

BRADLEY HEIGHTS SS LLC

BRADLEY HEIGHTS APARTMENTS BUILDINGS 'A' Through 'H' 202 27th Avenue SE Puyallup, WA

FULL SIZED LEDGIBLE COLOR REPORT IS REQUIRED TO BE PROVIDED BY THE PERMITTEE ON SITE FOR ALL INSPECTIONS

SUBMITTAL #2

Alliance Job # N0653

PRMU20240280 BLDG G

Date: Sept. 16, 2024

Representative: Craig Westerberg

MiTek Canada, Inc.

240 Stirling Crescent Bradford, ON. Canada L3Z 4L5 Phone (905) 952-2900 Toll Free (800) 268-3434

Re: N0653A Buildings A-H

The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Alliance Truss (CA).

Pages or sheets covered by this seal: U1530820 thru U1530901

My license renewal date for the state of Washington is February 17, 2026.

September 12,2024

Garcia, Juan

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

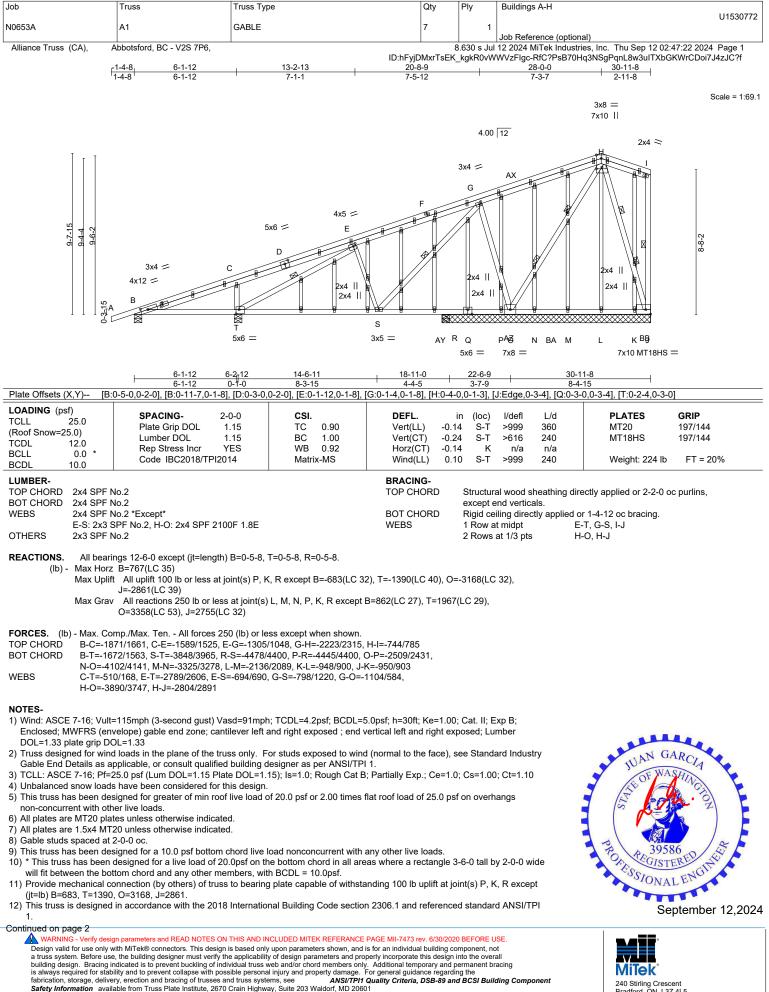
MiTek Canada, Inc.

240 Stirling Crescent Bradford, ON. Canada L3Z 4L5 Phone (905) 952-2900 Toll Free (800) 268-3434

Re: N0653A Buildings A-H

The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Alliance Truss (CA).

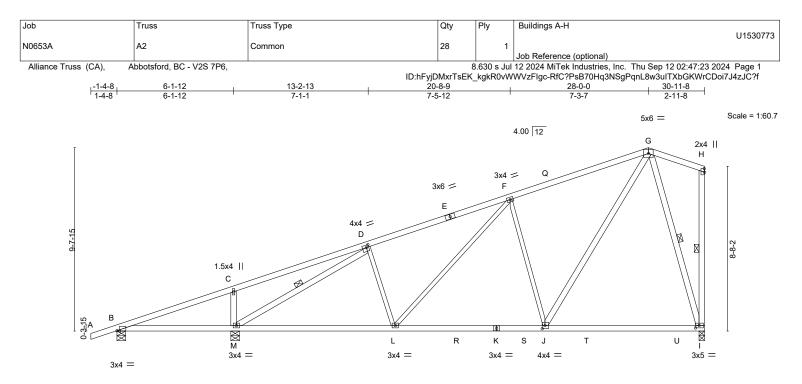
Pages or sheets covered by this seal: U1530772 thru U1530819


My license renewal date for the state of Washington is February 17, 2026.

September 12,2024

Garcia, Juan

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.


Job	Truss	Truss Type	Qty	Ply	Buildings A-H		
					U1530772		
N0653A	A1	GABLE	7	1			
					Job Reference (optional)		
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,		8	3.630 s Jul	12 2024 MiTek Industries, Inc. Thu Sep 12 02:47:23 2024 Page 2		
		ID:hFyjDMxrTsEK_kgkR0vWWVzFlgc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f					

13) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 18-5-8 to 30-11-8 for 594.4 plf.

14) No notches allowed in overhang and 10408 from left end and 0 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

L	6-1-12	6-2 ₁₁ 12	14-6-11		1	22-6-9				30-11-8	
	6-1-12	0-1-0	8-3-15		I	7-11-15		1		8-4-15	1
Plate Offsets (X,Y) [I	B:0-1-10,Edge], [D:0-1-8	3,0-1-8], [H:0-2-5,0	0-0-4], [l:0-2-	-4,0-1-8], [J:0-	1-12,0-2-0]						
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL TCDL 12.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2018	1.15 YES	CSI. TC BC WB Matrix	0.84 0.80 1.00 -MS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.23 -0.37 0.04 0.04	(loc) I-J I-J J-L	l/defl >999 >800 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 134 lb	GRIP 197/144 FT = 20%
					BRACING- TOP CHORI BOT CHORI WEBS	0 	except e Rigid cei	nd vertic iling direc bracing:	als. ctly applied or B-M.	ectly applied or 3-6-8 o r 10-0-0 oc bracing, E ·M, H-I, G-I	

REACTIONS. (size) B=0-5-8, M=0-5-8, I=0-3-8 Max Horz B=276(LC 9) Max Uplift B=-48(LC 6), M=-200(LC 10), I=-135(LC 6) Max Grav B=300(LC 1), M=1668(LC 3), I=1254(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD D-F=-1523/194, F-G=-1101/187

BOT CHORD L-M=-179/1377, J-L=-126/1136, I-J=-87/337

WEBS C-M=-513/167, D-M=-1746/193, F-L=-48/388, F-J=-782/218, G-J=-150/1234, G-I=-1135/137

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33

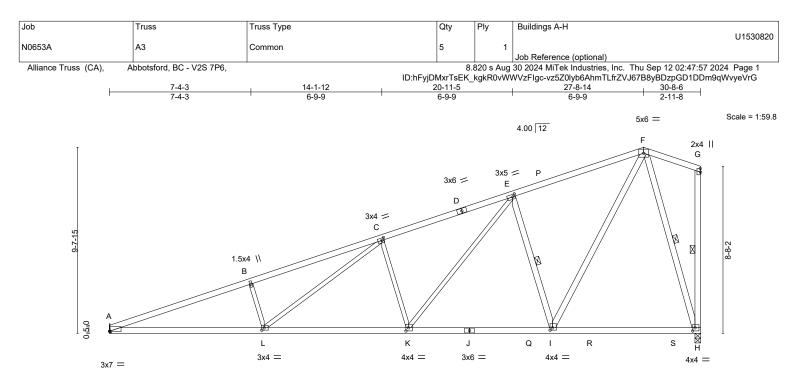
2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) B except (jt=lb) M=200, I=135.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

240 Stirling Crescent Bradford, ON. L3Z 4L5

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component</u> **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20001

	8-0-7	15-6-4	23-0-1	30-8-6	1		
	8-0-7	7-5-13	7-5-13	7-8-5			
Plate Offsets (X,Y) [A:0-0-4,0-0-2], [C:0-1-8,0-1-8], [E:0-1-8,0-1-8], [G:0-2-5,0-0-4], [H:0-1-8,0-2-0], [I:0-1-8,0-1-8], [K:0-1-8,0-2-0], [L:0-1-8,0-1-8]							
LOADING (psf)							

LOADING (ps TCLL (Roof Snow=2 TCDL BCLL BCDL	25.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2018/TF	2-0-0 1.15 1.15 YES PI2014	CSI. TC BC WB Matri	0.76 0.80 0.65 x-MS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.23 -0.42 0.08 0.12	(loc) K-L K-L H K-L	l/defl >999 >866 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 131 lb	GRIP 197/144 FT = 20%
LUMBER-						BRACING-						
TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2					TOP CHORE			al wood s nd vertic	0	ectly applied or 2-2-0 o	c purlins,
	A-J: 2x4 SPF 2	2100F ['] 1.8E				BOT CHORE) F	Rigid ce	ling dire	ctly applied o	r 10-0-0 oc bracing.	
WEBS	2x4 SPF No.2	*Except*				WEBS	1	Row a	t midpt	E-	-I, G-H, F-H	
	B-L,C-L,C-K,E	-K: 2x3 SPF No.2										
REACTIONS.	(size) A=	Mechanical, H=0-3-8	3									
	Max Horz A=	267(LC 9)										
	Max Uplift A=-	-160(LC 6), H=-174(LC 6)									

Max Grav A=1510(LC 3), H=1568(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD A-B=-3666/396, B-C=-3552/421, C-E=-2448/316, E-F=-1332/215

- BOT CHORD A-L=-460/3419, K-L=-303/2468, I-K=-151/1509, H-I=-88/433
- WEBS B-L=-491/167, C-L=-141/1068, C-K=-815/207, E-K=-156/1253, E-I=-1223/264, F-I=-201/1661, F-H=-1472/172

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33

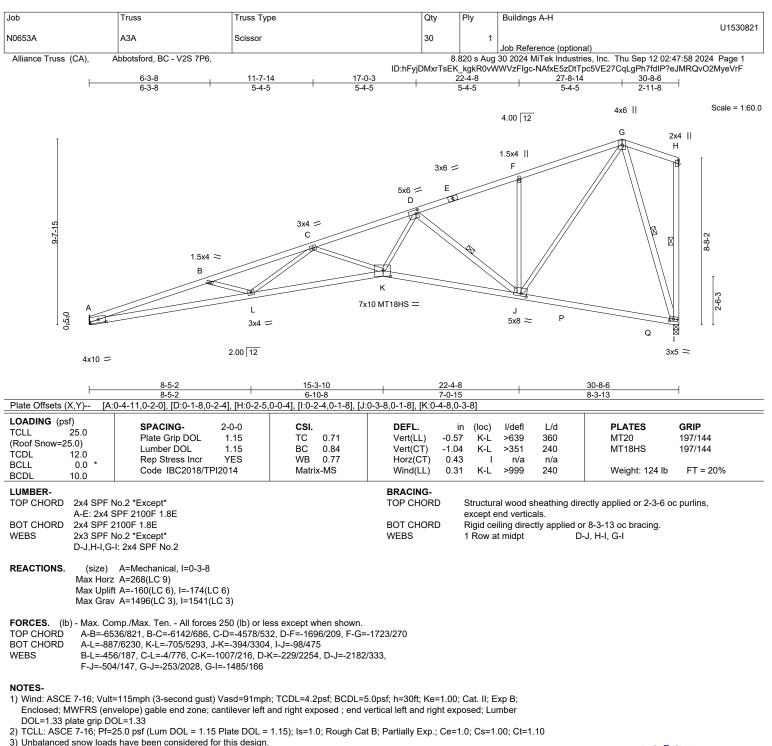
2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Refer to girder(s) for truss to truss connections.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) A=160, H=174.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

PRMU20240280 BLDG G

4) All plates are MT20 plates unless otherwise indicated.

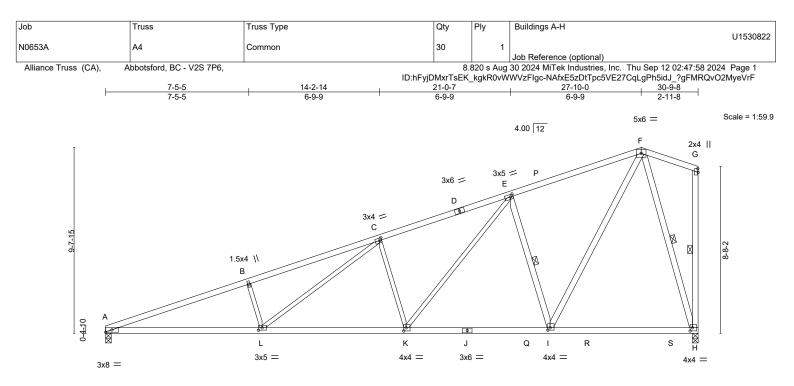
5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Refer to girder(s) for truss to truss connections.

8) Bearing at joint(s) I considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) A=160, I=174.


10) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

MiTek 240 Stirling Crescent Bradford, ON. L3Z 4L5

September 12,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	8-1-9	15-7-6	23-1-3	30-9-8	1			
	8-1-9	7-5-13	7-5-13	7-8-5	1			
Plate Offsets (X,Y) [C:0-1-4,0-1-8], [E:0-1-8,0-1-8], [G:0-2-5,0-0-4], [H:0-1-8,0-2-0], [I:0-1-8,0-1-8], [K:0-1-8,0-2-0], [L:0-2-4,0-1-8]								

LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL TCDL 12.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2018/TPI2014	CSI. TC 0.84 BC 0.80 WB 0.65 Matrix-MS	(-) -		l/defl L/d >999 360 >873 240 n/a n/a >999 240	PLATES MT20 Weight: 131 lb	GRIP 197/144 FT = 20%
LUMBER-			BRACING-				
TOP CHORD 2x4 SPF			TOP CHORD		0	rectly applied or 2-2-0 o	oc purlins,
	No.2 *Except*				nd verticals.		
	SPF 2100F 1.8E		BOT CHORD	0	0 7 11	or 10-0-0 oc bracing.	
	No.2 *Except*		WEBS	1 Row at	midpt E	E-I, G-H, F-H	
B-L,C-L,C	C-K,E-K: 2x3 SPF No.2						
Max Upli	A=0-3-8, H=0-3-8 z A=268(LC 9) ft A=-161(LC 6), H=-175(LC 6) y A=1514(LC 3), H=1572(LC 3)						

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD A-B=-3719/402, B-C=-3606/427, C-E=-2460/317, E-F=-1337/216

- BOT CHORD A-L=-465/3472, K-L=-305/2483, I-K=-152/1515, H-I=-88/434
- WEBS B-L=-503/168, C-L=-146/1113, C-K=-826/208, E-K=-157/1262, E-I=-1229/265, F-I=-201/1669, F-H=-1477/172

NOTES-

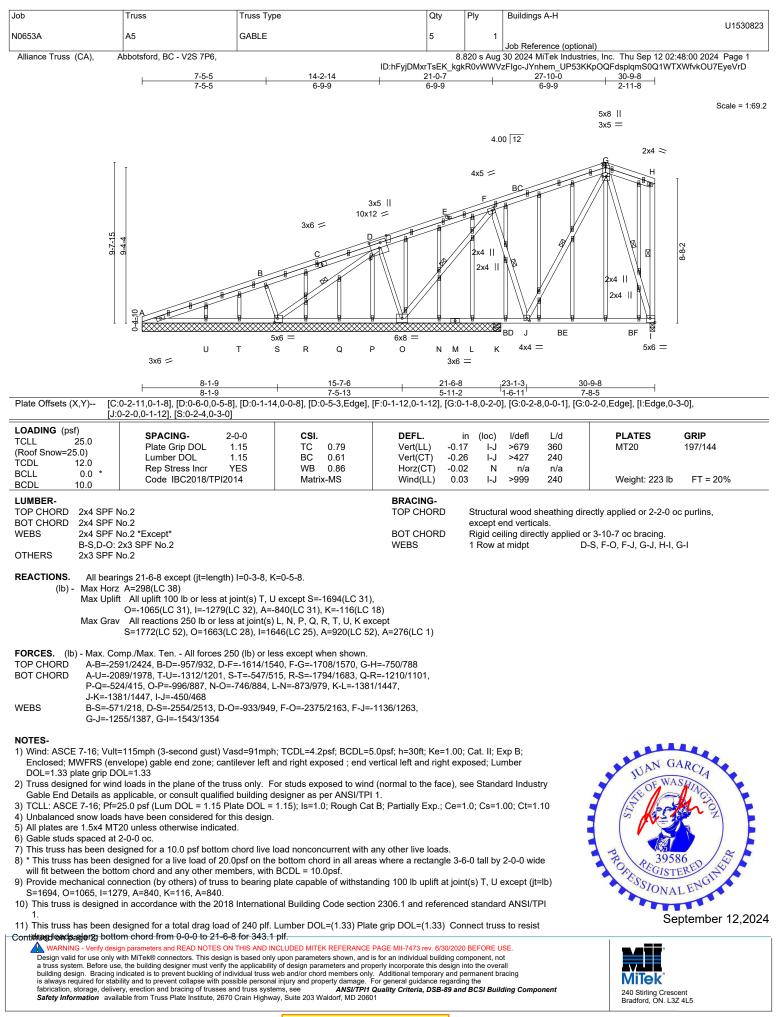
 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

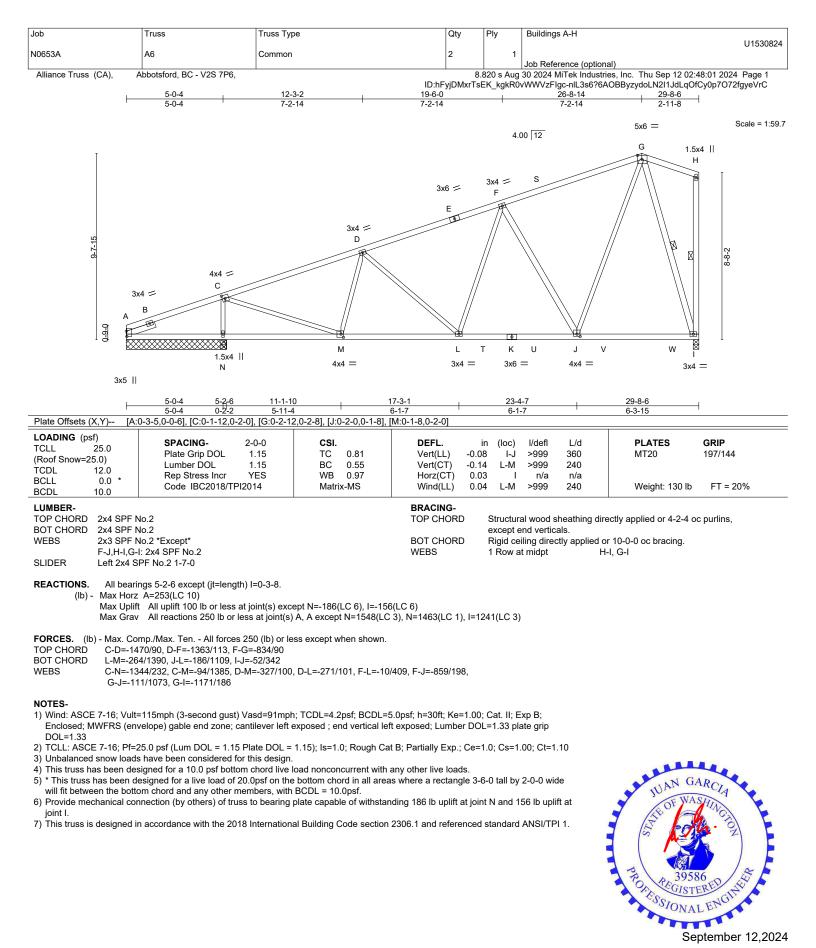
5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) A=161, H=175.

7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component</u> **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20001

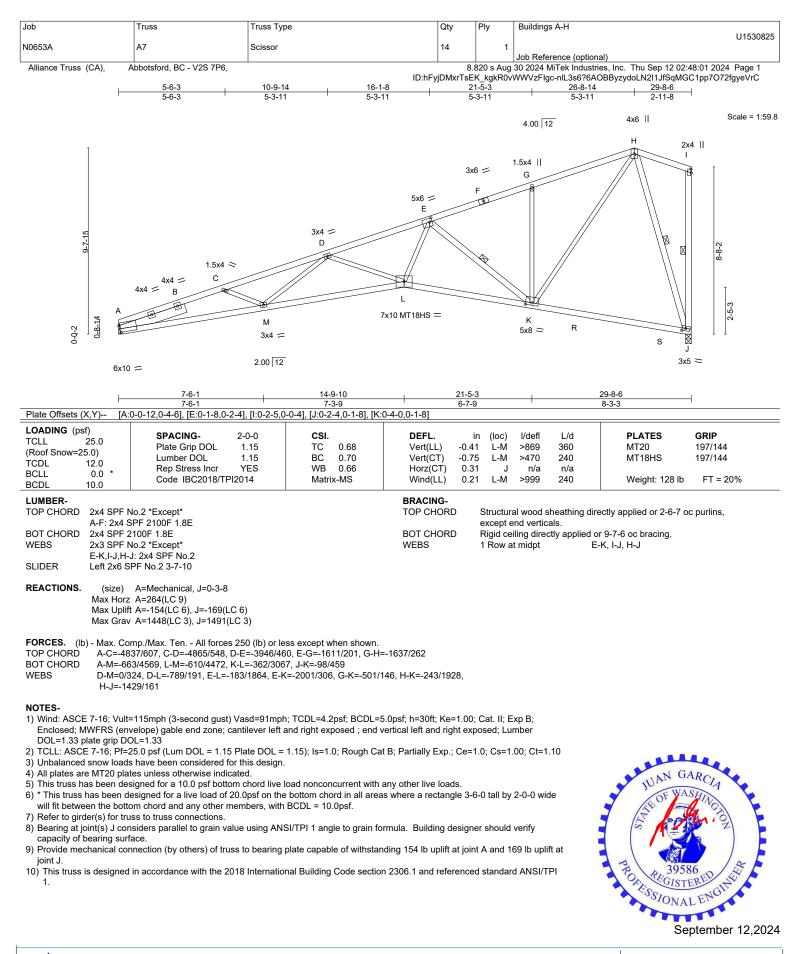
PRMU20240280 BLDG G



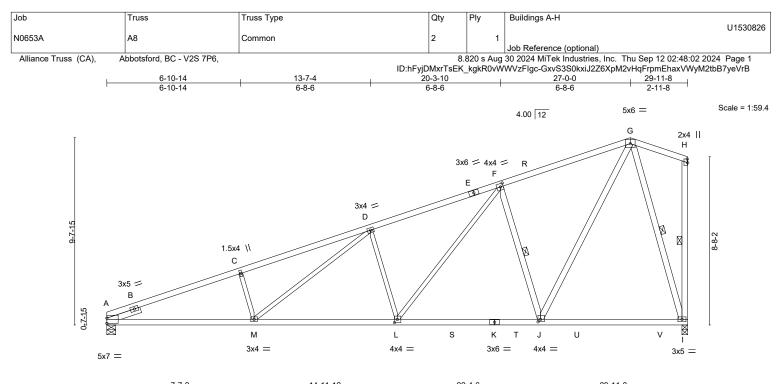
Job	Truss	Truss Type	Qty	Ply	Buildings A-H			
			_		U1530823			
N0653A	A5	GABLE	5	1				
					Job Reference (optional)			
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,	8.820 s Aug 30 2024 MiTek Industries, Inc. Thu Sep 12 02:48:00 2024 Page 2						
		ID:hFyjDMxrTsEK_kgkR0vWWVzFlgc-JYnhem_UP53KKpOQFdsplqmS0Q1WTXWfvkOU7EyeVrD						

12) No notches allowed in overhang and 0 from left end and 0 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component</u> **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



September 12,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

PRMU20240280 BLDG G

	7-7-2	14-11-12	22-4-6	29-11-8	
	7-7-2	7-4-10	7-4-10	7-7-2	1
Plate Offsets (X,Y)	[A:0-0-0,0-3-4], [F:0-1-12,0-2-0], [H:0-2-	-5,0-0-4], [J:0-1-8,0-1-8], [L:0-1-	12,0-2-0]		
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) 12.0 TCDL 12.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.71 BC 0.76 WB 0.63 Matrix-MS	DEFL. in (loc) //def Vert(LL) -0.21 L-M >999 Vert(CT) -0.39 L-M >914 Horz(CT) 0.07 I n/z Wind(LL) 0.10 L-M >999	360 MT20 240 n/a	GRIP 197/144 FT = 20%
BCDL 10.0		Malix mo		210 Wolght. To The	11 20%
A-E: 2 BOT CHORD 2x4 S A-K: 2 WEBS 2x4 S C-M,I SLIDER Left 2	PF No.2 *Except* 2x4 SPF 2100F 1.8E PF No.2 *Except* 2x4 SPF 2100F 1.8E PF No.2 *Except* -M,D-L,F-L: 2x3 SPF No.2 x4 SPF No.2 1-9-12		except end ver	rectly applied or 10-0-0 oc bracing.	oc purlins,
Max Max Max	ze) A=0-5-8, I=0-3-8 Horz A=264(LC 9) Jplift A=-155(LC 6), I=-170(LC 6) Grav A=1476(LC 3), I=1532(LC 3)				
TOP CHORD A-C BOT CHORD A-M WEBS C-M	. Comp./Max. Ten All forces 250 (lb) or =-3225/352, C-D=-3137/378, D-F=-2323, =-412/2999, L-M=-286/2327, J-L=-143/1 =-377/150, D-M=-111/766, D-L=-749/200 =-193/1599, G-I=-1437/167	/303, F-G=-1277/209 444, I-J=-88/422	7,		

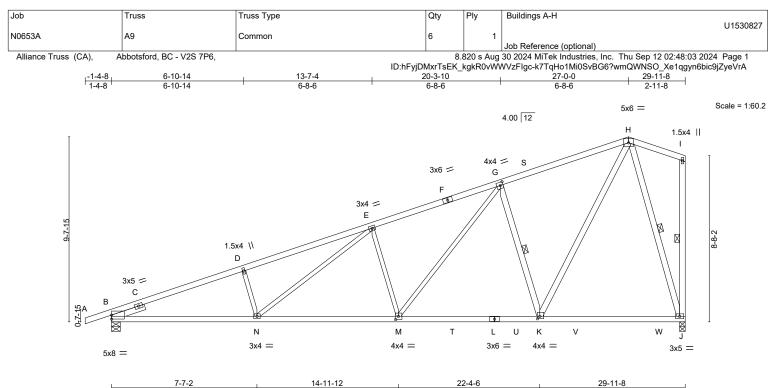
 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

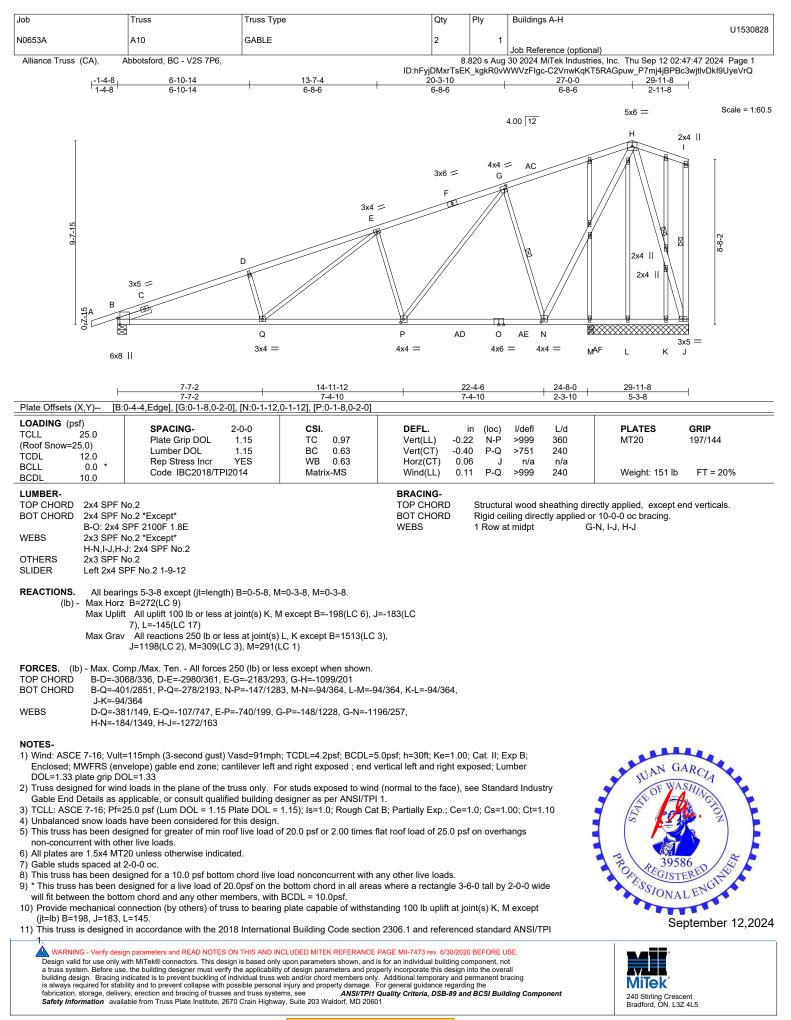
will fit between the bottom chord and any other members, with BCDL = 10.0psf.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 155 lb uplift at joint A and 170 lb uplift at

joint I. 7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

240 Stirling Crescent Bradford, ON. L3Z 4L5

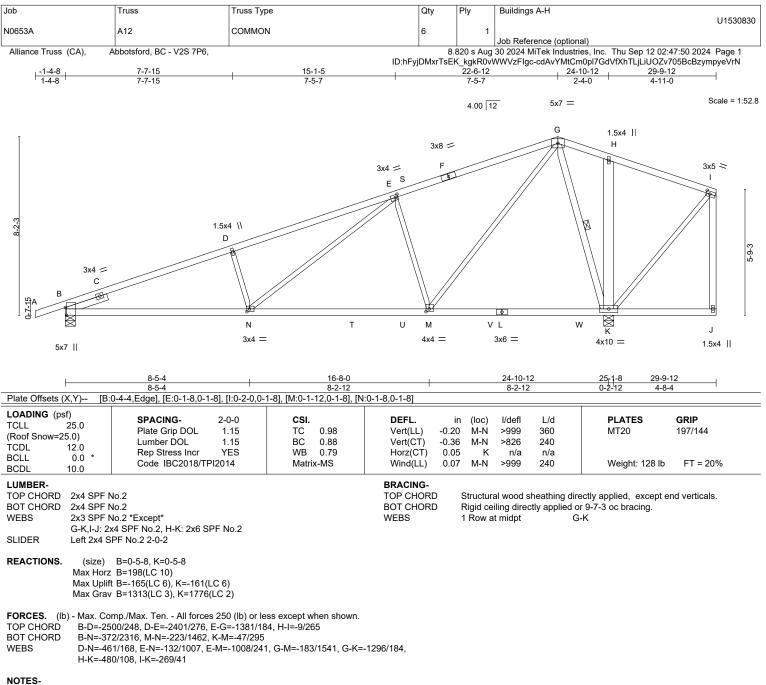
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


F	7-7-2	7-4-10		-4-10	1	7-7-2	
Plate Offsets (X,Y) [G	:0-1-12,0-2-0], [K:0-1-8,0-1-8], [M:0-1						
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL TCDL 12.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.71 BC 0.76 WB 0.63 Matrix-MS	DEFL. Vert(LL) -0.2 Vert(CT) -0.4 Horz(CT) 0.0 Wind(LL) 0.1	0 M-N >900 7 J n/a	L/d 360 240 n/a 240	PLATES MT20 Weight: 133 lb	GRIP 197/144 FT = 20%
LUMBER-		E	BRACING-				
	No.2 *Except*	-	FOP CHORD		0	ctly applied or 3-4-2 o	c purlins,
	SPF 2100F 1.8E	_		except end vertic			
	No.2 *Except* SPF 2100F 1.8E		BOT CHORD WEBS	1 Row at midpt		10-0-0 oc bracing. K. I-J. H-J	
	No.2 *Except*	,	WEB3	T Now at mupt	6-1	ι λ , Ι-J, Ι Ι-J	
	E-M,G-M: 2x3 SPF No.2						
SLIDER Left 2x4 S	PF No.2 1-9-12						
Max Uplif	B=0-5-8, J=0-3-8 : B=271(LC 6) t B=-181(LC 6), J=-188(LC 6) v B=1563(LC 3), J=1531(LC 3)						
TOP CHORDB-D=-32BOT CHORDB-N=-48WEBSD-N=-36	mp./Max. Ten All forces 250 (lb) or 105/292, D-E=-3116/318, E-G=-2318 16/2978, M-N=-361/2321, K-M=-216/ 150, E-N=-111/749, E-M=-744/200 16/1596, H-J=-1434/223	245, G-H=-1275/149 1442, J-K=-63/422	58,				

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left exposed ; end vertical left exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 181 lb uplift at joint B and 188 lb uplift at joint J.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

240 Stirling Crescent Bradford, ON. L3Z 4L5

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **Ans/ITPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



ſ	Job	Truss	Truss Type	Qty	Ply	Buildings A-H		
	N0653A	A11	GABLE	2	1	U1530829		
	NU033A			2		Job Reference (optional)		
L	Alliance Truss (CA), A	bbotsford, BC - V2S 7P6,	8.820 s Aug 30 2024 MiTek Industries, Inc. Thu Sep 12 02:47:48 2024 Page 2					
			ID:hFyjDMxrTsEK_kgkR0vWWVzFlgc-gF397gryEPZ1uzT7Y6f?GIGQmbr9f89u8tUshxyeVrP					

12) No notches allowed in overhang and 200100 from left end and 0 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component</u> Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left exposed ; end vertical left exposed; Lumber DOL=1.33 plate grip

DOL=1.33

2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

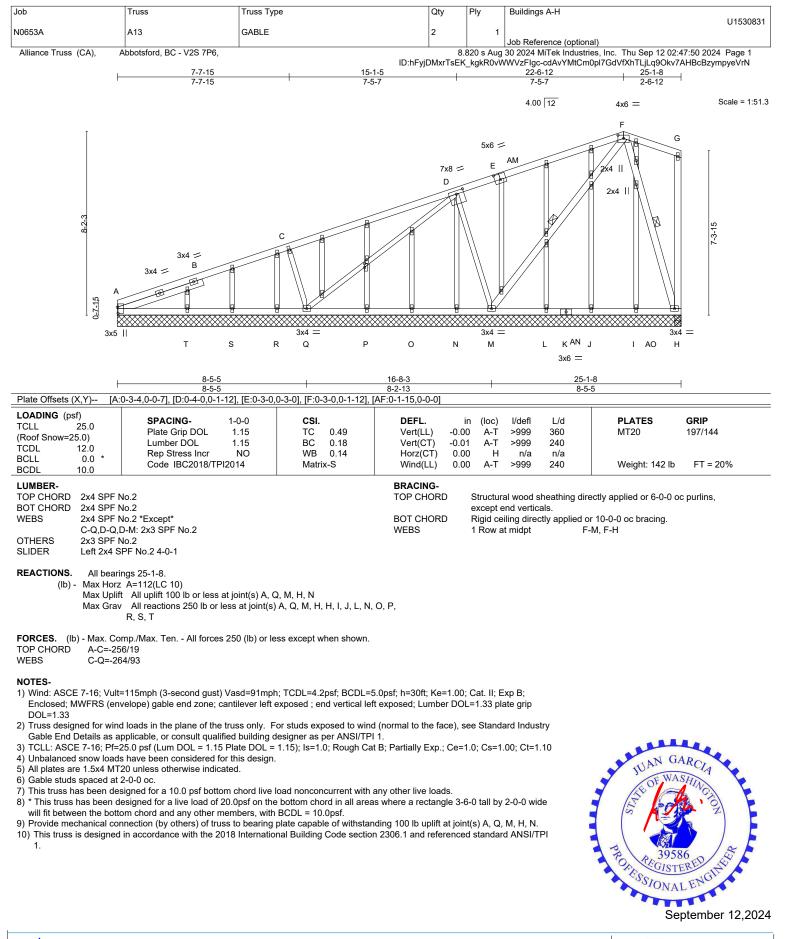
4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.

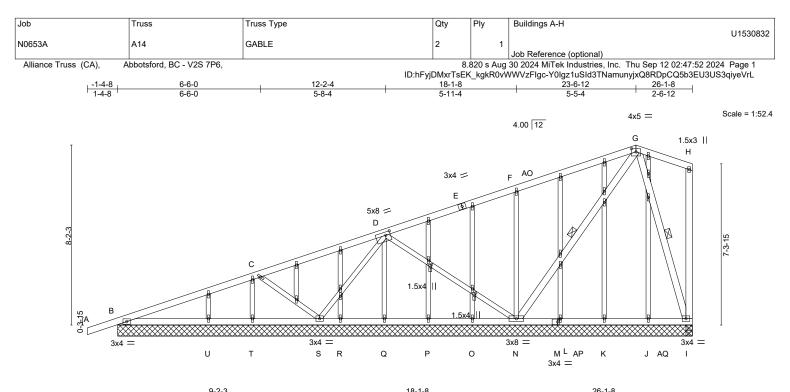
5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)

B=165 K=161


8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.


MiTek 240 Stirling Crescent Bradford, ON. L3Z 4L5

September 12,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

⊢	9-2-3		18-1-8			26-1-8	
	9-2-3	1	8-11-5			8-0-0	1
Plate Offsets (X,Y) [D:	0-2-8,0-1-12], [G:0-2-8,0-1-12], [M:0-1-	0,0-1-8], [AF:0-1-9,0-0-8]	, [AH:0-1-9,0-0-8]				
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) 12.0 TCDL 12.0 BCLL 0.0 * BCDL 10.0	SPACING- 1-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IBC2018/TPI2014	CSI. TC 0.29 BC 0.13 WB 0.24 Matrix-S	DEFL. Vert(LL) -0.0 Vert(CT) -0.0 Horz(CT) 0.0 Wind(LL) 0.0	1 B-U 0 S	l/defi L/d >999 360 >999 240 n/a n/a >999 240	PLATES MT20 Weight: 141 lb	GRIP 197/144 FT = 20%
	No.2 No.2 *Except* i-I: 2x4 SPF No.2		BRACING- TOP CHORD BOT CHORD WEBS	except e	nd verticals. iling directly applied	irectly applied or 6-0-0 o or 6-0-0 oc bracing. G-N, G-I	c purlins,
(Ib) - Max Horz Max Uplif Max Grav	ngs 26-1-8. : B=119(LC 6) t All uplift 100 lb or less at joint(s) B, s / All reactions 250 lb or less at joint(s) N=350(LC 17) mp./Max. Ten All forces 250 (lb) or le	B, I, I, J, K, L, O, P, Q, R	, T, U except S=314(L	C 17),			

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left exposed ; end vertical left exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs
- non-concurrent with other live loads.
- 6) All plates are 1x4 MT20 unless otherwise indicated.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) B, S, N, I, Q.
- 11) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

MiTek 240 Stirling Crescent Bradford, ON. L3Z 4L5

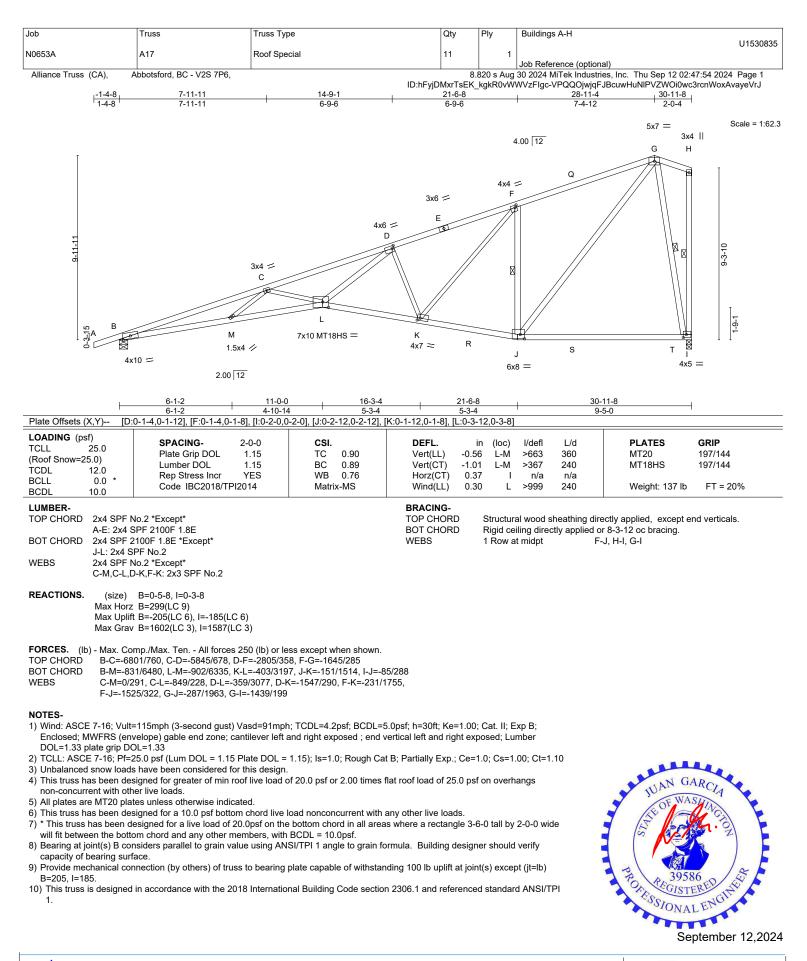
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to use only with with with exercising is based only upon parameters shown, and is to an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

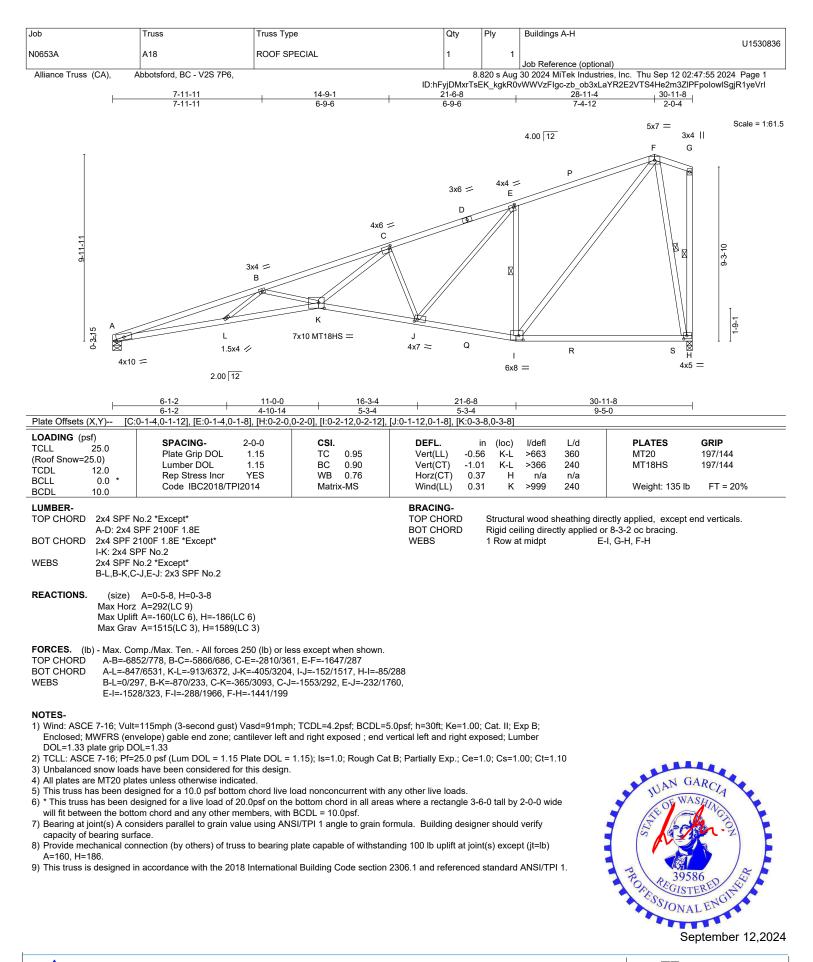
PRMU20240280 BLDG G

Job	Truss	Truss Type	Qty	Ply	Buildings A-H		
					U1530834		
N0653A	A16	GABLE	2	1			
					Job Reference (optional)		
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,	8.820 s Aug 30 2024 MiTek Industries, Inc. Thu Sep 12 02:47:53 2024 Page 2					
		ID:hFyjDMxrTsEK_kgkR0vWWVzFlgc-0Cs2ANv53xBK_kL4KfEAzLzF4caXKL9dl8BdN8yeVrK					

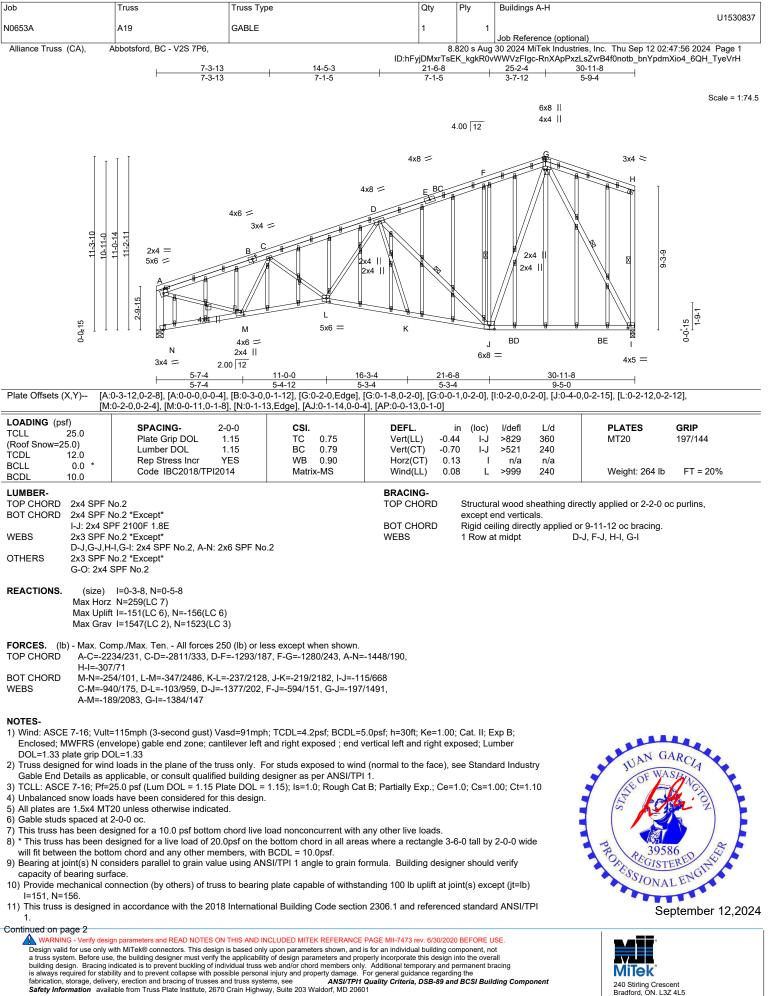
10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


any other methods, with BCDL = 10.0pst.
11) Bearing at joint(s) B considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) L, N except (jt=lb) B=208, K=185, M=480.
13) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

14) No notches allowed in overhang and 120800 from left end and 0 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at


2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.

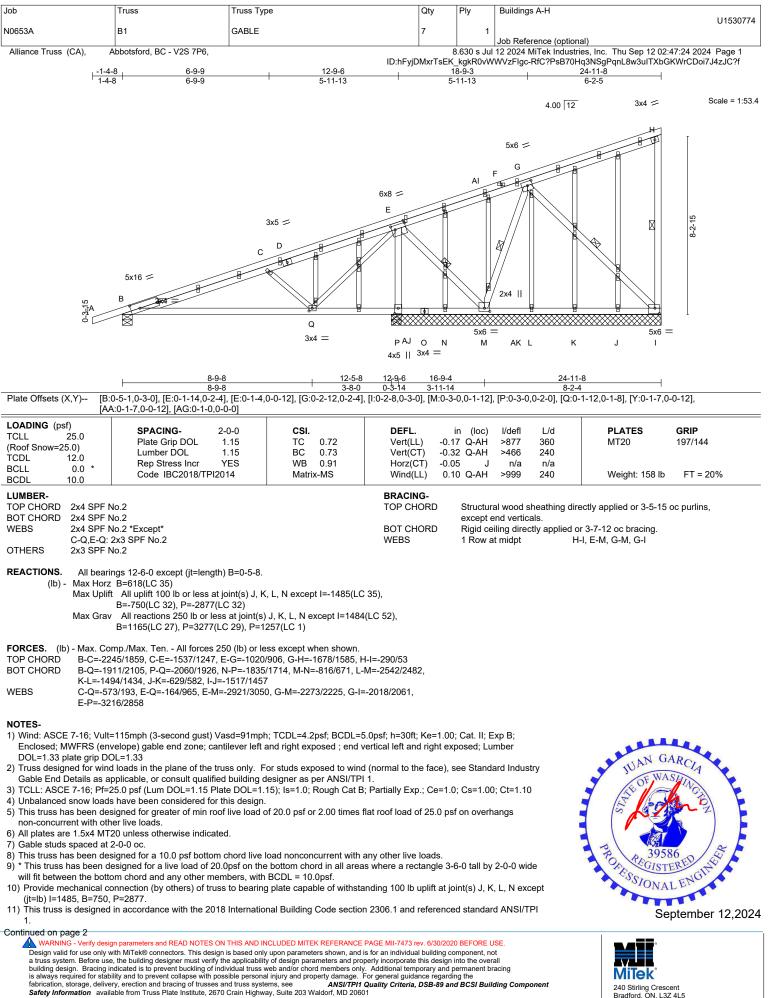
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system, see **ANSI/TPII Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

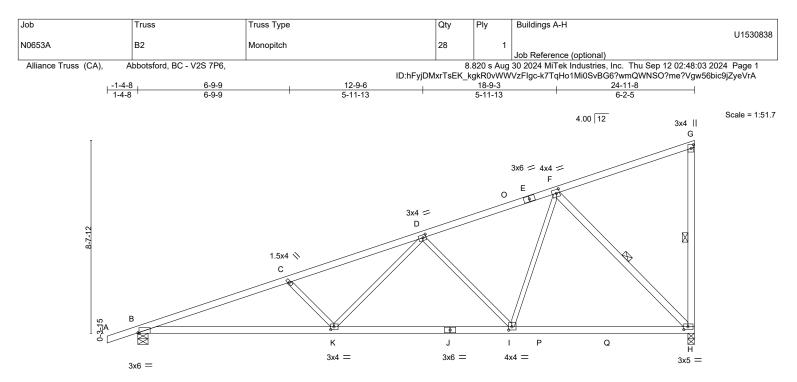
PRMU20240280 BLDG G



Job	Truss	Truss Type Qty Ply Buildings A-H						
100504					U1530837			
N0653A	A19	GABLE 1 1						
		Job Reference (optional)						
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,	8.820 s Aug 30 2024 MiTek Industries, Inc. Thu Sep 12 02:47:56 2024 Page 2						
		ID:hFyjDMxrTsEK kgkR0vWWVzFlgc-RnXApPxzLsZvrB4f0notb bnYpdmXio4 6QH TyeVrH						

12) No notches allowed in overhang and 0 from left end and 0 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Job	Truss	Truss Type	Qty	Ply	Buildings A-H			
					U1530774			
N0653A	B1	GABLE 7 1						
		Job Reference (optional)						
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,	8.630 s Jul 12 2024 MiTek Industries, Inc. Thu Sep 12 02:47:24 2024 Page 2						
		ID:hFyjDMxrTsEK_kgkR0vWWVzFlgc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f						

12) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 12-5-8 to 24-11-8 for 479.2 plf.

13) No notches allowed in overhang and 10408 from left end and 0 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		8-9-8	1		16-9-4					24-11-8		
	1	8-9-8	1		7-11-12					8-2-4		
Plate Offsets (X,Y)	[B:0-0-10,Edge], [D:0-1-12,0)-1-8], [F:0-1-1	2,0-2-0], [G:0-2	2-0,0-1-4]	, [H:0-2-4,0-1-8],	[l:0-1-12	,0-1-12], [K:0-1-	12,0-1-8]			
LOADING (psf) TCLL 25.0	SPACING- Plate Grip DOL	2-0-0 1.15	CSI . TC 0	.69	DEFL. Vert(LL)	in -0.20	(loc) K-N	l/defl >999	L/d 360	PLATES MT20	GRIP 197/144	
(Roof Snow=25.0) TCDL 12.0	Lumber DOL Rep Stress Incr	1.15 YES		.84 74	Vert(CT)	-0.39	K-N н	>769	240 n/a			

BCLL BCDL	0.0 * 10.0	Code IBC2018/TPI2014	MB 0.74 Matrix-MS	(-)	0.06	H K-N	n/a >999	n/a 240	Weight: 96 lb	FT = 20%
LUMBER- TOP CHORD	2x4 SPF I	No.2		BRACING- TOP CHORD	St	ructura	al wood s	sheathing dir	ectly applied or 2-7-4 o	c purlins,
BOT CHORD		No.2 *Except* SPF 2100F 1.8E		BOT CHORD			nd vertio		or 10-0-0 oc bracing.	•
WEBS	2x3 SPF I	No.2 *Except* 2x4 SPF No.2		WEBS			t midpt		3-H, F-H	

REACTIONS. (size) H=0-3-8, B=0-5-8 Max Horz B=281(LC 9) Max Uplift H=-167(LC 10), B=-172(LC 6) Max Grav H=1419(LC 3), B=1331(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD

B-C=-2955/311, C-D=-2666/260, D-F=-1455/158, G-H=-283/51

- BOT CHORD B-K=-378/2775, I-K=-232/1883, H-I=-103/1036
- WEBS C-K=-516/161, D-K=-53/861, D-I=-849/185, F-I=-56/980, F-H=-1470/216

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33

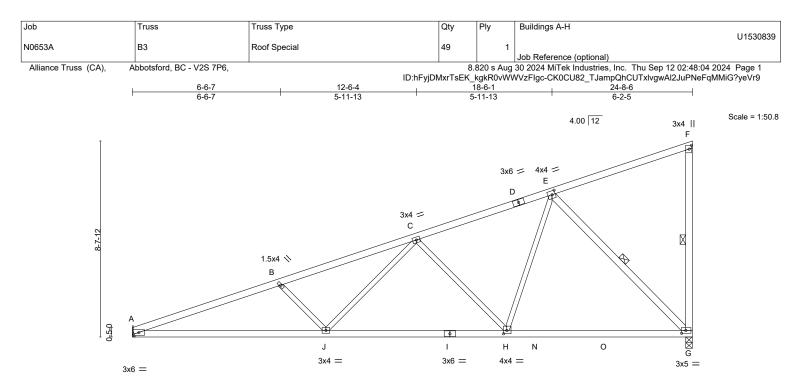
2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 167 lb uplift at joint H and 172 lb uplift at joint B.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek 240 Stirling Crescent Bradford, ON. L3Z 4L5

		6-6 6-6			16-6-2 7-11-12					8-2-4	———————————————————————————————————————
Plate Offsets (X,Y) [E:	0-1-12,0-2-0], [F:0-2-0,0-	-1-4], [G:0-2-4,	0-1-8], [H:()-1-12,0-1-12]						
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.67 0.96 0.72	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.20 -0.34 0.07	(loc) G-H G-H	l/defl >999 >873 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 197/144

LUMBER- BRACING- TOP CHORD 2x4 SPF No.2 TOP CHORD Structural wood sheathing directly applied or 2-11-5 oc except end verticals. BOT CHORD 2x4 SPF No.2 BOT CHORD Structural wood sheathing directly applied or 2-2-0 oc bracing. WEBS 2x3 SPF No.2 *Except* BOT CHORD Rigid ceiling directly applied or 2-2-0 oc bracing.	
F-G.E-G: 2x4 SPF No.2 WEBS 1 Row at midot F-G. E-G	c purlins,
F-G,E-G: 2X4 SPF N0.2 WEBS T Row at midpt F-G, E-G	

REACTIONS. (size) G=0-3-8, A=Mechanical Max Horz A=272(LC 9) Max Uplift G=-167(LC 10), A=-125(LC 6) Max Grav G=1390(LC 3), A=1225(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD A-B=-2853/311, B-C=-2565/261, C-E=-1422/157, F-G=-281/51

BOT CHORD A-J=-373/2660, H-J=-231/1832, G-H=-104/1009

WEBS B-J=-488/159, C-J=-50/798, C-H=-827/184, E-H=-56/967, E-G=-1429/215

NOTES-

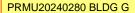
 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33

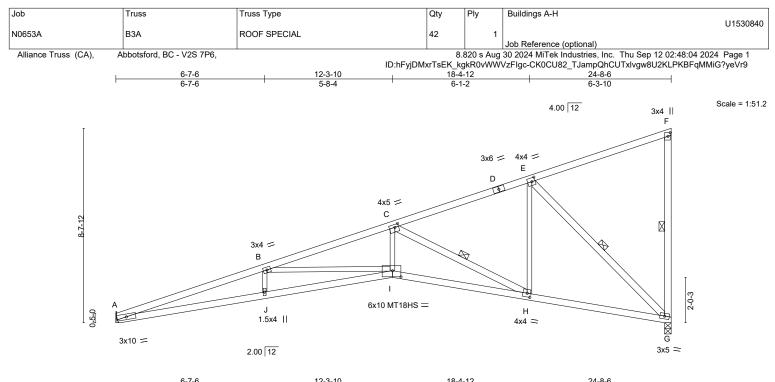
2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


6) Refer to girder(s) for truss to truss connections.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 167 lb uplift at joint G and 125 lb uplift at joint A.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component</u> **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20001

	0-7-0	12-3-10	10-4-12	24-0-0	
	6-7-6	5-8-4	6-1-2	6-3-10	
Plate Offsets (X,Y) [C	::0-2-0,0-1-8], [E:0-1-12,0-2-0], [F:0	-2-0,0-1-4], [H:0-1-12,0-2-0], [I:0)-4-8,0-3-4]		
LOADING (psf) TCLL 25.0 (Boof Spow=25.0)	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.82	DEFL. in (loc) l/def Vert(LL) -0.41 l-J >710		GRIP 197/144

(Roof Snow=25.0) TCDL 12.0 BCLL 0.0 * BCDL 10.0	Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	BC 0.93 WB 0.94 Matrix-MS	Vert(CT) -(Horz(CT) (0.41 I-5 0.76 I-J 0.34 G 0.24 I-J	>386 240 n/a n/a >999 240	MT18HS Weight: 96 lb	197/144 197/144 FT = 20%
A-I: 2x4 S WEBS 2x3 SPF 1	No.2 No.2 *Except* PF 2100F 1.8E No.2 *Except* E-G: 2x4 SPF No.2		BRACING- TOP CHORD BOT CHORD WEBS	except e	nd verticals. ling directly applied o	rectly applied or 2-0-1 or 2-2-0 oc bracing. ⁵ -G, C-H, E-G	1 oc purlins,

REACTIONS. (size) G=0-3-8, A=Mechanical Max Horz A=247(LC 6) Max Uplift G=-188(LC 6), A=-102(LC 6) Max Grav G=1380(LC 16), A=1195(LC 16)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD A-B=-4990/575, B-C=-3791/427, C-E=-1368/94, F-G=-286/64

- BOT CHORD A-J=-762/4729, I-J=-764/4739, H-I=-564/3595, G-H=-182/1267
- WEBS B-I=-1143/197, C-I=-178/1557, C-H=-2599/423, E-H=-63/968, E-G=-1747/249

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left exposed ; end vertical left exposed; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

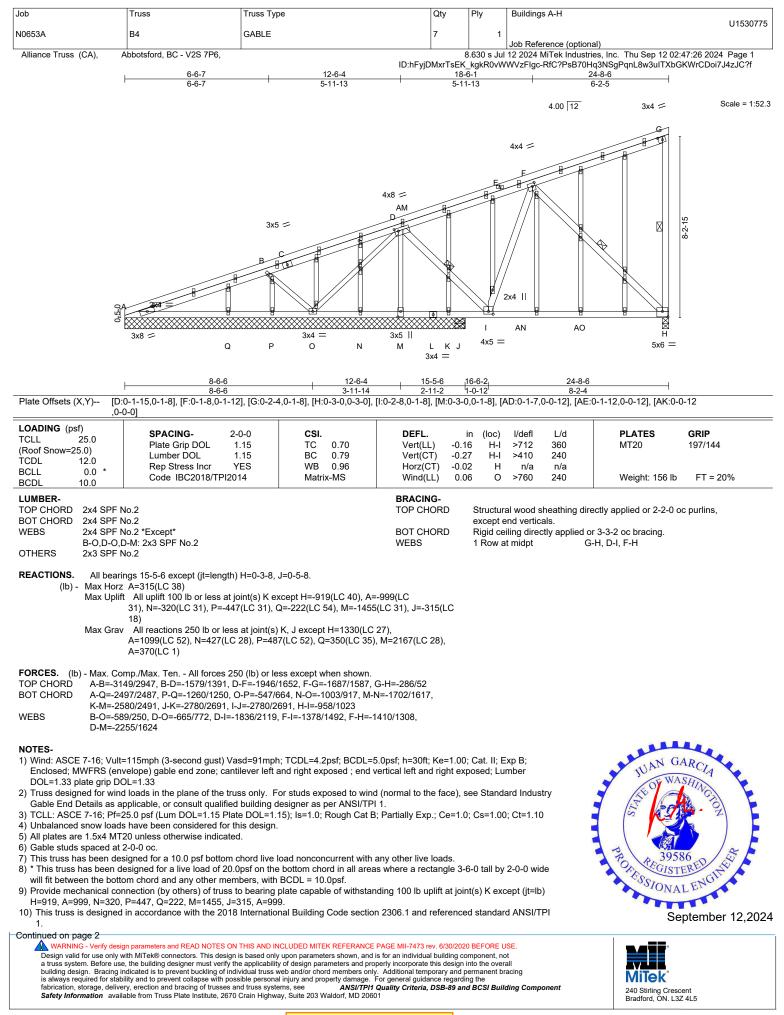
4) All plates are MT20 plates unless otherwise indicated.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Refer to girder(s) for truss to truss connections.

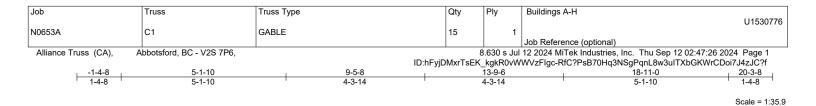
8) Bearing at joint(s) G considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.


9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 188 lb uplift at joint G and 102 lb uplift at joint A.

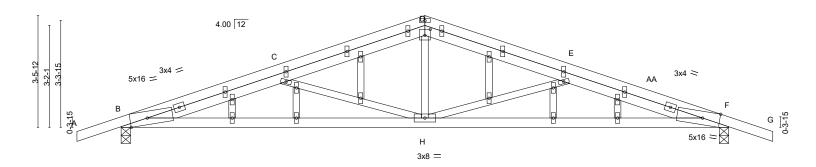
10) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

MiTek 240 Stirling Crescent Bradford, ON. L3Z 4L5

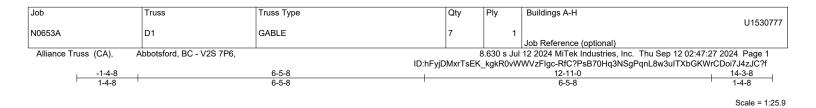
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

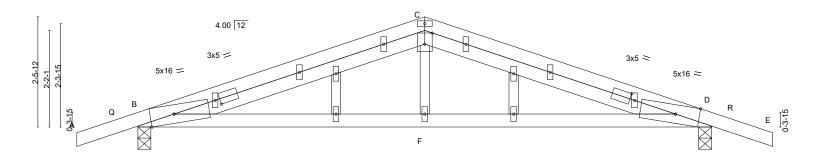

Job	Truss	Truss Type	Qty	Ply	Buildings A-H			
			_		U1530775			
N0653A	B4	GABLE 7 1						
		Job Reference (optional)						
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,	8.630 s Jul 12 2024 MiTek Industries, Inc. Thu Sep 12 02:47:26 2024 Page 2						
		ID:hFyjDMxrTsEK_kgkR0vWWVzFlgc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f						

11) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 15-5-6 for 383.7 plf.


12) No notches allower in overhang and 0 from left end and 0 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.

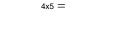
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


4x4 =

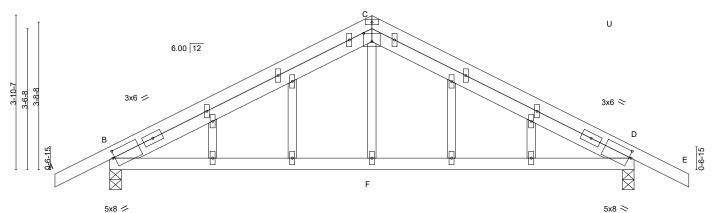

 	<u>9-5-8</u> 9-5-8				<u>18-11-0</u> 9-5-8	
Plate Offsets (X,Y) [B:0)-6-7,Edge], [D:0-2-0,0-2-4], [F:0-6-7,E	Edge]				
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL 12.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2018/TPI2014	CSI. TC 0.41 BC 0.81 WB 0.55 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc) l/def -0.14 H-Z >999 -0.33 H-W >684 0.06 F n/a 0.06 H-W >999	360 240 n/a	PLATES GRIP MT20 197/144 Weight: 83 lb FT = 20%
UMBER- TOP CHORD 2x4 SPF N 30T CHORD 2x4 SPF N VEBS 2x3 SPF N DTHERS 2x3 SPF N REACTIONS. (size)	lo.2 lo.2		BRACING- TOP CHORD BOT CHORD			ectly applied or 3-3-12 oc purlins. or 10-0-0 oc bracing.
ORCES. (lb) - Max. Cor OP CHORD B-C=-240	B=1105(LC 17), F=1057(LC 18) mp./Max. Ten All forces 250 (lb) or le 01/253, C-D=-1609/111, D-E=-1608/1					
	4/2275, F-H=-184/2396 75, E-H=-1018/188, C-H=-932/197					
 DOL=1.33 plate grip DC 2) Truss designed for wind Gable End Details as ag 3) TCLL: ASCE 7-16; Pf=2 4) Unbalanced snow loads 5) This truss has been des non-concurrent with othe 6) All plates are 1.5x4 MT2 7) Gable studs spaced at 28) This truss has been des will fit between the botto 10) Provide mechanical co B=169, F=137. 11) This truss is designed 1. 12) No notches allowed in 	I loads in the plane of the truss only. F opplicable, or consult qualified building of 5.0 psf (Lum DOL=1.15 Plate DOL=1. have been considered for this design igned for greater of min roof live load of er live loads. 20 unless otherwise indicated. 2-0-0 oc. igned for a 10.0 psf bottom chord live asigned for a live load of 20.0psf on the m chord and any other members. onnection (by others) of truss to bearing in accordance with the 2018 Internation overhang and 10408 from left end and 4 tie plates required at 2-0-0 o.c. maxing and the second second second second second second second at the plates required at 2-0-0 o.c. maxing	or studs exposed to wir designer as per ANSI/TF 15); Is=1.0; Rough Cat of 20.0 psf or 2.00 times load nonconcurrent with a bottom chord in all are g plate capable of withs onal Building Code section	nd (normal to the fac Pl 1. B; Partially Exp.; Ce s flat roof load of 25.0 n any other live loads as where a rectangl tanding 100 lb uplift on 2306.1 and refere or 12" along rake from	e), see Standard Inc =1.0; Cs=1.00; Ct=1 0 psf on overhangs s. e 3-6-0 tall by 2-0-0 at joint(s) except (jt= enced standard ANS m scarf, whichever is	10 wide lb) /TPI	JUAN GARCIA JUAN GARCIA Steof WASSING STROP BORSSIONAL ENGINE
						September 12,20
Design valid for use only w a truss system. Before use building design. Bracing in is always required for stabi	n parameters and READ NOTES ON THIS AND II ith MITek® connectors. This design is based only the building designer must verify the applicabilit dicated is to prevent buckling of individual truss ility and to prevent collapse with possible persona- ve, erection and bracing of trusses and truss syst	y upon parameters shown, and ty of design parameters and pr web and/or chord members or al injury and property damage.	d is for an individual buildi roperly incorporate this de nly. Additional temporary For general guidance re	ng component, not sign into the overall and permanent bracing garding the	nnonent	

a duss system: Deforde use, the bounding designer must verify the applicationity of design parameters and property incorporate time design must verify the application of design parameters and property incorporate and easing must be overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

PRMU20240280 BLDG G


	6-5-8 6-5-8		+					
Plate Offsets (X,Y) [B	:0-6-7,Edge], [B:1-1-0,0-1-8], [C:0-3-0,E	dge], [D:1-1-0,0-1-8], [D	:0-6-7,Edge]					
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) 12.0 BCLL 0.0 * BCDL 10.0 *	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2018/TPI2014	CSI. TC 0.86 BC 0.76 WB 0.09 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc) -0.11 F-N -0.18 F-N 0.02 E 0.04 F-N	l >999 l >864) n/a	L/d 360 240 n/a 240	PLATES MT20 Weight: 50 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 SPF BOT CHORD 2x4 SPF WEBS 2x3 SPF OTHERS 2x3 SPF	No.2 No.2		BRACING- TOP CHORI BOT CHORI				ectly applied or 2-2-0 or 10-0-0 oc bracing.	oc purlins.
Max Upli	B=0-3-8, D=0-3-8 z B=41(LC 10) ft B=-141(LC 6), D=-110(LC 7) v B=974(LC 17), D=822(LC 18)							
TOP CHORD B-C=-12	omp./Max. Ten All forces 250 (Ib) or le 260/86, C-D=-1230/91 3/1118, D-F=-53/1118 288	ss except when shown.						
 Enclosed; MWFRS (er DOL=1.33 plate grip D Truss designed for win Gable End Details as a TCLL: ASCE 7-16; Pf= Unbalanced snow load This truss has been de non-concurrent with ot All plates are 1.5x4 MT Gable studs spaced at This truss has been de No not ches allowed in 	Id loads in the plane of the truss only. F applicable, or consult qualified building of 25.0 psf (Lum DOL=1.15 Plate DOL=1. Is have been considered for this design. signed for greater of min roof live load of her live loads. [20 unless otherwise indicated. 2-0-0 oc. esigned for a 10.0 psf bottom chord live l designed for a 10.0 psf bottom chord live l designed for a live load of 20.0psf on the tom chord and any other members. connection (by others) of truss to bearing d in accordance with the 2018 Internatio n overhang and 10408 from left end and k4 tie plates required at 2-0-0 o.c. maxin	and right exposed ; end or studs exposed to winn lesigner as per ANSI/TP 15); Is=1.0; Rough Cat E of 20.0 psf or 2.00 times oad nonconcurrent with bottom chord in all area plate capable of withsta nal Building Code sectio 10408 from right end of	vertical left and rig d (normal to the fa l 1. 3; Partially Exp.; C flat roof load of 25 any other live load as where a rectang anding 100 lb uplif n 2306.1 and refe	ht exposed; L ce), see Stan e=1.0; Cs=1. 0 psf on ove ds. gle 3-6-0 tall b t at joint(s) ex renced standa	umber dard Indus 00; Ct=1.1 rhangs vy 2-0-0 wi ccept (jt=lb ard ANSI/ ⁷ chever is	0 de) 'PI	PROFIESSION	ASHING TO T

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


PRMU20240280 BLDG G

240 Stirling Crescent Bradford, ON. L3Z 4L5

5x8 💋

Plate Offsets (X,Y) [B:0	6 6 0-0-9,0-2-1], [C:0-2-8,0-2-8], [D:0-0-9,0	7-0			3-2-0 -7-0		
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL TCDL 12.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2018/TPI2014	CSI. TC 0.76 BC 0.41 WB 0.08 Matrix-MS	DEFL. Vert(LL) -0.0 Vert(CT) -0.1 Horz(CT) 0.0 Wind(LL) 0.0	10 F-T >999 01 B n/a	L/d 360 240 n/a 240	PLATES MT20 Weight: 59 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 SPF N BOT CHORD 2x4 SPF N WEBS 2x3 SPF N OTHERS 2x3 SPF N	lo.2 lo.2		BRACING- TOP CHORD BOT CHORD			ectly applied or 4-4-14 r 10-0-0 oc bracing.	l oc purlins.
()	B=0-3-8, D=0-3-8 B=52(LC 10)						

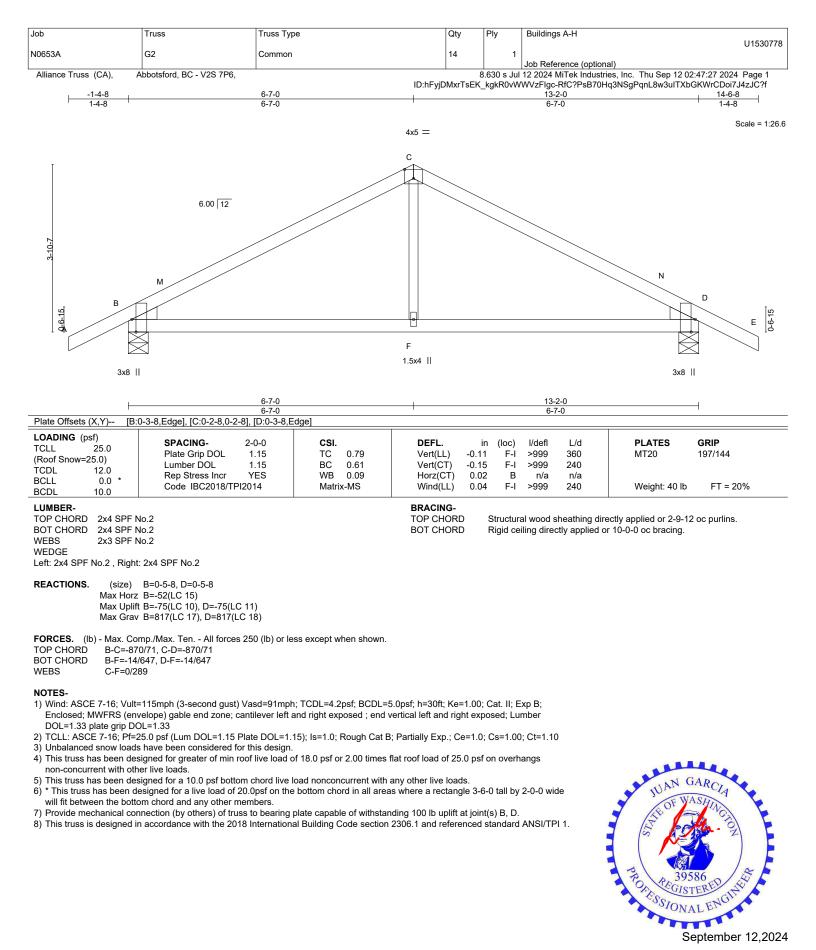
Max Uplift B=-90(LC 10), D=-78(LC 11) Max Grav B=760(LC 1), D=817(LC 18)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. B-C=-815/65, C-D=-877/66 TOP CHORD

BOT CHORD B-F=-15/662, D-F=-15/662

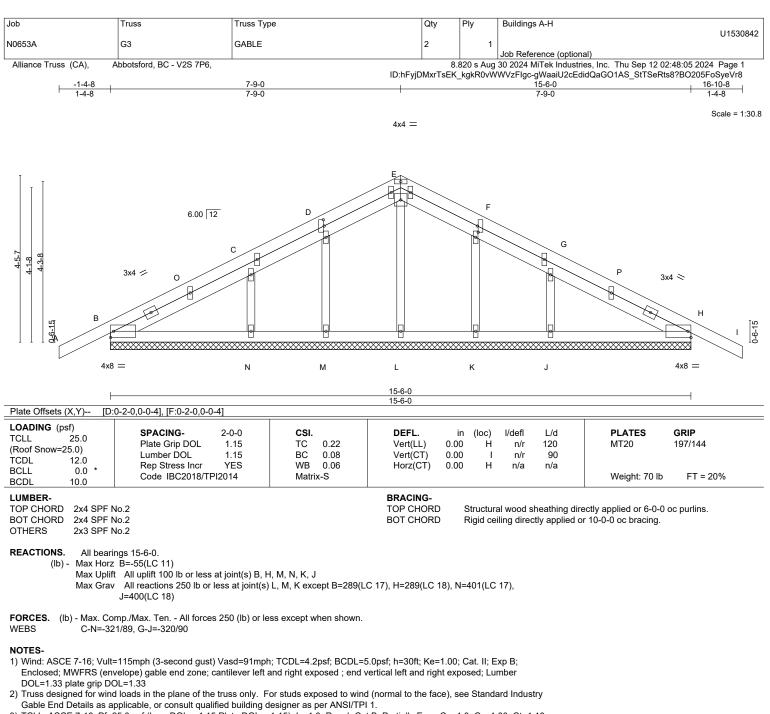
WEBS C-F=0/265

NOTES-


- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 18.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs
- non-concurrent with other live loads.
- 6) All plates are 1.5x4 MT20 unless otherwise indicated.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 90 lb uplift at joint B and 78 lb uplift at ioint D.
- 11) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1
- 12) No notches allowed in overhang and 10408 from left end and 10408 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

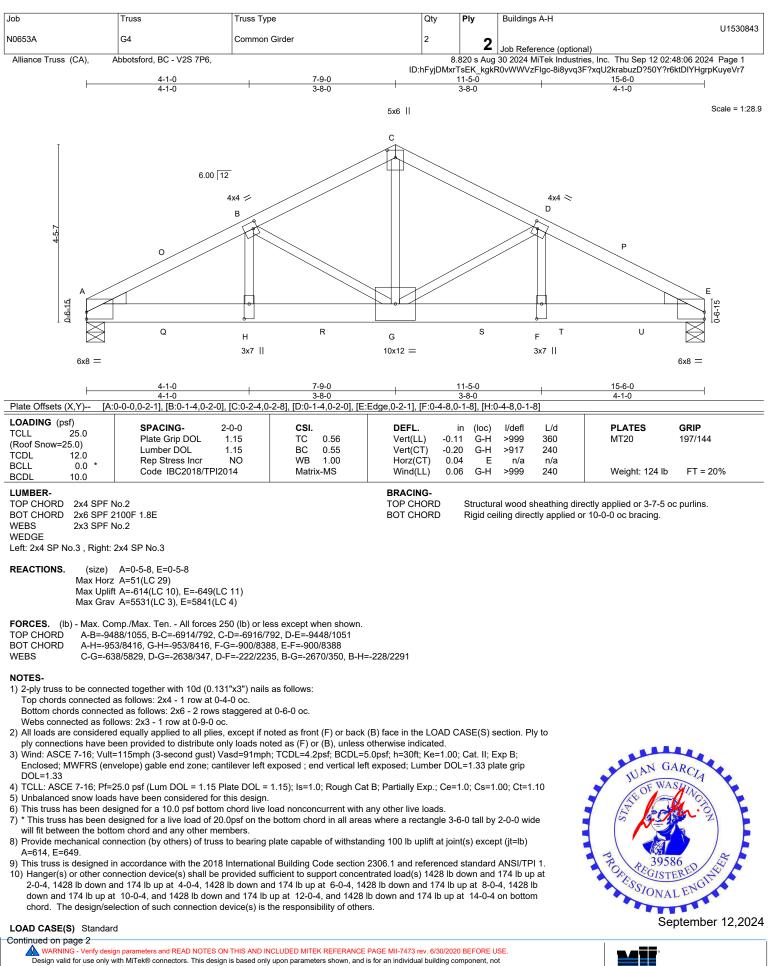
September 12,2024



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **Ans/ITPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

PRMU20240280 BLDG G

240 Stirling Crescent Bradford, ON. L3Z 4L5


- 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 18.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs
- non-concurrent with other live loads.
- 6) All plates are 1.5x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- 8) Gable studs spaced at 2-0-0 oc.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) B, H, M, N, K, J.
- 12) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI
- 1. 13) No notches allowed in overhang and 10408 from left end and 10408 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.

GARCIA JUAN BORESSIONAL ENGINE Ann AL ENGINY

> MiTek 240 Stirling Crescent Bradford, ON. L3Z 4L5

September 12,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

240 Stirling Crescent Bradford, ON. L3Z 4L5

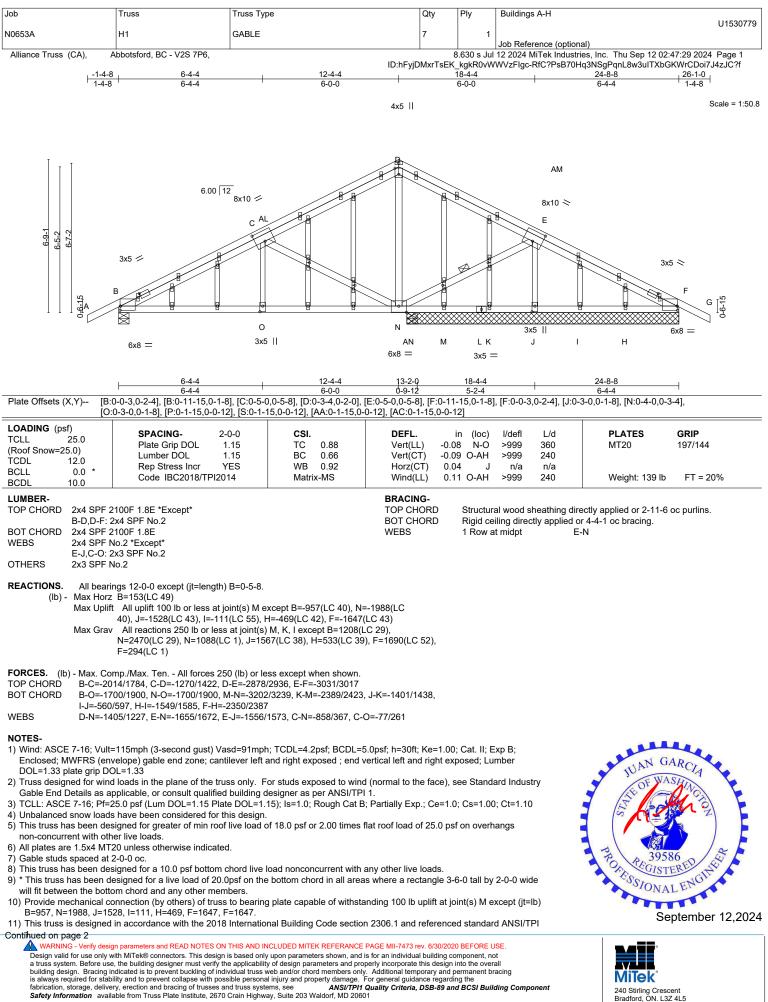
MiTek

Job	Truss	Truss Type	Qty	Ply	Buildings A-H
					U1530843
N0653A	G4	Common Girder	2	2	
				2	Job Reference (optional)
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,		8.	820 s Aug	30 2024 MiTek Industries, Inc. Thu Sep 12 02:48:06 2024 Page 2

8.820 s Aug 30 2024 MiTek Industries, Inc. Thu Sep 12 02:48:06 2024 Page 2 ID:hFyjDMxrTsEK_kgkR0vWWVzFlgc-8i8yvq3F?xqU2krabuzD?50Y?r6ktDIYHgrpKuyeVr7

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

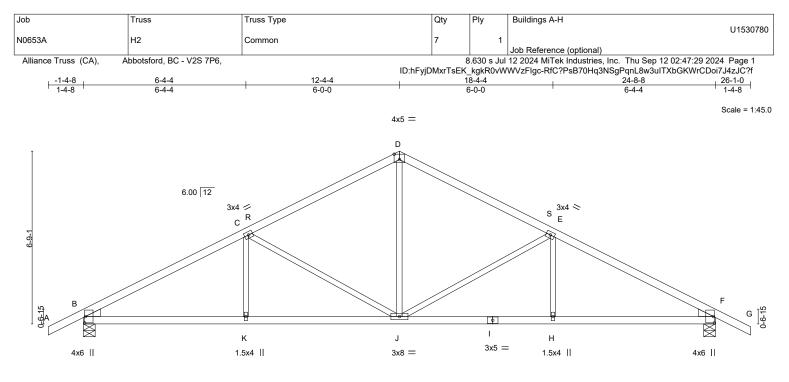

Uniform Loads (plf) Vert: A-C=-74, C-E=-74, I-L=-20

Concentrated Loads (lb)

Vert: G=-1387(B) H=-1387(B) Q=-1387(B) R=-1387(B) S=-1387(B) T=-1387(B) U=-1387(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent touble personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Buildings A-H
					U1530779
N0653A	H1	GABLE	7	1	
					Job Reference (optional)
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,			630 s Jul	12 2024 MiTek Industries, Inc. Thu Sep 12 02:47:29 2024 Page 2
		ID:hFyjD	MxrTsEK	_kgkR0vW	WVzFlgc-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f


NOTES-

12) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 12-8-8 to 24-8-8 for 494.2 plf.

13) No notches allowed in overhang and 10408 from left end and 10408 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent touble personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	6-4-4 6-4-4	+ <u>12-4-4</u> 6-0-0			18-4 6-0			+	24-8-8 6-4-4	
Plate Offsets (X,Y) [B:	0-3-0,0-0-7], [D:0-2-8,0-2-8], [F:0-3-0,0-0-7]								
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL TCDL 12.0 BCLL 0.0 BCDL 10.0		15 TC 0. 15 BC 0. 25 WB 0.	.81 .62 .83 IS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.09 -0.17 0.06 0.04	(loc) J-K J-K F H-J	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 86 lb	GRIP 197/144 FT = 20%
LUMBER-				BRACING-						

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No.2 2x4 SPF No.2 BOT CHORD 2x3 SPE No 2 WFBS

WEDGE

Left: 2x4 SPF No.2 , Right: 2x4 SPF No.2

REACTIONS. (size) B=0-5-8, F=0-5-8 Max Horz B=-90(LC 11) Max Uplift B=-119(LC 10), F=-119(LC 11) Max Grav B=1287(LC 17), F=1287(LC 18)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD B-C=-1988/155, C-D=-1373/137, D-E=-1373/137, E-F=-1988/155

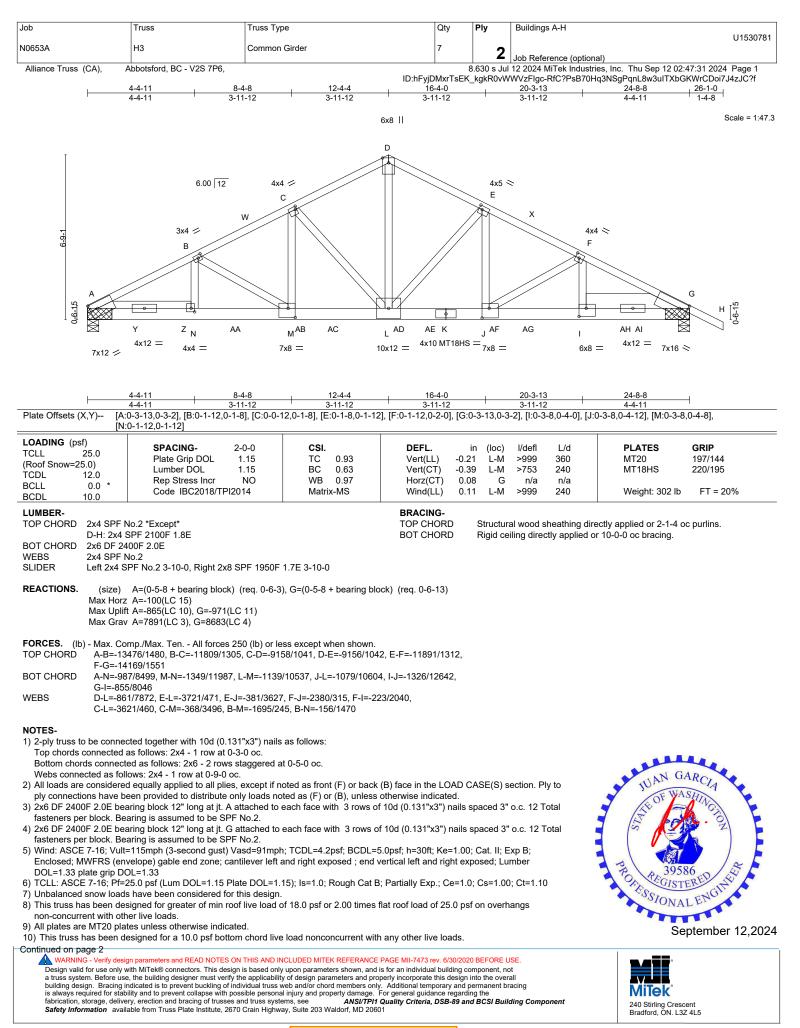
- BOT CHORD B-K=-152/1701, J-K=-152/1701, H-J=-62/1701, F-H=-62/1701
- WEBS D-J=-23/716, E-J=-705/149, C-J=-705/149

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

- 4) This truss has been designed for greater of min roof live load of 18.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) B=119, F=119.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.



MiTek 240 Stirling Crescent Bradford, ON. L3Z 4L5

Structural wood sheathing directly applied or 2-2-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

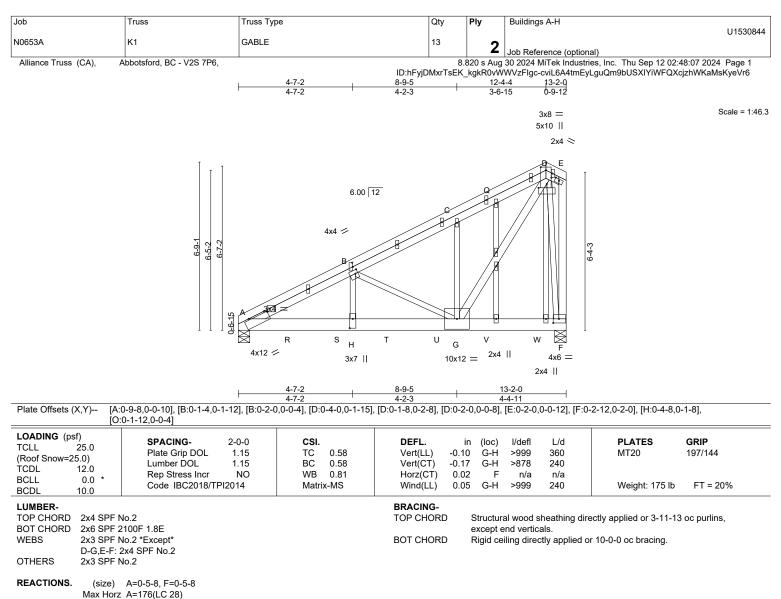
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Buildings A-H
			_		U1530781
N0653A	H3	Common Girder	7	2	
				_	Job Reference (optional)
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,			3.630 s Jul	12 2024 MiTek Industries, Inc. Thu Sep 12 02:47:31 2024 Page 2
			ID:hFyjDMxrTsEK	kgkR0vW	WVzFlqc-RfC?PsB70Hq3NSqPqnL8w3ulTXbGKWrCDoi7J4zJC?f

NOTES-

- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) A=865, G=971.
- 13) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 14) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1205 lb down and 145 lb up at 2-0-4, 1205 lb down and 145 lb up at 4-0-4, 1205 lb down and 145 lb up at 6-0-4, 1205 lb down and 145 lb up at 12-0-4, 1205 lb down and 145 lb up at 12-0-4, 1205 lb down and 145 lb up at 12-0-4, 1205 lb down and 145 lb up at 12-0-4, 1205 lb down and 145 lb up at 14-0-4, 1205 lb down and 145 lb up at 12-0-4, 120

LOAD CASE(S) Standard


- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf)
 - Vert: A-D=-74, D-H=-74, O-S=-20

Concentrated Loads (lb)

Vert: I=-1175(F) Y=-1175(F) Z=-1175(F) AA=-1175(F) AB=-1175(F) AC=-1175(F) AD=-1175(F) AE=-1175(F) AF=-1175(F) AG=-1175(F) AH=-1175(F) AI=-1175(F) AD=-1175(F) AD=

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component</u> **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Max Uplift A=-532(LC 10), F=-630(LC 10) Max Grav A=4676(LC 3), F=5224(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- A-B=-7751/879, B-C=-4320/502, C-D=-4340/566, E-F=-326/86 TOP CHORD
- BOT CHORD A-H=-861/7096, G-H=-862/7105, F-G=-99/451
- WEBS B-H=-270/2565, B-G=-3686/477, C-G=-331/119, D-G=-833/6615, D-F=-3640/457

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-7-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-5-0 oc.

Webs connected as follows: 2x3 - 1 row at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33

4) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

5) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

6) Unbalanced snow loads have been considered for this design. 7) All plates are 1.5x4 MT20 unless otherwise indicated.

8) Gable studs spaced at 2-0-0 oc.

9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) A=532, F=630.

12) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

Continued on page 2

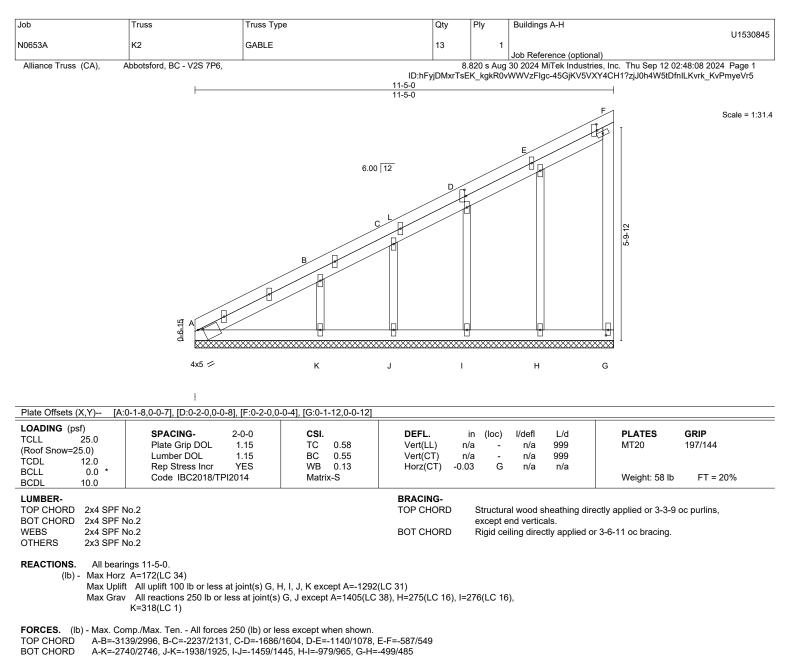
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to use only with with with exercising is based only upon parameters shown, and is to an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Buildings A-H
N0653A	К1	GABLE	13		U1530844
		0,022		2	Job Reference (optional)
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,		8	820 s Aug	30 2024 MiTek Industries, Inc. Thu Sep 12 02:48:07 2024 Page 2
		ID:hFyj	DMxrTsEK	kgkR0vW	WVzFlgc-cviL6A4tmEyLguQm9bUSXIYiWFQXcjzhWKaMsKyeVr6

NOTES-

- 13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1476 lb down and 180 lb up at 2-0-4, 1476 lb down and 180 lb up at 4-0-4, 1476 lb down and 180 lb up at 6-0-4, 1476 lb down and 180 lb up at 6-0-4, 1476 lb down and 180 lb up at 12-0-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 14) No notches allowed in overhang and 0-0-0 from left end and 0-0-0 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.
- 15) Studding applied to ply: 1(Front)

LOAD CASE(S) Standard


- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (plf) Vert: A-D=-74, D-E=-74, F-N=-20

Concentrated Loads (lb)

Vert: R=-1434(F) S=-1434(F) T=-1434(F) U=-1434(F) V=-1434(F) W=-1434(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>AMSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component</u> Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

NOTES-


- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) All plates are 1.5x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) G, H, I, J, K except (jt=lb) A=1292.
- 11) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 12) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 11-5-0 for 240.0 plf.
- 13) No notches allowed in overhang and 0 from left end and 0 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

September 12,2024

JUAN

GARCIA

Plate Offsets (X,Y) [B:	0-0-12,0-1-12]					
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL 12.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.09 BC 0.10 WB 0.00 Matrix-P	DEFL. Vert(LL) -0. Vert(CT) 0. Horz(CT) -0.	00 A n/r 90	PLATES MT20 Weight: 13 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 SPF N BOT CHORD 2x4 SPF N WEBS 2x4 SPF N	No.2		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied or	,	oc purlins,

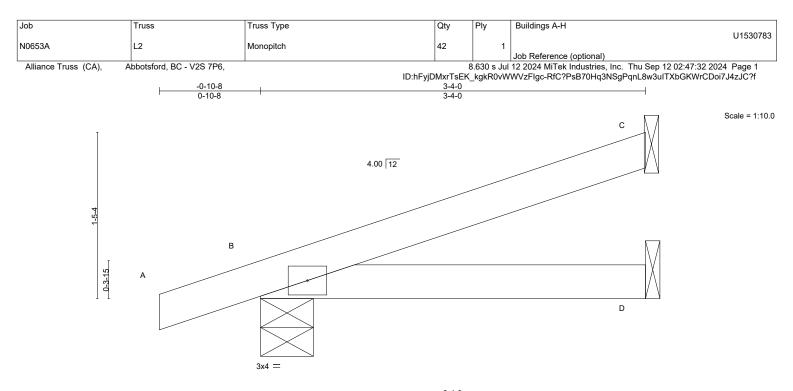
REACTIONS. (size) D=3-4-0, B=3-4-0 Max Horz B=40(LC 7) Max Uplift D=-19(LC 10), B=-48(LC 6) Max Grav D=183(LC 17), B=297(LC 17)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber

ł


- DOL=1.33 plate grip DOL=1.33 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry
- Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs
- non-concurrent with other live loads.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) D, B.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) B.
- 12) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

September 12,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to use only with with with exercising is based only upon parameters shown, and is to an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			<u> </u>	
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL TCDL 12.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	TC 0.17 BC 0.16	DEFL. in (loc) l/defl L/d Vert(LL) -0.01 D-G >999 360 Vert(CT) -0.02 D-G >999 240 Horz(CT) 0.00 B n/a n/a Wind(LL) 0.00 D-G >999 240	PLATES GRIP MT20 197/144 Weight: 9 lb FT = 20%

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2

REACTIONS. (size) C=Mechanical, B=0-5-8, D=Mechanical

Max Horz B=45(LC 6)

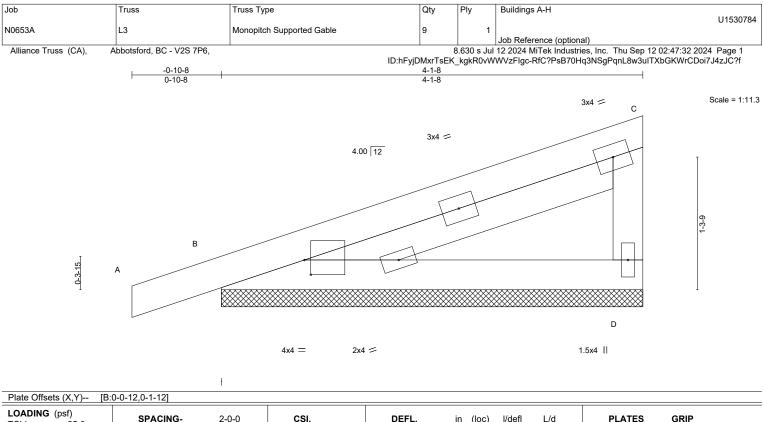
Max Uplift C=-28(LC 10), B=-46(LC 6)

Max Grav C=132(LC 17), B=302(LC 17), D=59(LC 5)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) C, B.
- 9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.



Structural wood sheathing directly applied or 3-4-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

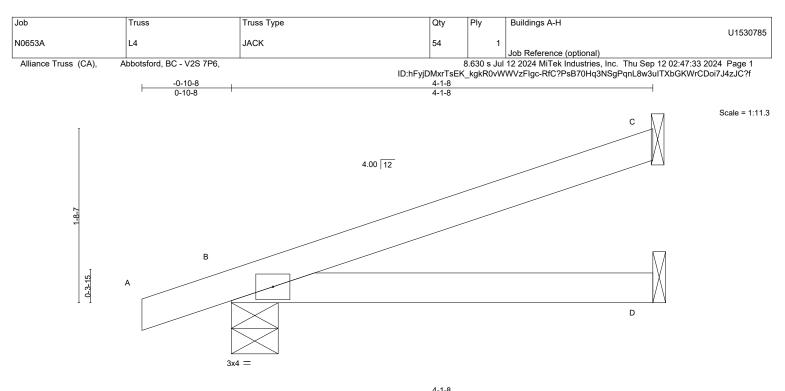
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL TCDL 12.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIBC2018/TPI2014	CSI. TC 0.13 BC 0.16 WB 0.00 Matrix-P	DEFL. Vert(LL) -0.0 Vert(CT) 0.0 Horz(CT) -0.0	0 A n/r 90	PLATES GRIP MT20 197/144 Weight: 16 lb FT = 20%
LUMBER- TOP CHORD 2x4 SPF BOT CHORD 2x4 SPF	No.2		BRACING- TOP CHORD	except end verticals.	ng directly applied or 4-1-8 oc purlins,
WEBS 2x4 SPF	NO.Z		BOT CHORD	Rigid ceiling directly app	lied of 10-0-0 oc bracing.

REACTIONS. (size) D=4-1-8, B=4-1-8 Max Horz B=49(LC 7) Max Uplift D=-25(LC 10), B=-52(LC 6) Max Grav D=238(LC 17), B=350(LC 17)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-


- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber
- DOL=1.33 plate grip DOL=1.33 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs
- non-concurrent with other live loads.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) D, B.
- 11) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

PRMU20240280 BLDG G

240 Stirling Crescent Bradford, ON. L3Z 4L5

		4-1-8									
LOADING (psf) TCLL 25.0	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
(Roof Snow=25.0)	Plate Grip DOL	1.15	TC	0.29	Vert(LL)	-0.02	D-G	>999	360	MT20	197/144
TCDL 12.0	Lumber DOL	1.15	BC	0.26	Vert(CT)	-0.04	D-G	>999	240		
BCLL 0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	В	n/a	n/a		
BCDL 10.0	Code IBC2018/TPI2	2014	Matrix	k-MP	Wind(LL)	0.01	D-G	>999	240	Weight: 11 lb	FT = 20%

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2

REACTIONS. (size) C=Mechanical, B=0-5-8, D=Mechanical

Max Horz B=53(LC 6)

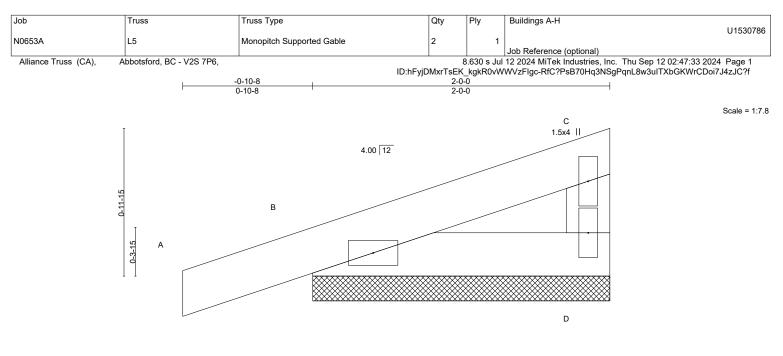
Max Uplift C=-36(LC 10), B=-48(LC 6)

Max Grav C=174(LC 17), B=356(LC 17), D=74(LC 5)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) C, B.
- 9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Structural wood sheathing directly applied or 4-1-8 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

2x4 =

ł

1.5x4 ||

Rigid ceiling directly applied or 10-0-0 oc bracing.

LOADING (psf) TCLL 25.0 (Roof Snow=25.0) 7000000000000000000000000000000000000	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIBC2018/TPI2014	CSI. TC 0.09 BC 0.03 WB 0.00 Matrix-P	Vert(CT) 0.	in (loc) 00 A 00 A 00 D	l/defl n/r n/r n/a	L/d 120 90 n/a	PLATES MT20 Weight: 6 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 SPF No BOT CHORD 2x4 SPF No			BRACING- TOP CHORD		al wood s and vertic		ectly applied or 2-0-	0 oc purlins,

BOT CHORD

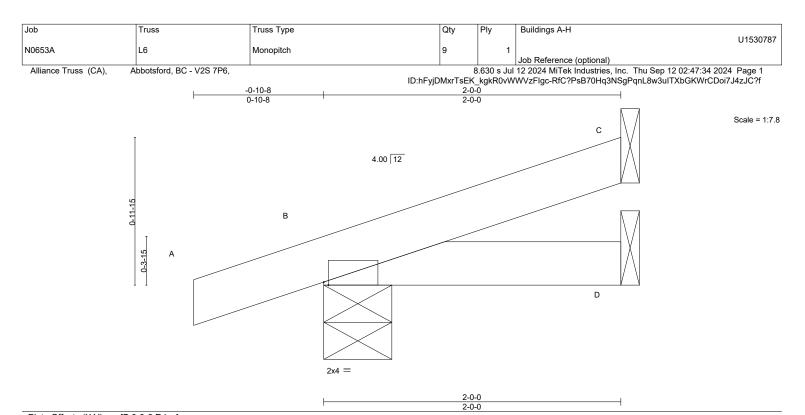
BOT CHORD 2x4 SPF No.2 2x4 SPF No.2 WFBS

REACTIONS. (size) D=2-0-0, B=2-0-0

Max Horz B=26(LC 7) Max Uplift D=-9(LC 10), B=-45(LC 6)

Max Grav D=89(LC 17), B=214(LC 17)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.


NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) D, B.
- 11) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek 240 Stirling Crescent Bradford, ON. L3Z 4L5

OADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL 25.0	Plate Grip DOL 1.15	TC 0.15		0.00	(100)	>999	360	MT20	197/144
Roof Snow=25.0)	Lumber DOL 1.15	BC 0.20	· · · ·	0.00	G	>999	240	101120	137/144
CDL 12.0	Rep Stress Incr YES	WB 0.00	(-)	0.00	В	n/a	n/a		
CLL 0.0 * CDL 10.0	Code IBC2018/TPI2014	Matrix-MP	(-)	0.00	Ğ	>999	240	Weight: 6 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2

REACTIONS. (size) B=0-5-8, D=Mechanical

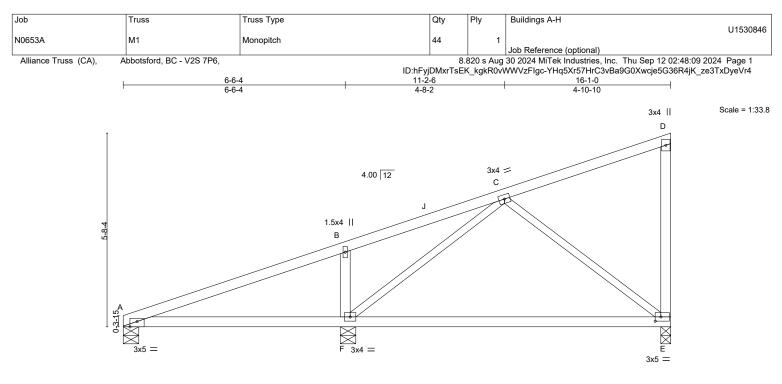
Max Horz B=30(LC 6)

Max Uplift B=-42(LC 6), D=-12(LC 7) Max Grav B=222(LC 17), D=104(LC 16)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs
- non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) B, D.
- 9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.



Structural wood sheathing directly applied or 2-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component</u> **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20001

		6-6-4		6-7-4				6-1-0			
		6-6-4		0-1'-0			9-:	5-12			
Plate Offsets (X,Y) [A:	0-2-8,Edge], [E:0-2-0,0-1-8	8]									
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL TCLL 0.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2018/TPI	2-0-0 1.15 1.15 YES 2014	BC	0.43 0.62 0.37 -MS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.21 -0.40 0.01 0.04	(loc) E-F E-F E F-I	l/defl >545 >283 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 55 lb	GRIP 197/144 FT = 20%
LUMBER-					BRACING-						

 TOP CHORD
 2x4 SPF No.2
 TOP CHORD
 Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

 BOT CHORD
 2x4 SPF No.2
 BOT CHORD
 Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

 WEBS
 2x4 SPF No.2 *Except*
 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

 C-F,C-E: 2x3 SPF No.2
 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) A=0-5-8, F=0-5-8, E=0-3-8 Max Horz A=176(LC 9) Max Uplift A=-27(LC 6), F=-92(LC 6), E=-70(LC 10) Max Grav A=266(LC 16), F=896(LC 16), E=550(LC 16)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

BOT CHORD E-F=-89/343

WEBS B-F=-447/147, C-F=-345/39, C-E=-411/116

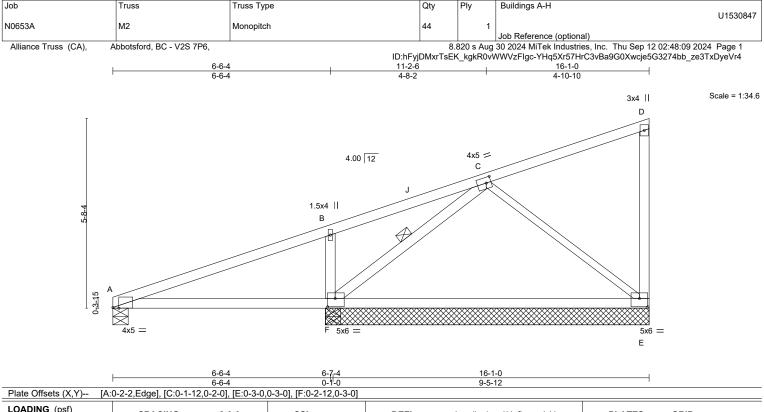
NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A, F, E.

7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component</u> **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20001

BCLL 0.0 * Rep orders and Code IBC2018/TPI2014 Matrix-MS BCDL 10.0 Code IBC2018/TPI2014 Matrix-MS	Wind(LL) 0.06 F-I >999 240 Weight: 57 lb FT = 20%					
LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2	BRACING- TOP CHORD Structural wood sheathing directly applied or 4-8-15 oc purlins, except end verticals.					
WEBS 2x4 SPF No.2 *Except* C-E: 2x3 SPF No.2	BOT CHORDRigid ceiling directly applied.WEBS1 Row at midptC-F					

Max Uplift All uplift 100 lb or less at joint(s) except A=-550(LC 31), F=-1377(LC 31), E=-601(LC 40)

Max Grav All reactions 250 lb or less at joint(s) except A=635(LC 52), F=1747(LC 28), F=836(LC 1), E=852(LC 27)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD A-B=-1541/1392, B-C=-1250/1232, C-D=-1290/1209

- BOT CHORD A-F=-1548/1488, E-F=-3159/3153
- WEBS B-F=-446/147, C-F=-2137/2094, C-E=-966/974

NOTES-

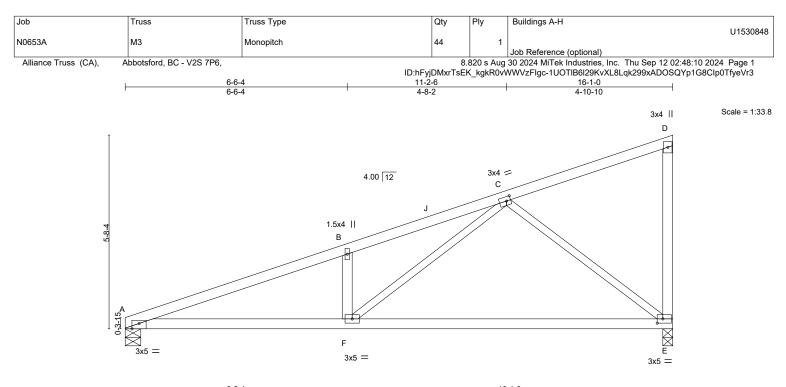
1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 550 lb uplift at joint A, 1377 lb uplift at joint F and 601 lb uplift at joint E.


- 7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 8) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 6-4-8 to 16-1-0 for 397.6 plf.

MiTek 240 Stirling Crescent Bradford, ON. L3Z 4L5

September 12,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	6-6-4	ĺ.			16-1-0			
	6-6-4				9-6-12			
Plate Offsets (X,Y) [A:	0-2-8,Edge], [C:0-1-8,0-1-8], [E:0-2-0,0)-1-8]						
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) 12.0 BCLL 0.0 * BCDL 10.0 *	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2018/TPI2014	CSI. TC 0.54 BC 0.75 WB 0.90 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.23 E -0.46 E 0.03	loc) l/defl E-F >845 E-F >418 E n/a F-I >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 55 lb	GRIP 197/144 FT = 20%
			BRACING- TOP CHORE BOT CHORE	exce	ept end vertic	als.	ectly applied or 3-6-12 or 10-0-0 oc bracing.	2 oc purlins,
Max Uplif	A=0-5-8, E=0-3-8 : A=176(LC 9) t A=-81(LC 6), E=-108(LC 10) v A=795(LC 16), E=916(LC 16)							
TOP CHORD A-B=-17	mp./Max. Ten All forces 250 (lb) or le 39/147, B-C=-1752/205 6/1607 F-F=-96/806	ess except when shown.						

WEBS B-F=-423/145, C-F=-103/1029, C-E=-1000/176

NOTES-

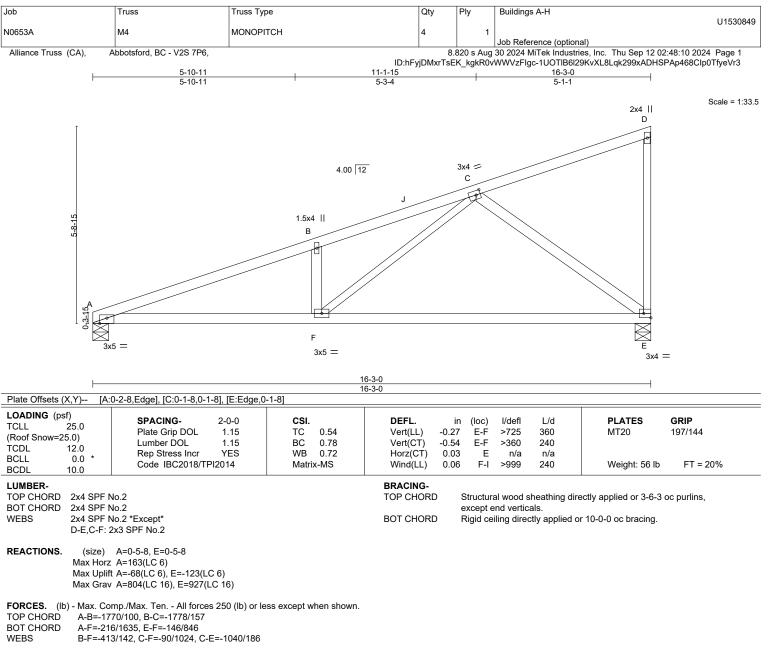
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 81 lb uplift at joint A and 108 lb uplift at joint E.

7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

240 Stirling Crescent Bradford, ON. L3Z 4L5

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component</u> Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left exposed ; end vertical left exposed; Lumber DOL=1.33 plate grip DOL=1.33

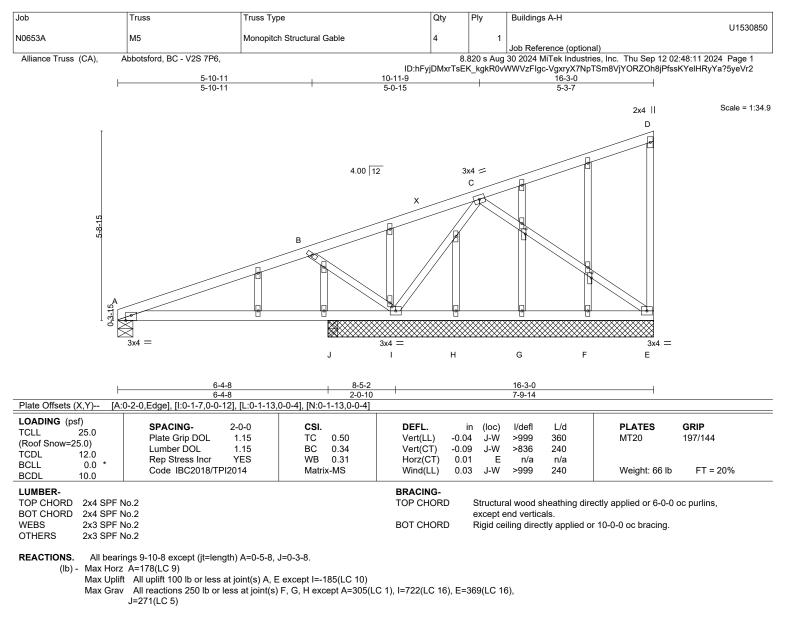
2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 68 lb uplift at joint A and 123 lb uplift at joint E.


7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safey Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

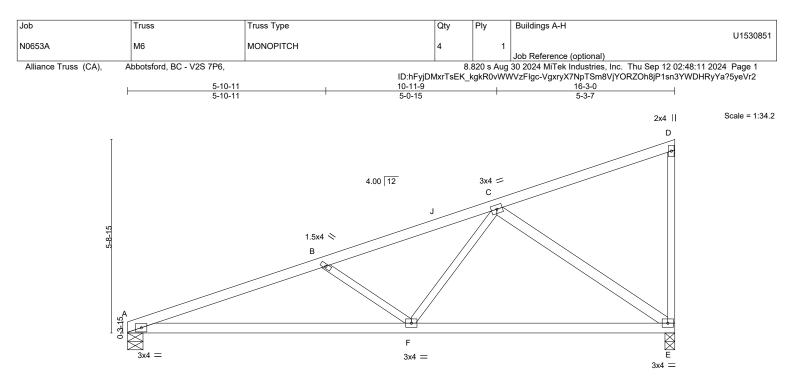
PRMU20240280 BLDG G

240 Stirling Crescent Bradford, ON. L3Z 4L5

- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- TOP CHORD A-B=-281/29, B-C=-103/253

WEBS B-I=-498/156, C-I=-607/128

NOTES-


- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design. 5) All plates are 1.5x4 MT20 unless otherwise indicated.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A, E except (jt=lb) l=185
- 10) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

September 12,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek 240 Stirling Crescent Bradford, ON. L3Z 4L5

	8-5-2			<u>16-3-0</u> 7-9-14	
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) 12.0 TCDL 12.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.48 BC 0.67 WB 0.79 Matrix-MS	DEFL. in Vert(LL) -0.10 Vert(CT) -0.22 Horz(CT) 0.03 Wind(LL) 0.06	F-I >999 360 F-I >876 240 E n/a n/a	PLATES GRIP MT20 197/144 Weight: 55 lb FT = 20%

BRACING-

LUMBER-

TOP CHORD 2x4 SPF No.2 2x4 SPF No.2 BOT CHORD 2x3 SPF No.2 *Except* WFBS C-E: 2x4 SPF No.2

TOP CHORD Structural wood sheathing directly applied or 3-8-11 oc purlins, except end verticals BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) A=0-5-8, E=0-3-8 Max Horz A=163(LC 6) Max Uplift A=-68(LC 6), E=-123(LC 6) Max Grav A=804(LC 16), E=927(LC 16)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD A-B=-1762/150, B-C=-1370/76

BOT CHORD A-F=-267/1643, E-F=-143/909

WFBS B-F=-502/150, C-F=-4/597, C-E=-1101/175

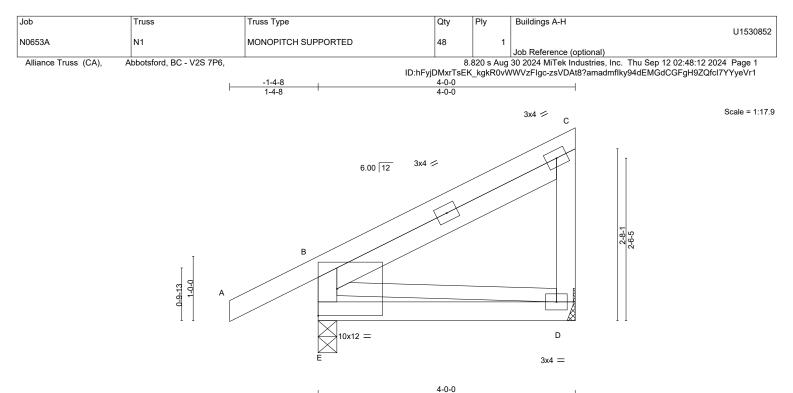
NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left exposed ; end vertical left exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A except (jt=lb) E=123.

7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

MiTek 240 Stirling Crescent Bradford, ON. L3Z 4L5

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to use only with with with exercising is based only upon parameters shown, and is to an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	4-0-0										
LOADING (psf) TCLL 25.0	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
(Roof Snow=25.0)	Plate Grip DOL	1.15	TC	0.26	Vert(LL)	-0.01	D-E	>999	360	MT20	197/144
· /	Lumber DOL	1.15	BC	0.14	Vert(CT)	-0.02	D-E	>999	240		
TCDL 12.0	Rep Stress Incr	YES	WB	0.02	Horz(CT)	-0.00	D	n/a	n/a		
BCLL 0.0 * BCDL 10.0	Code IBC2018/TF	912014	Matr	ix-MP	Wind(LL)	0.00	Е	****	240	Weight: 22 lb	FT = 20%

LUMBER-

TOP CHORD	2x4 SPF No.2
BOT CHORD	2x4 SPF No.2
WEBS	2x4 SPF No.2 *E

BS 2x4 SPF No.2 *Except* B-D: 2x3 SPF No.2 BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 4-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

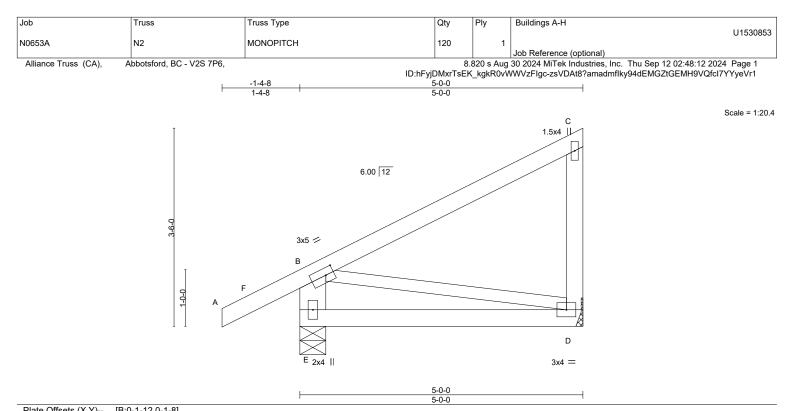
REACTIONS. (size) E=0-3-8, D=Mechanical

B-F=-414/59

Max Horz E=87(LC 7) Max Uplift E=-41(LC 10), D=-30(LC 10) Max Grav E=450(LC 17), D=210(LC 17)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD


NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 18.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs
- non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) E, D.
- 9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component</u> **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20001

240 Stirling Crescent Bradford, ON. L3Z 4L5

LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL 12.0 BCLL 0.0 *	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYES	CSI. TC 0.54 BC 0.22 WB 0.02	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.05 -0.00	(loc) D-E D-E D	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 197/144
BCDL 10.0 LUMBER- TOP CHORD 2x4 SPF N	Code IBC2018/TPI2014	Matrix-MP	Wind(LL) BRACING- TOP CHORE	0.00	E	**** al wood s	240 heathing dire	Weight: 22 lb ectly applied or 5-0-0	FT = 20%

BOT CHORD

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

 BOT CHORD
 2x4 SPF No.2

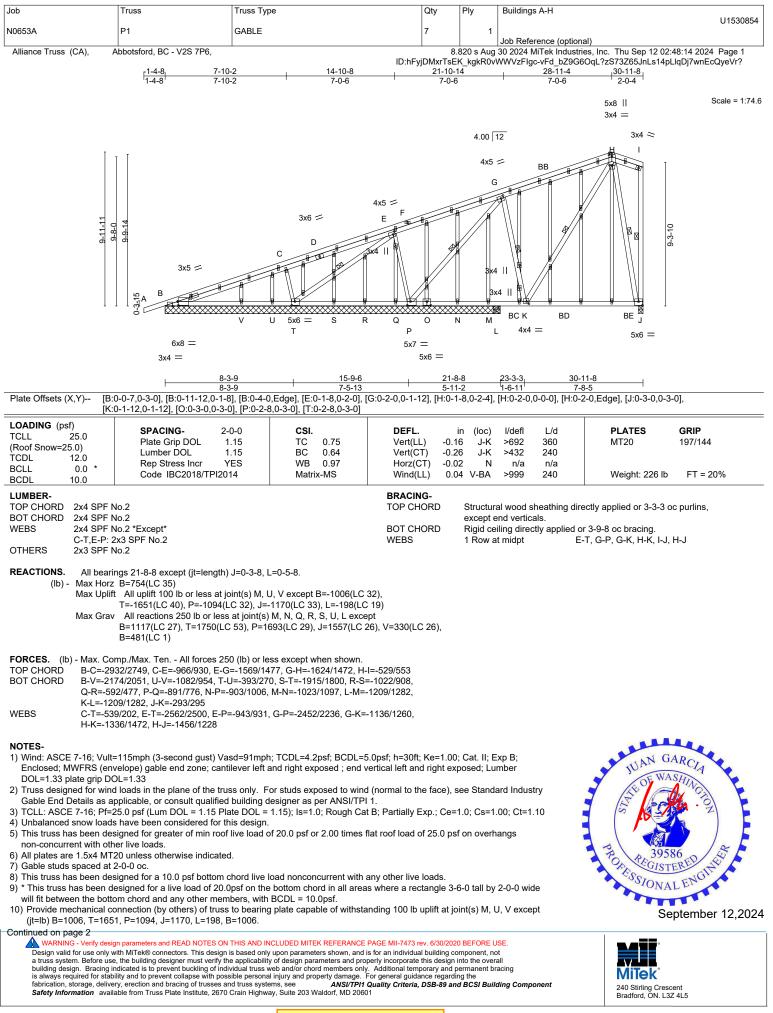
 WEBS
 2x4 SPF No.2 *Except*

 B-E: 2x6 SPF No.2, B-D: 2x3 SPF No.2

REACTIONS. (size) D=Mechanical, E=0-5-8 Max Horz E=105(LC 7) Max Uplift D=-38(LC 10), E=-45(LC 10) Max Grav D=281(LC 17), E=485(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD B-E=-439/68

NOTES-


- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 18.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) D, E.
- 9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

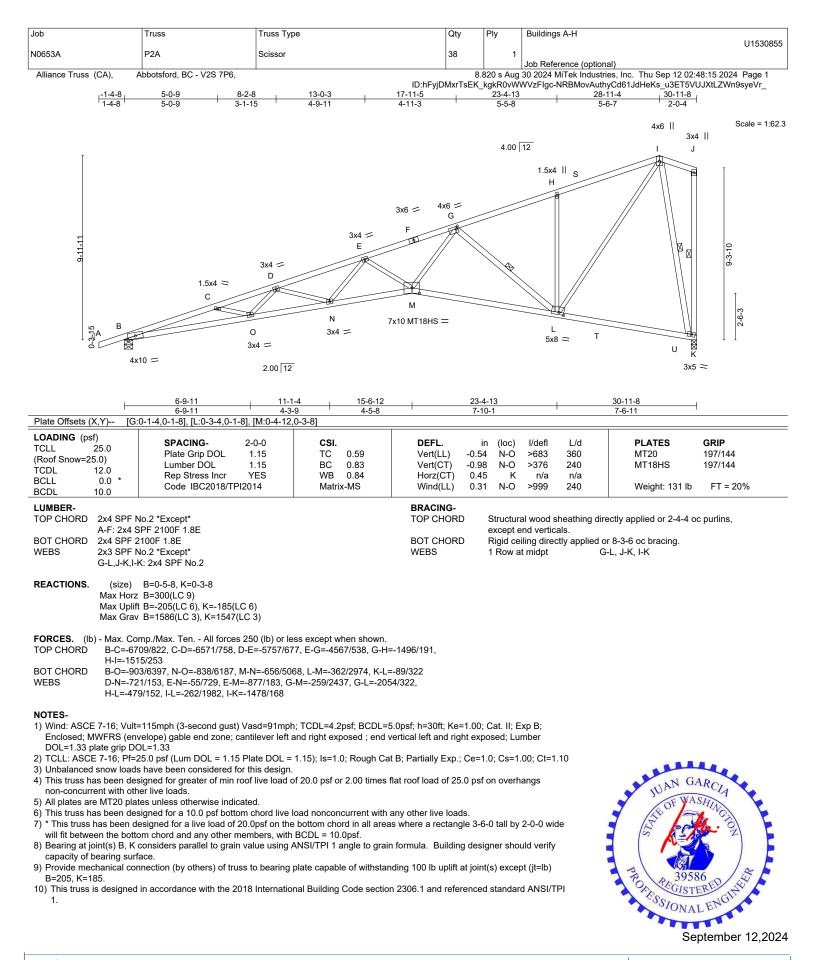
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component</u> **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20001

PRMU20240280 BLDG G

240 Stirling Crescent Bradford, ON. L3Z 4L5

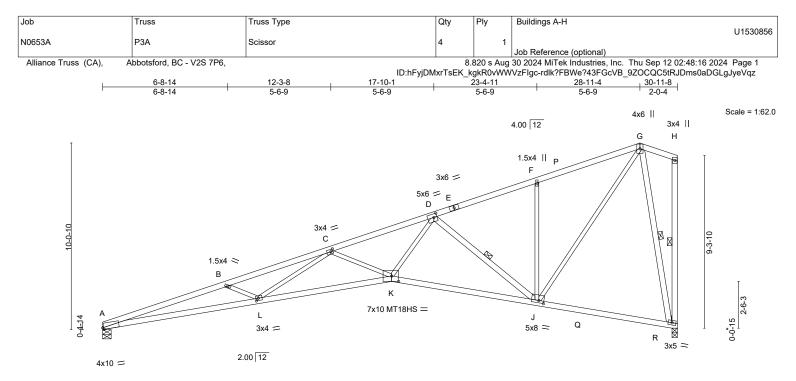
Job	Truss	Truss Type	Qty	Ply	Buildings A-H				
					U1530854				
N0653A	P1	GABLE	7	1					
					Job Reference (optional)				
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,		8.	820 s Aug	30 2024 MiTek Industries, Inc. Thu Sep 12 02:48:14 2024 Page 2				
		lD:hFyjDMxrTsEK_kgkR0vWWVzFlgc-vFd_bZ9G6OqL?zS73Z65JnLs14pLlqDj7wnEcQyeVr?							

NOTES-


11) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

12) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 21-8-8 for 342.3 plf.

13) No notches allowed in overhang and 10408 from left end and 0 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safey Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	8-4-8	15-6-12	23-4-11	30-11-8	1
	8-4-8	7-2-4	7-9-15	7-6-13	1
Plate Offsets (X,Y)-	- [A:0-0-11,Edge], [C:0-1-8,0-1-8], [D	:0-2-0,0-2-4], [J:0-3-4,0-1-8], [K:0-	4-8,0-3-8], [L:0-1-8,0-1-8]		

LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL TCDL 12.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.72 BC 0.86 WB 0.83 Matrix-MS	Vert(CT) - Horz(CT)	in (loc) 0.59 K-L 1.09 K-L 0.45 I 0.32 K-L	n/a n/a	MT20 1 MT18HS 1	GRIP 97/144 97/144 FT = 20%
A-E: 2x4 S BOT CHORD 2x4 SPF 2 WEBS 2x3 SPF 1	No.2 *Except* SPF 2100F 1.8E 2100F 1.8E No.2 *Except* -I: 2x4 SPF No.2		BRACING- TOP CHORD BOT CHORD WEBS	except e Rigid ce	end verticals. eiling directly applied	rectly applied or 2-3-2 oc p or 8-2-2 oc bracing.)-J, H-I, G-I	purlins,
Max Horz Max Uplif Max Grav	A=0-5-8, I=0-3-8 : A=292(LC 9) t A=-160(LC 6), I=-186(LC 6) v A=1499(LC 3), I=1549(LC 3)						
TOP CHORD A-B=-67 BOT CHORD A-L=-92 WEBS B-L=-48	mp./Max. Ten All forces 250 (lb) or le 98/848, B-C=-6399/734, C-D=-4600/53 1/6500, K-L=-713/5265, J-K=-372/3038 7/180, C-L=-55/1066, C-K=-995/222, D 0/151, G-J=-263/1985, G-I=-1478/168	9, D-F=-1502/193, F-G= , I-J=-89/322					
Enclosed; MWFRS (en DOL=1.33 plate grip D0 2) TCLL: ASCE 7-16; Pf=2	=115mph (3-second gust) Vasd=91mpl velope) gable end zone; cantilever left DL=1.33 25.0 psf (Lum DOL = 1.15 Plate DOL = s have been considered for this design.	and right exposed ; end v 1.15); Is=1.0; Rough Ca	ertical left and right	exposed; Lu	Imber		

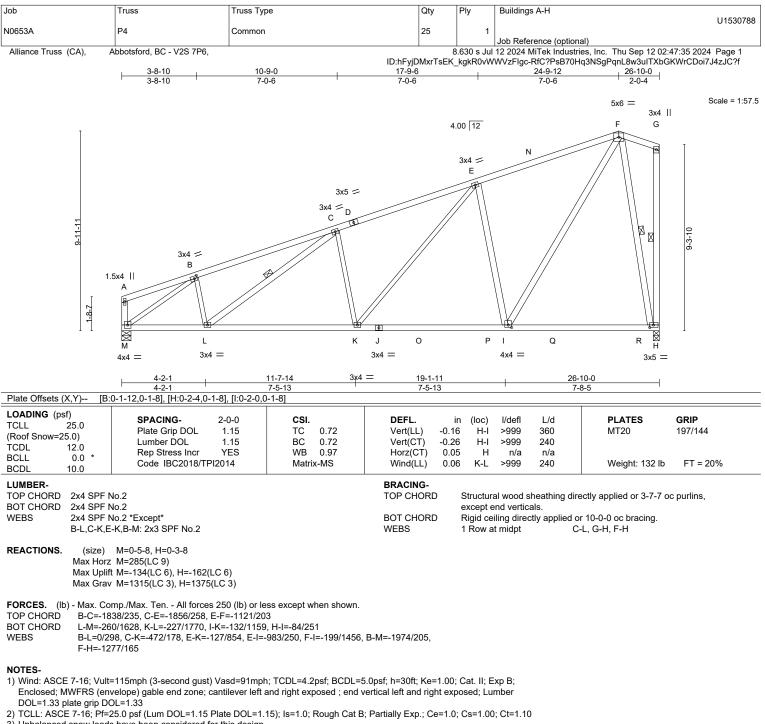
All plates are MT20 plates unless otherwise indicated.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Bearing at joint(s) I considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) A=160, I=186.


9) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) A.

10) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

240 Stirling Crescent Bradford, ON. L3Z 4L5

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPII Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) M=134, H=162.

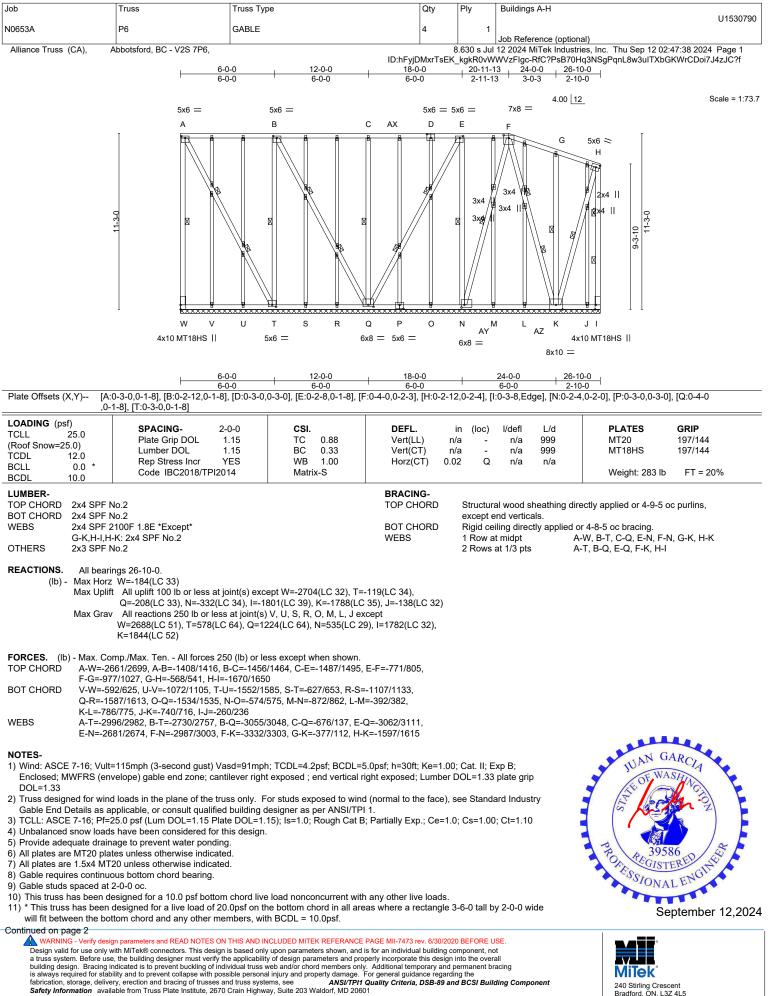
7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

240 Stirling Crescent Bradford, ON. L3Z 4L5

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safey Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Tr	uss T	russ Type	Qty	Ply Buildin	ngs A-H		U1530789
N0653A	P5		ABLE	4		ference (optional)		
Alliance Truss	(CA), Abbo	otsford, BC - V2S 7P6, 6-9-12	12-9-12		_kgkR0vWWVzFlg		, Inc. Thu Sep 12 02:47:37 2 NSgPqnL8w3uITXbGKWrCE 2	
		6-9-12	6-0-0	6-0		3-15 3-8-1		
					5x6 =	4.00 12	4x4 = 3x4 ≈ G H	Scale = 1:62.8
	I	5x6 = A	5x6 = B	С	3x4 = E	6x8 =	G H	
	9-11-11 8-8-0					AW AW 2x4 2x4 2x4		
		X W V AX 4x10 MT18HS	U T S AY R 5x6 =	Q P O AZ 3x4 = 5x8 =	: N M 6x8 =	BAL K =	J I 7x8 = 3x5	
Plate Offsets (6-9-12 6-9-12 0,0-1-12], [B:0-3-0,0-2-4], [E 8,0-2-0]	12-9-12 6-0-0 ::0-3-0,0-2-4], [F:0-5-4,0-2-4], [G	18-9 6-0 6:0-2-0,0-2-4], [H:0-1-1	-0	24-9-12 6-0-0 0-1-8], [M:0-2-12,	<u>+ 26-10-0</u> 2-0-4 0-2-4], [Q:0-4-0,0-1-8],	
LOADING (ps TCLL (Roof Snow=2: TCDL BCLL BCDL	sf) 25.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	TC 0.85 BC 0.33	Vert(LL) n	in (loc) l/defl l/a - n/a l/a - n/a D1 Q n/a	L/d 999 999 n/a	PLATES GRIF MT20 197/* MT18HS 197/* Weight: 242 lb FT	144
LUMBER- TOP CHORD BOT CHORD WEBS OTHERS	2x4 SPF No.2 2x4 SPF No.2	2 2 *Except* SPF 2100F 1.8E		BRACING- TOP CHORD BOT CHORD WEBS	except end vert	icals. ectly applied or 4	A-T, B-T, C-Q, E-M, F-M,	
REACTIONS.	All bearings - Max Horz X= Max Uplift A Q Max Grav A X=	26-10-0. 159(LC 37) Jl uplift 100 lb or less at joint 227(LC 40), M=-774(LC 3 Jl reactions 250 lb or less at	(s) except X=-2533(LC 36), T=- 2), J=-1684(LC 33), I=-853(LC 3 joint(s) K, L, N, O, R, S, U, V, V , Q=1118(LC 68), M=899(LC 25	85), W=-126(LC 35) / except	2 Rows at 1/3 p		E-Q	
FORCES. (IL TOP CHORD BOT CHORD	A-X=-2388/2 F-G=-1250/ V-W=-708/7 Q-R=-1242/	2402, A-B=-1877/1861, B-C 1223, G-H=-294/311, H-I=-8 02, U-V=-1188/1182, T-U=- 1234, O-Q=-1493/1488, N-C	1668/1662, S-T=-282/274, R-S=)=-1013/1008, M-N=-533/528, L	-762/754,				
WEBS	A-T=-3019/3		48 2347/2335, C-Q=-658/135, E-(2461/2468, G-J=-329/236, H-、					
Enclosed; M DOL=1.33	MWFRS (envelo	pe) gable end zone; cantilev	=91mph; TCDL=4.2psf; BCDL=5 er left exposed ; end vertical lef pnly. For studs exposed to wind	t exposed; Lumber DC	DL=1.33 plate grip		JUAN GARCI	
 TCLL: ASCI Unbalanced Provide ade All plates ar All plates ar Gable requi Gable studs This truss 	E 7-16; Pf=25.0 d snow loads ha equate drainage re MT20 plates re 1.5x4 MT20 u ires continuous s spaced at 2-0- has been desig	psf (Lum DOL=1.15 Plate E ve been considered for this to prevent water ponding. unless otherwise indicated. unless otherwise indicated. bottom chord bearing. 0 oc. ned for a 10.0 psf bottom ch	ilding designer as per ANSI/TPI /OL=1.15); Is=1.0; Rough Cat B design. ord live load nonconcurrent with sf on the bottom chord in all are	; Partially Exp.; Ce=1.			ONALD	and a
will fit betw Continued on p	veen the bottom bage 2 NG - Verify design pa	rameters and READ NOTES ON THI	ers, with BCDL = 10.0psf.	PAGE MII-7473 rev. 6/30/202	20 BEFORE USE.		Septem	ber 12,2024
a truss syst building des is always re fabrication,	tem. Before use, the sign. Bracing indica equired for stability a storage, delivery, e	 building designer must verify the ap ted is to prevent buckling of individu and to prevent collapse with possible rection and bracing of trusses and tr 	ased only upon parameters shown, and oplicability of design parameters and pro all truss web and/or chord members only personal injury and property damage. I uss systems, see ANSJTPH in Highway, Suite 203 Waldorf, MD 2060	perly incorporate this design Additional temporary and For general guidance regard Quality Criteria, DSB-89 ar	into the overall permanent bracing ing the	nponent	240 Stirling Crescent Bradford, ON. L3Z 4L5	

Job	Truss	Truss Type	Qty	Ply	Buildings A-H	
N0653A	P5	GABLE	1	1	U1530789	
NUUSSA		GABLE	4	· ·	Job Reference (optional)	
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,	8.630 s Jul 12 2024 MiTek Industries, Inc. Thu Sep 12 02:47:37 2024 Page 2				
		ID:hFyjE	ID:hFyjDMxrTsEK_kgkR0vWWVzFlgc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f			


NOTES-

12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 2533 lb uplift at joint X, 542 lb uplift at joint T, 227 lb uplift at joint Q, 774 lb uplift at joint M, 1684 lb uplift at joint J, 853 lb uplift at joint I and 126 lb uplift at joint W.

13) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
14) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 26-10-0 for 240.0 plf.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPII Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

PRMU20240280 BLDG G

240 Stirling Crescent Bradford, ON. L3Z 4L5

Job	Truss	Truss Type	Qty	Ply	Buildings A-H
NOCEDA	DC.				U1530790
N0653A	P6	GABLE	4	1	Job Reference (optional)
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,		8	3.630 s Jul	12 2024 MiTek Industries, Inc. Thu Sep 12 02:47:39 2024 Page 2
		ID:hFyjD	MxrTsEK	kgkR0vW	WVzFlgc-RfC?PsB70Hg3NSgPgnL8w3ulTXbGKWrCDoi7J4zJC?f

NOTES-

12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 2704 lb uplift at joint W, 119 lb uplift at joint T, 208 lb uplift at joint Q, 332 lb uplift at joint N, 1801 lb uplift at joint I, 1788 lb uplift at joint K and 138 lb uplift at joint J.

13) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
14) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 26-10-0 for 240.0 plf.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPII Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Buildings A-H		
N0653A	P7	Common	24	1			U1530791
		-			Job Reference (option		
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,		ID:hFyjDMxrTsE	8.630 s Ju K kgkR0vV	T12 2024 MiTek Industr VWVzFlgc-RfC?PsB70F	ies, Inc. Thu Sep 12 02:4 Iq3NSgPqnL8w3uITXbG	47:39 2024 Page 1 KWrCDoi7J4zJC?f
	7-1-1			<u>21-0-12</u> 6-11-7	26-	<u>10-0</u> 9-4	
	/-1-1:	0-11-/		0-11-7	5-	9-4	
			4.00 12	!	5x7 =		Scale: 3/16"=1
					E		
			3x4 == 3x7 ==			3x4 F	
		3x4 =	C			<u>e</u>	
	3x4	B				Ø	
:				/	//	6-3-10 → 10	
	₽				/		
	4-2-7	\mathbb{N}	\	$\langle \rangle$			
	4	\mathbb{N}					
			•	<u>}</u>		<u>}</u>	
	₩ K _{3x6} =	L M J N	I	н)	P $3x6 = \frac{1}{G}$	
	1 3x6 —	3x4 =	3x4 =	= 4x4 =		0	
		9-0-3	17-9-13		26-10-0		
Plate Offsets (X,Y) [H		9-0-3 ' 81	8-9-11	1	9-0-3		
LOADING (psf)							
TCLL 25.0	SPACING- Plate Grip DOL	2-0-0 CSI. 1.15 TC 0.83	DEFL. Vert(LL) -0.	in (loc) 31 G-H	l/defl L/d >999 360	PLATES MT20	GRIP 197/144
(Roof Snow=25.0) TCDL 12.0	Lumber DOL	1.15 BC 0.90	Vert(CT) -0.	49 G-H	>652 240		
BCLL 0.0 *	Rep Stress Incr Code IBC2018/TPI2	YES WB 0.86 014 Matrix-MS		04 G 05 G-H	n/a n/a >999 240	Weight: 137 lb	FT = 20%
BCDL 10.0							
LUMBER- TOP CHORD 2x4 SPF			BRACING- TOP CHORD			ectly applied or 2-2-0 o	c purlins,
	No.2 No.2 *Except* 2x3 SPF No.2		BOT CHORD WEBS	Rigid ce	end verticals. eiling directly applied c at midpt D	or 10-0-0 oc bracing. I-H, B-K, F-G, E-G	
REACTIONS. (size)	K=0-5-8, G=0-3-8						
	z K=262(LC 7)	c)					
	ift K=-135(LC 6), G=-125(LC Ⅳ K=1410(LC 3), G=1397(L						
	omn /Max Ton All forces	50 (lb) or less except when showr					
	415/184, D-E=-1053/174, F-		1.				
	04/1220, H-J=-159/1168, G-						
vvLD3 D-J=0/2	201, D-J20/200, D-Π/24	193, E-H=-93/1090, B-K=-1567/15	JJ, E-G1203/120				
NOTES-	t=115mmh (2 accord		-E Onefu h-20ft. K 4.0	O. Cat. II.	Two Di		
		asd=91mph; TCDL=4.2psf; BCDL ntilever left and right exposed ; end					
DOL=1.33 plate grip D		ate DOL=1.15): Is=1.0: Rough Cat					

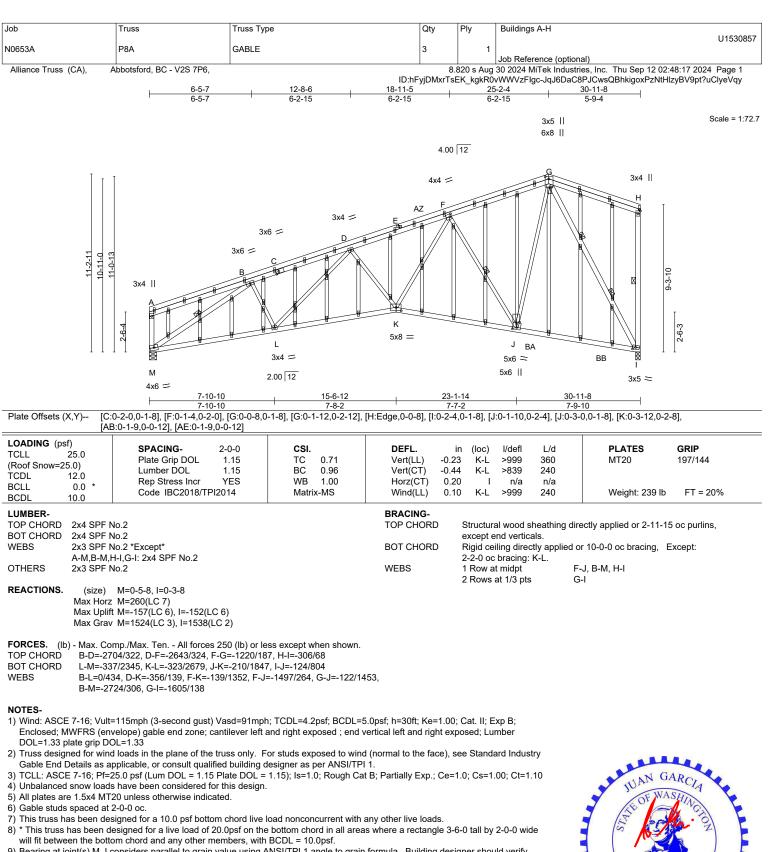
2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members, with BCDL = 10.0psf.

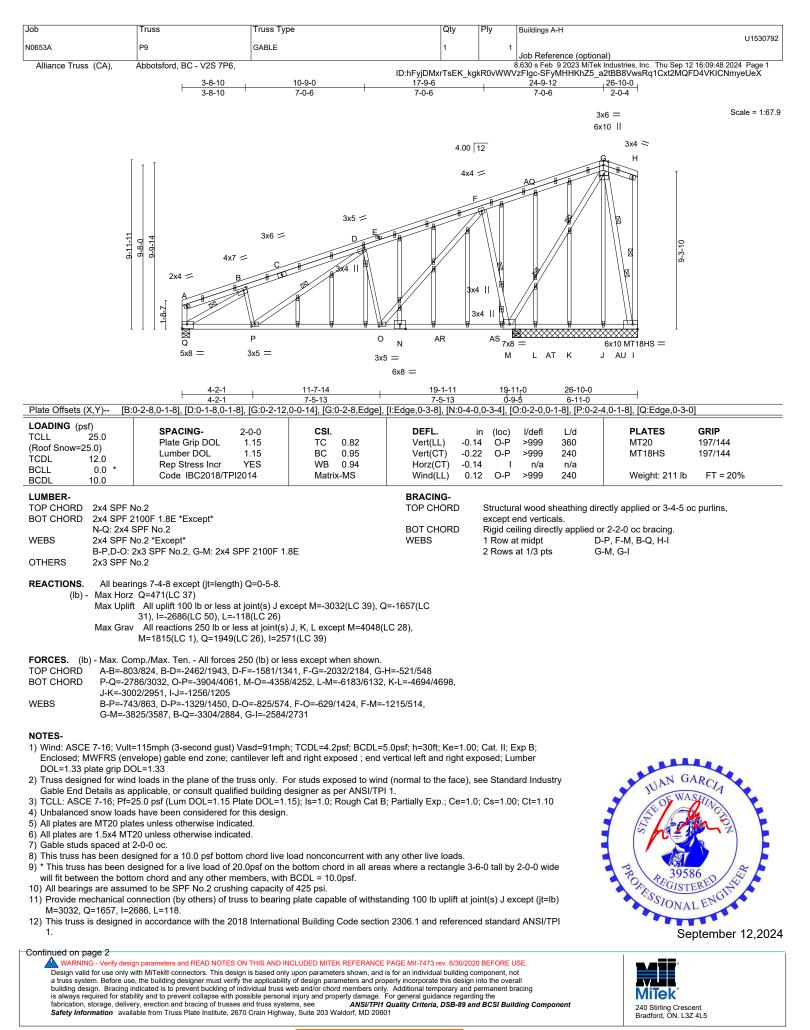

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 135 lb uplift at joint K and 125 lb uplift at joint G.

7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

240 Stirling Crescent Bradford, ON. L3Z 4L5

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

- 9) Bearing at joint(s) M, I considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) M=157. I=152.
- 11) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI
- 12) No notches allowed in overhang and 0 from left end and 0 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

PRMU20240280 BLDG G

POPESSIONAL ENGINE

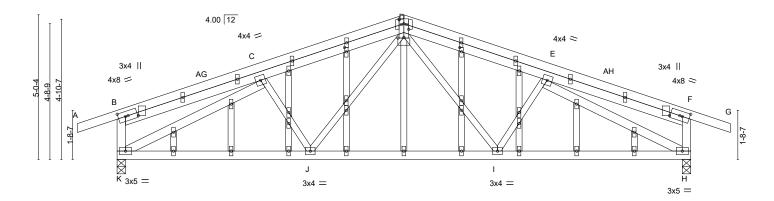
3

Job	Truss	Truss Type	Qty	Ply	Buildings A-H
N0653A	PQ	GABLE	1	1	U1530792
NU055A	F9	GABLE	1	'	Job Reference (optional)
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,		1		3.630 s Feb 9 2023 MiTek Industries, Inc. Thu Sep 12 16:09:49 2024 Page 2
		ID:hF	yjDMxrTsEK_k	gkR0vWW	VzFlgc-wSWIUdLJKP6Rg1mNhDR5z1aNgHOb9iTDj_1lvCyeUeW

NOTES-


13) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 19-5-8 to 26-10-0 for 873.2 plf.

14) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated.


15) No notches allowed in overhang and 0 from left end and 0 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	6-8-8		13-2-8			19-11-0	
	6-8-8		6-6-0			6-8-8	
Plate Offsets (X,Y) [B:	0-0-0,0-4-4], [B:0-3-0,0-2-0], [D:0-2-0	0-0-15]. [D:0-2-0.0-2-0].	[D:0-2-8.0-0-4], [D:0-2-0	0.0-0-151.	[F:0-3-0.0-2-0].	[F:0-0-0.0-4-4], [N:0-1-12.0-	0-12].
	<u>':0-1-12,0-0-12], [Y:0-0-0,0-0-0], [Y:0-0</u>						
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl L/c	PLATES	GRIP
TCLL 25.0 (Roof Snow=25.0)	Plate Grip DOL 1.15 Lumber DOL 1.15	TC 0.42 BC 0.43	Vert(LL) -0. Vert(CT) -0.		>999 360 >999 240		197/144
TCDL 12.0 BCLL 0.0 *	Rep Stress Incr YES	WB 0.81	Horz(CT) 0.	04 H	n/a n/a	a	
BCDL 10.0	Code IBC2018/TPI2014	Matrix-MS	Wind(LL) 0.	03 I-J	>999 240) Weight: 119 lb	FT = 20%

DODE	10.0				
LUMBER-			BRACING-		
TOP CHORD	2x4 SPF N	lo.2	TOP CHORD	Structural wood sheathing dire	ectly applied or 4-4-0 oc purlins,
BOT CHORD	2x4 SPF N	lo.2		except end verticals.	
WEBS	2x4 SPF N	lo.2 *Except*	BOT CHORD	Rigid ceiling directly applied o	r 10-0-0 oc bracing.
	D-I,E-I,D-J	I,C-J: 2x3 SPF No.2			Ū.
OTHERS	2x3 SPF N	lo.2			

REACTIONS. (size) K=0-3-8, H=0-3-8 Max Horz K=-31(LC 24) Max Uplift K=-139(LC 6), H=-139(LC 7) Max Grav K=1095(LC 17), H=1095(LC 18)

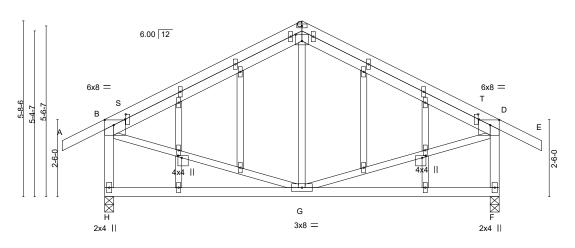
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD C-D=-1380/138, D-E=-1380/138, B-K=-310/104, F-H=-310/104

- BOT CHORD J-K=-110/1342, I-J=-42/1016, H-I=-110/1342
- WEBS D-I=-31/403, D-J=-31/403, C-K=-1465/129, E-H=-1465/129

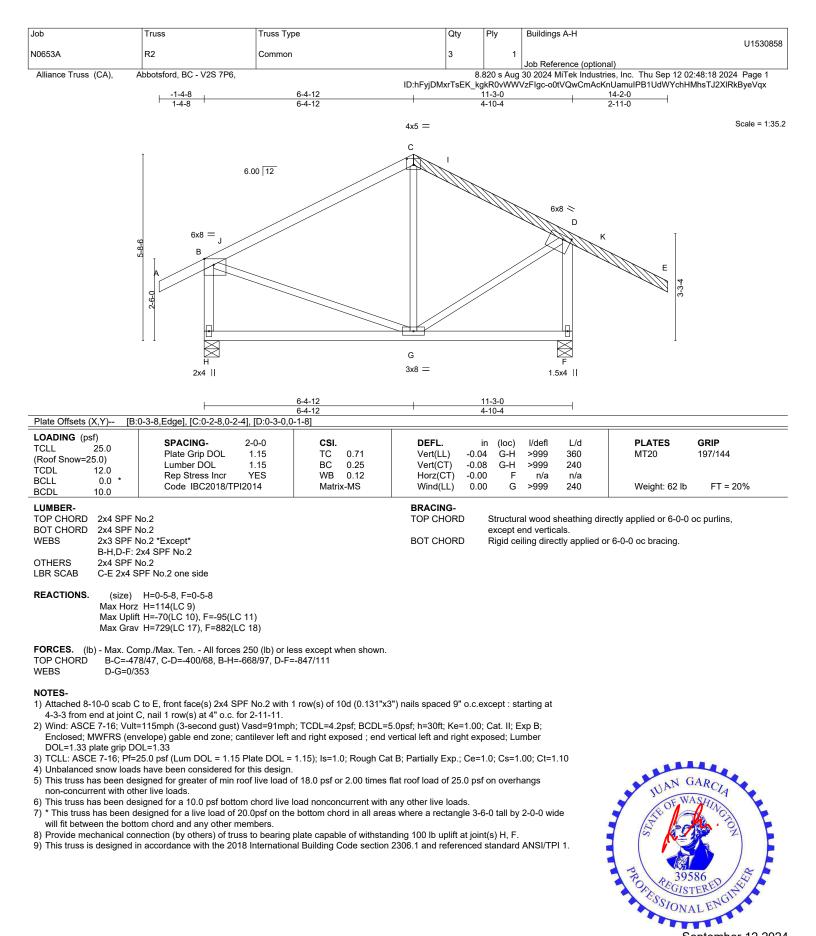
NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- 6) All plates are 1.5x4 MT20 unless otherwise indicated.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)
- K=139, H=139. 11) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1
- 12) No notches allowed in overhang and 10408 from left end and 10408 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Scale = 1:37.4



	 	<u>6-4-12</u> 6-4-12		12-9-8 6-4-12			
Plate Offsets (X,Y) [B:	0-3-8,0-2-0], [C:0-2-8,0-2-8], [D:0-3-	3,0-2-0], [K:0-0-14,0-1-8], [R:0-0-14,0-1-8], [S:0	0-2-0,0-0-4], [T:0-2-	0,0-0-4]		
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL TCDL 12.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIBC2018/TPI2014	CSI. TC 0.71 BC 0.28 WB 0.13 Matrix-MS		in (loc) l/de -0.03 G-H >99 -0.07 G-H >99 0.00 F n/ 0.00 G >99	9 360 9 240 a n/a	PLATES MT20 Weight: 79 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 SPF N BOT CHORD 2x4 SPF N WEBS 2x3 SPF N	No.2 No.2 *Except* 2x4 SPF No.2		BRACING- TOP CHORD BOT CHORD	except end ve	rticals.	ectly applied or 5-9-4 r 6-0-0 oc bracing.	oc purlins,
Max Horz Max Uplifi	H=0-3-8, F=0-3-8 : H=93(LC 9) t H=-74(LC 10), F=-74(LC 11) · H=802(LC 17), F=802(LC 18)						
 WEBS B-G=0/3 NOTES- 1) Wind: ASCE 7-16; Vult= Enclosed; MWFRS (em DOL=1.33 plate grip DO 2) Truss designed for wind Gable End Details as aj 3) TCLL: ASCE 7-16; Pf=2 4) Unbalanced snow loads 5) This truss has been des non-concurrent with oth 6) All plates are 1.5x4 MT 7) Gable studs spaced at 2 8) This truss has been des 9) * This truss has been des 10) Provide mechanical co 11) This truss is designed 1. 12) No notches allowed in 	d loads in the plane of the truss only. pplicable, or consult qualified buildin 25.0 psf (Lum DOL=1.15 Plate DOL s have been considered for this desi- signed for greater of min roof live load ter live loads. 20 unless otherwise indicated. 2-0-0 oc. signed for a 10.0 psf bottom chord live esigned for a 10.0 psf bottom chord live esigned for a live load of 20.0psf on om chord and any other members. onnection (by others) of truss to bear in accordance with the 2018 Interna overhang and 10408 from left end a 4 tie plates required at 2-0-0 o.c. ma	nph; TCDL=4.2psf; BCDL= ft and right exposed ; end For studs exposed to win g designer as per ANSI/TF :1.15); Is=1.0; Rough Cat B gn. d of 18.0 psf or 2.00 times re load nonconcurrent with the bottom chord in all area ting plate capable of withst tional Building Code sectio and 10408 from right end o	vertical left and righ d (normal to the fac l 1. 3; Partially Exp.; Ce flat roof load of 25.0 any other live loads as where a rectangle anding 100 lb uplift on 2306.1 and refere r 12" along rake fror	t exposed; Lumber e), see Standard In =1.0; Cs=1.00; Ct=) psf on overhangs c. e 3-6-0 tall by 2-0-0 at joint(s) H, F. enced standard ANS n scarf, whichever i	.10 wide	PROFIESSION	SARCIA ASHING 586 ED TERED INST
							September 12,202
WARNING - Verify desig	gn parameters and READ NOTES ON THIS AN	D INCLUDED MITEK REFERANCE	E PAGE MII-7473 rev. 6/30)/2020 BEFORE USE.			

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIL-2473 Feb. 65/30/2020 BEFORE USE. Design valid for use only with MITER connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component</u> **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

PRMU20240280 BLDG G

MiTek[®] 240 Stirling Crescent Bradford, ON. L3Z 4L5

September 12,2024
HIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE.
based only upon parameters shown, and is for an individual building component, not
applicability of design parameters and property incorporate this design into the overall
dual truss web and/or chord members only. Additional temporary and permanent bracing
be nersonal injury and property dimagree. Ever general unidance rearrange the

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safey Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

PRMU20240280 BLDG G

240 Stirling Crescent Bradford, ON. L3Z 4L5

Job	Truss	Truss Type	Qty Ply Buildings A-H	
N0653A	S1	BLOCKING SUPPORTED	75 1	U1530795
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,		Job Reference (option 8.630 s Jul 12 2024 MiTek Indust ID:hFyjDMxrTsEK kgkR0vWWVzFlgc-RfC?PsB701	ries, Inc. Thu Sep 12 02:47:42 2024 Page 1
		 	1-10-6	nq3NSgPq1L6w3u11AbGKW1CD017J4ZJC?1
		3x4 =		Scale = 1:14.7
		A SAT	B 1.5x4	
		2-3-15		
		D	C	
		3x5	5x6 =	
			1-10-6 1-10-6	
Plate Offsets (X,Y)	[C:0-3-0,0-3-0], [D:0-3-0,0-1-8]			
TCLL 25.0 (Roof Snow=25.0)		2-0-0 CSI. 1.15 TC 0.12	DEFL. in (loc) l/defl L/d Vert(LL) n/a - n/a 999	PLATES GRIP MT20 197/144
TCDL 12.0 BCLL 0.0 *		1.15 BC 0.08 YES WB 0.20	Vert(CT) n/a - n/a 999 Horz(CT) -0.00 C n/a n/a	
BCDL 10.0	Code IBC2018/TPI2	014 Matrix-P		Weight: 10 lb FT = 20%
LUMBER- TOP CHORD 2x4 SF	°F No.2		BRACING- TOP CHORD Structural wood sheathing dir	rectly applied or 1-10-6 oc purlins,
	PF No.2 PF No.2 *Except*		except end verticals. BOT CHORD Rigid ceiling directly applied	or 6-0-0 oc bracing.
	x3 SPF No.2			U U U U U U U U U U U U U U U U U U U
,	e) D=1-10-6, C=1-10-6 lorz D=58(LC 5)			
Max U	Jplift D=-535(LC 24), C=-535(LC Grav D=544(LC 31), C=544(LC			
TOP CHORD A-D=	528/543, A-B=-361/356	50 (lb) or less except when shown.		
	=-390/385 =-665/665			
NOTES-				
Enclosed; MWFRS	(envelope) gable end zone; car		5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; vertical left and right exposed; Lumber	
	wind loads in the plane of the tr		nd (normal to the face), see Standard Industry	
3) TCLL: ASCE 7-16; F	Pf=25.0 psf (Lum DOL=1.15 Pla		김 1. B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10	
	rainage to prevent water pondir inuous bottom chord bearing.	ng.		alles.
 6) Truss to be fully she 7) Gable studs spaced 		y braced against lateral movement	(i.e. diagonal web).	WAN GARCIA
		chord live load nonconcurrent with .0psf on the bottom chord in all are	i any other live loads. as where a rectangle 3-6-0 tall by 2-0-0 wide	NOF WASHING
will fit between the b	pottom chord and any other me	mbers.	anding 100 lb uplift at joint(s) except (jt=lb)	- E porte 3
D=535, C=535.				
1.		-	on 2306.1 and referenced standard ANSI/TPI	30586
	oottom chord from 0-0-0 to 1-10		ate grip DOL=(1.33) Connect truss to resist	POR REGISTERED
				"SIONAL ENG"
				September 12,2024
WARNING - Verify	design parameters and READ NOTES O	N THIS AND INCLUDED MITEK REFERANCE	E PAGE MII-7473 rev. 6/30/2020 BEFORE USE.	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

240 Stirling Crescent Bradford, ON. L3Z 4L5

Job	Truss	Truss Type	Qty	Ply	Buildings A-H	
					U1530859	
N0653A	S2	BLOCKING SUPPORTED	117	1		
					Job Reference (optional)	
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,	8.820 s Aug 30 2024 MiTek Industries, Inc. Thu Sep 12 02:48:20 2024 Page 1				
		ID:hFyjDMxrTsEK_kgkR0vWWVzFlgc-kP_FrcE1iEbVkuvGQqDVZ2bvvU_U9dlcVrEYp4yeVqv				

1-10-6 в А 4x6 1.5x4 || 8-7-4 ØØ 5x6 =D3x5 || C

<u>| 1-10-6</u> |

LOADING (psf) SPACING- 2-0-0 CSI. TCLL 25.0 Plate Grip DOL 1.15 TC 0.66 (Roof Snow=25.0) Lumber DOL 1.15 BC 0.08 TCDL 12.0 Rep Stress Incr NO WB 0.68 BCLL 0.0 * Code IBC2018/TPI2014 Matrix-P	Vert(CT) n/a - n/a 999
3CDL 10.0 0000 1002010/11/2014 100001	
LUMBER-	BRACING-
TOP CHORD 2x4 SPF No.2	TOP CHORD Structural wood sheathing directly applied or 1-10-6 oc purlins,
BOT CHORD 2x4 SPF No.2	except end verticals.
WEBS 2x4 SPF No.2	BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.
	WEBS 1 Row at midpt A-D, B-C, A-C
REACTIONS. (size) D=1-10-6, C=1-10-6 Max Uplift D=-2005(LC 23), C=-2005(LC 24) Max Grav D=2030(LC 44), C=2030(LC 43)	

A-D=-2014/2013, A-B=-340/340 TOP CHORD BOT CHORD C-D=-340/340

WEBS A-C=-2031/2031

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B;

Enclosed; MWFRS (envelope) gable end zone; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) Provide adequate drainage to prevent water ponding.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) D=2005, C=2005,

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1. 9) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 1-10-6 for 240.0 plf.

Scale = 1:47.3

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

PRMU20240280 BLDG G

MiTek 240 Stirling Crescent Bradford, ON. L3Z 4L5

Job	Truss	Truss Type	Qty	Ply	Buildings A-H
N0653A	S3	BLOCKING SUPPORTED	117	1	U153086
					Job Reference (optional)
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,		8.	820 s Aug	30 2024 MiTek Industries, Inc. Thu Sep 12 02:48:21 2024 Page 1
			ID:hFyjDMxrTsEK	_kgkR0vV	VWVzFlgc-CbYd3yFfTXjML1UTzYkk5F84PuKpu4HlkVz5LWyeVqu

 $\begin{bmatrix} 1-10-6 \\ 1-10-6 \end{bmatrix}$

1-10-6

			1-10-0					
Plate Offsets (X,Y) [A:0)-3-0,0-1-8], [C:0-2-0,0-3-0], [D:0-3-0,0	-1-8]						
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL 12.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2018/TPI2014	CSI. TC 0.68 BC 0.07 WB 0.69 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (lc n/a n/a 0.00	-	defl L/d n/a 999 n/a 999 n/a n/a	PLATES MT20 Weight: 32 lb	GRIP 197/144 • FT = 20%
Max Uplift	0.2		BRACING- TOP CHORE BOT CHORE WEBS	exce Rigio	ept end	verticals. g directly appl	ng directly applied or 1-10 lied or 6-0-0 oc bracing. A-D, B-C, A-C	-6 oc purlins,
()		ss except when shown.						

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B;

- Enclosed; MWFRS (envelope) gable end zone; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Provide adequate drainage to prevent water ponding.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) D=2022, C=2022.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
 9) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 1-10-6 for 240.0 plf.

Scale: 1/4"=1'

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

240 Stirling Crescent Bradford, ON. L3Z 4L5

	Truss	Truss Type		Qty	Ply	Buildings A-H
						U1530861
3A	S3A	BLOCKING SUPPORTED		1	1	
						Job Reference (optional)
ance Truss (CA),	Abbotsford, BC - V2S 7P6,			8	820 s Aug	30 2024 MiTek Industries, Inc. Thu Sep 12 02:48:21 2024 Page 1
			ID:hFyj	DMxrTsEl	<pre></pre>	VWVzFlgc-CbYd3yFfTXjML1UTzYkk5F84QuLyu4QlkVz5LWyeVqu
			1-6-12			
			1-6-12			
						Scale: 1/4"=*
			A B			
		Ī	4x6 = ↓ 1.5x4			
			1.54			

5x6 =3x5 || D С

Ø X

8-8-2

1-6-12

OADING (psf) CLL 25.0 Roof Snow=25.0) 2000000000000000000000000000000000000	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO	CSI. TC BC WB	0.68 0.06 0.68	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - C	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 197/144
BCLL 0.0 * BCDL 10.0	Code IBC2018/TF	PI2014	Matri	x-P						Weight: 31 lb	FT = 20%
LUMBER- TOP CHORD 2x4 SPF 1	No.2				BRACING- TOP CHORE				0	ectly applied or 1-6-12	2 oc purlins,
BOT CHORD 2x4 SPF N WEBS 2x4 SPF N					BOT CHORE WEBS) R		0	tly applied o	r 6-0-0 oc bracing. ·D. B-C. A-C	
	D=1-6-12, C=1-6-12 t D=-2020(LC 23), C=-20 v D=2040(LC 44), C=204					ļ	1.07 01	mapt	A	2, 2 0, 10	

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD A-D=-2027/2026, A-B=-274/274

BOT CHORD C-D=-275/275

WEBS A-C=-2035/2035

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B;

Enclosed; MWFRS (envelope) gable end zone; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) Provide adequate drainage to prevent water ponding.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) D=2020, C=2020.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1. 9) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 1-6-12 for 240.0 plf.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to be only with with with exercising is based only upon parameters shown, and is to an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

PRMU20240280 BLDG G

MiTek 240 Stirling Crescent Bradford, ON. L3Z 4L5

N0653A Alliance Truss (CA), A	S4 bbotsford, BC - V2S 7P6,	BLOCKING SUPPORTED			Job Reference (optiona	
Alliance Truss (CA),	bbotsford, BC - V2S 7P6,					
						es, Inc. Thu Sep 12 02:48:22 2024 Page 1
						HErrDzB3fXFGzeTgEElgjdUFvy9jftyyeVqt
			1-10-6 1-10-6			
			_			Scale: 3/8"=1
						Clair, or o
		D 3x5	C 5x6 =			
			1-10-6 1-10-6			
)-2-4,0-1-12], [C:0-3-0,0-3-0]	[D:0-3-0,0-1-8]				
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) 12.0 TCDL 12.0 BCLL 0.0 *	Plate Grip DOL 1 Lumber DOL 1	D-0 CSI. 15 TC 0.74 15 BC 0.09 ES WB 0.84	DEFL. Vert(LL) n/ Vert(CT) n/ Horz(CT) -0.0	/a -	l/defl L/d n/a 999 n/a 999 n/a n/a	PLATES GRIP MT20 197/144
BCLL 0.0 * BCDL 10.0	Code IBC2018/TPI207	4 Matrix-P				Weight: 22 lb FT = 20%
Max Horz Max Uplift	lo.2		BRACING- TOP CHORD BOT CHORD	except en	wood sheathing dire d verticals. ng directly applied or	ctly applied or 1-10-6 oc purlins, 6-0-0 oc bracing.
FORCES. (Ib) - Max. Cor	np./Max. Ten All forces 25 45/1561, A-B=-396/382 2/458) (Ib) or less except when shown.				
Enclosed; MWFRS (env DOL=1.33 plate grip DO 2) Truss designed for wind Gable End Details as ap 3) TCLL: ASCE 7-16; Pf=2 4) Provide adequate draina 5) Gable requires continuc 6) Truss to be fully sheathw 7) Gable studs spaced at 2 8) This truss has been des 9) * This truss has been des will fit between the botto 10) Provide mechanical co D=1553, C=1553. 11) This truss is designed 1.	relope) gable end zone; canti $D_{L}=1.33$ loads in the plane of the trus opplicable, or consult qualified 5.0 psf (Lum DOL = 1.15 Pla age to prevent water ponding us bottom chord bearing. ed from one face or securely 2-0-0 oc. igned for a 10.0 psf bottom c ssigned for a live load of 20.0 om chord and any other mem innection (by others) of truss in accordance with the 2018 esigned for a total drag load of	braced against lateral movement (i. hord live load nonconcurrent with ai psf on the bottom chord in all areas pers. to bearing plate capable of withstan International Building Code section f 240 plf. Lumber DOL=(1.33) Plate	rtical left and right ex (normal to the face), s 1. B; Partially Exp.; Ce= e. diagonal web). ny other live loads. where a rectangle 3- iding 100 lb uplift at jo 2306.1 and reference	posed; Lum see Standar 1.0; Cs=1.0 6-0 tall by 2 int(s) excepted ad standard	ber d Industry 0; Ct=1.10 -0-0 wide bt (jt=lb) ANSI/TPI	JUAN GARCIA
12) This truss has been de drag loads along botto						September 12,202

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS//TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

PRMU20240280 BLDG G

240 Stirling Crescent Bradford, ON. L3Z 4L5

Job	Truss	Truss Type	Qty	Ply	Buildings A-H	
N0653A	S5	BLOCKING SUPPORTED	22	1	2 and ingo / t t	U1530863
					Job Reference (optiona	
Alliance Truss (CA), A	Abbotsford, BC - V2S 7P6,					es, Inc. Thu Sep 12 02:48:23 2024 Page 1 3bLer5ynCBgDOsi0DMxJ2BpSCQPyeVqs
		F	1-5-12			0
		A				Scale: 3/8"=*
		2:1-12				
		D 3x5				
		3x5	5x6 = 1-5-12			
Plate Offsets (X,Y) [A:0	0-2-8,0-1-8], [C:0-3-0,0-3-0],	D:0-3-0,0-1-8]	1-5-12			
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL 12.0 BCLL 0.0 *	Plate Grip DOL 1 Lumber DOL 1	D-0 CSI. 15 TC 0.81 15 BC 0.07 ES WB 0.85 4 Matrix-P	DEFL. n/ Vert(LL) n/ Vert(CT) n/ Horz(CT) -0.0	a -	l/defl L/d n/a 999 n/a 999 n/a n/a	PLATES GRIP MT20 197/144 Weight: 21 lb FT = 20%
Max Horz	lo.2 lo.2 D=1-5-12, C=1-5-12 D=-152(LC 25)	C 27)	BRACING- TOP CHORD BOT CHORD	except e	al wood sheathing dire ind verticals. iling directly applied or	ctly applied or 1-5-12 oc purlins, 6-0-0 oc bracing.
Max Grav FORCES. (Ib) - Max. Cor	29/1640, A-B=-313/299 9/375					
Enclosed; MWFRS (env DOL=1.33 plate grip DC 2) Truss designed for wind Gable End Details as ar 3) TCLL: ASCE 7-16; Pf=2 4) Provide adequate draina 5) Gable requires continuo 6) Truss to be fully sheath 7) Gable studs spaced at 2 8) This truss has been des 9) * This truss has been de will fit between the botto 10) Provide mechanical co D=1634, C=1634. 11) This truss is designed 1. 12) This truss has been de	relope) gable end zone; canti $D_{L}=1.33$ Hoads in the plane of the true oplicable, or consult qualified 5.0 psf (Lum DOL = 1.15 Pla age to prevent water ponding bus bottom chord bearing. ed from one face or securely 2-0-0 oc. signed for a 10.0 psf bottom of signed for a live load of 20.0 om chord and any other mem onnection (by others) of truss in accordance with the 2018	braced against lateral movement hord live load nonconcurrent with psf on the bottom chord in all are pers. to bearing plate capable of withst International Building Code section f 240 plf. Lumber DOL=(1.33) Pla	vertical left and right exp d (normal to the face), s l 1. at B; Partially Exp.; Ce= (i.e. diagonal web). any other live loads. as where a rectangle 3- anding 100 lb uplift at jo on 2306.1 and reference	bosed; Lu ee Standa 1.0; Cs=1. 6-0 tall by int(s) exco d standar	mber ard Industry .00; Ct=1.10 2-0-0 wide ept (jt=lb) d ANSI/TPI	TUAN GARCIA TO PERSING STRATE TO PERSING STRATE
	in parameters and READ NOTES ON	THIS AND INCLUDED MITEK REFERANCE				September 12,202

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of trusses and truss systems, see **ANS//TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

PRMU20240280 BLDG G

240 Stirling Crescent Bradford, ON. L3Z 4L5

V

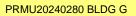
U153086 bb Reference (optional) 2024 MiTek Industries, Inc. Thu Sep 12 02:48:23 2024 Page 1 /zFIgc-8_gOTeGv_9z3bLer5ynCBgDOoi0HMyf2BpSCQPyeVqs Scale = 1:5
2024 MiTek Industries, Inc. Thu Sep 12 02:48:23 2024 Page 1 /zFlgc-8_gOTeGv_9z3bLer5ynCBgDOoi0HMyf2BpSCQPyeVqs
/zFlgc-8_gOTeGv_9z3bLer5ynCBgDOoi0HMyf2BpSCQPyeVqs
Scale = 1:5
/defi L/d PLATES GRIP n/a 999 MT20 197/144 n/a 999 n/a n/a
Weight: 34 lb FT = 20%
wood sheathing directly applied or 1-10-6 oc purlins, I verticals. Ig directly applied or 6-0-0 oc bracing. nidpt A-D, B-C, A-C
enc eilir

2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) Provide adequate drainage to prevent water ponding.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) D=2155, C=2155.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1. 9) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 1-10-6 for 240.0 plf.

MiTek 240 Stirling Crescent Bradford, ON. L3Z 4L5

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

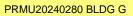
Job	Truss	Truss Typ	e	Qty	Ply	Buildings A-H	145000
10653A	S7	BLOCKIN	G SUPPORTED	99	1		U15308
						Job Reference (optiona	
Alliance Truss (CA)	Abbotsford, BC - V2S	5 7 P6,	1.				es, Inc. Thu Sep 12 02:48:24 2024 Page 1 5wCVD2fglSjulYE6MW5OcBQTCmyryeVqr
			A	В			Scale = 1:5
			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
			D 3x5				
			1.	-10-6 -10-6			
Plate Offsets (X,Y)-	- [A:Edge,0-1-12], [C:Ed	lge,0-3-0], [D:0-3-0,	D-1-8]				
LOADING (psf) FCLL 25.0 Roof Snow=25.0) 12.0 FCDL 12.0 3CLL 0.0 3CDL 10.0	* SPACING- Plate Grip DOL Lumber DOL Rep Stress II Code IBC20	ncr YES	CSI. TC 0.83 BC 0.07 WB 0.85 Matrix-P	Vert(CT)	in (loc) n/a - n/a - .00 C	l/defl L/d n/a 999 n/a 999 n/a n/a	PLATES GRIP MT20 197/144 Weight: 34 lb FT = 20%
	SPF No.2 SPF No.2 SPF No.2			BRACING- TOP CHORD BOT CHORD WEBS	except Rigid ce	end verticals. eiling directly applied or	ectly applied or 1-10-6 oc purlins, r 6-0-0 oc bracing. D, B-C, A-C
Ma	size) D=1-10-6, C=1-10 x Uplift D=-2171(LC 23), (x Grav D=2197(LC 44), C	C=-2171(LC 24)					-,,
TOP CHORD A	ax. Comp./Max. Ten All -D=-2181/2179, A-B=-340, -D=-340/340 -C=-2195/2195		ss except when shown.				
Enclosed; MWFF	RS (envelope) gable end z	one; Lumber DOL=	; TCDL=4.2psf; BCDL=5.0 I.33 plate grip DOL=1.33 1.15); Is=1.0; Rough Cat B	-			

3) Provide adequate drainage to prevent water ponding.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) D=2171, C=2171.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
 9) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0 to 1-10-6 for 240.0 plf.

240 Stirling Crescent Bradford, ON. L3Z 4L5

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Buildings A-H		U1530796
N0653A	S8	BLOCKING SUPPORTED	4	1			01000700
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,			8 630 s Ju	Job Reference (optional I 12 2024 MiTek Industrie		2·47·45 2024 Page 1
	Abbolaioid, DO - V20 11 0,	1-3-1 1-3-1	4		WVzFlgc-RfC?PsB70Ho		
			B				Scale = 1:50.7
		5x8 =					
			3x5 C				
			0				
		<u>1-3-1</u> 1-3-1	4				
Plate Offsets (X,Y)	A:0-3-0,0-1-8], [C:0-2-8,0-3-0		•				
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) 12.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 CSI. 1.15 TC 0.81 1.15 BC 0.04 YES WB 0.81	Vert(CT) r	in (loc) n/a - n/a - 00 C	l/defl L/d n/a 999 n/a 999 n/a n/a	PLATES MT20	GRIP 197/144
BCLL 0.0 * BCDL 10.0	Code IBC2018/TPI2					Weight: 33 lb	FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP REACTIONS. (size	F No.2 F No.2) D=1-3-14, C=1-3-14	T E V	BRACING- TOP CHORD BOT CHORD VEBS	except Rigid ce	ral wood sheathing dire end verticals. siling directly applied or at midpt A-I		4 oc purlins,
	blift D=-2152(LC 23), C=-215 av D=2168(LC 44), C=2168(

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD A-D=-2158/2157 A-C=-2160/2160

WEBS

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Provide adequate drainage to prevent water ponding.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) D=2152, C=2152.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

9) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 1-3-14 for 240.0 plf.

MiTek 240 Stirling Crescent Bradford, ON. L3Z 4L5

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to be only with with with exercising is based only upon parameters shown, and is to an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type		Ply	Buildings A-H	U1530797
N0653A	S9	BLOCKING SUPPORTED	4		Job Reference (optiona	
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,		ID:hFyjDMxrTsEK_k			es, Inc. Thu Sep 12 02:47:46 2024 Page 1 J3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f
			1-3-14 1-3-14			
			A B			Scale = 1:51.1
		01-05-06 	5x7 1.5x4 II X X X X			
			D C			
			1-3-14			
Plate Offsets (X,Y) [A:	Edge,0-1-12]		1-3-14 1-3-14			
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL 12.0 BCLL 0.0 * BCDL 10.0	Plate Grip DOL Lumber DOL	0-0 CSI. .15 TC 0.98 .15 BC 0.08 TES WB 0.96 14 Matrix-P	DEFL. in Vert(LL) n/a Vert(CT) n/a Horz(CT) -0.00	(loc) - - C	l/defl L/d n/a 999 n/a 999 n/a n/a	PLATES GRIP MT20 197/144 Weight: 33 lb FT = 20%
LUMBER- TOP CHORD 2x4 SPF f BOT CHORD 2x4 SPF f WEBS 2x4 SPF f A-C: 2x4 SP REACTIONS. (size) Max Horz Max Uplif	No.2 2100F 1.8E *Except*	,	BOT CHORD WEBS	except en	d verticals. ng directly applied or midpt A-I	D, B-C
TOP CHORDA-D=-32BOT CHORDC-D=-44	276/3286, A-B=-317/295	0 (lb) or less except when shown				
 Enclosed; MWFRS (en DOL=1.33 plate grip D0 2) Truss designed for winn Gable End Details as a 3) TCLL: ASCE 7-16; Pf='4) Provide adequate drain 5) Gable requires continue 6) Truss to be fully sheath 7) Gable studs spaced at 8) This truss has been de 9) * This truss has been de 9) * This truss has been de will fit between the bott 10) Provide mechanical co D=3281, C=3281. 11) This truss is designed 1. 12) This truss has been d 	velope) gable end zone; cant JL=1.33 d loads in the plane of the tru pplicable, or consult qualified 25.0 psf (Lum DOL=1.15 Plana age to prevent water ponding ous bottom chord bearing. led from one face or securely 2-0-0 oc. signed for a 10.0 psf bottom of lesigned for a live load of 20.0 om chord and any other men onnection (by others) of truss l in accordance with the 2018	braced against lateral movement boord live load nonconcurrent with lpsf on the bottom chord in all are bers. to bearing plate capable of withs International Building Code section of 240 plf. Lumber DOL=(1.33) Pla	vertical left and right expo and (normal to the face), see Pl 1. B; Partially Exp.; Ce=1.0; (i.e. diagonal web). (i.e. diagonal web). (a any other live loads. (as where a rectangle 3-6- tanding 100 lb uplift at join on 2306.1 and referenced	sed; Lum e Standar Cs=1.00; 0 tall by 2 t(s) excep standard	ber rd Industry Ct=1.10 -0-0 wide ot (jt=lb) ANSI/TPI	NUAN GARCIA TROF WASHING 39586 ABUSTERED ING September 12,2024
WARNING - Verify desi	gn parameters and READ NOTES ON	THIS AND INCLUDED MITEK REFERANC	E PAGE MII-7473 rev. 6/30/2020 E	EFORE USE	E.	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MIL7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/ITPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

240 Stirling Crescent Bradford, ON. L3Z 4L5

Job	Truss	Truss Type	Qty	Ply	Buildings A-H	
N0653A	S10	BLOCKING SUPPORTED	1	1		U153079
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,	ID 	hFyjDMxrTsEk:			al) es, Inc. Thu Sep 12 02:47:42 2024 Page 1 q3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f
			4			Scale = 1:50
		D C 3x5 5x <u> 1-5-14</u> 1-5-14	3 =			
Plate Offsets (X, Y) Plate Offsets (X, Y) LOADING (psf) TCLL 25.0 TCDL 25.0.0 TCDL 12.0 3CLL 0.0 * 3CDL 10.0	A:Edge,0-1-12], [C:Edge,0-3 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2018/TPI2	2-0-0 CSI. E 1.15 TC 0.81 W 1.15 BC 0.05 W YES WB 0.82 H	'ert(LL) n	in (loc) /a - /a - 00 C	l/defl L/d n/a 999 n/a 999 n/a n/a	PLATES GRIP MT20 197/144 Weight: 33 lb FT = 20%
LUMBER- TOP CHORD 2x4 SPI BOT CHORD 2x4 SPI WEBS 2x4 SPI REACTIONS. (size Max Up	F No.2	TC BC WE (LC 24)	P CHORD T CHORD EBS	except e	end verticals. iling directly applied or	ectly applied or 1-5-14 oc purlins, r 6-0-0 oc bracing. D, B-C, A-C
TOP CHORD A-D=- BOT CHORD C-D=-	Comp./Max. Ten All forces 2160/2159, A-B=-259/259 259/259 2165/2165	250 (Ib) or less except when shown.				
Enclosed; MWFRS (2) TCLL: ASCE 7-16; P 3) Provide adequate drz 4) Gable requires contir 5) This truss has been 6) * This truss has been will fit between the b 7) Provide mechanical 0 D=2153, C=2153. 8) This truss is designe 9) This truss has been of	envelope) gable end zone; Lt f=25.0 psf (Lum DOL=1.15 P ainage to prevent water pond nuous bottom chord bearing. designed for a 10.0 psf bottor o designed for a live load of 20 ottom chord and any other me connection (by others) of trus d in accordance with the 2018	a chord live load nonconcurrent with any othe .0psf on the bottom chord in all areas where mbers. to bearing plate capable of withstanding 10 .International Building Code section 2306.1 of 240 plf. Lumber DOL=(1.33) Plate grip DO	ly Exp.; Ce=1. er live loads. a rectangle 3- 0 lb uplift at joi and referenced	0; Cs=1.00 6-0 tall by nt(s) except standard	2-0-0 wide pt (jt=lb) ANSI/TPI 1.	IUAN GARCIA

240 Stirling Crescent Bradford, ON. L3Z 4L5

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	Truss	Truss Type	Qty	Ply	Buildings A-H		11450050
0653A	S11	BLOCKING SUPPORTED	1	1			U153079
				9.620 a. hu	Job Reference (optiona		47:42 2024 Dage 1
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,				l 12 2024 MiTek Industrie /WVzFlgc-RfC?PsB70He		
		<u> 1-5-1</u> 1-5-1	4				
			-				
		А	В				Scale = 1:5
			.5x4				
		8-3-10 	a				
		8 P	a				
		D	С				
		3x5 5					
		1-5-1	4				
		1-5-1	4				
Date Offsets (X,Y)	[A:Edge,0-1-12], [C:0-2-4,0-3	0], [D.0-3-0,0-1-6]					
TCLL 25.0	SPACING-	2-0-0 CSI.	DEFL.	in (loc)	l/defl L/d	PLATES	GRIP
(Roof Snow=25.0)	Plate Grip DOL Lumber DOL	1.15 TC 0.83 1.15 BC 0.05	. ,	n/a - n/a -	n/a 999 n/a 999	MT20	197/144
TCDL 12.0 BCLL 0.0 *	Rep Stress Incr	YES WB 0.84	Horz(CT) 0.	00 C	n/a n/a		
BCDL 10.0	Code IBC2018/TPI2	2014 Matrix-P				Weight: 33 lb	FT = 20%
LUMBER-			BRACING-				
			TOP CHORD		al wood sheathing dire and verticals.	ctly applied or 1-5-14	oc purlins,
TOP CHORD 2x4 SF						6-0-0 oc bracing.	
TOP CHORD 2x4 SF BOT CHORD 2x4 SF	PF No.2	E	BOT CHORD				
TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	PF No.2		WEBS	1 Row a		D, B-C, A-C	
TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF REACTIONS. (siz		l.					
TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF REACTIONS. (siz Max L	PF No.2 e) D=1-5-14, C=1-5-14) (LC 24)					
TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF REACTIONS. (siz Max U Max C	PF No.2 e) D=1-5-14, C=1-5-14 Jplift D=-2169(LC 23), C=-216 Grav D=2188(LC 44), C=2188(0(LC 24) LC 43)					
TOP CHORD 2x4 SF 30T CHORD 2x4 SF WEBS 2x4 SF REACTIONS. (siz Max U Max C FORCES. (lb) - Max. TOP CHORD A-D=	PF No.2 e) D=1-5-14, C=1-5-14 Jplift D=-2169(LC 23), C=-216 Srav D=2188(LC 44), C=2188(Comp./Max. Ten All forces 2176/2175, A-B=-259/259) (LC 24)					
OP CHORD 2x4 SF 30T CHORD 2x4 SF VEBS 2x4 SF REACTIONS. (siz Max L Max C FORCES. (lb) - Max. OP CHORD A-D= 30T CHORD C-D=	PF No.2 e) D=1-5-14, C=1-5-14 lplift D=-2169(LC 23), C=-216 Grav D=2188(LC 44), C=2188(Comp./Max. Ten All forces 2176/2175, A-B=-259/259 259/259	0(LC 24) LC 43)					
TOP CHORD 2x4 SF SOT CHORD 2x4 SF WEBS 2x4 SF REACTIONS. (siz Max U Max C FORCES. (lb) - Max. TOP CHORD A-D= SOT CHORD C-D= WEBS A-C=	PF No.2 e) D=1-5-14, C=1-5-14 Jplift D=-2169(LC 23), C=-216 Srav D=2188(LC 44), C=2188(Comp./Max. Ten All forces 2176/2175, A-B=-259/259	0(LC 24) LC 43)					
TOP CHORD 2x4 SF 30T CHORD 2x4 SF WEBS 2x4 SF REACTIONS. (siz Max U Max U Max C FORCES. (lb) - Max. TOP CHORD A-D= 30T CHORD C-D= WEBS A-C= NOTES-	PF No.2 e) D=1-5-14, C=1-5-14 lplift D=-2169(LC 23), C=-216 Grav D=2188(LC 44), C=2188(Comp./Max. Ten All forces 2176/2175, A-B=-259/259 259/259 2181/2181	N D(LC 24) LC 43) 250 (Ib) or less except when shown.	VEBS	1 Row a	at midpt A-		
TOP CHORD 2x4 SF 30T CHORD 2x4 SF WEBS 2x4 SF REACTIONS. (siz Max L Max C FORCES. (lb) - Max. TOP CHORD A-D= 30T CHORD A-D= 30T CHORD C-D= WEBS A-C= NOTES- I) Wind: ASCE 7-16; N Enclosed; MWFRS	PF No.2 e) D=1-5-14, C=1-5-14 Jplift D=-2169(LC 23), C=-216 Grav D=2188(LC 44), C=2188(Comp./Max. Ten All forces 2176/2175, A-B=-259/259 259/259 2181/2181 /ult=115mph (3-second gust) \ (envelope) gable end zone; Lu	V LC 24) 250 (lb) or less except when shown. 250 (lb) or less except when shown. 250 (lb) or less except when shown. 250 (lb) or less except when shown.	VEBS ; h=30ft; Ke=1.00	1 Řow a 0; Cat. II; I	at midpt A-		
COP CHORD 2x4 SF 30T CHORD 2x4 SF VEBS 2x4 SF REACTIONS. (siz Max L Max C CORCES. (lb) - Max. COP CHORD A-D= 30T CHORD A-D= 30T CHORD C-D= VEBS A-C= NOTES-) Wind: ASCE 7-16; \ Enclosed; MWFRS 2) TCLL: ASCE 7-16; \	PF No.2 e) D=1-5-14, C=1-5-14 Jplift D=-2169(LC 23), C=-216 Grav D=2188(LC 44), C=2188(Comp./Max. Ten All forces. 2176/2175, A-B=-259/259 259/259 2181/2181 /ult=115mph (3-second gust) \ (envelope) gable end zone; LL Pf=25.0 psf (Lum DOL=1.15 P	V LC 24) LC 43) 250 (Ib) or less except when shown. /asd=91mph; TCDL=4.2psf; BCDL=5.0psf mber DOL=1.33 plate grip DOL=1.33 ate DOL=1.15); Is=1.0; Rough Cat B; Part	VEBS ; h=30ft; Ke=1.00	1 Řow a 0; Cat. II; I	at midpt A-		
TOP CHORD 2x4 SF 30T CHORD 2x4 SF WEBS 2x4 SF REACTIONS. (siz Max U Max C FORCES. (lb) - Max. TOP CHORD A-D= 30T CHORD C-D= WEBS A-C= NOTES- I) Wind: ASCE 7-16; \ Enclosed; MWFRS 2) TCLL: ASCE 7-16;] Provide adequate d	PF No.2 e) D=1-5-14, C=1-5-14 Jplift D=-2169(LC 23), C=-216 Grav D=2188(LC 44), C=2188(Comp./Max. Ten All forces 2176/2175, A-B=-259/259 259/259 2181/2181 /ult=115mph (3-second gust) \ (envelope) gable end zone; Lu	V LC 24) LC 43) 250 (Ib) or less except when shown. /asd=91mph; TCDL=4.2psf; BCDL=5.0psf mber DOL=1.33 plate grip DOL=1.33 ate DOL=1.15); Is=1.0; Rough Cat B; Part	VEBS ; h=30ft; Ke=1.00	1 Řow a 0; Cat. II; I	at midpt A-		
TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF REACTIONS. (siz Max L Max C FORCES. (lb) - Max. TOP CHORD A-D= BOT CHORD A-D= BOT CHORD C-D= WEBS A-C= NOTES- 1) Wind: ASCE 7-16; 1 Enclosed; MWFRS 2) TCLL: ASCE 7-16; 1 3) Provide adequate d 9) Gable requires cont 5) This truss has been	PF No.2 e) D=1-5-14, C=1-5-14 lplift D=-2169(LC 23), C=-216 Grav D=2188(LC 44), C=2188(Comp./Max. Ten All forces -2176/2175, A-B=-259/259 259/259 2181/2181 /ult=115mph (3-second gust) \ (envelope) gable end zone; LL Pf=25.0 psf (Lum DOL=1.15 P rainage to prevent water pond inuous bottom chord bearing, designed for a 10.0 psf bottor	V LC 24) LC 43) 250 (lb) or less except when shown. /asd=91mph; TCDL=4.2psf; BCDL=5.0psf mber DOL=1.33 plate grip DOL=1.33 ate DOL=1.15); Is=1.0; Rough Cat B; Part ng. n chord live load nonconcurrent with any of	VEBS ; h=30ft; Ke=1.00 ially Exp.; Ce=1. ther live loads.	1 Row a 0; Cat. II; I 0; Cs=1.0	Exp B; D; Ct=1.10		
TOP CHORD 2x4 SF 30T CHORD 2x4 SF WEBS 2x4 SF REACTIONS. (siz Max L Max C FORCES. (lb) - Max. TOP CHORD A-D= 30T CHORD C-D= WEBS A-C= NOTES- 1) Wind: ASCE 7-16; \ Enclosed; MWFRS 2) TCLL: ASCE 7-16; 3) Provide adequate d 4) Gable requires cont 5) This truss has been 6) * This truss has been	PF No.2 e) D=1-5-14, C=1-5-14 Jplift D=-2169(LC 23), C=-216 Grav D=2188(LC 44), C=2188(Comp./Max. Ten All forces -2176/2175, A-B=-259/259 -259/259 -2181/2181 /ult=115mph (3-second gust) \ (envelope) gable end zone; LL Pf=25.0 psf (Lum DOL=1.15 P rainage to prevent water pond inuous bottom chord bearing. designed for a 10.0 psf bottom endesigned for a live load of 20	V LC 24) LC 43) 250 (Ib) or less except when shown. 250 (Ib) or le	VEBS ; h=30ft; Ke=1.00 ially Exp.; Ce=1. ther live loads.	1 Row a 0; Cat. II; I 0; Cs=1.0	Exp B; D; Ct=1.10		
TOP CHORD 2x4 SF 30T CHORD 2x4 SF WEBS 2x4 SF REACTIONS. (siz Max L Max C 50RCES. (lb) - Max. TOP CHORD A-D= 30T CHORD C-D= WEBS A-C= NOTES- 1) Wind: ASCE 7-16; 1 Enclosed; MWFRS 2) TCLL: ASCE 7-16; 1 3) Provide adequate d 4) Gable requires cont 5) This truss has been s) * This truss has been will fit between the t	PF No.2 e) D=1-5-14, C=1-5-14 Jplift D=-2169(LC 23), C=-216 Grav D=2188(LC 44), C=2188(Comp./Max. Ten All forces. -2176/2175, A-B=-259/259 -259/259 -259/259 -2181/2181 /ult=115mph (3-second gust) \ (envelope) gable end zone; LU Pf=25.0 psf (Lum DOL=1.15 P rainage to prevent water pond inuous bottom chord bearing. designed for a 10.0 psf bottor in designed for a live load of 2 bottorn chord and any other me	V LC 24) LC 43) 250 (Ib) or less except when shown. 250 (Ib) or le	VEBS ; h=30ft; Ke=1.00 ially Exp.; Ce=1. ther live loads. ire a rectangle 3	1 Row a 0; Cat. II; I 0; Cs=1.0 -6-0 tall by	Exp B; D; Ct=1.10		

9) This truss is designed in accordance with the 2016 international building Code section 2306. Fail referenced standard ANS/FFFF.
 9) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 1-5-14 for 240.0 plf.

240 Stirling Crescent Bradford, ON. L3Z 4L5

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type		Qty	Ply	/	Buildings /	A-H		
0653A	S12	BLOCKING	SUPPORTED	232		1				U153080
								nce (optional)		
Alliance Truss (CA),	Abbotsford, BC - V2S	7P6,		ID:hFyjDMxrTs <u>-10-6</u> -10-6 │						2:47:43 2024 Page 1 GKWrCDoi7J4zJC?f
			A	B						Scale = 1:5
			10-7-4							
			1	C 6x8 =						
Plate Offsets (X,Y)-	- [A:Edge,0-1-8]			-10-0						
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) 12.0 TCDL 12.0 BCLL 0.0	Lumber DOL Rep Stress In	1.15 cr YES	CSI. TC 0.93 BC 0.07 WB 0.94 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - C		L/d 999 999 n/a	PLATES MT20 Weight: 39 lb	GRIP 197/144 FT = 20%
BOT CHORD 2x4 WEBS 2x4 REACTIONS. (SPF No.2 SPF No.2 SPF No.2 size) D=1-10-6, C=1-10-	6		BRACING- TOP CHORD BOT CHORD WEBS	ex Ri 1	cept e igid ce Row a	nd vertical	S.	/ applied or 1-10-6 0-0 oc bracing.	
Ma F ORCES. (Ib) - M TOP CHORD A-	x Uplift D=-2485(LC 23), C x Grav D=2510(LC 44), C ax. Comp./Max. Ten All f -D=-2494/2493, A-B=-340/ -D=-340/340	=2510(LC 43) orces 250 (lb) or less	except when shown.							

WEBS A-C=-2504/2504

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B;
- Enclosed; MWFRS (envelope) gable end zone; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Provide adequate drainage to prevent water ponding.

Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) D=2485, C=2485.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

9) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 1-10-6 for 240.0 plf.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

PRMU20240280 BLDG G

Airling Crescent Bradford, ON. L3Z 4L5

Job	Truss	Truss Type	Qty	Ply	Buildings A-H		
N0653A	S13	BLOCKING SUPPORTED	6	1			U1530801
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,			8.630 s Ju	Job Reference (option 12 2024 MiTek Industri		:47:44 2024 Page 1
(,			ID:hFyjDMxrTsEł 1-3-14		/WVzFlgc-RfC?PsB70H		
			1-3-14				
			АВ				Scale = 1:57.9
		Ţ	4x7 = 1.5x4				
			XXX				
		4-1-					
		ģ					
			D C				
			3x6				
			1-3-14 1-3-648 =				
Plate Offsets (X,Y) LOADING (psf)	[A:Edge,0-1-8]						
TCLL 25.0 (Roof Snow=25.0)	SPACING- Plate Grip DOL	2-0-0 CSI. 1.15 TC 0.92		in (loc) n/a -	l/defl L/d n/a 999	PLATES MT20	GRIP 197/144
TCDL 12.0 BCLL 0.0 * BCDL 10.0	Lumber DOL Rep Stress Incr Code IBC2018/TF	1.15 BC 0.04 YES WB 0.93 I2014 Matrix-P		n/a - 00 C	n/a 999 n/a n/a	Weight: 37 lb	FT = 20%
LUMBER- TOP CHORD 2x4 SP			BRACING- TOP CHORD	Structur	al wood sheathing dire	actly applied or 1.2.14	
BOT CHORD 2x4 SP			BOT CHORD	except e Rigid ce	end verticals. iling directly applied o	r 6-0-0 oc bracing.	oc punns,
			WEBS	1 Row a 2 Rows		-C -D, A-C	
Max U	e) D=1-3-14, C=1-3-14 plift D=-2482(LC 23), C=-24 rav D=2498(LC 44), C=249						
TOP CHORD A-D=	Comp./Max. Ten All force: -2488/2487 -2488/2488	s 250 (lb) or less except when shown	I.				
NOTES-							
) Vasd=91mph; TCDL=4.2psf; BCDL _umber DOL=1.33 plate grip DOL=1.		0; Cat. II; E	Exp B;		
		truss only. For studs exposed to wi fied building designer as per ANSI/T		see Stand	ard Industry		
	Pf=25.0 psf (Lum DOL=1.15 rainage to prevent water pon	Plate DOL=1.15); ls=1.0; Rough Cat ding.	B; Partially Exp.; Ce=1.	.0; Cs=1.00); Ct=1.10		
	nuous bottom chord bearing athed from one face or secu	rely braced against lateral movemen	t (i.e. diagonal web).				
7) Gable studs spaced	at 2-0-0 oc.	om chord live load nonconcurrent wit					44.
9) * This truss has bee	n designed for a live load of	20.0psf on the bottom chord in all are		-6-0 tall by	2-0-0 wide	UAN G	ARCI
10) Provide mechanica	ottom chord and any other n I connection (by others) of ti	nembers. russ to bearing plate capable of withs	standing 100 lb uplift at j	oint(s) exc	ept (jt=lb)	OF WA	SHIN
D=2482, C=2482. 11) This truss is desigr	ned in accordance with the 2	018 International Building Code sect	ion 2306.1 and referenc	ed standar	d ANSI/TPI		1 (B) L
	n designed for a total drag lo ottom chord from 0-0-0 to 1-	ad of 240 plf. Lumber DOL=(1.33) Pl 3-14 for 240.0 plf.	ate grip DOL=(1.33) Co	onnect trus	s to resist		
						TP \$ 395	86 2

TORESSIONAL ENGINE September 12,2024

> \mathbf{V} MiTek 240 Stirling Crescent Bradford, ON. L3Z 4L5

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Buildings A-H	U1530802
N0653A	S14	BLOCKING SUPPORTED	36	1		
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,	<u>1-10-6</u> 1-10-6 	1			an es, Inc. Thu Sep 12 02:47:45 2024 Page 1 q3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Scale = 1:70.
		D C 4x6 <u>1-10-6</u> -10-6				
Plate Offsets (X,Y) [A	:Edge,0-2-0]	6x8	=			
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL TCDL 12.0 BCLL 0.0 * BCDL 10.0	Plate Grip DOL Lumber DOL	1.15 TC 0.99 V 1.15 BC 0.07 V YES WB 1.00 H	ert(CT)	in (loc) n/a - n/a - .00 C	l/defl L/d n/a 999 n/a 999 n/a n/a	PLATES GRIP MT20 197/144 Weight: 47 lb FT = 20%
LUMBER- TOP CHORD 2x4 SPF BOT CHORD 2x4 SPF WEBS 2x4 SPF WEBS 2x4 SPF REACTIONS. (size)		TC BC WE	EACING- IP CHORD IT CHORD EBS	except e Rigid ce 1 Row a	end verticals. iling directly applied or t midpt B-	
FORCES.(lb) - Max. CrTOP CHORDA-D=-3BOT CHORDC-D=-3WEBSA-C=-30	094/3093, A-B=-340/340	C 43) 50 (Ib) or less except when shown.				
Enclosed; MWFRS (er 2) TCLL: ASCE 7-16; Pf= 3) Provide adequate draii 4) Gable requires continu 5) This truss has been de 6) * This truss has been de will fit between the bot	nvelope) gable end zone; Lur 25.0 psf (Lum DOL=1.15 Planage to prevent water pondir ious bottom chord bearing. ssigned for a 10.0 psf bottom designed for a live load of 20 tom chord and any other met	chord live load nonconcurrent with any oth∉ 0psf on the bottom chord in all areas where	ly Exp.; Ce=1 er live loads. a rectangle 3	.0; Cs=1.00 3-6-0 tall by	2-0-0 wide	

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) D=3085, C=3085.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
 9) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag

240 Stirling Crescent Bradford, ON. L3Z 4L5

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPII Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Buildings A-H		
10653A	S15	BLOCKING STRUCTURAL	2	1			U1530866
					Job Reference (optional		
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,	F				s, Inc. Thu Sep 12 02:48:18 JamulPB1UdWbGhKphrQJ2	
		٩	АВ				Scale = 1:47
		4.7.8					
		F	1-7-0 1-7-0				
Plate Offsets (X,Y)	[C:0-3-0,0-2-12], [D:0-3-0,0-	1-8]					
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) 12.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 CSI. 1.15 TC 0.54 1.15 BC 0.03 NO WB 0.19	DEFL. Vert(LL) -0. Vert(CT) -0. Horz(CT) 0.		l/defl L/d >999 360 >999 240 n/a n/a	PLATES GRIF MT20 197/*	
BCLL 0.0 BCDL 10.0	Code IBC2018/TF			00 D	**** 240	Weight: 31 lb F	Г = 20%
LUMBER- TOP CHORD 2x4 BOT CHORD 2x4 WEBS 2x4 REACTIONS. (Ma: Ma:	SPF No.2 SPF No.2 SPF No.2 size) D=1-7-0, C=1-7-0, C=1- (Horz D=-175(LC 6) (Uplift D=-548(LC 6), C=-435(I (Grav D=419(LC 5), C=577(LC	_C 5)	BRACING- TOP CHORD BOT CHORD WEBS	except Rigid ce	end verticals. eiling directly applied or	etly applied or 1-7-0 oc pur 10-0-0 oc bracing. , B-C, A-C	ins,
TOP CHORD A-	ax. Comp./Max. Ten All force: D=-413/561 C=-570/432	\$ 250 (lb) or less except when shown.					

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left exposed ; end vertical left exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Provide adequate drainage to prevent water ponding.

5) Gable studs spaced at 2-0-0 oc.

- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) D=548, C=435.
- 9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

240 Stirling Crescent Bradford, ON. L3Z 4L5

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

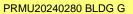
ob	Truss	Truss Type	Qty	Ply	Buildings A-H		1450000
0653A	S16	BLOCKING STRUCTURAL	9	1			U153086
5000/1			ľ		Job Reference (optiona	I)	
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,	·			30 2024 MiTek Industrie	s, Inc. Thu Sep 12 02	
			ID:hFyjDMxrTsEF 1-10-8	(_kgkR0vW	WVzFlgc-o0tVQwCmAck	knUamuIPB1UdWj0hł	KrhtMJ2XIRkByeVqx
			1-10-8				
							0 1 0/01
		А	В				Scale: 3/8"=
] [3x4	= 1.5x4				
		5-8-7					
		2					
			<u>_</u>				
		1.5x4 D	3x4 = C				
		В	C				
			1-10-8				
		· · · · · · · · · · · · · · · · · · ·	1-10-8				
OADING (psf) CLL 25.0	SPACING-	2-0-0 CSI.	DEFL.	in (loc)	l/defl L/d	PLATES	GRIP
(Roof Snow=25.0)	Plate Grip DOL	1.15 TC 0.05		00 D	>999 360	MT20	197/144
TCDL 12.0	Lumber DOL Rep Stress Incr	1.15 BC 0.02 NO WB 0.00		00 D 00 C	>999 240 n/a n/a		
BCLL 0.0 *	Code IBC2018/TPI			00 C	**** 240	Weight: 22 lb	FT = 20%
BCDL 10.0		-	. ,				
LUMBER-			BRACING-	0 1 · ·			
TOP CHORD 2x4 SPF BOT CHORD 2x4 SPF			TOP CHORD		al wood sheathing directed and verticals.	ctly applied or 1-10-8	3 oc purlins,
WEBS 2x4 SPF			BOT CHORD		elling directly applied or	10-0-0 oc bracing.	
					5	· · · · · · · · · · · · · · · · · · ·	

EACTIONS. (size) D=1-10-8, C=1-10-8, C=1-10-8 Max Uplift D=-9(LC 4), C=-9(LC 4) Max Grav D=74(LC 1), C=74(LC 1), C=74(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B;
- Enclosed; MWFRS (envelope) gable end zone; Lumber DOL=1.33 plate grip DOL=1.33
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Provide adequate drainage to prevent water ponding.


5) Gable studs spaced at 2-0-0 oc.

- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) D, C.
- 9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

240 Stirling Crescent Bradford, ON. L3Z 4L5

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permament bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ob	Truss	Truss Type	Qty	Ply	Buildings A-H		
0653A	S17	BLOCKING STRUCTURAL	2	1			U1530868
					Job Reference (optiona		
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6				30 2024 MiTek Industrie		
		ID: 1-5-14		KGKRUVVVV	VVzFlgc-GCQteGDOxwT	e6KL4S/IG0q2u55fEQK	cSGBU?Heyevqw
		1-5-14	-				
							Scale: 3/8"=
		A	В				
			1.5x4				
		5-8-2					
		1.5x4	3x4 =				
		D	С				
		<u>1-5-14</u> 1-5-14					
.OADING (psf)							
CLL 25.0	SPACING-		DEFL.	in (loc)	l/defl L/d		GRIP
Roof Snow=25.0)	Plate Grip DOL Lumber DOL			00 D 00 D	>999 360 >999 240	MT20	197/144
FCDL 12.0 BCLL 0.0 *	Rep Stress Incr	NO WB 0.00		00 C	n/a n/a		
3CLL 0.0 "	Code IBC2018/T	PI2014 Matrix-P	Wind(LL) 0	00 D	**** 240	Weight: 21 lb	FT = 20%
UMBER- OP CHORD 2x4 SPF 30T CHORD 2x4 SPF			RACING- OP CHORD		ral wood sheathing dire end verticals.	ectly applied or 1-5-14 c	oc purlins,
VEBS 2x4 SPF		В	OT CHORD		eiling directly applied or	10-0-0 oc bracing.	

Max Uplift D=-7(LC 4), C=-7(LC 4) Max Grav D=56(LC 1), C=56(LC 1), C=56(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B;
- Enclosed; MWFRS (envelope) gable end zone; Lumber DOL=1.33 plate grip DOL=1.33
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Provide adequate drainage to prevent water ponding.

5) Gable studs spaced at 2-0-0 oc.

- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) D, C.
- 9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permament bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type		Qty	Ply	Buildings A-H		
N0653A	S18	BLOCKING STRUCTURAL		1	1			U1530869
Alliance Truss (CA),	Abbotsford, BC - V2S 7P					Job Reference (option	al) ies, Inc. Thu Sep 12 02:48:19 2024 F	Dage 1
Alliance muss (CA),	Abbolsiora, BC - V2S /P	0,					e6kL4s7iG0q2kw5fUQAwSGBU?Hey	
			<u> 1-7-0</u> 1-7-0					
							So	cale: 1/4"=*
		Т	A B					
			1.5x4					
		8-8-2						
		1						
			3x5 5x6 = D C					
			1-7-0 1-7-0					
Plate Offsets (X,Y)	[A:0-3-0,0-1-8], [C:0-2-0,0	<u>-3-0j, [D:0-3-0,0-1-8]</u>						
LOADING (psf) TCLL 25.0	SPACING- Plate Grip DOL	2-0-0 CSI. 1.15 TC 0.6	8 DEFL. 8 Vert(Ll		in (loc) 0 D	l/defl L/d >999 360	PLATES GRIP MT20 197/144	
(Roof Snow=25.0) TCDL 12.0	Lumber DOL	1.15 BC 0.0	6 Vert(C	Ť) -0.0	0 D	>999 240	137/144	
BCLL 0.0 *	Rep Stress Incr Code IBC2018/	NO WB 0.6 TPI2014 Matrix-P	8 Horz(C Wind(L	,		n/a n/a **** 240	Weight: 31 lb FT = 209	%
BCDL 10.0			BRACIN	,			Ŭ	
TOP CHORD 2x4 S			TOP CH				ectly applied or 1-7-0 oc purlins,	
	PF No.2 PF No.2		BOT CH	IORD		end verticals. eiling directly applied o	r 6-0-0 oc bracing.	
REACTIONS. (siz	ze) D=1-7-0, C=1-7-0, C=	:1-7-0	WEBS		1 Row a	at midpt A	-D, B-C, A-C	
Max I	Jplift D=-2020(LC 23), C=-2	2020(LC 24)						
Max	Grav D=2041(LC 44), C=20	041(LC 43), C=61(LC 1)						
	. Comp./Max. Ten All for =-2028/2026, A-B=-279/279	ces 250 (lb) or less except when	shown.					
BOT CHORD C-D	=-279/279							
WEBS A-C	=-2036/2036							
NOTES-	Vult-115mph (3 second au	st) Vasd=91mph; TCDL=4.2psf;		· Ko-1 00	· Cat III I			
Enclosed; MWFRS	(envelope) gable end zone	; Lumber DOL=1.33 plate grip D	OL=1.33			•		
		he truss only. For studs exposed alified building designer as per A		ne face), s	see Stand	lard Industry		
	Pf=25.0 psf (Lum DOL = 1. drainage to prevent water p	15 Plate DOL = 1.15); ls=1.0; Ro	ugh Cat B; Partially B	Exp.; Ce=	1.0; Cs=1	.00; Ct=1.10		
5) Gable studs space	d at 2-0-0 oc.	5						
		ottom chord live load nonconcurre of 20.0psf on the bottom chord in			6-0 tall by	/ 2-0-0 wide		
	bottom chord and any othe	r members. truss to bearing plate capable of	withstanding 100 lb u	nlift at iai	- 	nt (it-lb)	and the second	
D=2020, C=2020.			ů.		.,		JUAN GARCIA	
		2018 International Building Code load of 240 plf. Lumber DOL=(1.					S OF WASHING	
	bottom chord from 0-0-0 to			,			- E	
								~ 1
							FORESSIONAL ENGINE	4
							ESSON NOT	~
							STONAL ET.	
							September	12 202
							Coptember	, _ 0 _ 0

ob	Truss	Truss Type	Qty	Ply	Buildings A-H		U153087
0653A	S19	BLOCKING SUPPORTED	1	1			0153087
					Job Reference (optiona		
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,					es, Inc. Thu Sep 12 02:48:2 oVkuvGQqDVZ2btaU?y9b9	
		L1	-3-4				
		1	-3-4				
		A	В				Scale = 1:50
		⊺ 4 ×					
			8 — 1.5x4				
		~					
		8-2-12	3 104				
		0.					
		¹ 5x8 =	3x5				
		D	C				
		<u> </u>	-3-4				
			-3-4				
Plate Offsets (X,Y)	[A:0-3-0.0-1-8], [C:0-2-8.0-3-0	JI. ID:0-3-0.0-1-81					
	[A:0-3-0,0-1-8], [C:0-2-8,0-3-						
OADING (psf)	SPACING-	2-0-0 CSI .	DEFL.	in (loc)	l/defl L/d	PLATES GR	
(Roof Snow=25.0)			Vert(LL) I	in (loc) n/a - n/a -	l/defl L/d n/a 999 n/a 999		I P /144
OADING (psf) "CLL 25.0 Roof Snow=25.0) "CDL "CDL 12.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 CSI. 1.15 TC 0.81 1.15 BC 0.05 NO WB 0.81	Vert(LL) r Vert(CT) r	n/a -	n/a 999	MT20 197	/144
OADING (psf) "CLL 25.0 Roof Snow=25.0) "CDL "CDL 12.0	SPACING- Plate Grip DOL Lumber DOL	2-0-0 CSI. 1.15 TC 0.81 1.15 BC 0.05 NO WB 0.81	Vert(LL) r Vert(CT) r	n/a - n/a -	n/a 999 n/a 999	MT20 197	
OADING (psf) "CLL 25.0 Roof Snow=25.0) "CDL "CDL 12.0 3CLL 0.0 *	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 CSI. 1.15 TC 0.81 1.15 BC 0.05 NO WB 0.81	Vert(LL) Vert(CT) Horz(CT) 0.	n/a - n/a -	n/a 999 n/a 999	MT20 197	/144
CADING (psf) CLL 25.0 Roof Snow=25.0) CDL CDL 12.0 3CLL 0.0 3CDL 10.0 UMBER- COP CHORD 2x4 SF	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2018/TPI	2-0-0 CSI. 1.15 TC 0.81 1.15 BC 0.05 NO WB 0.81	Vert(LL) r Vert(CT) r Horz(CT) 0.	n/a - n/a - 00 C Structur	n/a 999 n/a 999 n/a n/a al wood sheathing dire	MT20 197	/144 FT = 20%
OADING (psf) CLL 25.0 Roof Snow=25.0) CDL CDL 12.0 GCLL 0.0 * GCDL 10.0 UMBER- OP CHORD 2x4 SF GOT CHORD 2x4 SF	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2018/TPI	2-0-0 CSI. 1.15 TC 0.81 1.15 BC 0.05 NO WB 0.81	Vert(LL) I Vert(CT) I Horz(CT) 0. BRACING- TOP CHORD	n/a - n/a - 00 C Structur except e	n/a 999 n/a 999 n/a n/a al wood sheathing dire	MT20 197 Weight: 33 lb ctly applied or 1-3-4 oc pt	/144 FT = 20%
OADING (psf) CLL 25.0 Roof Snow=25.0) 700 CDL 12.0 GCL 0.0 3CDL 10.0 UMBER- COP CHORD 2x4 SF SOT CHORD 2x4 SF VEBS 2x4 SF	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2018/TPI PF No.2 PF No.2	2-0-0 CSI. 1.15 TC 0.81 1.15 BC 0.05 NO WB 0.81	Vert(LL) Vert(CT) Horz(CT) 0.	n/a - n/a - 00 C Structur except e	n/a 999 n/a 999 n/a n/a al wood sheathing dire ind verticals.	MT20 197 Weight: 33 lb ctly applied or 1-3-4 oc pt	/144 FT = 20%
OADING (psf) CLL 25.0 Roof Snow=25.0) CDL CDL 12.0 3CDL 0.0 * 3CDL 10.0 UMBER- COP CHORD 2x4 SF 3OT CHORD 2x4 SF VEBS 2x4 SF REACTIONS. (siz	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2018/TPI PF No.2 PF No.2 PF No.2 PF No.2 PF No.2 PF No.2	2-0-0 CSI. 1.15 TC 0.81 1.15 BC 0.05 NO WB 0.81 2014 Matrix-P	Vert(LL) I Vert(CT) I Horz(CT) 0. BRACING- TOP CHORD BOT CHORD	n/a - n/a - 00 C Structur except e Rigid ce	n/a 999 n/a 999 n/a n/a al wood sheathing dire ind verticals.	MT20 197 Weight: 33 lb ctly applied or 1-3-4 oc pu	/144 FT = 20%
OADING (psf) CLL 25.0 Roof Snow=25.0) CDL CDL 12.0 GCLL 0.0 * GCDL 10.0 MBER- COP CHORD 2X4 SF SOT CHORD VEBS 2x4 SF REACTIONS. (siz Max L)	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2018/TPI PF No.2 PF No.2	2-0-0 CSI. 1.15 TC 0.81 1.15 BC 0.05 NO WB 0.81 2014 Matrix-P	Vert(LL) I Vert(CT) I Horz(CT) 0. BRACING- TOP CHORD BOT CHORD	n/a - n/a - 00 C Structur except e Rigid ce	n/a 999 n/a 999 n/a n/a al wood sheathing dire ind verticals.	MT20 197 Weight: 33 lb ctly applied or 1-3-4 oc pu	/144 FT = 20%
OADING (psf) CLL 25.0 Roof Snow=25.0) CDL 12.0 CDL 0.0 * CDL 10.0 UMBER- OP CHORD 2x4 SF VEBS 2x4 SF VEBS 2x4 SF REACTIONS. (siz Max U Max C	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2018/TPI PF No.2 PF NO.2	2-0-0 CSI. 1.15 TC 0.81 1.15 BC 0.05 NO WB 0.81 2014 Matrix-P 1(LC 24) (LC 24)	Vert(LL) I Vert(CT) I Horz(CT) 0. BRACING- TOP CHORD BOT CHORD	n/a - n/a - 00 C Structur except e Rigid ce	n/a 999 n/a 999 n/a n/a al wood sheathing dire ind verticals.	MT20 197 Weight: 33 lb ctly applied or 1-3-4 oc pu	/144 FT = 20%
OADING (psf) CLL 25.0 Roof Snow=25.0) CDL CDL 12.0 CDL 0.0 * CDL 10.0 UMBER- OP CHORD 2x4 SF OT CHORD 2x4 SF /EBS 2x4 SF EACTIONS. (siz Max C Max C ORCES. (lb) - Max.	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2018/TPI PF No.2 PF NO.2	2-0-0 CSI. 1.15 TC 0.81 1.15 BC 0.05 NO WB 0.81 2014 Matrix-P	Vert(LL) I Vert(CT) I Horz(CT) 0. BRACING- TOP CHORD BOT CHORD	n/a - n/a - 00 C Structur except e Rigid ce	n/a 999 n/a 999 n/a n/a al wood sheathing dire ind verticals.	MT20 197 Weight: 33 lb ctly applied or 1-3-4 oc pu	/144 FT = 20%

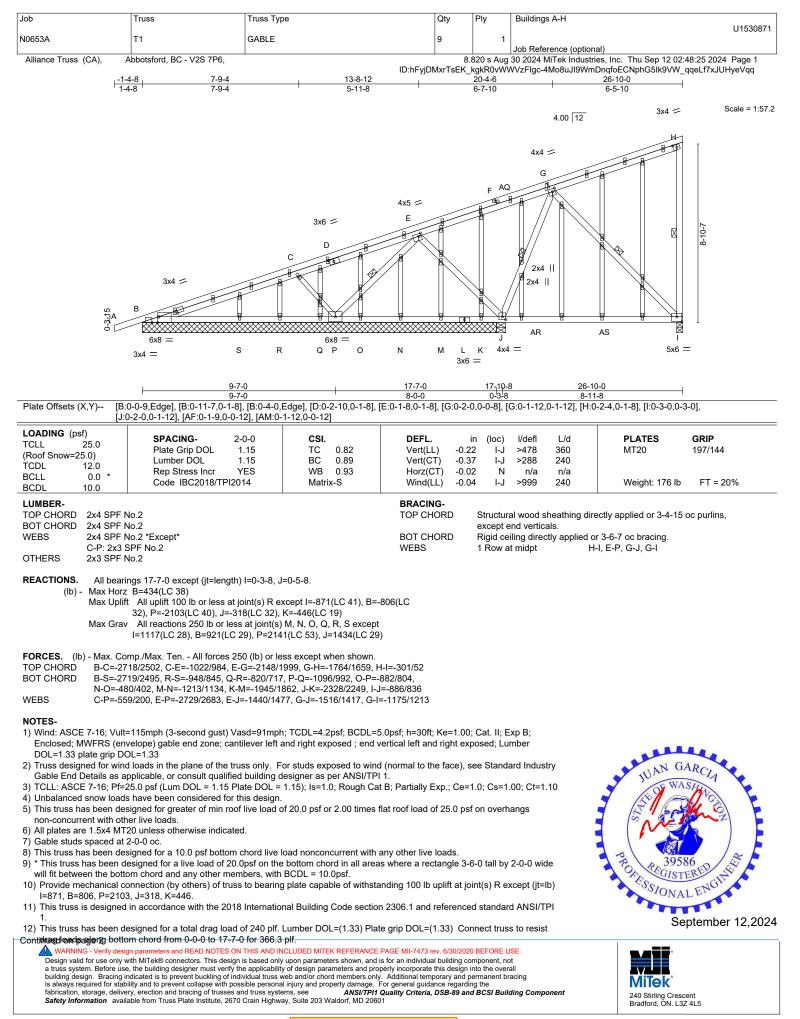
NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; Lumber DOL=1.33 plate grip DOL=1.33
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Provide adequate drainage to prevent water ponding.

5) Gable requires continuous bottom chord bearing.

6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

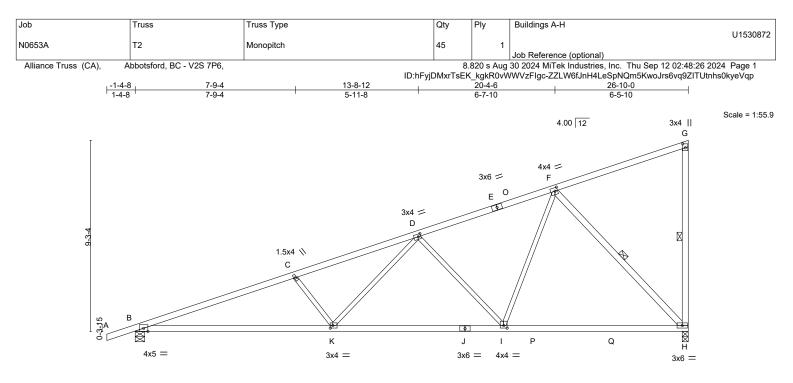
7) Gable studs spaced at 2-0-0 oc.


- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) D=2151, C=2151.
- 11) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 12) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 1-3-4 for 240.0 plf.

MiTek 240 Stirling Crescent Bradford, ON. L3Z 4L5

September 12,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to use only with with with exercising is based only upon parameters shown, and is to an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Job	Truss	Truss Type	Qty	Ply	Buildings A-H
					U1530871
N0653A	T1	GABLE	9	1	
					Job Reference (optional)
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,		8.	820 s Aug	30 2024 MiTek Industries, Inc. Thu Sep 12 02:48:26 2024 Page 2
		ID:hFyj[MxrTsEK	kgkR0vŴ	WVzFlgc-ZZLW6fJnH4LeSpNQm5KwoJruvvrDZHuUtnhs0kyeVqp

NOTES-

13) No notches allowed in overhang and 10408 from left end and 0 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y) [D	9-7-0 9-7-0 :0-1-8,0-1-8], [F:0-1-8,0-2-0], [G:0-2-4,0	 -1-8], [I:0-2-0,0-1-8], [K:	<u>17-10-8</u> 8-3-8 0-1-8,0-1-8]			26-10 8-11		1
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL TCDL 12.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.94 BC 0.95 WB 0.89 Matrix-MS	Horz(CT) 0.	in (loc) .31 H-I .55 K-N .07 H .13 K-N	l/defl >999 >587 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 103 lb	GRIP 197/144 FT = 20%

LUMBER-		BRACING-		
TOP CHORD	2x4 SPF No.2	TOP CHORD	Structural wood sheathing of	directly applied, except end verticals.
BOT CHORD	2x4 SPF No.2 *Except*	BOT CHORD	Rigid ceiling directly applied	l or 2-2-0 oc bracing.
	B-J: 2x4 SPF 2100F 1.8E	WEBS	1 Row at midpt	G-H, F-H
WEBS	2x3 SPF No.2 *Except*			
	G-H,F-H: 2x4 SPF No.2			
REACTIONS.	(size) H=0-3-8, B=0-5-8			

Max Horz B=301(LC 9) Max Uplift H=-180(LC 10), B=-182(LC 6) Max Grav H=1537(LC 3), B=1425(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD B-C=-3139/325, C-D=-2876/291, D-F=-1586/171, G-H=-296/51

- BOT CHORD B-K=-394/2941, I-K=-249/2033, H-I=-112/1082
- WEBS C-K=-534/165, D-K=-71/947, D-I=-914/199, F-I=-64/1078, F-H=-1568/234

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.

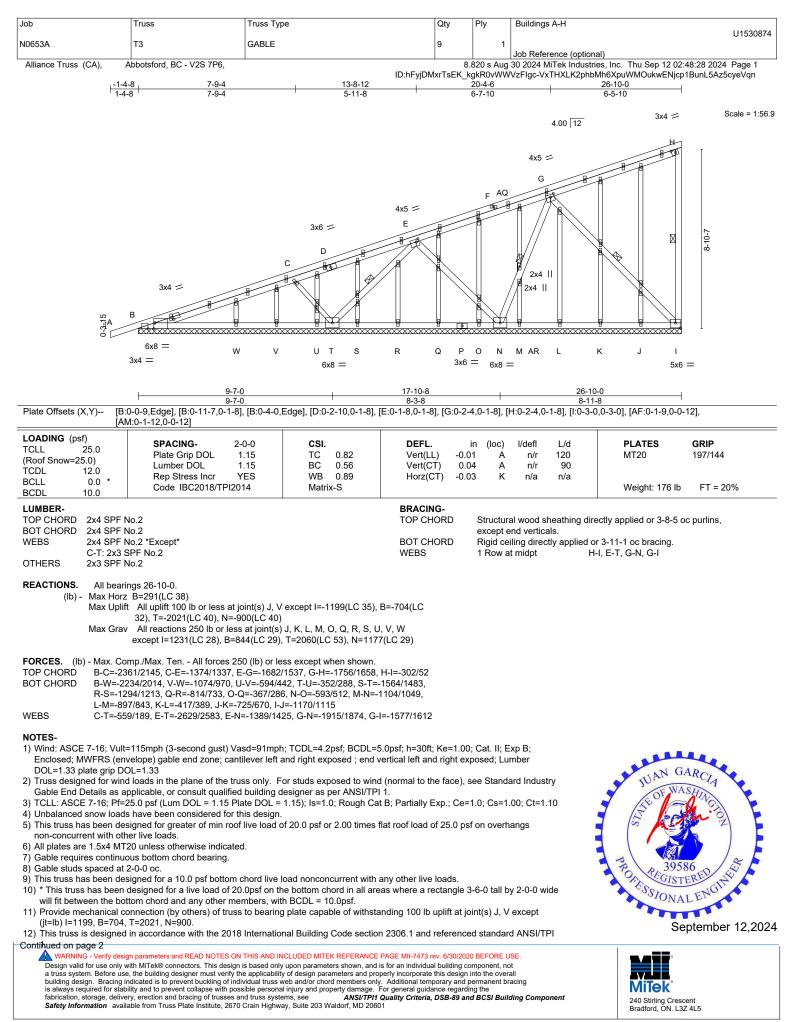
5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) H=180, B=182.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

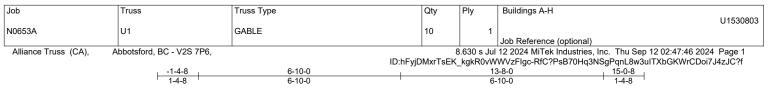

240 Stirling Crescent Bradford, ON. L3Z 4L5

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

PRMU20240280 BLDG G

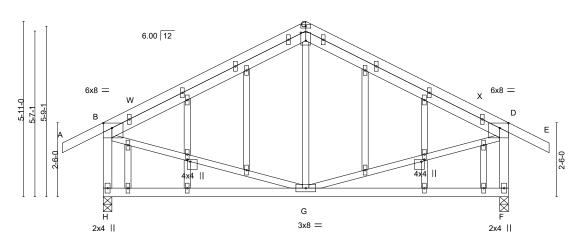
MiTek 240 Stirling Crescent Bradford, ON. L3Z 4L5

Job	Truss	Truss Type	Qty	Ply	Buildings A-H
					U1530874
N0653A	T3	GABLE	9	1	
					Job Reference (optional)
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,		8.	820 s Aug	30 2024 MiTek Industries, Inc. Thu Sep 12 02:48:29 2024 Page 2
		ID:hFy	jDMxrTsEl	<_kgkR0vV	VWVzFlgc-z71fkhLga?jDJG5?RDudQxTP77y2me8xZlvXd3yeVqm


NOTES-

13) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 26-10-0 for 240.0 plf.

14) No notches allowed in overhang and 10408 from left end and 0 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Scale = 1:38.9

	1		6-10-0	I.	13-8-0		1		
	Γ		6-10-0	- I	6-10-0				
Plate Offsets (X,Y) [B:	0-3-8,0-2-0], [C:0-3-4,	0-2-0], [D:0-3-8,0	-2-0], [K:0-0-13,0-1-4], [T:0-0-13,0-1-4]					
LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc) l/defl	L/d	PLATES	GRIP	

TCLL 2	5.0	SPACING-	2-0-0	CSI.		DEFL.	in	· · /	l/defl	L/d	PLATES	GRIP
(Roof Snow=25.	· ·	Plate Grip DOL Lumber DOL	1.15 1.15	TC BC	0.81 0.33	Vert(LL) Vert(CT)	-0.04 -0.09		>999 >999	360 240	MT20	197/144
	2.0 0.0 *	Rep Stress Incr	YES	WB	0.14	Horz(CT)	0.00		n/a	n/a		
	0.0	Code IBC2018/TF	912014	Matr	ix-MS	Wind(LL)	0.00	G	>999	240	Weight: 86 lb	FT = 20%
LUMBER-						BRACING-						
TOP CHORD	2x4 SPF N	lo.2				TOP CHOR	D S	Structura	al wood s	sheathing dire	ectly applied or 3-11-6	oc purlins,
BOT CHORD	2x4 SPF N	lo.2					6	except e	end vertic	als.		
WEBS 2	2x3 SPF N	lo.2 *Except*				BOT CHORI) I	Rigid ce	iling dire	ctly applied o	r 10-0-0 oc bracing.	
I	B-H,D-F: 2	2x4 SPF No.2										
OTHERS 2	2x3 SPF N	lo.2										

REACTIONS. (size) H=0-3-8, F=0-3-8 Max Horz H=-95(LC 8) Max Uplift H=-77(LC 10), F=-77(LC 11) Max Grav H=836(LC 17), F=836(LC 18)

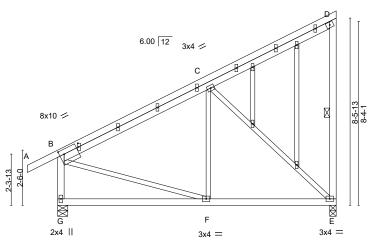
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

B-C=-643/66, C-D=-643/66, B-H=-771/103, D-F=-771/103 TOP CHORD

WEBS B-G=0/413, D-G=0/413

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 18.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs
- non-concurrent with other live loads.
- 6) All plates are 1.5x4 MT20 unless otherwise indicated.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) H, F.
- 11) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 12) No notches allowed in overhang and 10408 from left end and 10408 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.


GARCIA JUAN POPESSIONAL ENGINE Anna AL ENGINY

> MiTek 240 Stirling Crescent Bradford, ON. L3Z 4L5

September 12,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

12-7-8

6-10-0

	F	6-10-0	1	5-9				
Plate Offsets (X,Y) [B:0	-2-8,0-2-8], [B:0-2-0,0-0-7]							
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL 12.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2018/TPI2014	CSI. TC 0.63 BC 0.33 WB 0.92 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.10 F 0.01	bc) l/defl -G >999 -G >999 E n/a E-F >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 82 lb	GRIP 197/144 FT = 20%
D-E,B-G: 2 OTHERS 2x3 SPF N REACTIONS. (size) Max Horz Max Uplift	o.2 o.2 *Except* x4 SPF No.2		BRACING- TOP CHORE BOT CHORE WEBS	exce D Rigi	ept end vertic	als.	ctly applied or 6-0-0 6-0-0 oc bracing. E	oc purlins,
TOP CHORD B-C=-621 BOT CHORD E-F=-101	np./Max. Ten All forces 250 (lb) or le //41, D-E=-262/51, B-G=-685/95 /474 //138, B-F=0/431	ss except when shown.						
Enclosed; MWFRS (env DOL=1.33 plate grip DO 2) Truss designed for wind Gable End Details as ap 3) TCLL: ASCE 7-16; Pf=2:	115mph (3-second gust) Vasd=91mph elope) gable end zone; cantilever left a L=1.33 loads in the plane of the truss only. F plicable, or consult qualified building d 5.0 psf (Lum DOL=1.15 Plate DOL=1. have been considered for this design.	or studs exposed ; end ve or studs exposed to wind esigner as per ANSI/TPI 15); Is=1.0; Rough Cat B;	rtical left and rig (normal to the fa	ht exposed ce), see St	; Lumber andard Indus			

5) This truss has been designed for greater of min roof live load of 18.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.

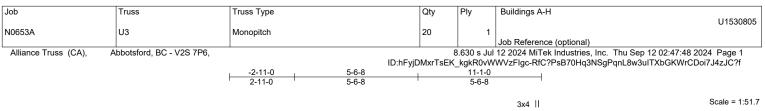
6) All plates are 1.5x4 MT20 unless otherwise indicated.

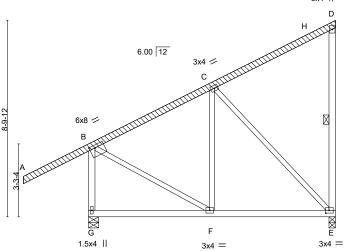
7) Gable studs spaced at 2-0-0 oc.

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

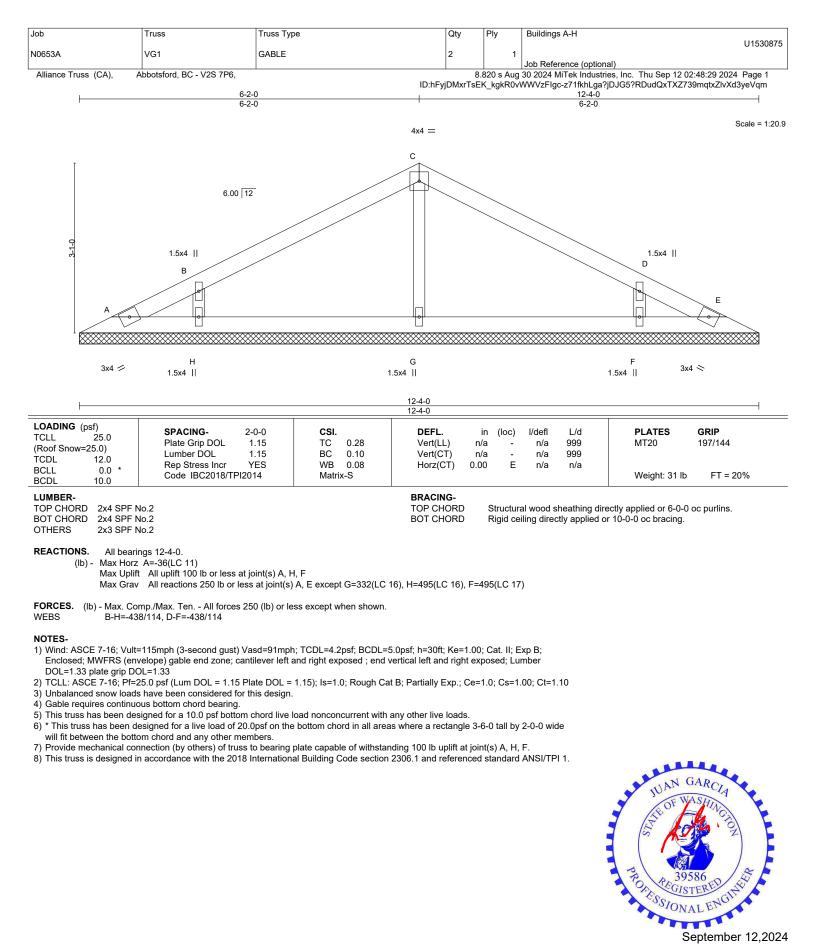
10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) G except (jt=lb) E=107.


11) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

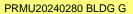

12) No notches allowed in overhang and 10408 from left end and 0 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

NUAN GARCIA NUAN GARCIA BURNASSANDA BURNAS

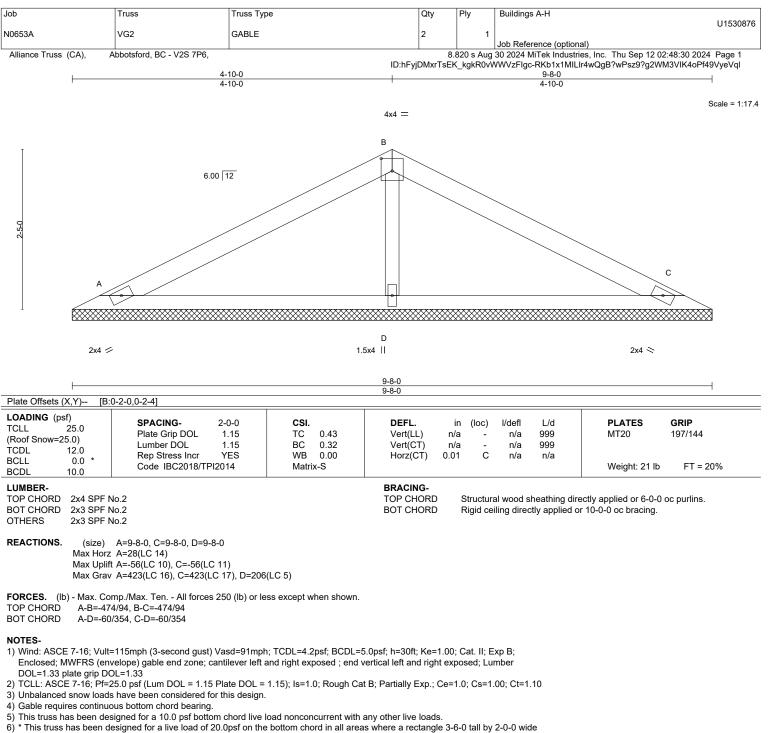

		5-6-8 5-6-8		<u>11-1-0</u> 5-6-8			
Plate Offsets (X,Y) [B:0	0-3-0,0-1-8], [E:0-1-12,0-1-8]						
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL 12.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2018/TPI2014	CSI. TC 0.63 BC 0.25 WB 0.67 Matrix-MS	Vert(CT) - Horz(CT) -	0.02 E-É >9 0.04 E-F >9	99 240 n/a n/a	PLATES MT20 Weight: 77 lb	GRIP 197/144 FT = 20%
D-E,B-G: 2 OTHERS 2x4 SPF N	lo.2 lo.2 *Except* 2x4 SPF No.2		BRACING- TOP CHORD BOT CHORD WEBS	except end v	verticals. directly applied o	ectly applied or 6-0-0 r 6-0-0 oc bracing. -E	oc purlins,
Max Horz Max Uplift	G=0-5-8, E=0-3-8 G=274(LC 7) G=-83(LC 10), E=-103(LC 7) G=817(LC 17), E=629(LC 17)						
TOP CHORD B-C=-43 BOT CHORD F-G=-25	mp./Max. Ten All forces 250 (lb) or le 9/35, D-E=-260/51, B-G=-772/107 6/88, E-F=-114/311 3/116, B-F=0/379	ss except when shown.					
 2-5-1 from end at joint A starting at 13-5-14 from 2) Wind: ASCE 7-16; Vult= Enclosed; MWFRS (env DOL=1.33 plate grip DC 3) TCLL: ASCE 7-16; Pf=2 4) Unbalanced snow loads 5) This truss has been des non-concurrent with oth 6) This truss has been desen d	25.0 psf (Lum DOL=1.15 Plate DOL=1. a have been considered for this design. signed for greater of min roof live load o	ing at 8-5-8 from end at jo or 2-0-0. i; TCDL=4.2psf; BCDL=5.1 and right exposed ; end ve 15); Is=1.0; Rough Cat B; of 18.0 psf or 2.00 times fla oad nonconcurrent with at	int A, nail 1 row(s) Opsf; h=30ft; Ke=1 rrtical left and right Partially Exp.; Ce= at roof load of 25.0 ny other live loads.	at 7" o.c. for 2-0- 00; Cat. II; Exp E exposed; Lumbe 1.0; Cs=1.00; Ct psf on overhang:	0; 3; r =1.10 s	JUAN C	GARCIA ASHING

- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) G except (jt=lb)
- (b) Provide mechanical connection (by others) or truss to bearing plate capable of withstanding 100 ib uplift at joint(s) G except (t=b) E=103.
- 9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.



240 Stirling Crescent Bradford, ON. L3Z 4L5

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

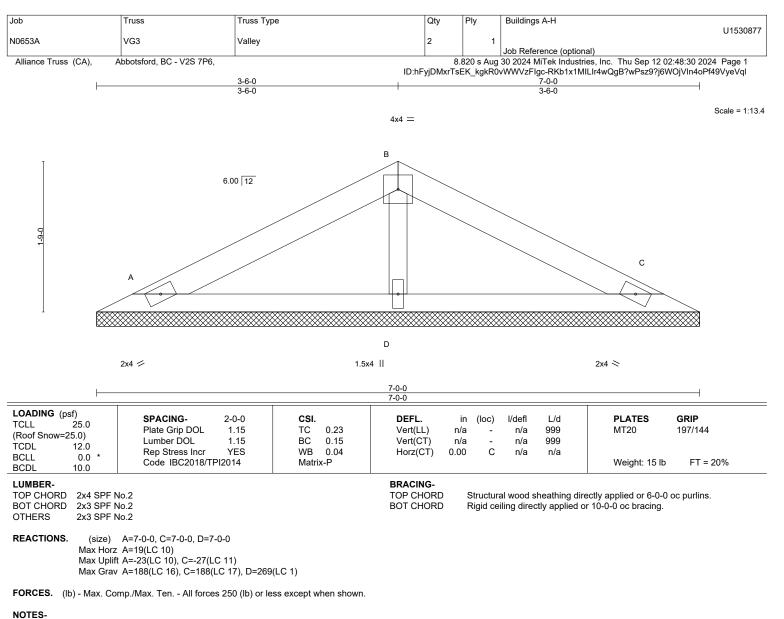


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to use only with with with exercising is based only upon parameters shown, and is to an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek 240 Stirling Crescent Bradford, ON. L3Z 4L5

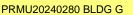
September 12,2024

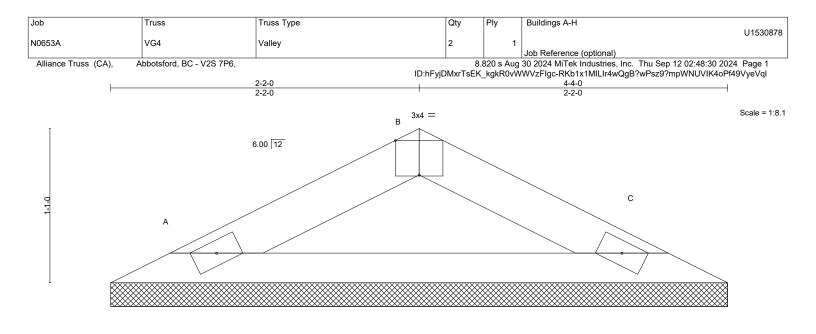
will fit between the bottom chord and any other members.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A, C.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

240 Stirling Crescent Bradford, ON. L3Z 4L5


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A, C.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

240 Stirling Crescent Bradford, ON. L3Z 4L5

2x4 ⋍

2x4 📚

Rigid ceiling directly applied or 10-0-0 oc bracing.

Plate Offsets (X,Y) [B:0	-2-0,Edge]		4-4-0			· · · ·
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) 12.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.06 BC 0.23 WB 0.00	DEFL. in Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	(loc) l/defl - n/a - n/a C n/a	L/d 999 999 n/a	PLATES GRIP MT20 197/144
BCLL 0.0 * BCDL 10.0	Code IBC2018/TPI2014	Matrix-P		0 1.04		Weight: 8 lb FT = 20%

BOT CHORD

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x3 SPF No.2

REACTIONS. (size) A=4-4-0, C=4-4-0

Max Horz A=11(LC 10) Max Uplift A=-13(LC 10), C=-13(LC 11)

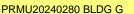
Max Grav A=166(LC 16), C=166(LC 17)

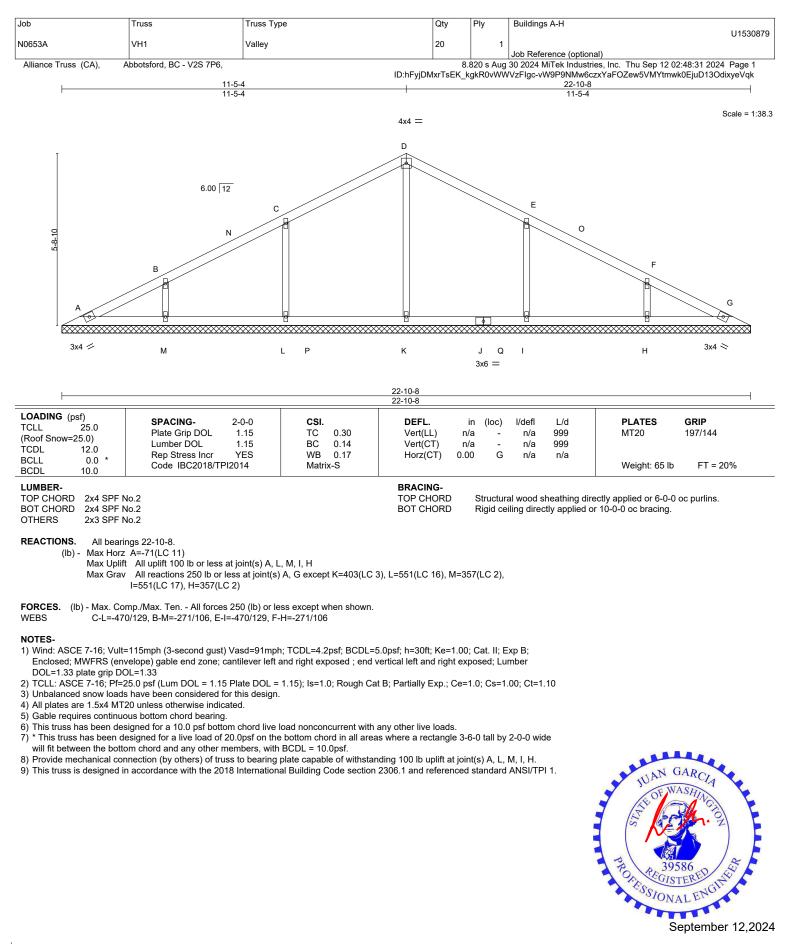
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

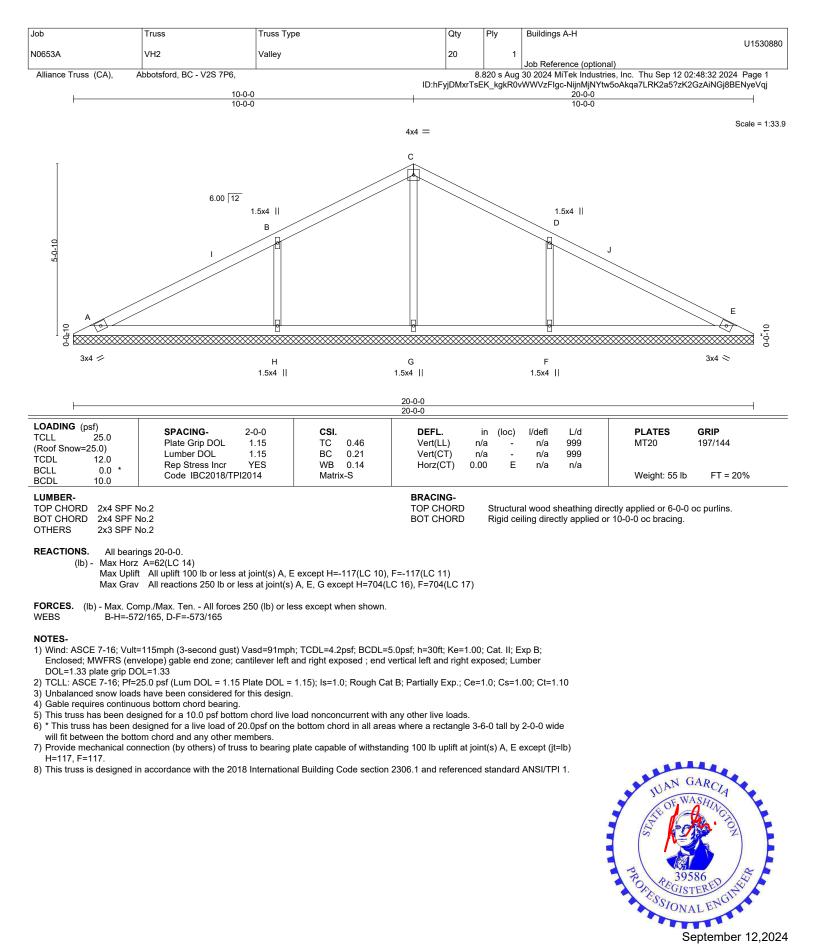
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.

4) Gable requires continuous bottom chord bearing.

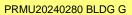

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

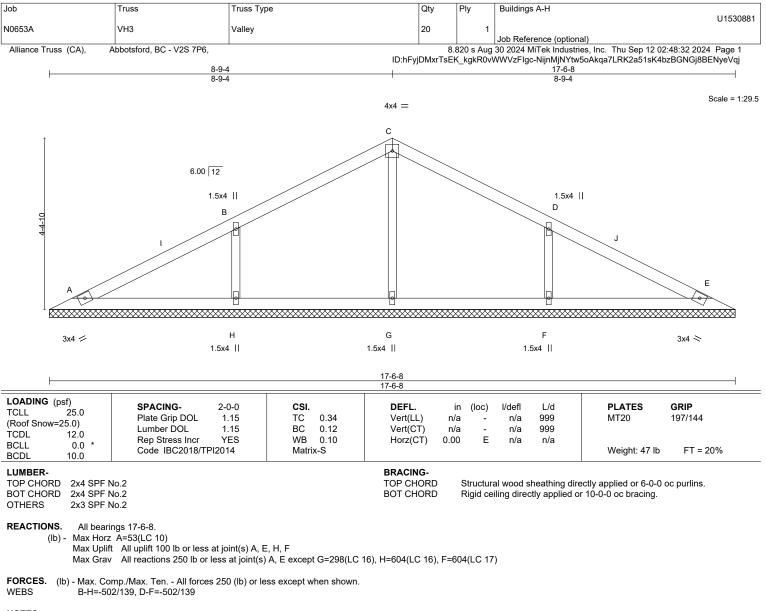
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A, C.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.



240 Stirling Crescent Bradford, ON. L3Z 4L5



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to use only with with with exercising is based only upon parameters shown, and is to an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 MiTek 240 Stirling Crescent Bradford, ON. L3Z 4L5



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek 240 Stirling Crescent Bradford, ON. L3Z 4L5

September 12,2024

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B;

Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber

DOL=1.33 plate grip DOL=1.33

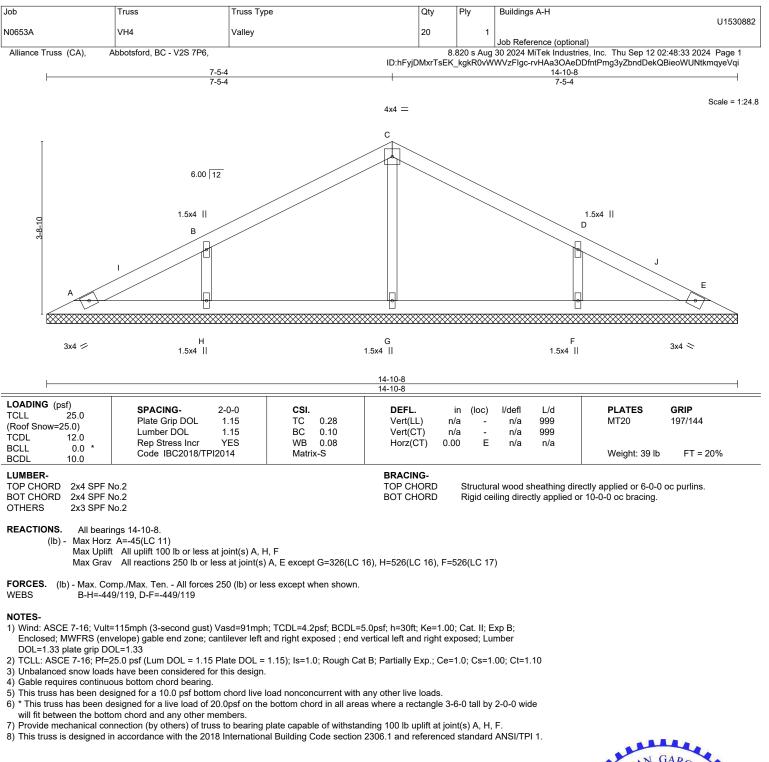
2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) Gable requires continuous bottom chord bearing.

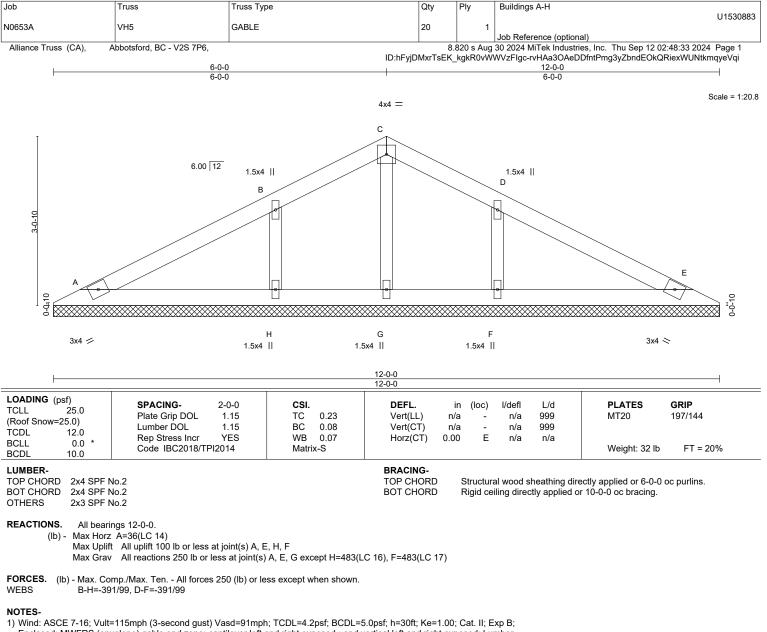
5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A, E, H, F.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



MiTek 240 Stirling Crescent Bradford, ON. L3Z 4L5

September 12,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to use only with with with exercising is based only upon parameters shown, and is to an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber

DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

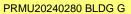
4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

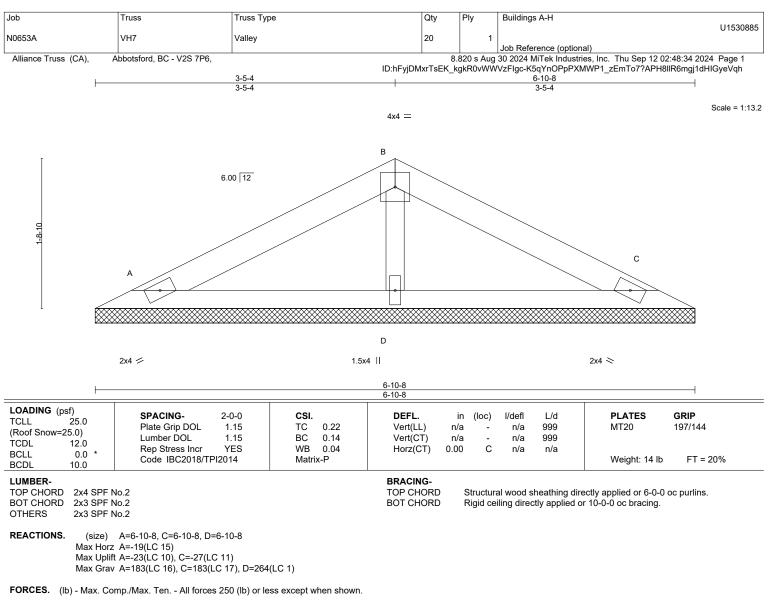
6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A, E, H, F.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.



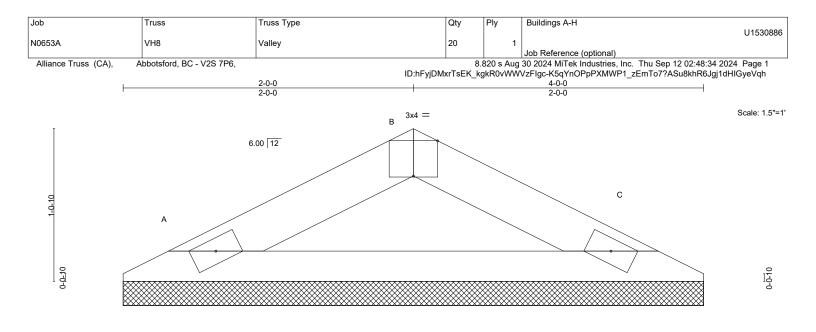
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to use only with with with exercising is based only upon parameters shown, and is to an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek 240 Stirling Crescent Bradford, ON. L3Z 4L5

September 12,2024


NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A, C.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

240 Stirling Crescent Bradford, ON. L3Z 4L5

2x4 ⋍

2x4 📚

Rigid ceiling directly applied or 10-0-0 oc bracing.

			4-0-0 4-0-0	I
Plate Offsets (X,Y) [B	:0-2-0,Edge]			
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) 7CDL TCDL 12.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2018/TPI2014	CSI. TC 0.05 BC 0.21 WB 0.00 Matrix-P	DEFL. in (loc) l/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) 0.00 C n/a n/a	PLATES GRIP MT20 197/144 Weight: 8 lb FT = 20%
LUMBER- TOP CHORD 2x4 SPF	No.2		BRACING- TOP CHORD Structural wood sheathing d	irectly applied or 4-2-8 oc purlins.

BOT CHORD

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x3 SPF No.2

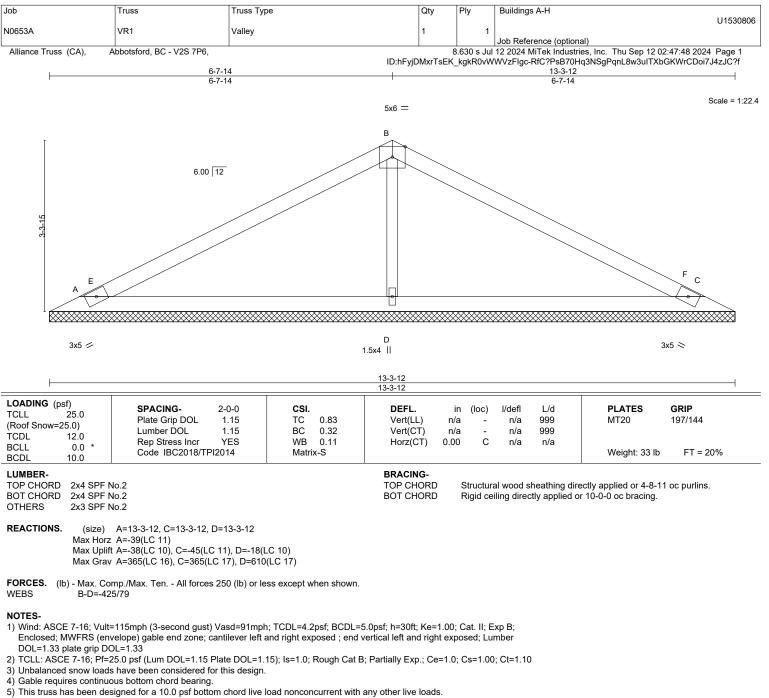
REACTIONS. (size) A=4-0-0, C=4-0-0

Max Horz A=-10(LC 15) Max Uplift A=-12(LC 10), C=-12(LC 11)

Max Grav A=159(LC 16), C=159(LC 17)

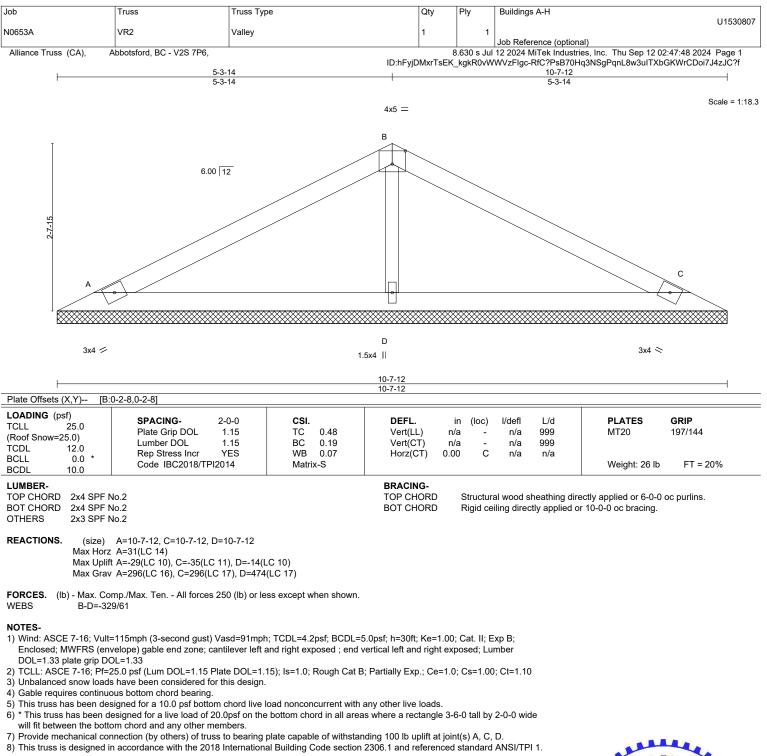
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-


- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.

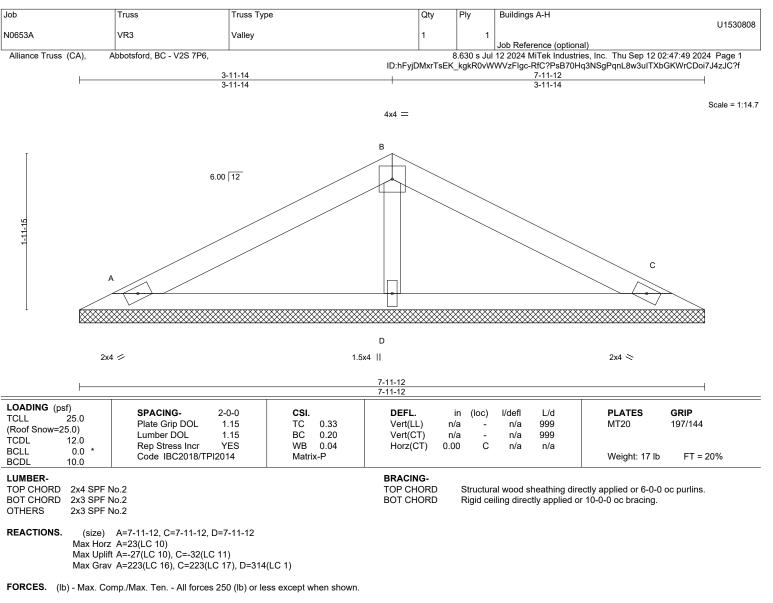
Gable requires continuous bottom chord bearing.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A, C.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.


6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

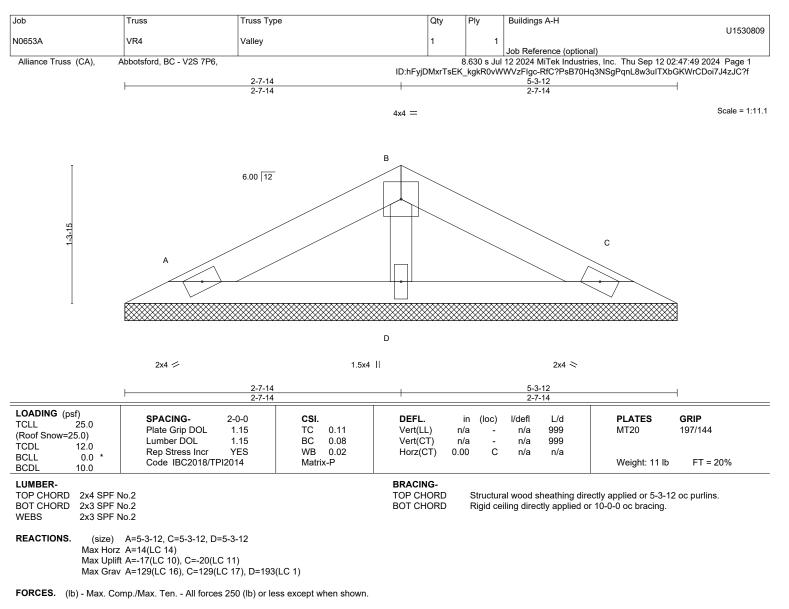
7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A, C, D.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.



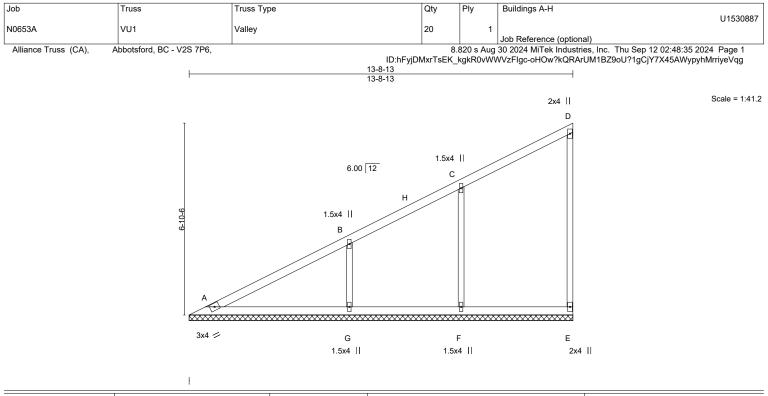
September 12,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to use only with with with exercising is based only upon parameters shown, and is to an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A, C.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.



NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A, C.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL TCDL 12.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIBC2018/TPI2014	CSI. TC 0.34 BC 0.20 WB 0.23 Matrix-S	(/ /	in (loc) l/defl n/a - n/a n/a - n/a 00 E n/a	999	PLATES MT20 Weight: 43 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 SPF N BOT CHORD 2x4 SPF N			BRACING- TOP CHORD	Structural wood except end vert	0	ectly applied or 6-0-0	oc purlins,

 BOT CHORD
 2x4 SPF No.2
 except end verticals.

 WEBS
 2x3 SPF No.2
 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

 OTHERS
 2x3 SPF No.2
 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 13-8-13.

(lb) - Max Horz A=201(LC 7)

Max Uplift All uplift 100 lb or less at joint(s) E, F except G=-103(LC 10) Max Grav All reactions 250 lb or less at joint(s) A, E except F=528(LC 3), G=509(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

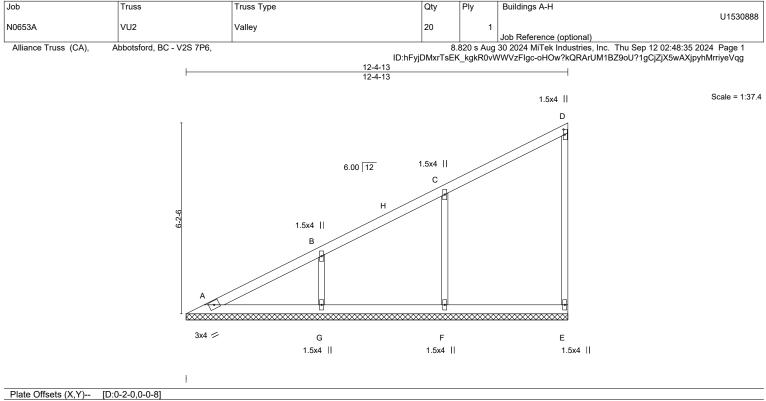
WEBS C-F=-446/107, B-G=-381/150

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) E, F except (jt=lb) G=103.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

REACTIONS. All bearings 12-4-13.

(lb) - Max Horz A=180(LC 7)

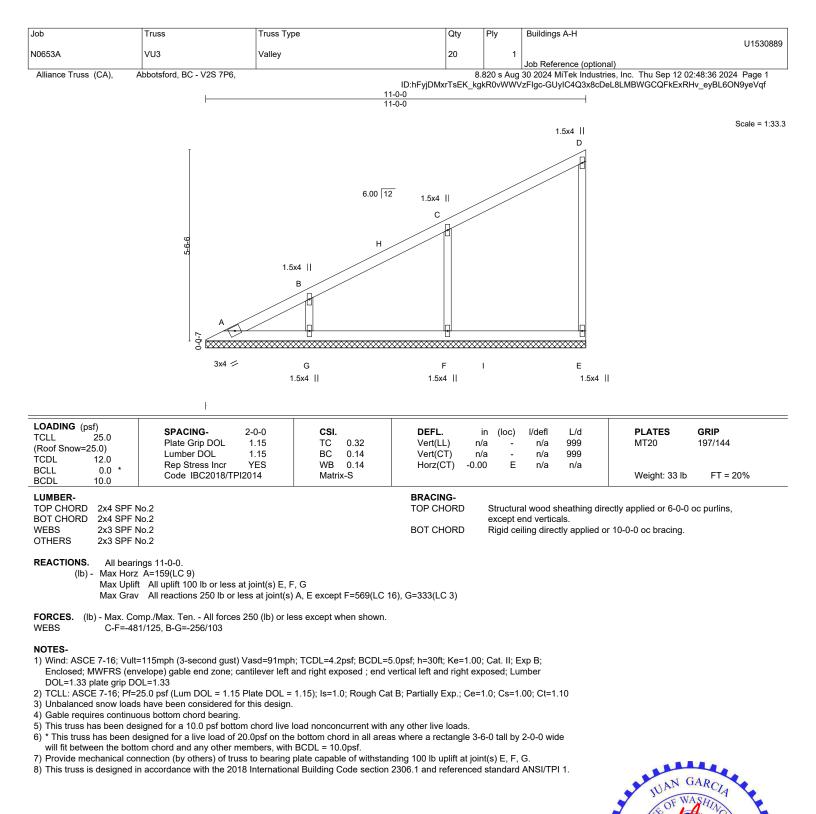
Max Uplift All uplift 100 lb or less at joint(s) E, F, G

Max Grav All reactions 250 lb or less at joint(s) A, E except F=562(LC 3), G=409(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

C-F=-469/118, B-G=-310/123

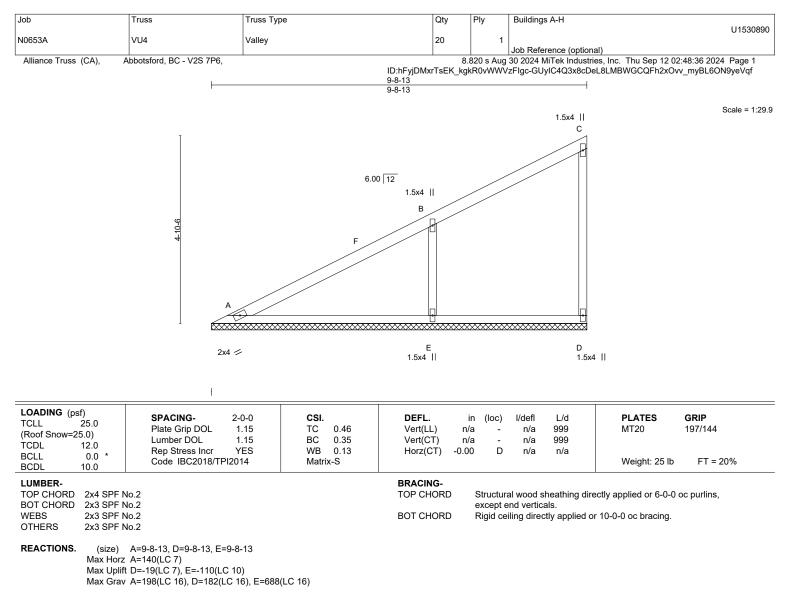
WEBS


- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

4) Gable requires continuous bottom chord bearing.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) E, F, G.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to use only with with with exercising is based only upon parameters shown, and is to an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



POREGISTERED REGISTERED

St

September 12,2024

à

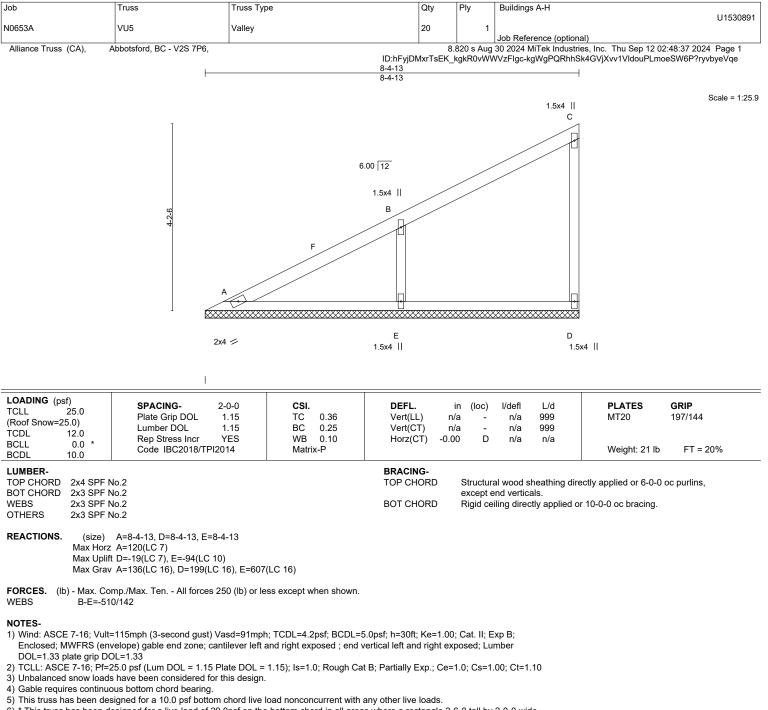
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS B-E=-571/157

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

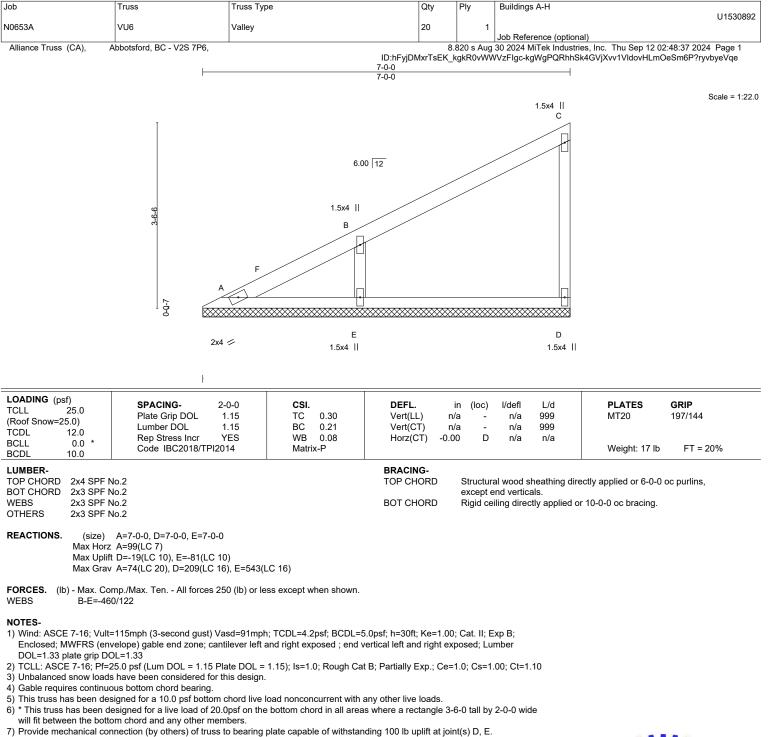
4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

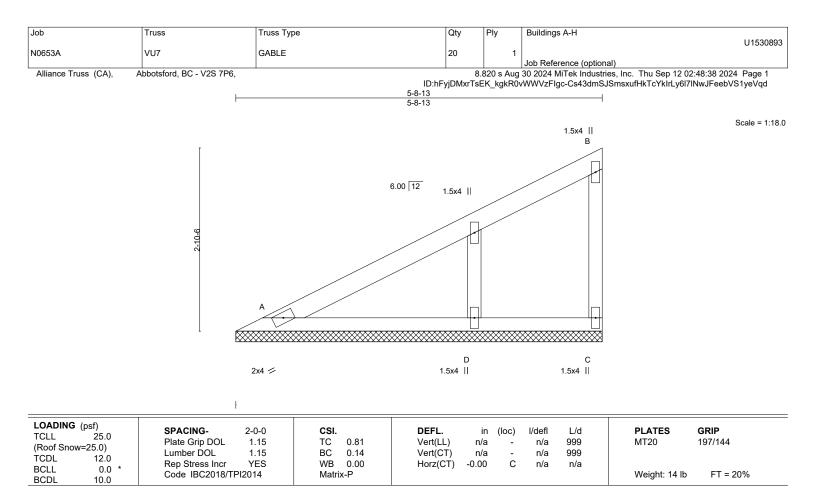
7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) D except (jt=lb) E=110.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.



6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) D, E.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.



8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 Milek°

240 Stirling Crescent Bradford, ON. L3Z 4L5

BRACING-

TOP CHORD

BOT CHORD

N	O.	TF	- 5

TOP CHORD

LUMBER-

WFBS

OTHERS REACTIONS.

TOP CHORD

BOT CHORD

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

(size) A=5-8-13, C=5-8-13, D=5-8-13

Max Grav A=311(LC 16), C=294(LC 16), D=134(LC 5) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Max Uplift A=-33(LC 10), C=-61(LC 10)

4) Gable requires continuous bottom chord bearing.

2x4 SPF No.2

2x3 SPF No.2

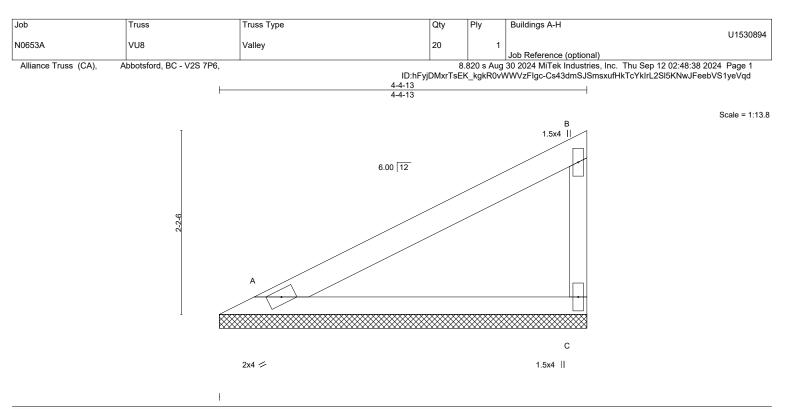
2x3 SPE No 2

2x3 SPE No 2

B-C=-286/65

Max Horz A=79(LC 9)

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A, C.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.



Structural wood sheathing directly applied or 5-8-13 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals

LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL 12.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2018/TPI2014	CSI. TC 0.40 BC 0.29 WB 0.00 Matrix-P	Vert(LL) n	in (loc) /a - /a - 00 C	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES GRIP MT20 197/144 Weight: 10 lb FT = 20%
LUMBER- TOP CHORD 2x4 SPF N	0.2		BRACING- TOP CHORD	Structur	al wood s	sheathing dir	ectly applied or 4-4-13 oc purlins,

BOT CHORD

except end verticals

Rigid ceiling directly applied or 10-0-0 oc bracing.

BOT CHORD 2x4 SPF No.2 BOT CHORD 2x3 SPF No.2 WEBS 2x3 SPF No.2

REACTIONS. (size) A=4-4-13, C=4-4-13

Max Horz A=58(LC 9)

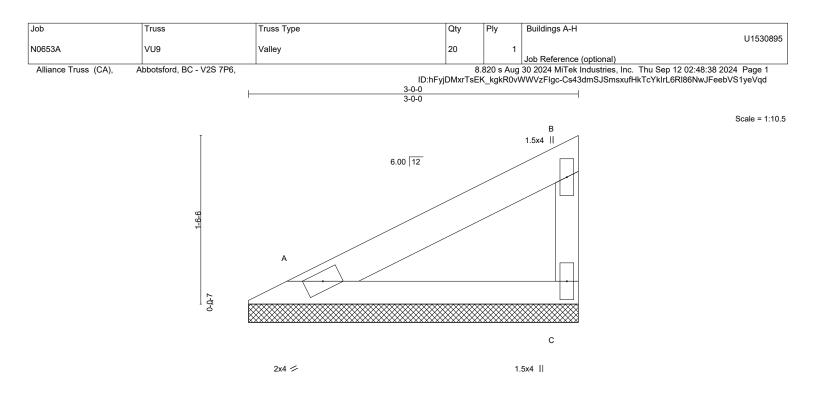
Max Uplift A=-15(LC 10), C=-29(LC 10) Max Grav A=239(LC 16), C=239(LC 16)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

4) Gable requires continuous bottom chord bearing.


5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A, C.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

	1		
004.0010			
SPACING-	2-0-0	CSI.	DEFL.
Plate Grip DOL	1.15	TC 0.15	Vert(LL
Lumber DOI	1 15	BC 0.11	Vert(C

TCLL 25.0 (Roof Snow=25.0) 12.0 TCDL 12.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.15 BC 0.11 WB 0.00 Matrix-P	()	in (loc) n/a - n/a - 00 C	n/a	L/d 999 999 n/a	PLATES MT20 Weight: 7 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 SPF BOT CHORD 2x3 SPF			BRACING- TOP CHORD		al wood she end verticals		tly applied or 3-0-1	13 oc purlins,

BOT CHORD

in (loc)

l/defl

I/d

Rigid ceiling directly applied or 10-0-0 oc bracing.

2x3 SPF No.2 WEBS

LOADING (psf)

REACTIONS. (size) A=3-0-0, C=3-0-0

Max Horz A=37(LC 7)

Max Uplift A=-10(LC 10), C=-19(LC 10) Max Grav A=147(LC 16), C=147(LC 16)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

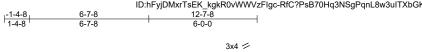
- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

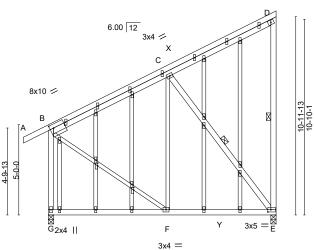
6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A, C.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.


PLATES

GRIP

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to use only with with with exercising is based only upon parameters shown, and is to an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

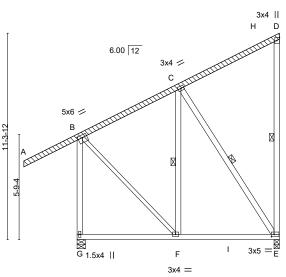

Job	Truss	Truss Type	Qty	Ply	Buildings A-H
N0653A	W1	GABLE	10	1	U1530810
					Job Reference (optional)
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,		3	3.630 s Jul	12 2024 MiTek Industries, Inc. Thu Sep 12 02:47:50 2024 Page 1
			ID:hFyjDMxrTsEK_	_kgkR0vW	WVzFlgc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

12-7-8

Scale: 3/16"=1'

V MiTek 240 Stirling Crescent Bradford, ON. L3Z 4L5

6-7-8


		6-7-8	6-0-0
Plate Offsets (X,Y)	[B:0-2-0,0-0-7], [B:0-2-8,0-2-8], [E:0-2-0,0-1-8], [P:	0-1-13,0-0-0], [Q:0-2-0	,0-0-8], [S:0-1-13,0-0-0]

F

LOADING (orbit) (Roof Sow=25.0) (Roof Sow=25.0)
TOP CHORD 2x4 SPF No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purdins. WEBS 2x4 SPF No.2 BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. OT HERS 2x4 SPF No.2 BOT CHORD WEBS TOP CHORD Net not Co-20 oc bracing. OTHERS 2x3 SPF No.2 BOT CHORD WEBS 1 Row at midpt D-E, C-E REACTIONS. (size) Gr-0-38, E=0-3-8 WEBS Secondary Secondary D-E, C-E REACTIONS. (size) Gr-0-36, E=0-3-8 WEBS Secondary Secondary D-E, C-E REACTIONS. (size) Gr-0-36, E=0-3-8 WEBS Secondary Secondary D-E, C-E FORCES. (b) Max road Gr-33(LC T) Max Hozd Gr-34(LC 21), E=741(LC 3) Secondary Seco
Max Horz G=323(L C 7) Max Core 754(L C 21), E=741(L C 7) Max Grav G=754(L C 21), E=741(L C 3) FORCES. ((b) - Max. Comp./Max. Ten All forces 250 ((b) or less except when shown. TOP CHORD B-C=469/36, D-E=273/56, B-G=669/88 BOT CHORD F-G=299/136, E-F=-7140/347 WEBS C-E=-544/134, B-F=-140/347 NOTES- 1) Wint: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30f; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; i end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1. 3) TCLL: ASCE 7-16; PI=25.0 psf (Lum DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Unbalanced now loads have been considered for this design. 5) This truss has been designed for grater of min roof live load of 18.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads. 6) All plates are 1.5x4 MT2 Unless otherwise indicated. 7) Gable studs spaced at 2-0-0 oc. 8) This truss has been designed for a live load of 18.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 1 0.0psf. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) G except (I(=lb)) E=141. 11) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1. 12) No notches allowed in overhang and 10408 from left end and 0 from right end or 12° along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 oc. maximum between
 TOP CHORD B-C=-469/36, D-E=-273/56, B-G=-689/88 BOT CHORD F-G=-299/136, E-F=-140/347 WEBS C-E=-544/134, B-F=-19/443 NOTES Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANS/TP1 1. TCLL: ASCE 7-16; PT=25.0 psf (Lum DOL=-1.15 Pilate DOL=-1.15); Is=-1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live load of 18.0 psf or 2.00 times flat roof load of 25.0 psf (un overhangs non-concurrent with other live loads. All paletes are 1.5x4 MT20 unless otherwise indicated. Gable studs spaced at 2-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will flit between the bottom chord and any other members, with BCDL = 1.0. Opsf. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) G except (iE=lb) E=141. No notches allowed in overhang and 10408 from left end and 0 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 oc. maximum between the stacking chords. For edge-wise notching, provide at least
 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for greater of min roof live load of 18.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads. 6) All plates are 1.5x4 MT20 unless otherwise indicated. 7) Gable studs spaced at 2-0-0 oc. 8) This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) G except (jt=lb) E=141. 11) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1. 12) No notches allowed in overhang and 10408 from left end and 0 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least
September 12,202

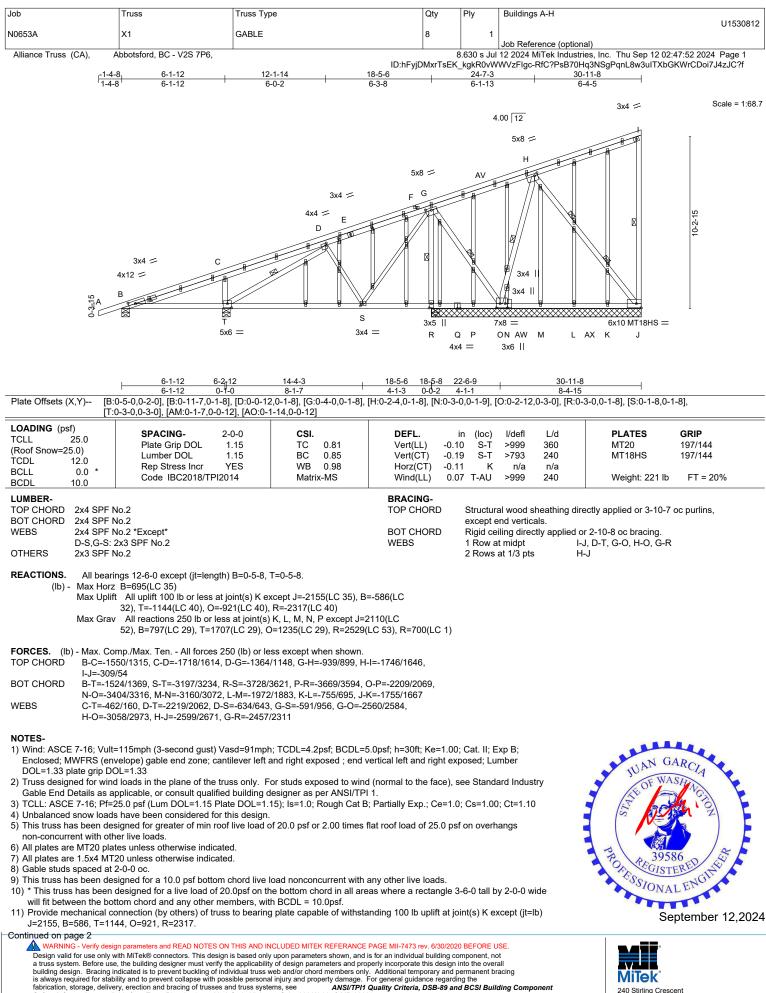
Design valid for use only with MITeK connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type			Qty	Ply	Buildings A-H
							U1530811
N0653A	W2	Monopitch			20	1	
							Job Reference (optional)
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,					630 s Jul	12 2024 MiTek Industries, Inc. Thu Sep 12 02:47:51 2024 Page 1
				ID:hFyjl	DMxrTsEK	_kgkR0vW	/WVzFlgc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f
		-2-11-0	5-6-8	1	11	-1-0	
		2-11-0	5-6-8	1	5-	6-8	

5-6-8	11-1-0
5-6-8	5-6-8

Plate Offsets (X,Y) [B:	0-3-0,0-1-12], [D:Edge,0-1-12], [E:0-1-	12,0-1-8]		5-0-0				
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL 12.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.63 BC 0.29 WB 0.18 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.06 E -0.00	oc) l/defl E-F >999 E-F >999 E n/a E-F >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 93 lb	GRIP 197/144 FT = 20%
B-F: 2x3 S OTHERS 2x4 SPF N LBR SCAB A-D 2x4 S	No.2 No.2 *Except* SPF No.2		BRACING- TOP CHORI BOT CHORI WEBS	exce D Rigio	ept end vertica	als. tly applied or	ectly applied or 6-0-0 r 6-0-0 oc bracing. E, C-F, C-E	oc purlins,
Max Horz Max Uplift Max Grav FORCES. (Ib) - Max. Col TOP CHORD B-C=-35 BOT CHORD F-G=-32	G=345(LC 7) t G=-79(LC 10), E=-175(LC 7) · G=817(LC 17), E=637(LC 3) mp./Max. Ten All forces 250 (lb) or le 6/37, D-E=-261/53, B-G=-774/103 2/137, E-F=-153/251 8/155, B-F=-19/412	iss except when shown.						
 2-5-1 from end at joint A starting at 13-5-14 from 2) Wind: ASCE 7-16; Vult= Enclosed; MWFRS (env DOL=1.33 plate grip DC 3) TCLL: ASCE 7-16; Pf=2 4) Unbalanced snow loads 5) This truss has been des non-concurrent with oth 	25.0 psf (Lum DOL=1.15 Plate DOL=1. s have been considered for this design signed for greater of min roof live load o	ing at 8-5-8 from end at jc or 2-0-0. n; TCDL=4.2psf; BCDL=5. and right exposed ; end vo 15); Is=1.0; Rough Cat B; of 18.0 psf or 2.00 times fl	int A, nail 1 row(.0psf; h=30ft; Ke: ertical left and rig Partially Exp.; C at roof load of 25	s) at 7" o.c. =1.00; Cat. ht exposed e=1.0; Cs= 5.0 psf on ov	:. for 2-0-0; II; Exp B; d; Lumber =1.00; Ct=1.10		JUAN C	GARCIA

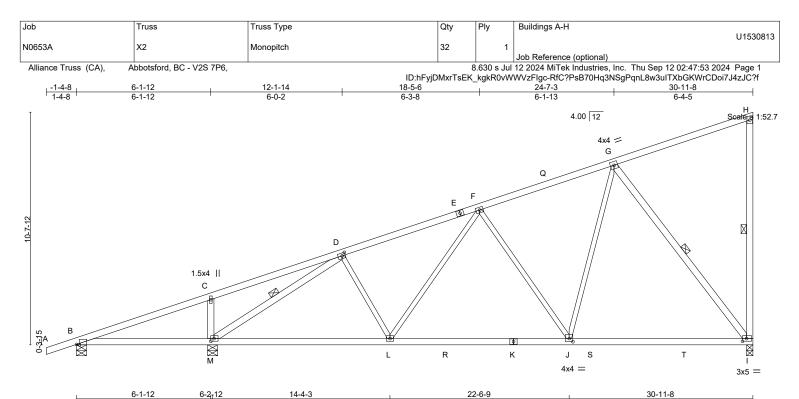
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) G except (jt=lb)
- E=175.


9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Scale = 1:63.1

Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


240 Stirling Crescent Bradford, ON. L3Z 4L5

Job	Truss	Truss Type	Qty	Ply	Buildings A-H		
					U1530812		
N0653A	X1	GABLE	8	1			
					Job Reference (optional)		
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,	8.630 s Jul 12 2024 MiTek Industries, Inc. Thu Sep 12 02:47:52 2024 Page 2					
		ID:hFyjDMxrTsEK_kgkR0vWWVzFlgc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJČ?f					

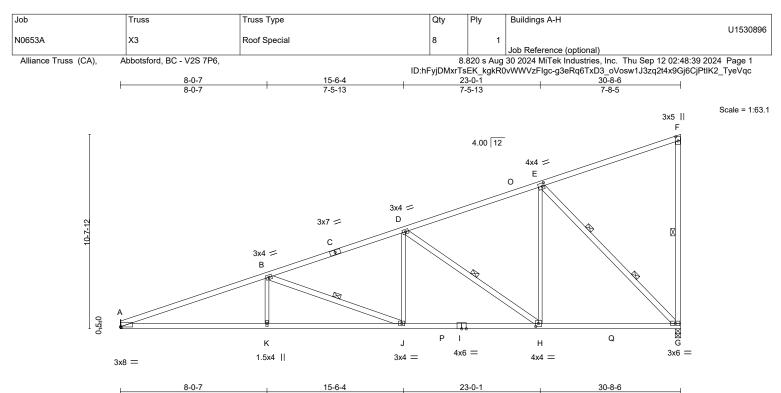
NOTES-

- 12) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 13) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 18-5-8 to 30-11-8 for 594.4 plf.
- 14) No notches allowed in overhang and 10408 from left end and 0 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.

ŀ	6-1-12 0-1-0	8-1-7		8-2-7	1	8-4-15	
Plate Offsets (X,Y) [B:	0-1-10,Edge], [D:0-1-12,0	-1-8], [I:0-2-4,0-1-8], [J:0-2-0,0-1-12]	, [M:0-1-12,0-1-8]				
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) 7CDL TCDL 12.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2018/TPI	2-0-0 CSI. 1.15 TC 0.78 1.15 BC 0.84 YES WB 0.76 2014 Matrix-MS	DEFL. Vert(LL) -0 Vert(CT) -0. Horz(CT) 0. Wind(LL) -0.	22 I-J >9 35 I-J >8 05 I	lefi L/d 199 360 142 240 n/a n/a 199 240	PLATES MT20 Weight: 129 lb	GRIP 197/144 FT = 20%
			BRACING- TOP CHORD BOT CHORD	except end v Rigid ceiling 6-0-0 oc bra	verticals. directly applied or cing: B-M.	ctly applied or 4-4-1 or 10-0-0 oc bracing, E	
REACTIONS. (size)	I=0-3-8, B=0-5-8, M=0-5	-8	WEBS	1 Row at mi	ирт П-	I, D-M, G-I	

Max Horz B=347(LC 9) Max Uplift I=-169(LC 10), B=-48(LC 6), M=-195(LC 10) Max Grav I=1468(LC 3), B=291(LC 1), M=1728(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


- TOP CHORD D-F=-1555/160, F-G=-1151/138, H-I=-301/52
- BOT CHORD B-M=-285/0, L-M=-188/1346, J-L=-147/1312, I-J=-112/834
- WEBS C-M=-473/153, D-M=-1830/189, F-J=-549/154, G-J=-51/847, G-I=-1360/201

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- 5) All plates are 3x4 MT20 unless otherwise indicated.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) B except (jt=lb) l=169, M=195.
- 9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

	8-0-7	7-5-13	7-5-13	7-8-5	
Plate Offsets (X,Y) [A:0-0-0,0-0-2], [E:0-1-8,0-2-0], [F:0-2-1	2,0-1-8], [H:0-1-12,0-2-0]			
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL TCDL 12.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	TC 0.99 BC 0.92 WB 0.76	DEFL. in (loc) l/defl Vert(LL) -0.22 J-K >999 Vert(CT) -0.40 J-K >924 Horz(CT) 0.11 G n/a	L/d PLATES 360 MT20 240 n/a	GRIP 197/144

DOLL	0.0	Code IBC2018/TPI2014	Matrix-MS	Wind(LL) 0.	10 K-N >999 24	40 We	iaht: 127 lb F	T = 20%
BCDL	10.0		Matrix-100	Wind(LL) 0.	10 1(-1) > 555 2-	+0 1/6		1 = 20 %
LUMBER-				BRACING-				
TOP CHORD	2x4 SPF 2	2100F 1.8E *Except*		TOP CHORD	Structural wood shea	thing directly applie	ed, except end ve	erticals.
	A-C: 2x4 \$	SPF No.2		BOT CHORD	Rigid ceiling directly a	applied or 10-0-0 oc	bracing, Excep	ot:
BOT CHORD	2x4 SPF 2	2100F 1.8E *Except*			2-2-0 oc bracing: H-J			
	G-I: 2x4 S	SPF No.2		WEBS	1 Row at midpt	F-G, B-J, D-	H	
WEBS	2x4 SPF N	No.2 *Except*			2 Rows at 1/3 pts	E-G		
	B-K,D-J,E	-H: 2x3 SPF No.2						

REACTIONS. (size) G=0-3-8, A=Mechanical Max Horz A=338(LC 9) Max Uplift G=-207(LC 10), A=-156(LC 6)

Max Grav G=1753(LC 3), A=1524(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD A-B=-3682/372, B-D=-2548/265, D-E=-1444/167, F-G=-367/63

BOT CHORD A-K=-451/3429, J-K=-451/3429, H-J=-273/2347, G-H=-118/1309

WEBS B-K=0/317, B-J=-1155/190, D-J=0/652, D-H=-1291/206, E-H=-48/1084, E-G=-1856/257

NOTES-

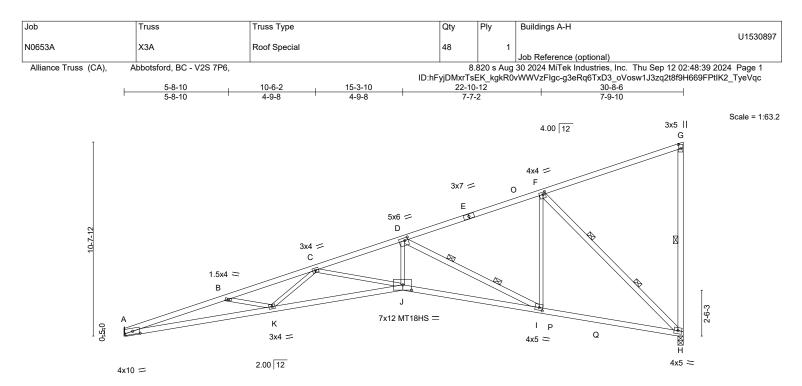
 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) G=207, A=156.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

	8-1-6	15-3-10	22-10-12	30-8-6	1
	8-1-6	7-2-4	7-7-2	7-9-10	
Plate Offsets (X,Y)	[A:0-4-11,0-2-0], [D:0-2-4,0-1-12], [F:0)-1-8,0-1-8], [G:0-2-12,0-1-8], [I:0	-2-4,0-1-12], [J:0-5-12,0-3-8]		

LOADING (psf) TCLL 25.0 (Roof Snow=25.0) 7CDL TCDL 12.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIBC2018/TPI2014	CSI. TC 0.76 BC 0.83 WB 0.92 Matrix-MS	Vert(CT) -1. Horz(CT) 0.	in (loc) l/defl L/d 65 J-K >568 360 16 J-K >317 240 50 H n/a n/a 34 J-K >999 240	PLATES MT20 MT18HS Weight: 121 lb	GRIP 197/144 197/144 FT = 20%
LUMBER-			BRACING-			
	2100F 1.8E 2100F 1.8E		TOP CHORD	Structural wood sheathin except end verticals.	g directly applied or 2-2-8 o	oc purlins,
WEBS 2x3 SPF I	No.2 *Except*		BOT CHORD	Rigid ceiling directly appl	ied or 8-2-13 oc bracing.	
G-H,D-I,F	-H: 2x4 SPF No.2		WEBS	1 Row at midpt	G-H	
				2 Rows at 1/3 pts	D-I, F-H	
REACTIONS. (size)	H=0-3-8, A=Mechanical					
Max Hora	A-330(I C 0)					

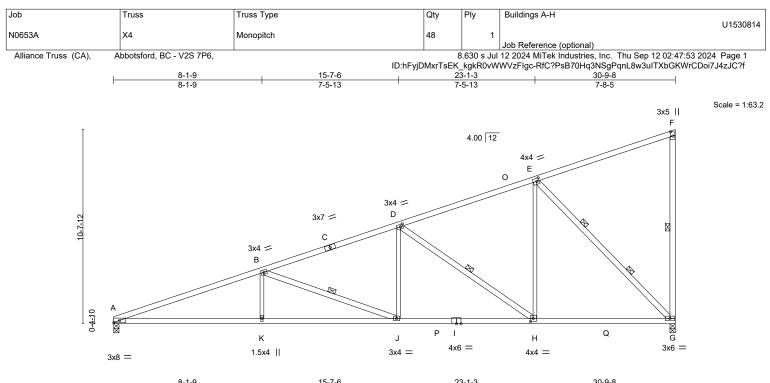
Max Horz A=339(LC 9) Max Uplift H=-208(LC 10), A=-156(LC 6) Max Grav H=1745(LC 16), A=1521(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD A-B=-6667/817, B-C=-6340/677, C-D=-4792/541, D-F=-1721/188, G-H=-367/63

- BOT CHORD A-K=-905/6352, J-K=-748/5680, I-J=-549/4582, H-I=-147/1630
- WEBS B-K=-389/180, C-K=0/586, C-J=-1107/201, D-J=-191/2169, D-I=-3298/458, F-I=-67/1380, F-H=-2226/290

NOTES-


- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

- 4) All plates are MT20 plates unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Bearing at joint(s) H considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) H=208, A=156.
- 10) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

	0-1-5	10-7-0	20-1-0	30-3-0	i i i i i i i i i i i i i i i i i i i					
	8-1-9	7-5-13	7-5-13	7-8-5						
Plate Offsets (X,Y) [D	Plate Offsets (X,Y) [D:0-1-12,0-1-8], [E:0-1-8,0-2-0], [F:0-2-12,0-1-8], [H:0-1-12,0-2-0]									

LOADING (ps TCLL (Roof Snow=2 TCDL BCLL BCDL	25.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2018/T	2-0-0 1.15 1.15 YES PI2014	CSI. TC BC WB Matri	0.72 0.93 0.76 x-MS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.21 -0.37 0.11 0.10	J-K J-K G	l/defl >999 >988 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 127 lb	GRIP 197/144 FT = 20%
LUMBER-						BRACING-						
TOP CHORD	2x4 SPF 2	2100F 1.8E				TOP CHORE	D	Structur	al wood s	heathing dir	ectly applied or 3-4-9 o	oc purlins,
BOT CHORD	2x4 SPF 2	2100F 1.8E *Except*						except e	end vertic	als.		
	G-I: 2x4 S	PF No.2				BOT CHORE	C	Rigid ce	iling dired	ctly applied o	or 10-0-0 oc bracing, I	Except:
WEBS	2x4 SPF N	Io.2 *Except*						2-2-0 oc	bracing:	H-J.		
	B-K,D-J,E	-H: 2x3 SPF No.2				WEBS		1 Row a	t midpt	F	-G, B-J, D-H	
								2 Rows	at 1/3 pts	; E	-G	
REACTIONS.	(size)	G=0-3-8, A=0-3-8										
	May Horz	A-338(I C Q)										

Max Holz A=338(LC 9) Max Uplift G=-208(LC 10), A=-156(LC 6) Max Grav G=1759(LC 3), A=1529(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD A-B=-3734/377, B-D=-2562/267, D-E=-1449/167, F-G=-367/63

- BOT CHORD A-K=-457/3482, J-K=-457/3482, H-J=-274/2358, G-H=-118/1314
- WEBS B-K=0/325, B-J=-1199/195, D-J=0/664, D-H=-1298/206, E-H=-49/1089, E-G=-1864/258

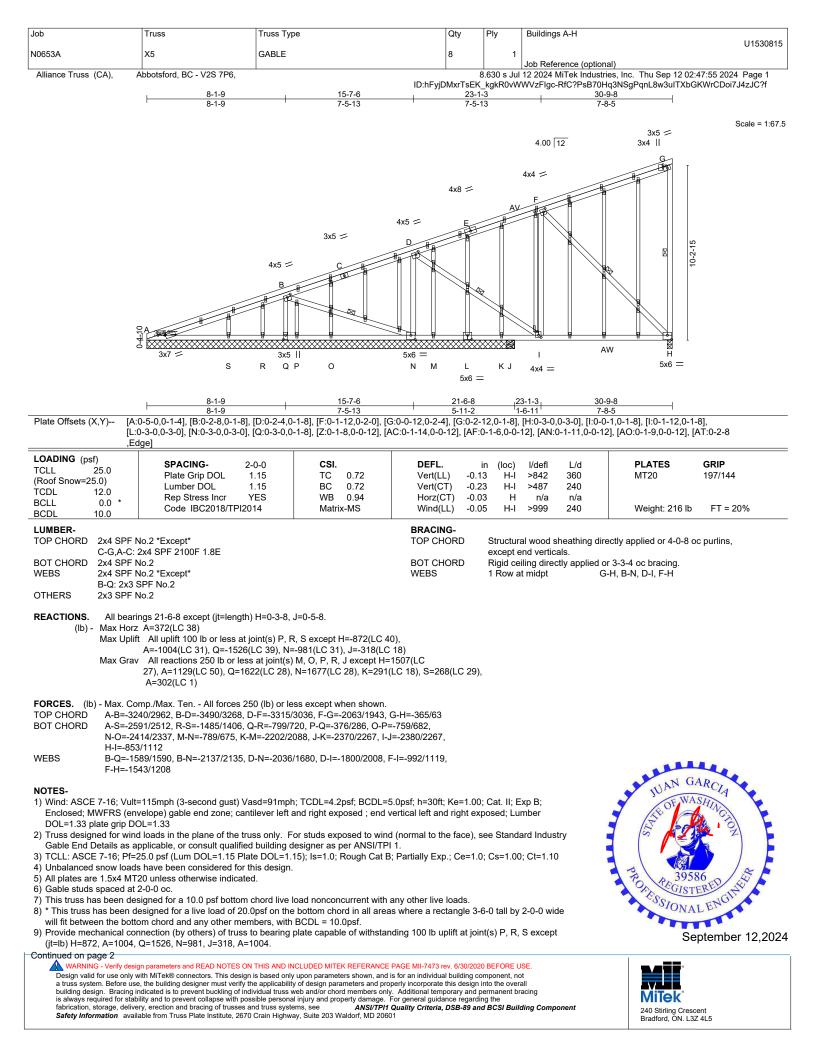
NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

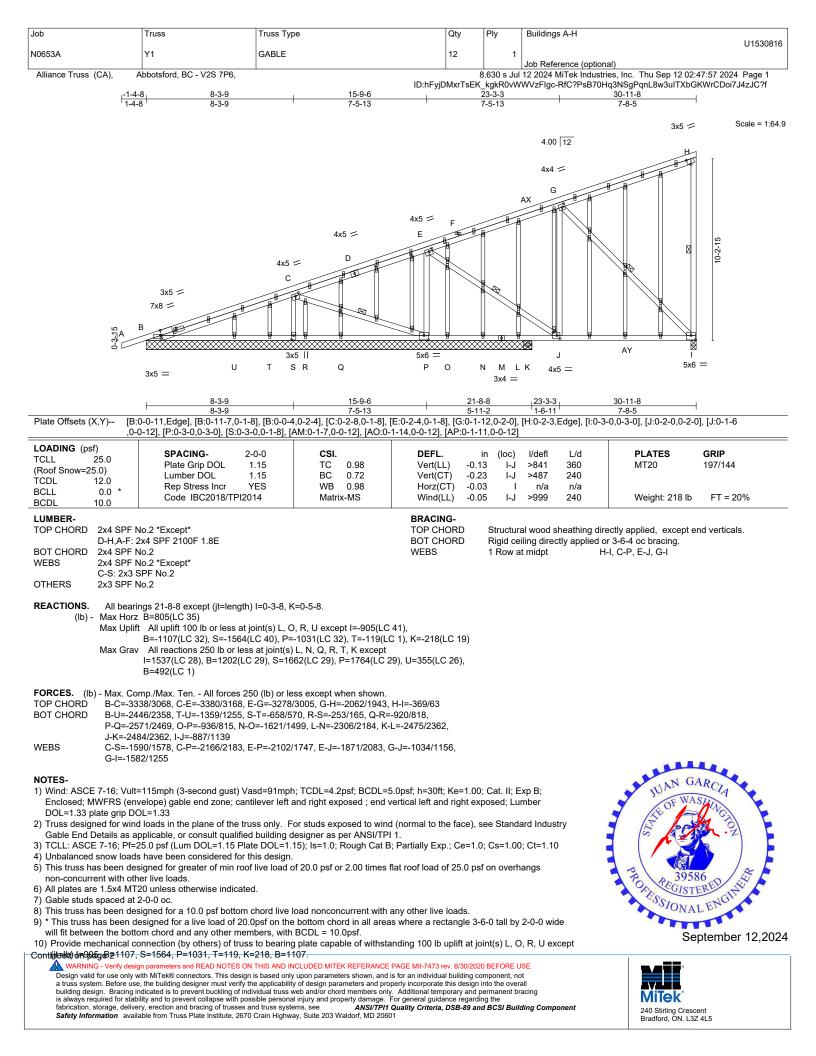
3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) G=208, A=156.

7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.



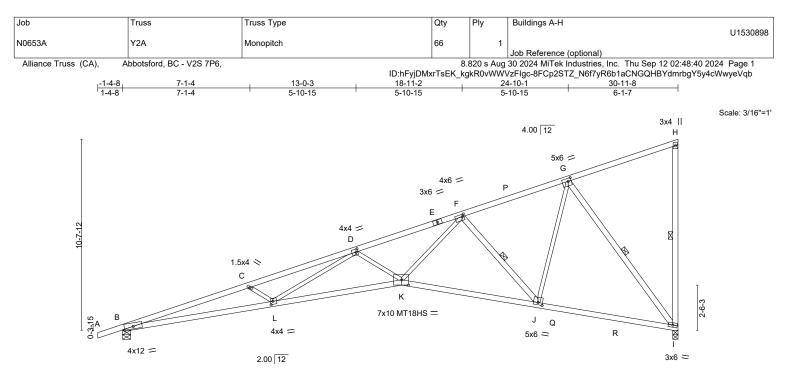
Job		Truss	Truss Type	Qty	Ply	Buildings A-H			
						U1530815			
N0653A	4	X5	GABLE	8	1				
						Job Reference (optional)			
Allian	ce Truss (CA), A	bbotsford, BC - V2S 7P6,	8.630 s Jul 12 2024 MiTek Industries, Inc. Thu Sep 12 02:47:55 2024 Page 2						
			lD:hFyjDMxrTsEK_kgkR0vWWVzFlgc-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJČ?f						

NOTES-

- 10) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 11) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 21-6-8 for 343.1 plf.
- 12) No notches allowed in overhang and 0 from left end and 0 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.

Job	Truss	Truss Type	Qty	Ply	Buildings A-H		
					U1530816		
N0653A	Y1	GABLE	12	1			
					Job Reference (optional)		
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,	8.630 s Jul 12 2024 MiTek Industries, Inc. Thu Sep 12 02:47:57 2024 Page 2					
		ID:hFyjDMxrTsEK_kgkR0vWWVzFlgc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJČ?f					

NOTES-


11) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

12) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 21-8-8 for 342.3 plf.

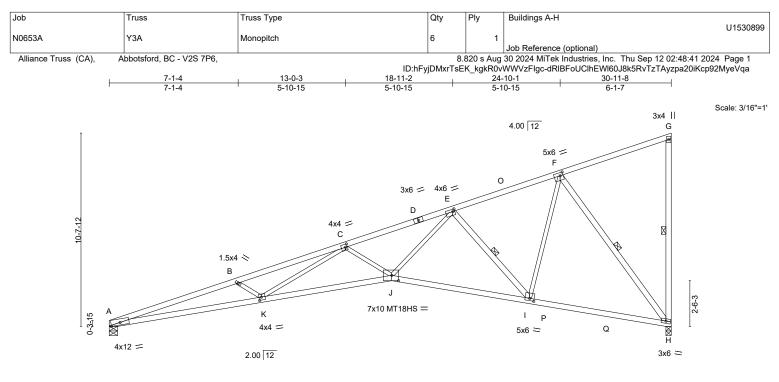
13) No notches allowed in overhang and 10408 from left end and 0 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS//TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	8-4-8	15-6-12	23-1-14	30-11-8			
	8-4-8	7-2-4	7-7-2	7-9-10			
Plate Offsets (X,Y) [D:0-1-4,0-2-0], [F:0-1-4,0-1-8], [G:0-2-0,0-2-0], [J:0-3-0,0-1-8], [K:0-4-8,0-3-8], [L:0-1-8,0-2-0]							

LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL TCDL 12.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2018/TPI2014	CSI. TC 0.83 BC 0.87 WB 0.97 Matrix-MS	DEFL. Vert(LL) -0.6 Vert(CT) -1.1 Horz(CT) 0.4 Wind(LL) 0.5	14 K-L >323 240 47 I n/a n/a	PLATES GRIP MT20 197/144 MT18HS 197/144 Weight: 123 lb FT = 20%		
LUMBER- TOP CHORD 2x4 SPF N	No.2 *Except*		BRACING- TOP CHORD	Structural wood sheathing d	irectly applied or 2-2-0 oc purlins,		
BOT CHORD 2x4 SPF 2 WEBS 2x3 SPF 1	SPF 2100F 1.8E 2100F 1.8E No.2 *Except* I: 2x4 SPF No.2		BOT CHORD WEBS	except end verticals. Rigid ceiling directly applied 1 Row at midpt	or 8-3-2 oc bracing. H-I, F-J, G-I		
REACTIONS. (size) I=0-3-8, B=0-5-8 Max Horz B=347(LC 9) Max Uplift I=-209(LC 10), B=-202(LC 6) Max Grav I=1774(LC 3), B=1624(LC 3)							
TOP CHORD B-C=-69	mp./Max. Ten All forces 250 (lb) or le 147/816, C-D=-6607/733, D-F=-4823/53 1/6640, K-L=-685/5302, J-K=-314/2762	5, F-G=-1666/190, H-I=-2	287/49				

C-L=-456/167, D-L=-93/1238, D-K=-901/211, F-K=-294/2743, F-J=-1862/308, WEBS G-J=-125/1553, G-I=-1987/261


NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- 5) All plates are MT20 plates unless otherwise indicated.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Bearing at joint(s) I, B considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) I=209, B=202,
- 10) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

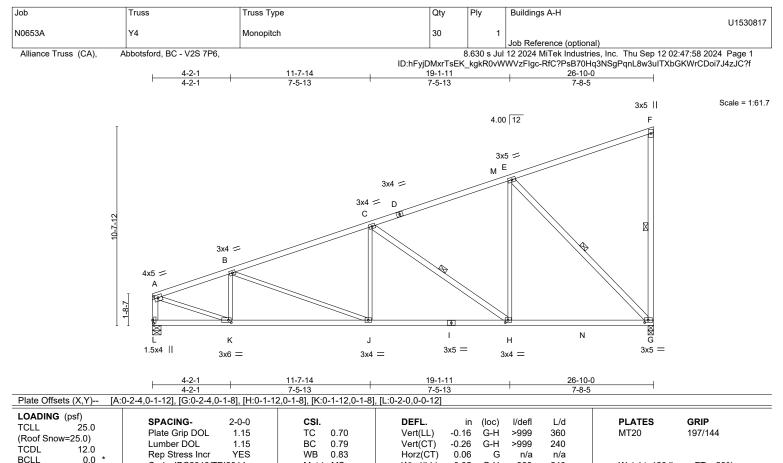
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to use only with with with exercising is based only upon parameters shown, and is to an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf)	0040000						DI 4750	0.010
Plate Offsets (X,Y) [C:0-1-4,0-2-0], [E:0-1-4,0-1-8], [F:0-2-0,0-2-0], [I:0-3-0,0-1-8], [J:0-4-8,0-3-8], [K:0-1-8,0-2-0]								
	8-4-8	T	7-2-4	1	7-7-2	1 .	7-9-10	1
	8-4-8		15-6-12	1	23-1-14	. 3	0-11-8	

LOADING (psf) SPACING- 2-0-0 TCLL 25.0 Plate Grip DOL 1.15 (Roof Snow=25.0) Lumber DOL 1.15 TCDL 12.0 Rep Stress Incr YES BCLL 0.0 * Code IBC2018/TPI2014 Code IBC2018/TPI2014	CSI. TC 0.82 BC 0.88 WB 0.96 Matrix-MS	DEFL. Vert(LL) -0.6 Vert(CT) -1.7 Horz(CT) 0.4 Wind(LL) 0.5	14 J-K >323 240 17 H n/a n/a	0 MT20 197/144 0 MT18HS 197/144
LUMBER- TOP CHORD 2x4 SPF No.2 *Except* A-D: 2x4 SPF 2100F 1.8E BOT CHORD 2x4 SPF 2100F 1.8E WEBS 2x3 SPF No.2 *Except* G-H,E-I,F-H: 2x4 SPF No.2		BRACING- TOP CHORD BOT CHORD WEBS	except end verticals.	ing directly applied or 2-2-0 oc purlins, plied or 8-2-7 oc bracing. G-H, E-I, F-H
REACTIONS. (size) H=0-3-8, A=0-5-8 Max Horz A=340(LC 9) Max Uplift H=-209(LC 10), A=-157(LC 6) Max Grav H=1764(LC 3), A=1535(LC 3)				

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD A-B=-6974/830, B-C=-6628/745, C-E=-4815/539, E-F=-1658/191, G-H=-285/49
- BOT CHORD A-K=-914/6667, J-K=-689/5299, I-J=-316/2753, H-I=-132/1208
- WEBS B-K=-466/170, C-K=-102/1264, C-J=-908/213, E-J=-297/2744, E-I=-1858/309, F-I=-126/1550, F-H=-1973/262


NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Bearing at joint(s) H, A considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) H=209, A=157.
- 9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BCDL	10.0	Code IBC2018/TPI2014	Matrix-MS	Wind(LL)	0.05	G-H	>999	240	Weight: 120 lb	FT = 20%
LUMBER-				BRACING-						
TOP CHORE	2x4 SPF	2100F 1.8E *Except*		TOP CHORD) 5	Structur	al wood s	sheathing dir	ectly applied or 3-0-7 or	c purlins,
	A-D: 2x4	SPF No.2			e	except e	end vertic	als.		
BOT CHORE	2x4 SPF	No.2		BOT CHORD) F	Rigid ce	iling dire	ctly applied o	or 10-0-0 oc bracing.	
WEBS	2x3 SPF	No.2 *Except*		WEBS	1	Row a	at midpt	F	-G, C-H, E-G	
	F-G,C-H,	E-G,A-L: 2x4 SPF No.2								

REACTIONS. (size) G=0-3-8, L=0-5-8 Max Horz L=333(LC 7) Max Uplift G=-186(LC 10), L=-130(LC 6) Max Grav G=1520(LC 3), L=1328(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD A-B=-1868/185, B-C=-1925/200, C-E=-1212/145, F-G=-358/63, A-L=-1278/140

- BOT CHORD K-L=-318/42, J-K=-270/1749, H-J=-214/1759, G-H=-122/1089
- WEBS B-K=-487/125, C-J=0/306, C-H=-851/158, E-H=-20/828, E-G=-1540/227, A-K=-173/1821

NOTES-

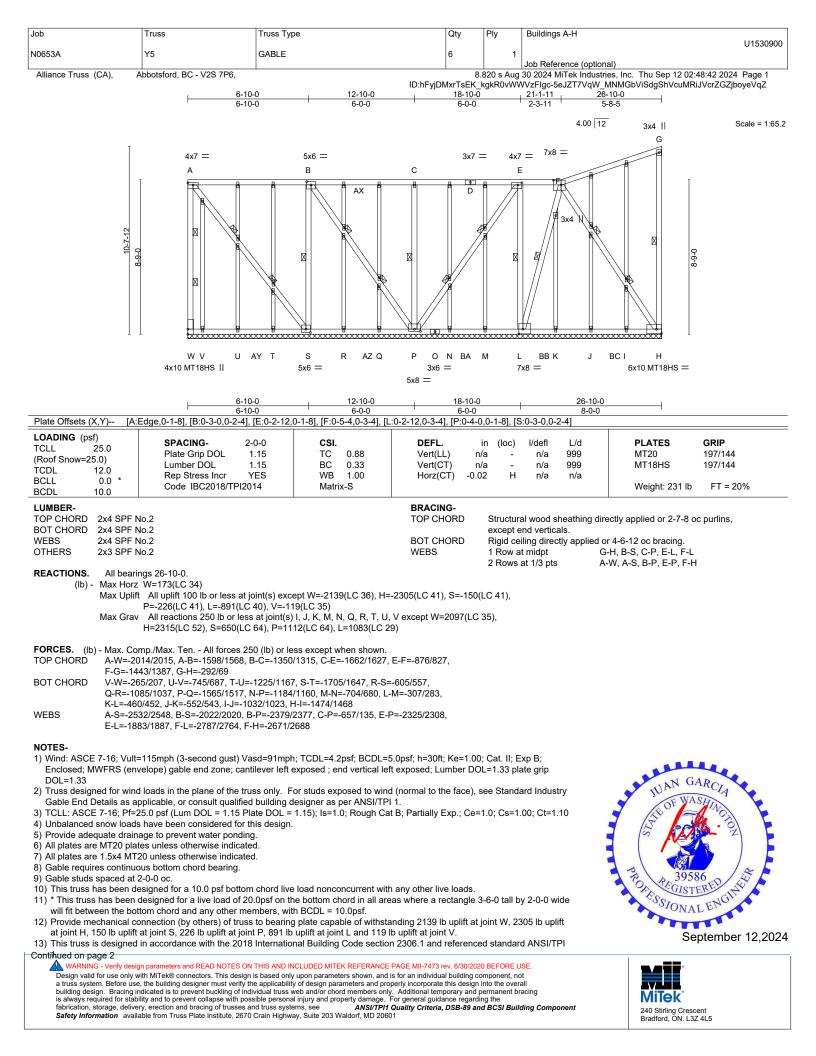
 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=5.0psf; h=30ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) G=186, L=130.

7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Buildings A-H			
					U1530900			
N0653A	Y5	GABLE	6	1				
					Job Reference (optional)			
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,	8.820 s Aug 30 2024 MiTek Industries, Inc. Thu Sep 12 02:48:42 2024 Page 2						
		lD:hFyjDMxrTsEK_kgkR0vWWVzFlgc-5eJZT7VqW_MNMGbViSdgShVcuMRiJVcrZGZjboyeVqZ						

NOTES-

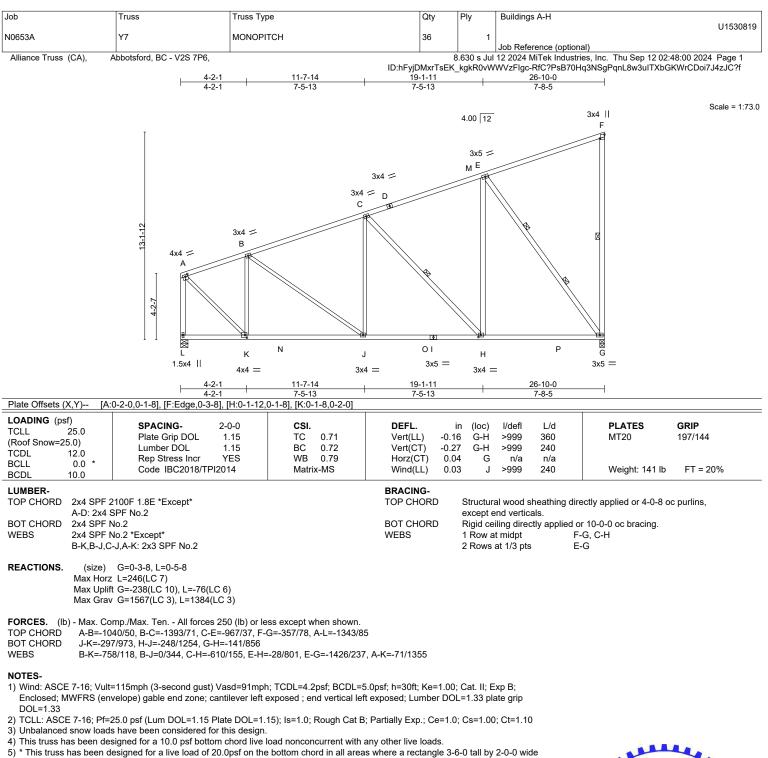
14) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 26-10-0 for 240.0 plf.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS//TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Typ	0e	Qty	Ply	Buildings A-H	
N0653A	Y6	GABLE		6	1		U1530818
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,				3.630 s Ju	Job Reference (option	nal) ries, Inc. Thu Sep 12 02:47:59 2024 Page 1
	,,	6-10-0	12-10-0			WVzFlgc-RfC?PsB70F	lq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJČ?f
	F	6-10-0	6-0-0	6-0-0	2-3		—
						4.00 12 33	x4 Scale = 1:80.3
	⊺ 5>	(6 =	5x6 =	3x7 =	7x10 5x6 =	MT18HS =	G
	A	N N	В	С	Е	F	
	13-12						
		VV U	T S R Q	P N M	L	K J I Z	н
	4x10 M	T18HS	5x6 =	3x4 =	7x8 =	7v101	MT18HS =
				6x8 =			
	H	<u>6-10-0</u> 6-10-0	<u> </u>	<u> </u>		<u>26-10-0</u> 8-0-0	
Plate Offsets (X,Y)	[A:0-2-12,0-1-8], [B:0-3-0,0-	-1-12], [E:0-3-0),0-1-12], [F:0-4-0,0-3-4],	[H:0-3-4,Edge], [P:0-4	-0,0-2-0],	[S:0-2-12,0-1-8]	
LOADING (psf) TCLL 25.0	SPACING- Plate Grip DOL	2-0-0 1.15	CSI. TC 0.96	DEFL. Vert(LL) n/	in (loc) ′a -	l/defl L/d n/a 999	PLATES GRIP MT20 197/144
(Roof Snow=25.0) TCDL 12.0	Lumber DOL	1.15	BC 0.32	Vert(CT) n/	/a -	n/a 999	MT18HS 197/144
BCLL 0.0 ³ BCDL 10.0	Rep Stress Incr Code IBC2018/TF	YES PI2014	WB 1.00 Matrix-S	Horz(CT) -0.0	2 H	n/a n/a	Weight: 278 lb FT = 20%
LUMBER-				BRACING-			
	PF No.2 PF No.2			TOP CHORD		ral wood sheathing dir end verticals.	ectly applied or 2-7-8 oc purlins,
WEBS 2x4 S	PF 2100F 1.8E *Except* 3-S,C-P,E-L: 2x4 SPF No.2			BOT CHORD WEBS	Rigid ce	eiling directly applied o	or 4-7-8 oc bracing. ∖-W, G-H, C-P
	PF No.2			WEBS			чч, G-п, C-Р -S, B-S, B-P, E-P, E-L, F-L, F-H
(lb) - Max Max	Dearings 26-10-0. Horz W=56(LC 32) Uplift All uplift 100 lb or less P=-231(LC 32), L=-118 Grav All reactions 250 lb or H=3090(LC 52), S=664	5(LC 32) less at joint(s)		V except W=2772(LC	()		
TOP CHORD A-W	c. Comp./Max. Ten All force /=-2737/2708, A-B=-1642/162 :=-1442/1386, G-H=-291/71			E-F=-875/850,			
BOT CHORD U-V P-Q	/=-700/645, T-U=-1180/1125, =-1455/1414, N-P=-1133/111 =-613/601, I-J=-1093/1081, H	14, M-N=-653/6	34, L-M=-382/362, K-L=-				
	=-3132/3159, B-S=-2398/237 =-2322/2339, F-L=-3521/3482			=-2718/2684,			
NOTES-		,					
1) Wind: ASCE 7-16;	Vult=115mph (3-second gust	, i	· · · ·		; Cat. II; I	Exp B;	and the second
2) Truss designed for	(envelope) gable end zone; wind loads in the plane of the	e truss only. F	or studs exposed to wind	(normal to the face), s	ee Stand	lard Industry	JUAN GARCIA
	as applicable, or consult qual Pf=25.0 psf (Lum DOL=1.15				; Cs=1.0	0; Ct=1.10	Stor WASHINGS
	loads have been considered t drainage to prevent water por						
<i>'</i>) plates unless otherwise indi MT20 unless otherwise indi						
8) Gable requires cor	tinuous bottom chord bearing						39586
	en designed for a 10.0 psf bo				604-111		ROPESSION ENGINE
will fit between th	een designed for a live load of e bottom chord and any other	r members, wit	h BCDL = 10.0psf.	Ū.			SIONAL ENG
	cal connection (by others) of t I, S=471, P=231, L=1185.	russ to bearing	plate capable of withsta	nding 100 lb uplift at jo	int(s) V e	except (jt=lb)	September 12,2024
	gned in accordance with the 2	2018 Internatio	nal Building Code section	2306.1 and reference	d standa	rd ANSI/TPI	
MARNING - Verif	y design parameters and READ NOTE only with MiTek® connectors. This de						
a truss system. Befo building design. Bra is always required fo	re use, the building designer must ve cing indicated is to prevent buckling or r stability and to prevent collapse with delivery, erection and bracing of truss	rify the applicabilit of individual truss v h possible persona	y of design parameters and prop veb and/or chord members only. I injury and property damage. F	erly incorporate this design i Additional temporary and p	into the ove ermanent b ng the	rall racing	A Stirling Crescent

is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

240 Stirling Crescent Bradford, ON. L3Z 4L5

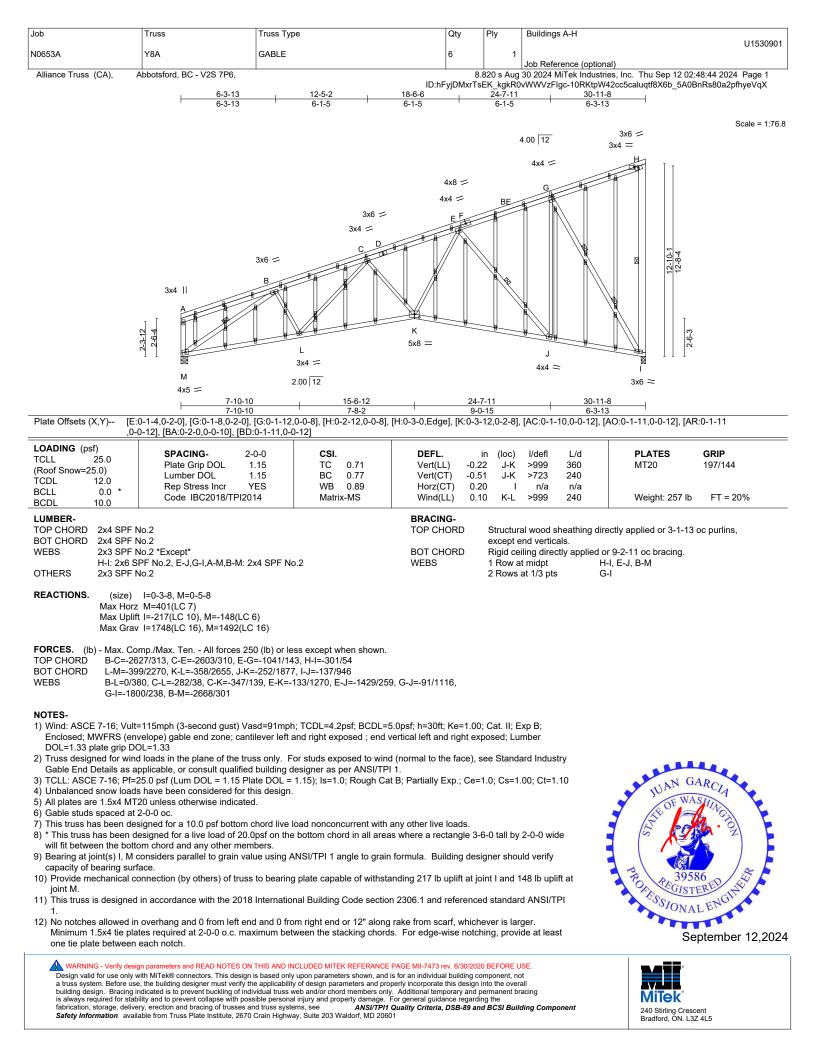

Job	Truss	Truss Type	Qty	Ply	Buildings A-H		
					U1530818		
N0653A	Y6	GABLE	6	1			
					Job Reference (optional)		
Alliance Truss (CA),	Abbotsford, BC - V2S 7P6,	8.630 s Jul 12 2024 MiTek Industries, Inc. Thu Sep 12 02:48:00 2024 Page 2					
		ID:hFyjDMxrTsEK_kgkR0vWWVzFlgc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJČ?f					

NOTES-

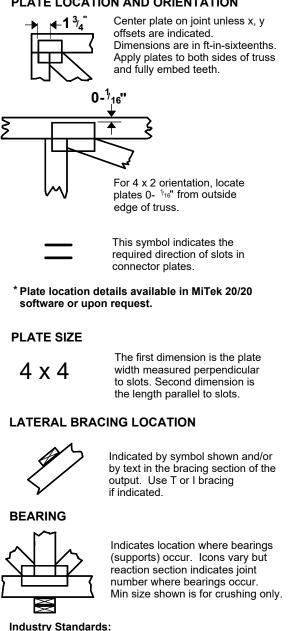
14) This truss has been designed for a total drag load of 240 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 26-10-0 for 240.0 plf.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS//TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

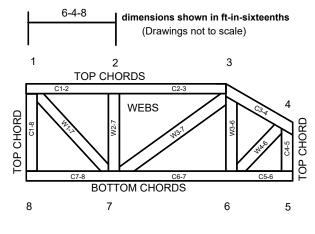
will fit between the bottom chord and any other members, with BCDL = 10.0psf.
 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) L except (jt=lb)


 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) L except (jt=lb) G=238.

7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERANCE PAGE MII-7473 rev. 6/30/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Symbols


PLATE LOCATION AND ORIENTATION

ANSI/TPI1: National Design Specification for Metal

Plate Connected Wood Truss Construction. DSB-89: Design Standard for Bracing. BCSI: Building Component Safety Information, Guide to Good Practice for Handling. Installing & Bracing of Metal Plate Connected Wood Trusses.

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2012 MiTek® All Rights Reserved

MiTek Engineering Reference Sheet: MII-7473 rev. 6/30/2020

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- 2. Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never 3. stack materials on inadequately braced trusses.
- 4. Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other.
- 6. Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- 7. Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- 8. Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- 9. Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- 10. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- 13. Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- 16. Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- 18. Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- 19. Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.