STORM DRAINAGE REPORT

FOR

BPLC North Puyallup, Washington

Revised April 2025 January 2025

Prepared for: BPLC Properties, LLC

Prepared by: Daniel Smith, P.E., Senior Project Manager

Approved By:

Daniel Smith, P.E., Senior Project Manager

REPORT #20083

"I hereby state that this Drainage and Erosion/Sediment Control Plan for the <u>BPLC North</u> project has been prepared by me or under my supervision and meets the standard of care and expertise which is usual and customary in this community of professional engineers. I understand that City of Puyallup does not and will not assume liability for the sufficiency, suitability or performance of drainage facilities prepared by me."

This analysis is based on data and records either supplied to, or obtained by, C.E.S. NW, Inc. These documents are referenced within the text of the analysis. The analysis has been prepared utilizing procedures and practices within the standard accepted practices of the industry.

TABLE OF CONTENTS

			PAGE
STOR	M DR	RAINAGE	1
1.	Proj	JECT OVERVIEW	1
2.		TING CONDITIONS SUMMARY	
3.		-SITE ANALYSIS REPORT	
4.		MANENT STORMWATER CONTROL PLAN	
5.		CUSSION OF MINIMUM REQUIREMENTS	
6.	Отне	ER PERMITS	10
Appen	dix A	General Exhibits	
11		Vicinity Map	A-1
		Soils Map	
Appen	dix B	Maps	
rr - · ·		Pre-Developed Bain Map	
		Post Developed Basin Map	B-2
		FIRM Panel 53053C0334E	
		Downstream Dramage Map	D-4
Appen	dix C	Computer Modelling Results	
Appen	dix D	Geotechnical Engineer's Report	

STORM DRAINAGE

1. Project Overview

This report accompanies the civil engineering plans as submitted to the City of Puyallup for review

and approval. This document provides site information, and the analysis used to prepare the storm

drainage design. The Washington State Department of Ecology Stormwater Management Manual

for Western Washington, 2019 (Manual), and the City of Puyallup's modifications to that

document establishes the methodology and design criteria used for this project.

The BPLC North project proposes the remodel of an existing commercial industrial building and

portable building on a 1.86-acre site comprised of three parcels (2105200180, 2105200191 and

2105200192) zoned Limited Manufacturing (ML). The site is accessed from Inter Ave with a new

commercial driveway approach. The project is located in the Puyallup River Water Resources

Inventory Area (WRIA 10). The Vicinity Map has been included in Appendix 'A' of this report.

A project summary is as follows:

Permit Applied for – Building Permit and Site Development

Address – 2511 Inter Ave Puyallup, WA 98372

Parcel Numbers – 2105200180, 2105200192 and 2105200192

Legal description – Parcel A, TPN. 2105200191

The west 85 feet of the south 120 feet of the west half of tract 10 of Ackerson's Second Addition

to Puyallup, according to the map thereof recorded in volume 8 of plats, page 25, records of

Pierce County, Washington.

Parcel B, TPN. 2105200192

The west half of Block 10 of Ackerson's Second Addition to Puyallup, according to the plat thereof

recorded in Volume 8 of Plats, page 25, records of Pierce County, Washington.

Except the south 120 feet of the west 85 feet thereof.

1

The east one-half of Block 10 of Ackerson's Second Addition to Puyallup, according to the plat thereof recorded in Volume 8 of Plats, page 25, records of Pierce County, Washington.

All situate in the County of Pierce, State of Washington.

The project site has historically been used as a commercial property with an converted single family residence, storage building, portable building and existing gravel lot as depicted on the predeveloped basin map (Appendix 'B'). The existing site is to be redeveloped with landscaping and pave the existing gravel parking with permeable pavement (BMP T5.15) when construction permits are approved. The property has frontage along Inter Ave which provides access with a new commercial driveway approach. Improvements are proposed along Inter Ave which include curb, gutter and sidewalk extended across the property's frontage. The project site proposes approximately 33,628 sq.ft. of paving, that does not include overlaying the existing asphalt, across onsite and offsite improvements and 14,113 sq.ft. of landscaping; therefore, according to Figure 2.4.1 and 2.4.2 of Volume I of the Manual, the project must evaluate all minimum requirements for the new and replaced surfaces; see Section 5 of this report for a detailed discussion of the minimum requirements. The project proposes permeable pavement for flow control of the newly paved and landscaped surfaces. Runoff treatment is provided by the native soils underlying the permeable pavement since they meet the CEC and organic requirements of Section 4.4.2 of Volume V of the Manual. All disturbed areas which are not converted to impervious surface will apply soil amendments per BMP T5.13.

2. Existing Conditions Summary

The existing site's current use is a commercially converted single family residence, commercial storage building and gravel paved storage yard. The site is relatively flat between elevations 61-62 (NAVD 88) which gradually slopes towards Inter Avenue. Stormwater runoff from this site is currently collected by an onsite closed conveyance system that outfalls into Inter Avenue's public closed conveyance system. This public closed conveyance system is comprised of 12-inch concrete pipes and flows west approximately 1,500-feet towards offsite wetlands and Upper Deer Creek. The site is accessed by an existing gravel driveway from Inter Avenue.

Onsite soils have been identified as Briscot loam (6A a Type D soil) determined by the USDA SCS maps of Pierce County, Washington. A description of the USDA soils and a copy of the soil map for this portion of Pierce County have been included in Appendix 'A' of this report. A draft geotechnical engineer's report has been prepared by GeoResources, dated January 21, 2021, with an addendum, dated February 14, 2022, where they documented 0.5-feet to 1.0-feet of topsoil over silty alluvium. Mottling was observed at a depth 0.5 to 1.0-feet with groundwater observed at a depth of 0.5-feet. An EPA falling head test and small-scale PIT was performed within the native alluvium soils and a 0.6-inch per hour infiltration design rate is provided. Although, the permeable pavement is sized with an infiltration rate of 0.1-inches per hour. A copy of the geotechnical report is included in Appendix 'D'. Permeable ballast fill is proposed in the paving area so the permeable pavement storage reservoir course meets the separation requirements from the seasonal high groundwater table.

There is an existing gravity sewer main in Inter Avenue which currently serves the property. There are no known aquifer recharge or wellhead protection areas that affect this property. There are no known well or septic systems onsite. If a septic system or well is discovered onsite during construction, it will be decommissioned per Tacoma-Pierce County Health Department standards. The parcel and all the proposed improvements are located within Zone X, which is considered outside of the 100-year floodplain, per FEMA Map # 53053C0334E. A copy of the FIRM Panel map can be found in Appendix 'B' of this report.

3. Off-site Analysis Report

A quarter mile downstream analysis is required by the City of Puyallup. The project proposes permeable pavement for flow control. The overflow from the permeable pavement is collected and conveyed to the existing public closed conveyance system in Inter Avenue. Based on a field survey and public GIS information, the runoff is conveyed west within Inter Avenue's closed conveyance system towards Upper Deer Creek. The ¼ mile drainage path ends at the outfall to Upper Deer Creek. Existing wetlands are located at the outfall to Upper Deer Creek. The runoff ultimately outfalls to the Puyallup River which is located approximately 0.9-miles downstream located northwest of the project site. A downstream map is included in Appendix 'B'. No adverse

impacts are anticipated to the downstream system as a result of the development due to the proposed detention tank and bio-swale.

4. Permanent Stormwater Control Plan

Existing Site Hydrology

The existing site is collected by an existing closed conveyance system that outfalls to the public storm system in Inter Avenue. The existing site is analyzed to demonstrate that the project meets both the flow control and LID performance standards. The pre-developed basin is 1.096 acres C, Forest, Flat. The following is a summary of the pre-developed site flows:

2-year	0.025-cfs
10-year	0.046-cfs
50-year	0.060-cfs
100-year	0.064-cfs

Please refer to the Pre-Developed Basin Map in Appendix 'B' and the WWHM computer results in Appendix 'C'.

Developed Site Hydrology

Under the developed condition, the project site proposes 33,628 sq.ft. of paving, that does not include overlaying the existing asphalt, across onsite and offsite improvements and 14,113 sq.ft. of landscaping. The landscape and yard areas can be modeled as "pasture" due to soil amendment per Ecology BMP T5.13. For the purpose of sizing the overflow conveyance system the permeable pavement is modelled as C, Lawn, Flat with the WWHM computer program. The post developed basin is summarized in the below:

Sub-Basin	Land-use	WWHM Description	Area (ac)
Onsite A	Yards and Landscape (Amended Soils)	C, Pasture, Flat	0.194
Olisite A	To permeable pavement	C, I asture, Mat	
Onsite B	Curbing	Roadway, Flat	0.011
Olisite B	To permeable pavement	Roadway, Flat	0.011
Onsite C	Permeable Pavement	C, Lawn, Flat	0.641
Bypass A	Frontage Improvements Roadway/Sidewalk	Roadway, Flat	0.084
Bypass B	Onsite Paving	Roadway, Flat	0.036
Bypass C	Landscaping Planters	C, Pastures, Flat	0.130
	Total		1.096

Table 1 – Post Developed Basin

The following is a summary of the post developed site flows:

2-year	0.045-cfs
10-year	0.071-cfs
50-year	0.099-cfs
100-year_	0.112-cfs

Please refer to the Post Developed Basin Map in Appendix 'B' and the WWHM computer results in Appendix 'C'.

Facility Sizing

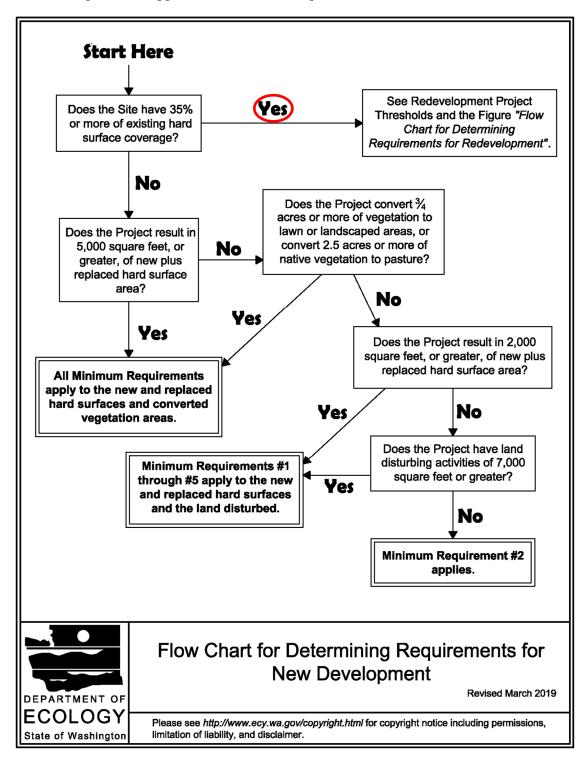
The project proposes permeable pavement to control the runoff from the newly paved parking lot area. Additionally, planters are constructed as part of the parking lot improvements which are to have their soils amended per BMP T5.13. The areas of the site that are modified as part of this permit are modelled with WWHM computer program to demonstrate the project's compliance with both the flow control and LID performance standards. The permeable pavement's subbasin is summarized in Table 2 below:

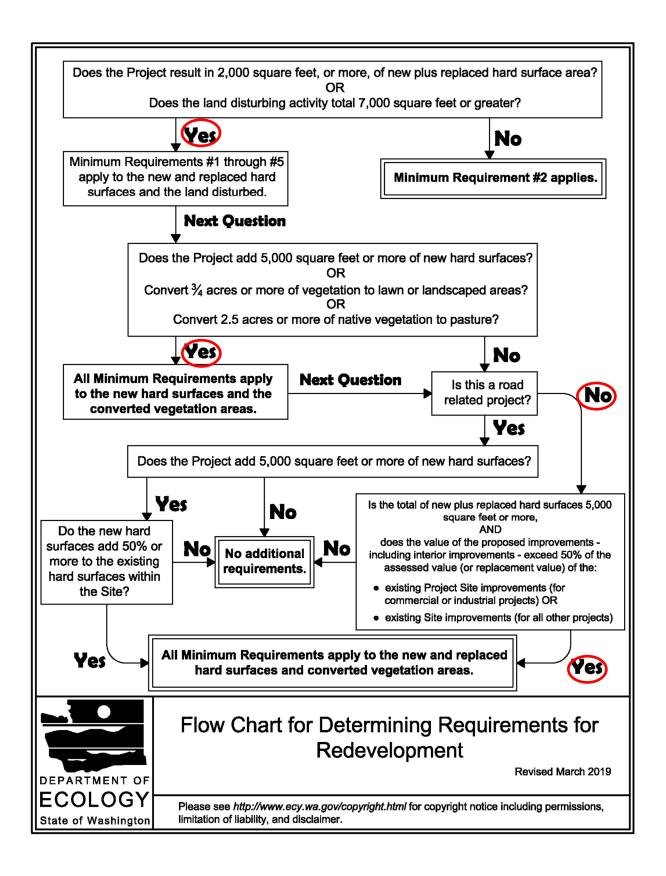
Sub-Basin	Land-use	WWHM Description	Area (ac)
Onsite A	Yards and Landscape (Amended Soils)	C, Pasture, Flat	0.194
Onsite B	Curbing	Roadway, Flat	0.011
Onsite C	Permeable Pavement	Permeable Pavement WWHM Element	0.641
	Total		0.846

Table 2 – Permeable Pavement Basin

As a factor of safety, the permeable pavement is modelled with an infiltration rate of 0.1 inches per hour and 0.5 effective volume factor. As computed by WWHM, a pavement section comprised of 6.5-inch-thick permeable asphalt over 2.5-inches of permeable ballast can fully infiltrate the basin summarized in Table 2. Any additional permeable ballast placed below the pavement is for structural purposes and is not needed for stormwater storage. The underlying soils meet the CEC and organic content requirements of Section 4.4.2 of Volume V of the Manual so runoff treatment is provided for the permeable pavement area. The portions of the site that are being improved the project meets the flow control and LID performance standards. A copy of the WWHM computer report is included in Appendix C.

Conveyance Calculations


The project proposes an extension of the existing conveyance system within Inter Ave to an onsite overflow conveyance system. This system is comprised of catch basins, PVC pipes and ductile iron pipe. The shallowest pipe is analyzed to demonstrate that the system's ability to convey the site's overflow 100-year event as calculated by the WWHM computer program. Computer modeling results are provided in Appendix 'C'. A summary of the calculations is provided below:


- Pipe Reach Name: **DIP**
- Structure Tributary Area: **0.997-ac**
- Pipe Diameter (in): 12-in
- Pipe Length (ft): NA
- Pipe Slope (%): **0.50%**
- Manning's Coefficient (n): **0.012 (DIP)**
- Design Flow (cfs): **0.33-cfs** (**100-year**)

- Pipe-Full Flow (cfs): 2.73-cfs
- Water Depth at Design Flow (in): 2.88-in
- Critical Depth (in): 2.88-in
- Velocity at Design Flow (fps): 2.28-fps
- Velocity at Pipe-Full Flow (fps): 3.47-fps
- Percent full at Design Flow (%): 24%
- HGL for each Pipe Reach (elev): **0.24-ft**

5. Discussion of Minimum Requirements

The project is the redevelopment of two parcels that proposes more than 5,000 sq.ft. of new plus replaced hard surfaces; therefore, as required by Figure I-3.1 and I-3.2 of Volume I of the Manual all minimum requirement applies to the new and replaced surfaces.

The following is a summary of the minimum requirements as described in Chapter 2 of Volume I of the Manual.

5.1 Minimum Requirement #1: Preparation of a Stormwater Site Plan The Stormwater Site Plan is prepared and is provided with this document.

5.2 Minimum Requirement #2: Construction Stormwater Pollution Prevention (SWPP)

A SWPP Plan has been prepared. It is submitted alongside this report as the erosion control report.

5.3 Minimum Requirement #3: Source Control of Pollution

Permanent source control BMPs are required for the development's daily operations as described in the Pollution Source Control Manual for Commercial/Industrial Activities included as a separate document.

5.4 Minimum Requirement #4: Preservation of Natural Drainage System and Outfalls Under existing conditions, stormwater runoff is collected onsite and discharged into the public conveyance system in Inter Avenue south of the site.

5.5 Minimum Requirement #5: Onsite Stormwater Management

This project must meet minimum requirements 1-9; therefore, this project must either evaluate List 2 for onsite stormwater management compliance or meet the LID Performance Standard. The project meets the LID Performance Standard with the use of permeable pavement (BMP T5.15) and soil preservation and amendment (Ecology BMP T5.13).

5.6 Minimum Requirement #6: Runoff Treatment

The project provides runoff treatment with permeable pavement. The underlying soils meet the CEC and organic requirements of Section 4.4.2 of Volume V of the Manual.

5.7 Minimum Requirement #7: Flow Control

The project meets the Flow Control Performance Standard with the use of permeable pavement (BMP T5.15) and soil amendments. (BMP T5.13)

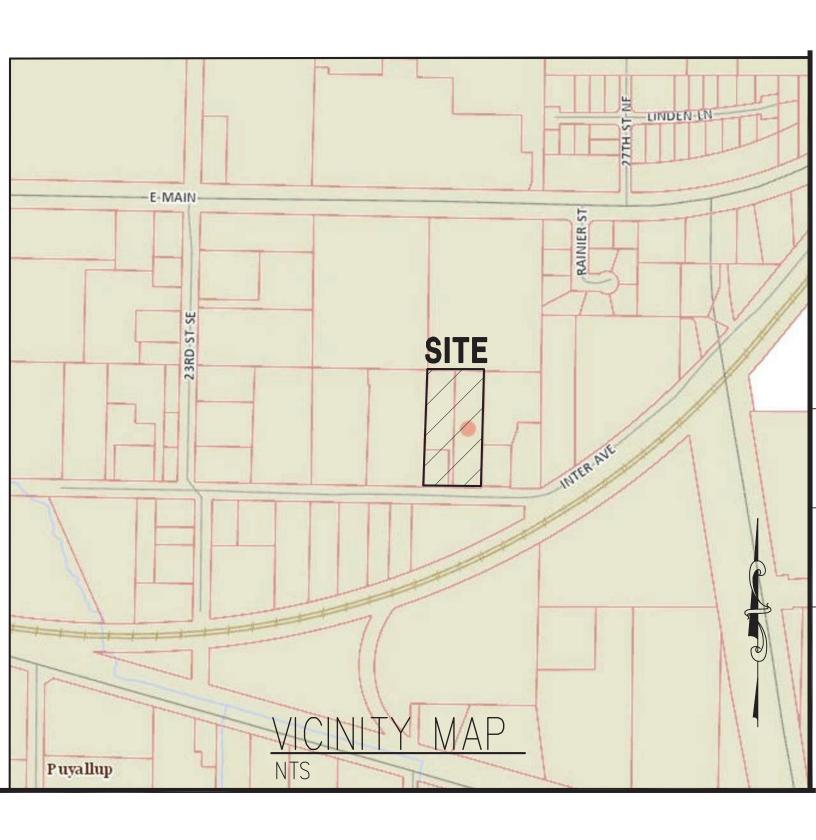
5.8 Minimum Requirement #8: Wetlands Protection

This requirement is not applicable to the project since the closest wetland is more than ¼ mile downstream of the site at Inter Ave's outfall to Upper Deer Creek.

5.9 Minimum Requirement #9: Operation and Maintenance

An Operation and Maintenance Manual is submitted alongside this report.

6. Other Permits


Other necessary permits and approvals include:

- Right of Way
- Sanitary Side Sewer Permits
- Building Remodel Permits
- CSWGP

APPENDIX A

General Exhibits

Vicinity Map	A-1
Soils Map and Description (NRCS)	A-2

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Points

Special Point Features

Blowout

Borrow Pit

36 Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill ۵

Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop Saline Spot

Sandy Spot

Severely Eroded Spot 0

Sinkhole

Slide or Slip

Sodic Spot

â Stony Spot

00 Very Stony Spot

Spoil Area

Wet Spot

Other Special Line Features

Water Features

Δ

Streams and Canals

Transportation

Rails ---

Interstate Highways

US Routes

Major Roads

Local Roads

Background

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

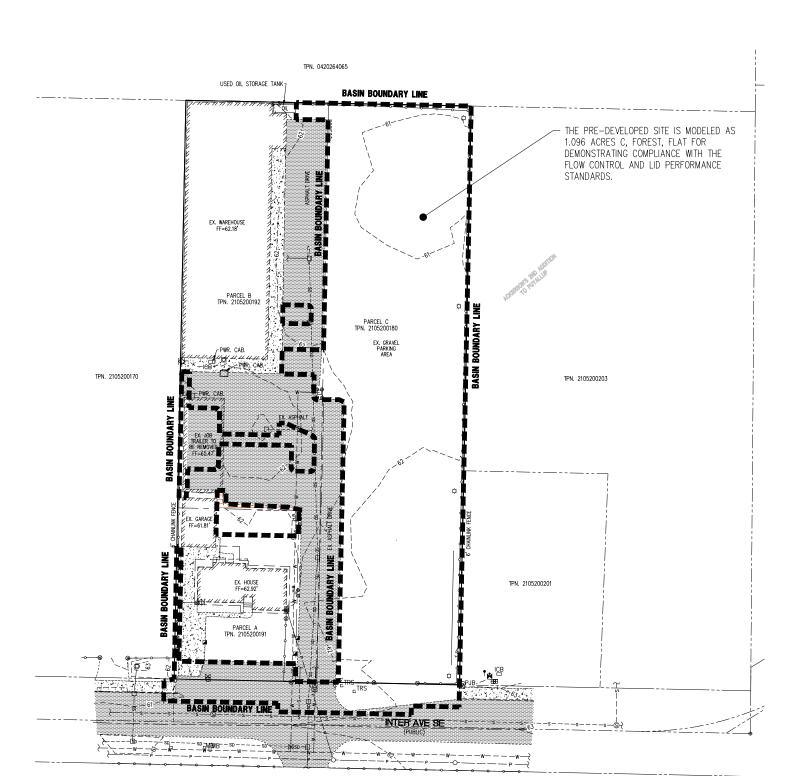
Soil Survey Area: Pierce County Area, Washington Survey Area Data: Version 16, Jun 4, 2020

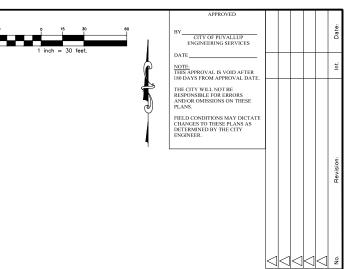
Soil map units are labeled (as space allows) for map scales 1:50.000 or larger.

Date(s) aerial images were photographed: Jul 29, 2018—Jul 22. 2019

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

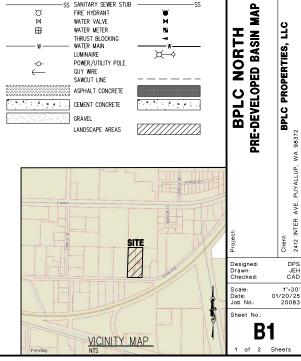

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
6A	Briscot loam	2.4	100.0%
Totals for Area of Interest		2.4	100.0%


APPENDIX B

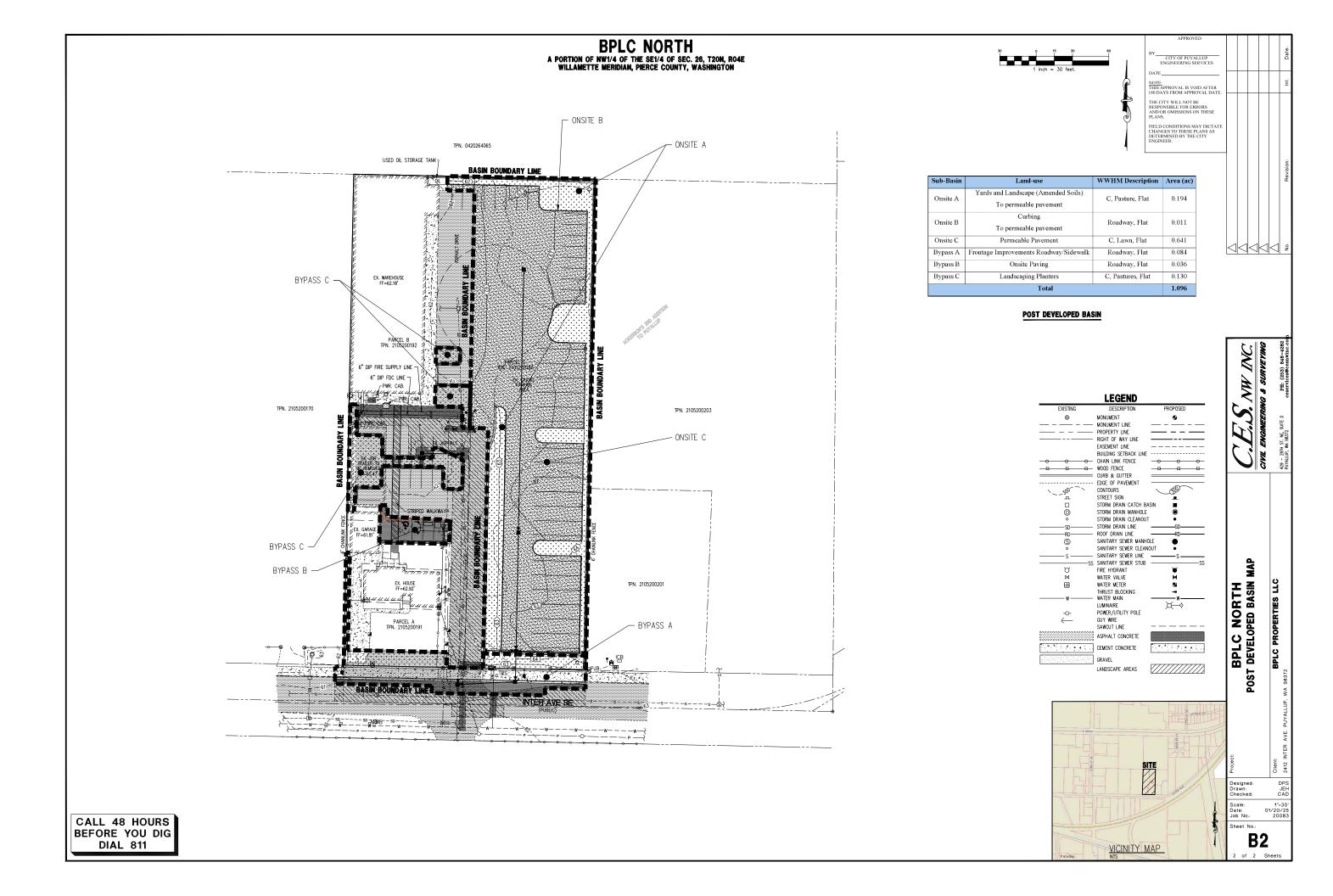
Basin Exhibits

Predeveloped Basin Map	B-1
Post Developed Basin Map	B-2
FIRM Panel (#53053C0334E)	B-3
Downstream Drainage Map	B-4

BPLC NORTH A PORTION OF NW1/4 OF THE SE1/4 OF SEC. 26, T20N, R04E WILLAMETTE MERIDIAN, PIERCE COUNTY, WASHINGTON


W INC.

S


LEGEND MONUMENT - MONUMENT LINE RIGHT OF WAY LINE EASEMENT LINE BUILDING SETBACK LINE WOOD FENCE

CURB & GUTTER - EDGE OF PAVEMENT CONTOURS STREET SIGN STORM DRAIN CATCH BASIN STORM DRAIN MANHOLE STORM DRAIN CLEANOUT
- STORM DRAIN LINE - ROOF DRAIN LINE --SANITARY SEWER MANHOLE SANITARY SEWER CLEANOUT —SS SANITARY SEWER STUB FIRE HYDRANT WATER VALVE WATER METER
THRUST BLOCKING
WATER MAIN LUMINAIRE POWER/UTILITY POLE GUY WIRE SAWCUT LINE ASPHALT CONCRETE CEMENT CONCRETE GRAVEL

LANDSCAPE AREAS

CALL 48 HOURS BEFORE YOU DIG **DIAL 811**

National Flood Hazard Layer FIRMette

500

250

1,000

1,500

SEE FIS REPORT

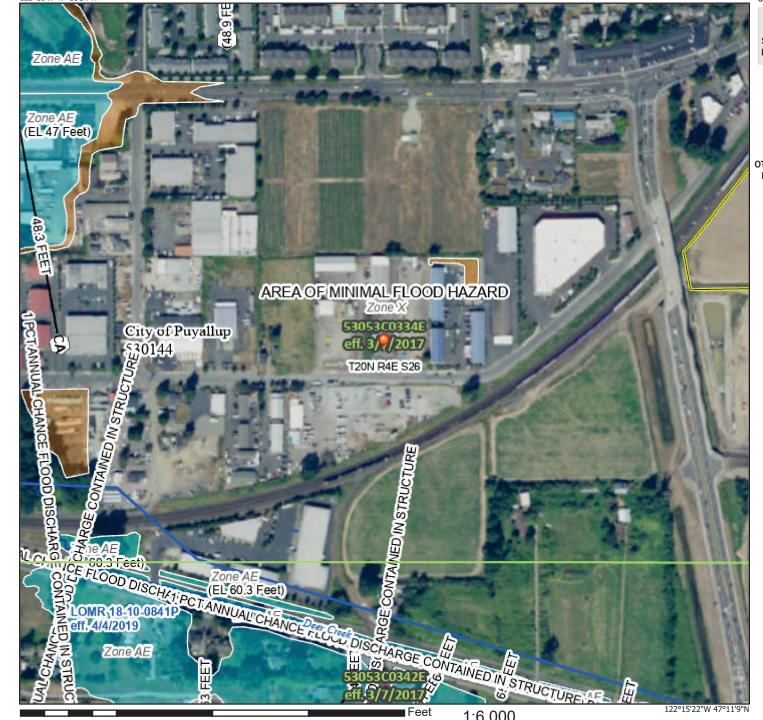
SPECIAL FLO HAZARD ARI

OTHER AREAS FLOOD HAZA

OTHER ARI

GENER STRUCTUR

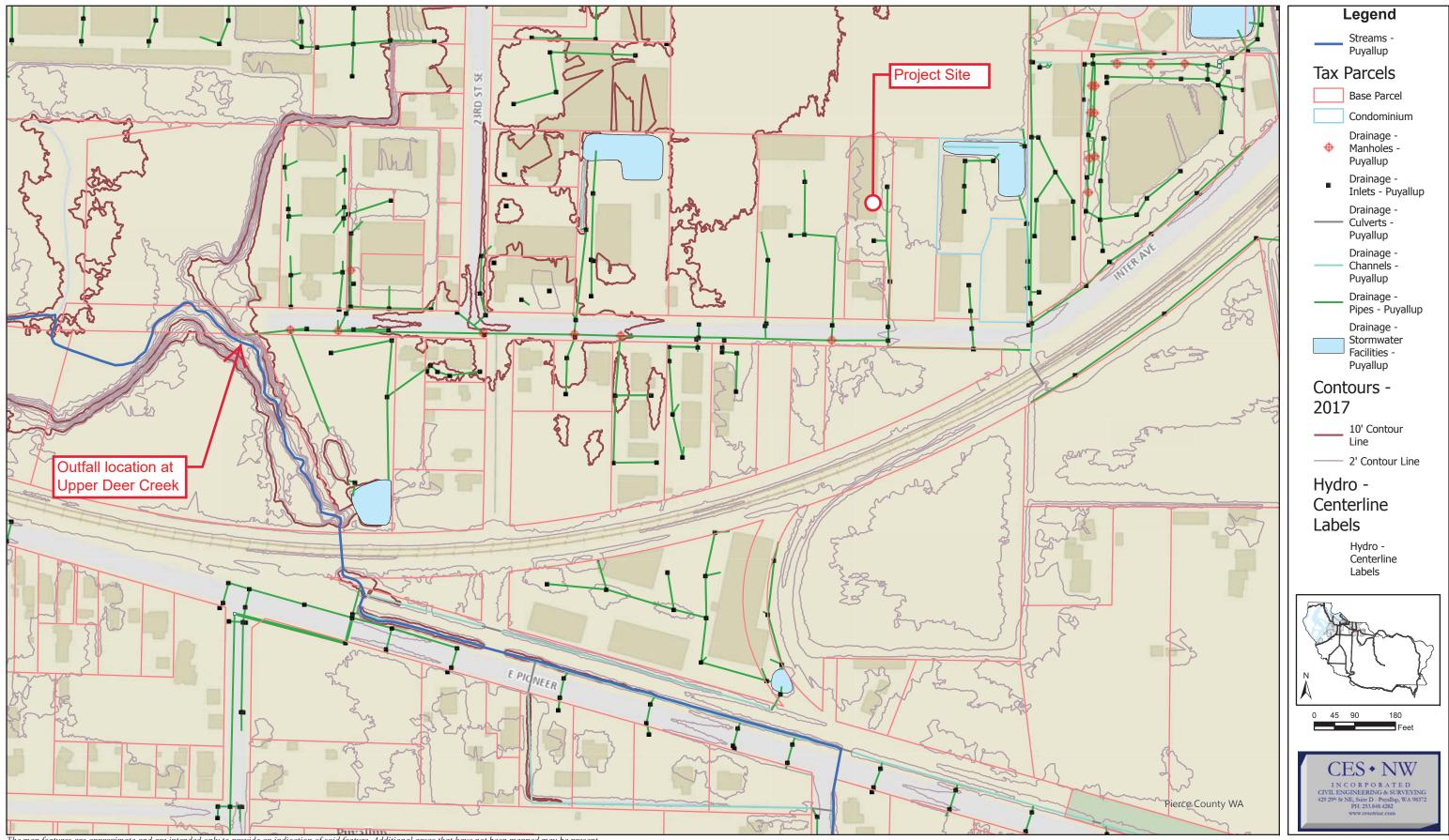
> OTH FEATUR


MAP PAN

This map digital flo The base accuracy

The flood authorita become s

This map FIRM pan unmappe regulator



1:6,000

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

2,000

Downstream Map

APPENDIX C

Computer Modelling Results

WWHM2012 PROJECT REPORT

General Model Information

WWHM2012 Project Name: 20083 Permeable Pavement2024.03

Site Name: Olson Bros
Site Address: 2511 Inter Ave
City: Puyallup, WA

Report Date: 3/19/2024
Gage: 40 IN EAST
Data Start: 10/01/1901
Data End: 09/30/2059
Timestep: 15 Minute
Precip Scale: 1.000

Version Date: 2023/01/27

Version: 4.2.19

POC Thresholds

Low Flow Threshold for POC1: 50 Percent of the 2 Year

High Flow Threshold for POC1: 50 Year

Landuse Basin Data Predeveloped Land Use

Pre-Dev

Bypass: No

GroundWater: No

Pervious Land Use acre C, Forest, Flat 1.096

Pervious Total 1.096

Impervious Land Use acre

Impervious Total 0

Basin Total 1.096

Mitigated Land Use

Bypass

Bypass: Yes

GroundWater: No

Pervious Land Use acre C, Pasture, Flat 0.13

Pervious Total 0.13

Impervious Land Use acre ROADS FLAT 0.084 PARKING FLAT 0.036

Impervious Total 0.12

Basin Total 0.25

Landscaping

Bypass: No

GroundWater: No

Pervious Land Use acre C, Pasture, Flat .194

Curbing

Bypass: No Impervious Land Use acre ROADS FLAT LAT 0.011

Routing Elements Predeveloped Routing

Mitigated Routing

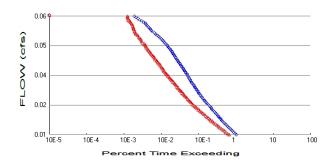
Permeable Parkling Lot

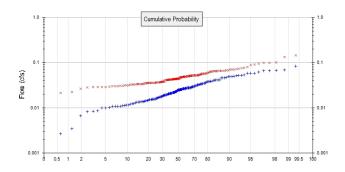
Pavement Area: 0.6410 acre. Pavement Length: 167.10 ft. Pavement Width:

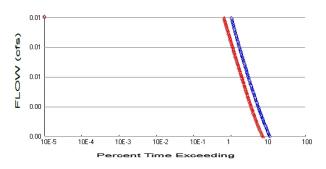
Pavement slope 1:0.05 To 1

Pavement thickness: 0.54 Pour Space of Pavement: 0.3 Material thickness of second layer: 0.21 Pour Space of material for second layer: 0.3 Material thickness of third layer: 0 0 Pour Space of material for third layer:

Infiltration On


0.1 Infiltration rate: Infiltration safety factor: 1


Total Volume Infiltrated (ac-ft.): 276.822


Total Volume Through Riser (ac-ft.): Total Volume Through Facility (ac-ft.): 276.822 Percent Infiltrated: 100 Total Precip Applied to Facility: 0

Total Evap From Facility: 24.299

Analysis Results POC 1

+ Predeveloped

x Mitigated

Predeveloped Landuse Totals for POC #1

Total Pervious Area: 1.096
Total Impervious Area: 0

Mitigated Landuse Totals for POC #1
Total Pervious Area: 0.324
Total Impervious Area: 0.77201

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1

Return PeriodFlow(cfs)2 year0.0247645 year0.03810110 year0.04581125 year0.05416150 year0.059533100 year0.064194

Flow Frequency Return Periods for Mitigated. POC #1

 Return Period
 Flow(cfs)

 2 year
 0.044713

 5 year
 0.060081

 10 year
 0.071259

 25 year
 0.086568

 50 year
 0.09886

 100 year
 0.11194

Annual Peaks

Annual I	Peaks fo	r Predeve	eloned an	d Mitigated.	POC #1
Alliual i	i cans io	1 1 1 5 4 5 7 6	JUDGU ali	ia iviiliaalea.	1 00 11

	or Predeveloped	
Year	Predeveloped	
1902	0.020	0.051
1903	0.015	0.056
1904	0.026	0.071
1905	0.013	0.029
1906	0.007	0.033
1907	0.038	0.048
1908	0.028	0.037
1909	0.027	0.043
1910	0.038	0.044
1911	0.025	0.048
1912	0.083	0.095
1913	0.039	0.033
1914	0.010	0.144
1915	0.016	0.031
1916	0.025	0.054
1917	0.008	0.021
1918	0.026	0.043
1919	0.021	0.029
1920	0.025	0.038
1921	0.027	0.034
1922	0.028	0.052
1923	0.022	0.035
1924	0.011	0.063
1925	0.014	0.028
1926	0.024	0.051
1927	0.018	0.044
1928	0.019	0.033
1929	0.038	0.062
1930	0.025	0.065
1931	0.023	0.032
1932	0.018	0.035
1933	0.020	0.036
1934	0.050	0.059
1935	0.023	0.029
1936	0.021	0.041
1937	0.033	0.052
1938	0.021	0.030
1939	0.002	0.036
1940	0.002	0.065
1941	0.014	0.071
1942	0.034	0.051
1943	0.017	0.049
1944	0.036	0.070
1945	0.027	0.052
1946	0.016	0.043
1947	0.011	0.031
1948	0.053	0.044
1949	0.046	0.066
1950	0.013	0.037
1951	0.017	0.057
1952	0.068	0.073
1953	0.062	0.067
1954	0.022	0.037
1955	0.019	0.033
1956	0.010	0.030
1957	0.033	0.036

0.066 0.041 0.012 0.041 0.022 0.011 0.011 0.046 0.014 0.021 0.022 0.021 0.032 0.049 0.032 0.042 0.023 0.052 0.028 0.012 0.046 0.013 0.027 0.024 0.012 0.041 0.019 0.030 0.025 0.047 0.029 0.027 0.031 0.025 0.047 0.029 0.027 0.031 0.025 0.047 0.029 0.027 0.031 0.025 0.047 0.029 0.027 0.031 0.025 0.047 0.029 0.027 0.031 0.025 0.047 0.029 0.027 0.031 0.025 0.047 0.029 0.027 0.031 0.025 0.047 0.029 0.027 0.031 0.025 0.030 0.049	0.048 0.049 0.035 0.098 0.042 0.031 0.092 0.044 0.035 0.051 0.044 0.044 0.132 0.076 0.057 0.065 0.066 0.026 0.050 0.048 0.044 0.036 0.051 0.050 0.058 0.051 0.050 0.058 0.051 0.050
0.020 0.011 0.035 0.030 0.027 0.049 0.016 0.016 0.026 0.017 0.015 0.014 0.021 0.016 0.011	0.043 0.033 0.066 0.037
	0.041 0.012 0.041 0.022 0.011 0.046 0.014 0.021 0.022 0.021 0.032 0.049 0.032 0.042 0.023 0.052 0.028 0.012 0.046 0.013 0.027 0.024 0.012 0.041 0.019 0.030 0.025 0.047 0.029 0.027 0.031 0.025 0.032 0.032 0.049 0.011 0.030 0.025 0.047 0.029 0.027 0.031 0.025 0.032 0.033 0.049 0.011 0.035 0.031 0.026 0.030 0.027 0.049 0.011 0.035 0.021 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2044 2045 2046 2047 2048 2049 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2040 2041 2042 2043 2044 2045 2046 2047 2046 2047 2048 2049 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2040 2041 2045 2046 2047 2048 2049 2040 2041 2045 2046 2047 2048 2049 2040 2041 2045 2046 2047 2048 2049 2046 2047 2048 2049 2040 2041 2045 2046 2047 2048 2049 2046 2047 2048 2049 2049 2049 2040 2041 2045 2046 2047 2048 2049 2046 2047 2048 2049 2046 2049 2049 2040 2041 2045 2046 2047 2048 2049 2049 2049 2049 2049 2049 2049 2049	0.009 0.038 0.067 0.066 0.021 0.034 0.014 0.029 0.058 0.026 0.041 0.015 0.013 0.028 0.051 0.017 0.010 0.015 0.015 0.015 0.015 0.015 0.058 0.031 0.008 0.025 0.003 0.015 0.019 0.058 0.025 0.003 0.015 0.019 0.058 0.029 0.029 0.029 0.029 0.026 0.018 0.027 0.034	0.041 0.063 0.046 0.067 0.049 0.042 0.064 0.081 0.052 0.020 0.036 0.070 0.022 0.035 0.044 0.034 0.050 0.035 0.047 0.049 0.089 0.037 0.045 0.052 0.052 0.052 0.052 0.052 0.053 0.043 0.053 0.043 0.036 0.076
2052 2053 2054 2055 2056 2057 2058	0.016 0.027 0.034 0.014 0.012 0.019 0.023	0.043 0.036 0.076 0.041 0.057 0.028 0.053
2059	0.040	0.067

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #1 Rank Predeveloped Mitigated

Rank	Predeveloped	Mitigated
1	0.0833	0.1437
2	0.0682	0.1322
3	0.0672	0.1014
4	0.0664	0.0996
5	0.0659	0.0979
6	0.0619	0.0951
7	0.0584	0.0916
8	0.0578	0.0888
9	0.0575	0.0806
10	0.0534	0.0759

69 70 71 72 73 74 75 76 77 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 107 118 119 119 119 119 119 119 119 119 119	0.0261 0.0257 0.0255 0.0254 0.0252 0.0251 0.0249 0.0248 0.0247 0.0246 0.0245 0.0242 0.0240 0.0233 0.0229 0.0229 0.0227 0.0224 0.0220 0.0219 0.0210 0.0210 0.0210 0.0210 0.0207 0.0207 0.0206 0.0207 0.0206 0.0205 0.0198 0.0197 0.0198 0.0197 0.0198 0.0197 0.0198 0.0197 0.0198 0.0175 0.0175 0.0175 0.0175 0.0175 0.0175 0.0175 0.0162 0.0162 0.0162 0.0165 0.0156 0.0155 0.0155	0.0482 0.0477 0.0475 0.0468 0.0466 0.0466 0.0459 0.0449 0.0445 0.0441 0.0440 0.0438 0.0437 0.0436 0.0433 0.0431 0.0431 0.0431 0.0428 0.0427 0.0425 0.0423 0.0423 0.0423 0.0423 0.0423 0.0423 0.0414 0.0414 0.0413 0.0409 0.0414 0.0414 0.0413 0.0409 0.0409 0.0409 0.0366 0.0367 0.0368 0.0365 0.0369 0.0359 0.0359 0.0359 0.0359
120	0.0156	0.0359
121	0.0155	0.0358

40=	0.04.45	
127	0.0145	0.0353
128	0.0141	0.0352
129 130	0.0141 0.0138	0.0351 0.0349
131	0.0138	0.0349
132	0.0135	0.0338
133	0.0135	0.0335
134	0.0134	0.0335
135	0.0134	0.0333
136	0.0133	0.0333
137	0.0127	0.0328
138	0.0123	0.0326
139	0.0123	0.0325
140	0.0121	0.0324
141	0.0116	0.0314
142	0.0114	0.0311
143	0.0113	0.0311
144	0.0111	0.0308
145	0.0109	0.0307
146 147	0.0108 0.0108	0.0303
148	0.0107	0.0303
149	0.0107	0.0303
150	0.0099	0.0289
151	0.0099	0.0287
152	0.0086	0.0286
153	0.0084	0.0285
154	0.0082	0.0279
155	0.0066	0.0262
156	0.0034	0.0222
157	0.0027	0.0215
158	0.0017	0.0202

LID Duration Flows The Facility PASSED

Elow(ofc)	Drodov	RA:4	Doroontogo	Pace/Fail
Flow(cfs) 0.0020	Predev 613285	Mit 406751	Percentage 66	Pass/Fail Pass
0.0020	592787	391738	66	Pass
0.0021	573397	377611	65	Pass
0.0022	555114	364592	65	Pass
0.0024	537663	352182	65	Pass
0.0025	520988	340492	65	Pass
0.0026	505143	329745	65	Pass
0.0027	489963	319495	65	Pass
0.0028	475448	309690	65	Pass
0.0029	461543	300604	65	Pass
0.0030	448025	291906	65	Pass
0.0031	435061	283374	65	Pass
0.0032	422430	275175	65	Pass
0.0033	410297	267419	65	Pass
0.0035	398552	259884	65	Pass
0.0036	387195	252959	65	Pass
0.0037	376447	246090	65	Pass
0.0038	366143	239608	65 65	Pass
0.0039	356282	233347	65 65	Pass
0.0040 0.0041	346642 337390	227198 221381	65 65	Pass Pass
0.0041	328415	215675	65	Pass
0.0042	319772	210135	65	Pass
0.0044	311462	204927	65	Pass
0.0045	303208	199775	65	Pass
0.0046	295396	194733	65	Pass
0.0047	287806	189913	65	Pass
0.0048	280493	185204	66	Pass
0.0049	273513	180717	66	Pass
0.0050	266643	176285	66	Pass
0.0051	259995	172074	66	Pass
0.0052	253569	167975	66	Pass
0.0053	247198	163820	66	Pass
0.0054	241159	159942	66	Pass
0.0056	235342	156119	66	Pass
0.0057	229636	152518	66	Pass
0.0058 0.0059	223985 218500	149028 145482	66 66	Pass Pass
0.0059	213182	142213	66	Pass
0.0061	208029	138889	66	Pass
0.0062	202988	135621	66	Pass
0.0063	198113	132352	66	Pass
0.0064	193404	129416	66	Pass
0.0065	188750	126480	67	Pass
0.0066	184263	123599	67	Pass
0.0067	180052	120773	67	Pass
0.0068	175952	118114	67	Pass
0.0069	171964	115400	67	Pass
0.0070	167975	112740	67	Pass
0.0071	164152	110136	67	Pass
0.0072	160496	107699	67	Pass
0.0073	156895	105317	67 67	Pass
0.0074	153349	102824	67	Pass

0.0075	149970	100497	67	Pass
0.0077	146590	98225	67	Pass
0.0078	143321	96009	66	Pass
0.0079	140164	93793	66	Pass
0.0080	137006	91633	66 66	Pass
0.0081	133903 130967	89638	66 66	Pass
0.0082 0.0083	128031	87588 85649	66	Pass Pass
0.0084	125150	83766	66	Pass
0.0085	122380	81938	66	Pass
0.0086	119610	80165	67	Pass
0.0087	116951	78337	66	Pass
0.0088	114347	76619	67	Pass
0.0089	111854	74902	66	Pass
0.0090	109416	73240	66	Pass
0.0091	107034	71633	66	Pass
0.0092	104763	70082	66 66	Pass
0.0093 0.0094	102491 100331	68475 66924	66 66	Pass Pass
0.0094	98170	65594	66	Pass
0.0097	96120	64099	66	Pass
0.0098	94015	62714	66	Pass
0.0099	92076	61329	66	Pass
0.0100	90137	59943	66	Pass
0.0101	88309	58614	66	Pass
0.0102	86536	57395	66	Pass
0.0103	84597	56010	66	Pass
0.0104	82879	54902	66	Pass
0.0105	81162	53733	66 66	Pass
0.0106 0.0107	79555 77893	52620 51462	66 66	Pass Pass
0.0107	76397	50370	65	Pass
0.0109	74735	49262	65	Pass
0.0110	73350	48232	65	Pass
0.0111	71855	47151	65	Pass
0.0112	70525	46176	65	Pass
0.0113	69029	45113	65	Pass
0.0114	67755	44149	65	Pass
0.0115	66370	43118	64	Pass
0.0116	65151	42237	64	Pass
0.0118	63877	41251	64	Pass
0.0119	62714	40415	64 64	Pass
0.0120 0.0121	61495 60331	39528 38764	64 64	Pass Pass
0.0121	59112	37861	64	Pass
0.0122	58004	37130	64	Pass
0.0124	56841	36276	63	Pass
				. 450

Duration Flows The Facility PASSED

Elow(ofc)	Brodov	RA:4	Doroontogo	Docc/Foil
Flow(cfs) 0.0124	Predev 56841	Mit 36276	Percentage 63	Pass/Fail Pass
0.0124	52475	32914	62	Pass
0.0123	48392	29833	61	Pass
0.0138	44609	27052	60	Pass
0.0138	41268	24615	59	Pass
0.0148	38249	22371	58	Pass
0.0152	35523	20387	57	Pass
0.0157	32980	18520	56	Pass
0.0162	30526	16903	55	Pass
0.0167	28459	15429	54	Pass
0.0171	26509	14061	53	Pass
0.0176	24747	12825	51	Pass
0.0181	23146	11762	50	Pass
0.0186	21684	10792	49	Pass
0.0190	20349	9922	48	Pass
0.0195	19080	9091	47	Pass
0.0200	17856	8343	46	Pass
0.0205	16731	7673	45	Pass
0.0210	15612	7036	45	Pass
0.0214	14620	6426	43	Pass
0.0219	13728	5911	43	Pass
0.0224	12881	5451	42	Pass
0.0229	12094	5006	41	Pass
0.0233	11396	4611	40	Pass
0.0238	10659	4241	39	Pass
0.0243	10000	3930	39	Pass
0.0248	9357	3649	38	Pass
0.0252	8753	3419	39	Pass
0.0257	8205	3176	38	Pass
0.0262	7723	2965	38	Pass
0.0267	7241	2773	38	Pass
0.0271	6792	2583	38	Pass
0.0276	6415	2429	37	Pass
0.0281	6111	2282	37	Pass
0.0286	5834	2137	36	Pass
0.0291	5551	2004	36	Pass
0.0295	5271	1870	35	Pass
0.0300	5005	1751	34	Pass
0.0305	4782	1654	34	Pass
0.0310	4532	1557	34	Pass
0.0314	4339	1462	33	Pass
0.0319	4157	1390	33	Pass
0.0324	3937	1310	33	Pass
0.0329	3713	1229	33	Pass
0.0333	3537	1150	32	Pass
0.0338 0.0343	3364 3227	1073 1009	31 31	Pass
0.0348	3088	956	30	Pass
0.0346	2965	899	30	Pass Pass
0.0352	2851	840	29	Pass
0.0362	2738	783	28	Pass
0.0367	2599	743	28	Pass
0.0371	2477	699	28	Pass
0.037 1	24 11	033	20	1 000

LID Report

LID Technique	Used for Treatment?	Total Volume Needs Treatment (ac-ft)	Volume Through Facility (ac-ft)	Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Permeable Parkling Lot POC	✓	251.91	276.82	276.82	V	100.00	276.82	100.00	Treat. Credit
Total Volume Infiltrated		251.91	276.82	276.82		100.00	276.82		Treat. Credit = 100%
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Passed

POC 2

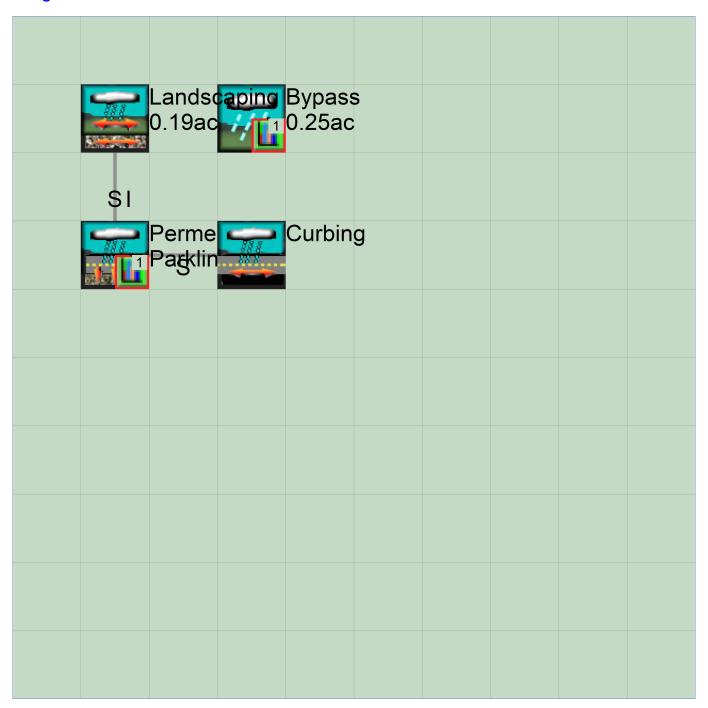
POC #2 was not reported because POC must exist in both scenarios and both scenarios must have been run.

Model Default Modifications

Total of 0 changes have been made.

PERLND Changes

No PERLND changes have been made.


IMPLND Changes

No IMPLND changes have been made.

Appendix Predeveloped Schematic

Pre-De 1.10ac	ev ;		

Mitigated Schematic

Predeveloped UCI File

RUN

```
GLOBAL
 WWHM4 model simulation
                    END 2059 09 30 3 0
 START 1901 10 01
 RUN INTERP OUTPUT LEVEL
 RESUME 0 RUN 1
                                 UNIT SYSTEM 1
END GLOBAL
FILES
           <---->***
<File> <Un#>
<-ID->
        26
           20083 Permeable Pavement2024.03.wdm
MDM
MESSII
        25
           Pre20083 Permeable Pavement2024.03.MES
        27
            Pre20083 Permeable Pavement2024.03.L61
            Pre20083 Permeable Pavement2024.03.L62
           POC20083 Permeable Pavement2024.031.dat
        30
END FILES
OPN SEQUENCE
   INGRP
           10
                 INDELT 00:15
    PERLND
             501
    COPY
   DISPLY
  END INGRP
END OPN SEQUENCE
DISPLY
 DISPLY-INFO1
   # - #<-----Title---->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND
  1 Pre-Dev
                                                 1 2 30 9
 END DISPLY-INFO1
END DISPLY
COPY
 TIMESERIES
 # - # NPT NMN ***
   1 1
)1 1
            1
              1
 501
 END TIMESERIES
END COPY
GENER
 OPCODE
 # # OPCD ***
 END OPCODE
 PARM
           K ***
  #
 END PARM
END GENER
PERLND
 GEN-INFO
   <PLS ><----Name---->NBLKS Unit-systems Printer ***
                       User t-series Engl Metr ***
                                in out
                          1
  10 C, Forest, Flat
 END GEN-INFO
 *** Section PWATER***
 ACTIVITY
  # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ***
10 0 0 1 0 0 0 0 0 0 0 0
 END ACTIVITY
 PRINT-INFO
   <PLS > ********* Print-flags **************** PIVL PYR
  END PRINT-INFO
```

```
PWAT-PARM1
   <PLS > PWATER variable monthly parameter value flags ***
  # - # CSNO RTOP UZFG VCS VUZ VNN VIFW VIRC VLE INFC HWT ***
10 0 0 0 0 0 0 0 0 0 0
 END PWAT-PARM1
 PWAT-PARM2
  END PWAT-PARM2
 PWAT-PARM3
  PWAT-PARM3

<PLS > PWATER input info: Part 3 ***

# - # ***PETMAX PETMIN INFEXP INFILD DEEPFR

10 0 0 2 2 0
                                                          BASETP
                                                0 0
 END PWAT-PARM3
 PWAT-PARM4
   <PLS > PWATER input info: Part 4
  # - # CEPSC UZSN NSUR INTFW IRC LZETP ***
10 0.2 0.5 0.35 6 0.5 0.7
 END PWAT-PARM4
 PWAT-STATE1
   <PLS > *** Initial conditions at start of simulation
    ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 ***
       # *** CEPS SURS UZS IFWS LZS AGWS 0 0 0 0 2.5 1
                                                                    GWVS
  10
 END PWAT-STATE1
END PERLND
IMPLND
 GEN-INFO
   <PLS ><-----Name----> Unit-systems Printer ***
   # - #
                           User t-series Engl Metr ***
                                  in out
 END GEN-INFO
 *** Section IWATER***
 ACTIVITY
   <PLS > ******** Active Sections *********************
   # - # ATMP SNOW IWAT SLD IWG IQAL ***
 END ACTIVITY
 PRINT-INFO
   <ILS > ******* Print-flags ******* PIVL PYR
   # - # ATMP SNOW IWAT SLD IWG IQAL *******
 END PRINT-INFO
  <PLS > IWATER variable monthly parameter value flags ***
   # - # CSNO RTOP VRS VNN RTLI ***
 END IWAT-PARM1
 IWAT-PARM2
   <PLS > IWATER input info: Part 2 ***
# - # *** LSUR SLSUR NSUR RETSC
 END IWAT-PARM2
 IWAT-PARM3
   <PLS > IWATER input info: Part 3 ***
   # - # ***PETMAX PETMIN
 END IWAT-PARM3
   <PLS > *** Initial conditions at start of simulation
   # - # *** RETS SURS
 END IWAT-STATE1
```

```
SCHEMATIC
                  <--Area--> <-Target-> MBLK ***
<-factor-> <Name> # Tbl# ***
<-Source->
<Name> #
Pre-Dev***
                        1.096 COPY 501 12
1.096 COPY 501 13
PERLND 10
PERLND 10
*****Routing****
END SCHEMATIC
NETWORK
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
END NETWORK
RCHRES
 GEN-INFO
  RCHRES Name Nexits Unit Systems Printer
  # - #<----- User T-series Engl Metr LKFG
                                                         * * *
                                                         * * *
                               in out
 END GEN-INFO
 *** Section RCHRES***
 ACTIVITY
  # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG ***
 END ACTIVITY
 PRINT-INFO
  <PLS > ******** Print-flags ******** PIVL PYR
   # - # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR *******
 END PRINT-INFO
 HYDR-PARM1
  RCHRES Flags for each HYDR Section
  # - # VC A1 A2 A3 ODFVFG for each *** ODGTFG for each FUNCT for each FG FG FG possible exit *** possible exit possible exit ***
 END HYDR-PARM1
 HYDR-PARM2
 # - # FTABNO LEN DELTH STCOR
                                         KS
                                               DB50
 <----><----><---->
                                                         * * *
 END HYDR-PARM2
  RCHRES Initial conditions for each HYDR section
  # ** ...
*** ac-ft
 <---->
                 <---><---><---> *** <---><---><--->
 END HYDR-INIT
END RCHRES
SPEC-ACTIONS
END SPEC-ACTIONS
FTABLES
END FTABLES
EXT SOURCES
<-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
      <Name> # # ***
WDM
WDM
```

WDM WDM		EVAP EVAP	ENGL ENGL	1			PERLND IMPLND		999 999	EXTNL EXTNL		TINP TINP		
END EXT S	SOT	JRCES												
<name></name>	-> # 01	<-Grp>	<name></name>	# #<	-fac	alt>Tran stor->strg 48.4		#		ne>	-	strg		
MASS-LINI <volume> <name> MASS-LI PERLND END MAS</name></volume>	INI	K PWATER	<name> = 12</name>		-fac		<target <name=""></target>	t>		<-Grp	<n< td=""><td>ame> ‡</td><td>>*** #***</td><td></td></n<>	ame> ‡	>*** #***	
MASS-LE PERLND END MAS		PWATER	13 IFWO 13		0.08	33333	COPY			INPUT	ME.	AN		

END MASS-LINK

END RUN

Mitigated UCI File

RUN

```
GLOBAL
 WWHM4 model simulation
 START 1901 10 01 END 2059 09 30 RUN INTERP OUTPUT LEVEL 3 0
 RESUME 0 RUN 1
                                      UNIT SYSTEM 1
END GLOBAL
FILES
<File> <Un#>
            <---->***
<-ID->
WDM
          26
              20083 Permeable Pavement2024.03.wdm
MESSU
          25
             Mit20083 Permeable Pavement2024.03.MES
              Mit20083 Permeable Pavement2024.03.L61
          27
          28
              Mit20083 Permeable Pavement2024.03.L62
              POC20083 Permeable Pavement2024.031.dat
          30
END FILES
OPN SEQUENCE
   INGRP
                    INDELT 00:15
              13
     PERLND
               1
     IMPLND
     IMPLND
               11
     PERLND
                38
     IMPLND
                17
               16
     IMPLND
               1
1
     RCHRES
     COPY
     COPY
             501
     COPY
               601
     DISPLY
   END INGRP
END OPN SEQUENCE
DISPLY
 DISPLY-INFO1
   # - #<-----Title----->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND
          Permeable Parkling Lot MAX
                                                        1 2 30 9
 END DISPLY-INFO1
END DISPLY
COPY
 TIMESERIES
   # - # NPT NMN ***
       1 1
 501
            1
                 1
 601
            1
                 1
 END TIMESERIES
END COPY
GENER
 OPCODE
  # # OPCD ***
 END OPCODE
 PARM
               K ***
  #
 END PARM
END GENER
PERLND
 GEN-INFO
   <PLS ><----Name---->NBLKS Unit-systems Printer ***
                               User t-series Engl Metr ***
                                      in out
        C, Pasture, Flat
C, Pasture, Flat
                                     1 1
  13
                              1
                                   1
                              1
                                  1
                                       1
                                            1
                                               27
 END GEN-INFO
 *** Section PWATER***
 ACTIVITY
   <PLS > ******** Active Sections *********************
```

```
# - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ***
13 0 0 1 0 0 0 0 0 0 0 0 0 0
38 0 0 1 0 0 0 0 0 0 0 0
 END ACTIVITY
 PRINT-INFO
  <PLS > ************ Print-flags ************************ PIVL PYR
  # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ********
  13 0 0 4 0 0 0 0 0 0 0 0 0 1 9
38 0 0 4 0 0 0 0 0 0 0 0 0 1 9
 END PRINT-INFO
 PWAT-PARM1
  <PLS > PWATER variable monthly parameter value flags ***
  END PWAT-PARM1
 PWAT-PARM2
  END PWAT-PARM2
 PWAT-PARM3
          PWATER input info: Part 3
  <PLS >
   # - # ***PETMAX PETMIN INFEXP INFILD DEEPFR
                                               BASETP
                                                       AGWETP
             0
0
  13 0
38
                                    2 0
2
                     0 2
0 2
                                 2
                                                 0
                                                            0
                                                    0
                                            0
                                                            Ω
 END PWAT-PARM3
 PWAT-PARM4
  <PLS > PWATER input info: Part 4
                                INTFW IRC LZETP ***
6 0.5 0.4
6 0.5 0.4
  # - # CEPSC UZSN NSUR
13 0.15 0.4 0.3
38 0.15 0.4 0.3
 END PWAT-PARM4
 PWAT-STATE1
  <PLS > *** Initial conditions at start of simulation
       ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 ***
  # - # *** CEPS SURS UZS IFWS LZS AGWS
13 0 0 0 0 2.5 1
                                                         GWVS
  13 0
38 0
                                                          0
                     0
                                    0
              0
                            0
                                           2.5
                                                            n
 END PWAT-STATE1
END PERLND
CIN.TQMT
 GEN-INFO
  <PLS ><----- Name----> Unit-systems Printer ***
                      User t-series Engl Metr ***
                            in out
                      1 ROADS/FLAT
  11
       PARKING/FLAT
  17 ROADS/FLAT LAT
16 Porous Pavement
 END GEN-INFO
 *** Section IWATER***
 ACTIVITY
  # - # ATMP SNOW IWAT SLD IWG IQAL
       0 0 1 0 0 0
  1
             11
          0
          0
  17
          0
  16
 END ACTIVITY
```

```
PRINT-INFO
   <ILS > ****** Print-flags ****** PIVL PYR
   # - # ATMP SNOW IWAT SLD IWG IQAL *******
         0 0 4 0 0 4 1 9
0 0 4 0 0 0 1 9
0 0 4 0 0 0 1 9
   1
  17
               0 4
                        0
                             0 0
                                           9
            0
  16
 END PRINT-INFO
 IWAT-PARM1
  <PLS > IWATER variable monthly parameter value flags ***
   # - # CSNO RTOP VRS VNN RTLI
        0 0
                  0 0 0
   1
                0 0
  11
  17
           0 0 0 0
                           0
          0
               0 0 0
                              0
  16
 END IWAT-PARM1
 IWAT-PARM2
   <PLS >
                                       RETSC
                                      0.1
                     0.01
                               0.1
   1
              400
                               0.1
                                        0.1
  11
              400
                     0.01
  17
              400
                     0.01
                               0.1
                                        0.1
                     0.01
                               0.1
  16
               400
                                         0.1
 END IWAT-PARM2
 IWAT-PARM3
  <PLS >
            IWATER input info: Part 3
   # - # ***PETMAX PETMIN
            0
   1
                     0
  11
                0
                         0
  17
                         0
  16
                0
                         0
 END IWAT-PARM3
 IWAT-STATE1
   <PLS > *** Initial conditions at start of simulation
   # - # *** RETS SURS
                0
   1
                         0
                0
                         0
  11
  17
                0
                         0
                         0
 END IWAT-STATE1
END IMPLND
SCHEMATIC
                        <--Area-->
<-factor->
                                     <-Target-> MBLK
<-Source->
                                      <Name> # Tbl#
<Name> #
Landscaping***
PERLND 38
                            0.3026
                                     IMPLND 16
                                                  54
PERLND 38
                            0.3026
                                      IMPLND 16
                                                 55
Curbing***
IMPLND 17
IMPLND 16
                            0.0172 IMPLND 16
0.641 RCHRES 1
                                                53
                                     RCHRES 1
                                                  5
Bypass***
                                   COPY 501
COPY 601
                                                 12
12
13
PERLND 13
                             0.13
PERLND 13
                             0.13
                                          501
PERLND 13
                             0.13
                                     COPY
                                           601
PERLND 13
                             0.13
                                                  13
                                     COPY
                             0.084
IMPLND 1
                                     COPY
                                           501
                                                  15
                                                  15
15
                             0.084
                                           601
IMPLND
      1
                                     COPY
                                           501
IMPLND 11
                             0.036
                                      COPY
IMPLND 11
                             0.036
                                      COPY
                                          601
                                                   15
*****Routing*****
                                                 12
13
                             0.194
                                     COPY
PERLND 38
                                              1
PERLND 38
                             0.194
                                      COPY
                                              1
IMPLND 17
                             0.011
                                      COPY
                                              1
                                                  15
```

```
RCHRES 1
END SCHEMATIC
```

```
NETWORK
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
END NETWORK
RCHRES
 GEN-INFO
  RCHRES Name Nexits Unit Systems Printer
                                                                   * * *
   # - #<----><---> User T-series Engl Metr LKFG
                                                                   * * *
  in out 1 Permeable Parkli-010 2 1 1 1 28 0 1
                                                                   * * *
 END GEN-INFO
 *** Section RCHRES***
   <PLS > ******** Active Sections **********************
   END ACTIVITY
 PRINT-INFO
  <PLS > ********** Print-flags ********** PIVL PYR
   # - # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR 1 4 0 0 0 0 0 0 0 0 0 0 1 9
 END PRINT-INFO
 HYDR-PARM1
  # - # VC A1 A2 A3 ODFVFG for each *** ODGTFG for each FUNCT for each FG FG FG possible exit *** possible exit possible exit ***

1 0 1 0 0 4 5 0 0 0 0 0 0 0 0 0 2 2 2 2 2
 END HYDR-PARM1
 HYDR-PARM2
  # - # FTABNO LEN DELTH STCOR KS DB50
 <----><----><---->
          1 0.03 0.0 0.0 0.5 0.0
  1
 END HYDR-PARM2
 HYDR-INIT
  RCHRES Initial conditions for each HYDR section
   # - # *** VOL Initial value of COLIND Initial value of OUTDGT

*** ac-ft for each possible exit for each possible exit
       "*** ac-ft
                  <---><---><---> *** <---><--->
  1 0
                     4.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 END HYDR-INIT
END RCHRES
SPEC-ACTIONS
END SPEC-ACTIONS
FTABLES
 FTABLE
  91 5
   Depth Area Volume Outflow1 Outflow2 Velocity Travel Time***
 (ft) (acres) (acre-ft) (cfs) (cfs) (ft/sec) (Minutes)***

0.000000 0.641010 0.000000 0.000000 0.0064635

0.038889 0.641010 0.003739 0.000000 0.064635

0.058333 0.641010 0.005609 0.000000 0.064635
 0.077778 0.641010 0.007478 0.000000 0.064635
 0.097222 0.641010 0.009348 0.000000 0.064635
```

0.116667 0.13611 0.155556 0.175000 0.194444 0.213889 0.2333333 0.272222 0.291667 0.311111 0.330556 0.350000 0.369444 0.388889 0.408333 0.427778 0.447222 0.466667 0.486111 0.505556 0.525000 0.544444 0.563889 0.583333 0.602778 0.622222 0.641667 0.661111 0.680556 0.700000 0.719444 0.738889 0.758333 0.777778 0.7222 0.641667 0.661111 0.680556 0.700000 0.719444 0.738889 0.758333 0.7777778 0.797222 0.844444 0.913889 0.933333 0.952778 0.972222 0.891667 1.011111 1.0305561 1.050000 1.069444 1.088889 1.108333 1.127778 1.147222 1.166667 1.186111 1.205556 1.225000 1.2443489 1.186333 1.127778 1.147222 1.166667 1.186111 1.205556 1.225000 1.2443489 1.283333	0.641010 0.641010	0.011218 0.013287 0.014957 0.016827 0.016827 0.0205666 0.0224335 0.0224355 0.0224375 0.028044 0.029914 0.031783 0.033653 0.035523 0.037392 0.039262 0.041131 0.043001 0.044871 0.046740 0.048610 0.050480 0.052349 0.052349 0.056088 0.057958 0.057958 0.065436 0.067306 0.067306 0.069176 0.071045 0.083567 0.065436 0.067306 0.069176 0.071045 0.083567 0.065436 0.067306 0.069176 0.071045 0.083567 0.065436 0.067306 0.069176 0.071045 0.083567 0.083567 0.083567 0.065436 0.067306 0.067306 0.067306 0.071045 0.083567	0.000000 0.000000 0.000000 0.000000 0.000000	0.064635 0.064635
1.147222 1.166667 1.186111 1.205556 1.225000 1.244444	0.641010 0.641010 0.641010 0.641010 0.641010	0.332791 0.345255 0.357719 0.370183 0.382648 0.395112	3.143263 3.786115 4.467650 5.185785 5.938742 6.724979	0.064635 0.064635 0.064635 0.064635 0.064635

```
1.516667 0.641010 0.569609 20.66504 0.064635
  1.536111 0.641010 0.582073 21.84253 0.064635
  1.555556 0.641010 0.594537 23.04156 0.064635
  1.613889 \quad 0.641010 \quad 0.631929 \quad 26.76427 \quad 0.064635

      1.633333
      0.641010
      0.644393
      28.04589
      0.064635

      1.652778
      0.641010
      0.656858
      29.34734
      0.064635

      1.672222
      0.641010
      0.669322
      30.66832
      0.064635

  1.691667 0.641010 0.681786 32.00855 0.064635
  1.711111 0.641010 0.694250 33.36775 0.064635
  1.730556 0.641010 0.706714 34.74566 0.064635
  1.750000 0.641010 0.719178 36.14203 0.064635
  END FTABLE 1
END FTABLES
EXT SOURCES
<-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
<Name> # <Name> # tem strg<-factor->strg <Name> # #
                                                                  <Name> # # ***
                 ENGL 1
                                           PERLND 1 999 EXTNL
M \cap M
        2 PREC
                                                                  PREC
                                           IMPLND 1 999 EXTNL PREC
MDM
        2 PREC
                  ENGL
                ENGL 1
ENGL 1
ENGL 1
MDM
         1 EVAP
                                           PERLND 1 999 EXTNL PETINP
                                           IMPLND 1 999 EXTNL PETINP
WDM
        1 EVAP
                                           RCHRES 1
                                                          EXTNL POTEV
MDM
         1 EVAP
END EXT SOURCES
EXT TARGETS
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Volume-> <Member> Tsys Tgap Amd ***
<Name> # <Name> # #<-factor->strg <Name> # <Name> tem strg strg***
         1 OUTPUT MEAN 1 1 48.4 WDM
21 OUTPUT MEAN 1 1 48.4 WDM
21 OUTPUT MEAN 1 1 48.4 WDM
                                                  701 FLOW
                                                                ENGL
                                                                          REPL
                                                  801 FLOW
COPY
       501 OUTPUT MEAN
                                                              ENGL
                                                                          REPL
                                           WDM
                                                  901 FLOW
COPY 601 OUTPUT MEAN 1 1
                                                               ENGL
                                                                          REPL
END EXT TARGETS
MASS-LINK
<Volume> <-Grp> <-Member-><--Mult-->
                                            <Target>
                                                          <-Grp> <-Member->***
 MASS-LINK
                  <Name> # #<-factor->
<Name>
                                            <Name>
                                                                  <Name> # #***
                  5
IMPLND IWATER SURO
                             0.083333
                                           RCHRES
                                                           INFLOW IVOL
 END MASS-LINK
                   5
 MASS-LINK
                12
PERLND PWATER SURO
                             0.083333
                                           COPY
                                                           INPUT MEAN
  END MASS-LINK 12
                  13
 MASS-LINK
PERLND PWATER IFWO
                            0.083333
                                           COPY
                                                           INPUT
                                                                  MEAN
 END MASS-LINK 13
  MASS-LINK
                  15
IMPLND IWATER SURO
                             0.083333
                                           COPY
                                                           INPUT MEAN
  END MASS-LINK 15
                  17
  MASS-LINK
RCHRES OFLOW OVOL
                                            COPY
                         1
                                                           INPUT
                                                                  MEAN
  END MASS-LINK
                  17
  MASS-LINK
IMPLND IWATER SURO
                                            IMPLND
                                                           EXTNL SURLI
  END MASS-LINK 53
 MASS-LINK
                  54
PERLND PWATER SURO
                                           IMPLND
                                                           EXTNL SURLI
  END MASS-LINK
                  54
  MASS-LINK
                  55
PERLND PWATER IFWO
                                            IMPLND
                                                           EXTNL SURLI
```

END MASS-LINK 55

END MASS-LINK

END RUN

Predeveloped HSPF Message File

Mitigated HSPF Message File

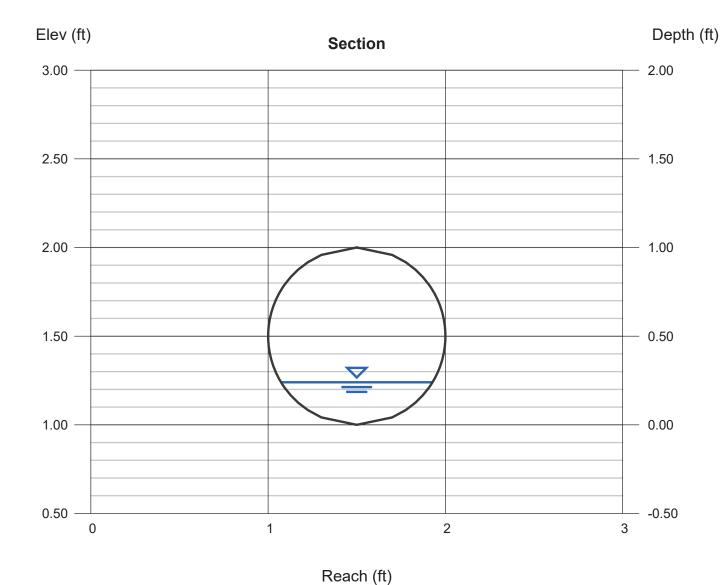
Disclaimer

Legal Notice

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2024; All Rights Reserved.

Clear Creek Solutions, Inc. 6200 Capitol Blvd. Ste F Olympia, WA. 98501 Toll Free 1(866)943-0304 Local (360)943-0304

www.clearcreeksolutions.com


Channel Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, Feb 14 2022

100-year 12-inch DIP @ 0.50%

Circular		Highlighted	
Diameter (ft)	= 1.00	Depth (ft)	= 0.24
		Q (cfs)	= 0.331
		Area (sqft)	= 0.15
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 2.28
Slope (%)	= 0.50	Wetted Perim (ft)	= 1.02
N-Value	= 0.012	Crit Depth, Yc (ft)	= 0.24
		Top Width (ft)	= 0.85
Calculations		EGL (ft)	= 0.32
Compute by:	Known Q		
Known Q (cfs)	= 0.33 100-year flow rate		

APPENDIX D

Geotechnical Engineer's Report

December 10, 2021

Olson Brothers Pro Vac, LLC c/o C.E.S. NW, Inc. 310 – 29th Street NE, Suite 101 Puyallup, Washington 98372 (253) 848-4282

Attn: Mr. Craig Deaver

cdeaver@cesnwinc.com

Stormwater Soils Report: Infiltration Feasibility

Proposed Permeable Pavement

2511 Inter Avenue Puyallup, Washington

Doc ID: CES.ProVac.InterAve.SR

PN: 2105200-180, -192

INTRODUCTION

This *soils report* evaluates the feasibility of the site soils to support shallow infiltration of stormwater runoff from the proposed new hard surfacing to be installed at 2511 Inter Avenue in Puyallup, Washington. The site is currently a gravel surfaced contractor's yard. The approximate site location is shown on the attached Site Location Map, Figure 1.

Our understanding of the project is based on our email correspondence with Mr. Craig Deaver of C.E.S. NW, our review of the provided Cover Sheet by C.E.S NW Inc. dated October 21, 2020 our review of the available geologic and soils data, our December 9, 2020 site visit and subsurface explorations, our groundwater monitoring throughout the 2020/21 wet season, our understanding of the City of Puyallup development codes, and our experience in the area.

We understand the site consists of two separate tax parcels that are currently developed with an existing repair shop, paved and gravel parking areas, and utilities. We further understand that you would like to place an additional 8,771 square feet of new asphalt pavement at the site.

Because of the amount of proposed hard surfacing associated with the project, we understand the City of Puyallup is requiring a *Soils Report* be prepared in accordance with the 2014 Stormwater Management Manual for Western Washington (SWMMWW), which includes in-situ infiltration testing and wet season groundwater monitoring.

SCOPE

The purpose of our services was to evaluate the surface and subsurface conditions at the site as a basis for determining the feasibility for onsite stormwater infiltration and providing pertinent conclusions and recommendations relative to stormwater management for the proposed permeable pavement. Specifically, our scope of services for the project included the following:

1. Reviewing the available geologic, hydrogeologic, and geotechnical data for the site area;

- 2. Exploring surface and subsurface conditions by reconnoitering the site and monitoring the excavation of two test pits to depths of 5.0 feet below existing grades at select locations across the site, and installing two shallow piezometers in each test pit;
- 3. Performing one EPA falling test in-situ infiltration test;
- 4. Describing surface and subsurface conditions, including soil type, depth to groundwater, and an estimate of seasonal high groundwater levels;
- 5. Monitoring groundwater levels at the site during the prescriptive wet season;
- 6. Providing our opinion about the feasibility of onsite infiltration in accordance with the 2014 SWMMWW, including a preliminary design infiltration rate based on grain size analysis and in-situ testing, as applicable;
- 7. Preparing this written *Soils Report* summarizing our site observations and conclusions, and our geotechnical recommendations and design criteria, along with the supporting data; and
- 8. Preparing a written *Addendum Report* following the groundwater monitoring period, which ends in April.

The above scope of work was completed in accordance with our *Proposal for Geotechnical Engineering Services* dated November 18, 2020. We received written authorization to proceed from you on November 19, 2020.

SITE CONDITIONS

Surface Conditions

The site consists of two contiguous parcels located at 2511 Inter Avenue within the City of Puyallup, Washington, within an area of existing residential and commercial development. Based on the information provided the Cover Sheet prepared by C.E.S. NW and Pierce County GIS, the west parcel is generally flagpole in shape, and the east parcel is generally rectangular in shape. When combined, these parcels form an irregularly shaped site. The full site measures approximately 115 to 195 feet wide (east to west) by about 408 feet long (north to south) and encompasses about 1.59 acres. The site is bounded by Inter Avenue to the south, by existing commercial development to the east and west, and by land being developed to the north.

The site is generally level, with a slight slope of about 1 percent down to the north. A large office and repair shop building is located in the northwest portion of the site, and the rest of the site is developed with gravel parking stalls for the ProVac trucks and paved or concrete parking stalls for automobiles. Total topographic relief across the site is on the order of about 1 to 2 feet.

Vegetation across the site generally was generally cleared, except for typical landscaping grass lawn surrounding the residence located southwest and adjacent to the site. Standing water was observed throughout the gravel parking area.

Site Soils

The USDA Natural Resources Conservation Service (NRCS) Web Soil Survey maps the site as being underlain by Briscot silt loam (6A) soils. A copy of the NRCS soils map for the site area is included as Figure 3.

• <u>Briscot silt loam (6A)</u>: The Briscot soils are derived from alluvium and are included in hydrologic soils group B/D. These soils typically form on slopes of 0 to 2 percent and are listed as having a "slight" erosion hazard when exposed.

Site Geology

The draft *Geologic Map of the Puyallup 7.5-minute Quadrangle, Washington* by K.G. Troost maps the site as being underlain by alluvium (Qal). An excerpt of the above referenced geologic map is included as Figure 4.

• <u>Alluvium (Qal)</u>: Alluvial soils generally consist of normally consolidated, stratified deposits of sand, silt, clay, and occasional peat that were deposited along the Puyallup River channel. The existing topography, as well as the surficial and shallow soils in the area, are the result of fluvial action, including down-cutting by the river, channel meandering and migration, and flood deposits. Alluvium typically offers unfavorable infiltration characteristics because of the silty nature of the soils.

Subsurface Explorations

On December 9, 2020, a representative from GeoResources, LLC (GeoResources) visited the site and monitored the excavation of two test pits at selected locations across the site to depths of about 5.0 feet below the existing ground surface. The test pits were excavated by a licensed earthwork contractor under contract to GeoResources. Piezometers were installed at the termination depth of each test pit.

The specific number, locations, and depths of our explorations were selected based on the configuration of the proposed development and were adjusted in the field based on consideration for underground utilities, existing site conditions, site access limitations, and encountered stratigraphy. Test pit TP-1 was excavated on the adjacent property to the proposed project site because no other areas on the site were clear of utilities. The densities presented in the logs were based on the difficulty of excavation and our experience. Representative soil samples obtained from the test pits were placed in sealed plastic bags then taken to a laboratory for further examination and testing as deemed necessary. The test pits were then backfilled with the excavated soils and bucket tamped, but not otherwise compacted.

The subsurface explorations indicate the subsurface conditions at specific locations only, as actual subsurface conditions can vary across the site. Furthermore, the nature and extent of such variation would not become evident until additional explorations are performed or until construction activities have begun. Based on our experience, it is our opinion that the soils encountered in the explorations are generally representative of the soils at the site.

The approximate locations and numbers of our explorations are shown on the attached Site & Exploration Plan, Figure 2. The soils encountered were visually classified in accordance with the Unified Soil Classification System (USCS) and ASTM D2488. The USCS is included in Appendix A as Figure A-1, while the descriptive logs of our explorations are included as Figure A-2.

Subsurface Conditions

Our explorations encountered relatively uniform subsurface conditions that, in our opinion, generally confirmed the mapped stratigraphy. Our test pits generally encountered about ½-foot of dark-colored topsoil with roots or 1 foot of crushed rock and reddish brown silty sand with gravel,

consistent with fill. Beneath the topsoil and fill, we observed about 0.8 feet of medium dense brown, orange iron stained silty sand or sandy silt in a moist to wet condition, mantling about 2.5 to 2.8 feet of soft gray, orange iron oxide stained silt in a moist condition. Medium dense gray orange iron oxide stained fine sand with silt was observed beneath the surficial soils to the termination depth of each test pit. We interpret these soils to be consistent with native alluvium soils. Table 1, below, summarizes the approximate thicknesses, depths, and elevations of selected soil layers.

TABLE 1:
APPROXIMATE THICKNESS, DEPTHS, AND ELEVATION OF SOIL TYPES ENCOUNTERED IN EXPLORATIONS

Exploration Number	Thickness of Topsoil/Fill (feet)	Thickness of Silty Alluvium (feet)	Depth to Mottling (feet)	Depth to Groundwater (feet)	Elevation of Sandy Alluvium (feet)		
TP-1	0.5	3.3	0.5	2.0(perched)/5.0	57.2		
TP-2	1.0 3.5		1.0	N/E	57.5		
Notes: Elevation datum: Provided <i>Cover Sheet</i> by CES NW Inc dated October 21, 2020 N/E: Not encountered							

Groundwater Conditions

Perched groundwater was encountered at the time of excavation in TP-1 at a depth of 2.0 feet below the existing ground surface on top of the gray, orange iron oxide stained sandy silt alluvium. Additional groundwater seepage was observed at about 5 feet below existing grades in the sandy alluvium. No groundwater seepage was observed in test pit TP-2 at the time of excavation; however, an old drainage pipe with washed rock was encountered in the western portion of the test pit during the over dig of the infiltration test. Orange iron oxide staining, a form of mottling was observed throughout the soils in each of our test pit explorations. Mottling can be indicative of a seasonal or fluctuating groundwater table. We anticipate fluctuations in the local groundwater levels may occur in response to season, precipitation patterns, off-site construction activities, and site utilization.

We returned to the site throughout the prescriptive wet season observe the depth to groundwater within the piezometers installed in each test pit. Both piezometers had seasonal high groundwater at about 0.5 feet below existing grades. Table 2 summarizes the approximate depths and elevations of groundwater and mottling observed at the time of our explorations and our subsequent readings in both piezometers. We were unable to record groundwater levels during some days in TP-2 because a car had parked over the piezometer. The measurements from our groundwater monitoring are attached in Appendix B.

TABLE 2:
APPROXIMATE DEPTHS, AND ELEVATION OF GROUNDWATER ENCOUNTERED IN EXPLORATIONS

Exploration Number	Depth to Groundwater (feet)	Elevation of Groundwater (feet)	Dated Measured
TP-1	2(perched), 5	59(perched), 56	12/9/2020
	0.5	60.5	12/21/2020
	0.5	60.5	12/31/2020
	0.5	60.5	1/8/2021
	0.5	60.5	1/14/2021
	1.1	59.9	1/29/2021
	1.8	59.2	2/5/2021
	1.7	59.3	2/12/2021
	0.5	60.5	2/16/2021
	1.5	59.5	3/5/2021
	2.4	58.6	3/12/2021
	2.4	58.6	3/19/2021
	1.7	59.3	3/26/2021
	2.1	58.9	4/1/2021
TP-2	NE	NE	12/9/2020
	0.5	61.5	12/21/2020
	1.0	61.0	12/31/2020
	0.7	61.3	1/8/2021
	0.5	61.5	1/14/2021
	1.9	60.1	1/29/2021
	1.2	60.8	2/5/2021
	2.3	59.7	2/12/2021
	Inaccessible	-	2/16/2021
	Inaccessible	-	3/5/2021
	Inaccessible	-	3/12/2021
	Inaccessible	-	3/19/2021
	2.2	59.8	3/26/2021
	Inaccessible	-	4/1/2021

Laboratory Testing

Geotechnical laboratory tests were performed on selected samples retrieved from the test pits to estimate index engineering properties of the soils encountered. Laboratory testing included visual soil classification per ASTM D2488 and ASTM D2487. We also submitted representative samples to an independent analytical laboratory for determination of organic content and cation exchange capacity. Organic content was determined per ASTM D2974 and cation exchange capacity was determined per SW846 9081. Test results are included in Appendix B.

CONCLUSIONS AND RECOMMENDATIONS

Based on our site reconnaissance and subsurface explorations, it is our opinion that the infiltration of stormwater runoff generated onsite by the proposed development is <u>not</u> feasible for the site.

Infiltration Recommendations

Mottled silty sand was encountered near the surface in both of our subsurface explorations, and groundwater was observed at about 0.5 feet below existing grades during our December 21, 2020 site visit to check the groundwater levels in each piezometer.

The City of Puyallup uses the 2012 *Stormwater Management Manual for Western Washington, with 2014 updates* (2014 SWMMWW). Per the 2014 SWMMWW, Volume V, BMP T5.15, a minimum of 1 foot of separation is required between the bottom of the storage course for permeable pavement and the top of an impermeable layer, such as mottling, or the sandy silt soils encountered at the site. Based on the conditions encountered, permeable pavement appears to be infeasible. We performed an EPA falling head test in the brown mottled silty sand in test pit TP-2 and measured an initial rate of 0.6 inches per hour. An EPA falling head test was chosen for this project because the use of a PIT would interfere with the function of the ProVac yard for that day, and in our opinion, would give an inaccurate rate for the soils encountered in our test pits. Based on the above, a long-term design rate of 0.04 inches per hour is applicable for this project, if the site grades can be adjusted to meet the required vertical separation to the seasonal high groundwater. This would require site grades to be raised on the order of 2 to 3 feet.

Per the 2014 SWMMWW, minimum cation exchange capacity of 5 milliequivalents per 100 milligrams of soil and 1 percent organic content is required for soils to provide adequate water quality treatment to the stormwater. Testing was conducted on the shallow soils at the site located at about 2 feet below existing grades by a third party laboratory. The organic content of the site soils were determined to be 5.79 and 9.94 percent per ASTM D: 2974-13, with a cation exchange capacity of 18.0 and 17.6 milliequivalents per 100 grams as determined by SW-846 Test Method 9081. The shallow onsite soils have the required treatment capacity per the 2014 SWMMWW.

Alternative stormwater management methods, such as detention or dispersion, should be considered for this project in accordance with the 2014 SWMMWW. All minimum setback requirements and infeasibility criteria per the 2014 SWMMWW should be considered prior to the selection of any stormwater facility for the proposed development.

LIMITATIONS

We have prepared this report for use by CES NW Inc, and other members of the design team, for use in the design of a portion of this project. The data used in preparing this report and this report should be provided to prospective contractors for their bidding or estimating purposes only. Our report, conclusions and interpretations are based on our subsurface explorations, data from others and limited site reconnaissance, and should not be construed as a warranty of the subsurface conditions.

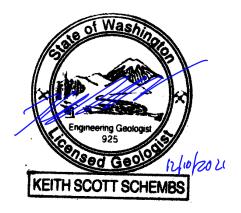
Variations in subsurface conditions are possible between the explorations and may also occur with time. A contingency for unanticipated conditions should be included in the budget and schedule. Sufficient monitoring, testing and consultation should be provided by our firm during construction to confirm that the conditions encountered are consistent with those indicated by the explorations, to

CES.ProVac.InterAve.SR December 10, 2021 page | **7**

provide recommendations for design changes should the conditions revealed during the work differ from those anticipated, and to evaluate whether earthwork and foundation installation activities comply with contract plans and specifications.

The scope of our services does not include services related to environmental remediation and construction safety precautions. Our recommendations are not intended to direct the contractor's methods, techniques, sequences or procedures, except as specifically described in our report for consideration in design.

If there are any changes in the loads, grades, locations, configurations or type of facilities to be constructed, the conclusions and recommendations presented in this report may not be fully applicable. If such changes are made, we should be given the opportunity to review our recommendations and provide written modifications or verifications, as appropriate.



We have appreciated the opportunity to be of service to you on this project. If you have any questions or comments, please do not hesitate to call at your earliest convenience.

Respectfully submitted,

GeoResources, LLC

Andrew Schnitger, EIT Engineer in Training

Keith S. Schembs, LEG Principal

AES:KSS:KEB/aes

DocID: CES.ProVac.InterAve.SR

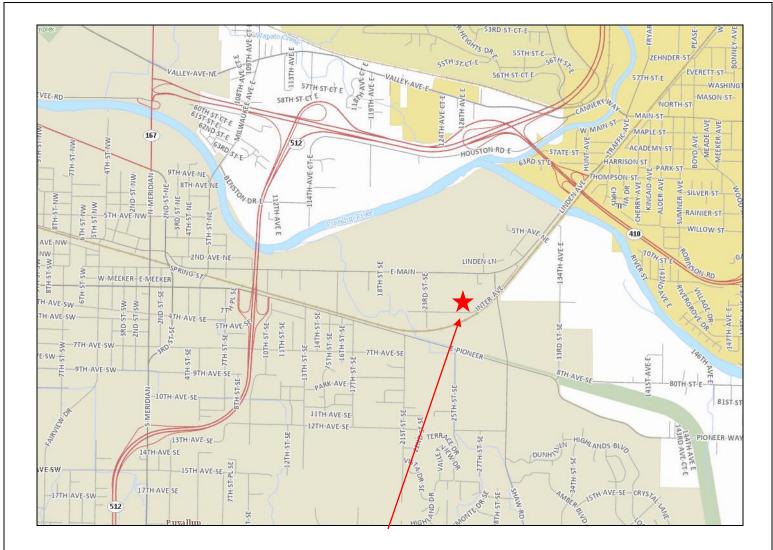

Attachments: Figure 1: Site Location Map

Figure 2: Site & Exploration Plan Figure 3: NRCS Soils Map Figure 4: USGS Geologic Map

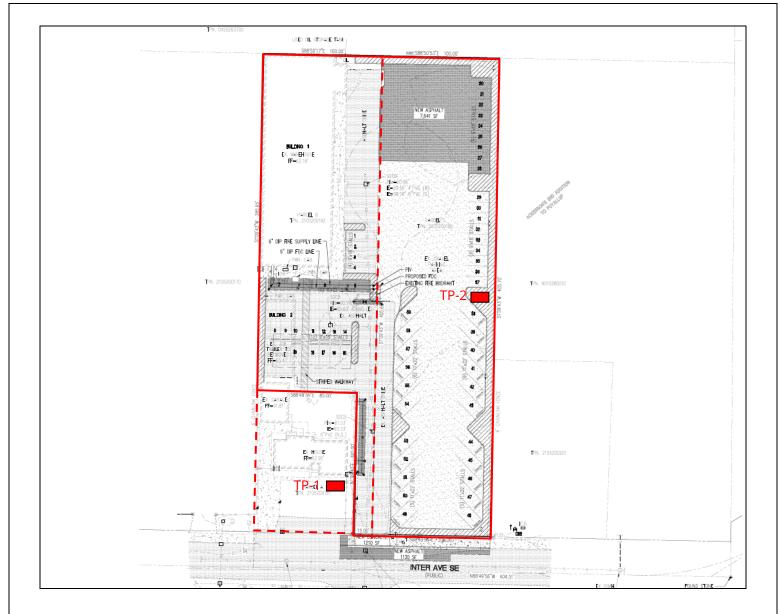
Appendix A – Subsurface Explorations Appendix B – Laboratory Test Results

Eric W. Heller, PE, LG Senior Geotechnical Engineer

Approximate Site Location

Map created from Pierce County Public GIS (https://matterhornwab.co.pierce.wa.us/publicgis/)

Not to Scale


Site Location Map

Olson Brothers Storage 2511 Inter Avenue Puyallup, Washington PN: 2105200-180, -192

DocID: CES.ProVac.InterAve.F

December 2021

Figure 1

Approximate Site Location

Map created from Pierce County Public GIS (https://matterhornwab.co.pierce.wa.us/publicgis/)

- Approximate test pit and piezometer location
- Approximate site boundary
- – Approximate locations of property lines

Not to Scale

Site & Exploration Plan

Olson Brothers Storage 2511 Inter Avenue Puyallup, Washington PN: 2105200-180, -192

DocID: CES.ProVac.InterAve.F

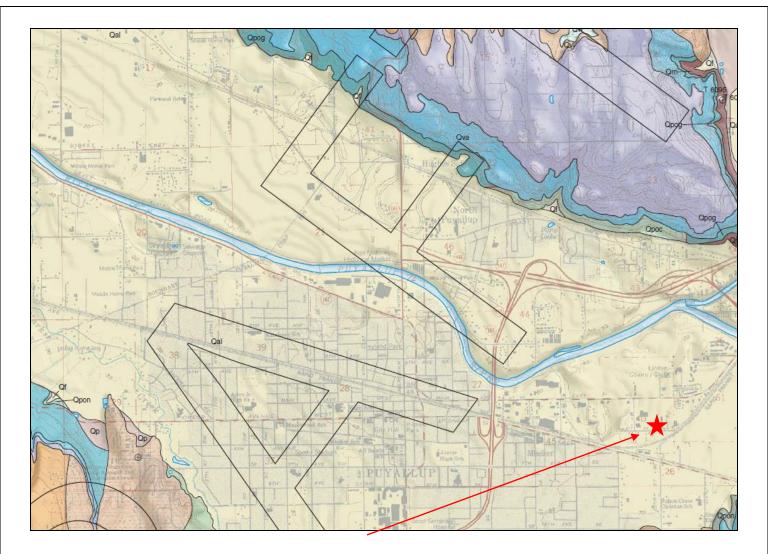
December 2021

Approximate Site Location

Map created from Web Soil Survey (http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx)

Soil Type	Soil Name	Parent Material	Slopes	Erosion Hazard	Hydrologic Soils Group
6A	Briscot silt loam	Alluvium	0 to 2	Slight	B/D

Not to Scale



NRCS Soils Map

Olson Brothers Storage 2511 Inter Avenue Puyallup, Washington PN: 2105200-180, -192

DocID: CES.ProVac.InterAve.F

December 2021

Approximate Site Location

An excerpt from the draft *Geologic Map of the Puyallup 7.5-minute Quadrangle*, Washington, by K.G. Troost (in review)

Not to Scale

USGS Geologic Map

Olson Brothers Storage 2511 Inter Avenue Puyallup, Washington PN: 2105200-180, -192

DocID: CES.ProVac.InterAve.F

December 2021

Appendix A

Subsurface Explorations

SOIL CLASSIFICATION SYSTEM

MA	AJOR DIVISIONS		GROUP SYMBOL	GROUP NAME
	GRAVEL			WELL-GRADED GRAVEL, FINE TO COARSE GRAVEL
		GRAVEL	GP	POORLY-GRADED GRAVEL
COARSE GRAINED SOILS	More than 50% Of Coarse Fraction	GRAVEL	GM	SILTY GRAVEL
SOILS	Retained on No. 4 Sieve	WITH FINES	GC	CLAYEY GRAVEL
	SAND	CLEAN SAND	SW	WELL-GRADED SAND, FINE TO COARSE SAND
More than 50%			SP	POORLY-GRADED SAND
Retained on No. 200 Sieve	More than 50%	SAND	SM	SILTY SAND
	Of Coarse Fraction Passes No. 4 Sieve	WITH FINES	SC	CLAYEY SAND
	SILT AND CLAY	INORGANIC	ML	SILT
FINE			CL	CLAY
GRAINED SOILS	Liquid Limit Less than 50	ORGANIC	OL	ORGANIC SILT, ORGANIC CLAY
	SILT AND CLAY	INORGANIC	МН	SILT OF HIGH PLASTICITY, ELASTIC SILT
More than 50%			СН	CLAY OF HIGH PLASTICITY, FAT CLAY
Passes No. 200 Sieve	Liquid Limit 50 or more	ORGANIC	ОН	ORGANIC CLAY, ORGANIC SILT
HIG	GHLY ORGANIC SOILS		PT	PEAT

NOTES:

- Field classification is based on visual examination of soil in general accordance with ASTM D2488-90.
- Soil classification using laboratory tests is based on ASTM D2487-90.
- 3. Description of soil density or consistency are based on interpretation of blow count data, visual appearance of soils, and or test data.

SOIL MOISTURE MODIFIERS:

Dry- Absence of moisture, dry to the touch

Moist- Damp, but no visible water

Wet- Visible free water or saturated, usually soil is

obtained from below water table

Unified Soils Classification System

Olson Brothers Storage 2511 Inter Avenue Puyallup, Washington PN: 2105200-180, -192

DocID: CES.ProVac.InterAve.F

December 2021

Test Pit TP-1

Location: South of existing residence, off of proposed permeable area Approximate Elevation: 61'

Depth (ft) Soil Type		Soil Type	Soil Description	
0	-	0.5	-	Topsoil
0.5	-	1.3	SM	Brown, orange iron oxide stained silty fine SAND (loose, moist) (alluvium)
1.3	-	3.8	SM	Gray, orange iron oxide stained silty fine SAND (loose, moist) (alluvium)
3.8			SP-SM	Gray, orange iron oxide stained fine SAND with some silt (medium dense, moist) (alluvium) Terminated at 5.0 feet below ground surface. Caving observed 2 feet below existing ground surface. Perched groundwater observed at 2 feet below existing grades, fast groundwater
				seepage observed at termination depth of test pit. Mottling observed throughout entire excavation.

Test Pit TP-2

Location: Central portion of site, near eastern site boundary
Approximate Elevation: 62'

Depth (ft) Soil Type		Soil Type	Soil Description					
0	-	0.5	-	rushed rock (dense, moist) (fill)				
0.5	-	1.0	SM	Reddish brown silty SAND with gravel (dense, moist) (fill)				
1.0	-	1.7	SM	Brown, orange iron oxide stained silty SAND (loose, moist) (alluvium)				
1.7	-	4.5	ML	Gray, orange iron oxide stained SILT (soft, moist) (alluvium) (drainage pipe encountered during overdig at about 3 feet)				
4.5	-	5.0	SP-SM	Gray, orange iron oxide stained fine SAND with some silt (medium dense, moist) (alluvium)				
				Terminated at 5.5 feet below ground surface. No caving observed at the time of excavation. No groundwater seepage observed at time of excavation. Mottling observed throughout entire excavation. Infiltration test performed at about 1.5 feet below existing grades.				

Logged by: AES Excavated on: December 9, 2020

Test Pit Logs

Olson Brothers Storage 2511 Inter Avenue Puyallup, Washington PN: 2105200-180, -192

DocID: CES.ProVac.InterAve.F

December 2021

Appendix B

Laboratory Results

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

11/18/2021

GeoResources, LLC 4809 Pacific Hwy E Fife, WA 98424 Project: CES.Provac

Sample Matrix: Soil

Date Sampled: 11/12/2021
Date Received: 11/15/2021
Spectra Project: 2021110413

Rush

Client ID	Spectra #	Analyte	Result	<u>Units</u>	Method	Analyzed
TP-1, 1'	1	Organic Matter	5.79	wt. % Dry	ASTM D-2974-13	11/17/2021
TP-1, 1'	1	Cation Exchange Capacity	18.0	Na, mEq/ 100g	SW846 9081	11/18/2021
TP-2, 1'	2	Organic Matter	9.94	wt. % Dry	ASTM D-2974-13	11/17/2021
TP-2, 1'	2	Cation Exchange Capacity	17.6	Na, mEq/ 100g	SW846 9081	11/18/2021

SPECTRA LABORATORIES

Ben Frans, Laboratory Manager

Page 1 of 1

a7/scj

SPECTRA Laboratories

www.spectra-lab.com info@spectra-lab.com (253) 272-4850 2221 Ross Way, Tacoma, WA 98421 Fax (253) 572-9838

SPECIAL INSTRUCTIONS/COMMENTS

CHAIN OF CUSTODY

201110419

Georesarres. yor e-MAIL 1((バルル (12/11) SAMPLED SAMPLED RELINQUISHED BY くせい TIME Prefer FAX 501 50 MATRIX ADDRESS: 48 00 NUMBER OF CONTAINERS Return Samples: **NWTPH-HCID HYDROCARBONS BTEX** SIGNATURE BTEX/NWTPH-G NWTPH-G **NWTPH-Dx** < 1664 SGT-HEM (TPH) Pacific 1664 HEM (FOG) Z 8260/624 VOA 8260 CHLOR SOLVENTS ORGANICS A SON JOMITH Page 8270-625 SEMI VOA 8270 PAH/PNA PRINTED NAME 8082/608 PCB **TOTAL METALS RCRA 8** 으 TOTAL METALS (SPECIFY) METALS 7 **TCLP METALS RCRA 8** TCLP METALS (SPECIFY) 24 beo Rejornes STANDARD COMPANY PH 9040/9045 TX/TOX/EOX TURBIDITY FLASH POINT BOD 12/11 SOLIDS (SPECIFY) Cocher Exchange carters RUSH 8501 ADDRESS CHANGE

ω

e-MAIL: AN NOWS Q

PHONE:

253 826 100

FAX:

PURCHASE ORDER #

SAMPLE ID

CONTACT:

Andrew S

PROJECT:

CES, Provac

SAMPLED BY:

Androws

CLIENT:

(Deo Resonnes

10

LAB USE ONLY

Payment Terms: Net 30 days. Past due accounts subject to 1 1/2% per month interest. Customer agrees to pay all costs of collection including reasonable attorney's fees and all other costs of collection regardless of whether suit is filed in Pierce Co., WA venue. Spectra Laboratories, LLC

RECEIVED BY

RELINQUISHED BY

RECEIVED BY

Jaylor

Durtnart

Spectra

11/2/11

1050

9 00 o Oi

Appendix CGroundwater Monitoring Logs

4809 Pacific Hwy. E. | Fife, Washington 98424 | 253.896.1011 | www. georesources.rocks

MONITORING WELL LOGS

Project ID: CES.ProVac.InterAve

Depths are in reference with ground surface

Date:	12/9/2020 (ATD)	Date:	12/21/2020
Field Tech:	AES	Field Tech:	AES
Well #	Depth (ft)	Well #	Depth (ft)
1	2 (perched), 5	1	0.5
2	NE	2	0.5
Date:	12/31/2020	Date:	1/8/2021
Field Tech:	AES	Field Tech:	AES
Well #	Depth (ft)	Well #	Depth (ft)
1	0.5	1	0.5
2	1.0	2	0.7
Date:	1/14/2021	Date:	1/29/2021
Field Tech:	AES	Field Tech:	AES
Well #	Depth (ft)	Well #	Depth (ft)
1	0.5	1	1.1
2	0.5	2	1.9
Date:	2/5/2021	Date:	2/12/2021
Field Tech:	AES	Field Tech:	AES
Well #	Depth (ft)	Well #	Depth (ft)
1	1.8	1	1.7
2	1.2	2	2.3

4809 Pacific Hwy. E. | Fife, Washington 98424 | 253.896.1011 | www. georesources.rocks

MONITORING WELL LOGS

Project ID: CES.ProVac.InterAve

Depths are in reference with ground surface

2/16/2021	Date:	3/5/2021	
AES	Field Tech:	AES	
Depth (ft)	Well #	Depth (ft)	
0.5	1	1.5	
Unaccessable	2	Unaccessable	
3/12/2021	Date:	3/19/2021	
СВ	Field Tech:	СВ	
Depth (ft)	Well #	Depth (ft)	
2.4	1	2.4	
Unaccessable	2	Unaccessable	
3/26/2021	Date:	4/1/2021	
СВ	Field Tech:	СВ	
Depth (ft)	Well #	Depth (ft)	
1.7	1	2.1	
2.2	2	Unaccessable	
	Depth (ft) 0.5 Unaccessable 3/12/2021 CB Depth (ft) 2.4 Unaccessable 3/26/2021 CB Depth (ft) 1.7	AES Depth (ft) 0.5 Unaccessable 3/12/2021 CB Depth (ft) 2.4 Unaccessable 2 3/26/2021 CB Depth (ft) 1 Unaccessable Depth (ft) 1 Unaccessable Depth (ft) 1 Date: Field Tech: Vell # Well # 1 1 1	

February 14, 2022

Olson Brothers Pro Vac, LLC c/o C.E.S. NW, Inc. 310 – 29th Street NE, Suite 101 Puyallup, Washington 98372 (253) 848-4282

Attn: Mr. Craig Deaver

cdeaver@cesnwinc.com

Soils Report Addendum: Supplemental Infiltration Testing Proposed Permeable Pavement 2511 Inter Avenue Puyallup, Washington PN: 2105200-180, -192

Doc: CES.ProVac.InterAve.SRa.rev2

INTRODUCTION

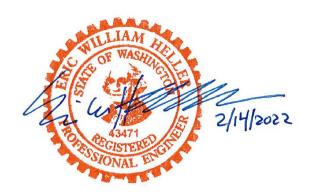
We are pleased to submit this addendum to our previously prepared *soils report* dated December 10, 2021. On December 21, 2021, we returned to the site to perform one Pilot Infiltration Test (PIT) in the green space on the southern portion of the site, in the front yard of the existing residence. The bottom of the PIT was excavated approximately 1 foot below the existing grades. The soils at the bottom of the PIT were consistent with the native alluvium soils described in our original report of a medium dense brown, orange iron stained silty sand or sandy silt that was in a moist to wet condition.

At the time of our testing, water was being pumped out from beneath the crawl space of the existing residence, and the surface water ponding on the gravel surface and adjacent sod area was flowing towards our PIT. No groundwater was encountered in our PIT, but the surface water was flowing into our PIT. Our excavation slowly started to fill in as the rate of inflow as greater than the infiltration rate of the soils. During the limited time of our testing prior to surface water inflow, the measured rate appeared consistent with the rates provided in our December 2021 report, and those rates are still appropriate. We also monitored groundwater during the winter of 2020/2021. The results of our groundwater monitoring and original infiltration testing are summarized in our December 10, 2021 report.

Based on the Paving & Utility Plan by C.E.S. NW Inc., dated February 9, 2022, the grades at the site will be raised by 2 feet to meet the vertical separation requirements for permeable pavement. Catch basins and overflows will also be implemented. It is our opinion that vertical separation requirements can be met at the site once the site grades have been raised, and permeable pavement would therefore be feasible for this project.

CLOSURE

We trust that this is sufficient for your needs. If you have any questions regarding the content of this letter, please call.


Yours very truly

GeoResources, LLC

Andrew Schnitger, EIT Engineer in Training

Keith Schembs, LEG Principal

Eric W. Heller, PE, LG Senior Geotechnical Engineer

AES:KSS:EWH/aes
DocID: CES.ProVac.InterAve.SRa.rev2

Memo

To: Olson Brothers Pro Vac, LLC

CES - Dan Smith

From: Keith Schembs, LEG, Kyle Billingsley, PE

Date: April 25, 2025

Re: Pervious Asphalt Pavement Section Design

As requested, we are providing this pervious asphalt pavement section design for the proposed new hard surfacing to be installed at 2511 Inter Avenue in Puyallup, Washington. The site is currently a gravel surfaced contractor's yard. We previously prepared a *Stormwater Soils Report: Infiltration* and a *Soils Report: Supplemental Infiltration testing,* dated December 10, 2021 and February 14, 2022, respectively.

Our understanding of the project is based on our conversations with you; our review of the provided Cover Sheet by C.E.S. NW Inc. dated October 21, 2020; our review of the available geologic and soils data, our previously prepared reports and subsurface explorations; our groundwater monitoring throughout the 2020/21 wet season; our understanding of the City of Puyallup development codes; and our experience in the area. We have prepared this pavement section design in accordance with the 1993 AASHTO flexible pavement design method using subsurface soil properties estimated from our onsite explorations, assumed traffic loading conditions, and reduced layer coefficients for permeable pavement applications.

The AASHTO 93 design method quantifies traffic loading in terms of 18-Kip ESALs (equivalent single axle loads). The estimated ESALs over the entire design life were determined using assumed vehicle loads, assumed Average Weekday Daily Traffic (AWDT), and extending the daily value over a 20-year design life. We assumed that each vacuum truck applies an average of 1.11 ESALs and equivalent subgrade modulus values of 25 ksi and 7 ksi for permeable ballast and subgrade soils, respectively. Our traffic assumptions should be verified prior to construction, and we should be notified and allowed to review our design if not correct. The AASHTO 93 design calculation output is included as Figure 1.

MINIMUM PAVEMENT SECTION THICKNESS RECOMMENDATIONS

Section	Recommended Section Thickness (inches)
Pervious Pavement	4.0
Permeable Ballast	8.5
Notes: "Permeable Ballast" per WSDOT 9-03.9(2)	

The above recommended section thicknesses meet the AASHTO 93 design standards based on the assumed traffic loading with a 85 percent reliability. Additional loading may contribute to premature failure of the pavement section. The permeable ballast section is a minimum recommended section. Actual permeable ballast section should be determined by the civil engineer for storage capacity and may exceed the minimum structural thickness referenced above.

We have appreciated working for you on this project. Please do not hesitate to call at your earliest convenience if you have any questions or comments.

Respectfully submitted, GeoResources, LLC

Keith S. Schembs, LEG Principal

Kyle E. Billingsley, PE Senior Geotechnical Engineer

KSS:KEB/keb

Doc ID: CES.ProVac.InterAve.M_PerviousHMA

Attachments: Figure 1: AASHTO 93 Design and ESALs

1993 AASHTO Empirical Equation for Flexible Pavements

Equation Solver

Variable Descriptions and Typical Values

Precautions

Type in data in the grey boxes and click the calculate button to see the output. To make additional calculations, change the desired input data and click the calculate button again. Click on the text descriptions of the input or output variables for more information.

INPUT

1. Loading

Total Design ESALs (W18): 109668

2. Reliability

Reliability Level in percent (R): 85 v
Combined Standard Error (So): 0.5

3. Servicabilty

Initial Servicability Index (p_i): 4.5

Terminal Servicability Index (p_i): 2.3

4. Layer Parameters

Number of Base Layers: 1

	а	m	MR	Min. Dept
Surface	0.4	1.0	N/A	0
Base 1	0.1][1	25000][
Subgrade	N/A	N/A	7000	l N/A

OUTPUT

1. Calculation Parameters

Standard Normal Deviate (z_R):	-1.037
ΔPSI:	2.2
Design Structural Number (SN):	2.445

2. Layer Depths (to the nearest 1/2 inch)

Surface: 4

Base 1: 8.5

Total SN based on layer depths: 2.450

See Solution Details
Comments

Туре	Load Factor	% Total of AADT	Lane AWDT	ESALS/Day
Vac Truck	1.11	100.0%	19	21.1
			Total Daily	21.1
			Total Year	5,483
			Design Life	20
			Total Life	109,668

AASHTO 93 Design and ESALs

Pavement Section Design Proposed Permeable Pavement PN: 2105200-180, -192 Pierce County, Washington

DocID: CES.ProVac.InterAve.F_Pavement

April 2025