	V	CD	СМ	c_t	CLx	C_{F}	Cfu	c i	C _r	М	fb	F'b	V	fv	F'v
Length = 11.0 ft	1	0.609	0.169	1.15	1.00	1.00	1.00	1.200	1.00	1.00	1.00	0.78	714.8	1,173.0	0.25	35.0	207.0
+0.60D					1.00	1.00	1.00	1.200	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 11.0 ft	1	0.091	0.025	1.60	1.00	1.00	1.00	1.200	1.00	1.00	1.00	0.16	149.2	1,632.0	0.05	7.3	288.0

Overall Maximum Deflections


Span	Load Combination	Max. "-" Defl	Location in Span	Load Combination	Max. "+" Defl	Location in Span
1 +D+S		0.2739	5.540		0.0000	0.000

Vertical ReactionsSupport notation : Far left is #1 Values in KIPS

Load Combination	Support 1 Su	pport 2
Max Upward from all Load Conditions	0.347	0.347
Max Upward from Load Combinations	0.347	0.347
Max Upward from Load Cases	0.248	0.248
D Only	0.099	0.099
+D+Lr	0.209	0.209
+D+S	0.347	0.347
+D+0.750Lr	0.182	0.182
+D+0.750S	0.285	0.285
+0.60D	0.059	0.059
Lr Only	0.110	0.110
S Only	0.248	0.248

USE SIMPSON L90 CLIP EACH END OF BEAM (CAPACITY = 740 LB)

Structural Survey by Apex Tech Solutions

STRUCTURAL PLAN

TECH SOLUTIONS SCAN > CREATE > ANALYZE

CONSTRUCTION

JOB NUMBER: DATE: 10/15/2024

AB-10

1/4" = 1'-0"