

INSPECTIONS

BRADLEY HEIGHTS SS LLC

FULL SIZED LEDGIBLE COLOR REPORT IS REQUIRED TO BE PROVIDED BY THE PERMITTEE ON SITE FOR ALL INSPECTIONS

BRADLEY HEIGHTS APARTMENTS BUILDINGS 'A' Through 'H' 202 27th Avenue SE Puyallup, WA

SUBMITTAL #2

Date: Sept. 16, 2024

Alliance Job # N0653

Representative: Craig Westerberg

PRMU20240282 BLDG E

MiTek Canada, Inc.

240 Stirling Crescent Bradford, ON. Canada L3Z 4L5 Phone (905) 952-2900 Toll Free (800) 268-3434

Re: N0653A Buildings A-H

The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Alliance Truss (CA).

Pages or sheets covered by this seal: U1530820 thru U1530901

My license renewal date for the state of Washington is February 17, 2026.

September 12,2024

PRMU20240282 BLDG E

Garcia, Juan

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

MiTek Canada, Inc.

240 Stirling Crescent Bradford, ON. Canada L3Z 4L5 Phone (905) 952-2900 Toll Free (800) 268-3434

Re: N0653A Buildings A-H

The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Alliance Truss (CA).

Pages or sheets covered by this seal: U1530772 thru U1530819

My license renewal date for the state of Washington is February 17, 2026.



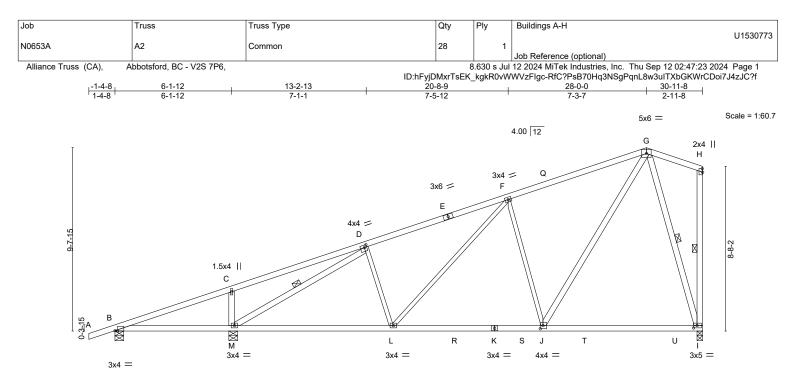
September 12,2024

Garcia, Juan

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

PRMU20240282 BLDG E

Job	Truss	Truss Type	Qty	Ply	Buildings A-H			
					U1530772			
N0653A	A1	GABLE	7	1				
					Job Reference (optional)			
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,	8.630 s Jul 12 2024 MiTek Industries, Inc. Thu Sep 12 02:47:23 2024 Page 2						
		ID:hFyjDMxrTsEK_kgkR0vWWVzFlgc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJČ?f						


13) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 18-5-8 to 30-11-8 for 594.4 plf.

14) No notches allowed in overhang and 10408 from left end and 0 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.

PRMU20240282 BLDG E

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS//TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	6-1-12	6-2-12 0-1-0	14-6-11 8-3-15		+	22-6-9 7-11-15				30-11-8 8-4-15	
Plate Offsets (X,Y) [B:0	0-1-10,Edge], [D:0-1-8,0	<u>)-1-8], [H:0-2-5,</u>	<u>,0-0-4], [I:0-2</u>	2-4,0-1-8], [J:0	-1-12,0-2-0]						
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL TCDL 12.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2018/T	2-0-0 1.15 1.15 YES PI2014	CSI. TC BC WB Matrix	0.84 0.80 1.00 k-MS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.23 -0.37 0.04 0.04	(loc) I-J I-J J-L	l/defl >999 >800 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 134 lb	GRIP 197/144 FT = 20%
					BRACING- TOP CHORI BOT CHORI WEBS	e D F 6	except e Rigid cei	nd vertic iling direo bracing:	als. ctly applied of B-M.	ectly applied or 3-6-8 o r 10-0-0 oc bracing, E -M. H-I. G-I	• •

REACTIONS. (size) B=0-5-8, M=0-5-8, I=0-3-8 Max Horz B=276(LC 9) Max Uplift B=-48(LC 6), M=-200(LC 10), I=-135(LC 6) Max Grav B=300(LC 1), M=1668(LC 3), I=1254(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD D-F=-1523/194, F-G=-1101/187

BOT CHORD L-M=-179/1377, J-L=-126/1136, I-J=-87/337

WEBS C-M=-513/167, D-M=-1746/193, F-L=-48/388, F-J=-782/218, G-J=-150/1234, G-I=-1135/137

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33

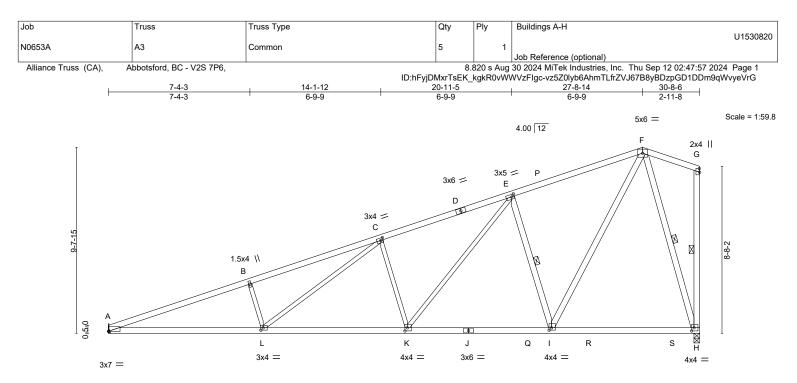
2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) B except (jt=lb) M=200, I=135.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	8-0-7	15-6-4	23-0-1	30-8-6	1			
	8-0-7	7-5-13	7-5-13	7-8-5				
Plate Offsets (X,Y)	Plate Offsets (X,Y) [A:0-0-4,0-0-2], [C:0-1-8,0-1-8], [E:0-1-8,0-1-8], [G:0-2-5,0-0-4], [H:0-1-8,0-2-0], [I:0-1-8,0-1-8], [K:0-1-8,0-2-0], [L:0-1-8,0-1-8]							

(Roof Snow=25.0 TCDL 12 BCLL 0	SPACING- 2-0-0 D) Plate Grip DOL 1.15 2.0 Lumber DOL 1.15 0.0 Rep Stress Incr YES 0.0 Code IBC2018/TPI2014	CSI. TC 0.76 BC 0.80 WB 0.65 Matrix-MS	DEFL. Vert(LL) -0.2 Vert(CT) -0.4 Horz(CT) 0.0 Wind(LL) 0.1	42 K-L 08 H	l/defl L/d >999 360 >866 240 n/a n/a >999 240	PLATES MT20 Weight: 131 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2	2x4 SPF No.2		BRACING- TOP CHORD	Structure	I wood sheathing di	rectly applied or 2-2-0 o	c nurlins
	2x4 SPF No.2 *Except*				nd verticals.		o parinio,
Α	A-J: 2x4 SPF 2100F 1.8E		BOT CHORD	Rigid cei	ling directly applied	or 10-0-0 oc bracing.	
WEBS 2	2x4 SPF No.2 *Except*		WEBS	1 Row at	midpt E	E-I, G-H, F-H	
E	3-L,C-L,C-K,E-K: 2x3 SPF No.2						
REACTIONS.	(size) A=Mechanical, H=0-3-8						
n	Max Horz A=267(LC 9)						
n	Max Uplift A=-160(LC 6), H=-174(LC 6)						

Max Opint A = 100(LC 0), H = 174(LC 0)Max Grav A=1510(LC 3), H=1568(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD A-B=-3666/396, B-C=-3552/421, C-E=-2448/316, E-F=-1332/215

BOT CHORD A-L=-460/3419, K-L=-303/2468, I-K=-151/1509, H-I=-88/433

WEBS B-L=-491/167, C-L=-141/1068, C-K=-815/207, E-K=-156/1253, E-I=-1223/264, F-I=-201/1661, F-H=-1472/172

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33

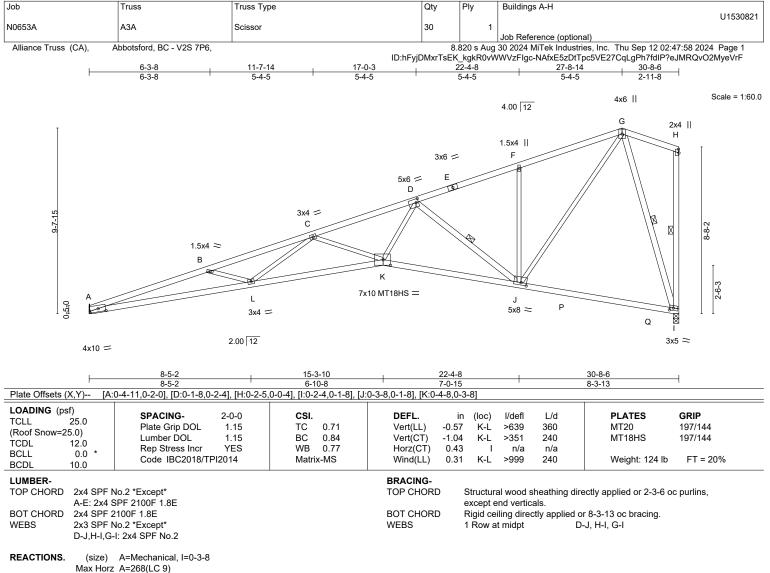
2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Refer to girder(s) for truss to truss connections.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) A=160, H=174.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

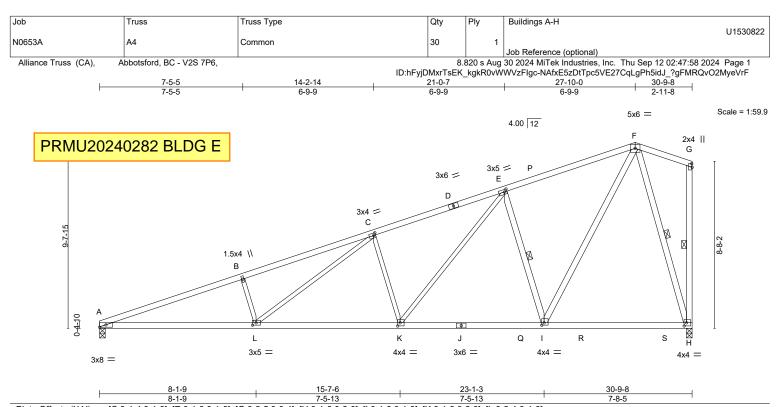
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Max Uplift A=-160(LC 6), I=-174(LC 6)

Max Grav A=1496(LC 3), I=1541(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD A-B=-6536/821, B-C=-6142/686, C-D=-4578/532, D-F=-1696/209, F-G=-1723/270
- BOT CHORD A-L=-887/6230, K-L=-705/5293, J-K=-394/3304, I-J=-98/475
- WEBS B-L=-456/187, C-L=-4/776, C-K=-1007/216, D-K=-229/2254, D-J=-2182/333,
 - F-J=-504/147, G-J=-253/2028, G-I=-1485/166


NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Bearing at joint(s) I considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) A=160, I=174.
- 10) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y) [C:	0-1-4,0-1-8], [E:0-1-8,0-1-8], [G:0-2-5,	0-0-4], [H:0-1-8,0-2-0], [I:0	0-1-8,0-1-8], [K:0-1-8,0	-2-0], [L:0-2-4,0-1-8	3]		
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) 12.0 TCDL 12.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2018/TPI2014	CSI. TC 0.84 BC 0.80 WB 0.65 Matrix-MS	DEFL. Vert(LL) -0.2 Vert(CT) -0.4 Horz(CT) 0.0 Wind(LL) 0.1	12 K-L >873)8 H n/a	L/d 360 240 n/a 240	PLATES MT20 Weight: 131 lb	GRIP 197/144 FT = 20%
	No.2 No.2 *Except* PF 2100F 1.8E		BRACING- TOP CHORD BOT CHORD	except end vertic	als.	ctly applied or 2-2-0 o 10-0-0 oc bracing.	c purlins,
WEBS 2x4 SPF M	No.2 *Except* -K,E-K: 2x3 SPF No.2		WEBS	1 Row at midpt		, G-H, F-H	
Max Horz Max Uplif	A=0-3-8, H=0-3-8						

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD

A-B=-3719/402, B-C=-3606/427, C-E=-2460/317, E-F=-1337/216 BOT CHORD

- A-L=-465/3472, K-L=-305/2483, I-K=-152/1515, H-I=-88/434
- WEBS B-L=-503/168, C-L=-146/1113, C-K=-826/208, E-K=-157/1262, E-I=-1229/265, F-I=-201/1669, F-H=-1477/172

NOTES-

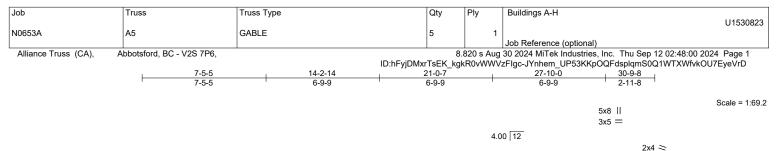
1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33

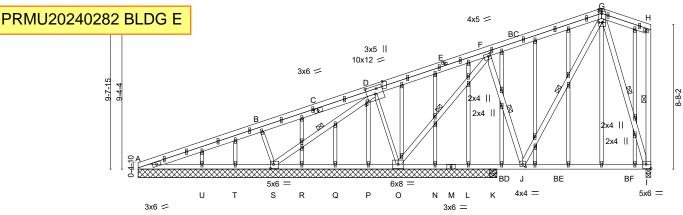
2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) A=161. H=175.


7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to use only with with with exercising is based only upon parameters shown, and is to an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

 8-1-9
 15-7-6
 21-6-8
 23-1-3
 30-9-8

 Plate Offsets (X,Y)- [C:0-2-11,0-1-8], [D:0-6-0,0-5-8], [D:0-1-14,0-0-8], [D:0-5-3,Edge], [F:0-1-12,0-1-12], [G:0-1-8,0-2-0], [G:0-2-8,0-0-1], [G:0-2-0,Edge], [I:Edge,0-3-0],
 [J:0-2-0,0-1-12], [S:0-2-4,0-3-0]

LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL 12.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.79 BC 0.61 WB 0.86 Matrix-MS	Horz(CT) -0.	in (loc) 17 I-J 26 I-J 02 N 03 I-J	l/defl >679 >427 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 223 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 SPF BOT CHORD 2x4 SPF			BRACING- TOP CHORD		ral wood s end vertic	0	ectly applied or 2-2-0 o	c purlins,
	No.2 *Except* 2x3 SPF No.2 No.2		BOT CHORD WEBS		eiling diree at midpt		r 3-10-7 oc bracing. S, F-O, F-J, G-J, H-I,	G-I

REACTIONS. All bearings 21-6-8 except (jt=length) I=0-3-8, K=0-5-8.

(lb) - Max Horz A=298(LC 38)

Max Uplift All uplift 100 lb or less at joint(s) T, U except S=-1694(LC 31), O=-1065(LC 31), I=-1279(LC 32), A=-840(LC 31), K=-116(LC 18) Max Grav All reactions 250 lb or less at joint(s) L, N, P, Q, R, T, U, K except S=1772(LC 52), O=1663(LC 28), I=1646(LC 25), A=920(LC 52), A=276(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD A-B=-2591/2424, B-D=-957/932, D-F=-1614/1540, F-G=-1708/1570, G-H=-750/788 BOT CHORD A-U=-2089/1978, T-U=-1312/1201, S-T=-547/515, R-S=-1794/1683, Q-R=-1210/1101, P-Q=-524/415, O-P=-996/887, N-O=-746/884, L-N=-873/979, K-L=-1381/1447, J-K=-1381/1447, I-J=-450/468
- WEBS B-S=-571/218, D-S=-2554/2513, D-O=-933/949, F-O=-2375/2163, F-J=-1136/1263, G-J=-1255/1387, G-I=-1543/1354

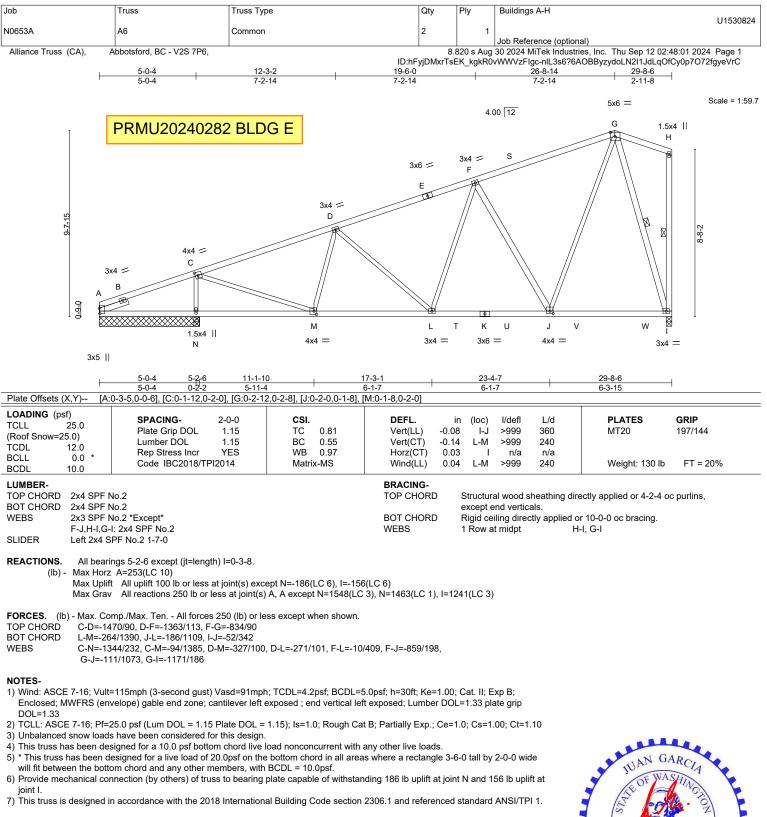
NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33

- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design.
- 5) All plates are 1.5x4 MT20 unless otherwise indicated.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) T, U except (jt=lb) S=1694, O=1065, I=1279, A=840, K=116, A=840.
- 10) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

11) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist Continue of the continue of

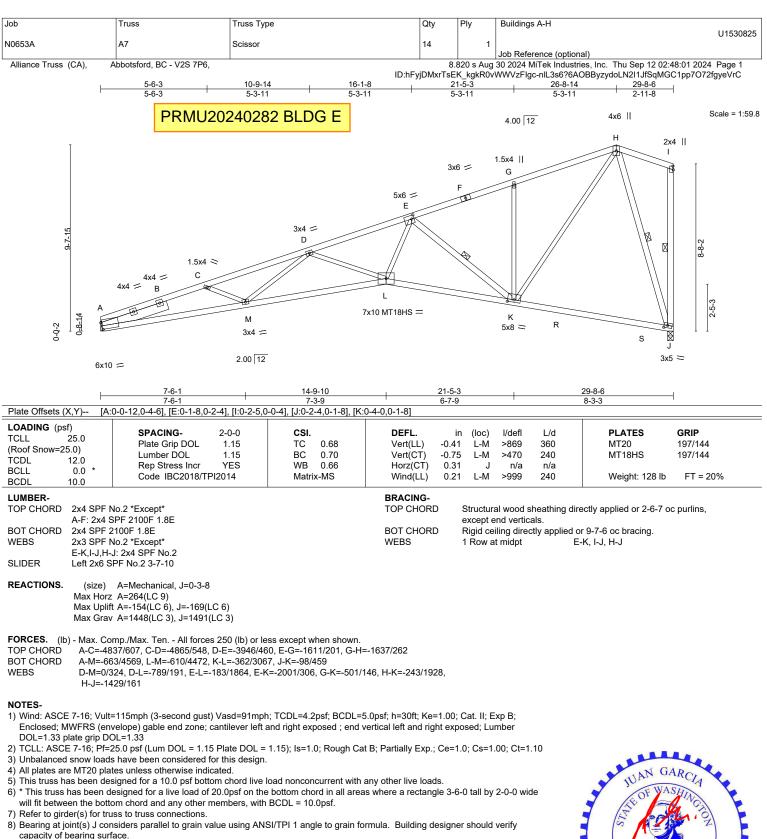
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>AMSV/TPH Quality Criteria</u>, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Job	Truss	Truss Type	Qty	Ply	Buildings A-H			
					U1530823			
N0653A	A5	GABLE	5	1				
					Job Reference (optional)			
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,	8.820 s Aug 30 2024 MiTek Industries, Inc. Thu Sep 12 02:48:00 2024 Page 2						
		ID:hFyjDMxrTsEK_kgkR0vWWVzFlgc-JYnhem_UP53KKpOQFdsplqmS0Q1WTXWfvkOU7EyeVrD						

12) No notches allowed in overhang and 0 from left end and 0 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.

PRMU20240282 BLDG E

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

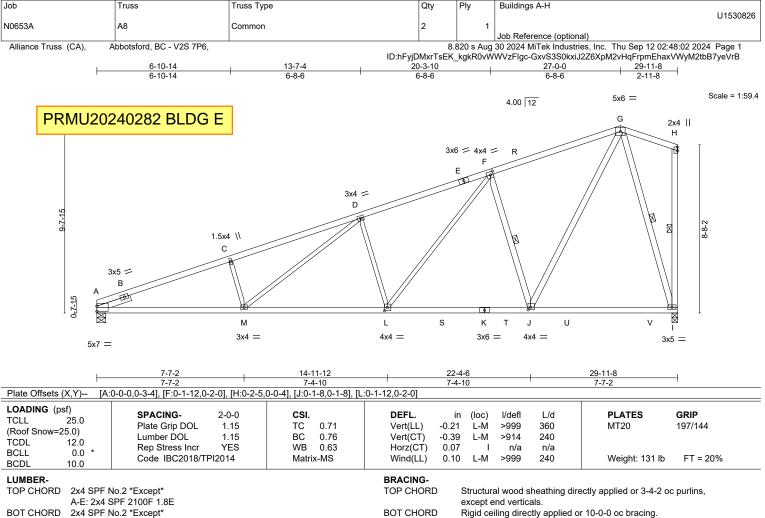


MiTek 240 Stirling Crescent Bradford, ON. L3Z 4L5

September 12,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 154 lb uplift at joint A and 169 lb uplift at joint J.


10) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

—.

WEBS

1 Row at midpt

F-J, H-I, G-I

- BOT CHORD 2x4 SPF No.2 *Except* A-K: 2x4 SPF 2100F 1.8E WEBS 2x4 SPF No.2 *Except* C-M,D-M,D-L,F-L: 2x3 SPF No.2
- SLIDER Left 2x4 SPF No.2 1-9-12
- REACTIONS. (size) A=0-5-8, I=0-3-8 Max Horz A=264(LC 9) Max Uplift A=-155(LC 6), I=-170(LC 6) Max Grav A=1476(LC 3), I=1532(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD A-C=-3225/352, C-D=-3137/378, D-F=-2323/303, F-G=-1277/209
- BOT CHORD A-M=-412/2999, L-M=-286/2327, J-L=-143/1444, I-J=-88/422
- WEBS C-M=-377/150, D-M=-111/766, D-L=-749/200, F-L=-149/1181, F-J=-1177/257, G-J=-193/1599, G-I=-1437/167

NOTES-

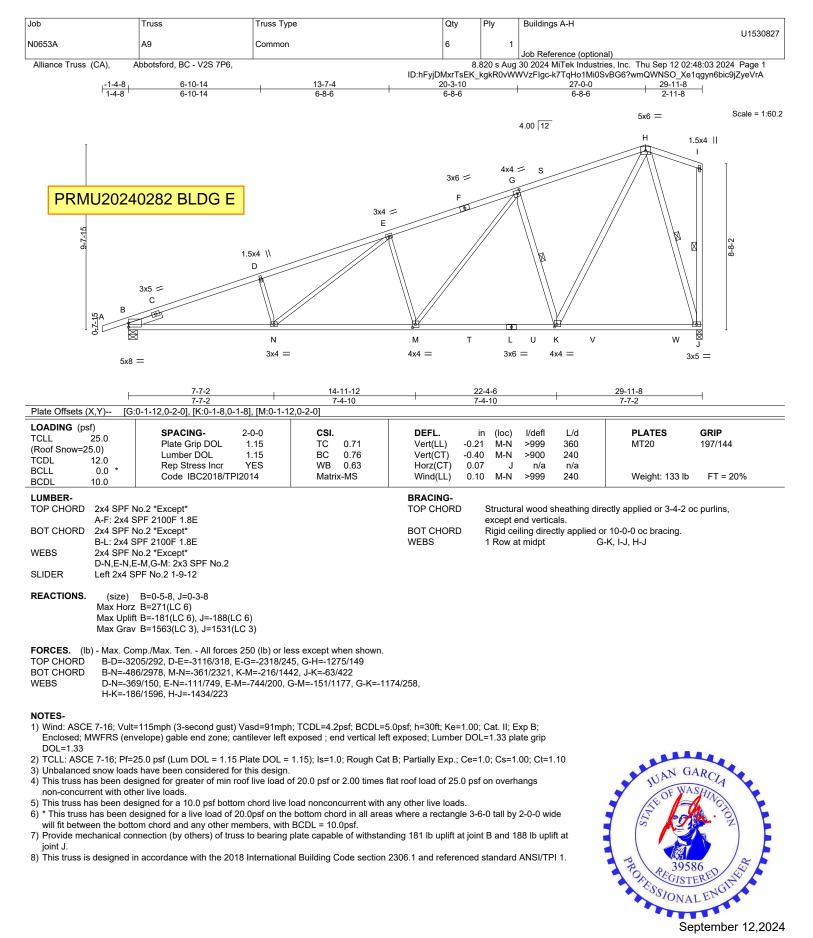
1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II: Exp B: Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

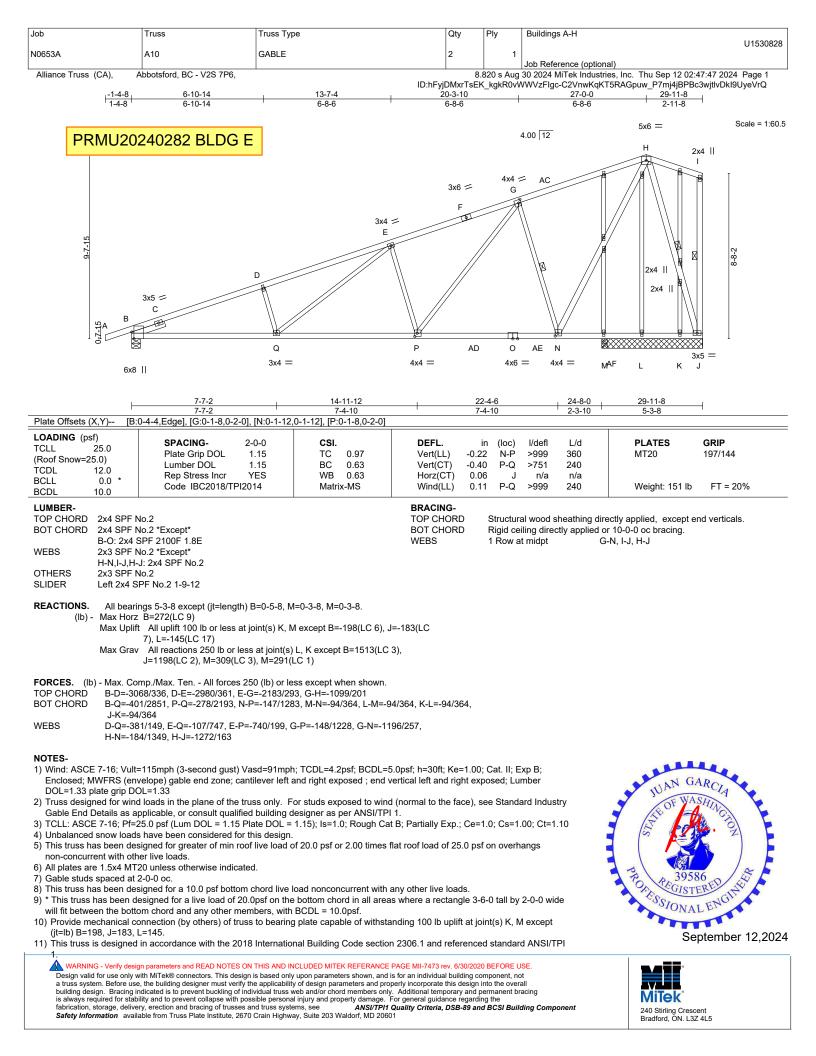
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

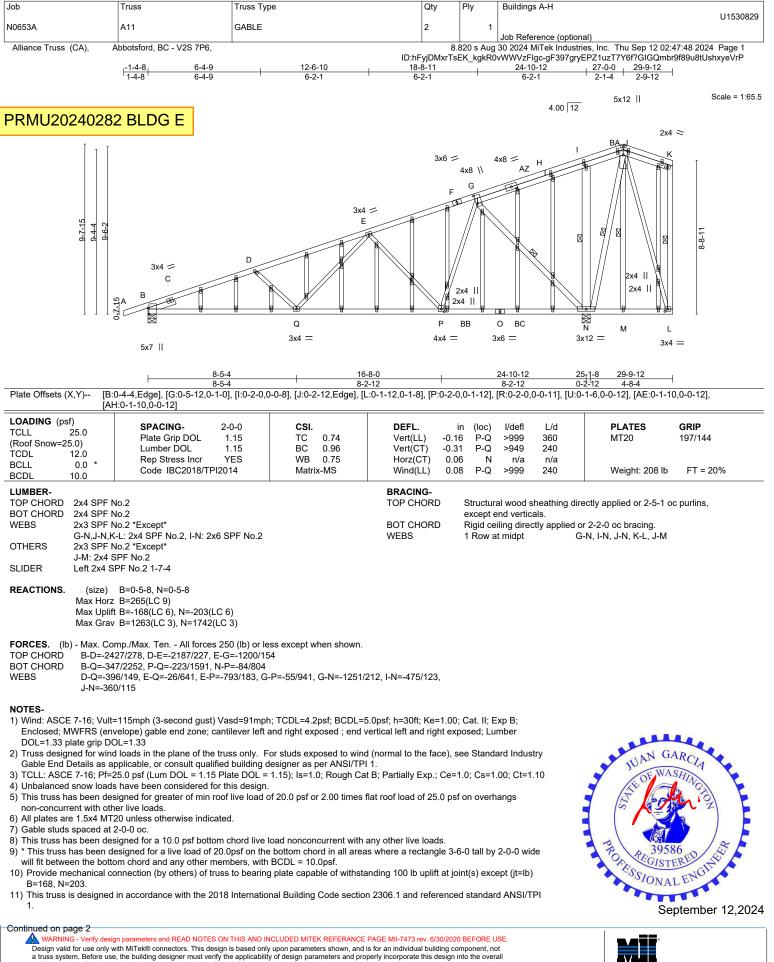
will fit between the bottom chord and any other members, with BCDL = 10.0psf.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 155 lb uplift at joint A and 170 lb uplift at ioint I

7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



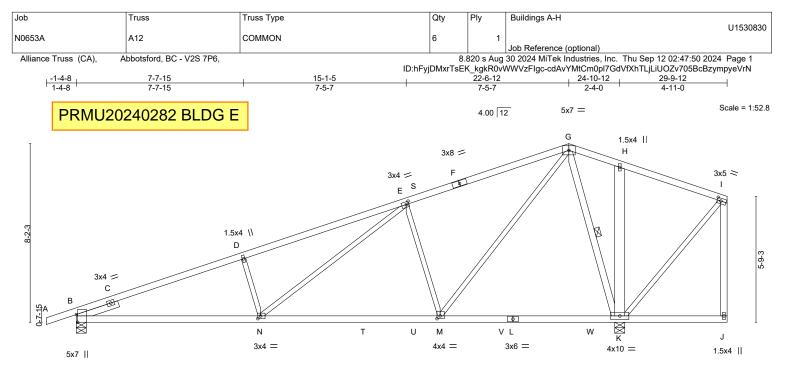


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to use only with with with exercising is based only upon parameters shown, and is to an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

September 12,2024

besign valid to devine with with with the observations. This based only upon parameters shown, and is of an introductal building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses and truss systems, see **ANSI/TPII Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

240 Stirling Crescent Bradford, ON. L3Z 4L5


Job	Truss	Truss Type	Qty	Ply	Buildings A-H			
					U1530829			
N0653A	A11	GABLE	2	1				
					Job Reference (optional)			
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,	8.820 s Aug 30 2024 MiTek Industries, Inc. Thu Sep 12 02:47:48 2024 Page 2						
		ID:hFyjDMxrTsEK_kgkR0vWWVzFIgc-gF397gryEPZ1uzT7Y6f?GIGQmbr9f89u8tUshxyeVrP						

12) No notches allowed in overhang and 200100 from left end and 0 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at CONTRACT CONTR

PRMU20240282 BLDG E

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS//TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

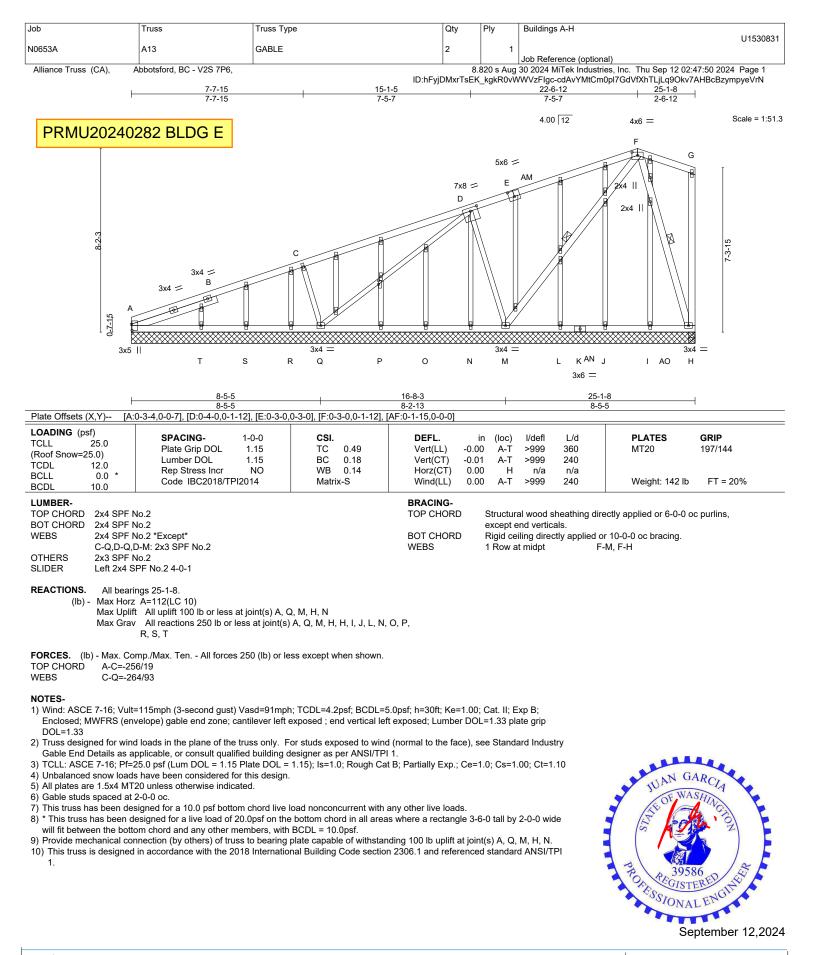
	8-5-4	<u> </u>		24-10 8-2-		<u>25-1-8</u> 29-9 0-2-12 4-8			
Plate Offsets (X,Y) [B	0-4-4,Edge], [E:0-1-8,0-1-8], [I:0-2-0,0		:0-1-8,0-1-8]	02		0212 40			
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL 12.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.98 BC 0.88 WB 0.79 Matrix-MS	DEFL. Vert(LL) -0.2 Vert(CT) -0.3 Horz(CT) 0.0 Wind(LL) 0.0	36 M-N >826 05 K n/a	L/d 360 240 n/a 240	PLATES MT20 Weight: 128 lb	GRIP 197/144 FT = 20%		
LUMBER- BRACING- TOP CHORD 2x4 SPF No.2 TOP CHORD Structural wood sheathing directly applied, except end verticals. BOT CHORD 2x4 SPF No.2 BOT CHORD Structural wood sheathing directly applied or 9-7-3 oc bracing. WEBS 2x3 SPF No.2 *Except* BOT CHORD Rigid ceiling directly applied or 9-7-3 oc bracing. SLIDER Left 2x4 SPF No.2, H-K: 2x6 SPF No.2 WEBS 1 Row at midpt G-K REACTIONS. (size) B=0-5-8, K=0-5-8 Max Horz B=198(LC 10) Max Uplift B=-165(LC 6), K=-161(LC 6)									
Max Grav B=1313(LC 3), K=1776(LC 2) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD B-D=-2500/248, D-E=-2401/276, E-G=-1381/184, H-I==-9/265 BOT CHORD B-N=-372/2316, M-N=-223/1462, K-M=-47/295 WEBS D-N=-461/168, E-N=-132/1007, E-M=-1008/241, G-M=-183/1541, G-K=-1296/184, H-K=-480/108, I-K=-269/41									
 NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left exposed ; end vertical left exposed; Lumber DOL=1.33 plate grip DOL=1.33 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design. 4) This trues has been designed for grants of live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on every honge. 									

4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.

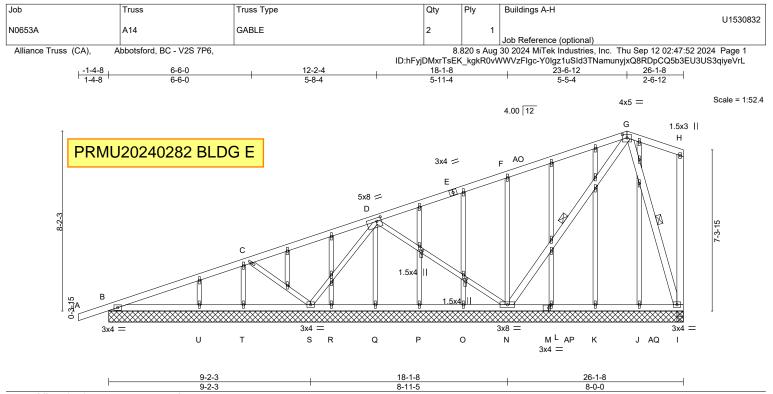
5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) B=165, K=161.


8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


•

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **Ans/ITPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y) [D	:0-2-8,0-1-12], [G:0-2-8,0-1-12], [M:0-1-	0,0-1-8], [AF:0-1-9,0-0-8]	, [AH:0-1-9,0-0-8]					
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) 7CDL TCDL 12.0 BCLL 0.0 BCDL 10.0	SPACING-1-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCode IBC2018/TPI2014	CSI. TC 0.29 BC 0.13 WB 0.24 Matrix-S	(-) -		l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 141 lb	GRIP 197/144 FT = 20%
	No.2 No.2 *Except* S-I: 2x4 SPF No.2		BRACING- TOP CHORD BOT CHORD WEBS	except e Rigid ce	end vertica	ls. ly applied or	ctly applied or 6-0-0 o 6-0-0 oc bracing. N, G-I	c purlins,

REACTIONS. All bearings 26-1-8.

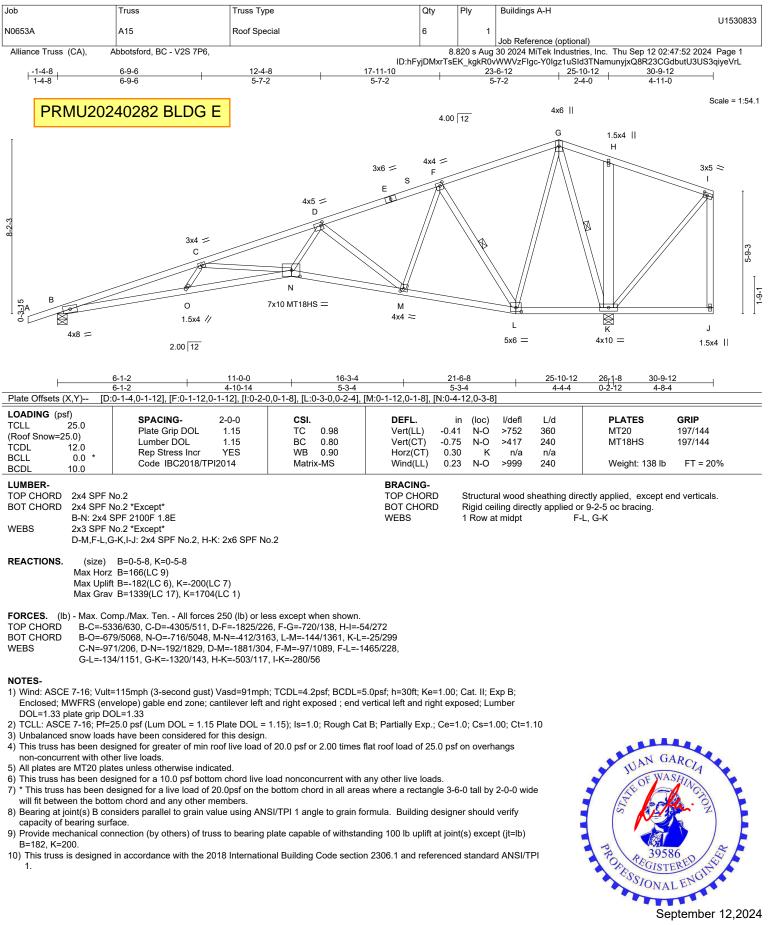
(lb) - Max Horz B=119(LC 6)

Max Uplift All uplift 100 lb or less at joint(s) B, S, N, I, Q

All reactions 250 lb or less at joint(s) B, I, I, J, K, L, O, P, Q, R, T, U except S=314(LC 17), Max Grav N=350(LC 17)

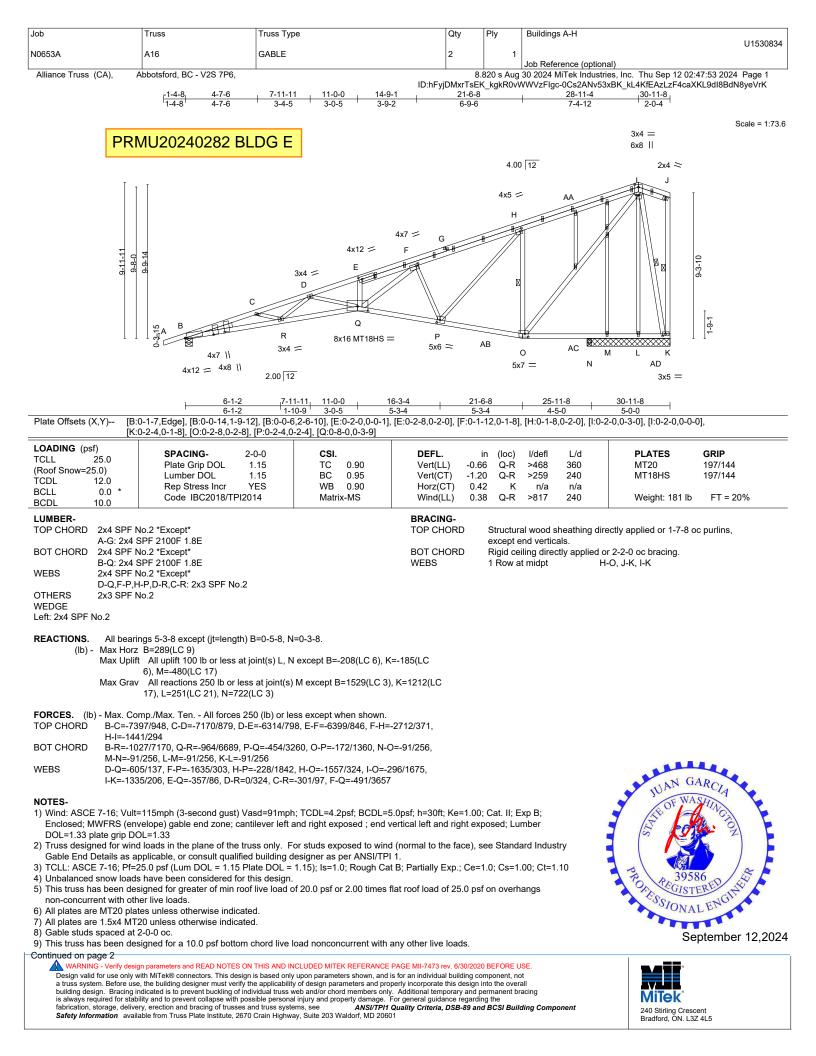
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS

C-S=-269/91, F-N=-260/79


NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left exposed ; end vertical left exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs
- non-concurrent with other live loads.
- 6) All plates are 1x4 MT20 unless otherwise indicated.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) B, S, N, I, Q.
- 11) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to use only with with with exercising is based only upon parameters shown, and is to an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

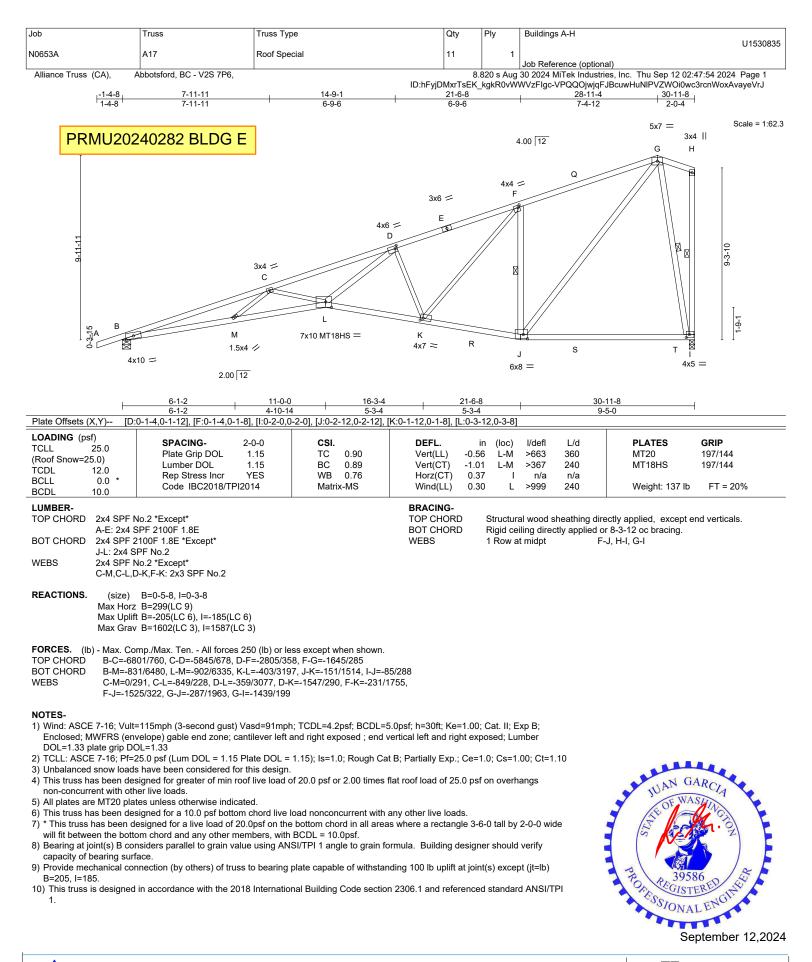


September 12,2024

MiTek 240 Stirling Crescent Bradford, ON. L3Z 4L5

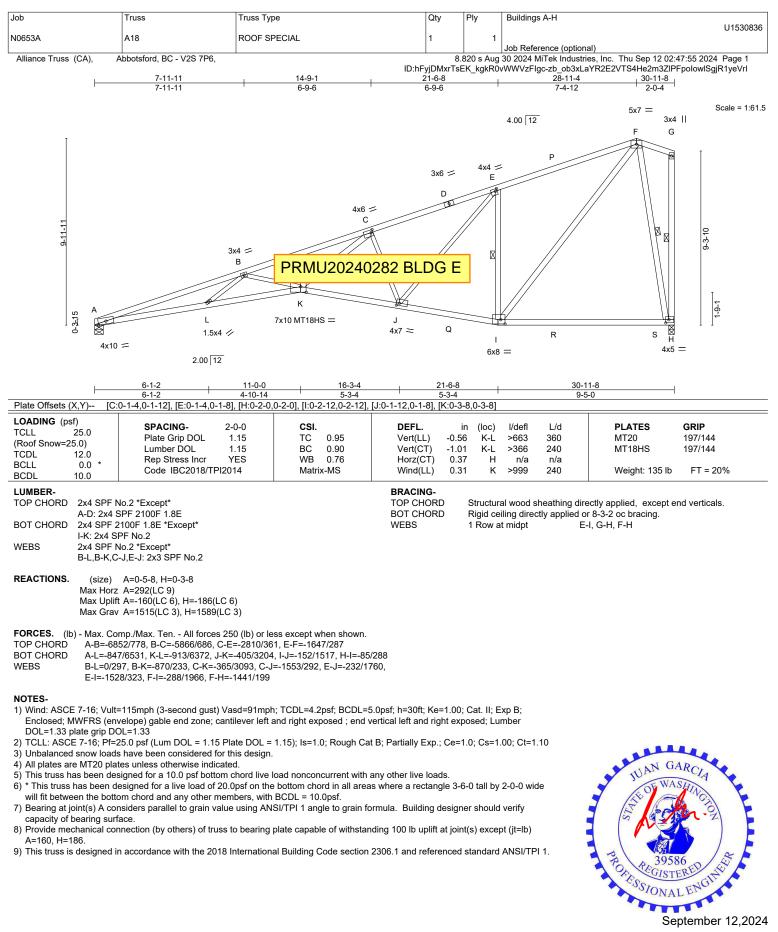
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Buildings A-H				
N0653A	A16	GABLE	2	1	U1530834				
NU033A	AIO	GABLE	2		Job Reference (optional)				
Alliance Truss (CA), A	bbotsford, BC - V2S 7P6,	8.820 s Aug 30 2024 MiTek Industries, Inc. Thu Sep 12 02:47:53 2024 Page 2							
		ID:hFyjDMxrTsEK_kgkR0vWWVzFlgc-0Cs2ANv53xBK_kL4KfEAzLzF4caXKL9dl8BdN8yeVrK							

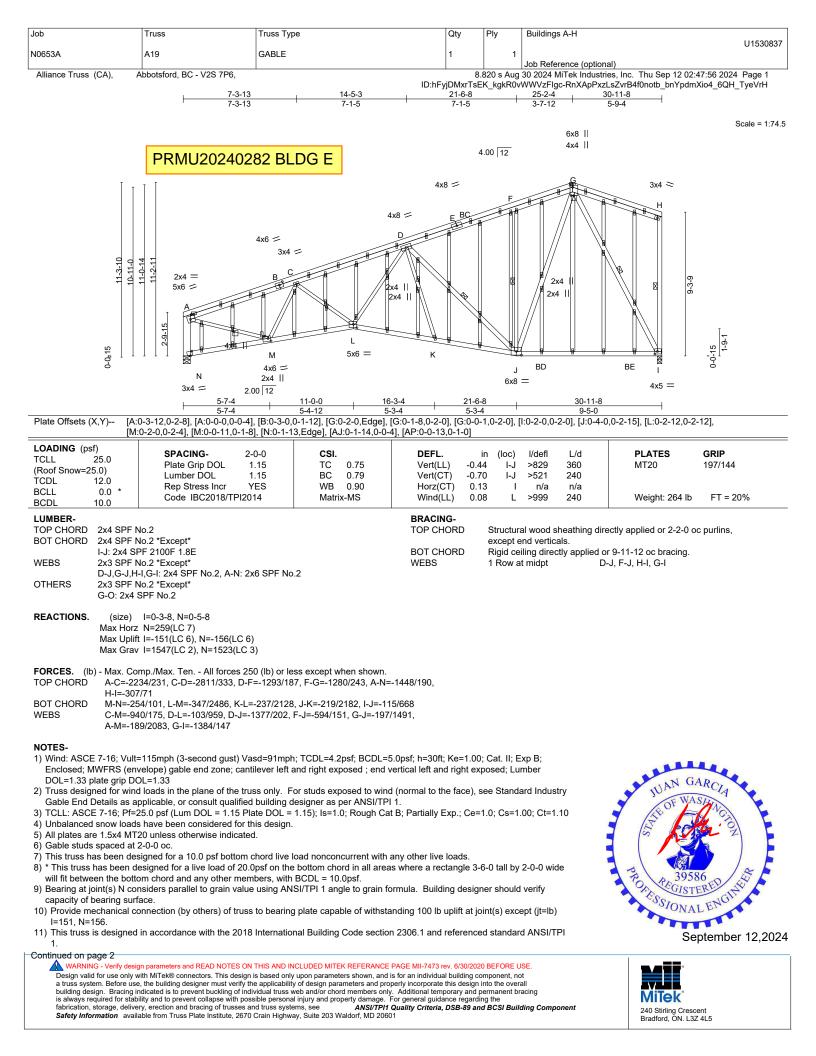

10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

- 11) Bearing at joint(s) B considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) L, N except (jt=lb) B=208, K=185, M=480.
 13) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 14) No notches allowed in overhang and 120800 from left end and 0 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at
- 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.

PRMU20240282 BLDG E

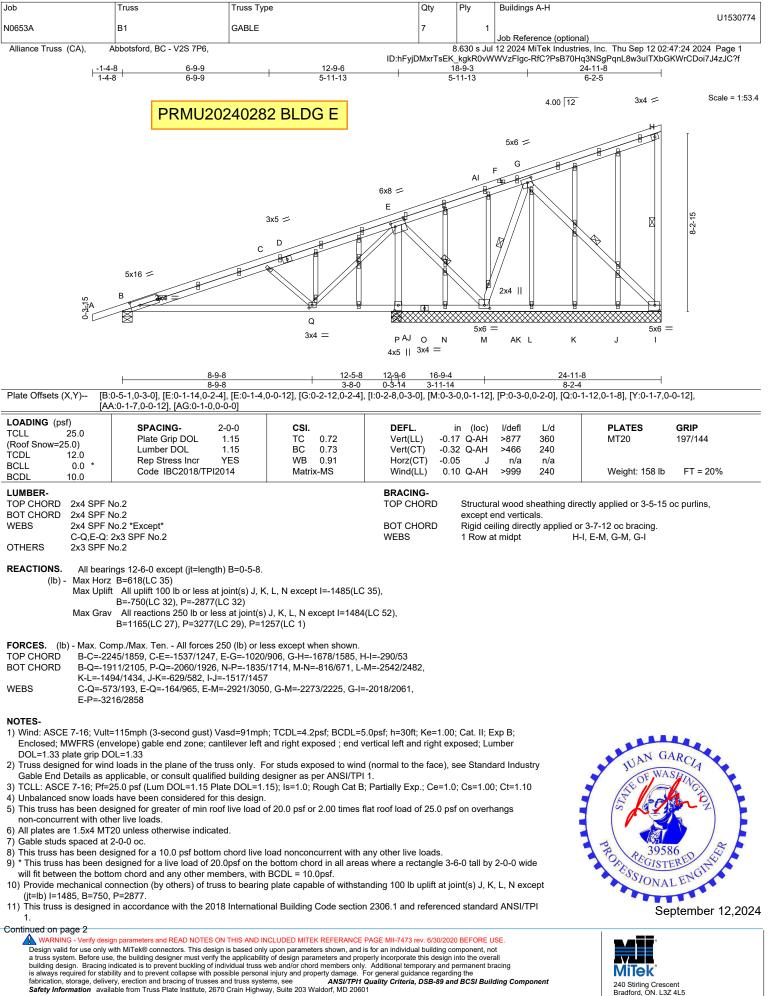

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to use only with with with exercising is based only upon parameters shown, and is to an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


MiTek 240 Stirling Crescent Bradford, ON. L3Z 4L5

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

a a

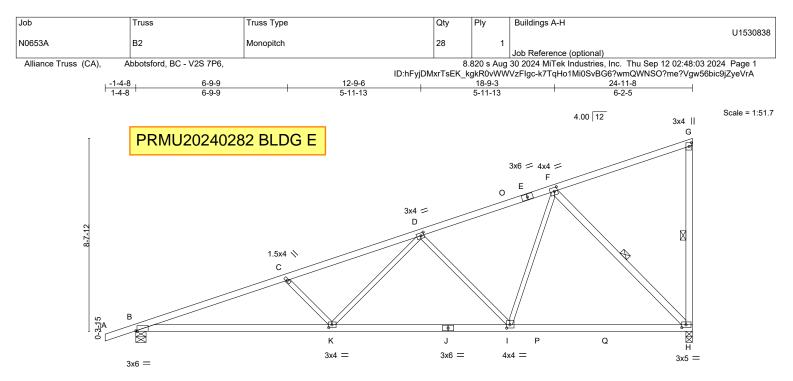

Job	Truss	Truss Type	Qty	Ply	Buildings A-H			
					U1530837			
N0653A	A19	GABLE	1	1				
					Job Reference (optional)			
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,	8.820 s Aug 30 2024 MiTek Industries, Inc. Thu Sep 12 02:47:56 2024 Page 2						
		lD:hFyjDMxrTsEK_kgkR0vWWVzFlgc-RnXApPxzLsZvrB4f0notb_bnYpdmXio4_6QH_TyeVrH						

12) No notches allowed in overhang and 0 from left end and 0 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.

PRMU20240282 BLDG E

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

240 Stirling Crescent Bradford, ON. L3Z 4L5


Job	Truss	Truss Type	Qty	Ply	Buildings A-H			
N00504	54		-		U1530774			
N0653A	B1	GABLE	1	1	Job Reference (optional)			
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,	8.630 s Jul 12 2024 MiTek Industries, Inc. Thu Sep 12 02:47:24 2024 Page 2						
		lD:hFyjDMxrTsEK_kgkR0vWWVzFlgc-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f						

12) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 12-5-8 to 24-11-8 for 479.2 plf.

13) No notches allowed in overhang and 10408 from left end and 0 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at PRMU20240282 BLDG E
 For edge-wise notching, provide at least one tie plate between each notch.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS//TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	8-9-8			+ <u>16-9-4</u> 7-11-12			24-11-8		
			1						
Plate Offsets (X,Y) [B:0-0-10,Edge], [D:0-1-12,0-1-8], [F:0-1-12,0-2-0], [G:0-2-0,0-1-4], [H:0-2-4,0-1-8], [I:0-1-12,0-1-12], [K:0-1-12,0-1-8]									
LOADING (psf) TCLL 25.0 (Roof Snow=25.0)	SPACING- Plate Grip DOL	2-0-0 1.15	CSI. TC 0.69	DEFL. Vert(LL)	in (loc -0.20 K-N	>999	L/d 360	PLATES MT20	GRIP 197/144

(Roof Snow= TCDL BCLL BCDL	=25.0) 12.0 0.0 * 10.0	Plate Grip DOL 1. Lumber DOL 1. Rep Stress Incr YE Code IBC2018/TPI201	15 BC 0.84 S WB 0.74	Vert(CT) - Horz(CT)	-0.20 K-N -0.39 K-N 0.06 H 0.09 K-N	>999 >769 n/a >999	360 240 n/a 240	Weight: 96 lb	197/144 FT = 20%
LUMBER- TOP CHORE) 2x4 SPF N	lo 2		BRACING- TOP CHORD	Structu	ral wood	sheathing dir	ectly applied or 2-7-4	oc purlins
BOT CHORE		lo.2 *Except*				end vertic	0		oo punno,
	B-J: 2x4 S	PF 2100F 1.8E		BOT CHORD	Rigid c	eiling dire	ctly applied c	or 10-0-0 oc bracing.	
WEBS	2x3 SPF N	lo.2 *Except*		WEBS	1 Row	at midpt	G	-н, F-н	
	G-H,F-H: 2	2x4 SPF No.2				·			

REACTIONS. (size) H=0-3-8, B=0-5-8 Max Horz B=281(LC 9) Max Uplift H=-167(LC 10), B=-172(LC 6) Max Grav H=1419(LC 3), B=1331(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD

B-C=-2955/311, C-D=-2666/260, D-F=-1455/158, G-H=-283/51

- BOT CHORD B-K=-378/2775, I-K=-232/1883, H-I=-103/1036
- WEBS C-K=-516/161, D-K=-53/861, D-I=-849/185, F-I=-56/980, F-H=-1470/216

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33

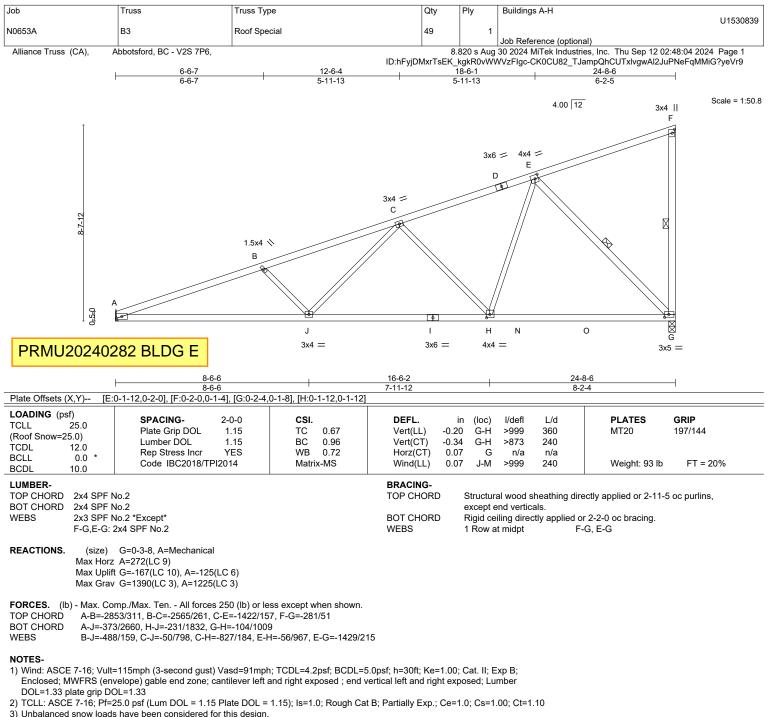
2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 167 lb uplift at joint H and 172 lb uplift at joint B.

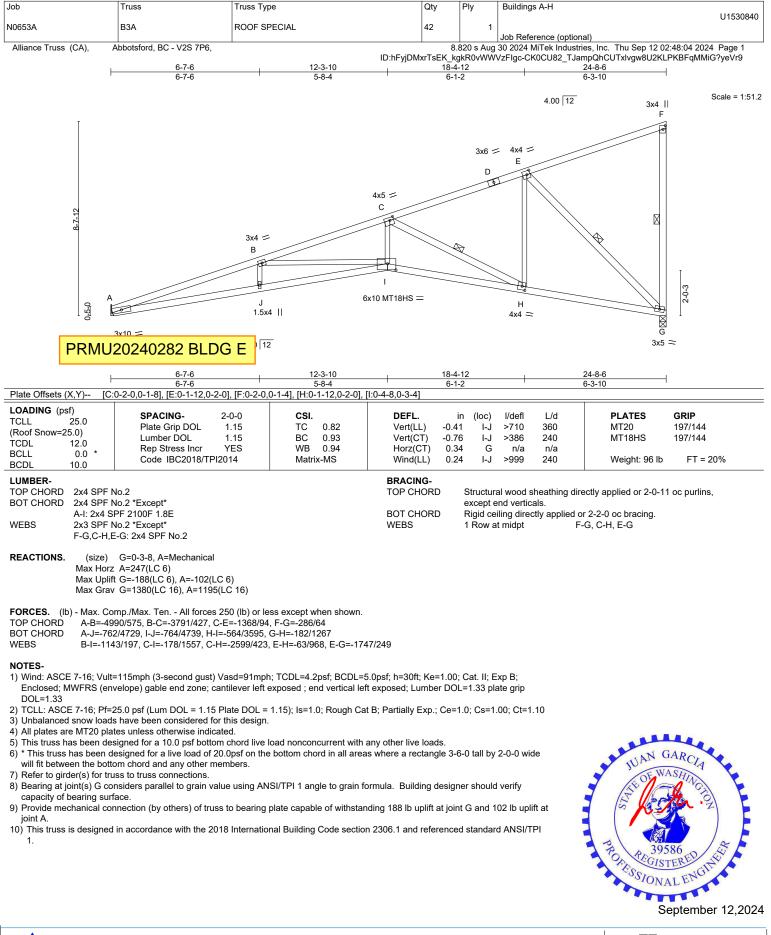
8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to use only with with with exercising is based only upon parameters shown, and is to an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

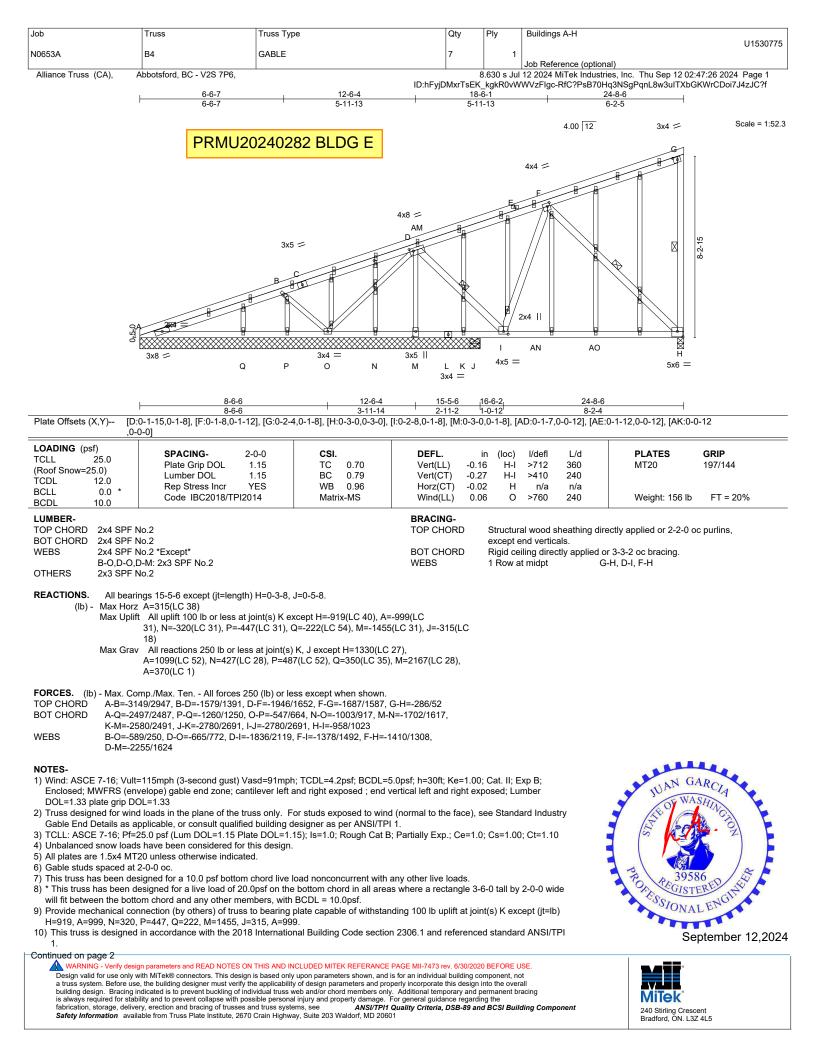
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

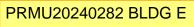
5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Refer to girder(s) for truss to truss connections.

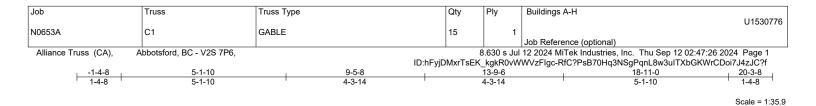

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 167 lb uplift at joint G and 125 lb uplift at joint A.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

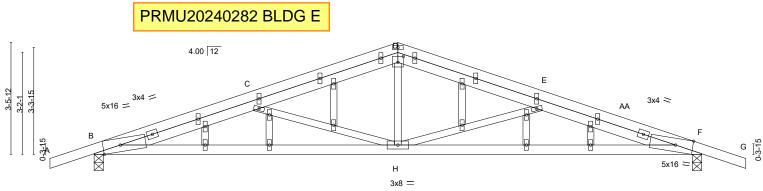

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

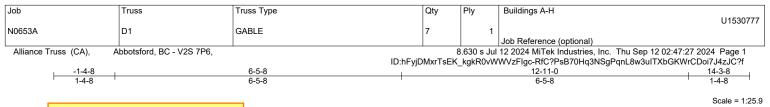
240 Stirling Crescent Bradford, ON. L3Z 4L5


Job	Truss	Truss Type	Qty	Ply	Buildings A-H			
					U1530775			
N0653A	B4	GABLE	7	1				
					Job Reference (optional)			
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,	8.630 s Jul 12 2024 MiTek Industries, Inc. Thu Sep 12 02:47:26 2024 Page 2						
		ID:hFyjI	lD:hFyjDMxrTsEK_kgkR0vWWVzFlgc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f					

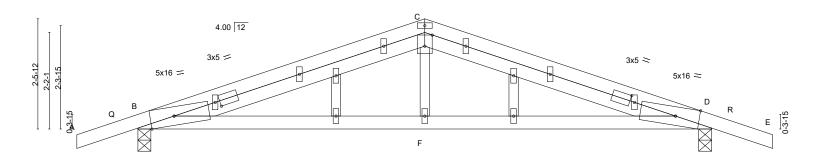
- 11) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 15-5-6 for 383.7 plf.
- 12) No notches allowed in overhang and 0 from left end and 0 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



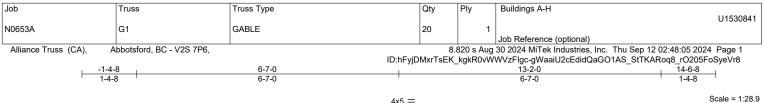
├ ──	<u>9-5-8</u> 9-5-8				<u> 18-11-0</u> 9-5-8	
Plate Offsets (X,Y) [B:	0-6-7,Edge], [D:0-2-0,0-2-4], [F:0-6-7,E	dge]				
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL 12.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.41 BC 0.81 WB 0.55 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc) -0.14 H-Z -0.33 H-W 0.06 F 0.06 H-W	l/defi L/d >999 360 >684 240 n/a n/a >999 240	PLATES GRIP MT20 197/144 Weight: 83 lb FT = 20%
LUMBER- TOP CHORD 2x4 SPF N BOT CHORD 2x4 SPF N WEBS 2x3 SPF N OTHERS 2x3 SPF N	No.2 No.2		BRACING- TOP CHOR BOT CHOR		al wood sheathing dir iling directly applied c	ectly applied or 3-3-12 oc purlins. or 10-0-0 oc bracing.
Max Uplif Max Grav	: B=54(LC 10) t B=-169(LC 6), F=-137(LC 7) v B=1105(LC 17), F=1057(LC 18)					
TOP CHORD B-C=-24 BOT CHORD B-H=-23	mp./Max. Ten All forces 250 (lb) or le .01/253, C-D=-1609/111, D-E=-1608/11 .4/2275, F-H=-184/2396 .75, E-H=-1018/188, C-H=-932/197					
Enclosed; MWFRS (em DOL=1.33 plate grip DO 2) Truss designed for winc Gable End Details as a 3) TCLL: ASCE 7-16; Pf=/ 4) Unbalanced snow loads	=115mph (3-second gust) Vasd=91mph velope) gable end zone; cantilever left a DL=1.33 d loads in the plane of the truss only. F pplicable, or consult qualified building d 25.0 psf (Lum DOL=1.15 Plate DOL=1. s have been considered for this design. signed for greater of min roof live load of	and right exposed ; end or studs exposed to wind esigner as per ANSI/TP 15); Is=1.0; Rough Cat E	vertical left and rig d (normal to the fa 1. ; Partially Exp.; C	ht exposed; Lu nce), see Standa re=1.0; Cs=1.00	mber ard Industry); Ct=1.10	a seller a
non-concurrent with oth 6) All plates are 1.5x4 MT 7) Gable studs spaced at 8) This truss has been de 9) * This truss has been d will fit between the botto	ner live loads. 20 unless otherwise indicated.	oad nonconcurrent with bottom chord in all area	any other live loa s where a rectan	ds. gle 3-6-0 tall by	2-0-0 wide	NUAN GARCIA
B=169, F=137. 11) This truss is designed 1. 12) No notches allowed in	in accordance with the 2018 Internatio overhang and 10408 from left end and 4 tie plates required at 2-0-0 o.c. maxin	nal Building Code sectio 10408 from right end or	n 2306.1 and refe 12" along rake fr	renced standar om scarf, which	d ANSI/TPI never is	BOREGISTERED TESSIONAL ENGINE
						September 12,2024
WARNING - Verify desig	gn parameters and READ NOTES ON THIS AND IN	ICLUDED MITEK REFERANCE	PAGE MII-7473 rev. 6	30/2020 BEFORE L	JSE.	


240 Stirling Crescent Bradford, ON. L3Z 4L5

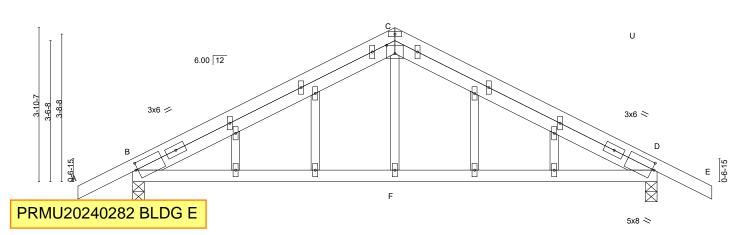
AWARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component</u> **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

PRMU20240282 BLDG E

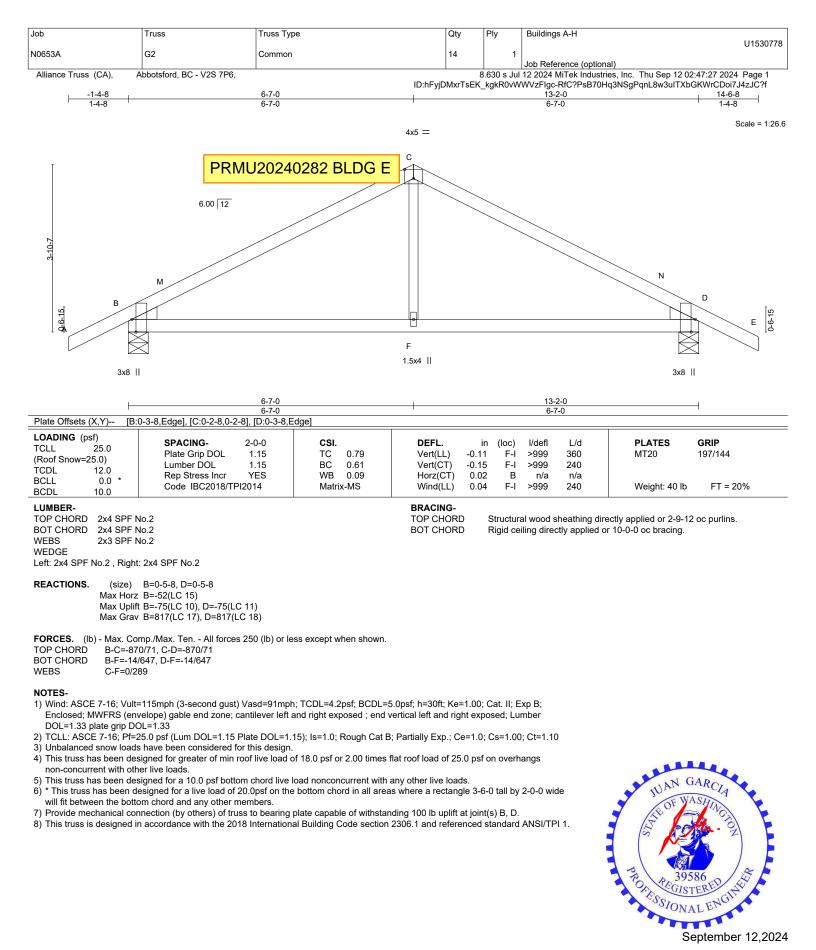
4x5 ||



 	6-5-8 6-5-8	<u>12-11-0</u> 6-5-8	·
Plate Offsets (X,Y) [B:0-6-7,Edge], [B:1-1-0,0-1-8], [C	:0-3-0,Edge], [D:1-1-0,0-1-8], [D		
LOADING (psf) SPACING- 2-0. TCLL 25.0 Plate Grip DOL 1.1 (Roof Snow=25.0) Lumber DOL 1.1 TCDL 12.0 Rep Stress Incr YE BCLL 0.0 * Code IBC2018/TPI2014	5 TC 0.86 5 BC 0.76 S WB 0.09	DEFL. in (loc) l/defi L/d Vert(LL) -0.11 F-M >999 360 Vert(CT) -0.18 F-M >864 240 Horz(CT) 0.02 D n/a n/a Wind(LL) 0.04 F-M >999 240	MT20 197/144
LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2 OTHERS 2x3 SPF No.2			ing directly applied or 2-2-0 oc purlins. plied or 10-0-0 oc bracing.
REACTIONS. (size) B=0-3-8, D=0-3-8 Max Horz B=41(LC 10) Max Uplift B=-141(LC 6), D=-110(LC 7) Max Grav B=974(LC 17), D=822(LC 18)			
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 TOP CHORD B-C=-1260/86, C-D=-1230/91 BOT CHORD B-F=-53/1118, D-F=-53/1118 WEBS C-F=0/288	(lb) or less except when shown.		
 NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vaso Enclosed; MWFRS (envelope) gable end zone; cantile DOL=1.33 plate grip DOL=1.33 2) Truss designed for wind loads in the plane of the truss Gable End Details as applicable, or consult qualified b 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate 4) Unbalanced snow loads have been considered for this 5) This truss has been designed for greater of min roof lin non-concurrent with other live loads. 6) All plates are 1.5x4 MT20 unless otherwise indicated. 7) Gable studs spaced at 2-0-0 oc. 8) This truss has been designed for a 10.0 psf bottom ch 9) * This truss has been designed for a load of 20.0p will fit between the bottom chord and any other memb 10) Provide mechanical connection (by others) of truss to B=141, D=110. 11) This truss is designed in accordance with the 2018 In 1. 12) No notches allowed in overhang and 10408 from left larger. Minimum 1.5x4 tie plates required at 2-0-0 o. least one tie plate between each notch. 	ver left and right exposed ; end only. For studs exposed to win uilding designer as per ANSI/TF DOL=1.15); Is=1.0; Rough Cat I design. The load of 20.0 psf or 2.00 times ord live load nonconcurrent with sf on the bottom chord in all area ers. The bearing plate capable of withst ternational Building Code section end and 10408 from right end o	vertical left and right exposed; Lumber d (normal to the face), see Standard Industry P1. 3; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 flat roof load of 25.0 psf on overhangs any other live loads. as where a rectangle 3-6-0 tall by 2-0-0 wide anding 100 lb uplift at joint(s) except (jt=lb) on 2306.1 and referenced standard ANSI/TPI r 12" along rake from scarf, whichever is	TUAN GARCIA TUAN GARCIA BORGENERED 39586 BOREGISTERED TOTAL ENGINE September 12 2024

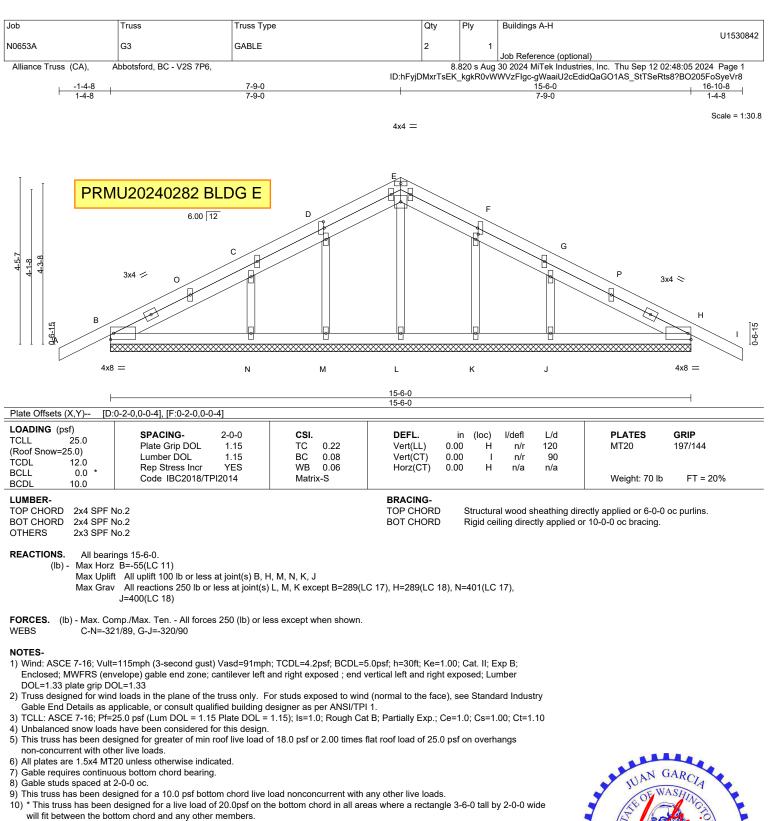

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

September 12,2024



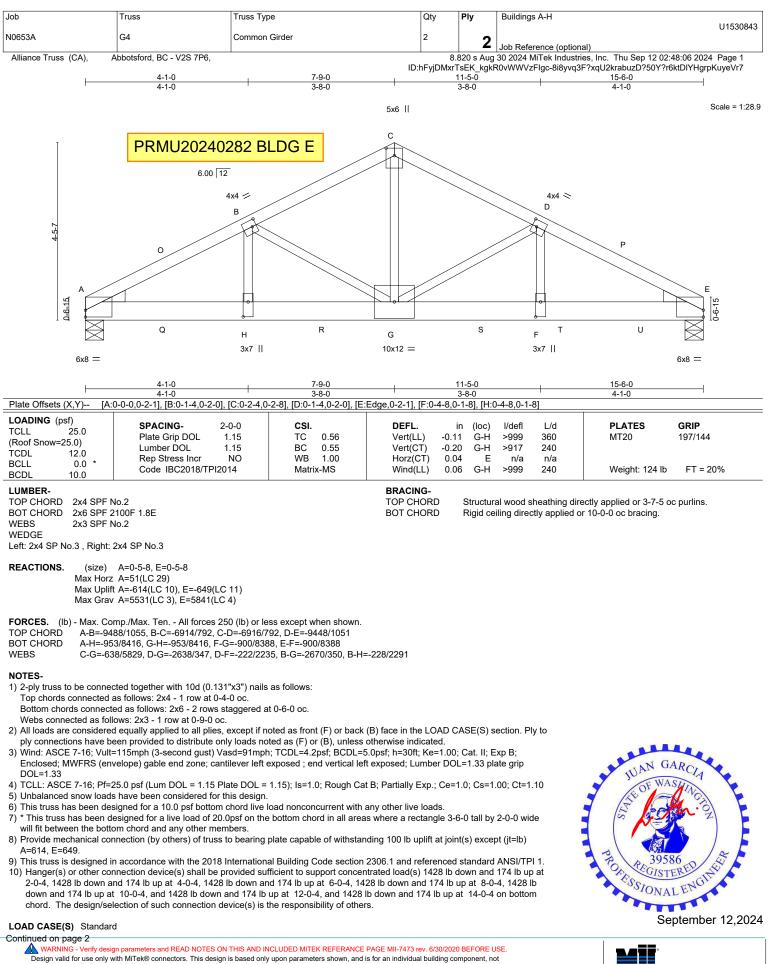
		7-0			<u>13-2-0</u> 6-7-0		
Plate Offsets (X,Y) [B:0)-0-9,0-2-1], [C:0-2-8,0-2-8], [D:0-0-9,0)-2-1]					
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL TCDL 12.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2018/TPI2014	CSI. TC 0.76 BC 0.41 WB 0.08 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.07 F-T > -0.10 F-T > 0.01 B	defl L/d 999 360 999 240 n/a n/a 999 240	PLATES MT20 Weight: 59 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 SPF N 3OT CHORD 2x4 SPF N WEBS 2x3 SPF N DTHERS 2x3 SPF N	lo.2 lo.2		BRACING- TOP CHORD BOT CHORD			ectly applied or 4-4-1 or 10-0-0 oc bracing.	4 oc purlins.
Max Horz Max Uplift	B=0-3-8, D=0-3-8 B=52(LC 10) B=-90(LC 10), D=-78(LC 11) B=760(LC 1), D=817(LC 18)						
TOP CHORD B-C=-815 BOT CHORD B-F=-15/ WEBS C-F=0/26 NOTES- 1) Wind: ASCE 7-16; Vult=	115mph (3-second gust) Vasd=91mp	, h; TCDL=4.2psf; BCDL=					
DOL=1.33 plate grip DC 7 Truss designed for wind Gable End Details as ap	elope) gable end zone; cantilever left ↓=1.33 loads in the plane of the truss only. F oplicable, or consult qualified building 5.0 psf (Lum DOL = 1.15 Plate DOL =	or studs exposed to windesigner as per ANSI/TP	d (normal to the fac I 1.	ce), see Standard	Industry		
 Unbalanced snow loads This truss has been des non-concurrent with other 	have been considered for this design igned for greater of min roof live load					JUAN (GARCIA
 Gable studs spaced at 2 This truss has been des * This truss has been de will fit between the botto 		e bottom chord in all area	as where a rectang	le 3-6-0 tall by 2-0		STATES STATES	ASHINGTON . OX
11) This truss is designed1.12) No notches allowed in	in accordance with the 2018 Internation overhang and 10408 from left end and the plates required at 2-0-0 o.c. maxing ween each notch.	d 10408 from right end o	r 12" along rake fro	m scarf, whicheve	er is	TROFESSION	TERED AL ENGINE
							antombor 12.2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


September 12,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek 240 Stirling Crescent Bradford, ON. L3Z 4L5



- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) B, H, M, N, K, J.
- 12) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI
- 13) No notches allowed in overhang and 10408 from left end and 10408 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.

240 Stirling Crescent Bradford, ON. L3Z 4L5

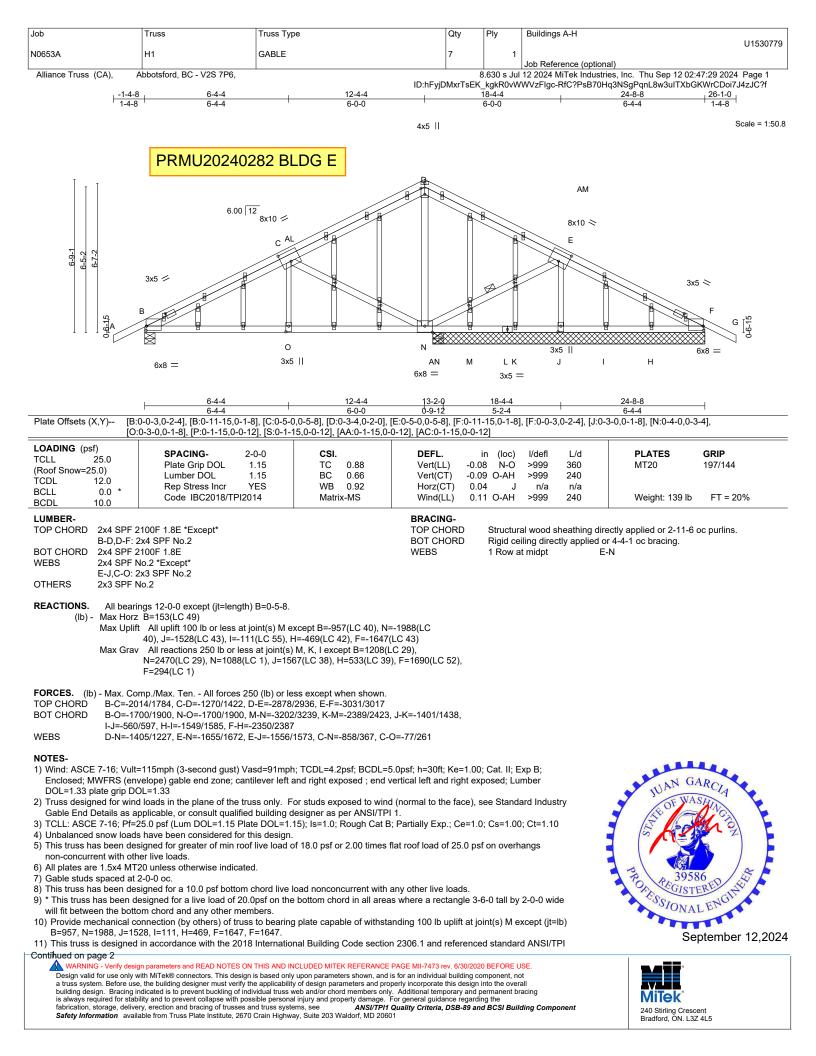
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ArXining - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERANCE FAGE MIT-47/3 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

240 Stirling Crescent Bradford, ON. L3Z 4L5

MiTek

Job	Truss	Truss Type	Qty	Ply	Buildings A-H
					U1530843
N0653A	G4	Common Girder	2	2	
				_	Job Reference (optional)
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,		8	820 s Aug	30 2024 MiTek Industries, Inc. Thu Sep 12 02:48:06 2024 Page 2
		IC	hFyjDMxr	TsEK_kgkF	R0vWWVzFIgc-8i8yvq3F?xqU2krabuzD?50Y?r6ktDIYHgrpKuyeVr7

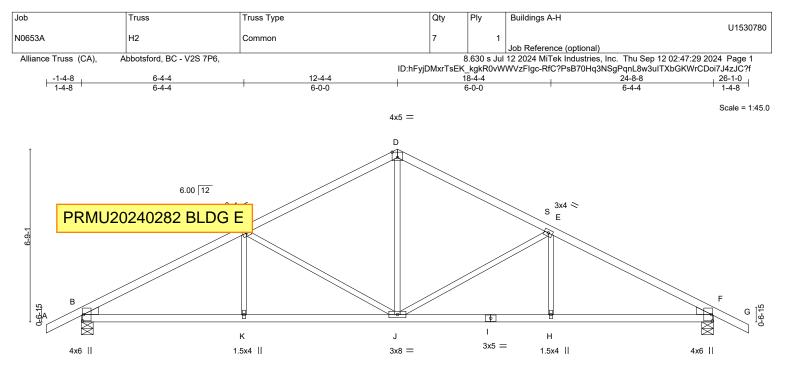

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: A-C=-74, C-E=-74, I-L=-20

Concentrated Loads (PRMU20240282 BLDG E 7(B) T=-1387(B) U=-1387(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Buildings A-H
N0653A	H1	GABLE	7	1	U1530779
NU033A		GABLE	1	1	Job Reference (optional)
Alliance Truss (CA), A	Abbotsford, BC - V2S 7P6,		6		12 2024 MiTek Industries, Inc. Thu Sep 12 02:47:29 2024 Page 2
		ID:hFyjD	MxrTsEK_	_kgkR0vW	WVzFlgc-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f


NOTES-

12) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from

PRMU20240282 BLDG E om left end and 10408 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	6-4-4 6-4-4	<u>12-4-4</u> 6-0-0	18-4-4 6-0-0	24-8-8 6-4-4	
Plate Offsets (X,Y) [B:	0-3-0,0-0-7], [D:0-2-8,0-2-8], [F	:0-3-0,0-0-7]			
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL 12.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0 Plate Grip DOL 1.1 Lumber DOL 1.1 Rep Stress Incr YE Code IBC2018/TPI2014	5 TC 0.81 5 BC 0.62 S WB 0.83	DEFL. in (loc) I/defl Vert(LL) -0.09 J-K >999 Vert(CT) -0.17 J-K >999 Horz(CT) 0.06 F n/a Wind(LL) 0.04 H-J >999	L/d PLATES GRIP 360 MT20 197/144 240 n/a 240 Weight: 86 lb FT = 20%	

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPE No.2

WEBS WEDGE

Left: 2x4 SPF No.2 , Right: 2x4 SPF No.2

REACTIONS. (size) B=0-5-8, F=0-5-8 Max Horz B=-90(LC 11) Max Uplift B=-119(LC 10), F=-119(LC 11) Max Grav B=1287(LC 17), F=1287(LC 18)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD B-C=-1988/155, C-D=-1373/137, D-E=-1373/137, E-F=-1988/155

BOT CHORD B-K=-152/1701, J-K=-152/1701, H-J=-62/1701, F-H=-62/1701

WEBS D-J=-23/716, E-J=-705/149, C-J=-705/149

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

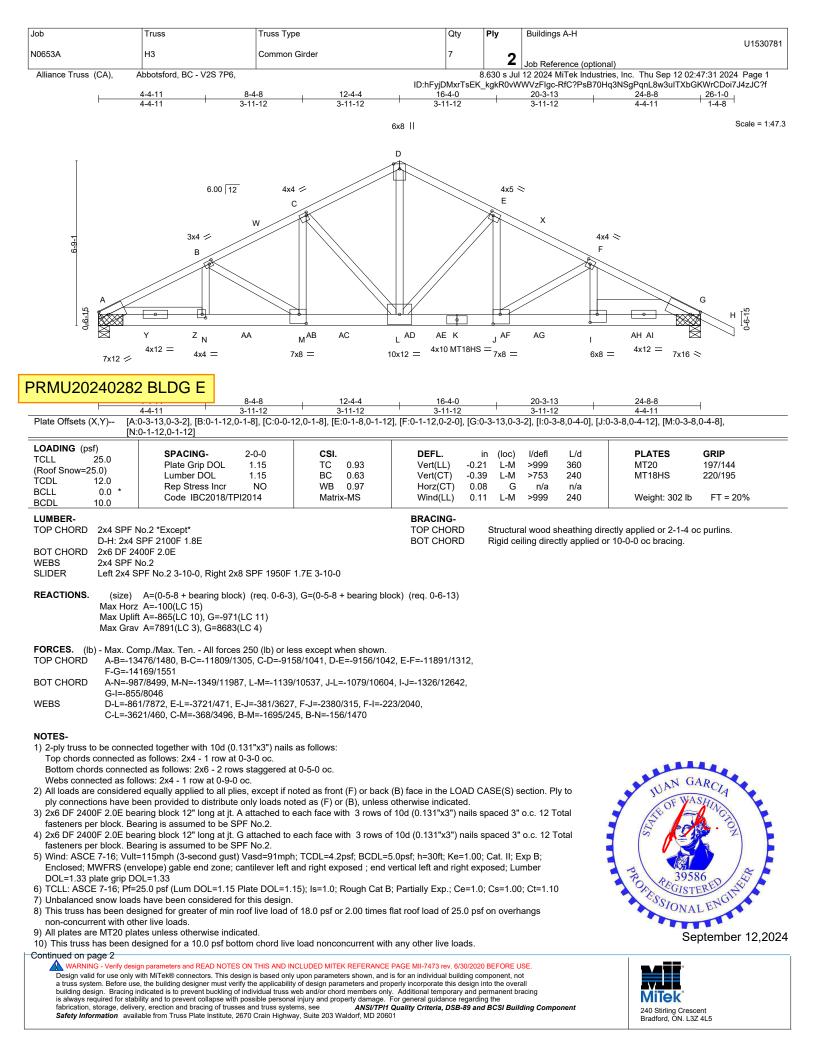
4) This truss has been designed for greater of min roof live load of 18.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) B=119, F=119.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.



Structural wood sheathing directly applied or 2-2-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

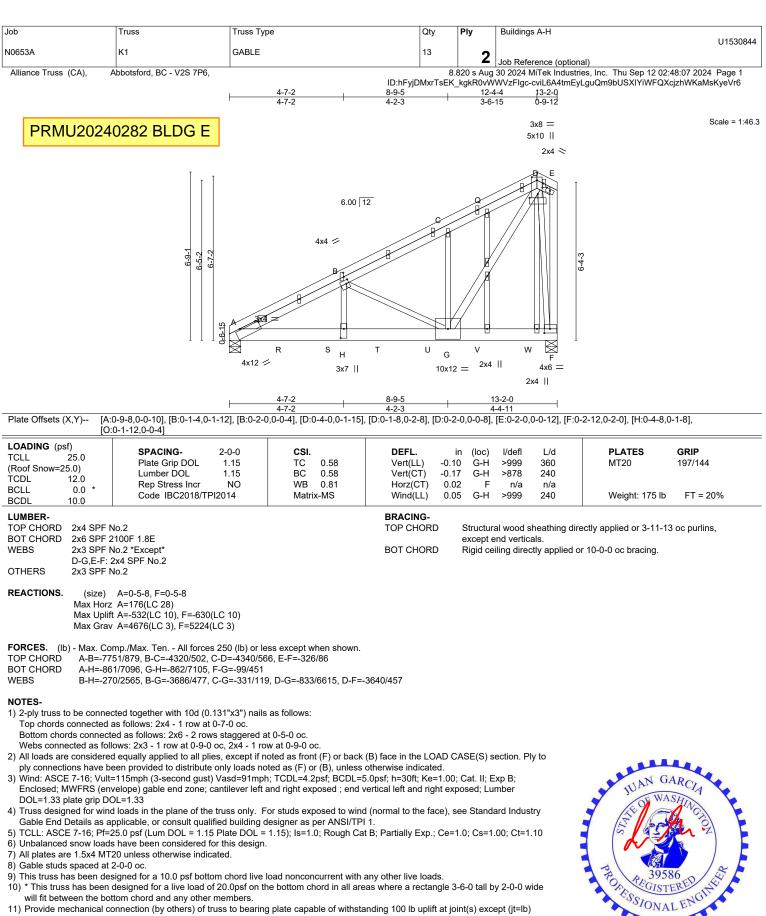
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Buildings A-H
			_		U1530781
N0653A	H3	Common Girder	7	2	
				_	Job Reference (optional)
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,			3.630 s Jul	12 2024 MiTek Industries, Inc. Thu Sep 12 02:47:31 2024 Page 2
			ID:hFyjDMxrTsEK	kgkR0vW	WVzFlqc-RfC?PsB70Hq3NSqPqnL8w3ulTXbGKWrCDoi7J4zJC?f

NOTES-

- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) A=865, G=971.
- 13) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 14) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1205 lb down and 145 lb up at 2-0-4, 1205 lb down and 145 lb up at 4-0-4, 1205 lb down and 145 lb up at 6-0-4, 1205 lb down and 145 lb up at 8-0-4, 1205 lb down and 145 lb up at 10-0-4, 1205 lb down and 145 lb up at 12-0-4, 1205 lb down and 145 lb up at 14-0-4, 1205 lb down and 145 lb up at 14-0-4, 1205 lb down and 145 lb up at 12-0-4, 1205

LOAD CAS PRMU20240282 BLDG E


- 1) Dead + Snow (paranceo): Lumper Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf)
 - Vert: A-D=-74, D-H=-74, O-S=-20

Concentrated Loads (lb)

Vert: I=-1175(F) Y=-1175(F) Z=-1175(F) AA=-1175(F) AB=-1175(F) AC=-1175(F) AD=-1175(F) AE=-1175(F) AF=-1175(F) AG=-1175(F) AH=-1175(F) AI=-1175(F) AD=-1175(F) AD=

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) A=532, F=630.

12) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to use only with with with exercising is based only upon parameters shown, and is to an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 Sent-September 12,2024

Job	Truss	Truss Type	Qty	Ply	Buildings A-H	
					U1:	530844
N0653A	K1	GABLE	13	2		
				_	Job Reference (optional)	
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,		8	.820 s Aug	30 2024 MiTek Industries, Inc. Thu Sep 12 02:48:07 2024 Pag	je 2
		ID:hFvi	DMxrTsEK	kgkR0vW	WVzFlgc-cviL6A4tmEyLguQm9bUSXIYiWFQXcjzhWKaMsKye	Vr6

NOTES-

13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1476 lb down and 180 lb up at 2-0-4, 1476 lb down and 180 lb up at 4-0-4, 1476 lb down and 180 lb up at 8-0-4, and 1476 lb down and 180 lb up at 10-0-4, and 1476 lb down and 180 lb up at 12-0-4

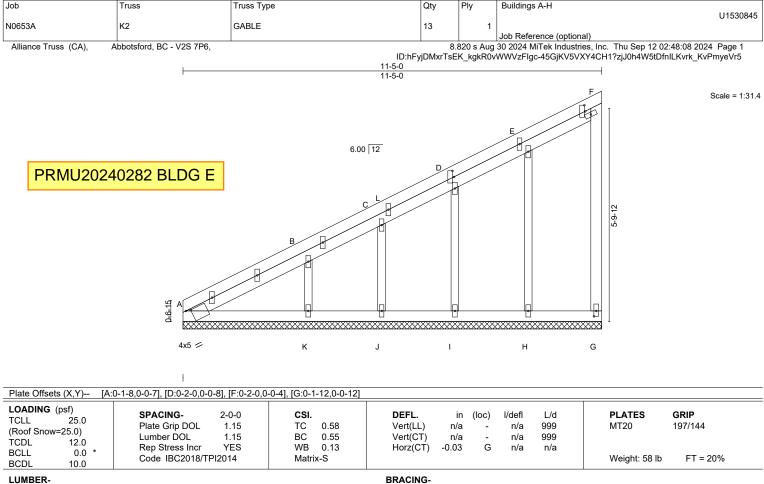
better cheed. The desire (extent of the form h connection device(s) is the responsibility of others.

PRMU20240282 BLDG E m left end and 0-0-0 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at or the plate between each notch.

15) Studding applied to ply: 1(Front)

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf) Vert: A-D=-74, D-E=-74, F-N=-20

Concentrated Loads (lb)

Vert: R=-1434(F) S=-1434(F) T=-1434(F) U=-1434(F) V=-1434(F) W=-1434(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TOP CHORD

BOT CHORD

I.	т	IN	/1	R	F	R

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No 2

2x4 SPF No 2 WEBS OTHERS 2x3 SPF No.2

REACTIONS. All bearings 11-5-0.

(lb) -Max Horz A=172(LC 34)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

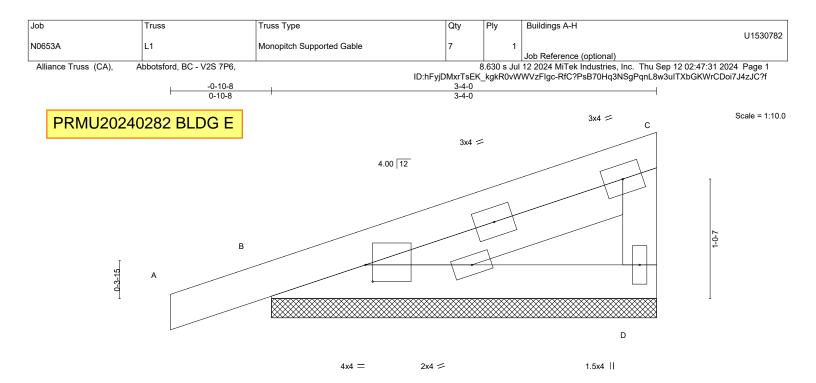
- TOP CHORD A-B=-3139/2996, B-C=-2237/2131, C-D=-1686/1604, D-E=-1140/1078, E-F=-587/549
- BOT CHORD A-K=-2740/2746, J-K=-1938/1925, I-J=-1459/1445, H-I=-979/965, G-H=-499/485

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design.
- 5) All plates are 1.5x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) G, H, I, J, K except (jt=lb) A=1292.
- 11) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 12) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 11-5-0 for 240.0 plf.
- 13) No notches allowed in overhang and 0 from left end and 0 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Structural wood sheathing directly applied or 3-3-9 oc purlins,


Rigid ceiling directly applied or 3-6-11 oc bracing.

except end verticals.

Max Uplift All uplift 100 lb or less at joint(s) G, H, I, J, K except A=-1292(LC 31)

Max Grav All reactions 250 lb or less at joint(s) G, J except A=1405(LC 38), H=275(LC 16), I=276(LC 16), K=318(LC 1)

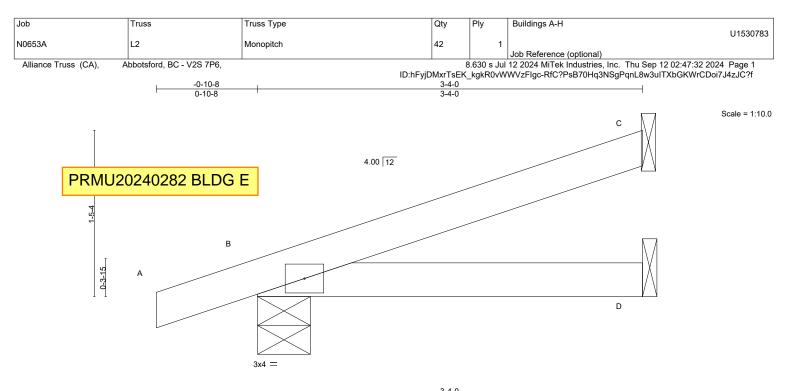
OADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
CLL 25.0	Plate Grip DOL 1.15	TC 0.09	Vert(LL) -0.	.00 À	n/r	120	MT20	197/144
Roof Snow=25.0)	Lumber DOL 1.15	BC 0.10	Vert(CT) 0.	A 00.	n/r	90		
CDL 12.0	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.	00 D	n/a	n/a		
3CLL 0.0 * 3CDL 10.0	Code IBC2018/TPI2014	Matrix-P					Weight: 13 lb	FT = 20%
UMBER-			BRACING-					
OP CHORD 2x4 SPF N	0.2		TOP CHORD	Structura	al wood s	heathing dire	ctly applied or 3-4-0	oc purlins,
BOT CHORD 2x4 SPF N	0.2			except e	nd vertic	als.		
VEBS 2x4 SPF N	0.2		BOT CHORD	Riaid ce	ilina direa	tly applied or	10-0-0 oc bracing.	

REACTIONS. (size) D=3-4-0, B=3-4-0 Max Horz B=40(LC 7) Max Uplift D=-19(LC 10), B=-48(LC 6) Max Grav D=183(LC 17), B=297(LC 17)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber


ł

- DOL=1.33 plate grip DOL=1.33 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry
- Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs
- non-concurrent with other live loads.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) D, B.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) B.
- 12) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL TCDL 12.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.17 BC 0.16 WB 0.00 Matrix-MP	DEFL. in (loc) l/defl L/d Vert(LL) -0.01 D-G >999 360 Vert(CT) -0.02 D-G >999 240 Horz(CT) 0.00 B n/a n/a Wind(LL) 0.00 D-G >999 240	PLATES GRIP MT20 197/144 Weight: 9 lb FT = 20%				

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2

REACTIONS. (size) C=Mechanical, B=0-5-8, D=Mechanical

Max Horz B=45(LC 6)

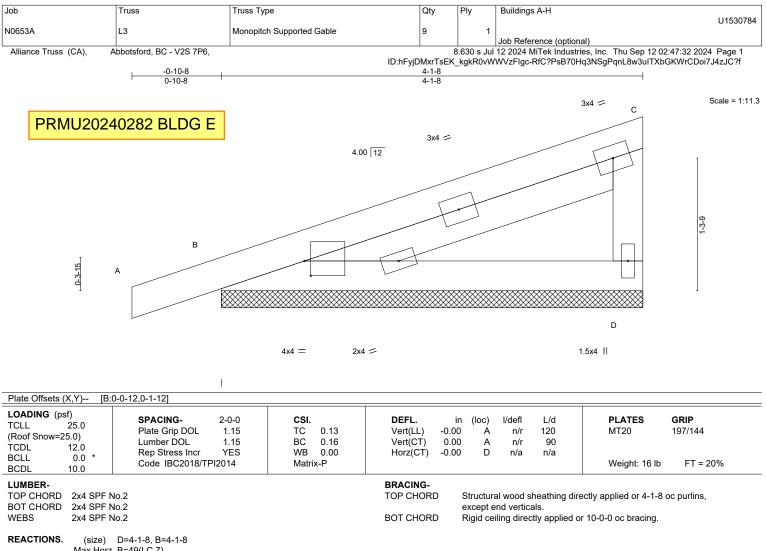
Max Uplift C=-28(LC 10), B=-46(LC 6)

Max Grav C=132(LC 17), B=302(LC 17), D=59(LC 5)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) C, B.
- 9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.



Structural wood sheathing directly applied or 3-4-0 oc purlins.

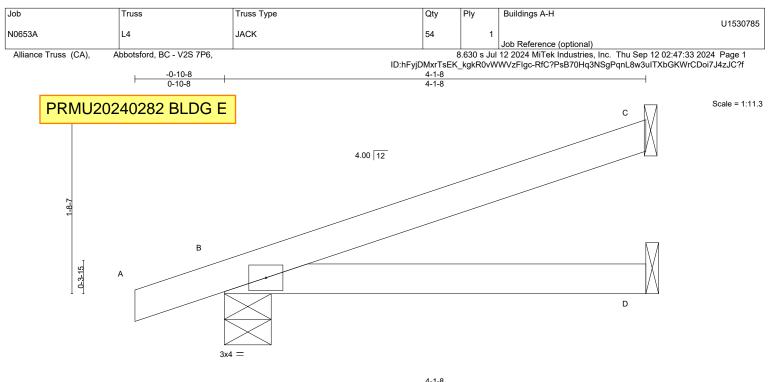
Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Max Horz B=49(LC 7) Max Uplift D=-25(LC 10), B=-52(LC 6)

Max Grav D=238(LC 17), B=350(LC 17)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.


NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs
- non-concurrent with other live loads.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) D, B.
- 11) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component</u> **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20001

		4-1-8								
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL TCDL 12.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI. TC 0.29 BC 0.26 WB 0.00	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.04 0.00	(loc) D-G D-G B	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 197/144
BCLL 0.0 * BCDL 10.0	Code IBC2018/TPI2	2014	Matrix-MP	Wind(LL)	0.01	D-G	>999	240	Weight: 11 lb	FT = 20%

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2

REACTIONS. (size) C=Mechanical, B=0-5-8, D=Mechanical

Max Horz B=53(LC 6)

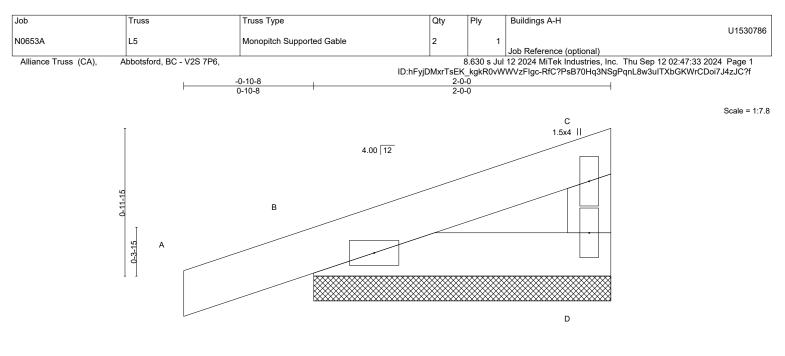
Max Uplift C=-36(LC 10), B=-48(LC 6)

Max Grav C=174(LC 17), B=356(LC 17), D=74(LC 5)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) C, B.
- 9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.



Structural wood sheathing directly applied or 4-1-8 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

2x4 =

ł

1.5x4 ||

except end verticals

Rigid ceiling directly applied or 10-0-0 oc bracing.

LOADING (psf) TCLL 25.0 (Roof Snow=25.0) 700 TCDL 12.0 3CLL 0.0 * 3CDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2018/TPI2014	CSI. TC 0.09 BC 0.03 WB 0.00 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 -0.00	(loc) A A D	l/defl n/r n/r n/a	L/d 120 90 n/a	PLATES MT20 Weight: 6 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 SPF No.	2		BRACING- TOP CHORI) S	Structura	al wood s	heathing dire	ectly applied or 2-0-0) oc purlins.

BOT CHORD

BOT CHORD 2x4 SPF No.2

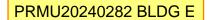
WFBS 2x4 SPF No.2

REACTIONS. (size) D=2-0-0, B=2-0-0

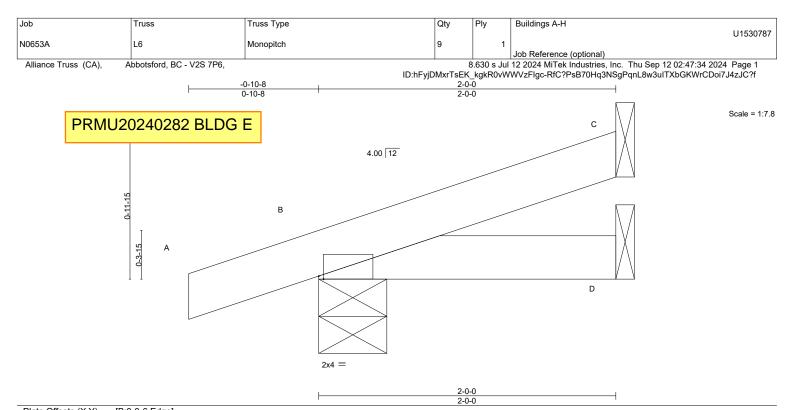
Max Horz B=26(LC 7) Max Uplift D=-9(LC 10), B=-45(LC 6)

Max Grav D=89(LC 17), B=214(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) D, B.
- 11) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.



September 12,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to use only with with with exercising is based only upon parameters shown, and is to an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y) [B:	:0-0-6,Edge]			
LOADING (psf) TCLL 25.0 (Roof Snow=25.0)	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.15	DEFL. in (loc) I/defl L/d Vert(LL) -0.00 G >999 360	PLATES GRIP MT20 197/144
TCDL 12.0 BCLL 0.0 * BCDL 10.0	Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	BC 0.20 WB 0.00 Matrix-MP	Vert(CT) -0.01 G >999 240 Horz(CT) 0.00 B n/a n/a Wind(LL) 0.00 G >999 240	Weight: 6 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2

REACTIONS. (size) B=0-5-8, D=Mechanical

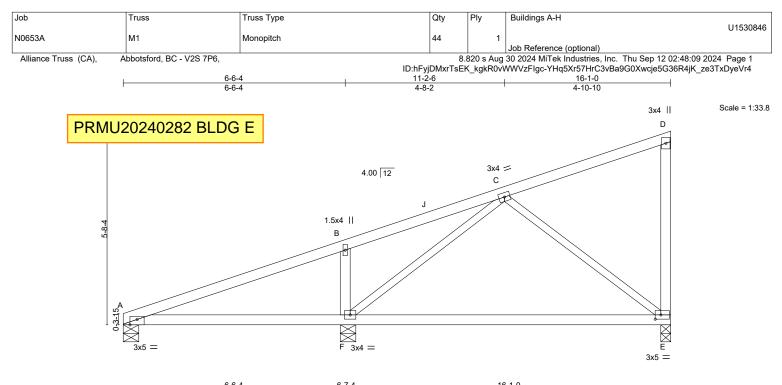
Max Horz B=30(LC 6)

Max Horz B=30(LC 6) Max Uplift B=-42(LC 6), D=-12(LC 7) Max Grav B=222(LC 17), D=104(LC 16)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs
- non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) B, D.
- 9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.



Structural wood sheathing directly applied or 2-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

OADING (psf)				
TCLL 25.0	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
Roof Snow=25.0)	Plate Grip DOL 1.15	TC 0.43	Vert(LL) -0.21 E-F >545 360	MT20 197/144
/	Lumber DOL 1.15	BC 0.62	Vert(CT) -0.40 E-F >283 240	
TCDL 12.0	Rep Stress Incr YES	WB 0.37	Horz(CT) 0.01 E n/a n/a	
BCLL 0.0 * BCDL 10.0	Code IBC2018/TPI2014	Matrix-MS	Wind(LL) 0.04 F-I >999 240	Weight: 55 lb FT = 20%

 TOP CHORD
 2x4 SPF No.2
 TOP CHORD
 Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

 BOT CHORD
 2x4 SPF No.2 *Except*
 BOT CHORD
 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

 VEBS
 2x4 SPF No.2 *Except*
 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) A=0-5-8, F=0-5-8, E=0-3-8 Max Horz A=176(LC 9) Max Uplift A=-27(LC 6), F=-92(LC 6), E=-70(LC 10) Max Grav A=266(LC 16), F=896(LC 16), E=550(LC 16)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

BOT CHORD E-F=-89/343

WEBS B-F=-447/147, C-F=-345/39, C-E=-411/116

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A, F, E.

7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf) TCLL 25.0 (Roof Snow=25.0) 12.0 BCLL 0.0 * BCLL 0.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIBC2018/TPI2014	CSI. TC 0.43 BC 0.89 WB 0.87 Matrix-MS	DEFL. Vert(LL) -0. Vert(CT) -0. Horz(CT) -0. Wind(LL) 0.	40 E-F	>545 3 >283 2 n/a	L/d 360 240 n/a 240	PLATES MT20 Weight: 57 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 SPF N	lo.2		BRACING- TOP CHORD	Structura	al wood she	athing direct	ly applied or 4-8-15	5 oc purlins,
BOT CHORD 2x4 SPF N					nd verticals			•
	No.2 *Except*		BOT CHORD	0	iling directly			
C-E: 2x3 \$	DPF INU.2		WEBS	1 Row at	t miapt	C-F		
REACTIONS. All beari	ngs 0-5-8 except (jt=length) E=9-8-8.							
(lb) - Max Horz	()							
	t All uplift 100 lb or less at joint(s) exe							
Max Grav	 All reactions 250 lb or less at joint(s) except A=635(LC 52),	F=1747(LC 28), F=836	(LC 1), E=8	352(LC			

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD A-B=-1541/1392, B-C=-1250/1232, C-D=-1290/1209

BOT CHORD A-F=-1548/1488, E-F=-3159/3153

27)

WEBS B-F=-446/147, C-F=-2137/2094, C-E=-966/974

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33

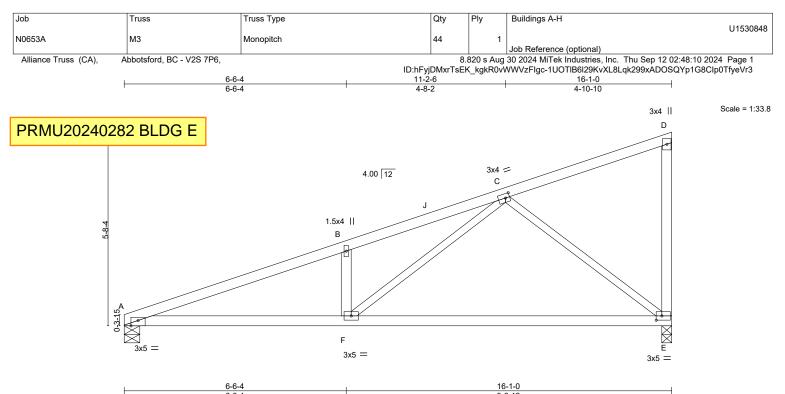
2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 550 lb uplift at joint A, 1377 lb uplift at joint F and 601 lb uplift at joint E.


7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

8) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 6-4-8 to 16-1-0 for 397.6 plf.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

DADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl L/d	PLATES	GRIP
CLL 25.0	Plate Grip DOL 1.15	TC 0.54	Vert(LL) -0.2	()	>845 360	MT20	197/144
loof Snow=25.0)	Lumber DOL 1.15	BC 0.75	Vert(CT) -0.4		>418 240	101120	13//144
CDL 12.0	Rep Stress Incr YES	WB 0.90		40 E-F 03 E	n/a n/a		
CLL 0.0 *			(-)			Waisht 55 lb	FT - 200/
CDL 10.0	Code IBC2018/TPI2014	Matrix-MS	Wind(LL) 0.0	06 F-I	>999 240	Weight: 55 lb	FT = 20%
JMBER-			BRACING-				
P CHORD 2x4 SPF N	0.2		TOP CHORD	Structural	wood sheathing dir	ectly applied or 3-6-12	2 oc nurlins
OT CHORD 2x4 SPF N					id verticals.		- 00 punno,
	o.2 *Except*		BOT CHORD			or 10-0-0 oc bracing.	
	•		BOTCHORD	Rigid Celli	ing directly applied t	or ro-o-o oc bracing.	
U-F,U-E: 2	x3 SPF No.2						

FIONS. (size) A=0-5-8, E=0-3-8 Max Horz A=176(LC 9) Max Uplift A=-81(LC 6), E=-108(LC 10) Max Grav A=795(LC 16), E=916(LC 16)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD A-B=-1739/147, B-C=-1752/205

BOT CHORD A-B=-1739/147, B-C=-1752/2 BOT CHORD A-F=-176/1607, E-F=-96/806

WEBS B-F=-423/145, C-F=-103/1029, C-E=-1000/176

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33

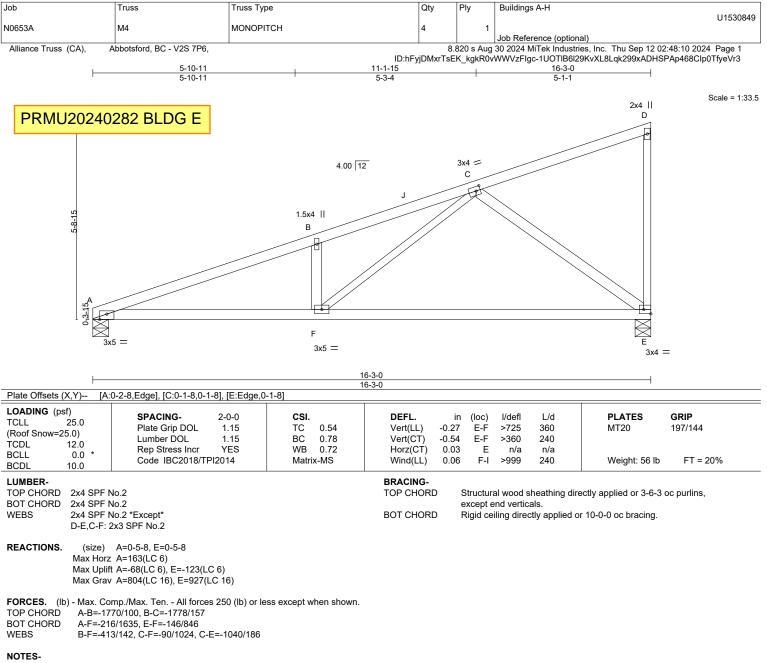
2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 81 lb uplift at joint A and 108 lb uplift at joint E.

7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

240 Stirling Crescent Bradford, ON. L3Z 4L5

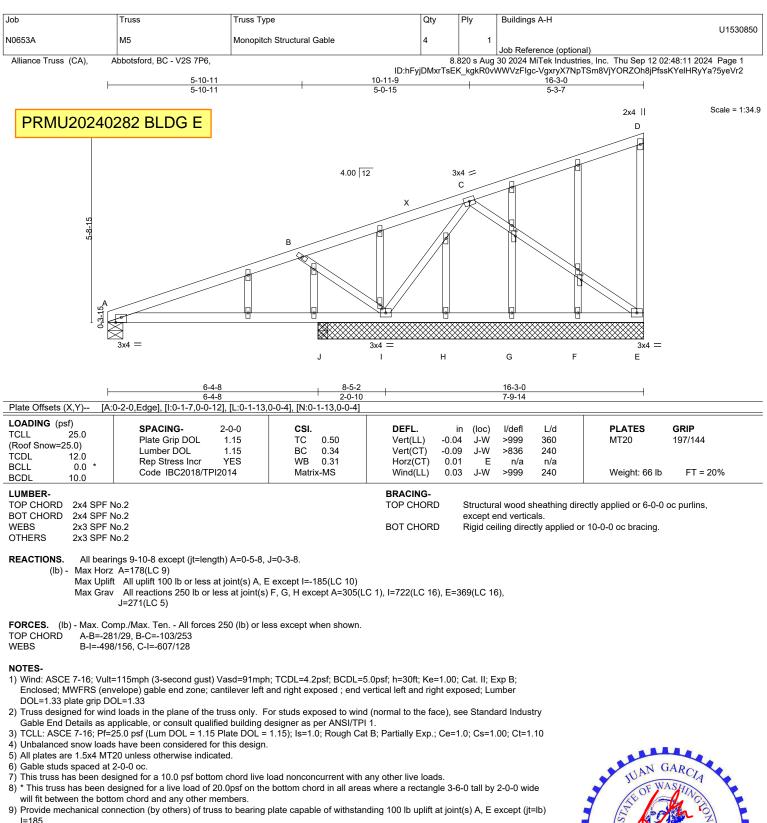
 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left exposed ; end vertical left exposed; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

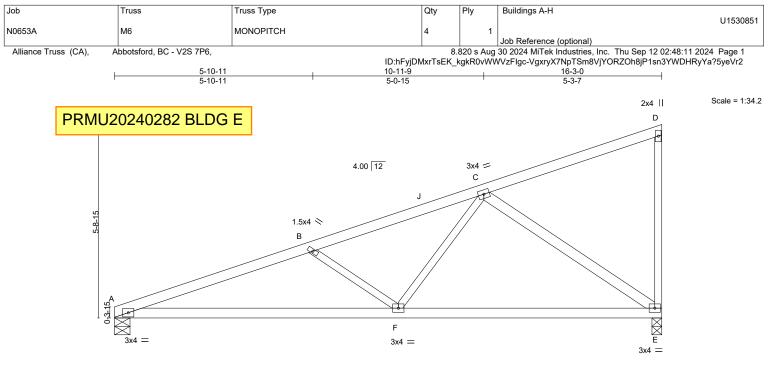
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide


will fit between the bottom chord and any other members.6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 68 lb uplift at joint A and 123 lb uplift at joint E.

7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component</u> **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20001 _____



10) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

ROMESSIONAL ENGINE September 12,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

240 Stirling Crescent Bradford, ON. L3Z 4L5

	8-5-2				6-3-0 -9-14		
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL TCDL 12.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	TC 0.48 BC 0.67 WB 0.79	DEFL. in /ert(LL) -0.10 /ert(CT) -0.22 Horz(CT) 0.03 Wind(LL) 0.06	F-I >999 F-I >876 E n/a	360 240 n/a	PLATES MT20 Weight: 55 lb	GRIP 197/144 FT = 20%

LUMBER-

 TOP CHORD
 2x4 SPF No.2

 BOT CHORD
 2x4 SPF No.2

 WEBS
 2x3 SPF No.2 *Except*

 C-E: 2x4 SPF No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-8-11 oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) A=0-5-8, E=0-3-8 Max Horz A=163(LC 6) Max Uplift A=-68(LC 6), E=-123(LC 6) Max Grav A=804(LC 16), E=927(LC 16)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD A-B=-1762/150, B-C=-1370/76

BOT CHORD A-F=-267/1643, E-F=-143/909

WEBS B-F=-502/150, C-F=-4/597, C-E=-1101/175

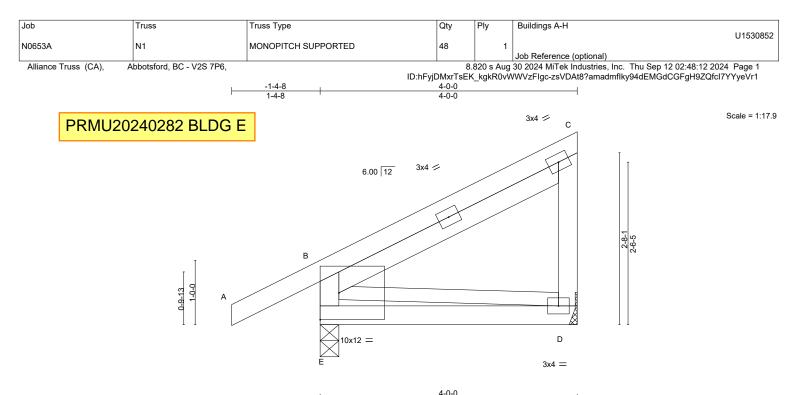
NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left exposed ; end vertical left exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A except (jt=lb) E=123.

7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component</u> **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20001

			4-0-0	
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL 12.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.26 BC 0.14 WB 0.02 Matrix-MP	DEFL. in (loc) l/defl L/d Vert(LL) -0.01 D-E >999 360 Vert(CT) -0.02 D-E >999 240 Horz(CT) -0.00 D n/a n/a Wind(LL) 0.00 E **** 240	PLATES GRIP MT20 197/144 Weight: 22 lb FT = 20%

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

TOP CHORD	2x4 SPF No.2
BOT CHORD	2x4 SPF No.2
WEBS	2x4 SPF No.2 *E

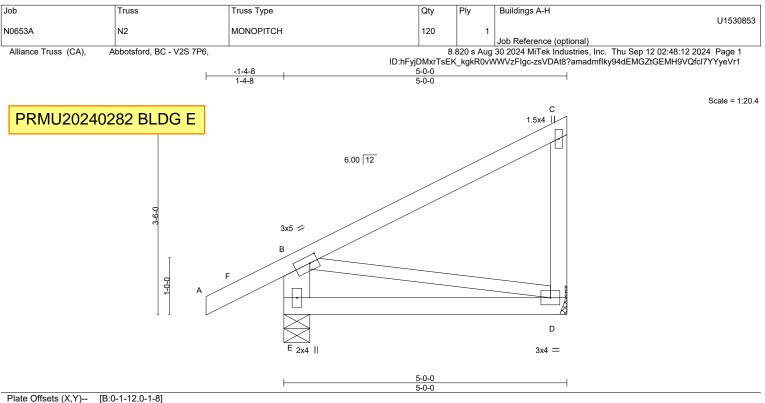
- Except* B-D: 2x3 SPF No.2
 - (size) E=0-3-8, D=Mechanical Max Horz E=87(LC 7) Max Uplift E=-41(LC 10), D=-30(LC 10)

Max Grav E=450(LC 17), D=210(LC 17)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD B-F=-414/59

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 18.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs
- non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) E, D.
- 9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.


Structural wood sheathing directly applied or 4-0-0 oc purlins,

Rigid ceiling directly applied or 6-0-0 oc bracing.

except end verticals

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to use only with with with exercising is based only upon parameters shown, and is to an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

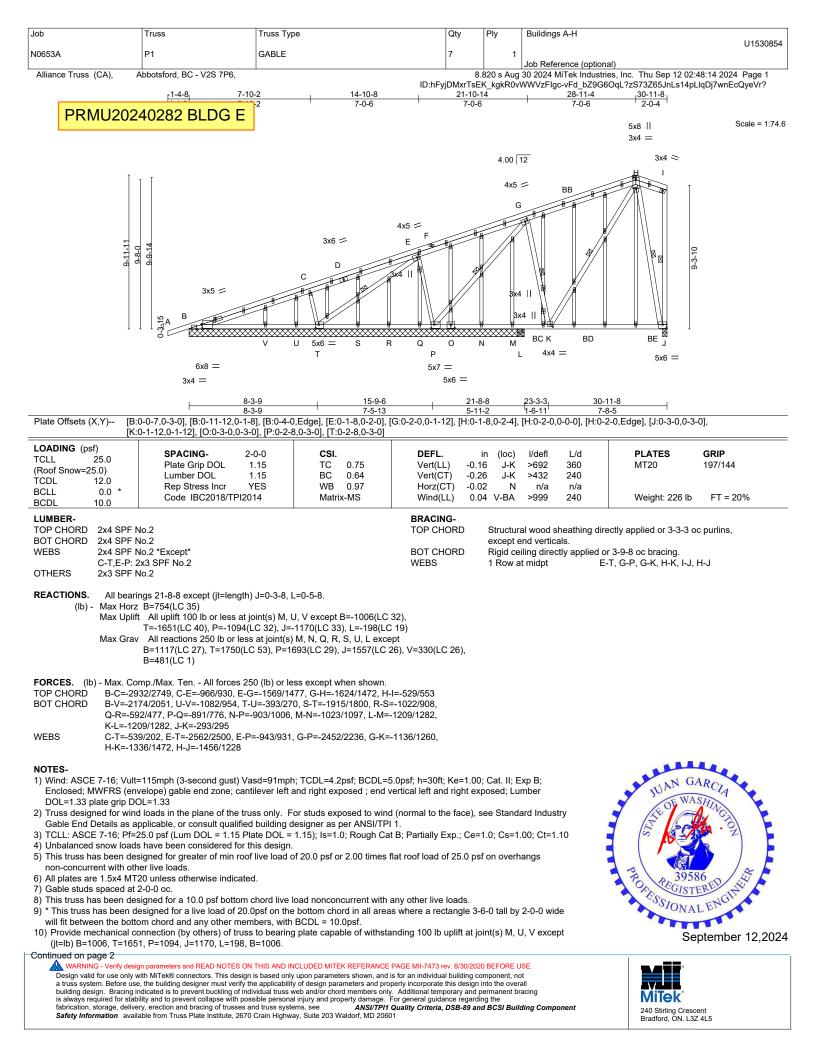
Plate Olisets (X, Y) [B:	0-1-12,0-1-8]							
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL TCLL 0.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.54 BC 0.22 WB 0.02 Matrix-MP	Vert(CT) -0 Horz(CT) -0	in (loc) .03 D-E .05 D-E .00 D .00 E	>999 >999 n/a	L/d 360 240 n/a 240	PLATES MT20 Weight: 22 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 SPF N BOT CHORD 2x4 SPF N WEBS 2x4 SPF N			BRACING- TOP CHORD BOT CHORD	except	end vertic	als.	ectly applied or 5-0-0 c or 10-0-0 oc bracing.	oc purlins,

2x4 SPF No.2 *Except* B-E: 2x6 SPF No.2, B-D: 2x3 SPF No.2

REACTIONS. (size) D=Mechanical, E=0-5-8 Max Horz E=105(LC 7) Max Uplift D=-38(LC 10), E=-45(LC 10)

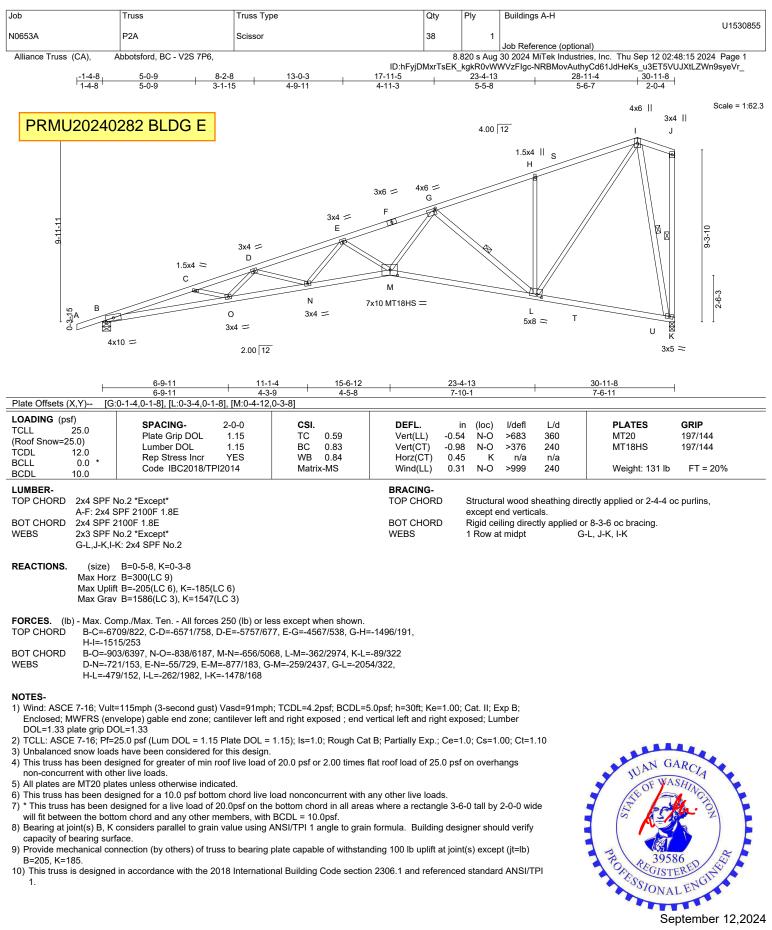
Max Grav D=281(LC 17), E=485(LC 17)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD B-E=-439/68


NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 18.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) D, E.
- 9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

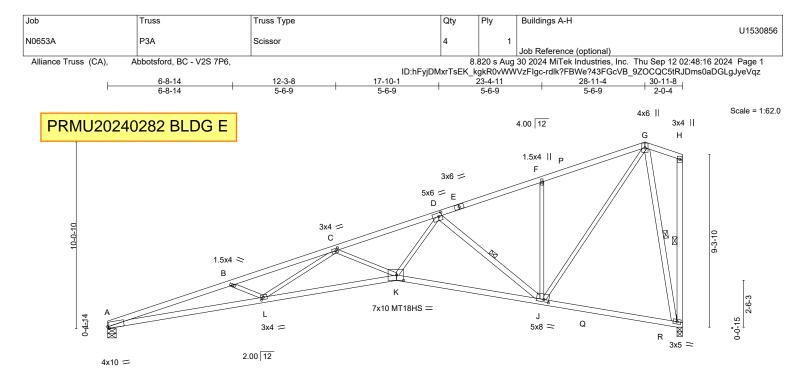
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Job	Truss	Truss Type	Qty	Ply	Buildings A-H
					U1530854
N0653A	P1	GABLE	7	1	
					Job Reference (optional)
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,		8.	820 s Aug	30 2024 MiTek Industries, Inc. Thu Sep 12 02:48:14 2024 Page 2
		ID:hFy	jDMxrTsE	K kgkR0v	WWVzFlgc-vFd_bZ9G6OqL?zS73Z65JnLs14pLlqDj7wnEcQyeVr?
NOTES-				_ 0	

11) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
 12) PRMU20240282 BLDG E
 d of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0

13) Left end and 0 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



September 12,2024

MiTek 240 Stirling Crescent Bradford, ON. L3Z 4L5

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to use only with with with exercising is based only upon parameters shown, and is to an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

1	8-4-8	15-6-12	23-4-11	30-11-8	1		
	8-4-8	7-2-4	7-9-15	7-6-13	7		
Plate Offsets (X,Y)							

LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL TCDL 12.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2018/TPI2014	CSI. TC 0.72 BC 0.86 WB 0.83 Matrix-MS	Vert(CT) -1 Horz(CT) 0	in (loc) .59 K-L .09 K-L .45 I .32 K-L	>339 n/a	L/d 360 240 n/a 240	PLATES MT20 MT18HS Weight: 127 lb	GRIP 197/144 197/144 FT = 20%
A-E: 2x4 S BOT CHORD 2x4 SPF 2 WEBS 2x3 SPF N	No.2 *Except* SPF 2100F 1.8E 2100F 1.8E No.2 *Except* I: 2x4 SPF No.2		BRACING- TOP CHORD BOT CHORD WEBS	except Rigid ce	end vertica	als. tly applied o	ectly applied or 2-3-2 c r 8-2-2 oc bracing. -J, H-I, G-I	oc purlins,
Max Horz Max Uplif Max Grav FORCES. (lb) - Max. Co TOP CHORD A-B=-67 BOT CHORD A-L=-92 WEBS B-L=-48	A=0-5-8, I=0-3-8 A=292(LC 9) t A=-160(LC 6), I=-186(LC 6) · A=1499(LC 3), I=1549(LC 3) mp./Max. Ten All forces 250 (Ib) or Ie 98/848, B-C=-6399/734, C-D=-4600/53 1/6500, K-L=-713/5265, J-K=-372/3038 7/180, C-L=-55/1066, C-K=-995/222, D 0/151, G-J=-263/1985, G-I=-1478/168	9, D-F=-1502/193, F-G= 8, I-J=-89/322						
Enclosed; MWFRS (enc DOL=1.33 plate grip DO 2) TCLL: ASCE 7-16; Pf=2 3) Unbalanced snow loads	=115mph (3-second gust) Vasd=91mpl velope) gable end zone; cantilever left DL=1.33 25.0 psf (Lum DOL = 1.15 Plate DOL = s have been considered for this design.	and right exposed ; end v 1.15); Is=1.0; Rough Ca	vertical left and right e	xposed; Lu	umber	10		

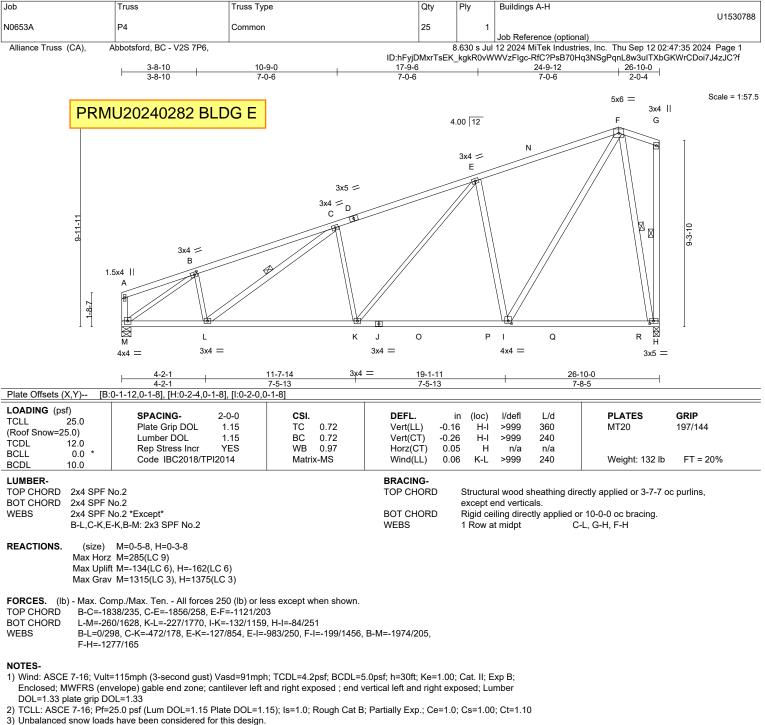
4) All plates are MT20 plates unless otherwise indicated.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Bearing at joint(s) I considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) A=160, l=186.


9) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) A.

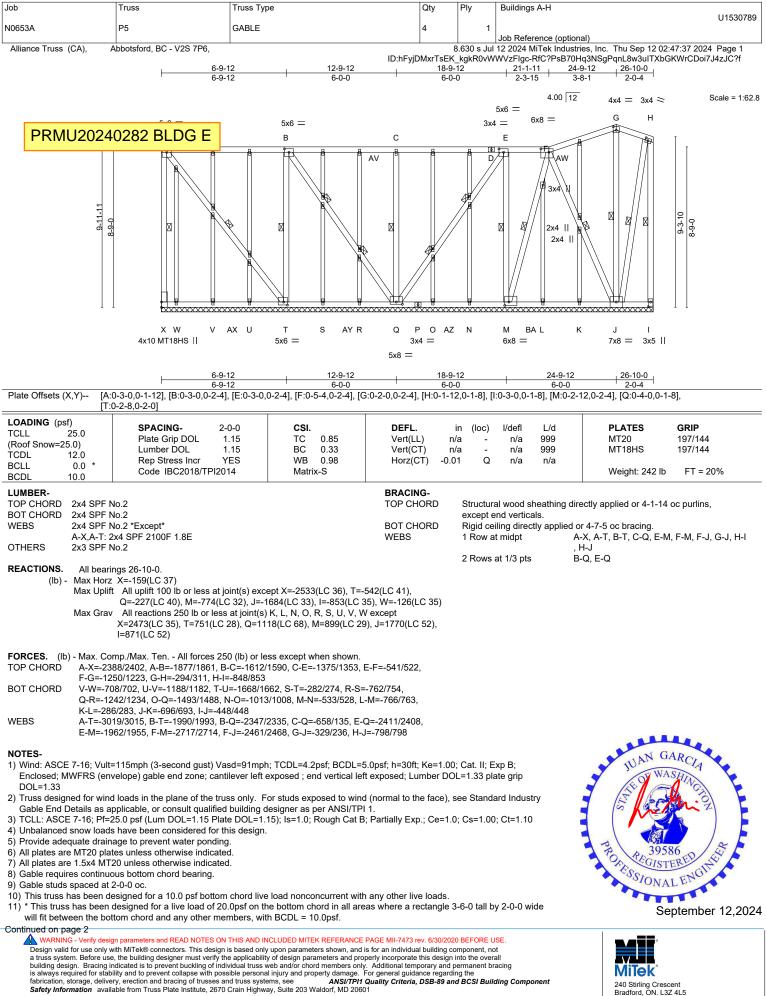
10) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

3) Oribalanced show loads have been considered to this design.

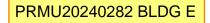
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) M=134, H=162.

7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



240 Stirling Crescent Bradford, ON. L3Z 4L5

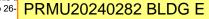
Job	Truss	Truss Type	Qty	Ply	Buildings A-H		
					U1530789		
N0653A	P5	GABLE	4	1			
					Job Reference (optional)		
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,	8.630 s Jul 12 2024 MiTek Industries, Inc. Thu Sep 12 02:47:37 2024 Pag					
		ID:hFyjDMxrTsEK_kgkR0vWWVzFlgc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC					

NOTES-

- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 2533 lb uplift at joint X, 542 lb uplift at joint T, 227 lb uplift at joint Q, 774 lb uplift at joint M, 1684 lb uplift at joint J, 853 lb uplift at joint I and 126 lb uplift at joint W.
- 13) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
 14) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 26-10-0 for 240.0 plf.

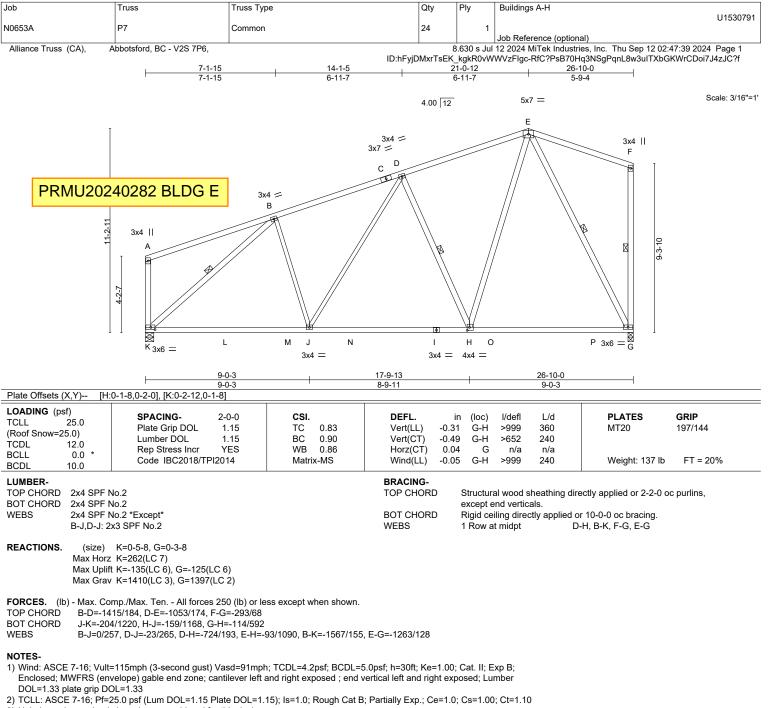
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPII Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply E	Buildings A-H		
N0653A	P6	GABLE	4	1	Ballalligo / TT		U1530790
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,				ob Reference (optiona 2 2024 MiTek Industri	al) es, Inc. Thu Sep 12 02	:47:38 2024 Page 1
Analiee Huss (OA),		0-0 12-0-0			VzFlgc-RfC?PsB70H	q3NSgPqnL8w3ulTXb0	
		0-0 6-0-0	6-0-0	2-11-13	3-0-3 2-10		
	5x6 =	5x6 =	5x6 = 5	~~ —	4.00 <u>12</u>	-	Scale = 1:73.7
	PRMU202402		C AX D	E	F		
				7	G	5x6 🗢	
	11:30			3x4 /4	3x4 VR3	H 2x4 II 07:10 0:2:10 11:3:0 11:3:0	
	4x10 MT18HS	U T S R $5x6 = 6$	Q P O $6x8 = 5x6 =$	N M AY 6x8 =	AZ	J I 0 MT18HS	
	, 6	0-0 12-0-0	18-0-0	. 24	4-0-0 _ 26-10	I-0 I	
Plate Offsets (X,Y)	6	0-0 6-0-0], [D:0-3-0,0-3-0], [E:0-2-8,0-1-8], [I	6-0-0	6	6-0-0 2-10	-0], [Q:0-4-0
	,0-1-8], [T:0-3-0,0-1-8]	,, <u>(- · · · · · , , - · · , , (- · · · </u> , , - · · · , , , -		_,j, [
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL 12.0 12.0	Plate Grip DOL Lumber DOL	-0-0 CSI. 1.15 TC 0.88 1.15 BC 0.33	Vert(LL) n Vert(CT) n	/a - /a -	l/defl L/d n/a 999 n/a 999	PLATES MT20 MT18HS	GRIP 197/144 197/144
BCLL 0.0 * BCDL 10.0	Rep Stress Incr Code IBC2018/TPI2	YES WB 1.00 14 Matrix-S	Horz(CT) 0.0	2 Q	n/a n/a	Weight: 283 lb	FT = 20%
WEBS 2x4 S G-K,F OTHERS 2x3 S REACTIONS. All It (lb) - Max Max	 PF No.2 PF 2100F 1.8E *Except* I-I,H-K: 2x4 SPF No.2 PF No.2 Detarings 26-10-0. Horz W=-184(LC 33) Uplift All uplift 100 lb or less at Q=-208(LC 33), N=-332(L 	oint(s) except W=-2704(LC 32), T= C 34), I=-1801(LC 39), K=-1788(LC s at joint(s) V, U, S, R, O, M, L, J e:	C 35), J=-138(LC 32)	except en	d verticals. ng directly applied or midpt A-	ctly applied or 4-9-5 (4-8-5 oc bracing. W, B-T, C-Q, E-N, F- T, B-Q, E-Q, F-K, H-I	•
FORCES. (lb) - Max TOP CHORD A-W F-G BOT CHORD V-W Q-F K-L WEBS A-T	W=2688(LC 51), T=578(LC K=1844(LC 52) Comp./Max. Ten All forces 2 /=-2661/2699, A-B=-1408/1416, =-977/1027, G-H=-568/541, H-I= /=-592/625, U-V=-1072/1105, T- R=-1587/1613, O-Q=-1534/1535, -786/775, J-K=-740/716, I-J=-2 =-2996/2982, B-T=-2730/2757, F	: 64), Q=1224(LC 64), N=535(LC 2 50 (lb) or less except when shown. B-C=-1456/1464, C-E=-1487/1495, -1670/1650 J=-1552/1585, S-T=-627/653, R-S= N-O=-574/575, M-N=-872/862, L-N	9), 1=1782(LC 32), , E-F=-771/805, =-1107/1133, 1=-392/382, Q=-3062/3111,				
Enclosed; MWFRS DOL=1.33 2) Truss designed for Gable End Details 3) TCLL: ASCE 7-16; 4) Unbalanced snow 5) Provide adequate 6) All plates are MT20 7) All plates are 1.5x/ 8) Gable requires cor 9) Gable studs space 10) This truss has be 11) * This truss has be	(envelope) gable end zone; car wind loads in the plane of the tr as applicable, or consult qualifie Pf=25.0 psf (Lum DOL=1.15 Pla loads have been considered for drainage to prevent water pondir 0 plates unless otherwise indicate H MT20 unless otherwise indicate titunuous bottom chord bearing. d at 2-0-0 oc. en designed for a 10.0 psf bottor	g. sd. d. n chord live load nonconcurrent wit 0.0psf on the bottom chord in all are	right exposed; Lumber I d (normal to the face), s l 1. 3; Partially Exp.; Ce=1.(h any other live loads.	DOL=1.33 p	late grip d Industry Ct=1.10	NUAN G	
WARNING - Verifi Design valid for use a truss system. Befo building design. Bra is always required fo fabrication, storage,	only with MiTek® connectors. This design re use, the building designer must verify icing indicated is to prevent buckling of in-		is for an individual building co operly incorporate this design y. Additional temporary and p For general guidance regardi Quality Criteria, DSB-89 an	omponent, not into the overall permanent brac ng the	ing	240 Stirling Cress Bradford ON 13	cent


fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-**Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 240 Stirling Crescent Bradford, ON. L3Z 4L5

J	ob	Truss	Truss Type	Qty	Ply	Buildings A-H
N	0653A	P6	GABLE	4	1	U1530790
						Job Reference (optional)
	Alliance Truss (CA), A	bbotsford, BC - V2S 7P6,		8	.630 s Jul	12 2024 MiTek Industries, Inc. Thu Sep 12 02:47:39 2024 Page 2
ID:hFyjDMxrTsEK_kgkR0vWWVzFlgc-RfC?PsB70Hq3NSgPqnL8w3ulTXbGK						

NOTES-


- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 2704 lb uplift at joint W, 119 lb uplift at joint T, 208 lb uplift at joint Q, 332 lb uplift at joint N, 1801 lb uplift at joint I, 1788 lb uplift at joint K and 138 lb uplift at joint J.

13) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
14) This trust is the product of t to 26-

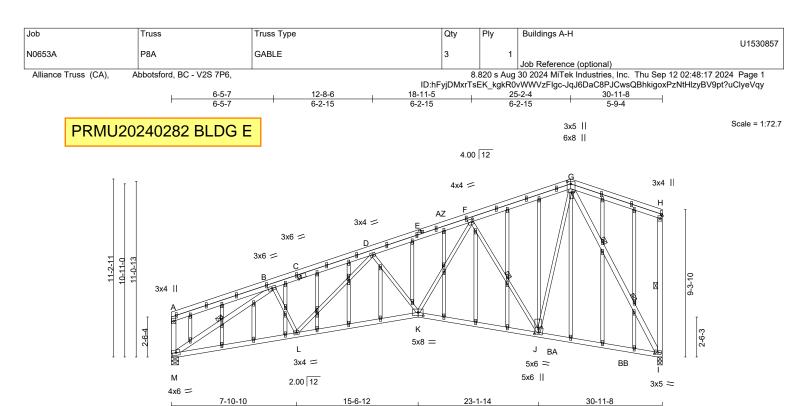
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

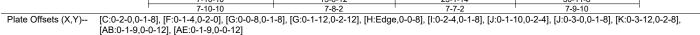
3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

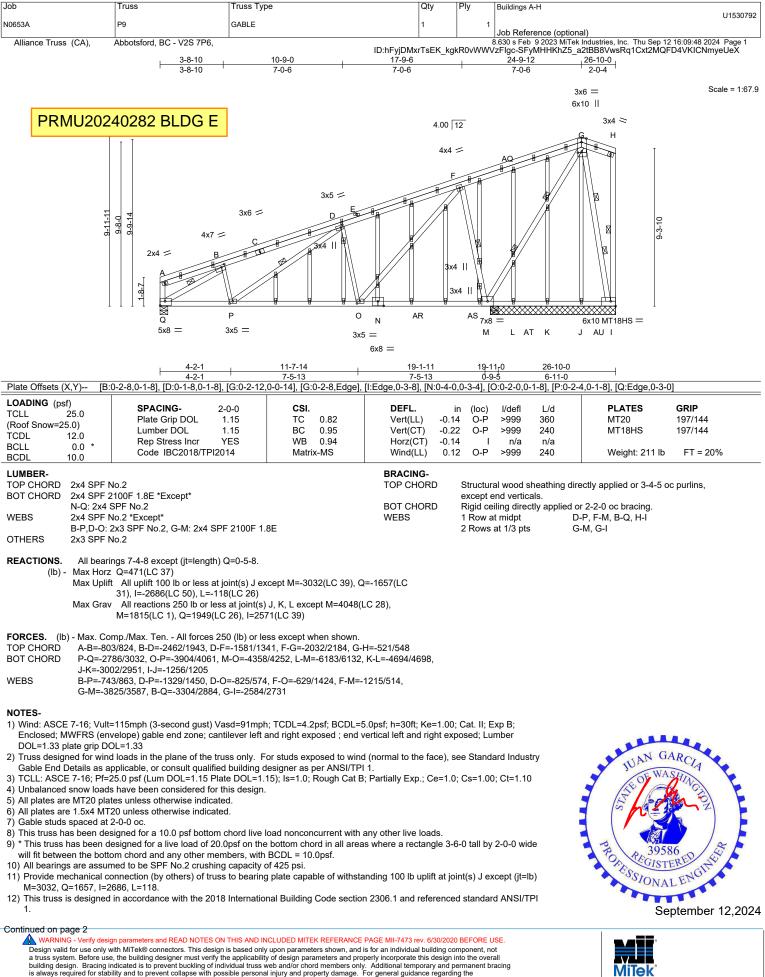
5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members, with BCDL = 10.0psf.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 135 lb uplift at joint K and 125 lb uplift at joint G.


7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

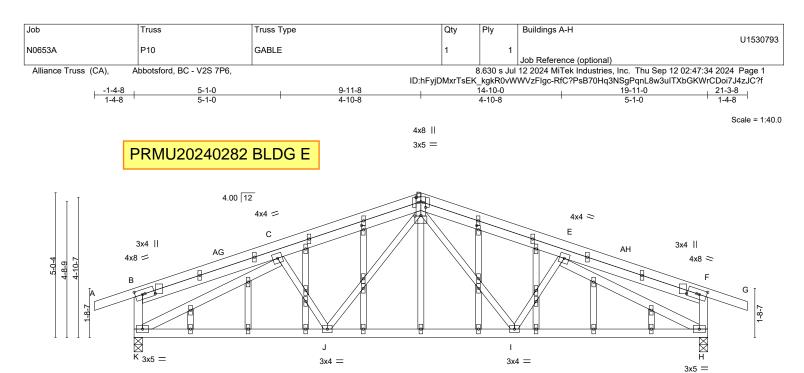

LOADING (psf) TCLL 25.0 (Roof Snow=25.0) 12.0 TCDL 12.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2018/TPI2014	CSI. TC 0.71 BC 0.96 WB 1.00 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc) -0.23 K-L -0.44 K-L 0.20 0.10 K-L	. >999 . >839 I n/a	L/d 360 240 n/a 240	PLATES MT20 Weight: 239 lb	GRIP 197/144 • FT = 20%
			BRACING- TOP CHORI BOT CHORI	except D Rigid o	end vertion	als. ctly applied o	ectly applied or 2-11- [.] r 10-0-0 oc bracing,	•
OTHERS 2x3 SPF 1 REACTIONS. (size) Max Horz Max Uplif	1 -		WEBS	1 Row	at midpt s at 1/3 pt	F-	J, B-M, H-I -I	
TOP CHORD B-D=-27 BOT CHORD L-M=-33 WEBS B-L=0/4	mp./Max. Ten All forces 250 (lb) or le '04/322, D-F=-2643/324, F-G=-1220/18 '7/2345, K-L=-323/2679, J-K=-210/184' 34, D-K=-356/139, F-K=-139/1352, F-J 724/306, G-I=-1605/138	7, H-I=-306/68 7, I-J=-124/804	53,					
	=115mph (3-second gust) Vasd=91mpl velope) gable end zone; cantilever left							

- Wind: ASCE 7-16; Vult=115mpn (3-second gust) Vasd=91mpn; TCDL=4.2pst; BCDL=5.0pst; n=30rt; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design.
- 5) All plates are 1.5x4 MT20 unless otherwise indicated.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Bearing at joint(s) M, I considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) M=157, I=152.
- 11) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 12) No notches allowed in overhang and 0 from left end and 0 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

besign valid to use only with with with exercising is based only upon parameters shown, and is to an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Buildings A-H				
N0653A	P9	GABLE	1	1	U1530792				
NUUSSA		GABLE	'	'	Job Reference (optional)				
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,				3.630 s Feb 9 2023 MiTek Industries, Inc. Thu Sep 12 16:09:49 2024 Page 2				
ID:hFyjDMxrTsEK_kgkR0vWWVzFlgc-wSWIUdLJKP6Rg1mNhDR5z1aNgHOb9iTDj_1lvCyeUeW									


13) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from

PRMU20240282 BLDG E bad case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer 14) Т

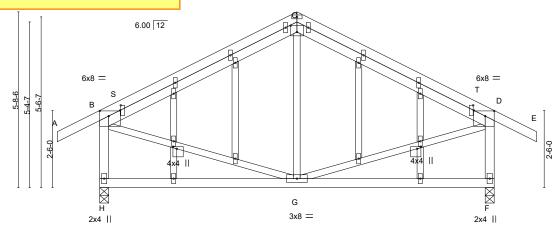
15) No notches allowed in overhang and 0 from left end and 0 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Plate Offsets (X,Y) [B:0-0-0,0-4-4], [B:0-3-0,0-2-0], [D:0-2-0 [W:0-1-12,0-0-12], [Y:0-0-0,0-0-0], [Y:0-					2-0], [F:0-0-0),0-4-4], [N:0-1-12,0-0	-12],
LOADING (psf) SPACING- 2-0-0 TCLL 25.0 Plate Grip DOL 1.15 (Roof Snow=25.0) Lumber DOL 1.15 TCDL 12.0 Rep Stress Incr YES BCLL 0.0 * Code IBC2018/TPI2014	CSI. TC 0.42 BC 0.43 WB 0.81 Matrix-MS	DEFL. Vert(LL) -C Vert(CT) -C Horz(CT) C	in (loc) .05 H-I .11 H-I .04 H .03 I-J	l/defl >999 >999 n/a	L/d 360 240 n/a 240	PLATES MT20 Weight: 119 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 *Except* D-I,E-I,D-J,C-J: 2x3 SPF No.2 OTHERS 2x3 SPF No.2 REACTIONS. (size) K=0-3-8, H=0-3-8		BRACING- TOP CHORD BOT CHORD	except	end vertica	als.	ctly applied or 4-4-0 o 10-0-0 oc bracing.	c purlins,
Max Horz K=-31(LC 24) Max Uplift K=-139(LC 6), H=-139(LC 7) Max Grav K=1095(LC 17), H=1095(LC 18) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or TOP CHORD C-D=-1380/138, D-E=-1380/138, B-K=-310/1 BOT CHORD J-K=-110/1342, I-J=-42/1016, H-I=-110/1342 WEBS D-I=-31/403, D-J=-31/403, C-K=-1465/129, E	04, F-H=-310/104						
 NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91m Enclosed; MWFRS (envelope) gable end zone; cantilever le DOL=1.33 plate grip DOL=1.33 2) Truss designed for wind loads in the plane of the truss only. Gable End Details as applicable, or consult qualified building 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL= 4) Unbalanced snow loads have been considered for this desig 5) This truss has been designed for greater of min roof live loads non-concurrent with other live loads. 	t and right exposed ; end v For studs exposed to wind designer as per ANSI/TPI 1.15); Is=1.0; Rough Cat B n.	rertical left and right e I (normal to the face) 1. ; Partially Exp.; Ce=1	exposed; Lu , see Stand .0; Cs=1.0	umber dard Indust 0; Ct=1.10		JUAN G.	ARCIA

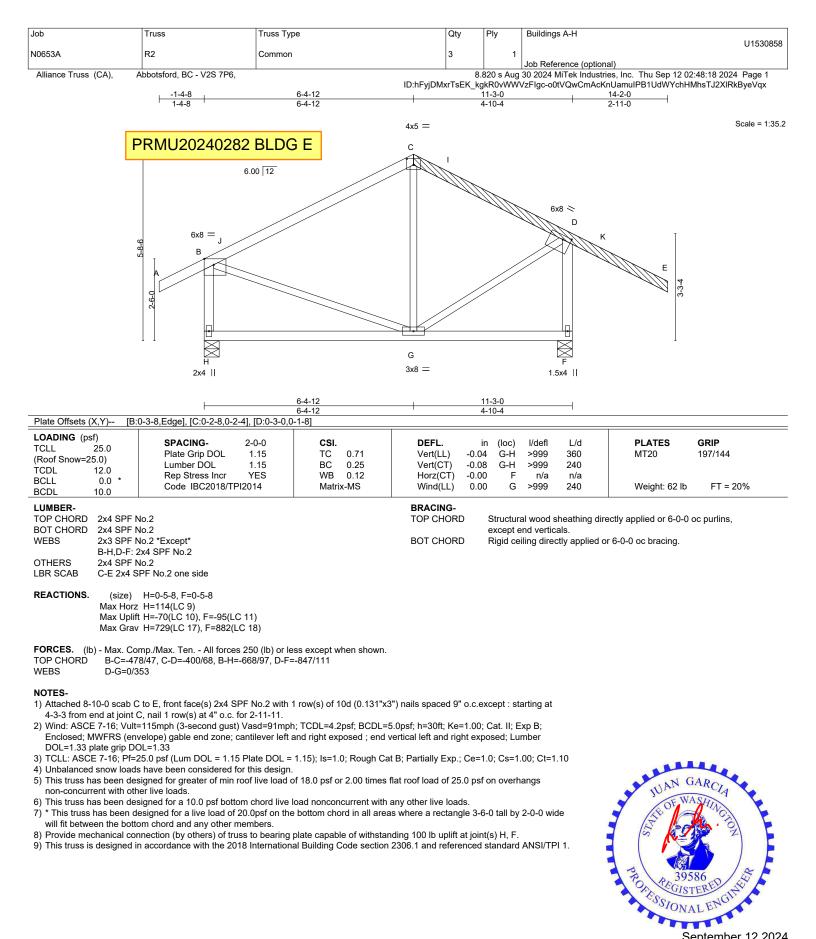
- 6) All plates are 1.5x4 MT20 unless otherwise indicated.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)
- K=139, H=139. 11) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 12) No notches allowed in overhang and 10408 from left end and 10408 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of fundividual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



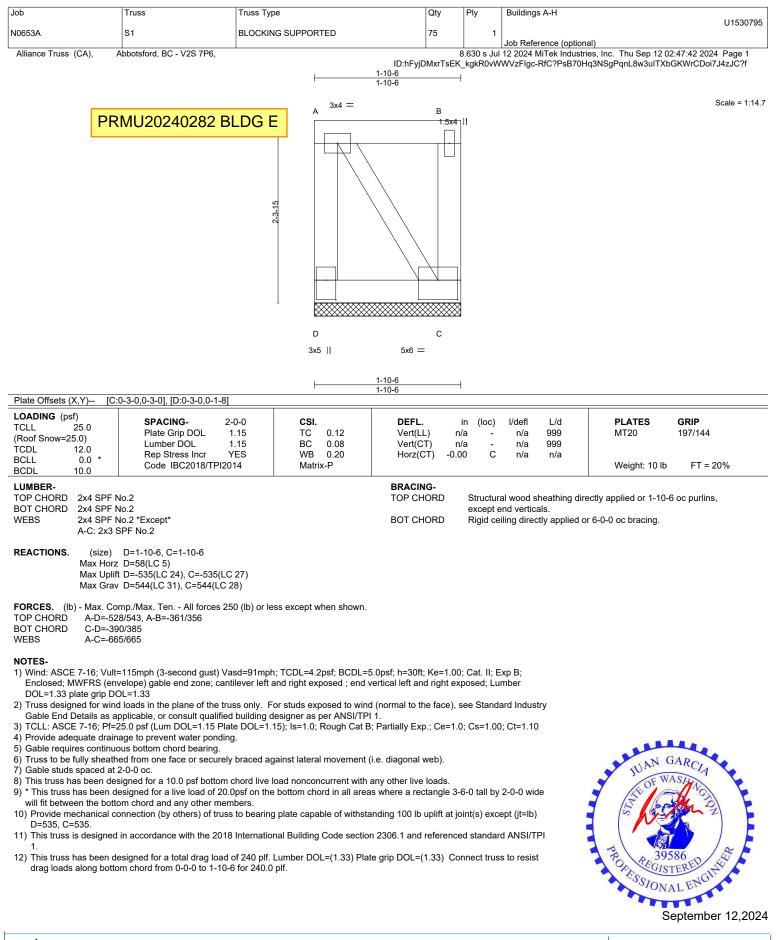
4x5 =

Scale = 1:37.4


240 Stirling Crescent Bradford, ON. L3Z 4L5

PRMU20240282 BLDG E

	 	<u>6-4-12</u> 6-4-12		<u>12-9-8</u> 6-4-12		———————————————————————————————————————	
Plate Offsets (X,Y) [B:0-3	3-8,0-2-0], [C:0-2-8,0-2-8], [D:0-3-	-	R:0-0-14,0-1-8], [S:0-		0-0-4]		
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL 12.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIBC2018/TPI2014	CSI. TC 0.71 BC 0.28 WB 0.13 Matrix-MS	Vert(CT) -0 Horz(CT) 0	in (loc) l/defl 0.03 G-H >999 0.07 G-H >999 0.00 F n/a 0.00 G >999	n/a	PLATES MT20 Weight: 79 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 SPF No. BOT CHORD 2x4 SPF No. WEBS 2x3 SPF No. B-H,D-F: 2x4 DTHERS	.2 .2 *Except* 4 SPF No.2		BRACING- TOP CHORD BOT CHORD	except end ver	icals.	ectly applied or 5-9-4 o r 6-0-0 oc bracing.	c purlins,
Max Horz H Max Uplift H	H=0-3-8, F=0-3-8 H=93(LC 9) H=-74(LC 10), F=-74(LC 11) H=802(LC 17), F=802(LC 18)						
WEBS B-G=0/383 NOTES- 1) Wind: ASCE 7-16; Vult=11 Enclosed; MWFRS (envel DOL=1.33 plate grip DOL= 2) Truss designed for wind la Gable End Details as app 3) TCLL: ASCE 7-16; Pf=25. 4) Unbalanced snow loads h	oads in the plane of the truss only licable, or consult qualified buildir .0 psf (Lum DOL=1.15 Plate DOL nave been considered for this des	nph; TCDL=4.2psf; BCDL= eft and right exposed ; end . For studs exposed to win ig designer as per ANSI/TP =1.15); Is=1.0; Rough Cat E gn.	vertical left and right e d (normal to the face) l 1. 3; Partially Exp.; Ce=1	exposed; Lumber), see Standard Indi 1.0; Cs=1.00; Ct=1.			
 non-concurrent with other 6) All plates are 1.5x4 MT20 7) Gable studs spaced at 2-0 8) This truss has been desig 9) * This truss has been desig will fit between the bottom 10) Provide mechanical cont 11) This truss is designed in 1. 12) No notches allowed in on 	unless otherwise indicated. 0-0 oc. Ined for a 10.0 psf bottom chord li igned for a live load of 20.0psf on a chord and any other members. nection (by others) of truss to bea accordance with the 2018 Interna- verhang and 10408 from left end ie plates required at 2-0-0 o.c. ma	ve load nonconcurrent with the bottom chord in all area ring plate capable of withst ational Building Code sectic and 10408 from right end o	any other live loads. as where a rectangle anding 100 lb uplift at on 2306.1 and referen r 12" along rake from	3-6-0 tall by 2-0-0 v joint(s) H, F. ced standard ANSI scarf, whichever is	/TPI	TUAN G.	SHINGTON
							ptember 12,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek 240 Stirling Crescent Bradford, ON. L3Z 4L5

September 12,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20001

	gs A-H	Building	ly	P	Qt	Truss Type	Truss T	Truss	Job
U153085			1		11	BLOCKING SUPPORTED	BLOCK	S2	N0653A
	erence (optional)								
	MiTek Industries, Inc. Thu Sep 12 (gc-kP_FrcE1iEbVkuvGQqDVZ2bvvU				ID:hFyjDM: 1-10-6		ord, BC - V2S 7P6,	Abbotsford, BC -	Alliance Truss (CA),
Scale = 1:4					АВ				
BLDG E	PRMU20240282 B					₹ & 5x6 =			
					1-10-6				
					1-10-6	D:0-3-0,0-1-8]	-1-8], [C:0-2-0,0-3-0], [D:0-3-0	[A:0-3-0,0-1-8], [C	Plate Offsets (X,Y) [
197/144	L/d PLATES 999 MT20 999 n/a	l/defl n/a n/a n/a	(loc) - - C	in n/a n/a 0.00	DEFL. Vert(LL) Vert(CT) Horz(CT)	15 TC 0.66 15 BC 0.08 IO WB 0.68	SPACING- 2-0-0 Plate Grip DOL 1.15 .umber DOL 1.15 Rep Stress Incr NO	Plate Gr Lumber Rep Stre	LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL TCDL 12.0 BCLL 0.0
32 lb FT = 20%	Weight: 32 lb					4 Matrix-P	Code IBC2018/TPI2014	Code IB	BCDL 10.0

LUMBER-			BRACING-			
TOP CHORD	2x4 SPF N	lo.2	TOP CHORD	Structural wood sheathing	directly applied or 1-10-6 oc purlin	ns,
BOT CHORD	2x4 SPF N	lo.2		except end verticals.		
WEBS	2x4 SPF N	lo.2	BOT CHORD	Rigid ceiling directly appli	ed or 6-0-0 oc bracing.	
			WEBS	1 Row at midpt	A-D, B-C, A-C	

REACTIONS. (size) D=1-10-6, C=1-10-6 Max Uplift D=-2005(LC 23), C=-2005(LC 24) Max Grav D=2030(LC 44), C=2030(LC 43)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD A-D=-2014/2013, A-B=-340/340

BOT CHORD C-D=-340/340

WEBS A-C=-2031/2031

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B;

Enclosed; MWFRS (envelope) gable end zone; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) Provide adequate drainage to prevent water ponding.

Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) D=2005, C=2005.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
 9) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0 to 1-10-6 for 240.0 plf.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ob	Truss	Truss Type	Qty	Ply	Buildings A-H	
10653A	S3	BLOCKING SUPPORTED	117	1		U1530860
10053A	33	BLOCKING SUFFORTED	117	· ·	Job Reference (option	al)
Alliance Truss (CA),	Abbotsford, BC - V2S 7	 P6,	I	8.820 s Aug		ies, Inc. Thu Sep 12 02:48:21 2024 Page 1
		$ \begin{array}{c} $				kjML1UTzYkk5F84PuKpu4HikVz5LWyeVqu Scale: 1/4"= 240282 BLDG E
			0-6			
	[A:0-3-0,0-1-8], [C:0-2-0	,υ-ɔ-υj, [Dːυ-ɔ-υ,υ-ː1-ၓ]				
Plate Offsets (X,Y)						1
LOADING (psf)	SPACING-	2-0-0 CSI .	DEFL.	in (loc)	l/defl L/d	PLATES GRIP
LOADING (psf) TCLL 25.0	Plate Grip DOI	_ 1.15 TC 0.68	Vert(LL)	n/a -	n/a 999	PLATES GRIP MT20 197/144
LOADING (psf)		L 1.15 TC 0.68 1.15 BC 0.07	Vert(LL) Vert(CT)			

_ D	CDL	10.0				-
L	UMBER-			BRACING-		
Т	OP CHORD	2x4 SPF N	lo.2	TOP CHORD	Structural wood sheathing dire	ectly applied or 1-10-6 oc purlins,
В	OT CHORD	2x4 SPF N	lo.2		except end verticals.	
V	VEBS	2x4 SPF N	lo.2	BOT CHORD	Rigid ceiling directly applied o	r 6-0-0 oc bracing.
				WEBS	1 Row at midpt A	-D, B-C, A-C

REACTIONS. (size) D=1-10-6, C=1-10-6 Max Uplift D=-2022(LC 23), C=-2022(LC 24) Max Grav D=2047(LC 44), C=2047(LC 43)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 A-D=-2031/2029, A-B=-340/340

 BOT CHORD
 C-D=-340/340

 WEBS
 A-C=-2047/2047

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B;

Enclosed; MWFRS (envelope) gable end zone; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Provide adequate drainage to prevent water ponding.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) D=2022, C=2022.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
 9) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0 to 1-10-6 for 240.0 plf.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

RTED			Job Reference 3 30 2024 MiTe WWVzFlgc-Cb ^v	ek Industries, Inc. Thu S Yd3yFfTXjML1UTzYkk5	U15304 Sep 12 02:48:21 2024 Page 1 F84QuLyu4QlkVz5LWyeVqu Scale: 1/4
A = B $4x6 = -$ $1.5x4 $			ŋ 30 2024 Mi⊺e WWVzFlgc-Cb`	ek Industries, Inc. Thu S Yd3yFfTXjML1UTzYkk5	iF84QuLyu4QlkVz5LWyeVqu Scale: 1/4
A = B $4x6 = -$ $1.5x4 $			WWVzFlgc-Cb	Yd3yFfTXjML1UTzYkk5	iF84QuLyu4QlkVz5LWyeVqu Scale: 1/4
88.2			ł	PRMU20240	282 BLDG E
$\int_{5x6} = \bigcup_{3x5}$	11				
<u>1-6-12</u> 1-6-12					
0.06 Vert(C	.) n/a T) n/a	ı -	n/a 99 n/a 99	999 MT20 999	197/144
BRACIN TOP CH	ORD ORD	except e Rigid ce	end verticals. eiling directly a	athing directly applied o	or 1-6-12 oc purlins,
tr	D C <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u>1-7-12</u> <u></u>	D C <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>0.68</u> 0.68 0.68 0.68 Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00 BRACING- TOP CHORD BOT CHORD WEBS	D C <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u></u>	D C <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u>1-6-12</u> <u></u>	D C <u>1-6-12</u> <u>1-6-12</u> DEFL. in (loc) I/defl L/d PLAT 0.68 0.06 Vert(LL) n/a - n/a 999 0.68 Vert(CT) n/a - n/a 999 Horz(CT) 0.00 C n/a n/a Weigh BRACING- TOP CHORD Structural wood sheathing directly applied of except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bra WEBS 1 Row at midpt A-D, B-C, A-C

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B;

- Enclosed; MWFRS (envelope) gable end zone; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) Provide adequate drainage to prevent water ponding.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) D=2020, C=2020.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1. 9) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 1-6-12 for 240.0 plf.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to be only with with with exercising is based only upon parameters shown, and is to an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Buildings A-H	
N0653A	S4	BLOCKING SUPPORTED	88	1	Banango / TT	U1530862
					Job Reference (optional	
Alliance Truss (CA), A	Abbotsford, BC - V2S 7P6,				R0vWWVzFlgc-gn6?GIF	s, Inc. Thu Sep 12 02:48:22 2024 Page 1 HErrDzB3fXFGzeTgEEIgjdUFvy9jftyyeVqt Scale: 3/8"= 240282 BLDG E
OADING (psf)	<u>)-2-4,0-1-12], [C:0-3-0,0-3-0],</u> SPACING- 2-1	[D:0-3-0,0-1-8]	C 5x6 =	in (loc)	l/defl L/d	PLATES GRIP
TCLL 25.0 (Roof Snow=25.0) TCDL 12.0 BCLL 0.0 * BCDL 10.0	Plate Grip DOL 1. Lumber DOL 1.	15 TC 0.74 15 BC 0.09 ES WB 0.84	Vert(LL) n/ Vert(CT) n/ Horz(CT) -0.0	'a - 'a -	n/a 999 n/a 999 n/a 999 n/a n/a	MT20 197/144 Weight: 22 lb FT = 20%
Max Horz	lo.2 lo.2 D=1-10-6, C=1-10-6 D=-151(LC 4)		BRACING- TOP CHORD BOT CHORD	except e	al wood sheathing direc ind verticals. iling directly applied or	otly applied or 1-10-6 oc purlins, 6-0-0 oc bracing.
Max Uplift Max Grav FORCES. (lb) - Max. Cor TOP CHORD A-D=-15- BOT CHORD C-D=-47 WEBS A-C=-160	: D=-1553(LC 24), C=-1553(L D=1561(LC 31), C=1561(LC mp./Max. Ten All forces 250 45/1561, A-B=-396/382 2/458					
Enclosed; MWFRS (env DOL=1.33 plate grip DO 2) Truss designed for wind Gable End Details as ar 3) TCLL: ASCE 7-16; Pf=2 4) Provide adequate draina 5) Gable requires continuo 6) Truss to be fully sheath 7) Gable studs spaced at 2 8) This truss has been des 9) * This truss has been de will fit between the botto 10) Provide mechanical co D=1553, C=1553. 11) This truss is designed 1. 12) This truss has been de	velope) gable end zone; canti JL=1.33 I loads in the plane of the trus opplicable, or consult qualified 5:0 psf (Lum DOL = 1.15 Pla age to prevent water ponding bus bottom chord bearing. ed from one face or securely 2-0-0 oc. signed for a 10.0 psf bottom c seigned for a live load of 20.0 om chord and any other memi- onnection (by others) of truss in accordance with the 2018	braced against lateral movement (i.e hord live load nonconcurrent with an psf on the bottom chord in all areas y bers. to bearing plate capable of withstand International Building Code section 2 f 240 plf. Lumber DOL=(1.33) Plate	rtical left and right ex normal to the face), s 3; Partially Exp.; Ce= e. diagonal web). ny other live loads. where a rectangle 3- ding 100 lb uplift at jo 2306.1 and reference	bosed; Lu ee Standa 1.0; Cs=1. 6-0 tall by int(s) exco d standar	mber ard Industry 00; Ct=1.10 2-0-0 wide ept (jt=lb) d ANSI/TPI	THOR WASH VOID
						September 12,202

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS//TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Buildings A-H	
N0653A	S5	BLOCKING SUPPORTED	22	1	-	U1530863
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,		8.1	320 s Aug	Job Reference (optiona 30 2024 MiTek Industrie	l) es, Inc. Thu Sep 12 02:48:23 2024 Page 1
			ID:hFyjDMxrTsEK_I			3bLer5ynCBgDOsi0DMxJ2BpSCQPyeVqs
		F=	1-5-12 1-5-12			
		А	В			Scale: 3/8"=1'
		4x				
					PRMU2	0240282 BLDG E
		5-7-12				
		ې ل				
		D	С			
		3x5	5x6 =			
		\vdash	1-5-12 1-5-12			
	0-2-8,0-1-8], [C:0-3-0,0-3-0],	[D:0-3-0,0-1-8]				
L OADING (psf) TCLL 25.0		0-0 CSI .		n (loc)	l/defl L/d	PLATES GRIP
(Roof Snow=25.0) TCDL 12.0	Lumber DOL 1	.15 TC 0.81 .15 BC 0.07	Vert(LL) n/ Vert(CT) n/	a -	n/a 999 n/a 999	MT20 197/144
BCLL 0.0 *	Rep Stress Incr Y Code IBC2018/TPI20	ES WB 0.85 14 Matrix-P	Horz(CT) -0.0) C	n/a n/a	Weight: 21 lb FT = 20%
BCDL 10.0			BRACING-			
TOP CHORD 2x4 SPF			TOP CHORD			ctly applied or 1-5-12 oc purlins,
BOT CHORD 2x4 SPF I WEBS 2x4 SPF I			BOT CHORD		end verticals. iling directly applied or	6-0-0 oc bracing.
REACTIONS. (size)	D=1-5-12, C=1-5-12					
Max Horz	2 D=-152(LC 25) t D=-1634(LC 24), C=-1634(L	C 27)				
	/ D=1640(LC 31), C=1640(LC					
FORCES. (Ib) - Max. Co	mp./Max. Ten All forces 25	0 (Ib) or less except when shown.				
TOP CHORD A-D=-16 BOT CHORD C-D=-38	29/1640, A-B=-313/299 39/375					
	67/1667					
NOTES-						
		sd=91mph; TCDL=4.2psf; BCDL=5 lever left and right exposed ; end v				
DOL=1.33 plate grip DO		ss only. For studs exposed to wind	(normal to the face) s	ee Stand	ard Industry	
Gable End Details as a	pplicable, or consult qualified	building designer as per ANSI/TPI	1.		-	
 Provide adequate drain 	age to prevent water ponding	ite DOL = 1.15);	B; Partially Exp.; Ce=	.0; Cs=1	.00; Ct=1.10	
	ous bottom chord bearing. ned from one face or securely	braced against lateral movement (i	i.e. diagonal web).			A BERRY
7) Gable studs spaced at		hord live load nonconcurrent with a	any other live loads			WAN GARCIA
9) * This truss has been d	esigned for a live load of 20.0	psf on the bottom chord in all areas		6-0 tall by	2-0-0 wide	OF WASHIA
	om chord and any other mem onnection (by others) of truss	bers. to bearing plate capable of withsta	nding 100 lb uplift at jo	nt(s) exc	ept (jt=lb)	E Star Share
D=1634, C=1634.		International Building Code section				
1.		, and the second s				
	esigned for a total drag load of the chord from 0-0-0 to 1-5-12	of 240 plf. Lumber DOL=(1.33) Plate t for 240.0 plf.	e grip DOL=(1.33) Cor	inect trus	s to resist	TH 8 39586 5
-						ROPEGISTERED PEGISTERED FESSIONAL ENGINE
						"JONAL EN
						September 12,202

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Buildings A-H	11450000
N0653A	S6	BLOCKING SUPPORTED	98	1		U153086
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,	⊢ <u>-1-1</u> ⊢ <u>1-1</u> A	8. ID:hFyjDMxrTsEK_ 0-6	820 s Aug	WVzFlgc-8_gOTeGv_9z3) s, Inc. Thu Sep 12 02:48:23 2024 Page 1 IbLer5ynCBgDOoi0HMyf2BpSCQPyeVqs Scale = 1:50
COADING (psf) "CLL 25.0 Roof Snow=25.0)	A:Edge,0-1-12], [C:Edge,0-3- SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2018/TPI2	CSI. 1.15 TC 0.81 1.15 BC 0.07 YES WB 0.83	C 5x8 = 0-6 0-6 Vert(LL) n/ Vert(CT) n/ Horz(CT) 0.0	a -	l/defi L/d n/a 999 n/a 999 n/a n/a	PLATES GRIP MT20 197/144 Weight: 34 lb FT = 20%
Max Up Max Gr	No.2 No.2 No.2 D=1-10-6, C=1-10-6 lift D=-2155(LC 23), C=-2155 av D=2180(LC 44), C=2180(i(LC 24)	BRACING- TOP CHORD BOT CHORD WEBS	except e	end verticals. iling directly applied or 6	tly applied or 1-10-6 oc purlins,
TOP CHORD A-D=-: BOT CHORD C-D=-: WEBS A-C=-: NOTES- 1) Wind: ASCE 7-16; VL Enclosed; MWFRS (¢ 2) TCLL: ASCE 7-16; VL Bable requires contin 5) This truss has been c 6) * This truss has been c 7) Provide mechanical c D=2155, C=2155.	2164/2163, A-B=-340/340 340/340 2178/2178 It=115mph (3-second gust) \ nvelope) gable end zone; Lu =25.0 psf (Lum DOL = 1.15 F inage to prevent water pondi uous bottom chord bearing. esigned for a 10.0 psf bottom designed for a 10.0 psf bottom designed for a live load of 20 ttom chord and any other me onnection (by others) of trust	asd=91mph; TCDL=4.2psf; BCDL=5.0ps mber DOL=1.33 plate grip DOL=1.33 Plate DOL = 1.15); Is=1.0; Rough Cat B; ng. nchord live load nonconcurrent with any 0.0psf on the bottom chord in all areas wi	Partially Exp.; Ce= other live loads. here a rectangle 3-0 g 100 lb uplift at joir	1.0; Cs=1 6-0 tall by it(s) exce	.00; Ct=1.10 2-0-0 wide pt (jt=lb)	

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
9) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 1-10-6 for 240.0 plf.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPII Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Buildings A-H		
N0653A	S7	BLOCKING SUPPORTED	99	1			U1530865
00000		BEOCKING SOFT OKTED			Job Reference (option		
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,		ID:hFyjDMxrTsEl		g 30 2024 MiTek Industri WVzFlgc-cAEmh_HXIS	es, Inc. Thu Sep 12 02:4 5wCVD2fgISjuIYE6MW56	OcBQTCmyryeVqr Scale = 1:50
Plate Offsets (X,Y) .OADING (psf) TCLL 25.0 Roof Snow=25.0)	[A:Edge,0-1-12], [C:Edge,0-3 SPACING- Plate Grip DOL	2-0-0 CSI. 1.15 TC 0.83	DEFL. Vert(LL)	in (loc) n/a -	l/defl L/d n/a 999		GRIP 197/144
TCDL 12.0 BCLL 0.0 * BCDL 10.0	Lumber DOL Rep Stress Incr Code IBC2018/TPI	1.15 BC 0.07 YES WB 0.85 2014 Matrix-P		n/a - .00 C	n/a 999 n/a n/a	Weight: 34 lb	FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP REACTIONS. (size Max U	F No.2	1(LC 24)	BRACING- TOP CHORD BOT CHORD WEBS	except Rigid c	end verticals. eiling directly applied o	ectly applied or 1-10-6 c r 6-0-0 oc bracing. -D, B-C, A-C	oc purlins,
TOP CHORD A-D=- BOT CHORD C-D=	Comp./Max. Ten All forces 2181/2179, A-B=-340/340 -340/340 -2195/2195	250 (lb) or less except when shown.					
Enclosed; MWFRS (2) TCLL: ASCE 7-16; F 3) Provide adequate dr 4) Gable requires conti 5) This truss has been 6) * This truss has been will fit between the b 7) Provide mechanical D=2171, C=2171. 8) This truss is designe 9) This truss has been	envelope) gable end zone; L f=25.0 psf (Lum DOL = 1.15 ainage to prevent water ponon nuous bottom chord bearing. designed for a 10.0 psf botto n designed for a live load of 2 ottom chord and any other m connection (by others) of trus d in accordance with the 201	n chord live load nonconcurrent with any c 0.0psf on the bottom chord in all areas wh embers. s to bearing plate capable of withstanding 8 International Building Code section 2306 of 240 plf. Lumber DOL=(1.33) Plate grip	rartially Exp.; Ce ther live loads. ere a rectangle s 100 lb uplift at jo .1 and reference	=1.0; Cs= 3-6-0 tall by pint(s) exce	1.00; Ct=1.10 / 2-0-0 wide ept (jt=lb) d ANSI/TPI 1.	JUAN GA	ARCIA

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS//TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Buildings A-H	U1530796
N0653A	S8	BLOCKING SUPPORTED	4	1		
	Abbatafard BC 1/20 7DC			9.620 a. hu	Job Reference (option	al) es, Inc. Thu Sep 12 02:47:45 2024 Page 1
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,	,	ID:hFyjDMxrTsE# <u>1-3-14</u> 1-3-14 A B <u>4x6</u> 1.5x4 II X X	8.630 S Jui	/WVzFlgc-RfC?PsB70H	es, inc. Thu Sep 12 02:47:45 2024 Page 1 q3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Scale = 1:50.7
		5x8 =	3x5 D C 1-3-14 1-3-14			
Plate Offsets (X,Y) [A	A:0-3-0,0-1-8], [C:0-2-8,0-3-0]		1-3-14			
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL TCDL 12.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL	2-0-0 CSI. 1.15 TC 0.81 1.15 BC 0.04 YES WB 0.81		in (loc) n/a - n/a - 00 C	l/defl L/d n/a 999 n/a 999 n/a n/a	PLATES GRIP MT20 197/144 Weight: 33 lb FT = 20%
LUMBER- TOP CHORD 2x4 SPF BOT CHORD 2x4 SPF WEBS 2x4 SPF REACTIONS. (size) Max Upl	No.2		BRACING- TOP CHORD BOT CHORD WEBS	except e	end verticals. iling directly applied o	ectly applied or 1-3-14 oc purlins, r 6-0-0 oc bracing. D, B-C, A-C

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 A-D=-2158/2157

 WEBS
 A-C=-2160/2160

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Provide adequate drainage to prevent water ponding.

4) Gable requires continuous bottom chord bearing.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) D=2152, C=2152.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

9) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0 to 1-3-14 for 240.0 plf.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job		Truss	Truss Type		Qty	Ply	Buildings A-H	U1530797
N0653A		S9	BLOCKING SUPPORTED		4	1	Ich Deference (antional)	01330797
Alliance Truss (CA	A), Ak	botsford, BC - V2S 7P6,						, Inc. Thu Sep 12 02:47:46 2024 Page 1
				ID:hFyjD <u>1-3-14</u> 1-3-14	MxrIsEK	_kgkR0vW	WVzFIgc-RfC?PsB70Hq3	NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f
				1-3-14				Scale = 1:51.
			Ŧ	А В 5x7_=				State - 1.51.
				1.5x4				
			q					
			9 -3 -3					
				54				
			 7x8 =					
			170 -	4x6 D C				
				1-3-14 1-3-14				
Plate Offsets (X,Y)	′) [A:E	dge,0-1-12]						
LOADING (psf) TCLL 25.0	.0		-0-0 CSI .	DEFL.		in (loc)	l/defl L/d	PLATES GRIP
(Roof Snow=25.0) TCDL 12.4		Lumber DOL	1.15 TC 0.98 1.15 BC 0.08	Vert(LL Vert(C	Í) n	/a - /a -	n/a 999 n/a 999	MT20 197/144
BCLL 0.	.0 *	Rep Stress Incr Code IBC2018/TPI2	YES WB 0.96 014 Matrix-P	Horz(C	T) -0.0	0 C	n/a n/a	Weight: 33 lb FT = 20%
BCDL 10.9	.0			BRACIN	G-			
TOP CHORD 2x	4 SPF No 4 SPF No			TOP CH			al wood sheathing direct and verticals.	ly applied or 1-3-14 oc purlins,
WEBS 2x	4 SPF 21	00F 1.8E *Except*		BOT CH	ORD	Rigid ce	iling directly applied or 6	
A-	-C: 2x4 SF	PF No.2		WEBS		1 Row a 2 Rows	it midpt A-D, at 1/3 pts A-C	, B-C
REACTIONS.	· · ·	D=1-3-14, C=1-3-14 D=-255(LC 4)						
M	1ax Uplift I	D=-3281(LC 24), C=-3281 D=3287(LC 31), C=3287(I	. ,					
		ip./Max. Ten All forces 2 6/3286, A-B=-317/295	50 (lb) or less except when shown.					
	C-D=-445 A-C=-329							
NOTES-								
1) Wind: ASCE 7-			asd=91mph; TCDL=4.2psf; BCDL=5					
DOL=1.33 plate			tilever left and right exposed ; end v	ertical left and	i right ex	posed; Lu	mber	
			uss only. For studs exposed to wind d building designer as per ANSI/TPI		e face), s	see Stand	ard Industry	
3) TCLL: ASCE 7-	-16; Pf=25		te DOL=1.15); Is=1.0; Rough Cat B		.; Ce=1.0); Cs=1.00); Ct=1.10	
5) Gable requires	continuou	is bottom chord bearing.	-					server.
 Fruss to be fully Gable studs spa 			y braced against lateral movement (i.e. diagonal v	/eb).			NAN GARCIA
			chord live load nonconcurrent with			6-0 tall bv	2-0-0 wide	NOF WASHING
will fit between	the bottor	n ^{chord} PRMU20	240282 BLDG F	Inding 100 lb i	•			E POR ON
10) Provide mecha D=3281, C=32	281.							
11) This truss is de 1.	lesigned ir	n accordance with the 201	3 International Building Code section	n 2306.1 and i	eference	ed standar	d ANSI/TPI	
		signed for a total drag load n chord from 0-0-0 to 1-3-	of 240 plf. Lumber DOL=(1.33) Plat 4 for 240 0 plf	e grip DOL=(.33) Co	nnect trus	s to resist	POR BEGIETERED
			<u>- 10.0 pm</u>					ESSIONAL ENGI
								UNAL
								September 12 202

September 12,2024

240 Stirling Crescent Bradford, ON. L3Z 4L5

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Buildings A-H		
N0653A	S10	BLOCKING SUPPORTED	1	1			U1530798
	Abbotsford, BC - V2S 7P6,		ID:hFyjDMxrTsEK 1-5-14 1-5-14 B	8.630 s Jul	Job Reference (optiona 12 2024 MiTek Industri WVzFIgc-RfC?PsB70H	es, Inc. Thu Sep 12 02 q3NSgPqnL8w3uITXb(
		æ D 3x5	5x8 =				
		H.	<u>1-5-14</u> 1-5-14				
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL TCDL 12.0 BCLL 0.0 *	Plate Grip DOL 1 Lumber DOL 1	0-0 CSI. .15 TC 0.81 .15 BC 0.05 'ES WB 0.82	Vert(LL) n	in (loc) n/a - n/a - 00 C	l/defl L/d n/a 999 n/a 999 n/a n/a	PLATES MT20 Weight: 33 lb	GRIP 197/144 FT = 20%
Max Uplif	No.2		BRACING- TOP CHORD BOT CHORD WEBS	except e	al wood sheathing dire nd verticals. lling directly applied or t midpt A-	ectly applied or 1-5-14	l oc purlins,
	60/2159, A-B=-259/259 99/259	0 (Ib) or less except when shown.					
 Enclosed; MWFRS (em. 2) TCLL: ASCE 7-16; Pf=2 3) Provide adequate drain 4) Gable requires continue 5) This truss has been dee 6) * This truss has been dee 6) * This truss has been dee 7) Provide mechanical cor D=2153, C=2153. 8) This truss is designed if 9) This truss has been dee 	velope) gable end zone; Lum 25.0 psf (Lum DOL=1.15 Plat age to prevent water ponding ous bottom chord bearing. signed for a 10.0 psf bottom of esigned for a live load of 20.0 om chord and any other men nuection (by others) of truss t n accordance with the 2018 I	chord live load nonconcurrent with ar lpsf on the bottom chord in all areas ibers. o bearing plate capable of withstand nternational Building Code section 2: 240 plf. Lumber DOL=(1.33) Plate g	Partially Exp.; Ce=1. ny other live loads. where a rectangle 3- ing 100 lb uplift at joi 306.1 and referenced	0; Cs=1.00 -6-0 tall by nt(s) except d standard	; Ct=1.10 2-0-0 wide ot (jt=lb) ANSI/TPI 1.	IUAN C	ARCIA

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS//TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Buildings A-H]
N0653A	S11	BLOCKING SUPPORTED	1	1	Banangoven	U1530799
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,				Job Reference (optiona 12 2024 MiTek Industrie	l) es, Inc. Thu Sep 12 02:47:43 2024 Page 1
Alliance muss (CA),	Abbotsioru, BC - V23 7F0,		ID:hFyjDMxrTs 			is, inc. Thu Sep 12 02:47:45 2024 Fage 1 3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f
			А В			Scale = 1:51.0
		9-3-10	а в ах <u>7 = 1</u> 1.5х4 II		F	PRMU20240282 BLDG E
			D C .5 5x8 =			
Plate Offsets (X,Y) [A	x:Edge,0-1-12], [C:0-2-4,0-3-0		1-5-14 1-5-14			
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL TCDL 12.0 BCLL 0.0 * BCDL 10.0	Plate Grip DOL Lumber DOL	0-0 CSI. 1.15 TC 0.83 1.15 BC 0.05 7ES WB 0.84 14 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) n/a - n/a - 0.00 C	l/defl L/d n/a 999 n/a 999 n/a n/a	PLATES GRIP MT20 197/144 Weight: 33 lb FT = 20%
LUMBER- TOP CHORD 2x4 SPF BOT CHORD 2x4 SPF WEBS 2x4 SPF REACTIONS. (size) Max Upl	No.2		BRACING- TOP CHORD BOT CHORD WEBS	except e	nd verticals. iling directly applied or	ctly applied or 1-5-14 oc purlins, 6-0-0 oc bracing. D, B-C, A-C
TOP CHORD A-D=-2 BOT CHORD C-D=-2	omp./Max. Ten All forces 28 176/2175, A-B=-259/259 59/259 181/2181	0 (Ib) or less except when shown.				
Enclosed; MWFRS (et 2) TCLL: ASCE 7-16; Pf 3) Provide adequate drai 4) Gable requires continu 5) This truss has been du 6) * This truss has been du 7) Provide mechanical cc D=2169, C=2169. 8) This truss is designed 9) This truss has been du	hvelope) gable end zone; Lun =25.0 psf (Lum DOL=1.15 Pla nage to prevent water pondin jous bottom chord bearing. ssigned for a 10.0 psf bottom designed for a live load of 20. tom chord and any other men ponnection (by others) of truss in accordance with the 2018	chord live load nonconcurrent with a Dpsf on the bottom chord in all area ibers. o bearing plate capable of withstan nternational Building Code section 240 plf. Lumber DOL=(1.33) Plate	3 ; Partially Exp.; Ce= any other live loads. is where a rectangle iding 100 lb uplift at 2306.1 and reference	1.0; Cs=1.00 3-6-0 tall by joint(s) excep	r; Ct=1.10 2-0-0 wide ot (jt=lb) ANSI/TPI 1.	TUAN GARCIA THOMAS THOMAS 39586 BORNAL ENGINE September 12,2024

Job	Truss	Truss Type	Qty	Ply	Buildings A-H	U15308(
N0653A	S12	BLOCKING SUPPORTED	232	1		
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,	 D:h 1-10-6 1-10-6	nFyjDMxrTsEK			onal) tries, Inc. Thu Sep 12 02:47:43 2024 Page 1)Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f
						Scale = 1:5
		A B ⊺ <u>4x7;≕1.5</u> 3;	a 11			- 1.5
			• 11			
		10-7-4 10				PRMU20240282 BLDG
		D C 3x6 II 6x8 + 1-10-6 1-10-6				
Plate Offsets (X,Y) [A	:Edge,0-1-8]					
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) 7CDL TCDL 12.0 BCLL 0.0 BCDL 10.0	Plate Grip DOL Lumber DOL	1.15 TC 0.93 Ve 1.15 BC 0.07 Ve YES WB 0.94 Ho	ert(LL) n	in (loc) i/a - i/a - 00 C	l/defl L/d n/a 999 n/a 999 n/a n/a	PLATES GRIP MT20 197/144 Weight: 39 lb FT = 20%
LUMBER- TOP CHORD 2x4 SPF BOT CHORD 2x4 SPF WEBS 2x4 SPF	No.2	TOP	ACING- ? CHORD [CHORD BS	except e Rigid ce 1 Row a	end verticals. iling directly applied t midpt	irectly applied or 1-10-6 oc purlins, or 6-0-0 oc bracing. B-C A-D, A-C
Max Upl	D=1-10-6, C=1-10-6 ift D=-2485(LC 23), C=-2485 iv D=2510(LC 44), C=2510(L				·	
TOP CHORD A-D=-2 BOT CHORD C-D=-3	494/2493, A-B=-340/340	50 (lb) or less except when shown.				
		asd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=	30ft; Ke=1.00); Cat. II; E	xp B;	

- Enclosed; MWFRS (envelope) gable end zone; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Provide adequate drainage to prevent water ponding.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) D=2485, C=2485.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

9) This trust has been designed in a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect trust to resist drag loads along bottom chord from 0-0 to 1-10-6 for 240.0 plf.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MISI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Buildings A-H	U1530801
N0653A	S13	BLOCKING SUPPORTED	6	1		
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,	 	D:hFyjDMxrTsEK 4	8.630 s Jul		i) is, Inc. Thu Sep 12 02:47:44 2024 Page 1 j3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Scale = 1:57.9
COADING (psf) "CLL 25.0 Roof Snow=25.0) "CDL 12.0 3CLL 0.0 *	A:Edge,0-1-8] SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2018/TPl2	2-0-0 CSI. 1.15 TC 0.92 1.15 BC 0.04 YES WB 0.93	DEFL. Vert(LL) n.	/a -	l/defi L/d n/a 999 n/a 999 n/a n/a	PLATES GRIP MT20 197/144 Weight: 37 lb FT = 20%
Max Upl	No.2 No.2	B T B W 2(LC 24)	RACING- OP CHORD OT CHORD /EBS	except e Rigid ce 1 Row a	end verticals. iling directly applied or t midpt B-0	ctly applied or 1-3-14 oc purlins, 6-0-0 oc bracing.
TOP CHORD A-D=-2 WEBS A-C=-2 NOTES- 1) Wind: ASCE 7-16; Vul Enclosed; MWFRS (er 2) Truss designed for wir Gable End Details as 3) TCLL: ASCE 7-16; Pfr 4) Provide adequate drai 5) Gable requires continut 6) Truss to be fully sheat 7) Gable studs spaced at 8) This truss has been de 9) * This truss has been de	2488/2487 2488/2488 2488/2488 2488/2488 2488/2488 2488/2488 250 gable end zone; Lu applicable, or consult qualifi- 25.0 psf (Lum DOL=1.15 P 25.0 psf (Lum DOL=1.15 P) 25.0 psf (Lum	ly braced against lateral movement (i.e. dia n chord live load nonconcurrent with any oth 0.0psf on the bottom chord in all areas wher	nal to the face), s ally Exp.; Ce=1.0 igonal web). ner live loads.	see Standa); Cs=1.00	ard Industry); Ct=1.10	WAN GARCLA

- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) D=2482, C=2482.
- 11) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 12) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 1-3-14 for 240.0 plf.

240 Stirling Crescent Bradford, ON. L3Z 4L5

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Buildings A-H		114500000
N0653A	S14	BLOCKING SUPPORTED	36	1			U1530802
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,			8.630 s Ju	Job Reference (option 12 2024 MiTek Industri	ial) ies, Inc. Thu Sep 12.02	2:47:45 2024 Page 1
		1 <u>-10-6</u> 1-10-6 A B				łq3NSgPqnL8w3ulTXb	
						PRMU2024	10282 BLDG E
		D C					
		4x6 ⊥1-10-6					
Plate Offsets (X,Y) [/	A:Edge,0-2-0]	1-10-0 1-10-6 6x8	1				
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL TCDL 12.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2018/TPI2	2-0-0 CSI. D 1.15 TC 0.99 V 1.15 BC 0.07 V YES WB 1.00 H	ert(LL) r ert(CT) r	in (loc) n/a - n/a - 00 C	l/defl L/d n/a 999 n/a 999 n/a n/a	PLATES MT20 Weight: 47 lb	GRIP 197/144 FT = 20%
LUMBER- FOP CHORD 2x4 SPF BOT CHORD 2x4 SPF		то вс	ACING- P CHORD T CHORD BS	except e Rigid ce 1 Row a	end verticals. Filing directly applied of the second s	ectly applied or 1-10-6 or 6-0-0 oc bracing. -C -D, A-C	} oc purlins,
Max Up	D=1-10-6, C=1-10-6 ift D=-3085(LC 23), C=-308 v D=3110(LC 44), C=3110						
TOP CHORD A-D=-3 BOT CHORD C-D=-3	omp./Max. Ten All forces 094/3093, A-B=-340/340 i40/340 099/3099	250 (Ib) or less except when shown.					
Enclosed; MWFRS (e 2) TCLL: ASCE 7-16; Pf 3) Provide adequate dra 4) Gable requires contin 5) This truss has been d 6) * This truss has been will fit between the bo	nvelope) gable end zone; Lu =25.0 psf (Lum DOL=1.15 P inage to prevent water pond Jous bottom chord bearing, esigned for a 10.0 psf bottor designed for a live load of 2 tom chord and any other me	n chord live load nonconcurrent with any othe 0.0psf on the bottom chord in all areas where	ly Exp.; Ce=1. er live loads. a rectangle 3	0; Cs=1.00 -6-0 tall by	2-0-0 wide		ARCIA

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
 9) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0 to 1-10-6 for 240.0 plf.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Buildings A-H		U1530866
N0653A	S15	BLOCKING STRUCTURAL	2	1			01530866
Alliance Truss (CA),					Job Reference (optiona g 30 2024 MiTek Industrie		0 40 0004 D 4
	Abbotsford, BC - V2S 7P6,				WVzFlgc-o0tVQwCmAcKn		
		А	в				Scale = 1:47
			1.5x4 II				
		1-	7-0 7-0				
Plate Offsets (X,Y)	[C:0-3-0,0-2-12], [D:0-3-0,0-1	-8]					
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL 12.0 BCLL 0.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 CSI. 1.15 TC 0.54 1.15 BC 0.03 NO WB 0.19		00 D 00 C	0 >999 360 0 >999 240 C n/a n/a	MT20	GRIP 197/144
BCDL 10.0	Code IBC2018/TP	2014 Matrix-P	Wind(LL) 0	00 D	0 **** 240	Weight: 31 lb	FT = 20%
WEBS 2x4 S REACTIONS. (si Max Max	PF No.2 PF No.2 PF No.2 Ze) D=1-7-0, C=1-7-0, C=1-7 Horz D=-175(LC 6) Jplift D=-548(LC 6), C=-435(L Grav D=419(LC 5), C=577(LC	C 5)	BRACING- TOP CHORD BOT CHORD WEBS	except Rigid c	ural wood sheathing direct end verticals. æiling directly applied or at midpt A-I		c purlins,
TOP CHORD A-D	. Comp./Max. Ten All forces =-413/561 =-570/432	250 (lb) or less except when shown.					

- NOTES-
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left exposed ; end vertical left exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Provide adequate drainage to prevent water ponding.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) D=548, C=435.
- 9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

PRMU20240282 BLDG E

240 Stirling Crescent Bradford, ON. L3Z 4L5

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Buildings A-H		
N0653A	S16	BLOCKING STRUCTURAL	9	1		D.	U1530867
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,				Job Reference (option	nal) ries, Inc. Thu Sep 12 02	2.48.18 2024 Page 1
Annance Trace (c, i),		<u>1-10</u> 1-10	ID:hFyjDMxrTsEl)-8			cKnUamulPB1UdWj0hl	≺rhtMJ2XlRkByeVqx
							Scale: 3/8"="
		<u> </u>)-8)-8				
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL TCDL 12.0 BCLL 0.0 *	Plate Grip DOL	2-0-0 CSI. 1.15 TC 0.05 1.15 BC 0.02 NO WB 0.00 014 Matrix-P	Vert(CT) -0 Horz(CT) 0	in (loc) 00 D 00 D .00 C .00 D	l/defl L/d >999 360 >999 240 n/a n/a **** 240	PLATES MT20	GRIP 197/144 FT = 20%
BCDL 10.0			BRACING-		240	Weight: 22 lb	
TOP CHORD2x4 SFBOT CHORD2x4 SFWEBS2x4 SF			TOP CHORD BOT CHORD	except	ral wood sheathing dir end verticals. eiling directly applied o	rectly applied or 1-10-8 or 10-0-0 oc bracing.	3 oc purlins,
	e) D=1-10-8, C=1-10-8, C=1- plift D=-9(LC 4), C=-9(LC 4) rav D=74(LC 1), C=74(LC 1),						

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B;
- Enclosed; MWFRS (envelope) gable end zone; Lumber DOL=1.33 plate grip DOL=1.33
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Provide adequate drainage to prevent water ponding.

5) Gable studs spaced at 2-0-0 oc.

- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) D, C.
- 9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

lob	Truss	Truss Type	Qty	Ply	Buildings A-H		
0653A	S17	BLOCKING STRUCTURAL	2	1			U153086
					Job Reference (option		
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,				g 30 2024 MiTek Industr VVzFlgc-GCQteGDOxw		
		А	В				Scale: 3/8"=
		1.5x4 D	= 1.574 3x4 = C				
		⊢ 1	-5-14 -5-14				
OADING (psf) CLL 25.0 Roof Snow=25.0) CDL 12.0	Plate Grip DOL Lumber DOL	-0-0 CSI. 1.15 TC 0.03 1.15 BC 0.01	Vert(CT) -0	in (loc) 00 D 00 D	l/defl L/d >999 360 >999 240	PLATES MT20	GRIP 197/144
BCLL 0.0 * BCDL 10.0	Rep Stress Incr Code IBC2018/TPI20	NO WB 0.00 014 Matrix-P		00 C 00 D	n/a n/a **** 240	Weight: 21 lb	FT = 20%
UMBER- TOP CHORD 2x4 SPI 30T CHORD 2x4 SPI VEBS 2x4 SPI	⁻ No.2		BRACING- TOP CHORD BOT CHORD	except	ral wood sheathing dir end verticals. eiling directly applied c		4 oc purlins,
Max Up) D=1-5-14, C=1-5-14, C=1- lift D=-7(LC 4), C=-7(LC 4) av D=56(LC 1), C=56(LC 1), C				_		
FORCES. (Ib) - Max. (Comp (Max Top All forces 2)	50 (lb) or less except when shown.			PRI	/U20240282	

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; Lumber DOL=1.33 plate grip DOL=1.33
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Provide adequate drainage to prevent water ponding.

5) Gable studs spaced at 2-0-0 oc.

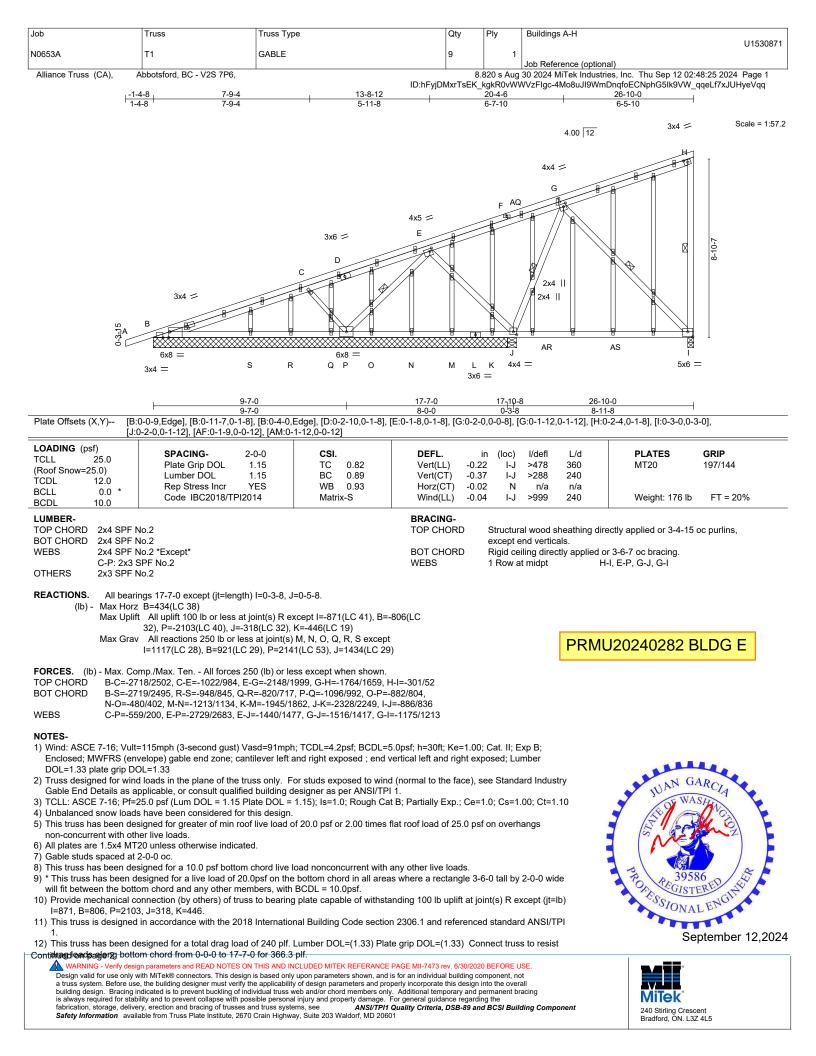
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) D, C.
- 9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Buildings A-H	
N0653A	S18	BLOCKING STRUCTURAL	1	1		U1530869
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,	А)) s, Inc. Thu Sep 12 02:48:19 2024 Page 1 6kL4s7iG0q2kw5fUQAwSGBU?HeyeVqw Scale: 1/4"=
Plate Offsets (X,Y) [A LOADING (psf) 7 TCLL 25.0 (Roof Snow=25.0) 7 TCDL 12.0 BCLL 0.0 BCDL 10.0	:0-3-0,0-1-8], [C:0-2-0,0-3- SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2018/TP	2-0-0 CSI. 1.15 TC 0.68 1.15 BC 0.06 NO WB 0.68	C <u>1-7-0</u> DEFL. Vert(LL) -0. Vert(CT) -0. Horz(CT) 0.		l/defl L/d >999 360 >999 240 n/a n/a **** 240	PLATES GRIP MT20 197/144 Weight: 31 lb FT = 20%
LUMBER- TOP CHORD 2x4 SPF BOT CHORD 2x4 SPF WEBS 2x4 SPF REACTIONS. (size) Max Uplit Max Grav FORCES. (lb) - Max. Cc	No.2 No.2 D=1-7-0, C=1-7-0, C=1- ft D=-2020(LC 23), C=-202 v D=2041(LC 44), C=2041	20(LC 24)	BRACING- TOP CHORD BOT CHORD WEBS	except e	end verticals. illing directly applied or it midpt A-E	otly applied or 1-7-0 oc purlins, 6-0-0 oc bracing.), B-C, A-C
BOT CHORD C-D=-27 WEBS A-C=-20 NOTES- 1) Wind: ASCE 7-16; Vult Enclosed; MWFRS (en 2) Truss designed for win Gable End Details as a 3) TCLL: ASCE 7-16; Pf= 4) Provide adequate drait 5) Gable studs spaced at 6) This truss has been de 7) * This truss has been de will fit between the bott 8) Provide mechanical co D=2020, C=2020. 9) This truss is designed i 10) This truss has been de	79/279 036/2036 (=115mph (3-second gust) ovelope) gable end zone; L d loads in the plane of the applicable, or consult qualif 25.0 psf (Lum DOL = 1.15 nage to prevent water pond 2-0-0 oc. usigned for a 10.0 psf botto designed for a live load of 2 toom chord and any other m innection (by others) of true in accordance with the 207	m chord live load nonconcurrent with a 20.0psf on the bottom chord in all areas embers. ss to bearing plate capable of withstand 8 International Building Code section 2 ad of 240 plf. Lumber DOL=(1.33) Plate	(normal to the face), 1. B; Partially Exp.; Ces ny other live loads. where a rectangle 3 ting 100 lb uplift at jo 2306.1 and reference	see Standa =1.0; Cs=1 -6-0 tall by int(s) except d standard	ard Industry .00; Ct=1.10 2-0-0 wide pt (jt=lb) ANSI/TPI 1. s to resist	JUAN GARCIA JUAN GARCIA WASHING BOREGISTERED AESSIONAL ENGINE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS//TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

240 Stirling Crescent Bradford, ON. L3Z 4L5

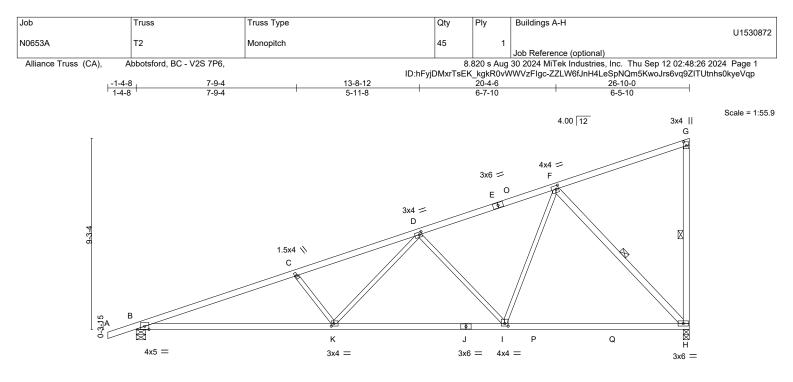

Job	Truss	Truss Type	Qty	Ply	Buildings A-H	
N0653A	S19	BLOCKING SUPPORTED	1	1		U1530870
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,			820 e Aug	Job Reference (option	nal) ies, Inc. Thu Sep 12 02:48:20 2024 Page 1
		A 420-1 1-3	ID:hFyjDMxrTsE			EbVkuvGQqDVZ2btaU?y9b9cVrEYp4yeVqv Scale = 1:50.
		5x8 = D	3x5 C			
Plate Offsets (X,Y) [/	A:0-3-0,0-1-8], [C:0-2-8,0-3-0],	[D:0-3-0,0-1-8]	44			
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL TCDL 12.0 BCLL 0.0 *	Plate Grip DOL	-0-0 CSI. 1.15 TC 0.81 1.15 BC 0.05 NO WB 0.81 114 Matrix-P	()	in (loc) n/a - n/a - 00 C	l/defl L/d n/a 999 n/a 999 n/a n/a	PLATES GRIP MT20 197/144 Weight: 33 lb FT = 20%
Max Up	No.2 No.2	LC 24)	BRACING- TOP CHORD BOT CHORD WEBS	except e	end verticals. iling directly applied o	ectly applied or 1-3-4 oc purlins,
FORCES. (lb) - Max. C TOP CHORD A-D=-2		50 (Ib) or less except when shown.			PRMU20	240282 BLDG E
Enclosed; MWFRS (e 2) Truss designed for wi Gable End Details as 3) TCLL: ASCE 7-16; Pf 4) Provide adequate dra 5) Gable requires contin 6) Truss to be fully shea 7) Gable studs spaced a 8) This truss has been d 9) * This truss has been will fit between the bo 10) Provide mechanical D=2151, C=2151.	nvelope) gable end zone; Lun nd loads in the plane of the tru applicable, or consult qualifier =25.0 psf (Lum DOL = 1.15 Pl inage to prevent water pondin uous bottom chord bearing. thed from one face or securely t 2-0-0 oc. esigned for a 10.0 psf bottom designed for a 10.0 psf bottom designed for a live load of 20. ttom chord and any other men connection (by others) of trust	ν braced against lateral movement (i.e. d chord live load nonconcurrent with any c 0psf on the bottom chord in all areas wh	mal to the face), 'artially Exp.; Ce= iagonal web). ther live loads. ere a rectangle 3 g 100 lb uplift at j	see Standa =1.0; Cs=1 -6-0 tall by point(s) exce	ard Industry 00; Ct=1.10 2-0-0 wide ept (jt=lb)	JUAN GARCIA

12) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0 to 1-3-4 for 240.0 plf.

240 Stirling Crescent Bradford, ON. L3Z 4L5

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS//TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Buildings A-H
					U1530871
N0653A	T1	GABLE	9	1	
					Job Reference (optional)
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,		8.	820 s Aug	30 2024 MiTek Industries, Inc. Thu Sep 12 02:48:26 2024 Page 2
		ID:hFviE)MxrTsEK	kakR0vW	WVzFlac-ZZLW6fJnH4LeSpNQm5KwoJruyyrDZHuUtnhs0kveVap


NOTES-

13) No notches allowed in overhang and 10408 from left end and 0 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.

PRMU20240282 BLDG E

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	<u>9-7-0</u> 9-7-0		<u>17-10-8</u> 8-3-8			5-10-0 -11-8	ł
Plate Offsets (X,Y) [D	:0-1-8,0-1-8], [F:0-1-8,0-2-0], [G:0-2-4,0)-1-8], [l:0-2-0,0-1-8], [K:	:0-1-8,0-1-8]				
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL 12.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.94 BC 0.95 WB 0.89 Matrix-MS	()	in (loc) -0.31 H-I -0.55 K-N 0.07 H 0.13 K-N	l/defl L/d >999 360 >587 240 n/a n/a >999 240	PLATES MT20 Weight: 103 lb	GRIP 197/144 FT = 20%

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUM	BER-
TOP	СНО

BO

WE

MBER-		
P CHORD	2x4 SPF No.2	
T CHORD	2x4 SPF No.2 *Except*	
	B-J: 2x4 SPF 2100F 1.8E	
BS	2x3 SPF No.2 *Except*	
	G-H,F-H: 2x4 SPF No.2	

REACTIONS. (size) H=0-3-8, B=0-5-8 Max Horz B=301(LC 9) Max Uplift H=-180(LC 10), B=-182(LC 6) Max Grav H=1537(LC 3), B=1425(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD B-C=-3139/325, C-D=-2876/291, D-F=-1586/171, G-H=-296/51

- BOT CHORD B-K=-394/2941, I-K=-249/2033, H-I=-112/1082
- WEBS C-K=-534/165, D-K=-71/947, D-I=-914/199, F-I=-64/1078, F-H=-1568/234

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

- 4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

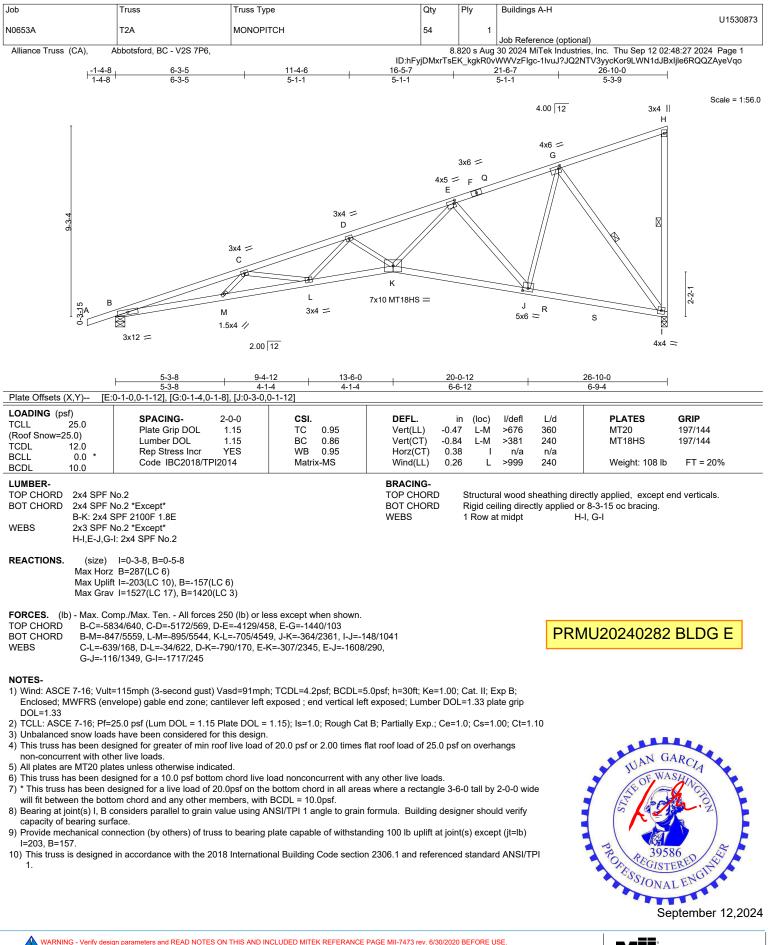
7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) H=180, B=182.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

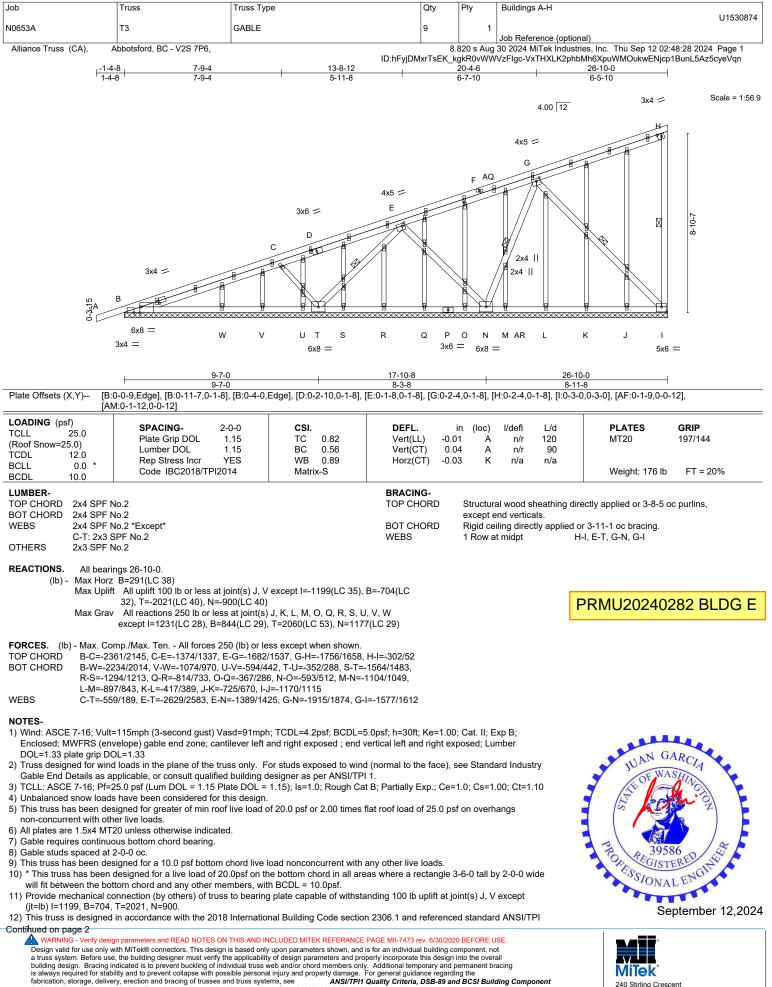
JUAN GARCIA ROTESSIONAL ENGINE VAL ENGINY · · September 12,2024

MiTek 240 Stirling Crescent Bradford, ON. L3Z 4L5

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


PRMU20240282 BLDG E

Structural wood sheathing directly applied, except end verticals.


G-H F-H

Rigid ceiling directly applied or 2-2-0 oc bracing.

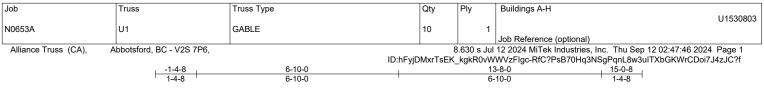
1 Row at midpt

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component</u> **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20001

 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 ANSI/TPI1 Quality Criteria,

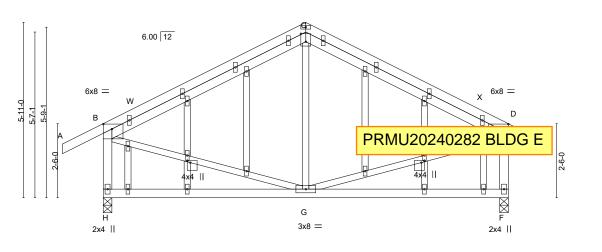
 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Buildings A-H
					U1530874
N0653A	T3	GABLE	9	1	
					Job Reference (optional)
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,		8.	820 s Aug	30 2024 MiTek Industries, Inc. Thu Sep 12 02:48:29 2024 Page 2
		ID:hFy	jDMxrTsEl	<_kgkR0vV	VWVzFlgc-z71fkhLga?jDJG5?RDudQxTP77y2me8xZlvXd3yeVqm


NOTES-

13) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 26-10-0 for 240.0 plf.

14) No notches allowed in overhang and 10408 from left end and 0 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Scale = 1:38.9

	L		6-10-0		13-8-0		_		
	I		6-10-0		6-10-0				
Plate Offsets (X,Y) [B:	0-3-8,0-2-0], [C:0-3-4,0-	2-0], [D:0-3-8,0	-2-0], [K:0-0-13,0-1-4], [T	:0-0-13,0-1-4]					
LOADING (psf) TCLL 25.0	SPACING-	2-0-0	CSI.	DEFL.	in (loc) l/defl	L/d	PLATES	GRIP	

LOADING	, ,	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	25.0	Plate Grip DOL	1.15	тс	0.81	Vert(LL)	-0.04	F-G	>999	360	MT20	197/144	
(Roof Snow=	=25.0)			-							101120	137/144	
TCDL	12.0	Lumber DOL	1.15	BC	0.33	Vert(CT)	-0.09	F-G	>999	240			
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.14	Horz(CT)	0.00	F	n/a	n/a			
BCDL	10.0	Code IBC2018/TI	PI2014	Matr	ix-MS	Wind(LL)	0.00	G	>999	240	Weight: 86 lb	FT = 20%	
LUMBER-		•				BRACING-							
TOP CHORE	2x4 SPF I	No.2				TOP CHOR	D 5	Structura	al wood s	sheathing dir	ectly applied or 3-11-6	6 oc purlins,	
BOT CHORE	2x4 SPF 1	No.2					e	except e	end vertic	als.			
WEBS	2x3 SPF I	No.2 *Except*				BOT CHOR	D F	Rigid ce	iling dire	ctly applied o	or 10-0-0 oc bracing.		
	B-H,D-F: 2	2x4 SPF No.2						-	-		Ŭ		

REACTIONS.	(size)	H=0-3-8, F=0-3-8
	Max Horz	H=-95(LC 8)
	Max Uplift	H=-77(LC 10), F=-77(LC 11)
	Max Grav	H=836(LC 17), F=836(LC 18)

2x3 SPF No 2

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

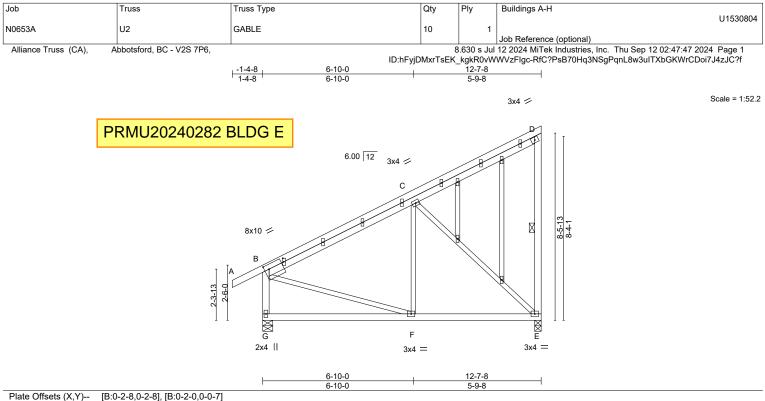
B-C=-643/66, C-D=-643/66, B-H=-771/103, D-F=-771/103 TOP CHORD

WEBS B-G=0/413, D-G=0/413

NOTES-

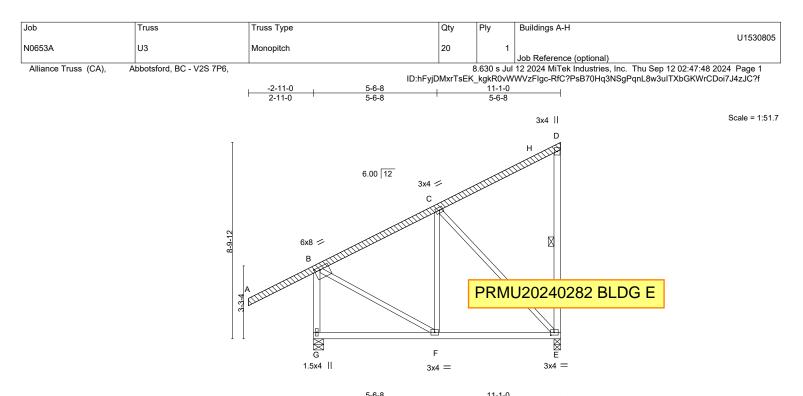
OTHERS

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 18.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs
- non-concurrent with other live loads.
- 6) All plates are 1.5x4 MT20 unless otherwise indicated.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) H, F.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

- 11) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 12) No notches allowed in overhang and 10408 from left end and 10408 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.

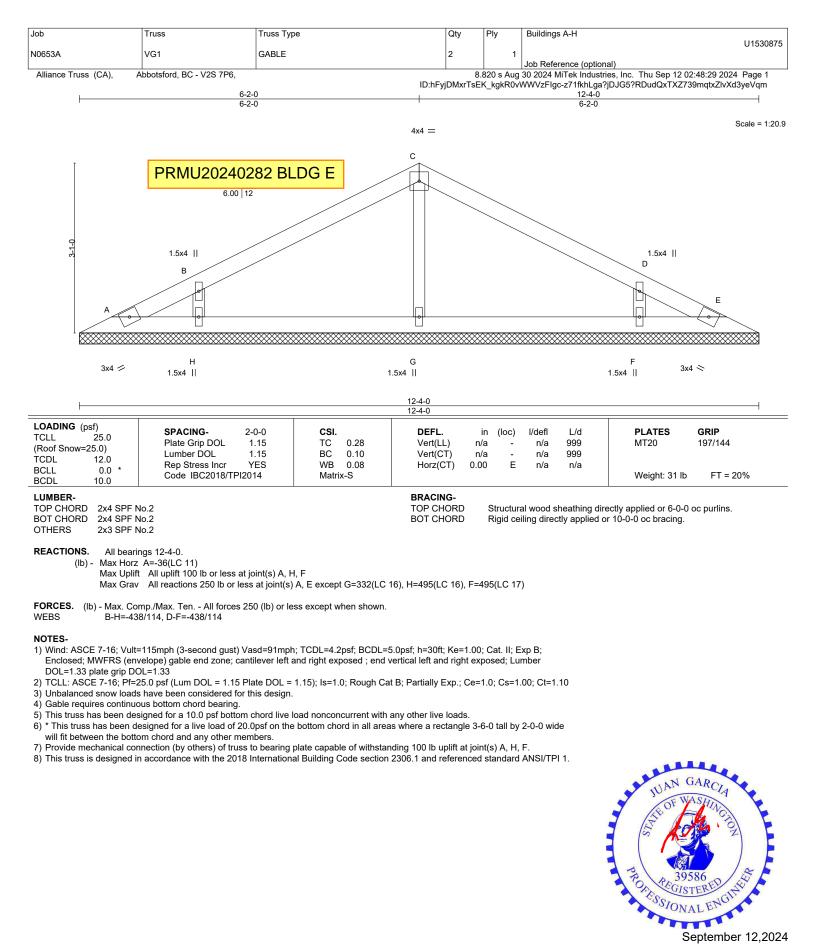
September 12,2024


besign valid to use only with with with exercising is based only upon parameters shown, and is to an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 MiTek 240 Stirling Crescent Bradford, ON. L3Z 4L5

LOADING (psf) TCLL 25.0 (Roof Snow=25.0) 12.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.63 BC 0.33 WB 0.92 Matrix-MS	Vert(CT) -0 Horz(CT) 0	in (loc) l/def .05 F-G >999 .10 F-G >999 .01 E n/a .02 E-F >999	360 240 a n/a	PLATES MT20 Weight: 82 lb	GRIP 197/144 FT = 20%
Max Horz Max Uplift C	.2 .2 *Except* 4 SPF No.2		BRACING- TOP CHORD BOT CHORD WEBS	except end ver	ticals. rectly applied or 6		oc purlins,
TOP CHORD B-C=-621/ BOT CHORD E-F=-101/4	p./Max. Ten All forces 250 (lb) or le 41, D-E=-262/51, B-G=-685/95 474 138, B-F=0/431	ss except when shown.					
 Enclosed; MWFRS (enve DOL=1.33 plate grip DOL 2) Truss designed for wind li Gable End Details as app 3) TCLL: ASCE 7-16; Pf=25 4) Unbalanced snow loads f 5) This truss has been desig non-concurrent with other 6) All plates are 1.5x4 MT20 7) Gable studs spaced at 2-1 8) This truss has been desig 9) * This truss has been desig 9) * This truss has been desig 9) * This truss has been desig 10) Provide mechanical con E=107. 11) This truss is designed in 1. 12) No notches allowed in o 	oads in the plane of the truss only. F licable, or consult qualified building of .0 psf (Lum DOL=1.15 Plate DOL=1. have been considered for this design ned for greater of min roof live load of live loads.	and right exposed ; end v or studs exposed to wind lesigner as per ANSI/TPI 15); Is=1.0; Rough Cat B; of 18.0 psf or 2.00 times f oad nonconcurrent with a bottom chord in all areas g plate capable of withsta nal Building Code sectior 0 from right end or 12" a	ertical left and right e (normal to the face), 1. Partially Exp.; Ce=1 at roof load of 25.0 p ny other live loads. where a rectangle 3 nding 100 lb uplift at 2306.1 and reference long rake from scarf,	exposed; Lumber , see Standard Inc .0; Cs=1.00; Ct=1 psf on overhangs 3-6-0 tall by 2-0-0 joint(s) G except (ced standard ANS , whichever is larg	vide it=lb) I/ТРI	PROFESSION	ASSATIC

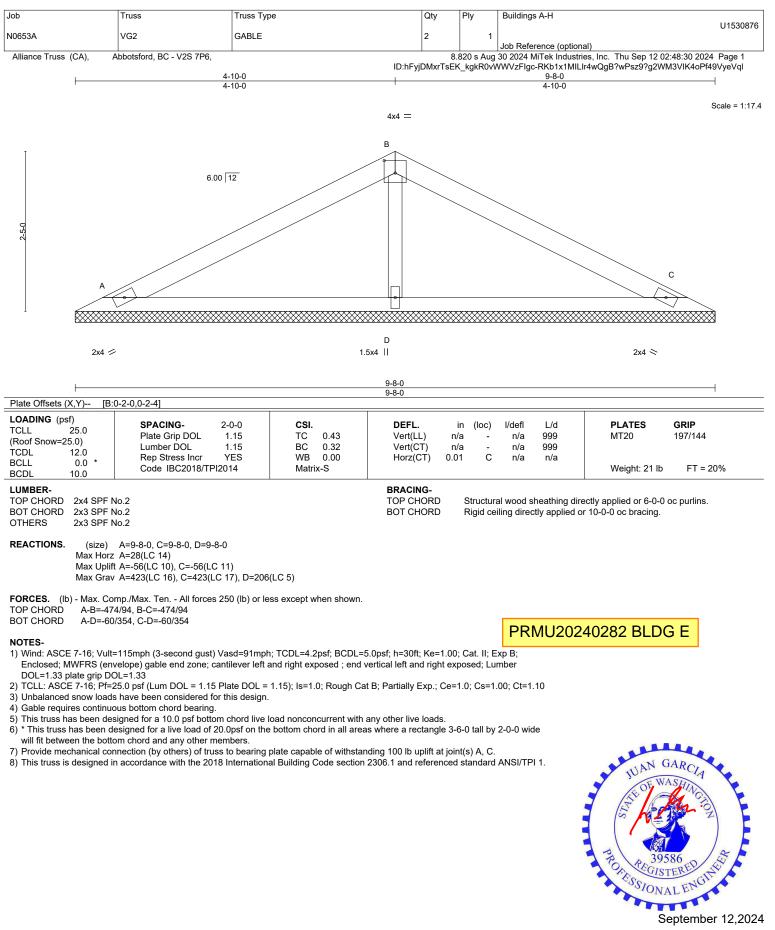
240 Stirling Crescent Bradford, ON. L3Z 4L5

AWARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

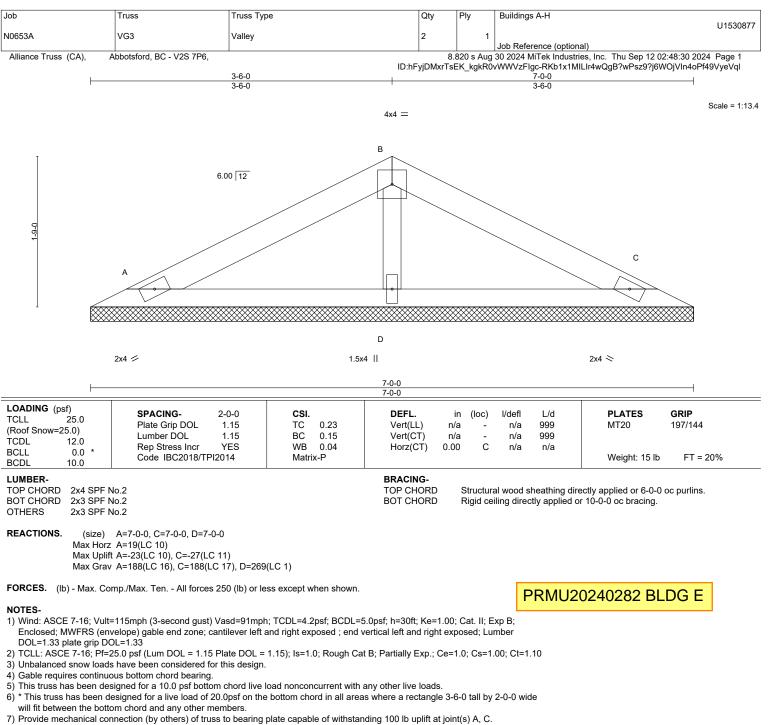

	<u>5-6-8</u> 5-6-8		<u>11-1-0</u> 5-6-8			
Plate Offsets (X,Y) [B:0-3-0,0-1-8], [E:0-1-12,0-1-8]						
LOADING (psf) SPACING- 2-0-0 TCLL 25.0 Plate Grip DOL 1.15 (Roof Snow=25.0) Lumber DOL 1.15 TCDL 12.0 Rep Stress Incr YES BCLL 0.0 * Code IBC2018/TPI2014	CSI. TC 0.63 BC 0.25 WB 0.67 Matrix-MS	DEFL. Vert(LL) -0. Vert(CT) -0. Horz(CT) -0. Wind(LL) -0.	00 E n/a	L/d 360 240 n/a 240	PLATES MT20 Weight: 77 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2 *Except* D-E,B-G: 2x4 SPF No.2 OTHERS 2x4 SPF No.2 LBR SCAB A-D 2x4 SPF No.2 one side REACTIONS. (size) G=0-5-8, E=0-3-8 Max Horz G=274(LC 7) Max Grav G=817(LC 17), E=629(LC 17)		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood except end verti Rigid ceiling dire 1 Row at midpt	cals.	•	oc purlins,
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (ll TOP CHORD B-C=-439/35, D-E=-260/51, B-G=-772/10 BOT CHORD F-G=-256/88, E-F=-114/311 WEBS C-E=-443/116, B-F=0/379						
 NOTES- 1) Attached 15-9-9 scab A to D, front face(s) 2x4 SPF No.2 2-5-1 from end at joint A, nail 1 row(s) at 4" o.c. for 2-0-0 starting at 13-5-14 from end at joint A, nail 1 row(s) at 7" 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd= Enclosed; MWFRS (envelope) gable end zone; cantileve DOL=1.33 plate grip DOL=1.33 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate D) 4) Unbalanced snow loads have been considered for this d 5) This truss has been designed for greater of min roof live non-concurrent with other live loads. 6) This truss has been designed for a live load of 20.0psf will fit between the bottom chord and any other members 8) Provide mechanical connection (by others) of truss to be 	I; starting at 8-5-8 from end at jo o.c. for 2-0-0. 91mph; TCDL=4.2psf; BCDL=5. er left and right exposed ; end ve OL=1.15); Is=1.0; Rough Cat B; esign. load of 18.0 psf or 2.00 times fla d live load nonconcurrent with a on the bottom chord in all areas s.	int A, nail 1 row(s) at .0psf; h=30ft; Ke=1.0i ertical left and right e: Partially Exp.; Ce=1. at roof load of 25.0 p: ny other live loads. s where a rectangle 3	: 7" o.c. for 2-0-0; 0; Cat. II; Exp B; xposed; Lumber 0; Cs=1.00; Ct=1.1 sf on overhangs -6-0 tall by 2-0-0 w	0 de	JUAN G	ARCIA SHINCICL

ιg μ upi ւյս u(s) epr (j (Dy 3) E=103.

9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.


MiTek 240 Stirling Crescent Bradford, ON. L3Z 4L5

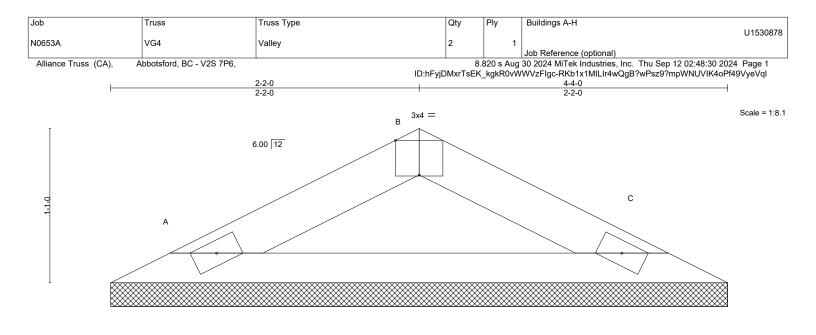
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to use only with with with exercising is based only upon parameters shown, and is to an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


September 12,2024

September 12,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to use only with with with exercising is based only upon parameters shown, and is to an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek 240 Stirling Crescent Bradford, ON. L3Z 4L5


8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to use only with with with exercising is based only upon parameters shown, and is to an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

240 Stirling Crescent Bradford, ON. L3Z 4L5

MiTek

2x4 💋

2x4 📚

Rigid ceiling directly applied or 10-0-0 oc bracing.

4-4-0 4-4-0 Plate Offsets (X,Y)--[B:0-2-0,Edge] LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) l/defl L/d PLATES GRIP TCLL 25.0 Plate Grip DOL 1.15 тс 0.06 Vert(LL) n/a n/a 999 MT20 197/144 (Roof Snow=25.0) Lumber DOL вс 0.23 Vert(CT) 1.15 n/a n/a 999 TCDL 12.0 WB С Rep Stress Incr YES 0.00 Horz(CT) 0.00 n/a n/a BCLL 0.0 Code IBC2018/TPI2014 Matrix-P Weight: 8 lb FT = 20% BCDL 10.0 LUMBER-BRACING-TOP CHORD 2x4 SPF No.2 TOP CHORD Structural wood sheathing directly applied or 4-4-0 oc purlins.

BOT CHORD

BOT CHORD 2x3 SPF No.2

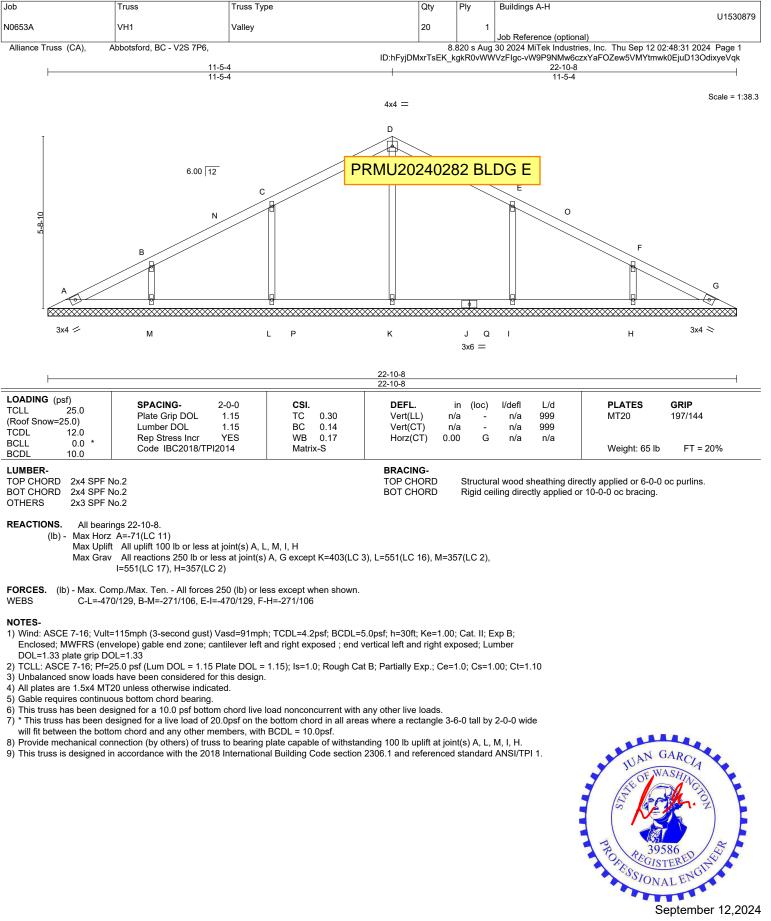
REACTIONS. (size) A=4-4-0, C=4-4-0

Max Horz A=11(LC 10) Max Uplift A=-13(LC 10), C=-13(LC 11)

Max Grav A=166(LC 16), C=166(LC 17)

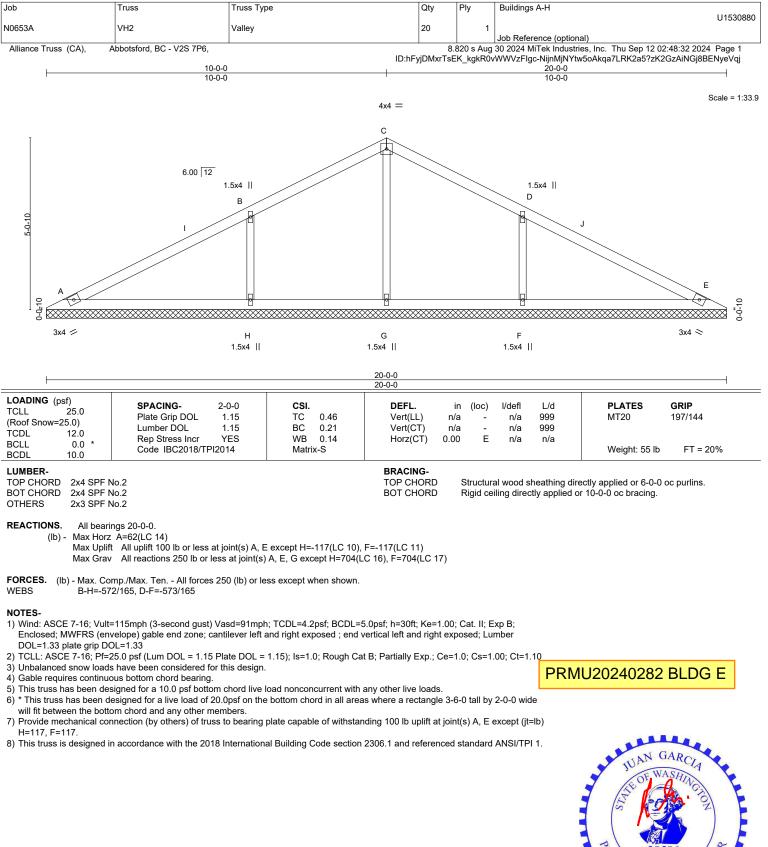
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-


- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A, C.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component</u> **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20001

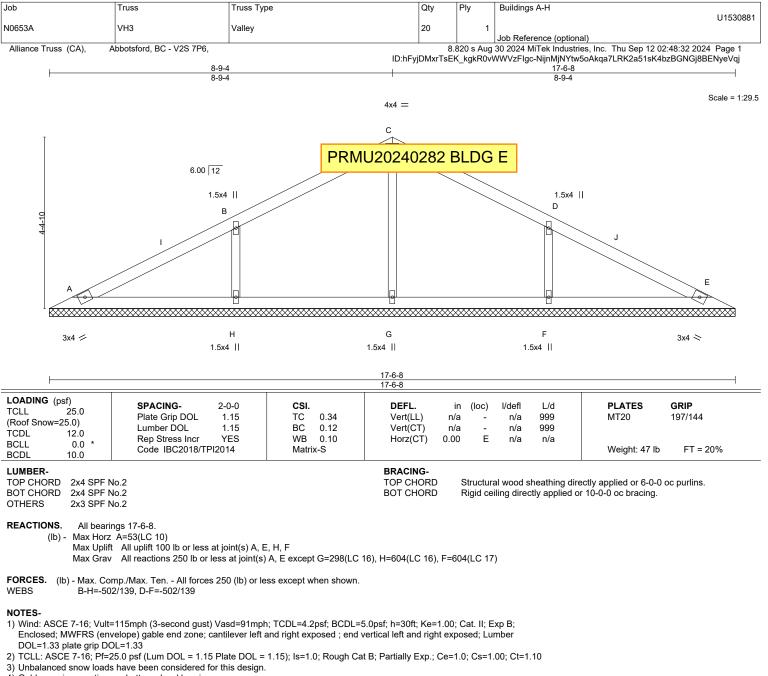
PRMU20240282 BLDG E



September 12,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to use only with with with exercising is based only upon parameters shown, and is to an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek 240 Stirling Crescent Bradford, ON. L3Z 4L5



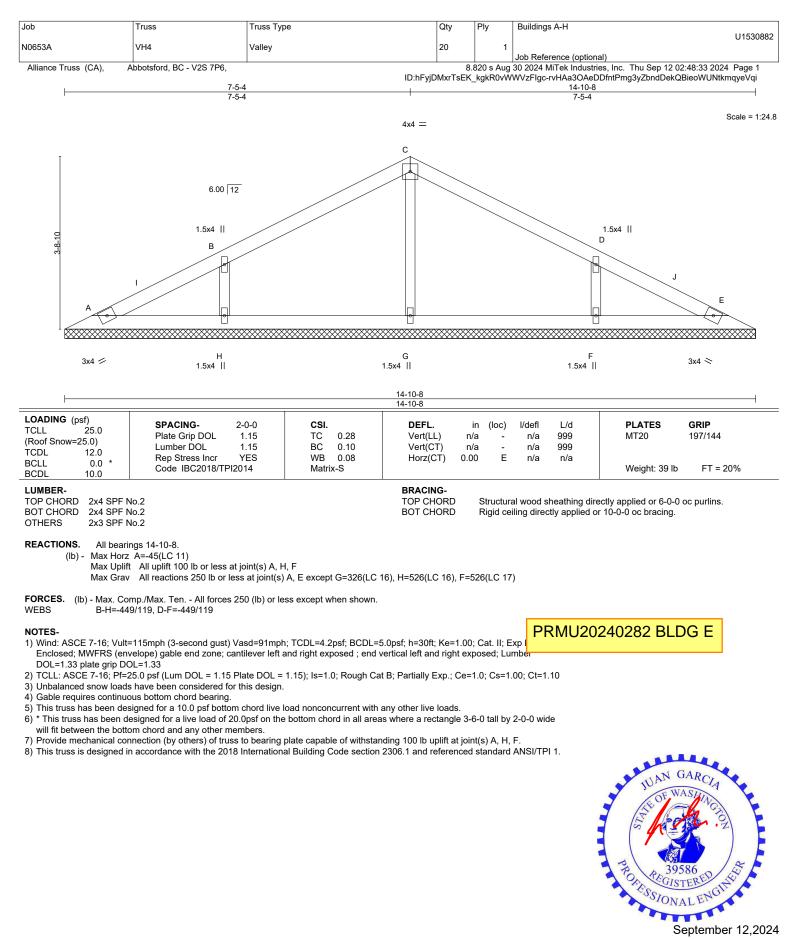
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to use only with with with exercising is based only upon parameters shown, and is to an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek

240 Stirling Crescent Bradford, ON. L3Z 4L5

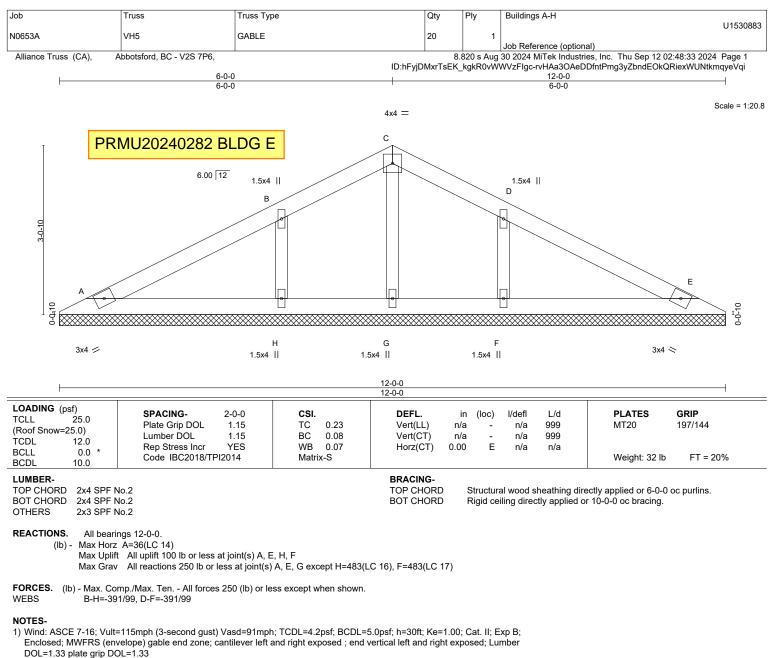
4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A, E, H, F.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.



MiTek 240 Stirling Crescent Bradford, ON. L3Z 4L5

September 12,2024

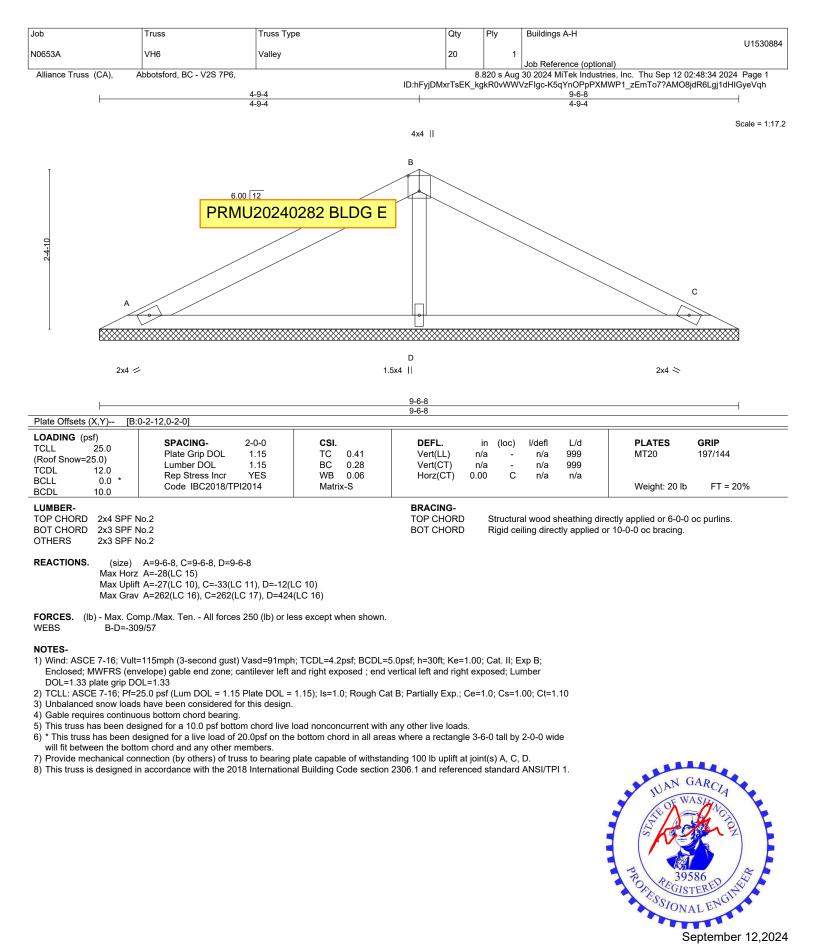
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to use only with with with exercising is based only upon parameters shown, and is to an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

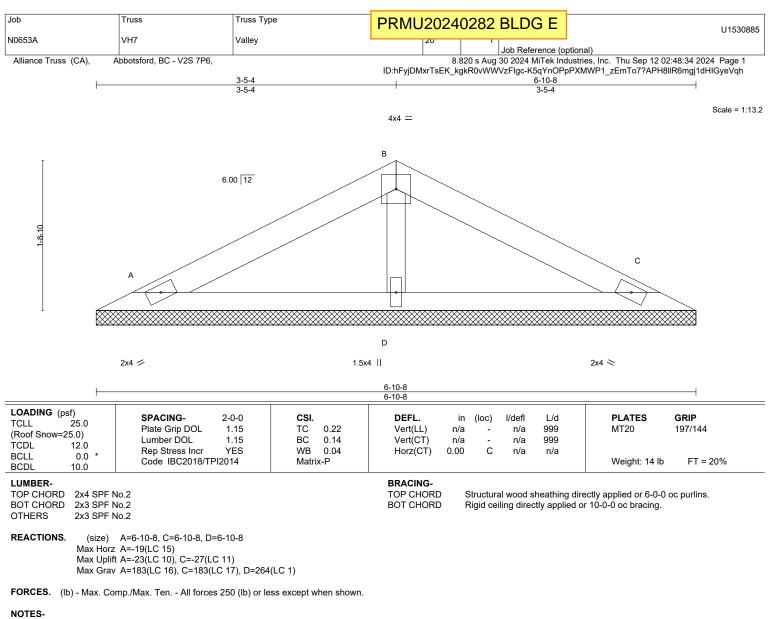
4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

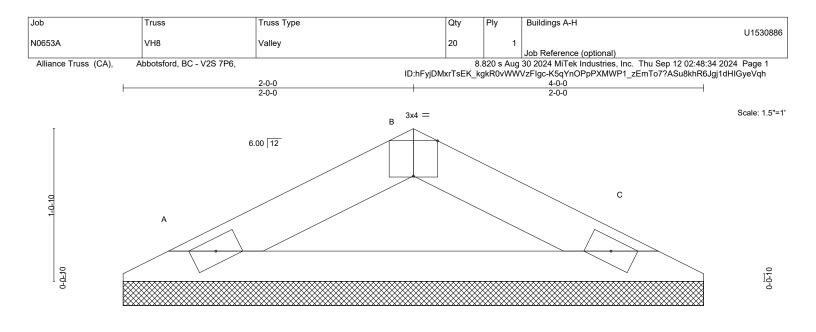

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A, E, H, F.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to use only with with with exercising is based only upon parameters shown, and is to an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


September 12,2024

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A, C.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

2x4 ⋍

2x4 📚

Rigid ceiling directly applied or 10-0-0 oc bracing.

			4-0-0 4-0-0	I
Plate Offsets (X,Y) [B	:0-2-0,Edge]			
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL TCDL 12.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2018/TPI2014	CSI. TC 0.05 BC 0.21 WB 0.00 Matrix-P	DEFL. in (loc) l/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) 0.00 C n/a n/a	PLATES GRIP MT20 197/144 Weight: 8 lb FT = 20%
LUMBER- TOP CHORD 2x4 SPF	No.2		BRACING- TOP CHORD Structural wood sheathing d	irectly applied or 4-2-8 oc purlins.

BOT CHORD

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x3 SPF No.2

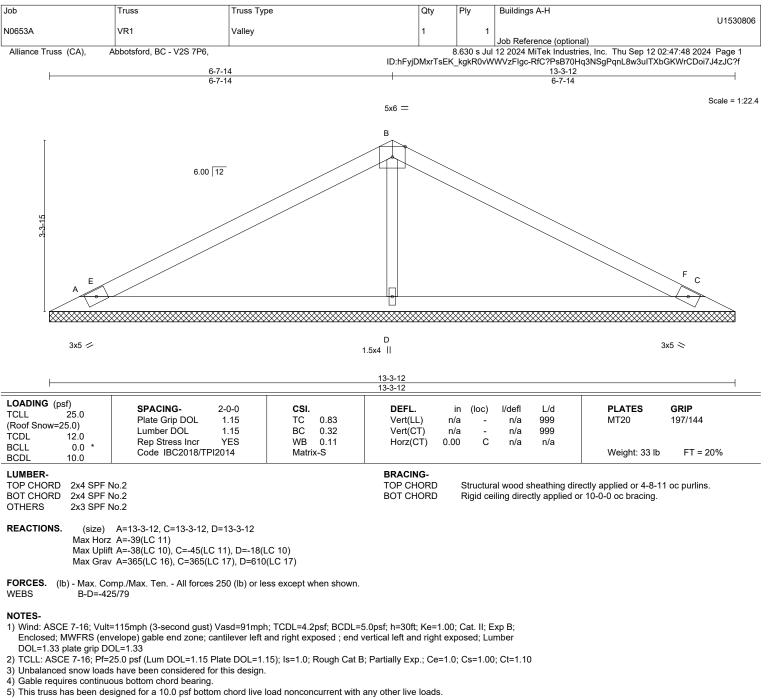
REACTIONS. (size) A=4-0-0, C=4-0-0

Max Horz A=-10(LC 15) Max Uplift A=-12(LC 10), C=-12(LC 11)

Max Grav A=159(LC 16), C=159(LC 17)

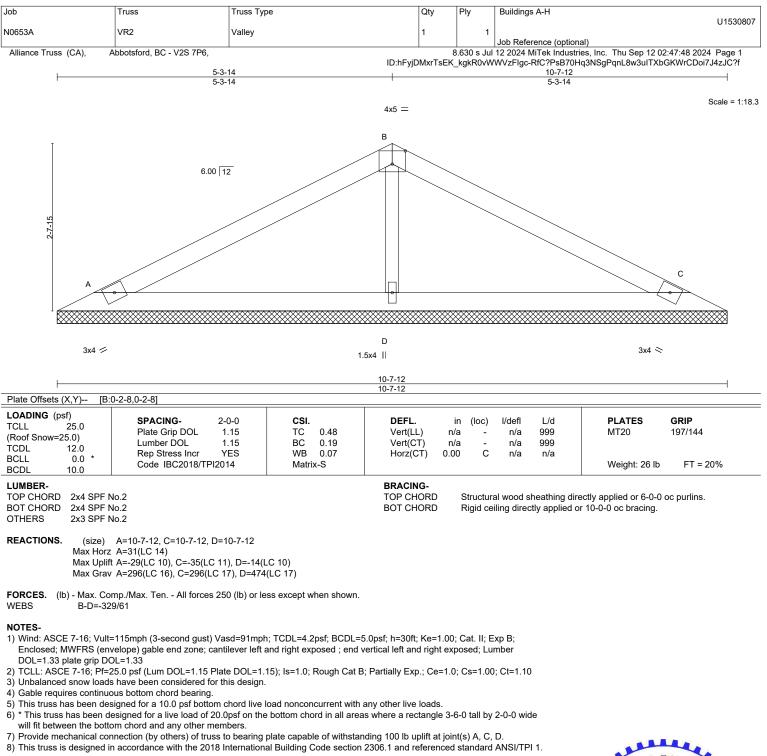
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-


- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.

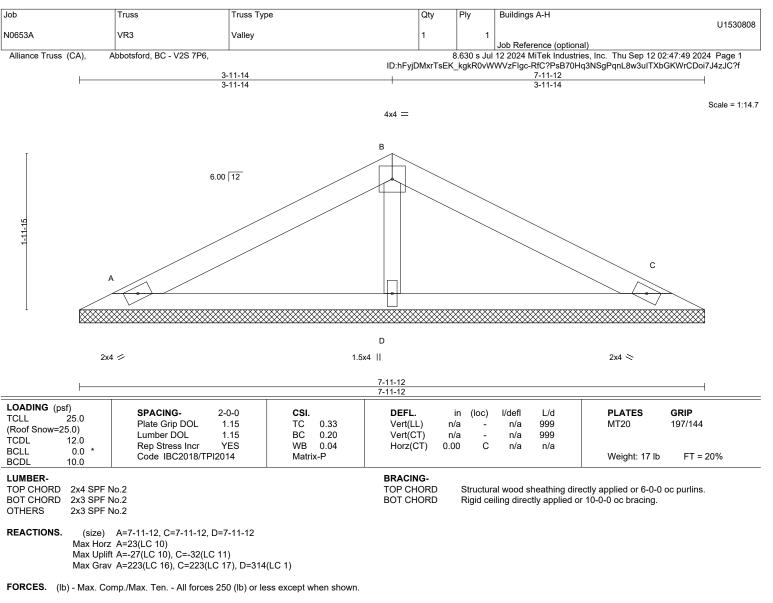
Gable requires continuous bottom chord bearing.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A, C.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.


6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

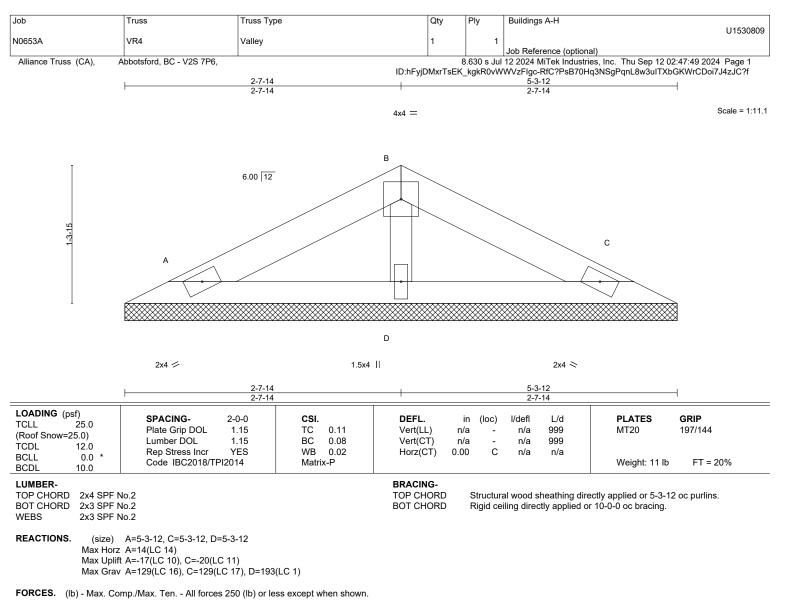
7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A, C, D.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.



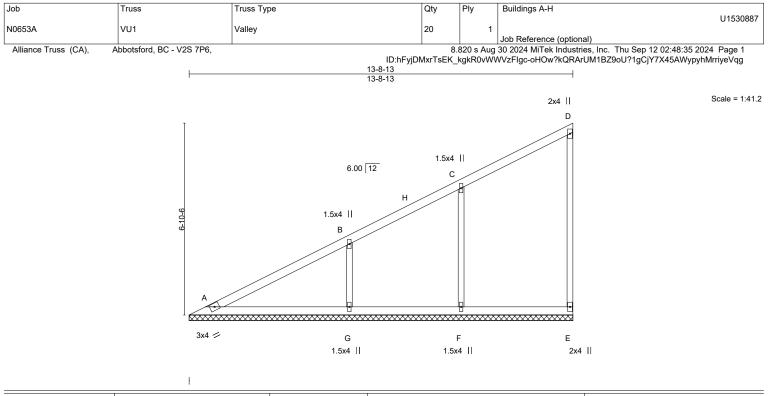
September 12,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to use only with with with exercising is based only upon parameters shown, and is to an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A, C.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.



NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A, C.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL TCDL 12.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIBC2018/TPI2014	CSI. TC 0.34 BC 0.20 WB 0.23 Matrix-S	(/ /	in (loc) l/defl n/a - n/a n/a - n/a 00 E n/a	999	PLATES MT20 Weight: 43 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 SPF N BOT CHORD 2x4 SPF N			BRACING- TOP CHORD	Structural wood except end vert	0	ectly applied or 6-0-0	oc purlins,

 BOT CHORD
 2x4 SPF No.2
 except end verticals.

 WEBS
 2x3 SPF No.2
 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

 OTHERS
 2x3 SPF No.2
 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 13-8-13.

(lb) - Max Horz A=201(LC 7)

Max Uplift All uplift 100 lb or less at joint(s) E, F except G=-103(LC 10) Max Grav All reactions 250 lb or less at joint(s) A, E except F=528(LC 3), G=509(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

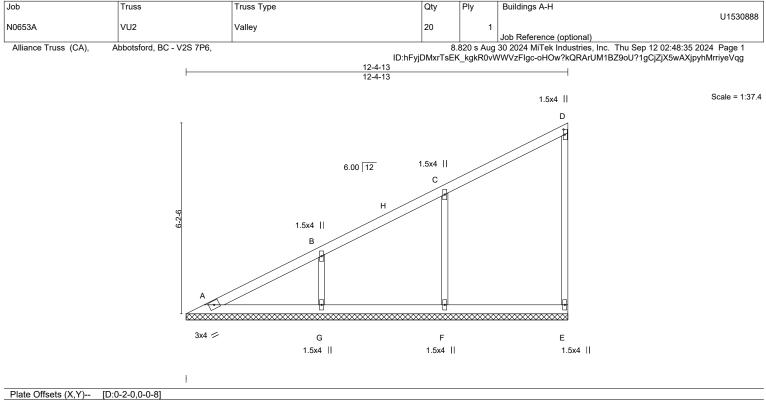
WEBS C-F=-446/107, B-G=-381/150

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) E, F except (jt=lb) G=103.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

REACTIONS. All bearings 12-4-13.

(lb) - Max Horz A=180(LC 7)

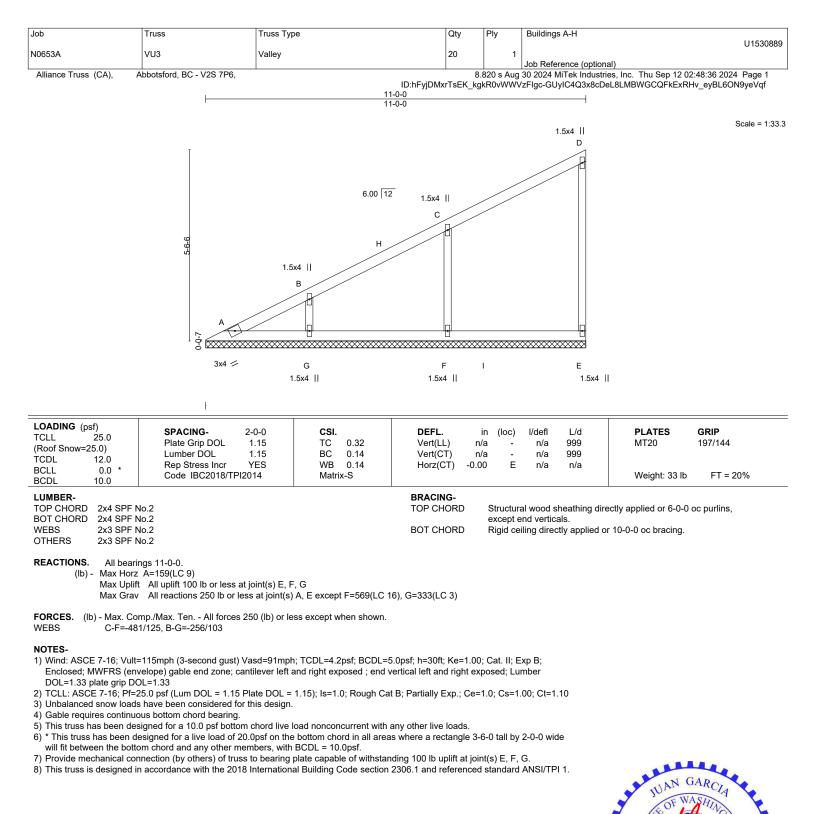
Max Uplift All uplift 100 lb or less at joint(s) E, F, G

Max Grav All reactions 250 lb or less at joint(s) A, E except F=562(LC 3), G=409(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

C-F=-469/118, B-G=-310/123

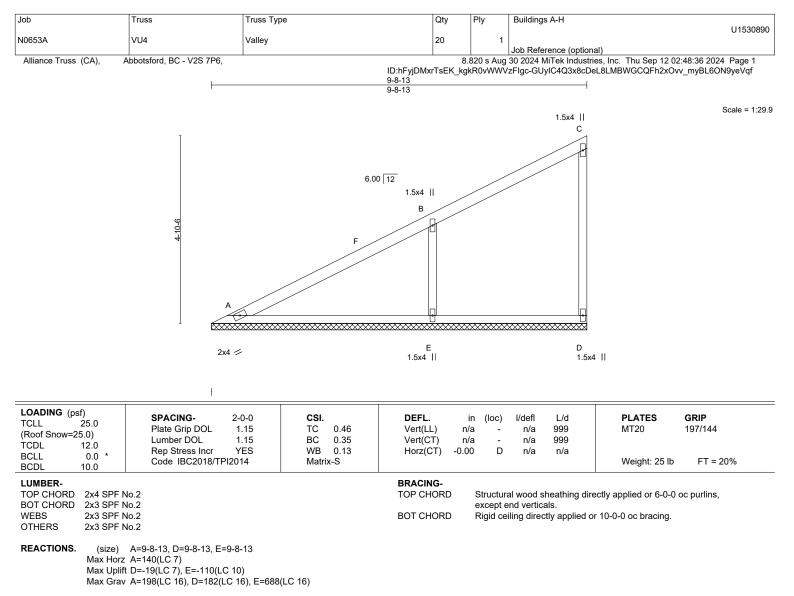
WEBS


- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

4) Gable requires continuous bottom chord bearing.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) E, F, G.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to use only with with with exercising is based only upon parameters shown, and is to an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



POREGISTERED REGISTERED

St

September 12,2024

à

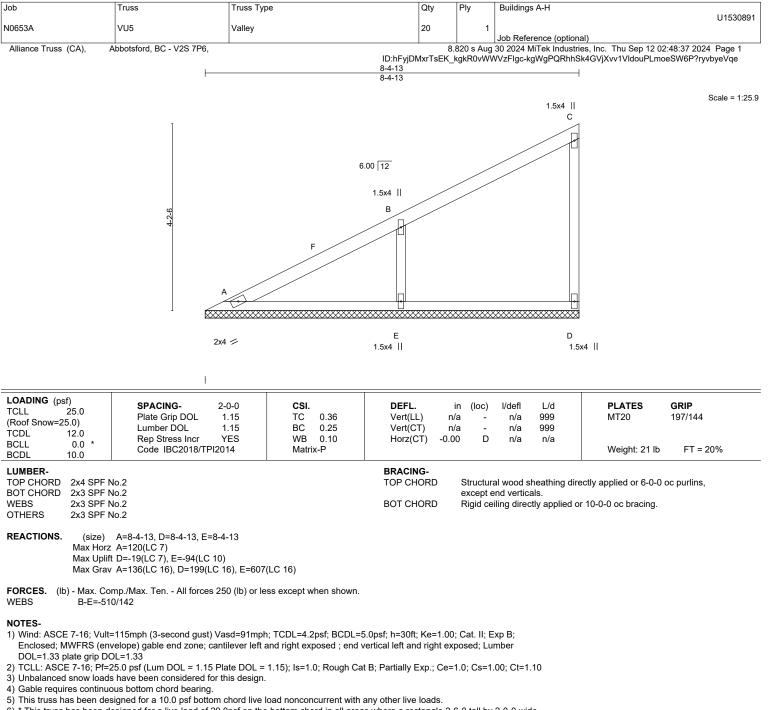
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS B-E=-571/157

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

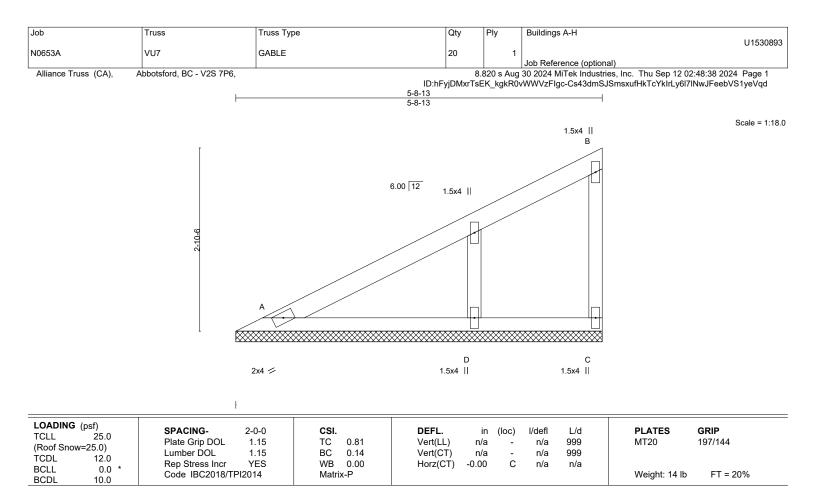
7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) D except (jt=lb) E=110.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.



6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) D, E.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.



8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 Milek°

240 Stirling Crescent Bradford, ON. L3Z 4L5

BRACING-

TOP CHORD

BOT CHORD

N	O.	TF	- 5

TOP CHORD

LUMBER-

WFBS

OTHERS REACTIONS.

TOP CHORD

BOT CHORD

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

(size) A=5-8-13, C=5-8-13, D=5-8-13

Max Grav A=311(LC 16), C=294(LC 16), D=134(LC 5) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Max Uplift A=-33(LC 10), C=-61(LC 10)

4) Gable requires continuous bottom chord bearing.

2x4 SPF No.2

2x3 SPF No.2

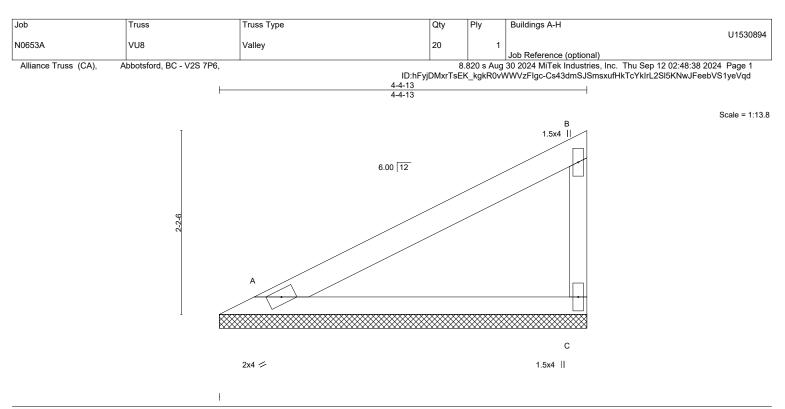
2x3 SPE No 2

2x3 SPE No 2

B-C=-286/65

Max Horz A=79(LC 9)

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A, C.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.



Structural wood sheathing directly applied or 5-8-13 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals

LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL 12.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2018/TPI2014	CSI. TC 0.40 BC 0.29 WB 0.00 Matrix-P	Vert(LL) n	in (loc) /a - /a - 00 C	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES GRIP MT20 197/144 Weight: 10 lb FT = 20%
LUMBER- TOP CHORD 2x4 SPF N	0.2		BRACING- TOP CHORD	Structur	al wood s	sheathing dir	ectly applied or 4-4-13 oc purlins,

BOT CHORD

except end verticals

Rigid ceiling directly applied or 10-0-0 oc bracing.

BOT CHORD 2x4 SPF No.2 BOT CHORD 2x3 SPF No.2 WEBS 2x3 SPF No.2

REACTIONS. (size) A=4-4-13, C=4-4-13

Max Horz A=58(LC 9)

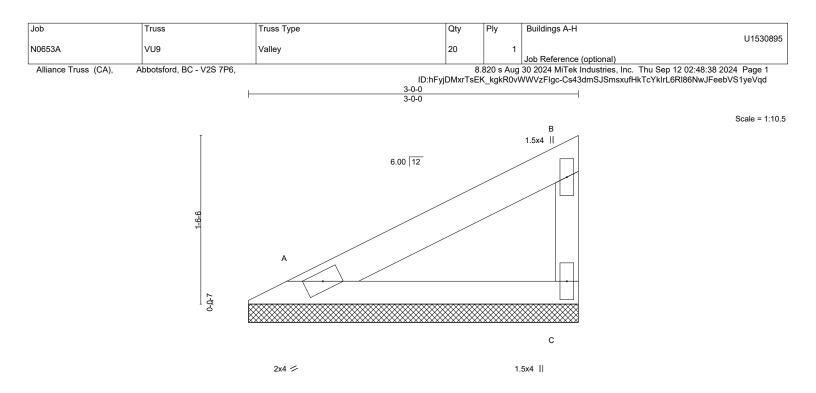
Max Uplift A=-15(LC 10), C=-29(LC 10) Max Grav A=239(LC 16), C=239(LC 16)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

4) Gable requires continuous bottom chord bearing.


5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A, C.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

	1		
004.0010			
SPACING-	2-0-0	CSI.	DEFL.
Plate Grip DOL	1.15	TC 0.15	Vert(LL
Lumber DOI	1 15	BC 0.11	Vert(C

TCLL 25.0 (Roof Snow=25.0) 12.0 TCDL 12.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.15 BC 0.11 WB 0.00 Matrix-P	()	in (loc) n/a - n/a - 00 C	n/a	L/d 999 999 n/a	PLATES MT20 Weight: 7 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 SPF BOT CHORD 2x3 SPF			BRACING- TOP CHORD		al wood she end verticals		tly applied or 3-0-1	13 oc purlins,

BOT CHORD

in (loc)

l/defl

I/d

Rigid ceiling directly applied or 10-0-0 oc bracing.

2x3 SPF No.2 WEBS

LOADING (psf)

REACTIONS. (size) A=3-0-0, C=3-0-0

Max Horz A=37(LC 7)

Max Uplift A=-10(LC 10), C=-19(LC 10) Max Grav A=147(LC 16), C=147(LC 16)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

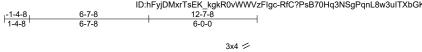
- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

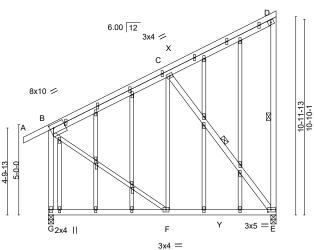
6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A, C.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.


PLATES

GRIP

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to use only with with with exercising is based only upon parameters shown, and is to an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

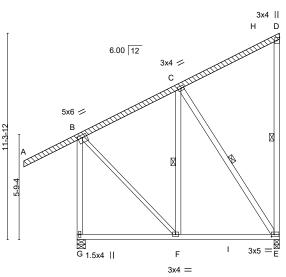

Job	Truss	Truss Type	Qty	Ply	Buildings A-H		
N0653A	W1	GABLE	10	1	U1530810		
					Job Reference (optional)		
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,	8.630 s Jul 12 2024 MiTek Industries, Inc. Thu Sep 12 02:47:50 2024 Page 1					
		ID:hFyjDMxrTsEK_kgkR0vWWVzFlgc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f					

12-7-8

Scale: 3/16"=1'

V MiTek 240 Stirling Crescent Bradford, ON. L3Z 4L5

6-7-8


		6-7-8	6-0-0
Plate Offsets (X,Y)	[B:0-2-0,0-0-7], [B:0-2-8,0-2-8], [E:0-2-0,0-1-8], [P:	0-1-13,0-0-0], [Q:0-2-0	,0-0-8], [S:0-1-13,0-0-0]

F

LOADING (orbit) (Roof Sow=25.0) (Roof Sow=25.0)
TOP CHORD 2x4 SPF No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purdins. WEBS 2x4 SPF No.2 BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. OT HERS 2x4 SPF No.2 BOT CHORD WEBS TOP CHORD Net not Co-20 oc bracing. OTHERS 2x3 SPF No.2 BOT CHORD WEBS 1 Row at midpt D-E, C-E REACTIONS. (size) Gr-0-38, E=0-3-8 WEBS Secondary Secondary D-E, C-E REACTIONS. (size) Gr-0-38, E=0-3-8 WEBS Secondary Secondary D-E, C-E REACTIONS. (size) Gr-0-48, E=0-3-8 WEBS Secondary Secondary D-E, C-E FORCES. (b) Max road Gr-33(LC T) Max Hozd Gr-34(LC 21), E=741(LC 3) Secondary Seco
Max Horz G=323(L C 7) Max Core 754(L C 21), E=741(L C 7) Max Grav G=754(L C 21), E=741(L C 3) FORCES. ((b) - Max. Comp./Max. Ten All forces 250 ((b) or less except when shown. TOP CHORD B-C=469/36, D-E=273/56, B-G=669/88 BOT CHORD F-G=299/136, E-F=-7140/347 WEBS C-E=-544/134, B-F=-140/347 NOTES- 1) Wint: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30f; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; i end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1. 3) TCLL: ASCE 7-16; PI=25.0 psf (Lum DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Unbalanced now loads have been considered for this design. 5) This truss has been designed for grater of min roof live load of 18.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads. 6) All plates are 1.5x4 MT2 Unless otherwise indicated. 7) Gable studs spaced at 2-0-0 oc. 8) This truss has been designed for a live load of 18.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 1 0.0psf. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) G except (I(=lb) E=141. 11) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1. 12) No notches allowed in overhang and 10408 from left end and 0 from right end or 12° along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 oc. maximum between
 TOP CHORD B-C=-469/36, D-E=-273/56, B-G=-689/88 BOT CHORD F-G=-299/136, E-F=-140/347 WEBS C-E=-544/134, B-F=-19/443 NOTES Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANS/TP1 1. TCLL: ASCE 7-16; PT=25.0 psf (Lum DOL=-1.15 Pilate DOL=-1.15); Is=-1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live load of 18.0 psf or 2.00 times flat roof load of 25.0 psf (un overhangs non-concurrent with other live loads. All paletes are 1.5x4 MT20 unless otherwise indicated. Gable studs spaced at 2-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will flit between the bottom chord and any other members, with BCDL = 1.0. Opsf. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) G except (iE=lb) E=141. No notches allowed in overhang and 10408 from left end and 0 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 oc. maximum between the stacking chords. For edge-wise notching, provide at least
 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for greater of min roof live load of 18.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads. 6) All plates are 1.5x4 MT20 unless otherwise indicated. 7) Gable studs spaced at 2-0-0 oc. 8) This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) G except (jt=lb) E=141. 11) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1. 12) No notches allowed in overhang and 10408 from left end and 0 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least
September 12,202

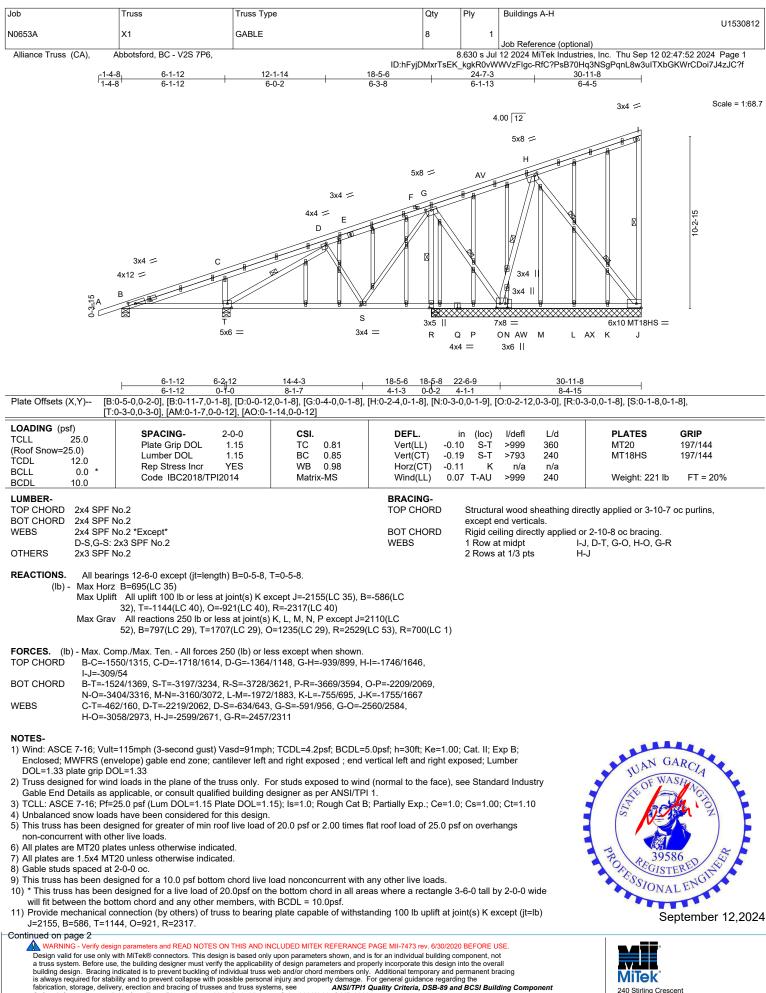
Design valid for use only with MITeK connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type			Qty	Ply	Buildings A-H
							U1530811
N0653A	W2	Monopitch			20	1	
							Job Reference (optional)
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,					630 s Jul	12 2024 MiTek Industries, Inc. Thu Sep 12 02:47:51 2024 Page 1
				ID:hFyjl	DMxrTsEK	_kgkR0vW	/WVzFlgc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f
		-2-11-0	5-6-8	1	11	-1-0	
		2-11-0	5-6-8	1	5-	6-8	

5-6-8	11-1-0
5-6-8	5-6-8

Plate Offsets (X,Y) [B:	0-3-0,0-1-12], [D:Edge,0-1-12], [E:0-1-	12,0-1-8]		5-0-0				
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL 12.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.63 BC 0.29 WB 0.18 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.06 E -0.00	oc) l/defl E-F >999 E-F >999 E n/a E-F >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 93 lb	GRIP 197/144 FT = 20%
B-F: 2x3 S OTHERS 2x4 SPF N LBR SCAB A-D 2x4 S	No.2 No.2 *Except* SPF No.2		BRACING- TOP CHORI BOT CHORI WEBS	exce D Rigio	ept end vertica	als. tly applied or	ectly applied or 6-0-0 r 6-0-0 oc bracing. E, C-F, C-E	oc purlins,
Max Horz Max Uplift Max Grav FORCES. (Ib) - Max. Col TOP CHORD B-C=-35 BOT CHORD F-G=-32	G=345(LC 7) t G=-79(LC 10), E=-175(LC 7) G=817(LC 17), E=637(LC 3) mp./Max. Ten All forces 250 (lb) or le 6/37, D-E=-261/53, B-G=-774/103 2/137, E-F=-153/251 8/155, B-F=-19/412	ess except when shown.						
 2-5-1 from end at joint A starting at 13-5-14 from 2) Wind: ASCE 7-16; Vult= Enclosed; MWFRS (env DOL=1.33 plate grip DC 3) TCLL: ASCE 7-16; Pf=2 4) Unbalanced snow loads 5) This truss has been des non-concurrent with oth 	25.0 psf (Lum DOL=1.15 Plate DOL=1. s have been considered for this design signed for greater of min roof live load o	ing at 8-5-8 from end at jc or 2-0-0. n; TCDL=4.2psf; BCDL=5. and right exposed ; end vc 15); Is=1.0; Rough Cat B; of 18.0 psf or 2.00 times fl	ont A, nail 1 row(.0psf; h=30ft; Ke: ertical left and rig Partially Exp.; C at roof load of 25	(s) at 7" o.c. =1.00; Cat. ht exposed ==1.0; Cs= 5.0 psf on ov	. for 2-0-0; II; Exp B; I; Lumber 1.00; Ct=1.10		JUAN C	GARCIA

- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) G except (jt=lb)
- E=175.


9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Scale = 1:63.1

Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

240 Stirling Crescent Bradford, ON. L3Z 4L5

Job	Truss	Truss Type	Qty	Ply	Buildings A-H		
					U1530812		
N0653A	X1	GABLE	8	1			
					Job Reference (optional)		
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,	8.630 s Jul 12 2024 MiTek Industries, Inc. Thu Sep 12 02:47:52 2024 Page 2					
		ID:hFyjDMxrTsEK_kgkR0vWWVzFIgc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f					

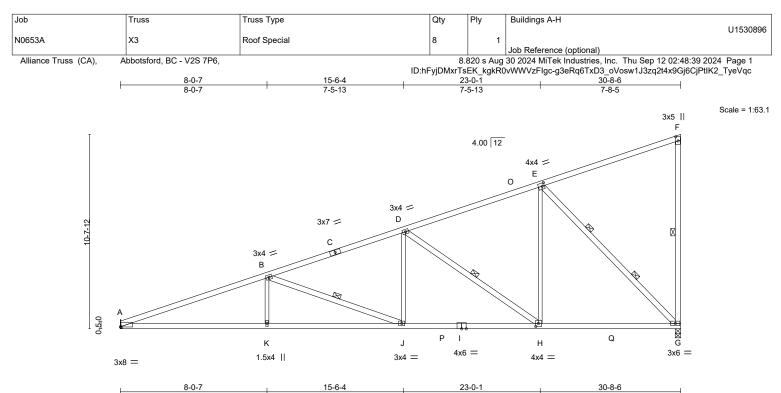
NOTES-

- 12) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 13) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 18-5-8 to 30-11-8 for 594.4 plf.
- 14) No notches allowed in overhang and 10408 from left end and 0 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.

ŀ	6-1-12 0-1-0	8-1-7		8-2-7	1	8-4-15	
Plate Offsets (X,Y) [B:	0-1-10,Edge], [D:0-1-12,0	-1-8], [I:0-2-4,0-1-8], [J:0-2-0,0-1-12]	, [M:0-1-12,0-1-8]				
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) 7CDL TCDL 12.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2018/TPI	2-0-0 CSI. 1.15 TC 0.78 1.15 BC 0.84 YES WB 0.76 2014 Matrix-MS	DEFL. Vert(LL) -0 Vert(CT) -0. Horz(CT) 0. Wind(LL) -0.	22 I-J >9 35 I-J >8 05 I	lefi L/d 199 360 142 240 n/a n/a 199 240	PLATES MT20 Weight: 129 lb	GRIP 197/144 FT = 20%
			BRACING- TOP CHORD BOT CHORD	except end v Rigid ceiling 6-0-0 oc bra	verticals. directly applied or cing: B-M.	ctly applied or 4-4-1 or 10-0-0 oc bracing, E	
REACTIONS. (size)	I=0-3-8, B=0-5-8, M=0-5	-8	WEBS	1 Row at mi	ирт П-	I, D-M, G-I	

Max Horz B=347(LC 9) Max Uplift I=-169(LC 10), B=-48(LC 6), M=-195(LC 10) Max Grav I=1468(LC 3), B=291(LC 1), M=1728(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


- TOP CHORD D-F=-1555/160, F-G=-1151/138, H-I=-301/52
- BOT CHORD B-M=-285/0, L-M=-188/1346, J-L=-147/1312, I-J=-112/834
- WEBS C-M=-473/153, D-M=-1830/189, F-J=-549/154, G-J=-51/847, G-I=-1360/201

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- 5) All plates are 3x4 MT20 unless otherwise indicated.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) B except (jt=lb) l=169, M=195.
- 9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

I	8-0-7	7-5-13	7-5-13	7-8-5	1
Plate Offsets (X,Y) [A:	0-0-0,0-0-2], [E:0-1-8,0-2-0], [F:0-2-1	2,0-1-8], [H:0-1-12,0-2-0]			
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL TCDL 12.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	TC 0.99 BC 0.92 WB 0.76	DEFL. in (loc) I/defl Vert(LL) -0.22 J-K >999 Vert(CT) -0.40 J-K >924 Horz(CT) 0.11 G n/a	L/d PLATES 360 MT20 240 n/a	GRIP 197/144

DOLL	0.0	Code IBC2018/TPI2014	Matrix-MS	Wind(LL) 0.	10 K-N >999 24	40 We	eiaht: 127 lb F	T = 20%
BCDL	10.0	Code 1802010/1112014	Matrix-100	Wind(LL) 0.	10 1(-1) > 555 2-	+0 1/6	Ignt. 127 10 1	1 - 20 %
LUMBER-				BRACING-				
TOP CHORD	2x4 SPF 2	2100F 1.8E *Except*		TOP CHORD	Structural wood shea	thing directly applie	ed, except end ve	erticals.
	A-C: 2x4 \$	SPF No.2		BOT CHORD	Rigid ceiling directly a	applied or 10-0-0 oc	c bracing, Excer	ot:
BOT CHORD	2x4 SPF 2	2100F 1.8E *Except*			2-2-0 oc bracing: H-J			
	G-I: 2x4 S	SPF No.2		WEBS	1 Row at midpt	F-G, B-J, D-	·Η	
WEBS	2x4 SPF N	No.2 *Except*			2 Rows at 1/3 pts	E-G		
	B-K,D-J,E	-H: 2x3 SPF No.2						

REACTIONS. (size) G=0-3-8, A=Mechanical Max Horz A=338(LC 9) Max Uplift G=-207(LC 10), A=-156(LC 6)

Max Grav G=1753(LC 3), A=1524(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD A-B=-3682/372, B-D=-2548/265, D-E=-1444/167, F-G=-367/63

BOT CHORD A-K=-451/3429, J-K=-451/3429, H-J=-273/2347, G-H=-118/1309

WEBS B-K=0/317, B-J=-1155/190, D-J=0/652, D-H=-1291/206, E-H=-48/1084, E-G=-1856/257

NOTES-

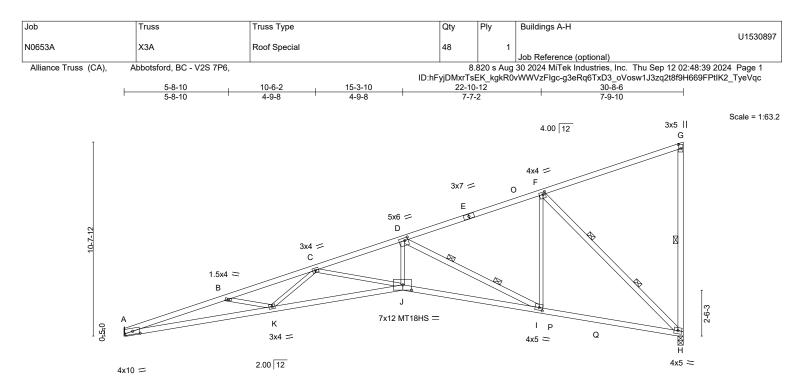
 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) G=207, A=156.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

	8-1-6	15-3-10	22-10-12	30-8-6	I.
	8-1-6	7-2-4	7-7-2	7-9-10	
Plate Offsets (X,Y)	[A:0-4-11,0-2-0], [D:0-2-4,0-1-12], [F:0)-1-8,0-1-8], [G:0-2-12,0-1-8], [I:0	-2-4,0-1-12], [J:0-5-12,0-3-8]		

LOADING (psf) TCLL 25.0 (Roof Snow=25.0) 7CDL TCDL 12.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIBC2018/TPI2014	CSI. TC 0.76 BC 0.83 WB 0.92 Matrix-MS	Vert(CT) -1. Horz(CT) 0.	in (loc) l/defl L/d 65 J-K >568 360 16 J-K >317 240 50 H n/a n/a 34 J-K >999 240	PLATES MT20 MT18HS Weight: 121 lb	GRIP 197/144 197/144 FT = 20%
LUMBER-			BRACING-			
	2100F 1.8E 2100F 1.8E		TOP CHORD	Structural wood sheathin except end verticals.	g directly applied or 2-2-8 o	oc purlins,
WEBS 2x3 SPF I	No.2 *Except*		BOT CHORD	Rigid ceiling directly appl	ied or 8-2-13 oc bracing.	
G-H,D-I,F	-H: 2x4 SPF No.2		WEBS	1 Row at midpt	G-H	
				2 Rows at 1/3 pts	D-I, F-H	
REACTIONS. (size)	H=0-3-8, A=Mechanical					
Max Hora	A-330(I C 0)					

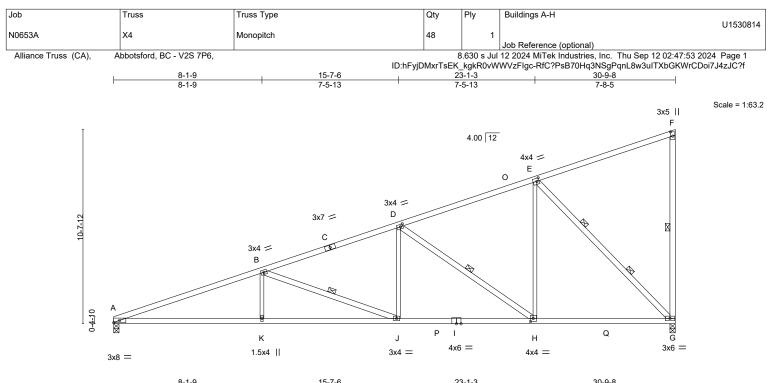
Max Horz A=339(LC 9) Max Uplift H=-208(LC 10), A=-156(LC 6) Max Grav H=1745(LC 16), A=1521(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD A-B=-6667/817, B-C=-6340/677, C-D=-4792/541, D-F=-1721/188, G-H=-367/63

- BOT CHORD A-K=-905/6352, J-K=-748/5680, I-J=-549/4582, H-I=-147/1630
- WEBS B-K=-389/180, C-K=0/586, C-J=-1107/201, D-J=-191/2169, D-I=-3298/458, F-I=-67/1380, F-H=-2226/290

NOTES-


- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

- 4) All plates are MT20 plates unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Bearing at joint(s) H considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) H=208, A=156.
- 10) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

	0-1-5	10-7-0	20-1-0	50-5-0	i i i i i i i i i i i i i i i i i i i
	8-1-9	7-5-13	7-5-13	7-8-5	
Plate Offsets (X,Y) [D	0:0-1-12,0-1-8], [E:0-1-8,0-2-0], [F:0-2	-12,0-1-8], [H:0-1-12,0-2-0]			

LOADING (ps TCLL (Roof Snow=2 TCDL BCLL BCDL	25.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2018/T	2-0-0 1.15 1.15 YES PI2014	CSI. TC BC WB Matri	0.72 0.93 0.76 x-MS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.21 -0.37 0.11 0.10	J-K J-K G	l/defl >999 >988 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 127 lb	GRIP 197/144 FT = 20%
LUMBER-						BRACING-						
TOP CHORD	2x4 SPF 2	2100F 1.8E				TOP CHORE	D	Structur	al wood s	heathing dir	ectly applied or 3-4-9 o	oc purlins,
BOT CHORD	2x4 SPF 2	2100F 1.8E *Except*						except e	end vertic	als.		
	G-I: 2x4 S	PF No.2				BOT CHORE	C	Rigid ce	iling dired	ctly applied o	or 10-0-0 oc bracing, I	Except:
WEBS	2x4 SPF N	Io.2 *Except*						2-2-0 oc	bracing:	H-J.		
	B-K,D-J,E	-H: 2x3 SPF No.2				WEBS		1 Row a	t midpt	F	-G, B-J, D-H	
								2 Rows	at 1/3 pts	; E	-G	
REACTIONS.	(size)	G=0-3-8, A=0-3-8										
	May Horz	A-338(I C Q)										

Max Holz A=338(LC 9) Max Uplift G=-208(LC 10), A=-156(LC 6) Max Grav G=1759(LC 3), A=1529(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD A-B=-3734/377, B-D=-2562/267, D-E=-1449/167, F-G=-367/63

- BOT CHORD A-K=-457/3482, J-K=-457/3482, H-J=-274/2358, G-H=-118/1314
- WEBS B-K=0/325, B-J=-1199/195, D-J=0/664, D-H=-1298/206, E-H=-49/1089, E-G=-1864/258

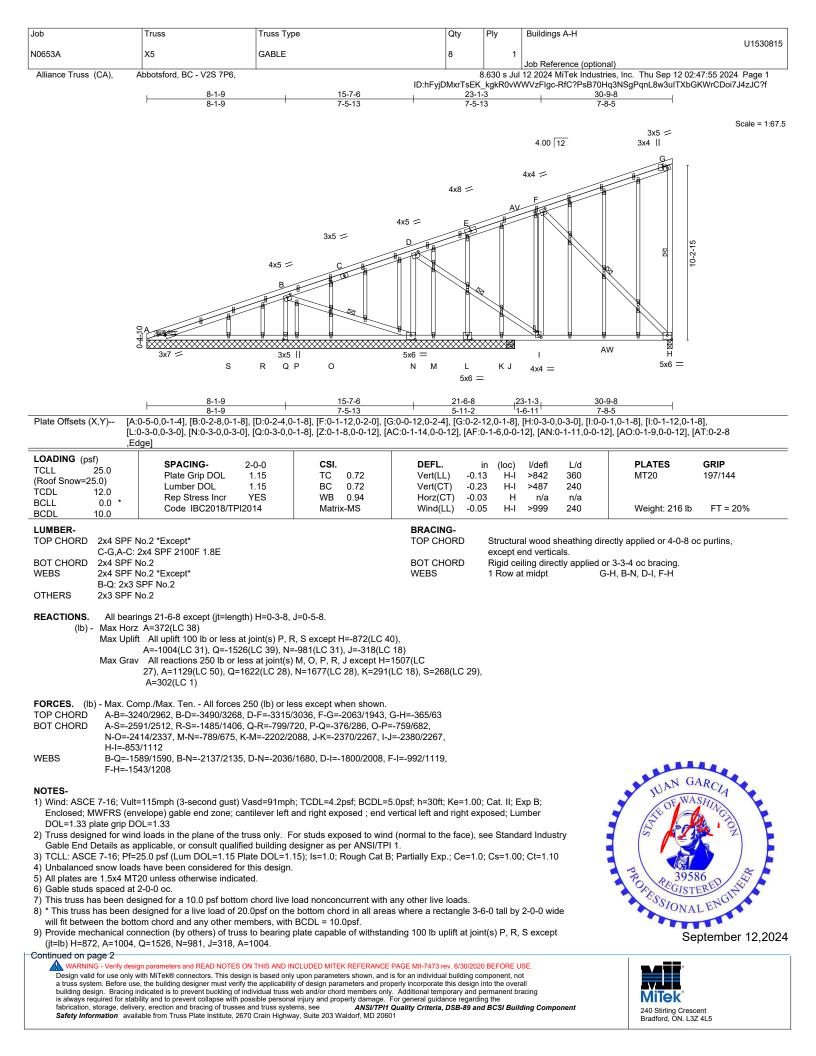
NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

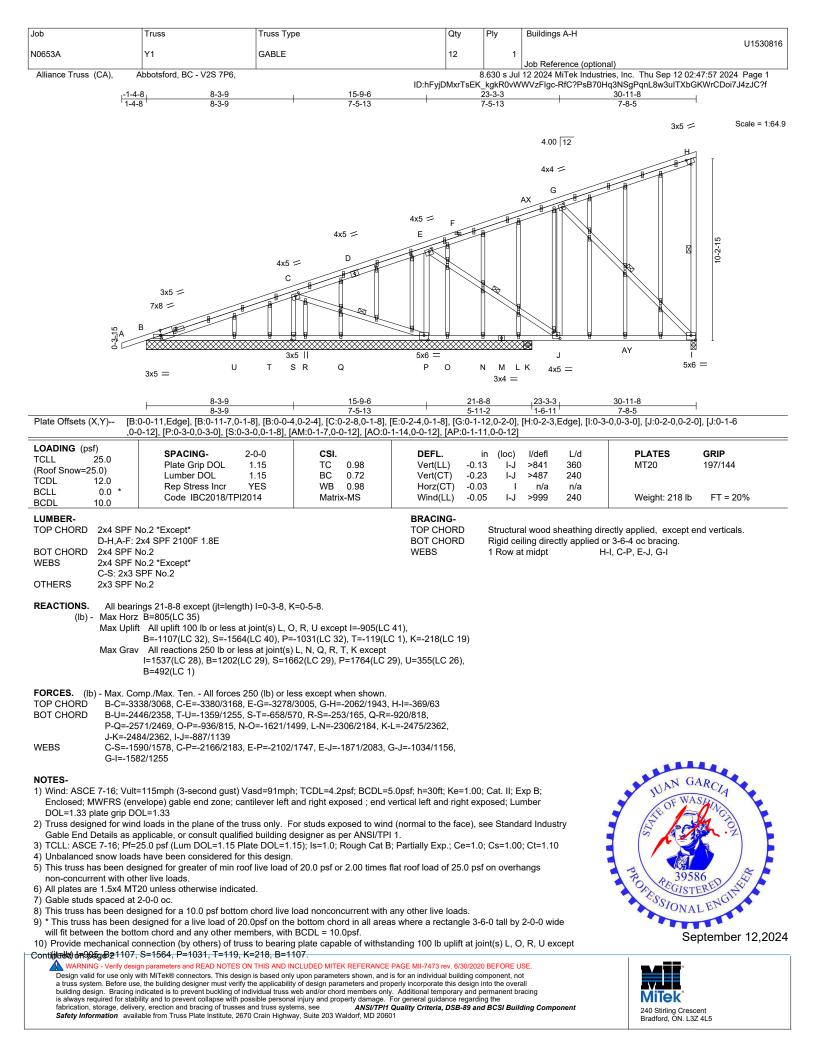
3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) G=208, A=156.

7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.



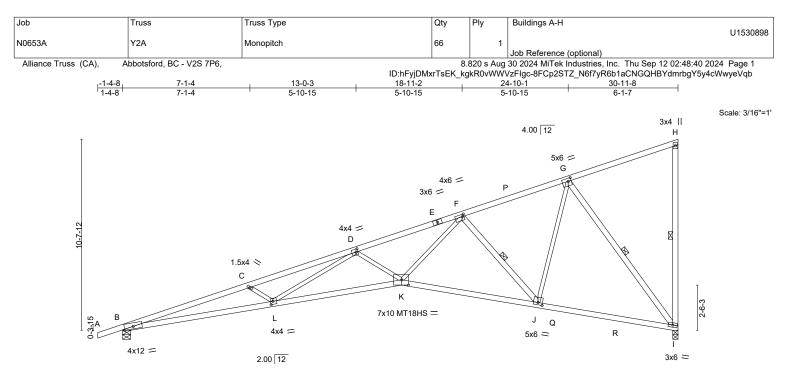
Job	Truss	Truss Type	Qty	Ply	Buildings A-H				
100504	N.F.				U1530815				
N0653A	X5	GABLE	8	1					
					Job Reference (optional)				
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,		8.630 s Jul 12 2024 MiTek Industries, Inc. Thu Sep 12 02:47:55 2024 Page 2						
		ID:hFyj[DMxrTsEK	_kgkR0vW	WVzFlgc-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f				

NOTES-

- 10) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 11) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 21-6-8 for 343.1 plf.
- 12) No notches allowed in overhang and 0 from left end and 0 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.

Job	Truss	Truss Type	Qty	Ply	Buildings A-H		
					U1530816		
N0653A	Y1	GABLE	12	1			
					Job Reference (optional)		
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,	8.630 s Jul 12 2024 MiTek Industries, Inc. Thu Sep 12 02:47:57 2024 Page 2					
		ID:hFyjDMxrTsEK_kgkR0vWWVzFlgc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJČ?f					

NOTES-


11) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

12) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 21-8-8 for 342.3 plf.

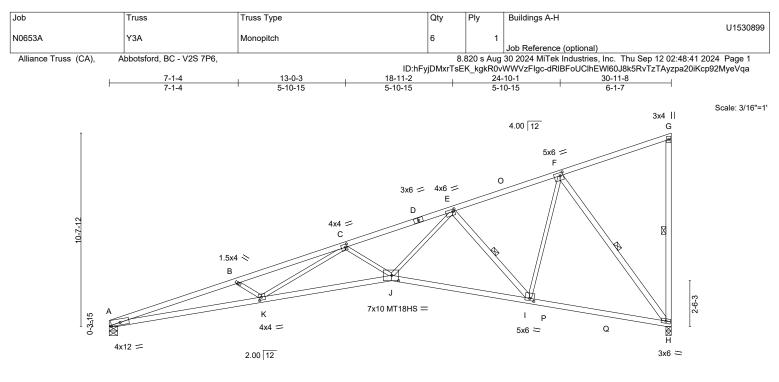
13) No notches allowed in overhang and 10408 from left end and 0 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS//TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	8-4-8	15-6-12	23-1-14	30-11-8			
	8-4-8	7-2-4	7-7-2	7-9-10			
Plate Offsets (X,Y) [D:0-1-4,0-2-0], [F:0-1-4,0-1-8], [G:0-2-0,0-2-0], [J:0-3-0,0-1-8], [K:0-4-8,0-3-8], [L:0-1-8,0-2-0]							

LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL TCDL 12.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2018/TPI2014	CSI. TC 0.83 BC 0.87 WB 0.97 Matrix-MS	DEFL. Vert(LL) -0.6 Vert(CT) -1.1 Horz(CT) 0.4 Wind(LL) 0.5	14 K-L >323 240 47 I n/a n/a	PLATES GRIP MT20 197/144 MT18HS 197/144 Weight: 123 lb FT = 20%		
LUMBER- TOP CHORD 2x4 SPF N	No.2 *Except*		BRACING- TOP CHORD	Structural wood sheathing d	irectly applied or 2-2-0 oc purlins,		
BOT CHORD 2x4 SPF 2 WEBS 2x3 SPF 1	SPF 2100F 1.8E 2100F 1.8E No.2 *Except* I: 2x4 SPF No.2		BOT CHORD WEBS	except end verticals. Rigid ceiling directly applied 1 Row at midpt	or 8-3-2 oc bracing. H-I, F-J, G-I		
REACTIONS. (size) I=0-3-8, B=0-5-8 Max Horz B=347(LC 9) Max Uplift I=-209(LC 10), B=-202(LC 6) Max Grav I=1774(LC 3), B=1624(LC 3)							
TOP CHORD B-C=-69	mp./Max. Ten All forces 250 (lb) or le 147/816, C-D=-6607/733, D-F=-4823/53 1/6640, K-L=-685/5302, J-K=-314/2762	5, F-G=-1666/190, H-I=-2	287/49				

C-L=-456/167, D-L=-93/1238, D-K=-901/211, F-K=-294/2743, F-J=-1862/308, WEBS G-J=-125/1553, G-I=-1987/261


NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- 5) All plates are MT20 plates unless otherwise indicated.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Bearing at joint(s) I, B considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) I=209, B=202,
- 10) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

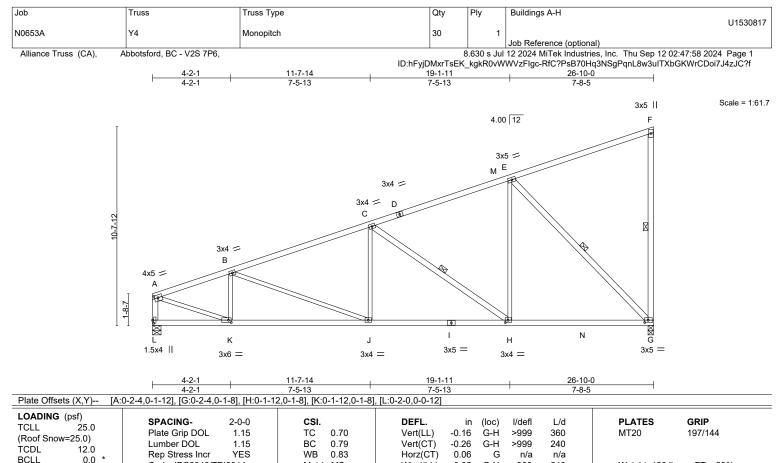
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to use only with with with exercising is based only upon parameters shown, and is to an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf)	0040000						DI 4750	0.010
Plate Offsets (X,Y) [C:0-1-4,0-2-0], [E:0-1-4,0-1-8], [F:0-2-0,0-2-0], [I:0-3-0,0-1-8], [J:0-4-8,0-3-8], [K:0-1-8,0-2-0]								
	8-4-8	T	7-2-4	1	7-7-2	1 .	7-9-10	1
	8-4-8		15-6-12	1	23-1-14	. 3	0-11-8	

LOADING (psf) SPACING- 2-0-0 TCLL 25.0 Plate Grip DOL 1.15 (Roof Snow=25.0) Lumber DOL 1.15 TCDL 12.0 Rep Stress Incr YES BCLL 0.0 * Code IBC2018/TPI2014 Code IBC2018/TPI2014	CSI. TC 0.82 BC 0.88 WB 0.96 Matrix-MS	DEFL. Vert(LL) -0.6 Vert(CT) -1.7 Horz(CT) 0.4 Wind(LL) 0.5	14 J-K >323 240 17 H n/a n/a	0 MT20 197/144 0 MT18HS 197/144
LUMBER- TOP CHORD 2x4 SPF No.2 *Except* A-D: 2x4 SPF 2100F 1.8E BOT CHORD 2x4 SPF 2100F 1.8E WEBS 2x3 SPF No.2 *Except* G-H,E-I,F-H: 2x4 SPF No.2		BRACING- TOP CHORD BOT CHORD WEBS	except end verticals.	ing directly applied or 2-2-0 oc purlins, plied or 8-2-7 oc bracing. G-H, E-I, F-H
REACTIONS. (size) H=0-3-8, A=0-5-8 Max Horz A=340(LC 9) Max Uplift H=-209(LC 10), A=-157(LC 6) Max Grav H=1764(LC 3), A=1535(LC 3)				

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD A-B=-6974/830, B-C=-6628/745, C-E=-4815/539, E-F=-1658/191, G-H=-285/49
- BOT CHORD A-K=-914/6667, J-K=-689/5299, I-J=-316/2753, H-I=-132/1208
- WEBS B-K=-466/170, C-K=-102/1264, C-J=-908/213, E-J=-297/2744, E-I=-1858/309, F-I=-126/1550, F-H=-1973/262


NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Bearing at joint(s) H, A considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) H=209, A=157.
- 9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BCDL	10.0	Code IBC2018/TPI2014	Matrix-MS	Wind(LL)	0.05	G-H	>999	240	Weight: 120 lb	FT = 20%
LUMBER-				BRACING-						
TOP CHORE	2x4 SPF	2100F 1.8E *Except*		TOP CHORD) 5	Structur	al wood s	sheathing dir	ectly applied or 3-0-7 or	c purlins,
	A-D: 2x4	SPF No.2			e	except e	end vertic	als.		
BOT CHORE	2x4 SPF	No.2		BOT CHORD) F	Rigid ce	iling dire	ctly applied o	or 10-0-0 oc bracing.	
WEBS	2x3 SPF	No.2 *Except*		WEBS	1	Row a	at midpt	F	-G, C-H, E-G	
	F-G,C-H,	E-G,A-L: 2x4 SPF No.2								

REACTIONS. (size) G=0-3-8, L=0-5-8 Max Horz L=333(LC 7) Max Uplift G=-186(LC 10), L=-130(LC 6) Max Grav G=1520(LC 3), L=1328(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD A-B=-1868/185, B-C=-1925/200, C-E=-1212/145, F-G=-358/63, A-L=-1278/140

- BOT CHORD K-L=-318/42, J-K=-270/1749, H-J=-214/1759, G-H=-122/1089
- WEBS B-K=-487/125, C-J=0/306, C-H=-851/158, E-H=-20/828, E-G=-1540/227, A-K=-173/1821

NOTES-

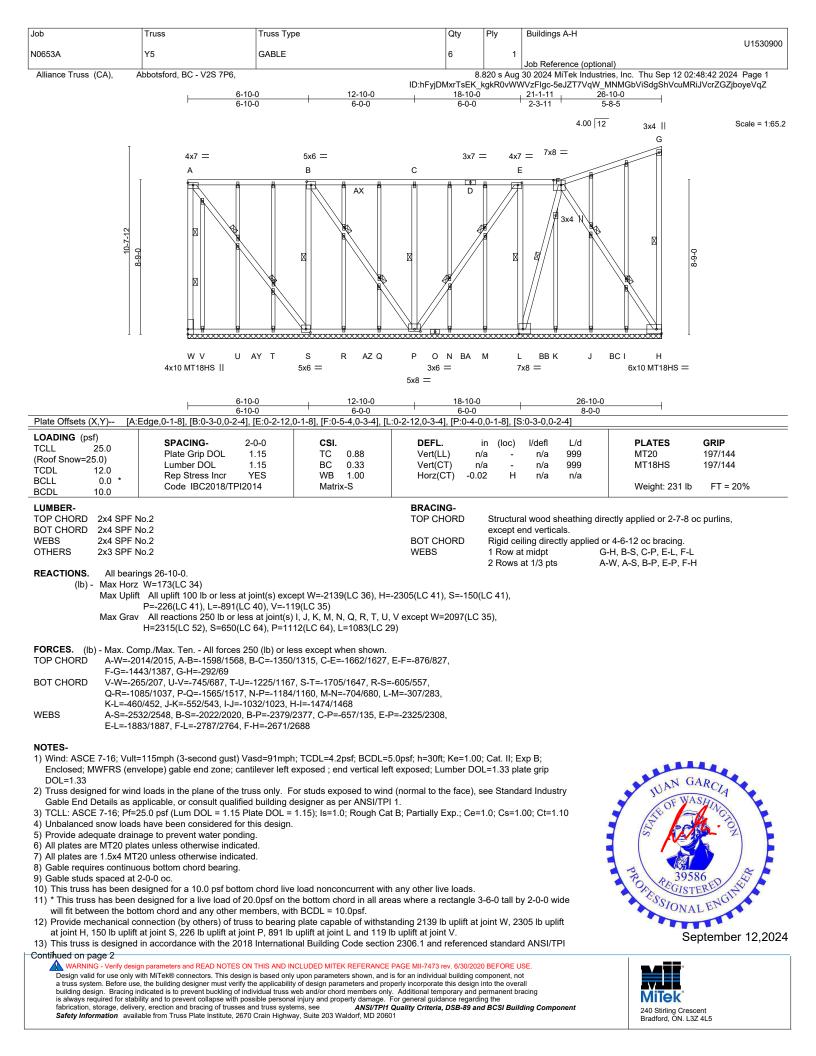
 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) G=186, L=130.

7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Buildings A-H			
					U1530900			
N0653A	Y5	GABLE	6	1				
					Job Reference (optional)			
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,	8.820 s Aug 30 2024 MiTek Industries, Inc. Thu Sep 12 02:48:42 2024 Page 2						
		lD:hFyjDMxrTsEK_kgkR0vWWVzFlgc-5eJZT7VqW_MNMGbViSdgShVcuMRiJVcrZGZjboyeVqZ						

NOTES-

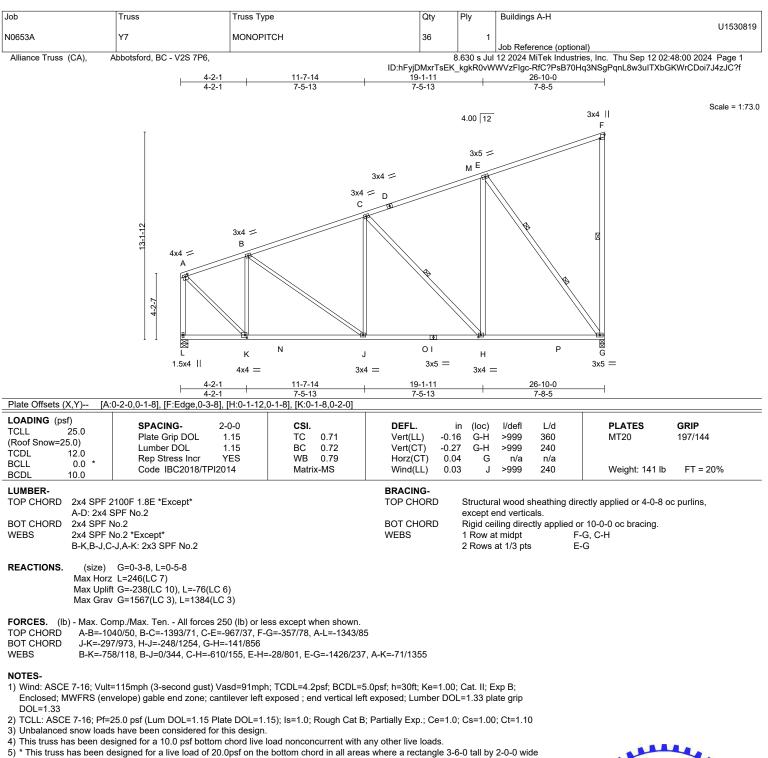
14) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 26-10-0 for 240.0 plf.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS//TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Typ	0e	Qty	Ply	Buildings A-H	
N0653A	Y6	GABLE		6	1		U1530818
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,				3.630 s Ju	Job Reference (option	nal) ries, Inc. Thu Sep 12 02:47:59 2024 Page 1
	,,	6-10-0	12-10-0			WVzFlgc-RfC?PsB70F	lq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJČ?f
	F	6-10-0	6-0-0	6-0-0	2-3		—
						4.00 12 33	x4 Scale = 1:80.3
	⊺ 5>	(6 =	5x6 =	3x7 =	7x10 5x6 =	MT18HS =	G
	A	N N	В	С	Е	F	
	13-12						
		VV U	T S R Q	P N M	L	K J I Z	н
	4x10 M	T18HS	5x6 =	3x4 =	7x8 =	7v101	MT18HS =
				6x8 =			
	H	<u>6-10-0</u> 6-10-0	<u> </u>	<u> </u>		<u>26-10-0</u> 8-0-0	
Plate Offsets (X,Y)	[A:0-2-12,0-1-8], [B:0-3-0,0-	-1-12], [E:0-3-0),0-1-12], [F:0-4-0,0-3-4],	[H:0-3-4,Edge], [P:0-4	-0,0-2-0],	[S:0-2-12,0-1-8]	
LOADING (psf) TCLL 25.0	SPACING- Plate Grip DOL	2-0-0 1.15	CSI. TC 0.96	DEFL. Vert(LL) n/	in (loc) ′a -	l/defl L/d n/a 999	PLATES GRIP MT20 197/144
(Roof Snow=25.0) TCDL 12.0	Lumber DOL	1.15	BC 0.32	Vert(CT) n/	/a -	n/a 999	MT18HS 197/144
BCLL 0.0 ³ BCDL 10.0	Rep Stress Incr Code IBC2018/TF	YES PI2014	WB 1.00 Matrix-S	Horz(CT) -0.0	2 H	n/a n/a	Weight: 278 lb FT = 20%
LUMBER-				BRACING-			
	PF No.2 PF No.2			TOP CHORD		ral wood sheathing dir end verticals.	ectly applied or 2-7-8 oc purlins,
WEBS 2x4 S	PF 2100F 1.8E *Except* 3-S,C-P,E-L: 2x4 SPF No.2			BOT CHORD WEBS	Rigid ce	eiling directly applied o	or 4-7-8 oc bracing. ∖-W, G-H, C-P
	PF No.2			WEBS			чч, G-п, C-Р -S, B-S, B-P, E-P, E-L, F-L, F-H
(lb) - Max Max	Dearings 26-10-0. Horz W=56(LC 32) Uplift All uplift 100 lb or less P=-231(LC 32), L=-118 Grav All reactions 250 lb or H=3090(LC 52), S=664	5(LC 32) less at joint(s)		V except W=2772(LC	()		
TOP CHORD A-W	c. Comp./Max. Ten All force /=-2737/2708, A-B=-1642/162 :=-1442/1386, G-H=-291/71			E-F=-875/850,			
BOT CHORD U-V P-Q	/=-700/645, T-U=-1180/1125, =-1455/1414, N-P=-1133/111 =-613/601, I-J=-1093/1081, H	14, M-N=-653/6	34, L-M=-382/362, K-L=-				
	=-3132/3159, B-S=-2398/237 =-2322/2339, F-L=-3521/3482			=-2718/2684,			
NOTES-		,					
1) Wind: ASCE 7-16;	Vult=115mph (3-second gust	, i	· · · ·		; Cat. II; I	Exp B;	and the second
2) Truss designed for	(envelope) gable end zone; wind loads in the plane of the	e truss only. F	or studs exposed to wind	(normal to the face), s	ee Stand	lard Industry	JUAN GARCIA
	as applicable, or consult qual Pf=25.0 psf (Lum DOL=1.15				; Cs=1.0	0; Ct=1.10	Stor WASHINGS
	loads have been considered t drainage to prevent water por						
<i>'</i>) plates unless otherwise indi MT20 unless otherwise indi						
8) Gable requires cor	tinuous bottom chord bearing						39586
	en designed for a 10.0 psf bo				604-111		ROPESSION ENGINE
will fit between th	een designed for a live load of e bottom chord and any other	r members, wit	h BCDL = 10.0psf.	Ū.			SIONAL ENG
	cal connection (by others) of t I, S=471, P=231, L=1185.	russ to bearing	plate capable of withsta	nding 100 lb uplift at jo	int(s) V e	except (jt=lb)	September 12,2024
	gned in accordance with the 2	2018 Internatio	nal Building Code section	2306.1 and reference	d standa	rd ANSI/TPI	
MARNING - Verif	y design parameters and READ NOTE only with MiTek® connectors. This de						
a truss system. Befo building design. Bra is always required fo	re use, the building designer must ve cing indicated is to prevent buckling or r stability and to prevent collapse with delivery, erection and bracing of truss	rify the applicabilit of individual truss v h possible persona	y of design parameters and prop veb and/or chord members only. I injury and property damage. F	erly incorporate this design i Additional temporary and p	into the ove ermanent b ng the	rall racing	A Stirling Crescent

is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

240 Stirling Crescent Bradford, ON. L3Z 4L5

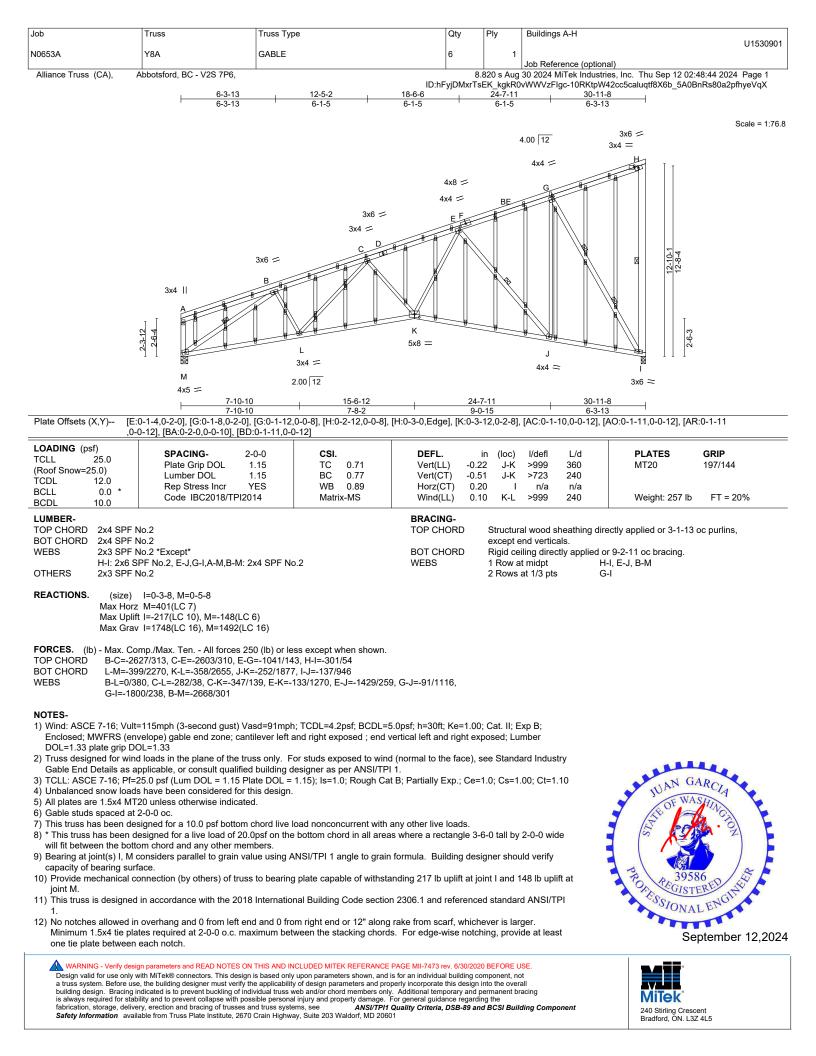

Job	Truss	Truss Type	Qty	Ply	Buildings A-H		
					U1530818		
N0653A	Y6	GABLE	6	1			
					Job Reference (optional)		
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,	8.630 s Jul 12 2024 MiTek Industries, Inc. Thu Sep 12 02:48:00 2024 Page 2					
		ID:hFyjDMxrTsEK_kgkR0vWWVzFlgc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJČ?f					

NOTES-

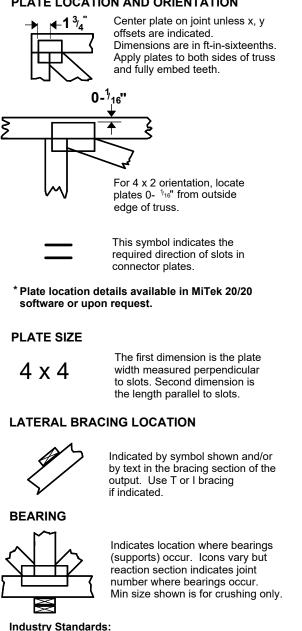
14) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 26-10-0 for 240.0 plf.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS//TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

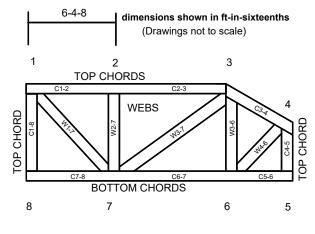
will fit between the bottom chord and any other members, with BCDL = 10.0psf.
 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) L except (jt=lb)


 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) L except (jt=lb) G=238.

7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Symbols


PLATE LOCATION AND ORIENTATION

ANSI/TPI1: National Design Specification for Metal

Plate Connected Wood Truss Construction. DSB-89: Design Standard for Bracing. BCSI: Building Component Safety Information, Guide to Good Practice for Handling. Installing & Bracing of Metal Plate Connected Wood Trusses.

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2012 MiTek® All Rights Reserved

MiTek Engineering Reference Sheet: MII-7473 rev. 6/30/2020

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- 2. Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never 3. stack materials on inadequately braced trusses.
- 4. Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other.
- 6. Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- 7. Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- 8. Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- 9. Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- 10. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- 13. Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- 16. Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- 18. Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- 19. Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.