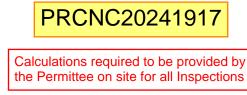


McDonalds - Puyallup, WA. L2401075 Canopy Calculations


105 School Creek Trail | Luxemburg, WI 54217 (P) 920.617.1042


Project Location: Puyallup, Washington REI Project # R25-01-042

Prepared for: Greenheck - Schofield, WI 3/5/2025

Design Criteria:

- 1. ASD Design Loads per Code (2021 IBC, ASCE 7-16).
- Aluminum extrusions to be 6063-T5 and 6061-T6/6005-T5, 6005A-T5, brackets shall be alloy 6061-T6 or better conforming to ASTM B 221. Formed aluminum shapes and panels shall be alloy 1001-H14 or better conforming to ASTM B 209. Members designed per the Aluminum Association, "Aluminum Design Manual".
- 3. Deflection to be L/120 max. for main span members. Deflection to be 2L/120 for cantilever members.
- 4. Screws and bolts shall be **stainless steel alloy groups 1,2 or 3 (300series only), condition CW Fy = 65 ksi, Fu = 110 ksi minimum,** with diameters and locations as shown in calculations. Stainless Steel Bolts, Hex Cap Screws greater than ¹/₄" to conform to **ASTM F593 Group 1**.
- 5. Field and shop welding shall be **E70 or better**, welding shall be done in conformance with **AWS D1.1**. Aluminum filler alloy to be **4043 or 5356**, welding shall be done in conformance with **AWS D1.2**.
- 6. Design of material separation to prevent reaction between dissimilar materials not designed by Rice Engineering Inc.
- 7. Wood is assumed to be Spruce-Pine-Fir, SG = 0.42. Designed By Others.
- 8. Threaded rods shall be SAE Grade 5 or better with diameters and locations as shown on calculations.

Engineers Design Approval Stamp: Bradley Kueh **Disclaimer:** 2025.03.05 14:28:55-06'00 This Certification is limited to the structural design of structural components of this Sunshade system. It does NOT include responsibility for: Structural design of hardware, clevises, and turnbuckles. Design of material separation to prevent reaction between . dissimilar materials. Design of air and water infiltration prevention. The manufacture, assembly, or installation of the system. . Quantities of materials or dimensional accuracy of drawings 03/05/2025 Cover Page 1 of 2

105 School Creek Trail | Luxemburg, WI 54217 (P) 920.617.1042

Project Location: Puyallup, Washington REI Project # R25-01-042

McDonalds - Puyallup, WA. L2401075

Canopy Calculations

Prepared for: Greenheck - Schofield, WI 3/5/2025

Page:	Description:	Date:	Rev:
1.0-1.0B	Combined Loads (36" Proj.)	2/26/25	
1.1-1.1B	Combined Loads (48" Proj.)	2/26/25	
	36" Projection Typical System		
2.00	System Information	2/26/25	
2.01-2.03	Hood Panel	2/26/25	
2.04-2.05	Panel Stiffener	2/26/25	
2.06	Front Fascia	2/26/25	
2.07	End Outrigger	2/26/25	
2.08	Intermediate Outrigger	2/26/25	
2.09	Rear Fascia	2/26/25	
2.10-2.11	Soffit and Soffit Stiffeners	2/26/25	
2.12-2.13	Anchor Bracket	2/26/25	
2.14	Thru-Bolt Anchors-Wood Blocking	2/26/25	
	48" Projection Typical System		
3.00	System Information	2/26/25	
3.01-3.03	Hood Panel	2/26/25	
3.04-3.05 Panel Stiffener		2/26/25	
3.06 Front Fascia		2/26/25	
3.07	End Outrigger	2/26/25	
3.08	Intermediate Outrigger	2/26/25	
3.09	Rear Fascia	2/26/25	
3.10-3.11 Soffit and Soffit Stiffeners		2/26/25	
3.12-3.13 Anchor Bracket		2/26/25	
3.14	Wood Blocking Anchors	2/26/25	
	36" Projection Underscore		
4.00	System Information	2/26/25	
4.01	Underscore Panel	2/26/25	
4.02	Underscore Panel Stiffener	2/26/25	
4.03	Underscore Outrigger	2/26/25	
4.04	Underscore Rear Fascia	2/26/25	
4.05	Underscore Front Fascia	2/26/25	
	48" Projection Underscore		
5.00	System Information	2/26/25	
5.01	Underscore Panel	2/26/25	
5.02	Underscore Panel Stiffener	2/26/25	1
5.03	Underscore Outrigger	2/26/25	

5151			
Page:	Description:	Date:	Rev:
5.04	Underscore Rear Fascia	2/26/25	
5.05	Underscore Front Fascia	2/26/25	
	36" Projection Corner System		
6.00	System Information/RISA Input	2/26/25	
6.01-6.03	Hood Panel	2/26/25	
6.04-6.05	Panel Stiffener	2/26/25	
6.06	Front Fascia	2/26/25	
6.07	Front Fascia (Corner)	2/26/25	
6.08	6.08 End Outrigger		
6.09 Intermediate Outrigger		2/26/25	
6.10 Adjacent Corner Outrigger		2/26/25	
6.11 Corner Outrigger		2/26/25	
6.12 Rear Fascia		2/26/25	
6.13 Rear Fascia (Corner)		2/26/25	
6.14-6.16	6.14-6.16 Corner System Welds		
6.17	Corner System Thru-Bolts	2/26/25	
6.18-6.19	Soffit and Soffit Stiffeners	2/26/25	
6.20-6.21	Anchor Bracket (Typical)	2/26/25	
6.22	Wood Blocking Anchors (Typical)	2/26/25	
6.24-6.25	Anchor Bracket (Corner)	2/26/25	
6.26	Wood Blocking Anchors (Corner)	2/26/25	
	Reference Materials		
R.00-R.02	Load Data/Fasteners	2/26/25	

Disclaimer:

This Certification is limited to the structural design of structural components of this Sunshade system. It does NOT include responsibility for:

- Structural design of hardware, clevises, and turnbuckles.
- Design of material separation to prevent reaction between dissimilar materials.
- Design of air and water infiltration prevention.
- The manufacture, assembly, or installation of the system.
- Quantities of materials or dimensional accuracy of drawings

Engineers Design Approval Stamp:

<u>ASCE-7/16: Com</u>	bination of	Loads			Combined		;	Detail Ref.	Sheet No:
Generic Input Variabl	es:		Į		(36" P	10].)			1.0
Risk Category	II 💌	<u>Table 1.5-1</u> &	<u>Table 1.5-2</u>		Exposure Fac	ctor =	Partially	Exposed -	<u>Table 7-3-1</u>
Importance Factors	I _S =1 I _i	= 1 I _W = 1	I _p = 1		Thermal Fact	tor =	Thermal	= "Unheated &	S Open Air"
Mean Roof Height	h ≡ 20 ·ft	(Inclua	les Parapet)				Therman	- Officated (
Canopy Height	$z \equiv 12 \cdot ft$				Roof Form =		Monosic	pe 🔻	
Canopy Projection:	$L_{UWW} \equiv 3 \cdot ft$						1	·	
Building Width	$L_{width} \equiv 50$	·ft				lazing is Ap	plicable	IBC 24	04.2
Building Length	L _{length} ≡ 10	00∙ft	<u>lce</u>	<u> Inp</u>	<u>ut Variables:</u>				
Upwind Fetch Distance	$L_{U} \equiv 100 \cdot ft$		lœ	Thic	kness: $t \equiv 1 \cdot ir$	n	Figure 10-2 West	<u>Figure 1</u> East	<u>0-2</u>
Canopy Slope	$\boldsymbol{\theta} \equiv \boldsymbol{0} {\boldsymbol{\cdot}} \boldsymbol{deg}$		Co	ncum	ent Wind: Vi	≡ 30 · mph			
Building Roof Slope	$\alpha \equiv 0{\cdot}\text{deg}$		<u>Sr</u>	iow l	nput Variables:				
Wind Input Variables:		Chapter 30.11			_eeward Drift is Not	Applicable			
Exposure Category	B 🔻	Figure 26.5-1A		Grou	ind Snow Load	Pg ≡ 2			
Wind Velocity	V = 98∙ mph	Figure 26.5-1B Figure 26.5-1C		Ther	mal Factor	Ct = 1.2	<u>7.2-1 V</u> 2 <u>Table 7</u>		East
Structure = Buildin	ıgs: C&C 👻	Figure 26.5-1D		Expo	osure Factor	С _е := Т	able 7-2 _{iter}	= 1	
Directionality Factor	K _d = 0.85	Table 26.6-1		lloob	structed Slippery Su		Sloped Roo		Figure
Topographic Factor	K _{zt} = 1.0	Figure 26.8-1					Loads	-	<u>7.4-1</u>
Effective Wind Area	EWA ≡ 1·sq ft		W:=	0.5.1	min (Lwidth ,Llength	$) = 25 \cdot \text{ft}$	Horizontal Dist	ance From Eave	e to Ridge
Internal Pressure Coeffic					.oad & Ice Input				
Open Buildings			Qty		A construction of the second s		er Length	Circumscribin $D_{c1} = 8.25 \cdot i$	-
Enclosure = "Open B	uildings"		nf≡		$A_1 = 2.4375 \cdot in^2$	100000	≡ 86.75 ·in		
· · · · · · · · · · · · · · · · · · ·	e 26.13-1		nb ≡		$A_2 = 0.4375 \cdot in^2$	1999-1999 1999-1999	≡ L _{uww}	$D_{c2} \equiv 0 \cdot in$	Inflill Type 1
	<u>e 26.13-1</u>				$A_3 \equiv 7.15 \cdot in \ ^2$	1997-1998 1997-1998	≡ 86.75 ·in	$D_{C3} \equiv 0.$ in	Inflill Type 2
Live Load Input Variabl	<u>es:</u>	Table 4.3-1	nb2	≡ 0	$A_4 \equiv 0 \cdot in 2$	L4 :	≡ 0·in	$D_{C4} \equiv 0.$ in	Hanger Rods
Type = "Custom: LL = 0 LL := psf·LL' = 0·psf)psf" ▼	10010 110 1	n _o ≡		$t_0 \equiv 0.30469 d_0 \equiv$	8∙in L5	≡ L _{uww}		Outrigger
Roof Live Load Input Va	ariables:	_	tg ≡	0.0 · ir	1 Glass Thickness	$W_1 \equiv 0 \cdot in$	$L_6 \equiv 0 \cdot in$	Glass Pa	nel Size
$L_r := 20 \cdot psf$	1.8 Reduction in Roc	f Live Loads	t _a ≡ 0.102	23 ∙in	Alum Panel Thickness	$W_2 = L_{UWV}$	L7 ≡ 86.7	75 _{'in} Alum Pal	nel Size
Seismic Input Variabl	<u>es:</u>								
Spectral Response					at Short Periods (<mark>Figu</mark> at Long Periods (<mark>Figu</mark>	,			
Component Factors	P	nponent Amplificati nponent Response							

Site Soil Class =

D 🔻

(Assume Site Class "D" if Unknown per Section 20.1)

RICE	٦	105 School Creek Trail	Project Description:	Job No:		R25-01-042	
	:	Luxemburg, WI 54217 Phone: (920) 617-1042	McDonalds - Puyallup,	Engineer:	SWP	Sheet No:	1.0
	NGINEERING	Fax: (920) 617-1100	WA. L2401075	Date:	2/26/2025	Rev:	
Template:	REI-MC-5209	www.rice-inc.com	VA: 22401073	Chk By:		Date:	

Wind Load Calculations:

$V=98\cdot mph$	K _{zt} = 1	I _W = 1
$K_{d} = 0.85$		r = 0.6
External Pressure C	<u>Coefficients.:</u>	Internal Pressure:
Figure 30.11-1B		
GCp_lat = 1	00 . 11	GCpi1 = 0
GCpup = -0.9	$GC_{ptop} = -1.1$	GCpi2 = 0

 $GC_{pbot} = -0.9$

Corner Zone Dimension:

 $GC_{ppos} = 0.8$

 $\begin{array}{ll} a &=& max(min(5.0\,{\rm ft}\,,10.0\,{\rm ft}\,,8.0\,{\rm ft}\,,10\,{\rm ft}\,)\,,min(2.0\,{\rm ft}\,,4.0\,{\rm ft})\,,3\,{\rm ft})=5\,{\rm ft}\\ \hline \end{tabular} \label{eq:constraint} \end{tabular} Yellocity pressure Coefficients: $$K_{Zh}=0.70\,{\rm opsf}$ At Elevation $h=20\,{\rm ft}$$\\ \end{tabular} $$K_{ZZ}=0.70\,{\rm opsf}$ At Elevation $z=12\,{\rm ft}$$ \end{array}$

Velocity pressures:

$$\begin{split} q_{h} &:= 0.00256 \cdot K_{Zh} \cdot K_{Zt} \cdot K_{d} \cdot (V\ ^{2}) \cdot I_{W} = 14.63 \cdot \text{psf} \\ q_{Z} &:= 0.00256 \cdot K_{ZZ} \cdot K_{Zt} \cdot K_{d} \cdot (V\ ^{2}) \cdot I_{W} = 14.63 \cdot \text{psf} \end{split}$$

Calculated Pressures:

$W_{up} := \min[q_h \cdot (GCpup), -16 \cdot psf] = -16 \cdot psf$
W _{dn} := max(q _h .GC _{ppos} , 16.psf) = 16.psf
W _{lat} := max(q _h ⋅GCp_lat,16⋅psf) = 16⋅psf

Dead Load Calculations:

WT = 159.65 lbf

 $\mathsf{D} := \frac{\mathsf{WT}}{\mathsf{L}_1 \cdot \mathsf{L}_5} = 7.36 \cdot \mathsf{psf}$

Ice Load Calculations:

$$\begin{split} f_{Z} &= 0.9 & t_{d} = 0.9 \text{ in} \\ q_{Zi} &:= 0.00256 \cdot K_{ZZ} \cdot K_{Zt} \cdot K_{d} \cdot \left(V_{i} \,^{2} \right) = 1.37 \cdot \text{psf} \\ W_{i} &:= q_{Zi} \cdot (0.85) \cdot 2.0 = 2.33 \cdot \text{psf} \\ D_{i} &= 16.02 \cdot \text{psf} \end{split}$$

Seismic Load Calculations:

 $\begin{array}{ll} F_a = 1 & \text{Short-Period Site Coefficient}\left(\underline{\text{Table 11.4-1}}\right) \\ F_v = 1.57 & \text{Long-Period Site Coefficient}\left(\underline{\text{Table 11.4-2}}\right) \\ S_{DS} = 0.836 & \text{Design Spec. Resp. Acc. at Short Period (Eqn 11.4-3)} \\ S_{D1} = 0.45 & \text{Design Spec. Resp. Acc. At Long Period (Eqn 11.4-4)} \\ f_p := \left(\frac{0.4 \cdot a_p \cdot S_{DS}}{R_p \div l_p}\right) \cdot \left[1 + \left[2 \cdot \left(\frac{z}{h}\right)\right]\right] = 1.23 & (Eqn 13.3-1) \\ fpmin := 0.3 \cdot S_{DS} \cdot l_p = 0.25 & (Eqn 13.3-3) \\ fpmax := 1.6 \cdot S_{DS} \cdot l_p = 1.34 & (Eqn 13.3-2) \\ F_p := max(fpmin, min(fpmax, f_p)) = 1.23 \\ \hline \end{array}$

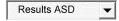
Combined Loads Detail Ref. Sheet No: (36" Proj.) 1.0 A FIGURE 7-2 Snow Load Calculations: 11 Pg = 25.psf Ground Snow Load 0.8 Thermal Factor $C_{t} = 1.2$ Roof Slope Factor $C_{S} = 1$ C.S 0.5 C_e = 1 Exposure Factor 02 Importance Factor $l_{s} = 1$ 7.3 Flat Roof Snow Loads 0.1 20 40 60 80 7.3-1 Flat Roof Snow Load Pf 7.3.1 := max(0.7·Ce·Ct·Is·Pg, 17psf) = 21·psf Roof Slope (Degrees) 7.3.4 Minimum Snow Load for Low-Slope Roofs $\theta.min \ 7.3.4 = 15 \ deg$ $\mathsf{P}_{\mathsf{m}} \coloneqq \left[\left(\mathsf{P}_{\mathsf{g}} \le 20 \cdot \mathsf{psf} \right) \cdot \mathsf{I}_{\mathsf{s}} \cdot \mathsf{P}_{\mathsf{g}} \dots \right] \cdot \left(\theta < \theta_{\mathsf{min}} \quad 7.3.4 \cdot \mathsf{deg} \right) = 20 \cdot \mathsf{psf}$ $+ (P_q > 20 \cdot psf) \cdot I_s \cdot 20 \cdot psf$ $P_{f} := max(P_{m}, P_{f}, 7.3.1) = 21 \cdot psf$ 7.4 Sloped Roof Snow Loads 7.4-1 Sloped Roof (Balanced) Snow Load P_s 7.4 := $C_s \cdot P_f = 21 \cdot psf$ 7.6 Unbalanced Snow Load 7.7-1 Density of Snow $\gamma := \min(0.13 \cdot P_{\alpha} \div psf + 14, 30) \cdot pcf = 17.25 \cdot pcf$ $h_{d}(\underline{l}_{u},\underline{p}_{g},\underline{l}_{s}) \equiv \left| \left(0.43 \cdot \sqrt{\frac{-l_{u}}{ft}}, 20 \right) \cdot \sqrt{\frac{-p_{g}}{psf}} + 10 - 1.5 \right) \cdot \sqrt{\underline{l}_{s}} \right| \cdot ft$ 7.9 Sliding Snow $\frac{7.9 \text{ stiding show}}{\text{USE} := \left(\text{chkBox1} \land \alpha > \text{atan}\left(\frac{0.25}{12}\right)\right) \lor \left(\neg \text{chkBox1} \land \alpha > \text{atan}\left(\frac{2}{12}\right)\right) = 0$ $\omega_{\text{sliding}} \coloneqq \text{USE} \cdot \left[0.4 \cdot P_{f} \cdot W \cdot \min[1, L_{UWW} \div (15 \cdot \text{ft})] \right] = 0$ $len_{sliding} := min(L_{uww}, 15 \cdot ft) = 3 \cdot ft$ P_s 7.9 := $\omega_{sliding} \div len_{sliding} = 0 \cdot psf$ 7.10 Rain-On-Snow $W:=\,L_{UWW}=\,3\!\cdot\!ft$ $\begin{array}{l} \hline P_{s_7.10} := \left[\left(P_{g} \leq 20 \cdot psf \right) \land \left(P_{g} \neq 0 \cdot psf \right) \land \left[\frac{\theta}{deg} < \left[\frac{W}{ft \cdot (50)} \right] \right] \right] \cdot 5 \cdot psf = 0 \cdot psf \\ \hline Balanced Snow Load: P_{s} := P_{s_7.4} + max \left(P_{s_7.9}, P_{s_7.10} \right) \end{array}$ $S_b := P_s = 21 \cdot psf$ 7.7 Drifts on Lower Roofs (Aerodynamic Shade) $h_b := P_s \ 7.4 \div \gamma = 1.22 \cdot ft$ $h_{C} := (h - z) - h_{b} = 6.78 \cdot ft$ Leeward Drift 7.7.1 Lower Roof of a Structure $L_{ulw} := max[(L_u), 20 \cdot ft] = 100 \cdot ft$ $h_{dlw} := h_d(L_{ulw}, P_g, I_s) \cdot [0 \text{ on error}(h_c \div h_b)] \ge 0.2] = 3.35 \cdot ft$ $w_{W} := if(h_{d|W} \le h_{c}, 4 \cdot h_{d|W}, 4 \cdot h_{d|W} \wedge 2 \div h_{c}) = 13.42 \cdot ft$ Windward Drift 7.7.1 Lower Roof of a Structure $L_{UWW} = 3 \cdot ft$ $h_{dww} := \sqrt{(I_{s} \cdot P_{g} \cdot L_{uww})} \div (4 \cdot \gamma) = 1.04 \cdot ft$ $w_{WW} \coloneqq if\left(h_{dWW} \le h_{c}, 4 \cdot h_{dWW}, 4 \cdot h_{dWW} \stackrel{\text{\tiny C}}{\rightarrow} h_{c}\right) = 4.17 \cdot ft$ $h_{d max} := (P_{g} \neq 0) \cdot ft \cdot minPos[max(h_{dlw} - chkBox2, h_{dww}) h_{c} (0.6 \cdot L_{uww})] \div ft$ Pressure of DriftAt Building hd max = 1.8.ft $P_{d1} := h_d max \cdot \gamma = 31.05 \cdot psf$ $w := max(w_{W} - chkBox2, w_{WW}) = 13.42 \cdot ft$ Pd2 := 0.psf Pressure of DriftAt Fascia Snow Drift (Uniform Pressure): $S_d := 0.5 \cdot (P_{d1} + P_{d2}) + P_f 7.3.1 = 37 \cdot psf$

Project Description: Job No: R25-01-042 105 School Creek Trail RICE Luxemburg, WI 54217 Sheet No: Engineer: SWP 1.0 A McDonalds - Puyallup, Phone: (920) 617-1042 ENGINEERING Fax: (920) 617-1100 Date: 2/26/2025 Rev: WA. L2401075 www.rice-inc.com Template: **REI-MC-5209** Chk By: Date:

Load Combinations:

Loads (Unfactored):

D = 7.36 ⋅ psf	Dead Load	Canopy is a lower roof and per C2
$S_b = 21 \cdot psf$	Balanced Snow Load	included in the snow drift loads
S _d = 36.53⋅psf	Drift plus Balanced Snow Load	
W _{up} = −16·psf	Uplift Wind Load (Unfactored)	
W _{dn} = 16⋅psf	Downward Wind Load (Unfactored)	
Wlat = 16⋅psf	Lateral Wind Load (Unfactored)	
Dj = 16.02⋅psf	Dead Load Due to Ice (Snow Load Controls)	
W _i = 2.33 ⋅ psf	Concurrent Wind Load with Ice Load (Snow Load Cor	ntrols)
E _h = 9.03⋅psf	Horizontal Seismic Load	
E _V = 1.23⋅psf	Vertical Seismic Load	
$LL = 0 \cdot psf$	Live Load	
L _r = 20⋅psf	Reduced Roof Live Load	


Load Cases:

ULC"	"[ASD LC]"
"1"	D
"2"	$D + 0.7 \cdot D_j + LL$
"3"	$D + max \big(0.7 \cdot D_{i} + 0.7 W_{i}, S_{d}, L_{r} \big)$
"4"	$D + 0.75 \cdot LL + 0.75 \cdot \left(max(S_{b},L_{r})\right)$
"5"	$D + 0.6 \cdot W_{dn}$
"5a"	$D + 0.7 \cdot (E_h + E_v)$
"6"	$D + 0.75 \cdot LL + 0.75 \cdot \left(0.6 \cdot W_{dn}\right) + 0.75 \cdot \left(max\left(S_{b},L_{r}\right)\right)$
"6a"	$D + 0.75 \cdot LL + 0.75 \cdot \left[0.7 \cdot \left(E_{h} + E_{v}\right)\right] + 0.75 \cdot S_{b}$
"7"	$0.6 \cdot D + 0.6 \cdot W_{up}$
"7a"	$0.6 {\cdot} D + \ 0.7 {\cdot} D_{i} + \ 0.7 {\cdot} W_{i}$
"IBC 8"	(0.6W _{dn} − D)·chkBox3
"IBC 8a"	$(0.6W_{dn} + D + 0.5 \cdot S_d) \cdot chkBox3$
"IBC 8b"	$(0.3 \cdot W_{dn} + D + S_d) \cdot chkBox3$

LC"	"[LRFD LC]"
"1"	1.4D
"2"	$1.2D + 1.6LL + 0.5 \cdot max(S_b, L_r)$
"2a"	$1.2D + \ 1.6LL + \ 0.2 \cdot D_{i} + \ 0.5 \cdot S_{b}$
"3"	$1.2\text{D} + 1.6 \cdot \left(\text{max} \left(\text{L}_{r}, \text{S}_{d} \right) \right) + 0.5 \cdot \left(\text{max} \left(\text{W}_{dn}, \text{LL} \right) \right)$
"4"	$1.2D+1.0{\cdot}W_{dn}+1.0LL+0.5{\cdot}\big(max\big(L_{r},S_{b}\big)\big)$
"4a"	$1.2D + 1.0LL + D_{j} + W_{j} + 0.5 \cdot S_{b}$
"5"	$1.2 \cdot D + 1.0 \cdot (E_h + E_v) + 1.0 LL + 0.2 \cdot S_b$
"6"	$0.9 \cdot D + 1.0 \cdot W_{up}$
"6a"	$0.9 \cdot D + D_i + W_i$
"7"	$0.9D + 1.0 \cdot (E_{h} + E_{v})$
"IBC 8"	(1.0W _{dn} − D)·chkBox3
"IBC 8a"	$(1.0W_{dn} + D + 0.5 \cdot S_d) \cdot chkBox3$
"IBC 8b"	$(0.5W_{dn} + D + S_d) \cdot chkBox3$

Combined Loads	Detail Ref.	Sheet No:
(36" Proj.)		1.0 B

Canopy is a lower roof and per C2.3.4 the effects of freezing rain are ncluded in the snow drift loads

	("LC"	"[ASD LC]"	1
	"1"	7.36	
	"2"	18.58	
	"3"	43.89	
	"4"	23.11	
	"5"	16.96	
RESULTS =	"5a"	14.54	∙psf
REGOLIO -	"6"	30.31	-pai
	"6a"	28.5	
	"7"	-5.18	
	"7a"	17.26	
	"IBC 8"	0	
	"IBC 8a"	0	
	("IBC 8b"	0)	

Use 44 psf (Downward) Use 6 psf (Upward) Use 10 psf (Laterally)

 \rightarrow "ASD"

DI	СЕ	105 School Creek Trail	Project Description:	Job No:		R25-01-042	
		Luxemburg, WI 54217 Phone: (920) 617-1042	McDonalds - Puyallup,	Engineer:	SWP	Sheet No:	1.0 B
	ENGINEERING	Fax: (920) 617-1100	WA. L2401075	Date:	2/26/2025	Rev:	
Templa	ate: REI-MC-5209	www.rice-inc.com	WA. 22401075	Chk By:		Date:	

<u>ASCE-7/16: Con</u>	nbination of	Loads		Co	mbined L (48'' Pro			Detail Ref.	Sheet No: 1.1
<u>Generic Input Variab</u>	<u>les:</u>		L		<u>(10 110</u>	<u>'</u>]./			
Risk Category	II 🔻	<u>Table 1.5-1</u> &	<u>Table 1.5-2</u>	Exp	osure Factor	r=	Partially I	Exposed	Table 7-3-1
Importance Factors	I _S =1 I _i	= 1 I _W = 1	$I_p = 1$	The	emal Factor:	= [Thermal :	= "Unheated &	& Open Air"
Mean Roof Height	$h \equiv 20 \cdot ft$	(Includ	les Parapet)						· ·
Canopy Height	$z \equiv 12 \cdot ft$			Roc	of Form =		Monoslo	oe 🔻	
Canopy Projection:	L _{uww} ≡ 4·ft								
Building Width	$L_{width} \equiv 50$	ft		Situation	Sloped Glazi	ing is Appli	cable	<u>IBC 24</u>	04.2
Building Length	$L_{length} \equiv 10$)0 ∙ft		Input Varia	<u>bles:</u>				
Upwind Fetch Distance	L _u ≡ 100 ·ft		lœ	Thickness:	$t \equiv 1 \cdot in$		⁻ igure 10-2 Vest	<u>Figure 1</u> East	<u>0-2</u>
Canopy Slope	$\boldsymbol{\theta} \equiv \boldsymbol{0} \boldsymbol{\cdot} \boldsymbol{deg}$		Co	ncurrent Wind.	V _i ≡ 3	30∙ mph			
Building Roof Slope	$\alpha = 0 {\cdot} \text{deg}$		<u>Sn</u>	ow Input Va	riables:				
		Chapter 30.11		Leeward D	Drift is Not App	plicable			
Wind Input Variables		Figure 26.5-1A		Ground Snow	/Load	Pg ≡ 25·p	osf <u>Figure</u>	& Figu	re
Exposure Category	B	Figure 26.5-1B		-			<u>7.2-1 W</u>	lest 7.2-1	East
Wind Velocity	$V \equiv 98 \cdot mph$	Figure 26.5-1C Figure 26.5-1D		Thermal Facto)r	C _t = 1.2	Table 7		
Structure = Buildi	ngs: C&C 🗨			Exposure Fac	tor	C _e := Tab	ole 7-2 _İ terr	, i _{exp} = 1	
Directionality Factor	$K_{d} = 0.85$	<u>Table 26.6-1</u>	آ ل	Inobstructed S	lippery Surfac		bloped Roof .oads		Figure 7.4-1
Topographic Factor	$K_{zt} \equiv 1.0$	Figure 26.8-1	W:=	0.5 · min (Lwidt	h,Llenath)=			-	
Effective Wind Area	$EWA \equiv 1 \cdot sq ft$				- ,				
Internal Pressure Coeffi	icients:		<u>De</u> Qty	<u>ad Load & I</u> Member F		ariables: Memberi	Lenath	Circumscribii	na Diameter
Open Buildings	-		nf ≡		375 ·in ^2	L1 ≡ 8		$D_{c1} \equiv 8.25 \cdot i$	
Enclosure = "Open E			nb ≡	4 A ₂ ≡ 0.4	375 ∙in ^2	L2 ≡ I	-uww	$D_{C2} \equiv 0 \cdot in$	Inflill Type 1
	<u>le 26.13-1</u> le 26.13-1		nb1 :	≡ 1 A3 = 8.1	4 ⋅in ^2	L3 ≡ 8	30∙in	$D_{C3} \equiv 0 \cdot in$	Inflill Type 2
Live Load Input Variab	les:		n _{b2} :	≡ 0 A4 ≡ 0·ir	ו ^2	L4 ≡ ()∙in	$D_{C4} \equiv 0 \cdot in$	Hanger Rods
Type = "Custom: LL =	0psf"	<u>Table 4.3-1</u>	n _o ≡	2 $t_0 \equiv 0.30$	1469 d ₀ ≡ 8·i	in L ₅ ≡ l	-uww		Outrigger
LL := psf·LL' = 0·psf Roof Live Load Input V	/ariables:	_	tg ≡ ∖).0∙in Glass Thickn	w w	′1 ≡ 0·in	L ₆ ≡ 0·in	Glass Pa	nel Size
L _r := 20⋅psf	4.8 Reduction in Roo	f Live Loads	t _a ≡ 0.101	72 ∙in Alum F Thickn		′2≡ L _{uww}	L7 ≡ 80 · ir	n Alum Pai	nel Size
<u>Seismic Input Variab</u>	les:								
Spectral Response	S _S ≡ 1.254 <i>Map</i>	ped Spectral Resp ped Spectral Resp			1				
Component Factors	P	nponent Amplificati nponent Response			<u>5-1</u>)				

Site Soil Class = D 💌 (Assume

(Assume Site Class "D" if Unknown per Section 20.1)

RICE	۲.	105 School Creek Trail	Project Description:	Job No:		R25-01-042	
	=	Luxemburg, WI 54217 Phone: (920) 617-1042	McDonalds - Puyallup,	Engineer:	SWP	Sheet No:	1.1
E	NGINEERING	Fax: (920) 617-1100	WCD0naids - Puyanup, WA. L2401075	Date:	2/26/2025	Rev:	
Template:	REI-MC-5209	www.rice-inc.com	WA. 22401075	Chk By:		Date:	

Wind Load Calculations:

$V=98\cdot mph$	K _{zt} = 1	I _W = 1
$K_{d} = 0.85$		r = 0.6
External Pressure C	Internal Pressure:	
Figure 30.11-1B		
GCp_lat = 1	00 . 11	GCpi1 = 0
GCpup = -0.9	$GC_{ptop} = -1.1$	GCpi2 = 0

 $GC_{pbot} = -0.9$

Corner Zone Dimension:

 $GC_{ppos} = 0.8$

 $\begin{array}{ll} a &=& max(min(5.0\cdot ft, 10.0\cdot ft, 8.0\cdot ft, 10\cdot ft), min(2.0\cdot ft, 4.0\cdot ft), 3\cdot ft) = 5\cdot ft\\ \hline \label{eq:constraint} \textbf{Velocity pressure Coefficients:}\\ K_{Zh} &=& 0.70\cdot psf \qquad \text{At Elevation } h = 20\cdot ft\\ K_{ZZ} &=& 0.70\cdot psf \qquad \text{At Elevation } z = 12\cdot ft \end{array}$

Velocity pressures:

$$\begin{split} q_{h} &:= 0.00256 \cdot K_{zh} \cdot K_{zt} \cdot K_{d} \cdot (V \ ^{2}) \cdot I_{W} = 14.63 \cdot \text{psf} \\ q_{z} &:= 0.00256 \cdot K_{zz} \cdot K_{zt} \cdot K_{d} \cdot (V \ ^{2}) \cdot I_{W} = 14.63 \cdot \text{psf} \end{split}$$

Calculated Pressures:

$W_{up} := \min[q_{h} \cdot (GCpup), -16 \cdot p)$	sf] = −16·ps
W _{dn} := max(q _h .GC _{ppos} , 16.psf) = 16·psf
W _{lat} := max(q _h .GCp_lat, 16.psf) = 16·psf

Dead Load Calculations:

WT = 174.47 lbf $D := \frac{WT}{L1 \cdot L5} = 6.54 \cdot \text{psf}$

Ice Load Calculations:

$$\begin{split} f_{Z} &= 0.9 & t_{d} = 0.9 \, \text{in} \\ q_{Zi} &:= 0.00256 \cdot K_{ZZ} \cdot K_{Zt} \cdot K_{d} \cdot \left(V_{i} \,^{2} \right) = 1.37 \cdot \text{psf} \\ W_{i} &:= q_{Zi'} (0.85) \cdot 2.0 = 2.33 \cdot \text{psf} \\ D_{i} &= 14.4 \cdot \text{psf} \end{split}$$

Seismic Load Calculations:

 $\begin{array}{ll} F_a = 1 & \text{Short-Period Site Coefficient}\left(\overline{\text{Table 11.4-1}}\right) \\ F_v = 1.57 & \text{Long-Period Site Coefficient}\left(\overline{\text{Table 11.4-2}}\right) \\ S_{DS} = 0.836 & \text{Design Spec. Resp. Acc. at Short Period (Eqn 11.4-3)} \\ S_{D1} = 0.45 & \text{Design Spec. Resp. Acc. At Long Period (Eqn 11.4-4)} \\ f_p := \left(\frac{0.4 \cdot a_p \cdot S_{DS}}{R_p \div l_p}\right) \cdot \left[1 + \left[2 \cdot \left(\frac{z}{h}\right)\right]\right] = 1.23 & (Eqn 13.3-1) \\ fpmin := 0.3 \cdot S_{DS} \cdot l_p = 0.25 & (Eqn 13.3-3) \\ fpmax := 1.6 \cdot S_{DS} \cdot l_p = 1.34 & (Eqn 13.3-2) \\ F_p := max(fpmin, min(fpmax, f_p)) = 1.23 \\ \hline \end{array}$

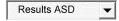
Combined Loads Detail Ref. Sheet No: (48" Proj.) 1.1 A FIGURE 7-2 Snow Load Calculations: 11 Pg = 25.psf Ground Snow Load 0.8 Thermal Factor $C_{t} = 1.2$ Roof Slope Factor $C_{S} = 1$ C.S 0.5 C_e = 1 Exposure Factor 02 Importance Factor $l_{s} = 1$ 7.3 Flat Roof Snow Loads 0.1 20 40 60 80 7.3-1 Flat Roof Snow Load Pf 7.3.1 := max(0.7·Ce·Ct·Is·Pg, 17psf) = 21·psf Roof Slope (Degrees) 7.3.4 Minimum Snow Load for Low-Slope Roofs $\theta.min \ 7.3.4 = 15 \ deg$ $\mathsf{P}_{\mathsf{m}} \coloneqq \left[\left(\mathsf{P}_{\mathsf{g}} \le 20 \cdot \mathsf{psf} \right) \cdot \mathsf{I}_{\mathsf{s}} \cdot \mathsf{P}_{\mathsf{g}} \dots \right] \cdot \left(\theta < \theta_{\mathsf{min}} \quad 7.3.4 \cdot \mathsf{deg} \right) = 20 \cdot \mathsf{psf}$ $+ (P_q > 20 \cdot psf) \cdot I_s \cdot 20 \cdot psf$ $P_{f} := max(P_{m}, P_{f}, 7.3.1) = 21 \cdot psf$ 7.4 Sloped Roof Snow Loads 7.4-1 Sloped Roof (Balanced) Snow Load P_s 7.4 := $C_s \cdot P_f = 21 \cdot psf$ 7.6 Unbalanced Snow Load 7.7-1 Density of Snow $\gamma := \min(0.13 \cdot P_{\alpha} \div psf + 14, 30) \cdot pcf = 17.25 \cdot pcf$ $h_{d}(\underline{l}_{u},\underline{p}_{g},\underline{l}_{s}) \equiv \left| \left(0.43 \cdot \sqrt{\frac{-l_{u}}{ft}}, 20 \right) \cdot \sqrt{\frac{-p_{g}}{psf}} + 10 - 1.5 \right) \cdot \sqrt{\underline{l}_{s}} \right| \cdot ft$ 7.9 Sliding Snow $\frac{7.9 \text{ stiding show}}{\text{USE} := \left(\text{chkBox1} \land \alpha > \text{atan}\left(\frac{0.25}{12}\right)\right) \lor \left(\neg \text{chkBox1} \land \alpha > \text{atan}\left(\frac{2}{12}\right)\right) = 0$ ω sliding := USE $(0.4 \cdot P_f \cdot W \cdot min (1, L_{UWW} \div (15 \cdot f))) = 0$ $len_{sliding} := min(L_{uww}, 15 \cdot ft) = 4 \cdot ft$ P_s 7.9 := $\omega_{sliding} \div len_{sliding} = 0 \cdot psf$ 7.10 Rain-On-Snow $W := L_{UWW} = 4 \cdot ft$ $\begin{array}{l} \hline v_{1} = -L_{UWW} = 4 \cdot n \\ \hline P_{s}_{7,10} := \left[\left(P_{g} \leq 20 \cdot psf \right) \land \left(P_{g} \neq 0 \cdot psf \right) \land \left[\frac{\theta}{deg} < \left[\frac{W}{ft \cdot (50)} \right] \right] \right] \cdot 5 \cdot psf = 0 \cdot psf \\ \hline Balanced Snow Load: P_{s} := P_{s}_{7,4} + max \left(P_{s}_{7,9}, P_{s}_{7,10} \right) \end{array}$ $S_b := P_s = 21 \cdot psf$ 7.7 Drifts on Lower Roofs (Aerodynamic Shade) $h_b := P_s \ 7.4 \div \gamma = 1.22 \cdot ft$ $h_{C} := (h - z) - h_{b} = 6.78 \cdot ft$ Leeward Drift 7.7.1 Lower Roof of a Structure $L_{ulw} := max[(L_u), 20 \cdot ft] = 100 \cdot ft$ $h_{dlw} := h_d(L_{ulw}, P_g, I_s) \cdot [0 \text{ on error}(h_c \div h_b)] \ge 0.2] = 3.35 \cdot ft$ $w_{W} := if(h_{d|W} \le h_{c}, 4 \cdot h_{d|W}, 4 \cdot h_{d|W} \wedge 2 \div h_{c}) = 13.42 \cdot ft$ Windward Drift 7.7.1 Lower Roof of a Structure $L_{UWW} = 4 \cdot ft$ $h_{dww} := \sqrt{(I_{s} \cdot P_{g} \cdot L_{uww})} \div (4 \cdot \gamma) = 1.2 \cdot ft$ $w_{WW} \coloneqq if \left(h_{dWW} \le h_{C}, 4 \cdot h_{dWW}, 4 \cdot h_{dWW} \stackrel{\text{\tiny L}}{\to} h_{C} \right) = 4.82 \cdot ft$ $h_{d max} := (P_{g} \neq 0) \cdot ft \cdot minPos[max(h_{dlw} - chkBox2, h_{dww}) h_{c} (0.6 \cdot L_{uww})] \div ft$ Pressure of DriftAt Building $P_{d1} := h_d max \cdot \gamma = 41.4 \cdot psf$ hd max = 2.4.ft $w := max(w_{W} - chkBox2, w_{WW}) = 13.42 \cdot ft$ Pd2 := 0.psf Pressure of DriftAt Fascia Snow Drift (Uniform Pressure): $S_d := 0.5 \cdot (P_{d1} + P_{d2}) + P_f 7.3.1 = 42 \cdot psf$

Project Description: Job No: R25-01-042 105 School Creek Trail RICE Luxemburg, WI 54217 Sheet No: Engineer: SWP 1.1 A McDonalds - Puyallup, Phone: (920) 617-1042 ENGINEERING Fax: (920) 617-1100 Date: 2/26/2025 Rev: WA. L2401075 www.rice-inc.com Template: **REI-MC-5209** Chk By: Date:

Load Combinations:

Loads (Unfactored):

D = 6.54 ⋅ psf	Dead Load	Canopy is a lower roof and per C2			
$S_b = 21 \cdot psf$	Balanced Snow Load	included in the snow drift loads			
$S_d = 41.7 \cdot psf$	Drift plus Balanced Snow Load				
W _{up} = −16·psf	Uplift Wind Load (Unfactored)				
W _{dn} = 16⋅psf	Downward Wind Load (Unfactored)				
Wlat = 16⋅psf	Lateral Wind Load (Unfactored)				
Di = 14.4 ⋅ psf	Dead Load Due to Ice (Snow Load Controls)				
Wi = 2.33 ⋅ psf	Concurrent Wind Load with Ice Load (Snow Load Controls)				
E _h = 8.02⋅psf	Horizontal Seismic Load				
E _v = 1.09⋅psf	Vertical Seismic Load				
$LL = 0 \cdot psf$	Live Load				
L _r = 20⋅psf	Reduced Roof Live Load				


Load Cases:

"LC"	"[ASD LC]"
"1"	D
"2"	$D + 0.7 \cdot D_i + LL$
"3"	$D + max \big(0.7 \cdot D_i + 0.7 W_i, S_d, L_r \big)$
"4"	$D + 0.75 \cdot LL + 0.75 \cdot \left(max(S_{b},L_{r})\right)$
"5"	$D + 0.6 \cdot W_{dn}$
"5a"	$D + 0.7 \cdot (E_h + E_v)$
"6"	$D + 0.75 \cdot LL + 0.75 \cdot \left(0.6 \cdot W_{dn}\right) + 0.75 \cdot \left(max(S_{b},L_{r}\right)\right)$
"6a"	$D + 0.75 \cdot LL + 0.75 \cdot \left[0.7 \cdot \left(E_{h} + E_{v}\right)\right] + 0.75 \cdot S_{b}$
"7"	$0.6 \cdot D + 0.6 \cdot W_{up}$
"7a"	$0.6 {\cdot} D + \ 0.7 {\cdot} D_{j} + \ 0.7 {\cdot} W_{j}$
"IBC 8"	(0.6W _{dn} − D)·chkBox3
"IBC 8a"	$(0.6W_{dn} + D + 0.5 \cdot S_d) \cdot chkBox3$
"IBC 8b"	$(0.3 \cdot W_{dn} + D + S_d) \cdot chkBox3$

LC"	"[LRFD LC]"
"1"	1.4D
"2"	$1.2D + 1.6LL + 0.5 \cdot max(S_b, L_r)$
"2a"	$1.2D + \ 1.6LL + \ 0.2 \cdot D_{i} + \ 0.5 \cdot S_{b}$
"3"	$1.2\text{D} + 1.6 \cdot \left(\text{max} \left(\text{L}_{r}, \text{S}_{d} \right) \right) + 0.5 \cdot \left(\text{max} \left(\text{W}_{dn}, \text{LL} \right) \right)$
"4"	$1.2D+1.0{\cdot}W_{dn}+1.0LL+0.5{\cdot}\big(max\big(L_{r},S_{b}\big)\big)$
"4a"	$1.2D + 1.0LL + D_{j} + W_{j} + 0.5 \cdot S_{b}$
"5"	$1.2 \cdot D + 1.0 \cdot (E_h + E_v) + 1.0 LL + 0.2 \cdot S_b$
"6"	$0.9 \cdot D + 1.0 \cdot W_{up}$
"6a"	$0.9 \cdot D + D_i + W_i$
"7"	$0.9D + 1.0 \cdot (E_{h} + E_{v})$
"IBC 8"	(1.0W _{dn} − D)·chkBox3
"IBC 8a"	$(1.0W_{dn} + D + 0.5 \cdot S_d) \cdot chkBox3$
"IBC 8b"	$(0.5W_{dn} + D + S_d) \cdot chkBox3$

Combined Loads	Detail Ref.	Sheet No:
(48" Proj.)		1.1 B

Canopy is a lower roof and per C2.3.4 the effects of freezing rain are ncluded in the snow drift loads

	("LC"	"[ASD LC]"	
	"1"	6.54	
	"2"	16.63	
	"3"	48.24	
	"4"	22.29	
	"5"	16.14	
RESULTS =	"5a"	12.92	nef
NEGOLIG -	"6"	29.49	∙psf
	"6a"	27.08	
	"7"	-5.67	
	"7a"	15.64	
	"IBC 8"	0	
	"IBC 8a"	0	
	"IBC 8b"	0)	

Use 49 psf (Downward) Use 6 psf (Upward) Use 10 psf (Laterally)

 \rightarrow "ASD"

RICE		105 School Creek Trail	Project Description:	Job No:		R25-01-042	
		Luxemburg, WI 54217 Phone: (920) 617-1042	McDonalds - Puyallup,	Engineer:	SWP	Sheet No:	1.1 B
EN	GINEERING	Fax: (920) 617-1100	WA. L2401075	Date:	2/26/2025	Rev:	
Template:	REI-MC-5209	www.rice-inc.com	WA. 22401075	Chk By:		Date:	

ENGINEERING

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

Description: 36" Typical System

Project Name:

McDonalds - Puyallup, WA. L2401075

 Sheet No:
 2.00

 Initials:
 SWP

 Date:
 2/26/2025

 Revision:
 --/--/---

Loading Information:

<i>DL_{dn}</i> ≔44 psf	worst case downward load
LC6 := 30.31 psf	load case 6 w/o drift
DL _{up} ≔6 psf	uplift load
$WL_{Lat} := 10 \text{ psf}$	lateral wind load
DeadL := 7.36 psf	dead load
S _b ≔21 psf	balanced snow load
<i>P_{d1}</i> ≔ 31.05 psf	snow drift (at wall)
<i>P_{d2}</i> ≔0 psf	snow drift (at front fascia)

System Information:

□ Standalone	Soffit Panel
L _c := 94.67 in	canopy length
<i>Proj</i> := 36 in	canopy projection

Member Section Information:

Top Panel:		
$t_p := 0.1$ in	panel thickness	
Panel Stiffener:		
b _s ≔ 1 in	stiffener width	
d _s ≔ 1 in	stiffener depth	
$t_{_{S}} := 0.125$ in	stiffener thickness	
Front Fascia:		
<i>b_{ff}</i> ≔ 2 in	front fascia width	
<i>d_{ff}</i> ≔ 8 in	front fascia depth	
$t_{ff} := 0.125$ in	front fascia thickness	
Rear Fascia:		
<i>b_{rf}</i> := 2 in	rear fascia width	
<i>d_{rf}</i> ≔ 8 in	rear fascia depth	
$t_{rf} := 0.125$ in	rear fascia thickness	

End Outrigger:

b _{eo} ≔2 in	end outrigger width
$d_{_{ m eo}} := 8$ in	end outrigger depth
t _{eo} ≔ 0.125 in	end outrigger thickness

Intermediate Outrigger:

<i>b_{io}</i> ≔2 in	intermediate outrigger width
<i>d_{io}</i> ≔6 in	intermediate outrigger depth
<i>t_{io} ≔</i> 0.125 in	intermediate outrigger thickness

Anchor Channel Bracket:

<i>b_{cb}</i> ≔ 1.6913 in	anchor channel flange length
<i>d_{cb}</i> ≔ 5.6937 in	anchor channel depth
<i>t_{cb}</i> ≔ 0.25 in	anchor channel thickness

RICE ENGINEERING

36" Typical System

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

36" Projection System:

 $L_{c} = 94.67$ in Proj = 36 in $t_{p} = 0.1$ in $L_{eff} := 1$ in

 $DL_{up} = 6 \text{ psf}$ $q := Max \left(DL_{dn} , DL_{up} \right) = 44 \text{ psf}$

L/60

Panel Deflection Criteria

SPA := 22.67 in " Panel Stiffener Spacing

Check Panel:

coef_a := [0 12.5 25 50 75 100 125 150 175 200 250] [¬]

 $DL_{dn} =$ 44 psf

*coef*_v := [0 0.62 0.88 1.18 1.37 1.53 1.68 1.77 1.88 1.96 2.12] [¬]

coef_{ad}:=[0 1.06 2.11 3.78 5.18 6.41 7.65 8.6 9.55 10.6 12.3][¬]

$$coef_{\alpha} := [0 4.48 6.81 9.92 12.25 14.22 16 17.5 18.9 20.3 22.8]$$

 σ_{all} := 8205.13 psi[¬] - Allowable Stress, used for Design

y_{all}:=0.38 in [¬] - Allowable Deflection

The relations among load, deflection and stress are expressed by numerical values of the dimensionless coefficients shown below (It is assumed that v is equal to or near 0.316):

$$coef_{q} = \frac{q_{adj} \cdot b^{-4}}{E \cdot t^{-4}} \qquad coef_{y} = \frac{y}{t}$$
$$coef_{od} = \frac{\sigma_{d} \cdot b^{-2}}{E \cdot t^{-2}} \qquad coef_{\sigma} = \frac{\sigma \cdot b^{-2}}{E \cdot t^{-2}}$$

The collected data for these coefficients is listed below. For any given value of qb4/Et4, values for the other three coefficients may be interpolated.

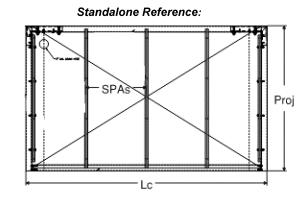
$$y_{act} = \text{linterp} \left(coef_q \ , coef_y \ , \frac{q \cdot b \cdot 4}{E \cdot t_1 \cdot 4} \right) \cdot t_1 \cdot 1.5 \qquad \qquad y_{act} := 0.21 \text{ in } \gamma_{y_{all}} = 0.38 \text{ in}$$

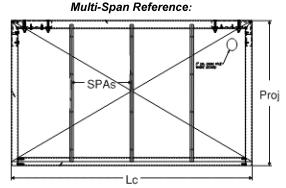
$$\sigma_d := \text{linterp} \left(coef_q \ , coef_{\sigma d} \ , \frac{q \cdot \left(SPA_s\right)^4}{E_{alum} \cdot t_p \cdot 4} \right) \cdot \left(\frac{E_{alum} \cdot t_p \cdot 2}{\left(SPA_s\right)^2} \right) \qquad \qquad \sigma_d = 1065.32 \text{ psi}$$

$$\sigma_{all} = 8205 \text{ psi}$$

$$\sigma := \left(\text{linterp} \left(coef_q \ , coef_{\sigma} \ , \frac{q \cdot \left(SPA_s\right)^4}{E_{alum} \cdot t_p \cdot 4} \right) \cdot \frac{E_{alum} \cdot t_p \cdot 2}{\left(SPA_s\right)^2} \right) \qquad \qquad \sigma = 2483.4 \text{ psi}$$

$$\sigma_{all} = 8205 \text{ psi}$$


Using L /60 Deflection Limit: Use0.100 " Thick Panel Type = 1100-H14 Aluminum Maximum Span = 22.67"


Number of Intermediate Stiffeners:

O 1 Int. Stiffener
O 2 Int. Stiffeners
 3 Int. Stiffeners
O 4 Int. Stiffeners
O 5 Int. Stiffeners

in 7

psi psi

"0.56 ≤ 1.00 . PASS" PANEL := stack $(I_{\Delta}, I_{\sigma d}, I_{\sigma}) =$ "0.13 ≤ 1.00 ∴ PASS" "0.3 ≤ 1.00 ∴ PASS"

Project Name:

McDonalds - Puyallup, WA. L2401075

Sheet No: 2.01 Initials: SWP Date: 2/26/2025 Revision: --/--/----

Description:

36" Typical System

ENGINEERING 105 School Creek Trail | Luxemburg, WI 54217 **Project Name:** (Phone) 920.617.1042 | (Fax) 920.617.1100

Tension Allowables:

T_{poutstiffener} := 378 lbf[¬]

T_{povrpanel} := 221.67 lbf[¬] *T_{fast}* := 645 lbf[¬]

T_{fall} := 221.67 lbf[¬]

McDonalds - Puyallup, WA. L2401075

Sheet No: 2.02 Initials: SWP Date: 2/26/2025 Revision: --/--/----

REI Project # R25-01-042

Check Panel Fasteners (to Stiffener):		
Fastener Type:	Stiffener Material:	
#12-14 (Cond. CW)	6061-T6 🔽	
$D_{ws} := 0.305$ in $SP_f := 12$ in	$d_e := 0.5$ in $t_s = 0.125$ in	

Shear Allowables:

V_{bearstiffener} := 684 lbf[¬] V_{bearpanel} := 230.4 lbf[¬] V_{fast} := 373 lbf[¬] V_{fall} := 230.4 lbf[¬]

 $w_{dl} := q \cdot SPA_s = 6.93$ pli

 $T_f := 1.25 \cdot w_{dl} \cdot SP_f = 103.89$ lbf

$$I_f := \frac{T_f}{T_{fall}} = 0.47$$

Use #12-14 S.S. Fasteners 12" o.c. max. to attach panel to stiffener as shown 300 Series (Fy = 65,000 psi) Min. 1/2" edge/end distance w/ full engagement into stiffener on load bearing length of fastener per manufacturer specifications.

Check Panel Fasteners (to Outriggers):

F	astener Type:	Outrigger Material:
	#12-14 (Cond. CW)	6005-T5 🔽
D	_{ws1} := 0.305 in SP _{f1} := 12 in	$d_{e1} \coloneqq 0.5$ in $t_{io} = 0.12$ in

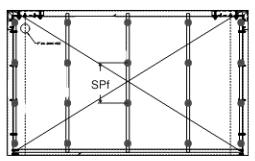
Shear Allowables:

V_{bearoutrigger} := 684 lbf[¬] V_{bearpanel1} := 230.4 lbf[¬] *V_{fast1}* := 373 lbf[¬] V_{fall1} := 230.4 lbf [¬]

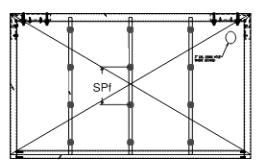
T_{poutoutrigger} := 378 lbf[¬] *T_{povrpanel1}* := 221.67 lbf[¬] *T_{fast1}* := 645 lbf[¬] *T_{fall1}* := 221.67 lbf[¬]

Tension Allowables:

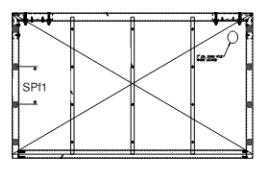
 $w_{dl1} := q \cdot 0.5 \cdot SPA_s = 3.46$ pli


 $T_{f1} := 1.25 \cdot w_{dl1} \cdot SP_{f1} = 51.95$ lbf

$$I_{f1} := \frac{T_{f1}}{T_{fall1}} = 0.23$$


Use #12-14 S.S. Fasteners **12" o.c. max.** to attach panel to outrigger as shown 300 Series (Fy = 65,000 psi) Min. 1/2" edge/end distance w/ full engagement into outrigger on load bearing length of fastener per manufacturer specifications.

** Multi-span systems only **


Standalone Reference:

Description: 36" Typical System
 Sheet No:
 2.03

 Initials:
 SWP

 Date:
 2/26/2025

 Revision:
 --/--/---

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

Project Name:

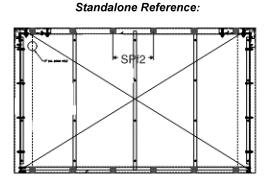
McDonalds - Puyallup, WA. L2401075

Fascia Material:	
6005-T5 🔽	Ì

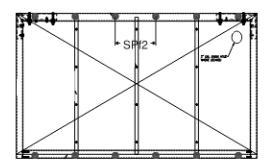
 $D_{ws2} := 0.305 \text{ in } SP_{f2} := 12 \text{ in } d_{e}$

#12-14 (Cond. CW)

Shear Allowables:


 $V_{bearfascia} := 684 \text{ lbf}^{\neg}$ $V_{bearpanel2} := 230.4 \text{ lbf}^{\neg}$ $V_{fast2} := 373 \text{ lbf}^{\neg}$ $V_{fall12} := 230.4 \text{ lbf}^{\neg}$ Tension Allowables: $T_{poutfascia} := 378 \text{ lbf}^{\neg}$ $T_{povrpanel2} := 221.67 \text{ lbf}^{\neg}$ $T_{fast2} := 645 \text{ lbf}^{\neg}$ $T_{fall2} := 221.67 \text{ lbf}^{\neg}$

 $w_{dl2} := q \cdot 0.5 \cdot SPA_s = 3.46$ pli


 $T_{f2} := 1.25 \cdot w_{d/2} \cdot SP_{f2} = 51.95$ lbf

$$I_{f2} := \frac{T_{f2}}{T_{fall2}} = 0.23$$

Use #12-14 S.S. Fasteners 12" o.c. max. to attach panel to front/rear fascia as shown 300 Series (Fy = 65,000 psi) Min. 1/2" edge/end distance w/ full engagement into outrigger on load bearing length of fastener per manufacturer specifications.

Multi-Span Reference:

	"0.47 ≤ 1.00 ∴ PASS"
$PANEL_FASTENERS := stack \left(I_{f} , I_{f1} , I_{f2} \right) =$	"0.23 ≤ 1.00 ∴ PASS"
	"0.23 ≤ 1.00 ∴ PASS"

ENGINEERING

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

PANEL STIFFENER

Description: 36" Typical System

Project Name:

McDonalds - Puyallup, WA. L2401075

Sheet No: 2.04 Initials: SWP Date: 2/26/2025 Revision: --/--/----

<u>System Data:</u>	Stiffener Da	nta:	Outrigge	r Material:	Stiffener Shape:
Proj = 36 in	3	L := Proj - 4 in = 32 in	6005-T5	V	Rectangular Tube
$DL_{dn} =$ 44 psf	$d := d_s = 1$ in	6	d_ := 0.5 ir	$t_0 := t_{e0} = 0.12$ in	Stiffener Material:
$DL_{up} = 6 \text{ psf}$	$t := t_s = 0.12$ in	E _{alum} = 10100000 psi	-	Properties:	6061-T6
<i>WL_{Lat}</i> = 10 psf <i>SPA</i> _ = 22.67 in				$A_1 = 0.44 \text{ in}^2$	Fascia Material:
3			$v_{v1}^{\chi 1} = 0.06 \text{ in}^4$	$J_1 = 0.08 \text{ in}^4$	6005-T5
Fascia Data:	10 in		$S_{x1} = 0.11 \text{ in}^3$	$Z_{x1} = 0.14 \text{ in}^3$	
$t_f := \operatorname{Min}\left(t_{ff}, t_{rf}\right) = 0.$	12 111	8	S _{y1} = 0.11 in ³	$Z_{y1} = 0.14 \text{ in}^3$	

CALCULATIONS

a = 11.33 in
$TL := Max \left(DL_{dn} , DL_{up} \right) = 44 \text{ psf}$
$w_{\chi} := TL \cdot \dot{S}PA_{S} = 6.93$ pli

Check Panel Stiffener:

*M*_v:=738.27 lbf·in[¬] $f_{bx} := (M_x) \div (S_{x1}) = 6480 \text{ psi}$ *F_{bx}* := 21212.12 psi[¬]

$$I_{bx} := \left(f_{bx}\right) \div \left(F_{bx}\right) = 0.31$$

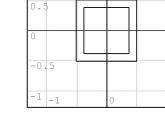
 $\Delta_{v} := 0.13 \text{ in }^{\neg}$ $\Delta_{xall} := (L) \div (60) = 0.53$ in

 $I_{\Delta} := \left(\Delta_{\chi}\right) \div \left(\Delta_{\chi a \parallel}\right) = 0.25$

Check Stiffener Bearing on Fascia:

$$R_{bear} := \operatorname{Max} \left(R_{sRLC3} , R_{sFLC3} , R_{sLC6} \right) = 78.86 \text{ lbf}$$

$$A_{bear} := b_s \cdot \operatorname{Min} \left(t_{ff} , t_{rf} \right) = 0.12 \text{ in}^2$$


$$R_{ball} := \frac{1.33 \cdot ADM_{-}F_{tu} \left(alloy_3 , 0 \right) \cdot A_{bear}}{1.95} = 3239.74 \text{ lbf}$$

$$I_{bear} := \left(R_{bear} \right) + \left(R_{ball} \right) = 0.02$$

Use 1" x 1" x 1/8" thk @ 22.67" o.c. AL. tube as shown (6061-T6)

R_{sRLC3} := 78.86 lbf [¬] LC3 stiffener reaction (rear fascia) R_{sFLC3} := 63.9 lbf [¬] LC3 stiffener reaction (front fascia) R_{sLC6} := 49.3 lbf [¬] LC6 stiffener reaction

Check Fasteners (to Ou	ıtrigger):	0
Fastener Type:	<i>SP_f</i> := 12 in	
1/4-14" (Cond. CW)	$D_{\rm ws} := 0.428$ in	-0.
$V_f := 1.25 \cdot 0.5 \cdot w_x \cdot SP_f = 51$.95 lbf	-1
$V_f \cdot 0.5 \cdot b$		
$T_f := \frac{V_f \cdot 0.5 \cdot b}{0.5 \cdot d} = 51.95 \text{ lbf}$		
Shear Allowables:	Tension Allowables:	
V _{bearstiffener} ≔ 791.67 lbf [¬]	$T_{povrstiffener} := 934.06$	lbf「
V _{bearoutrigger} ≔791.67 lbf [¬]	T _{poutoutrigger} = 437.5 I	bf٦
V _{fast} := 517 lbf [¬]	7 _{fast} :=896 lbf [¬]	
V _{fall} := 517 lbf [¬]	7 _{fall} := 437.5 lbf [¬]	

У

Х

vables:

$$I_{f} := \left(\frac{V_{f}}{V_{fall}}\right)^{2} + \left(\frac{T_{f}}{T_{fall}}\right)^{2} = 0.0$$

Check Fastener Tilting (to Outrigger):

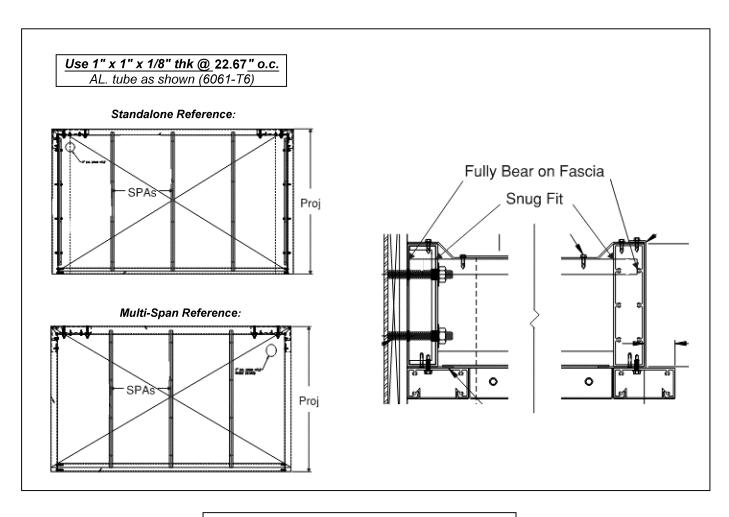
$$R_{tilt} \coloneqq \frac{4.2 \cdot \sqrt{\left(t_{eo}^{3} \cdot Dia_{b1}\right)} \cdot ADM_{-}F_{tu}\left(alloy_{3}, 0\right)}{3} = 1175.57 \text{ lbf}$$

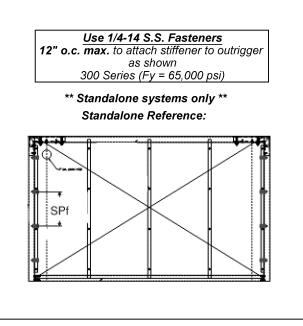
$$I_{tilt} \coloneqq \left(V_{f}\right) \div \left(R_{tilt}\right) = 0.04$$

$$I2" \text{ o.c. } \frac{Use 1/4-14 \text{ S.S. Fasteners}}{max. \text{ to attach stiffener to outrigger}}{as shown}{300 \text{ Series } (Fy = 65,000 \text{ psi})}$$

** Standalone systems only **

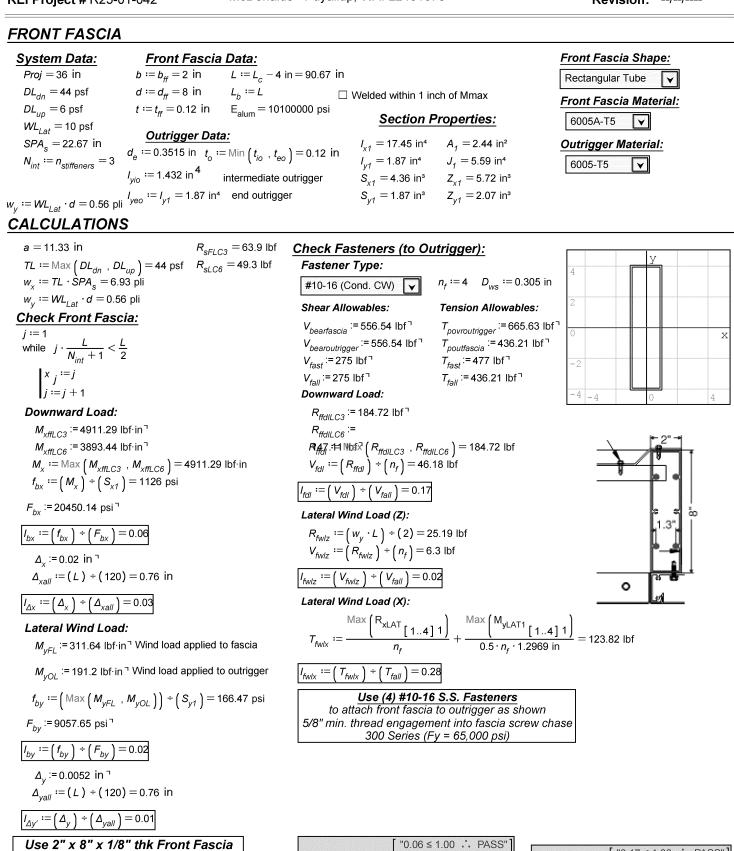
STIFFENER =["0.31 ≤ 1.00 ∴ PASS" "0.25 ≤ 1.00 ∴ PASS"
BEARING = "0.0	02≤1.00 ∴ PASS"
FASTENERS =	["0.02 ≤ 1.00 ∴ PASS" "0.04 ≤ 1.00 ∴ PASS"




Description: 36" Typical System Sheet No: 2.05 Initials: SWP Date: 2/26/2025 Revision: --/--/----

Project Name:

McDonalds - Puyallup, WA. L2401075


ENGINEERING

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

Description: 36" Typical System

Project Name: McDonalds - Puyallup, WA. L2401075 Sheet No: 2.06 Initials: SWP Date: 2/26/2025 Revision: --/--/----

AL. tube as shown (6005A-T5)

	["0.06 ≤ 1.00 ∴ PASS"]
FRONT FAROUR -	"0.03 ≤ 1.00 . PASS"
FRONT_FASCIA =	"0.02 ≤ 1.00 ∴ PASS"
	"0.01 ≤ 1.00 ∴ PASS"

	"0.17 ≤ 1.00	 PASS"
FASTENERS =	"0.02 ≤ 1.00	 PASS"
	"0.28 ≤ 1.00	 PASS"

ENGINEERING

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

END OUTRIGGER

System Data: $L_{c} = 94.67$ in

 $DL_{dn} =$ 44 psf LC6 = 30.31 psf $DL_{up} = 6 \text{ psf}$ $WL_{Lat} = 10 \text{ psf}$ DeadL = 7.36 psf SPA = 22.67 in

 $b := b_{eo} = 2$ in L := Proj = 36 in $d := d_{eo} = 8$ in $L_b := L$ $t := t_{eo} = 0.12$ in $E_{alum} = 10100000$ psi Drift Data: $S_b = 21 \text{ psf}$ P_{d1} = 31.05 psf $P_{d2} = 0 \text{ psf}$

Outrigger Data:

CALCULATIONS

TW := 13.33 in [¬]

Check End Outrigger:

LC3 Drift Dist. Loads:

 $w_{owall2wayLC3} := (2 \cdot P_{dO1} + S_b + DeadL) \cdot a = 5.31 \text{ pli}$ $w_{omiddriff} := P_{dO1} \cdot a = 1.54$ pli $w_{omiduniLC3} := (P_{dO2} + S_b + DeadL) \cdot a = 3.14 \text{ pli}$ $w_{oend2wayLC3} := \left(P_{dO2} + S_b + DeadL \right) \cdot a = 3.14 \text{ pli}$ $w_{owallb} := P_{d1} \cdot b = 0.43$ pli $w_{ounib} := (S_b + DeadL) \cdot b = 0.39$ pli $w_{owall1wayLC3} \coloneqq P_{d1} \cdot TW = 2.88 \text{ pli}$ $w_{ouniLC3} := (S_b + DeadL) \cdot TW = 2.63 \text{ pli}$

LC3 Point Loads;

 $F_{wall2wayLC3} \coloneqq \frac{1}{2} \cdot a \cdot w_{owall2wayLC3} = 30.09$ lbf $F_{middrift} := \frac{1}{2} \cdot (L - 2 \cdot TW) \cdot w_{omiddrift} = 7.18$ lbf $\textit{F}_{\textit{miduniLC3}} \coloneqq \textit{(L - 2 \cdot TW)} \cdot \textit{(P}_{dO2} + \textit{S}_{b} + \textit{DeadL}) \cdot \textit{a} = 29.28 \text{ lbf}$ $F_{end2wayLC3} := \frac{1}{2} \cdot \mathbf{a} \cdot w_{oend2wayLC3} = 17.78$ lbf $F_{wallb} := \frac{1}{2} \cdot L \cdot w_{owallb} = 7.76$ lbf $F_{unib} := L \cdot w_{ounib} = 14.18$ lbf

 $F_{wall1wayLC3} := \frac{1}{2} \cdot L \cdot w_{owall1wayLC3} = 51.75$ lbf $F_{uniLC3} := L \cdot w_{ouniLC3} = 94.54$ lbf

 $R_{\rm ffdILC3} = 184.72 \; \rm lbf$

R_{vOLC3}:=290.98 lbf[¬] vertical rxn @ thru-bolts

LC3 Strong Axis Moment:

M_{xOLC3} := 8392.72 lbf · in [¬]

$$f_{bxLC3} := \left(M_{xOLC3}\right) \div \left(S_{x1}\right) = 2664 \text{ ps}$$

 $I_{b \times LC3} := \left(f_{b \times LC3} \right) \div \left(F_{b \times} \right) = 0.28$

LC3 Strong Axis Deflection:

∆_{xLC3} := 0.04 in ¬

 $I_{\Delta x L C 3} := (\Delta_{x L C 3}) \div (\Delta_{x a I I}) = 0.06$

Description: 36" Typical System

Project Name: McDonalds - Puyallup, WA. L2401075

I_{x1} = 12.6 in⁴

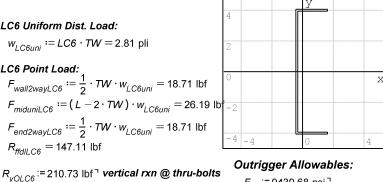
 $I_{v1} = 0.46 \text{ in}^4$

 $S_{\chi 1} = 3.15 \text{ in}^3$

 $S_{v1} = 0.28 \text{ in}^3$

LC6 Uniform Dist. Load:

LC6 Point Load:


 $R_{ffdll_{C6}} = 147.11$ lbf

LC6 Strong Axis Moment:

M_{xOLC6} := 6441.1 lbf·in[¬]

 $J_{1} = 0.0^{-1}$

Sheet No: 2.07 Initials: SWP Date: 2/26/2025 Revision: --/--/----

Outrigger Allowables:

F_{bx} := 9439.68 psi[¬] F_{bv} := 9057.65 psi[¬] $\Delta_{xall} := (2 \cdot L) \div (120) = 0.6$ in $\Delta_{yall} := (2 \cdot L_b) \div (120) = 0.6$ in

$I_{bxLC6} := \left(f_{bxLC6} \right) \div \left(F_{bx} \right) = \overline{0.22}$

 $f_{bxLC6} := (M_{xOLC6}) \div (S_{x1}) = 2045 \text{ psi}$

LC6 Strong Axis Deflection:

 $\Delta_{xLC6} := 0.03$ in [¬]

$$I_{\Delta \times LC6} := \left(\Delta_{\times LC6} \right) \div \left(\Delta_{\times a \parallel} \right) = 0.05$$

Lateral Wind Load:

 M_{VOL} := 196.88 lbf·in[¬] Wind load applied to outrigger

 M_{vFL} := 64.81 lbf·in [¬] Wind load applied to fascia

$$f_{by} := \left(\operatorname{Max} \left(M_{yFL} , M_{yOL} \right) \right) \div \left(S_{y1} \right) = 696 \text{ psi}$$

$$I_{by} := (f_{by}) \div (F_{by}) = 0.08$$

Weak Axis Deflection:

 $\Delta_v := 0.0252$ in [¬]

Use 2" x 8" x 1/8" thk End Outrigger

AL. tube as shown (6005-T5)

$$I_{\Delta y} := \left(\Delta_y\right) \div \left(\Delta_{yall}\right) = 0.04$$

	"0.28 ≤ 1.00 · PA	
END_OUTRIGGER =	"0.22 ≤ 1.00 . PA	SS"
	"0.08 ≤ 1.00 · PA	
	"0.06 ≤ 1.00 ∴ PA	SS"
	"0.05 ≤ 1.00 ∴ PA	SS"
	"0.04 ≤ 1.00 ∴ PA	SS"

ENGINEERING

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

INTERMEDIATE OUTRIGGER

System Data:

Outrigger Data:

$L_{c} = 94.67$ in	$b = b_{io} = 2$ in	L := Proj = 36 in		
DL _{dn} =44 psf	$d \coloneqq d_{io} = 6$ in	$L_b := L$	Welded within	1 inch of Mmax
LC6 = 30.31 psf	$t := t_{io} = 0.12$ in	E _{alum} = 10100000 psi	Section P	roportios:
$DL_{up} = 6 \text{ psf}$			Section	opernes.
$WL_{Lat} = 10 \text{ psf}$	<u>Drift Data:</u> S _b = 21 psf		I _{×1} =6.3 in⁴	$A_1 = 1.22 \text{ in}^2$
DeadL = 7.36 psf	0		I _{v1} = 0.43 in⁴	J ₁ = 0.01 in⁴
$SPA_s = 22.67$ in	$P_{d1} = 31.05 \text{ psf}$ $P_{d2} = 0 \text{ psf}$		$S_{x1} = 2.1 \text{ in}^3$	$Z_{x1} = 2.5 \text{ in}^3$
	7 _{d2} — 0 psi		$S_{y1} = 0.27 \text{ in}^3$	$Z_{y1} = 0.41 \text{ in}^3$

CALCULATIONS

TW = 13.33 in

Check Intermediate Outrigger:

LC3 Drift Dist. Loads: $w_{owall2wayLC3} = 5.31 \text{ pli}$

 $w_{omiddriff} = 1.54$ pli w_{omiduniLC3} = 3.14 pli $w_{oend2wayLC3} = 3.14$ pli $w_{owallb} = 0.43$ pli $w_{ounib} = 0.39$ pli $w_{owall1wayLC3} =$ 2.88 pli $w_{ouniLC3} = 2.63$ pli

LC3 Point Loads:

 $F_{wall2wavLC3} = 30.09$ lbf $F_{middrift} = 7.18$ lbf $F_{miduniLC3} = 29.28$ lbf $F_{end2wayLC3} = 17.78$ lbf $F_{wallb} = 7.76$ lbf $F_{unib} = 14.18$ lbf $F_{wall1wayLC3} = 51.75$ lbf $F_{uniLC3} = 94.54$ lbf $R_{\rm ffdILC3} = 184.72$ lbf

R_{vOLC3}:=290.98 lbf[¬] vertical rxn @ thru-bolts

LC3 Strong Axis Moment:

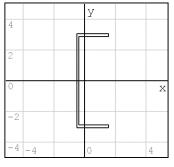
*M*_{xOLC3} := 8392.72 lbf · in[¬]

$$f_{bxLC3} := (M_{xOLC3}) \div (S_{x1}) = 3999 \text{ psi}$$

$$I_{bxLC3} := \left(f_{bxLC3}\right) \div \left(F_{bx}\right) = 0.42$$

LC3 Strong Axis Deflection:

∆_{xLC3}:=0.08 in ¬


$$I_{\Delta \times LC3} := \left(\Delta_{\times LC3}\right) \div \left(\Delta_{\times all}\right) = 0.13$$

Description: 36" Typical System

Project Name: McDonalds - Puyallup, WA. L2401075 Sheet No: 2.08 Initials: SWP Date: 2/26/2025

Revision: --/--/----

 $I_{yio} := I_{y1} = 0.43$ in⁴ intermediate outrigger end outrigger $I_{veo} := 1.8721 \text{ in}^4$ $w_v := WL_{Lat} \cdot d = 0.42$ pli

Outrigger Allowables:

F_{bx} := 9439.68 psi[¬] *F_{by}* := 12076.87 psi[¬] $\Delta_{xall} := (2 \cdot L) \div (120) = 0.6$ in $\Delta_{yall} := (2 \cdot L_b) \div (120) = 0.6$ in

LC6 Uniform Dist. Load: $w_{LC6uni} = 2.81 \text{ pli}$

LC6 Point Load:

 $F_{wall2wayLC6} = 18.71$ lbf $F_{miduniLC6} = 26.19$ lbf $F_{end2wayLC6} = 18.71$ lbf $R_{ffdILC6} = 147.11$ lbf

R_{vOLC6}:=210.73 lbf[¬] vertical rxn @ thru-bolts

LC6 Strong Axis Moment:

M_{xOLC6} := 6441.1 lbf·in[¬]

$$f_{bxLC6} := \left(M_{xOLC6}\right) \div \left(S_{x1}\right) = 3069 \text{ psi}$$

$$I_{bx/C6} := (f_{bx/C6}) \div (F_{bx}) = 0.33$$

LC6 Strong Axis Deflection:

 $\Delta_{x/C6} := 0.06 \text{ in }^{\neg}$

$$I_{\Delta \times LC6} := \left(\Delta_{\times LC6} \right) \div \left(\Delta_{\times all} \right) = 0.1$$

Lateral Wind Load:

 $M_{VOL} := 147.66 \text{ lbf} \cdot \text{in}^{\neg}$ Wind load applied to outrigger

 $M_{vFL} := 48.61$ lbf in "Wind load applied to fascia

$$\mathbf{f}_{by} := \left(\operatorname{Max} \left(\mathbf{M}_{yFL} \ , \ \mathbf{M}_{yOL} \right) \right) \div \left(\mathbf{S}_{y1} \right) = 537.28 \text{ psi}$$

$$I_{by} := \left(f_{by}\right) \div \left(F_{by}\right) = 0.04$$

Weak Axis Deflection:

$$I_{\Delta y} := \left(\Delta_y\right) \div \left(\Delta_{yall}\right) = 0.03$$

Use 2" x 6" x 1/8" thk Int. Outrigger AL. tube as shown (6061-T6)

	"0.42 ≤ 1.00 ∴ PASS"
INT_OUTRIGGER =	"0.33 ≤ 1.00 ∴ PASS"
	"0.04 ≤ 1.00 ∴ PASS"
	"0.13 ≤ 1.00 ∴ PASS"
	"0.1 ≤ 1.00 ∴ PASS"
	"0.03 ≤ 1.00 ∴ PASS"

ENGINEERING

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

REAR FASCIA

<u>System Data:</u>	<u>Rear Fascia</u>	Data:			Rea
Proj = 36 in	$b := b_{rf} = 2$ in	$L := L_c - 2$ in = 92.67 in			Re
DL _{dn} = 44 psf	$d := d_{rf} = 8$ in	$L_b := L$	Welded within	n 1 inch of Mmax	Rea
$DL_{up} = 6 \text{ psf}$	$t := t_{rf} = 0.12$ in	E _{alum} = 10100000 psi	Section P	ronortion	
WL _{Lat} = 10 psf			Section P	roperties:	60
$SPA_s = 22.67$ in			<i>I_{x1} =</i> 17.45 in⁴	A ₁ = 2.44 in ²	
$N_{int} = 3$	- 200 08 lbf	P - 210 72 lbf	I _{y1} = 1.87 in⁴	J ₁ = 5.59 in⁴	
	$_{yOLC3} = 290.98$ lbf	$R_{yOLC6} = 210.73$ lbf	$S_{\chi 1} = 4.36 \text{ in}^3$	$Z_{\chi 1} = 5.72 \text{ in}^3$	
14	$x_{OLC3} = 8392.72$ lbf·in	$M_{xOLC6} = 6441.1 \text{ lbf} \cdot \text{in}$	$S_{y1} = 1.87 \text{ in}^3$	$Z_{y1} = 2.07 \text{ in}^3$	

McDonalds - Puyallup, WA. L2401075

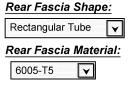
CALCULATIONS

a = 11.33 in $\textit{TL}:= Max\left(\textit{DL}_{dn},\textit{DL}_{up}\right) = 44 \text{ psf}$ $w_{_X}:=\textit{TL}\cdot\textit{SPA}_{_S} = 6.93 \text{ pli}$ $w_v := WL_{Lat} \cdot d = 0.56$ pli Check Rear Fascia: j := 1while $j \cdot \frac{L}{N_{int} + 1} < \frac{L}{2}$ $\begin{vmatrix} x \\ j &:= j \\ j &:= j+1 \end{vmatrix}$ Downward Load: R_{rfdlLC3} := 241.55 lbf [¬] Rear fascia vertical rxn @ anchors (LC3) R_{rfdlLC6} := 147.53 lbf[¬] Rear fascia vertical rxn @ anchors (LC6) *M_{xrfLC3}* := 6634.32 lbf · in [¬]

$$\begin{split} M_{xrfLC6} &:= 4063.45 \text{ lbf} \cdot \text{in}^{\neg} \\ M_{x} &:= \text{Max} \left(M_{xrfLC3} \text{ , } M_{xrfLC6} \right) = 6634.32 \text{ lbf} \cdot \text{in} \\ f_{bx} &:= \left(M_{x} \right) \div \left(S_{x1} \right) = 1521 \text{ psi} \end{split}$$

F_{bx} ≔ 20450.14 psi[¬]

$$\begin{split} \frac{I_{bx} := (f_{bx}) \div (F_{bx}) = 0.07}{\Delta_{x} := 0.03 \text{ in }^{7}} \\ \Delta_{xall} := (L) \div (120) = 0.77 \text{ in} \end{split}$$


$$I_{\Delta x} := (\Delta_x) \div (\Delta_{xall}) = 0.04$$

Torsion Due to Outrigger:

$$Tor_{rf} := 9629.41 \text{ lbf} \cdot \text{in}^{\neg}$$

$$r_{rf} := \frac{Tor_{rf}}{2 \cdot t \cdot (b - t) \cdot (d - t)} = 2608.6 \text{ psi}$$

 $I_{\tau} := (\tau_{rf}) \div (F_{\tau}) = 0.35$

Ξ ക රා C

"0.07 ≤ 1.00 ∴ PASS" "0.35 ≤ 1.00 ∴ PASS" REAR_FASCIA = "0.04 ≤ 1.00 ∴ PASS"

Description: 36" Typical System

Project Name:

Sheet No: 2.09 Initials: SWP Date: 2/26/2025

Revision: --/--/----

ENGINEERING

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

SOFFIT

 $W_{upASD} = 10.42 \text{ psf}$ L_{stiff}=32 in [¬] stiffener length

36" Typical System

McDonalds - Puyallup, WA. L2401075

Description:

Project Name:

```
N_{ss} := 5 # of soffit stiffeners
Sp_{ss} := (96 \text{ in}) \div ((N_{ss} - 1)) = 24 \text{ in soffit stiffener spacing}
```

Check Soffit Panel Bending:

 $t_{sp} := 0.1$ in soffit panel thickness

$$L_{bpanel} := Sp_{ss} = 24 \text{ in}$$

$$w_{panel} := W_{upASD} \cdot Proj = 2.6 \text{ pli}$$

$$M_{ypanel} := \frac{168 \cdot w_{panel} \cdot L_{bpanel}}{1568}^2 = 160.7 \text{ lbf} \cdot \text{in}$$

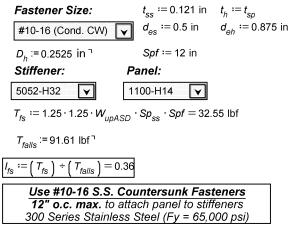
$$S_{ypanel} := \frac{t_{sp}^2 \cdot (Proj - 4.5 \text{ in})}{6} = 0.05 \text{ in}^3$$

$$f_{bpanel} := (M_{ypanel}) \div (S_{ypanel}) = 3061.03 \text{ psi}$$

$$F_{bpanel} := 11500 \text{ psi}$$

 $I_{bpanel} := (f_{bpanel}) \div (F_{bpanel}) = 0.27$

Check Panel Deflection:

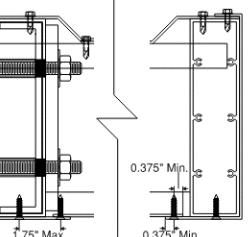

L/60	\checkmark	Panel Deflection Criteria
t	³ ·(Proj –	
$I_{yp} := -$	12	—————————————————————————————————————

$$\begin{split} \Delta_{yp} &:= 0.00541 \cdot \frac{w_{panel} \cdot L_{bpanel}}{\mathsf{E}_{alum} \cdot I_{yp}} = 0.18 \text{ in} \\ \Delta_{ypall} &:= \frac{L_{bpanel}}{Deflection \ Criteria} = 0.4 \text{ in} \end{split}$$

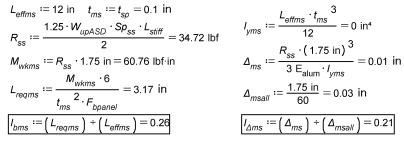
 $I_{\Delta yp} := \left(\Delta_{yp}\right) \div \left(\Delta_{ypall}\right) = 0.44$

Using L /60 Deflection Limit:
Use0.100 " Thick
Panel Type = 1100–H14 Aluminum
Maximum Span = 24.00"

Check Fasteners (to stiffeners):



SOFFIT_PANEL =


SOFFIT_MOUNTING_STRIP =

"0.44 ≤ 1.00 "0.26 ≤ 1.00

100100111 1001 1001

Check Soffit Mounting Strip:

Check Soffit Mounting Strip Fasteners:

$$T_{fmsp} := R_{ss} = 34.72 \text{ lbf}$$

$$T_{fmsrf} := \frac{R_{ss} \cdot 0.6033 \text{ in}}{1.056 \text{ in}} = 19.84 \text{ lbf}$$

$$T_{povrms} := \left(\left[0.27 + 1.45 \cdot \frac{t_{ms}}{0.19 \text{ in}} \right] \cdot 0.19 \text{ in} \cdot t_{ms} \cdot 14 \text{ ksi} \right] + (3) = 91.61 \text{ lbf}$$

$$T_{fasms} := 477 \text{ lbf}$$

$$T_{poutp} := \left(1.2 \cdot 0.19 \text{ in} \cdot t_{sp} \cdot 14 \text{ ksi} \right) + (3) = 106.4 \text{ lbf}$$

$$T_{poutf} := \left(1.2 \cdot 0.19 \text{ in} \cdot t_{ff} \cdot 35 \text{ ksi} \right) + (3) = 332.5 \text{ lbf}$$

$$I_{fmsp} := \left(T_{fmsp} \right) + \left(\text{Min} \left(T_{povrms} \cdot T_{fasms} \cdot T_{poutp} \right) \right) = 0.38$$

$$\frac{Use \#10-16 \text{ S.S. Undercut Fasteners}}{300 \text{ Series Stainless Steel } (Fy = 65,000 \text{ psi})}$$

$$I_{fmsrf} := \left(T_{fmsrf} \right) + \left(\text{Min} \left(T_{povrms} \cdot T_{fasms} \cdot T_{poutf} \right) \right) = 0.22$$

$$\frac{Use \#10-16 \text{ S.S. Undercut Fasteners}}{300 \text{ Series Stainless Steel} (Fy = 65,000 \text{ psi})}$$

$$I_{cmsrf} := \left(T_{fmsrf} \right) + \left(\text{Min} \left(T_{povrms} \cdot T_{fasms} \cdot T_{poutf} \right) \right) = 0.22$$

$$\frac{Use \#10-16 \text{ S.S. Undercut Fasteners}}{12" \text{ o.c. max. to attach mounting strip to rear fascia.} Fastener must be in-line with each stiffener end.} 300 \text{ Series Stainless Steel} (Fy = 65,000 \text{ psi})}$$

$$\frac{(0.27 \le 1.00 \therefore \text{ PASS"}}{(0.24 \le 1.00 \therefore \text{ PASS"}}$$

$$\frac{STIFFENER_FASTENERS}{(0.22 \le 1.00 \therefore \text{ PASS"}}$$

Sheet No: 2.10 Initials: SWP Date: 2/26/2025 Revision: --/--/----

ENGINEERING 105 School Creek Trail | Luxemburg, WI 54217

(Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

 $Alum_{Den} := 158 \text{ pcf}$

Uplift:

Stiffener Angle: 5052-H32 $L_{1s} := 1.75$ in $L_{28} := 1.75$ in $t_{ss} = 0.121$ in $C_{bs} := 1.0$

Check Stiffener Bending:

 $w_{upstiff} := W_{upASD} \cdot T_{ws} = 1.74$ pli

 $f_{bxsu} := \frac{M_{xsu}}{S_{xsbot}} = 906.97 \text{ psi}$

F_{bxsu} := 9087.68 psi[¬]

Uplift Deflection:

 $I_{bsu} := \left(f_{bxsu} \right) \div \left(F_{bxsu} \right) = 0.1$

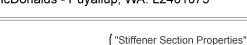
 $\Delta_{ysu} := \frac{5 \cdot w_{upstiff} \cdot L_{stiff}}{384 \text{ E}_{alum} \cdot l_{ys}} = 0.02 \text{ in}$

 $I_{\Delta y s u} := (\Delta_{y s u}) \div (\Delta_{y s u a ll}) = 0.04$

 $\Delta_{ysuall} := Min (1.5 in, (L_{stiff}) \div (60)) = 0.53 in$

 $M_{xsu} := \frac{w_{upstiff} \cdot L_{stiff}}{8} = 222.21 \text{ lbf in}$

¥ $L_{stiff} = 32$ in stiffener length $T_{ws} = 24$ in \neg stiffener trib. width $W_{upASD} = 10.42 \text{ psf}$ $P_{light} := 5 \text{ lbf}$


F_{bxsuF.5.a.2} = 9087.68 psi [¬] uniform compression local buckling

Description: 36" Typical System

Project Name:

McDonalds - Puyallup, WA. L2401075

Sheet No: 2.11 Initials: SWP Date: 2/26/2025 Revision: --/--/----

0.1210 1.7500 $S_{xstop} := 0.096 \text{ in }^3$ $S_{xsbot} := 0.245 \text{ in }^3$ - 1.7500 -

Dead Load:

 $A_{s} := 0.401 \text{ in}^{2}$

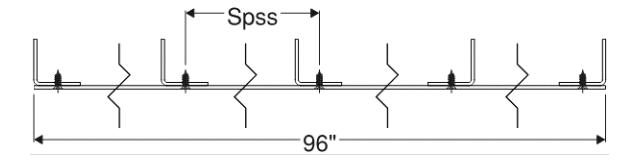
 $I_{ys} := 0.12 \text{ in}^4$

 $J_{s} := 0.002 \text{ in}^{4}$

$$w_{DLstiff} := Alum_{Den} \cdot (A_s + t_{sp} \cdot T_{ws}) = 0.26 \text{ pli}$$

$$M_{xsDL} := \frac{w_{DLstiff} \cdot L_{stiff}}{8} + \frac{P_{light} \cdot L_{stiff}}{4} = 72.78 \text{ lbf in}$$

$$f_{bxsDL} := \frac{M_{xsDL}}{S_{xstop}} = 758.15 \text{ psi}$$


*F*_{bxsDLF.5.a.1} = 10685.01 psi[¬] leg tip max. compression local buckling

F_{bxsDLLTB} = 26548.53 psi[¬] leg tip max. compression LTB

$$I_{bsDL} := \left(f_{bxsDL} \right) \div \left(F_{bxsDL} \right) = 0.07$$

Dead Load Deflection:

$$\Delta_{ysDL} = \frac{5 \cdot w_{DLstiff} \cdot L_{stiff}}{384 \text{ } \text{E}_{alum} \cdot l_{ys}} + \frac{P_{light} \cdot L_{stiff}}{48 \text{ } \text{E}_{alum} \cdot l_{ys}} = 0.01 \text{ in } \text{}^{-1}$$
$$\Delta_{ysDLall} := \text{Min} \left(1.5 \text{ in }, \left(L_{stiff}\right) \div (60)\right) = 0.53 \text{ in}$$
$$\overline{l_{\Delta ysDL}} := \left(\Delta_{ysDL}\right) \div \left(\Delta_{ysDLall}\right) = 0.01$$

Use (5) 1-3/4" x 1-3/4" x 0.121" Formed Alum. Angles (2) @ each panel end and spaced 24.0 " max. along 8' panel length as shown (5052-H32)

	["0.1 ≤ 1.00 ∴ PASS"]
OTIFEENED -	"0.04 ≤ 1.00 ∴ PASS"
SHFFENER =	"0.1 ≤ 1.00 ∴ PASS" "0.04 ≤ 1.00 ∴ PASS" "0.07 ≤ 1.00 ∴ PASS"
	"0.01 ≤ 1.00 ∴ PASS"

ENGINEERING 105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

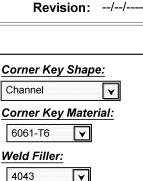
REI Project # R25-01-042

ANCHOR BRACKET

System Data:

Proj = 36 in $DL_{dn} = 44 \text{ psf}$ $DL_{up} = 6 \text{ psf}$ $WL_{Lat} = 10 \text{ psf}$

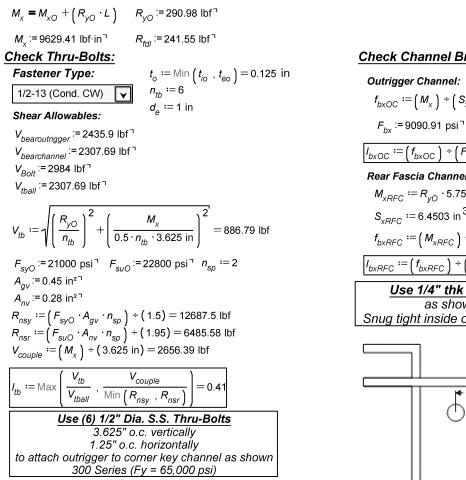
Channel Anchor Data: $b := b_{cb} = 1.69$ in L := 4.25 in $d := d_{cb} = 5.69$ in $L_h := L$ E_{alum} = 10100000 psi $t := t_{cb} = 0.25$ in


Project Name:

 $R_{rfdll C3} = 241.55$ lbf $R_{rfdll \ C6} = 147.53$ lbf $R_{vOl \ C3} = 290.98 \ \text{lbf}$ $R_{vOl \ C6} = 210.73 \ \text{lbf}$ *M*_{xOLC3} = 8392.72 lbf·in $M_{xOLC6} = 6441.1 \text{ lbf} \cdot \text{in}$

Welded within 1 inch of Mmax

Section Properties:


I_{x1} = 9.19 in⁴ $A_1 = 2.14 \text{ in}^2$ $I_{v1} = 0.47 \text{ in}^4$ $J_1 = 0.05 \text{ in}^4$ $S_{x1} = 3.23 \text{ in}^3$ $Z_{x1} = 3.99 \text{ in}^3$ $Z_{v1} = 0.45 \text{ in}^3$ $S_{v1} = 0.37 \text{ in}^3$

X

Outrigger Material: 6005-T5 ¥

CALCULATIONS

Check Channel Bracket:

Outrigger Channel: $(M) \div (S) = 2084$ psi

$$T_{bxOC} = (M_x) = (S_{x1}) = 2984 \text{ psi}$$

$$I_{bxOC} := (f_{bxOC}) \div (F_{bx}) = 0.33$$

$$M_{xRFC} := R_{yO} \cdot 5.75$$
 in = 1673.16 lbf·in
 $S_{xRFC} := 6.4503$ in ³

$$f_{bxRFC} := (M_{xRFC}) \div (S_{xRFC}) = 259.39 \text{ psi}$$

$$I_{bxRFC} := \left(f_{bxRFC} \right) \div \left(F_{bx} \right) = 0.03$$

THRU_BOLTS = "0.41 ≤ 1.00 ∴ PASS" "0.33 ≤ 1.00 . PASS" CHANNEL BRACKET "0.03 ≤ 1.00 ∴ PASS"

"0.38 ≤ 1.00 ∴ PASS"

Rear fascia tube torsion due to outrigger moment check on page 2.09

Description: 36" Typical System

McDonalds - Puyallup, WA. L2401075

Sheet No: 2.12 Initials: SWP Date: 2/26/2025

<u>RICE</u> ENGINEERING

Description: 36" Typical System

Project Name:

McDonalds - Puyallup, WA. L2401075

 Sheet No:
 2.13

 Initials:
 SWP

 Date:
 2/26/2025

 Revision:
 --/--/---

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

Check Channel Bracket Welds:

$$\begin{aligned} d_{w} &:= d = 5.69 \text{ in } \qquad M_{x} = 9629.41 \text{ lbf in } \\ b_{w} &:= 2.391 \text{ in } \qquad R_{yO} = 290.98 \text{ lbf } \\ t_{w} &:= 0.25 \text{ in } \end{aligned}$$

$$A_{w} &:= t_{w} \cdot \left(2 \cdot b_{w} + d_{w}\right) = 2.62 \text{ in}^{2}$$

$$S_{w1} &:= t_{w} \cdot \left(\frac{2 \cdot b_{w} + d_{w}}{6}\right) = 4.75 \text{ in}^{3}$$

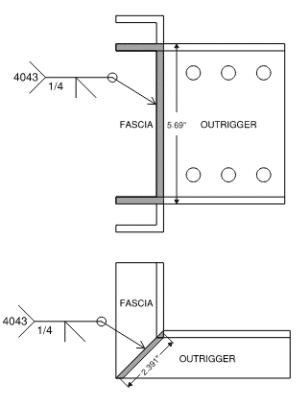
$$S_{w2} &:= \frac{t_{w} \cdot \left(2 \cdot b_{w} + d_{w}\right)^{2}}{6} = 4.57 \text{ in}^{3}$$

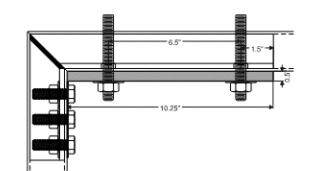
$$f_{w} &:= \sqrt{\left(\frac{0.7071 \cdot M_{x}}{S_{w1}}\right)^{2} + \left(\frac{0.7071 \cdot M_{x}}{S_{w2}} + \frac{R_{yO}}{A_{w}}\right)^{2}} = 2147.53 \text{ psi } \end{aligned}$$

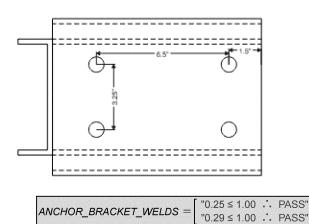
$$F_{tub} &:= 24000 \text{ psi } \qquad F_{tuw} = 24000 \text{ psi }$$

$$F_{sbT} &:= \frac{F_{tub}}{1.95} = 12307.69 \text{ psi } \qquad F_{swT} := \frac{0.6 \cdot F_{tuw}}{1.95} = 7384.62 \text{ psi } \end{aligned}$$

$$F_{sbV} := \frac{0.6 \cdot F_{tub}}{1.95} = 7384.62 \text{ psi } \qquad F_{swV} := \frac{0.6 \cdot F_{tuw}}{1.95} = 7384.62 \text{ psi }$$


$$I_{wbm} := \sqrt{\left(\frac{0.7071 \cdot M_{x}}{F_{sbT} \cdot S_{w1}}\right)^{2} + \left(\frac{0.7071 \cdot M_{x}}{F_{sbV} \cdot S_{w2}} + \frac{R_{yO}}{F_{sbV} \cdot A_{w}}\right)^{2}} = 0.25$$


$$I_{wt} := \sqrt{\left(\frac{0.7071 \cdot M_{x}}{F_{swT} \cdot S_{w1}}\right)^{2} + \left(\frac{0.7071 \cdot M_{x}}{F_{swV} \cdot S_{w2}} + \frac{R_{yO}}{F_{swV} \cdot A_{w}}\right)^{2}} = 0.29$$


$$\frac{I_{w} := \text{Max} \left(I_{wbm} \cdot I_{wf}\right) = 0.29}{\frac{Use 1/4'' \text{ Bevel Groove Welds}}{Full perimeter of outrigger channel to attach outrigger channel to a$$

Check Front Reinforcing Plate:

$$\begin{split} t_{R\rho} &:= 0.5 \text{ in} \\ P_w &:= \frac{M_x}{5.1937 \text{ in}} = 1854.06 \text{ lbf} \\ M_{wkR\rho} &:= P_w \cdot 2.1746 \text{ in} = 4031.83 \text{ lbf} \text{ in} \\ S_{yR\rho} &:= \left(\left(t_{R\rho} \right)^2 \cdot 0.85 \cdot 7.5 \text{ in} \right) \div (6) = 0.27 \text{ in}^3 \\ f_{wkR\rho} &:= \left(M_{wkR\rho} \right) \div \left(S_{yR\rho} \right) = 15178.65 \text{ psi} \\ F_{bwkR\rho} &:= 31800 \text{ psi} \\ \hline \\ I_{R\rho} &:= \left(f_{wkR\rho} \right) \div \left(F_{bwkR\rho} \right) = 0.48 \end{split}$$

RICE ENGINEERING	Description: 36'' Typical S	ystem		s	Sheet No: Initials:	
5 School Creek Trail Luxemburg, WI 54217 hone) 920.617.1042 (Fax) 920.617.1100 F El Project # R25-01-042	P roject Name: McDonalds -	Puyallup, WA	. L2401075	F	Date: Revision:	2/26/2025 //
Check Thru-Bolt Anchors (Wood Bloom $n_a := 4$ $V_a := \frac{R_{yO} \cdot 9.6 \text{ in}}{0.5 \cdot n_a \cdot 6.5 \text{ in}} + \frac{R_{fdl}}{n_a} = 275.27 \text{ lbf}$ $T_a := 2123.06 \text{ lbf}^{\neg}$	cking):	□ Brick Fascial Pipe Sleeve OD := 1.05 $t_{sleeve} := 0.1$	• Data: in	$\frac{Washer Data:}{b_{wp} := 2.5 \text{ in } t_{wp} := 0.}$ $d_{wp} := 2.5 \text{ in } F_{ywp} :=$.25 in t_p^- 36 ksi ϵ I_m^- G	Substrate Data: $:= t_{Rp}$ $e_s := 4.5 \text{ in }^{\neg}$ $f_s := 4.5 \text{ in }^{\neg}$ $f_s := 0.42$ $e_s := 425 \text{ psi}$
Anchor Diameter: 5/8" Anchor Type: Thru-Bolt	F _u := 120 ksi F _{es} := 43000 p	osi		Ω _{tb} := 2	0 0 0 0 0	$M_{M} := 1.0$ $t_{t} := 1.0$ $g_{g} := 1.0$ $h_{\Delta} := 1.0$ $h_{eg} := 1.0$ $h_{di} := 1.0$ $h_{D} := 1.15$
Yood Allowables: Shear: $Z_{Im} = 1013.68 \text{ lbf}$ $Z_{IIIm} = 669.4 \text{ lbf}$ $Z_{Is} = 2208.13 \text{ lbf}$ $Z_{IIIs} = 623.63 \text{ lbf}$ $Z_{II} = 517.19 \text{ lbf}$ $Z_{IV} = 745.84 \text{ lbf}$ $Z_{I} := \text{Min} (Z_{Im}, Z_{Is}, Z_{II}, Z_{IIIm}, Z_{IIIs}, Z_{IV})$ $V_{wood} := Z_{I} \cdot C_{D} \cdot C_{M} \cdot C_{t} \cdot C_{g} \cdot C_{\Delta} \cdot C_{eg} \cdot C_{R}$ $R_{\alpha} := \sqrt{T_{a}^{2} + V_{a}^{2}} = 2140.83 \text{ lbf}$ $\alpha := \text{atan} (\frac{T_{a}}{V_{a}}) = 82.61 \text{ deg}$ $Z_{\alpha} := \frac{W' \cdot V_{wood}}{W' \cdot (\cos(\alpha))^{2} + V_{wood} \cdot (\sin(\alpha))}$	$C_{di} = 594.77$ lbf	_	les:	Required Washer Min $F_{bwp} := 0.75 \cdot F_{ywp} = 2$ $A_{wreq} := \frac{T_a}{C_D \cdot F_c} = 4.3$ of $b_{wpmin} := \sqrt{A_{wreq}} = 2.03$ $d_{wpmin} := b_{wpmin} = 2.03$ $t_{wpmin} := \sqrt{\frac{T_a \cdot b_{wpmin}}{F_{bwp} \cdot 8 \cdot d_w}}$	7000 psi 14 in² .08 in 8 in	4 in
$W^{-}(\cos{(\alpha)})^{+} + V_{wood}^{-}(\sin{(\alpha)})$ Check Bolt Bending: "Thru-Bolt" "Pipe S 401.85 lbf in "Mb" 16765.99 $\frac{lbf}{in^2}$ "fb" 69000 $\frac{lbf}{in^2}$ "Fb" 0.06 in "Space" 0.24 "Bend Int." 0.94 "Space Int."	leeve" in "Mbs"] bf 2 "fbs"			*4.5" Ma		0
	e 1.05" O.D. x 0. SCH. 80 Pipe S O Series SS, Fy =	Sleeves	(Grade w/ 2.5" x 2.5 (3) layers of Spruce	625"-11 HD Galvanize 5, Fy = 92,000 psi, Fu 2.5" x 0.250" A36 Sta "min. edge dist. 2.5" min. Pine-Fir (S.G. = 0.42 MIN bocking by others not by Ric	I = 120,000 eel Backer end distance I.) wood bloc ce Engineerin	psi) Plates e. king or stronger.

Description: 48" Typical System

ENGINEERING 105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

Project Name:

 Sheet No:
 3.00

 Initials:
 SWP

 Date:
 2/26/2025

 Revision:
 --/--/---

McDonalds - Puyallup, WA. L2401075

Loading Information:

<i>DL_{dn}</i> ≔49 psf	worst case downward load
LC6 := 29.49 psf	load case 6 w/o drift
DL _{up} ≔6 psf	uplift load
$WL_{Lat} := 10 \text{ psf}$	lateral wind load
DeadL ≔ 6.54 psf	dead load
S _b ≔21 psf	balanced snow load
<i>P_{d1}</i> ≔ 41.4 psf	snow drift (at wall)
<i>P_{d2}</i> ≔0 psf	snow drift (at front fascia)

System Information:

Standalone	Soffit Panel
<i>L_c</i> ≔ 80 in	canopy length
<i>Proj</i> ≔ 48 in	canopy projection

Member Section Information:

Top Panel:	
$t_{\rho} := 0.1$ in	panel thickness
Panel Stiffener:	
$b_s := 1$ in	stiffener width
d _s ≔ 1 in	stiffener depth
$t_{s} := 0.125$ in	stiffener thickness
Front Fascia:	
<i>b_{ff}</i> := 2 in	front fascia width
<i>d_{ff}</i> := 8 in	front fascia depth
$t_{ff} := 0.125$ in	front fascia thickness
Rear Fascia:	
<i>b_{rf}</i> := 2 in	rear fascia width
<i>d_{rf}</i> ≔ 8 in	rear fascia depth
$t_{rf} := 0.125$ in	rear fascia thickness

End Outrigger:

b _{eo} ≔2 in	end outrigger width
d _{eo} ≔8 in	end outrigger depth
t _{eo} ≔0.125 in	end outrigger thickness

Intermediate Outrigger:

<i>b_{io}</i> ≔2 in	intermediate outrigger width
<i>d_{io}</i> ≔6 in	intermediate outrigger depth
t _{io} ≔ 0.125 in	intermediate outrigger thickness

Anchor Channel Bracket:

<i>b_{cb}</i> ≔ 1.6913 in	anchor channel flange length
<i>d_{cb}</i> ≔ 5.6937 in	anchor channel depth
<i>t_{cb}</i> ≔ 0.25 in	anchor channel thickness

<u>RICE</u>

Description:

ENGINEERING 48" Typical System

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

36" Projection System:

 $L_c = 80 \text{ in}$ Proj = 48 in $t_p = 0.1 \text{ in}$ $L_{eff} := 1 \text{ in}$

 $DL_{up} = 6 \text{ psf}$ $q := \text{Max} (DL_{dn}, DL_{up}) = 49 \text{ psf}$

L/60

Panel Deflection Criteria

SPAs := 25 in [¬] Panel Stiffener Spacing

Check Panel:

coef_a := [0 12.5 25 50 75 100 125 150 175 200 250] [¬]

 $DL_{dn} =$ 49 psf

 $coef_y := [0 \ 0.7 \ 0.95 \ 1.24 \ 1.44 \ 1.6 \ 1.72 \ 1.84 \ 1.94 \ 2.03 \ 2.2]^{\neg}$

coef_{ad}:=[01.292.44.155.616.918.19.2110.110.912.2][¬]

 $coef_{\sigma}$:= [0 4.87 7.16 10.3 12.6 14.6 16.4 18 19.4 20.9 23.6]

 σ_{all} := 8205.13 psi [¬] - Allowable Stress, used for Design

 $y_{all} := 0.42$ in [¬] - Allowable Deflection

The relations among load, deflection and stress are expressed by numerical values of the dimensionless coefficients shown below (It is assumed that v is equal to or near 0.316):

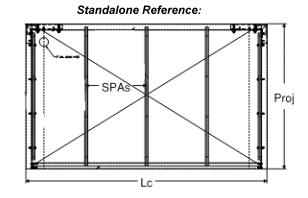
$$coef_{q} = \frac{q_{adj} \cdot b^{-4}}{E \cdot t^{-4}} \qquad coef_{y} = \frac{y}{t}$$
$$coef_{\sigma d} = \frac{\sigma_{d} \cdot b^{-2}}{E \cdot t^{-2}} \qquad coef_{\sigma} = \frac{\sigma \cdot b^{-2}}{E \cdot t^{-2}}$$

The collected data for these coefficients is listed below. For any given value of qb^4 /Et⁴, values for the other three coefficients may be interpolated.

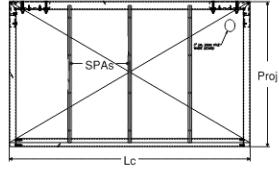
$$y_{act} = \operatorname{linterp} \left(\operatorname{coef}_{q}, \operatorname{coef}_{y}, \frac{q \cdot b \cdot 4}{E \cdot t_{1} \cdot 4} \right) \cdot t_{1} \cdot 1.5 \qquad \qquad y_{act} := 0.26 \text{ in } \gamma_{y_{all}} = 0.42 \text{ in}$$

$$\sigma_{d} := \operatorname{linterp} \left(\operatorname{coef}_{q}, \operatorname{coef}_{cd}, \frac{q \cdot \left(SPA_{s}\right)^{4}}{E_{alum} \cdot t_{p} \cdot 4} \right) \cdot \left(\frac{E_{alum} \cdot t_{p} \cdot 2}{\left(SPA_{s}\right)^{2}} \right) \qquad \qquad \sigma_{d} = 1356.35 \text{ psi}$$

$$\sigma_{all} = 8205 \text{ psi}$$


$$\sigma := \left(\operatorname{linterp} \left(\operatorname{coef}_{q}, \operatorname{coef}_{cd}, \frac{q \cdot \left(SPA_{s}\right)^{4}}{E_{alum} \cdot t_{p} \cdot 4} \right) \cdot \frac{E_{alum} \cdot t_{p} \cdot 2}{\left(SPA_{s}\right)^{2}} \right) \qquad \qquad \sigma = 2718.55 \text{ psi}$$

$$\sigma_{all} = 8205 \text{ psi}$$


Using L /60 Deflection Limit: Use 0.100 " Thick Panel Type = 1100–H14 Aluminum Maximum Span = 25.00"

Number of Intermediate Stiffeners:

O 1 Int. Stiffener
 2 Int. Stiffeners
O 3 Int. Stiffeners
O 4 Int. Stiffeners
○ 5 Int. Stiffeners

	"0.63 ≤ 1.00 ∴ PASS"
PANEL := stack $(I_A, I_{ad}, I_{a}) =$	"0.17 ≤ 1.00 ∴ PASS"
$PANEL := stack \left(I_{\Delta} , I_{\sigma d} , I_{\sigma} \right) =$	"0.33 ≤ 1.00 PASS"

Project Name: McDonalds - Puyallup, WA. L2401075
 Sheet No:
 3.01

 Initials:
 SWP

 Date:
 2/26/2025

 Revision:
 --/--/---

Description: 48" Typical System

Tension Allowables: T_{poutstiffener} := 378 lbf[¬]

7_{povrpanel} := 221.67 lbf[¬]

T_{fast}:=645 lbf[¬]

T_{fall} := 221.67 lbf[¬]

Project Name:

McDonalds - Puyallup, WA. L2401075

ENGINEERING

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

Sheet No: 3.02

Initials: SWP Date: 2/26/2025

Revision: --/--/----

Check Panel Fasteners (to Stiffener):

tiffener Materia	aı.
6061-T6 🔽]
	6061-T6 🔽

 $D_{ws} := 0.305$ in $SP_f := 12$ in $d_e := 0.5$ in $t_s = 0.125$ in

Shear Allowables:

V_{bearstiffener} := 684 lbf[¬] V_{bearpanel} := 230.4 lbf[¬] V_{fast} := 373 lbf[¬] V_{fall} := 230.4 lbf[¬]

 $w_{dl} := q \cdot SPA_s = 8.51$ pli

 $T_f := 1.25 \cdot w_{dl} \cdot SP_f = 127.6$ lbf

$$I_f := \frac{T_f}{T_{fall}} = 0.58$$

Use #12-14 S.S. Fasteners 12" o.c. max. to attach panel to stiffener as shown 300 Series (Fy = 65,000 psi) Min. 1/2" edge/end distance w/ full engagement into stiffener on load bearing length of fastener per manufacturer specifications.

Check Panel Fasteners (to Outriggers):

Fastener Type:	Outrigger Material:
#12-14 (Cond. CW)	6005-T5 🔽
$D_{_{WS1}} := 0.305$ in $SP_{_{f1}} := 12$ in	$d_{e1} := 0.5$ in $t_{io} = 0.12$ in

Shear Allowables:

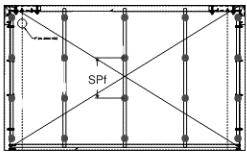
V_{bearoutrigger} := 684 lbf[¬] V_{bearpanel1} := 230.4 lbf[¬] *V_{fast1}* := 373 lbf[¬] V_{fall1} := 230.4 lbf [¬]

Tpoutoutrigger := 378 lbf7 *T_{povrpanel1}* := 221.67 lbf[¬] *T_{fast1}* :=645 lbf[¬]

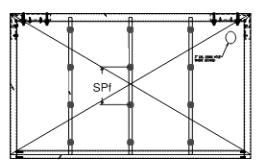
T_{fall1} := 221.67 lbf[¬]

Tension Allowables:

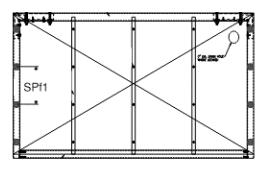
 $w_{dl1} := q \cdot 0.5 \cdot SPA_s = 4.25$ pli


 $T_{f1} := 1.25 \cdot w_{d/1} \cdot SP_{f1} = 63.8$ lbf

$$I_{f1} := \frac{T_{f1}}{T_{fall1}} = 0.29$$


Use #12-14 S.S. Fasteners **12" o.c. max.** to attach panel to outrigger as shown 300 Series (Fy = 65,000 psi) Min. 1/2" edge/end distance w/ full engagement into outrigger on load bearing length of fastener per manufacturer specifications.

** Multi-span systems only **


Standalone Reference:

Description: 48" Typical System
 Sheet No:
 3.03

 Initials:
 SWP

 Date:
 2/26/2025

 Revision:
 --/--/---

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

Project Name:

McDonalds - Puyallup, WA. L2401075

Check	Panel	Fasteners	(to	Front/Rear	Fascia).	
Oncon	i unci	i usteners	100	i i ono i cui	i usciuj.	

Fastener Type:	vpe:	Τv	Fastener
----------------	------	----	----------

Shear Allowables:

#12-14 (Cond. CW)

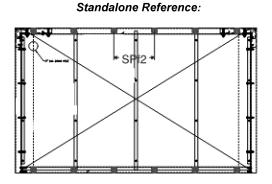
	Fascia Mate	erial:
V	6005-T5	V

D	:= 0.305	in SP₊₀	≔ 12 in
WSZ		- 12	

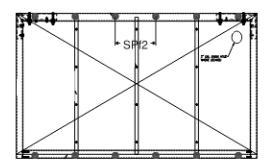
Tension	Allowable	s:

V _{bearfascia} ≔684 lbf [¬]	
V _{bearpanel2} ≔ 230.4 lbf [¬]	
V _{fast2} := 373 lbf [¬]	
V _{fall12} ≔230.4 lbf [¬]	

$$\begin{split} & T_{poutfascia} \coloneqq 378 \; \text{lbf}^{\neg} \\ & T_{povrpanel2} \coloneqq 241.5 \; \text{lbf}^{\neg} \\ & T_{fast2} \coloneqq 645 \; \text{lbf}^{\neg} \\ & T_{fall2} \coloneqq 241.5 \; \text{lbf}^{\neg} \end{split}$$


 $d_{e2} := 0.5$ in $t_f := 0.125$ in

 $w_{dl2} \coloneqq q \cdot 0.5 \cdot SPA_s = 4.25$ pli


 $T_{f2} := 1.25 \cdot w_{d/2} \cdot SP_{f2} = 63.8$ lbf

$$I_{f2} := \frac{T_{f2}}{T_{fall2}} = 0.26$$

Use #12-14 S.S. Fasteners 12" o.c. max. to attach panel to front/rear fascia as shown 300 Series (Fy = 65,000 psi) Min. 1/2" edge/end distance w/ full engagement into outrigger on load bearing length of fastener per manufacturer specifications.

Multi-Span Reference:

	"0.58 ≤ 1.00 ∴ PASS"
$PANEL_FASTENERS := stack \left(I_{f} , I_{f1} , I_{f2} \right) =$	"0.29 ≤ 1.00 ∴ PASS"
	"0.26 ≤ 1.00 ∴ PASS"

ENGINEERING

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

PANEL STIFFENER

Description: 48" Typical System

Project Name:

McDonalds - Puyallup, WA. L2401075

Sheet No: 3.04 Initials: SWP Date: 2/26/2025 Revision: --/--/----

System Data:	Stiffener Da	ata:	Outrigge	r Material:	Stiffener Shape:
Proj = 48 in	3	L := Proj - 4 in $= 44$ in	6005-T5	V	Rectangular Tube
$DL_{dn} = 49 \text{ psf}$ $DL_{up} = 6 \text{ psf}$ $WL_{Lat} = 10 \text{ psf}$	$d := d_s = 1 \text{ in}$ $t := t_s = 0.12 \text{ in}$	$L_b := L$ E _{alum} = 10100000 psi	-	$t_o := t_{eo} = 0.12$ in Properties:	Stiffener Material:
$SPA_{s} = 25 \text{ in}$ $\frac{Fascia \ Data:}{t_{f} := \text{Min}\left(t_{ff}, t_{ff}\right) = 0.12$	2 in	l, S	$c_{11} = 0.06 \text{ in}^4$ $c_{11} = 0.06 \text{ in}^4$ $c_{21} = 0.11 \text{ in}^3$ $c_{21} = 0.11 \text{ in}^3$	$A_1 = 0.44 \text{ in}^2$ $J_1 = 0.08 \text{ in}^4$ $Z_{\chi 1} = 0.14 \text{ in}^3$ $Z_{\chi 1} = 0.14 \text{ in}^3$	Fascia Material: 6005-T5

CALCULATIONS

a = 12.5 in $TL := Max \left(DL_{dn} , DL_{up} \right) = 49 \text{ psf}$ $w_x := TL \cdot \dot{S}PA_s = 8.51$ pli

Check Panel Stiffener:

*M*_v := 1837.15 lbf · in[¬] $f_{bx} := (M_x) \div (S_{x1}) = 16125 \text{ psi}$ F_{bx} := 21212.12 psi[¬]

$I_{bx} := \left(f_{bx}\right) \div \left(F_{bx}\right) = 0.76$

 $\Delta_x := 0.63$ in [¬] $\Delta_{xall} := (L) \div (60) = 0.73$ in

 $I_{\Delta} := \left(\Delta_{\chi}\right) \div \left(\Delta_{\chi a \parallel}\right) = 0.86$

Check Stiffener Bearing on Fascia:

$$\begin{aligned} R_{bear} &\coloneqq \operatorname{Max}\left(R_{sRLC3}, R_{sFLC3}, R_{sLC6}\right) = 149.2 \text{ lbf} \\ A_{bear} &\coloneqq b_{s} \cdot \operatorname{Min}\left(t_{ff}, t_{ff}\right) = 0.12 \text{ in}^{2} \\ R_{ball} &\coloneqq \frac{1.33 \cdot ADM_{-}F_{tu}\left(alloy_{3}, 0\right) \cdot A_{bear}}{1.95} = 3239.74 \text{ lbf} \\ \overline{I_{bear} \coloneqq \left(R_{bear}\right) \div \left(R_{ball}\right) = 0.05} \end{aligned}$$

Use 1" x 1" x 1/8" thk @ 25.00" o.c. AL. tube as shown (6061-T6)

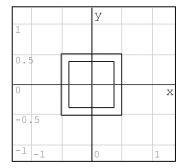
 $R_{sRLC3} := 149.2 \text{ lbf} \ ^{\neg} LC3 \text{ stiffener reaction (rear fascia)}$ R_{sFLC3} := 114.61 lbf [¬] LC3 stiffener reaction (front fascia) R_{s/ C6} := 80.64 lbf [¬] LC6 stiffener reaction

Check Fasteners (to Ou	utrigger):	0
Fastener Type:	SP _f := 12 in	
1/4-14" (Cond. CW)	$D_{_{WS}} := 0.428$ in	-0.
$V_f := 1.25 \cdot 0.5 \cdot w_x \cdot SP_f = 63$	3.8 lbf	-1
V _f · 0.5 · b		
$T_f := \frac{V_f \cdot 0.5 \cdot b}{0.5 \cdot d} = 63.8 \text{ lbf}$		
Shear Allowables:	Tension Allowables:	
V _{bearstiffener} := 791.67 lbf [¬]	$T_{povrstiffener} := 934.06$	lbf「
V _{bearoutrigger} ≔ 791.67 lbf [¬]	T _{poutoutrigger} := 437.5 I	bf⊓
V _{fast} ≔ 517 lbf ¬	<i>T_{fast}</i> := 896 lbf [¬]	
V _{fall} := 517 lbf [¬]	<i>T_{fall}</i> ≔437.5 lbf [¬]	

		.2		2
$I_f :=$	$\left(rac{V_f}{V_{fall}} ight)$) +	$\left(\frac{T_f}{T_{fall}} \right)$	= 0.0

Check Fastener Tilting (to Outrigger):

$$R_{tilt} := \frac{4.2 \cdot \sqrt{\left(\frac{t_{eo}^{3} \cdot Dia_{b1}}{3}\right) \cdot ADM_{-}F_{tu} (alloy_{3}, 0)}}{3} = 1175.57 \text{ lbf}$$


$$I_{tilt} := \left(\frac{V_{f}}{5}\right) \div \left(\frac{R_{tilt}}{5}\right) = 0.05$$

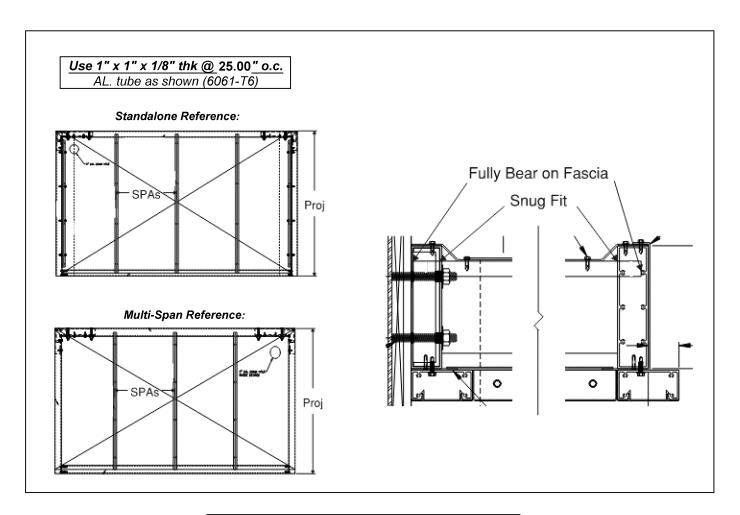
$$12" \text{ o.c. } \frac{Use 1/4-14 \text{ S.S. Fasteners}}{max. \text{ to attach stiffener to outrigger}}{as shown}{300 \text{ Series } (Fy = 65,000 \text{ psi})}$$

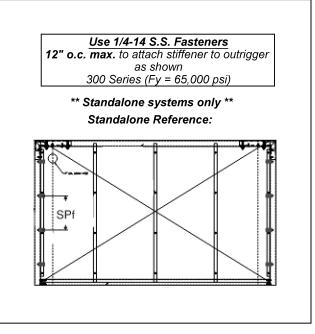
300 Series (Fy = 65,000 psi)

** Standalone systems only **

STIFFENER =	"0.76 ≤ 1.00 ∴ PASS" "0.86 ≤ 1.00 ∴ PASS"]
BEARING = "0.0)5 ≤ 1.00 ∴ PASS"
FASTENERS =	["0.04 ≤ 1.00 · PASS" "0.05 ≤ 1.00 · PASS"

Description: 48" Typical System
 Sheet No:
 3.05


 Initials:
 SWP


 Date:
 2/26/2025

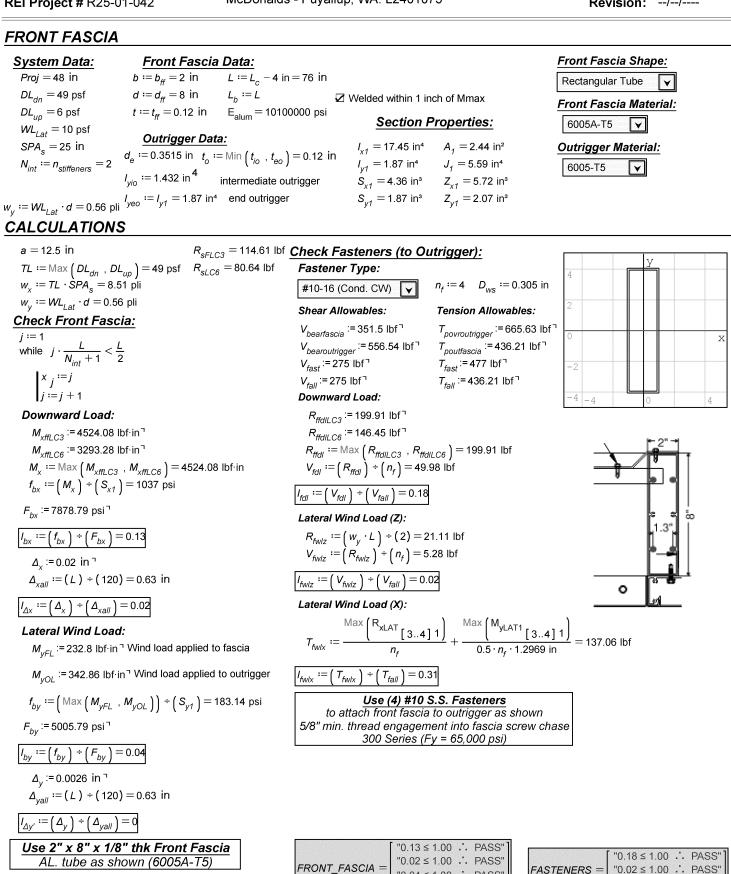
 Revision:
 --/--/---

Project Name: McDonalds - Puyallup, WA. L2401075

ENGINEERING

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042


Description: 48" Typical System

Project Name:

McDonalds - Puyallup, WA. L2401075

Sheet No: 3.06 Initials: SWP Date: 2/26/2025 Revision: --/--/----

"0.31 ≤ 1.00 ∴ PASS"

"0.04 ≤ 1.00 ∴ PASS"

"0 ≤ 1.00 ... PASS"

ENGINEERING

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

END OUTRIGGER

System Data: $L_c = 80$ in

 $DL_{dn} =$ 49 psf LC6 = 29.49 psf $DL_{up} = 6 \text{ psf}$ $WL_{Lat} = 10 \text{ psf}$ DeadL = 6.54 psf $SPA_s = 25$ in

 $b := b_{eo} = 2$ in L := Proj = 48 in $d := d_{eo} = 8$ in $L_b := L$ $t := t_{eo} = 0.12$ in $E_{alum} = 10100000$ psi Drift Data: $S_b = 21 \text{ psf}$ $P_{d1} = 41.4 \text{ psf}$ $P_{d2} = 0 \text{ psf}$

Outrigger Data:

CALCULATIONS

TW := 15 in [¬]

Check End Outrigger:

LC3 Drift Dist. Loads:

 $w_{owall2wayLC3} := (2 \cdot P_{dO1} + S_b + DeadL) \cdot a = 7.33 \text{ pli}$ $w_{omiddriff} := P_{dO1} \cdot a = 2.47$ pli $w_{omiduniLC3} := (P_{dO2} + S_b + DeadL) \cdot a = 3.51 \text{ pli}$ $w_{oend2wayLC3} := \left(P_{dO2} + S_b + DeadL \right) \cdot a = 3.51 \text{ pli}$ $w_{owallb} := P_{d1} \cdot \dot{b} = 0.57$ pli $w_{ounib} := (S_b + DeadL) \cdot b = 0.38$ pli $w_{owall1wayLC3} \coloneqq P_{d1} \cdot TW = 4.31 \text{ pli}$ $w_{ouniLC3} := (S_b + DeadL) \cdot TW = 2.87 \text{ pli}$

LC3 Point Loads:

 $F_{wall2wayLC3} := \frac{1}{2} \cdot a \cdot w_{owall2wayLC3} = 45.83$ lbf $F_{middrift} := \frac{1}{2} \cdot (L - 2 \cdot TW) \cdot w_{omiddrift} = 22.24$ lbf $F_{miduniLC3} := (L - 2 \cdot TW) \cdot (P_{dO2} + S_b + DeadL) \cdot a = 63.25 \text{ lbf}$ $F_{end2wayLC3} := \frac{1}{2} \cdot a \cdot w_{oend2wayLC3} = 21.96$ lbf $F_{wallb} := \frac{1}{2} \cdot L \cdot w_{owallb} = 13.8$ lbf $F_{unib} := L \cdot w_{ounib} = 18.36$ lbf

 $F_{wall1wayLC3} := \frac{1}{2} \cdot L \cdot w_{owall1wayLC3} = 103.5$ lbf $F_{uniLC3} := L \cdot w_{ouniLC3} = 137.7$ lbf

 $R_{\rm ffdILC3} = 199.91 \; {\rm lbf}$

R_{vOLC3}:= 385.33 lbf[¬] vertical rxn @ thru-bolts

LC3 Strong Axis Moment:

M_{xOLC3} := 13534.54 lbf in[¬]

$$f_{bxLC3} := \left(M_{xOLC3}\right) \div \left(S_{x1}\right) = 4296 \text{ ps}$$

 $|I_{b \times LC3} := \left(f_{b \times LC3}\right) \div \left(F_{b \times 1}\right) = 0.53$

LC3 Strong Axis Deflection:

∆_{x/.C3} := 0.1 in ¬

 $|I_{\Delta x L C 3} := (\Delta_{x L C 3}) \div (\Delta_{x a \parallel}) = 0.13$

Description: 48" Typical System

Project Name: McDonalds - Puyallup, WA. L2401075

I_{x1} = 12.6 in⁴

 $I_{v1} = 0.46 \text{ in}^4$

 $S_{x1} = 3.15 \text{ in}^3$

 $S_{v1} = 0.28 \text{ in}^3$

LC6 Uniform Dist. Load: $w_{LC6uni} := LC6 \cdot TW = 3.07$ pli

LC6 Point Load:

 $R_{ffdll_{C6}} = 146.45$ lbf

LC6 Strong Axis Moment:

M_{xOLC6} := 9462.6 lbf · in [¬]

Sheet No: 3.07 Initials: SWP Date: 2/26/2025 Revision: --/--/----

e:

¥

~ end outrigger end outrigger

 $w_v := WL_{Lat} \cdot d = 0.56$ pli

Х $F_{wall2wayLC6} := \frac{1}{2} \cdot TW \cdot w_{LC6uni} = 23.04$ lbf $F_{miduniLC6} := (L - 2 \cdot TW) \cdot w_{LC6uni} = 55.29$ lb $F_{end2wayLC6} := \frac{1}{2} \cdot TW \cdot w_{LC6uni} = 23.04$ lbf -4

Outrigger Allowables:

F_{bx} := 8093 psi[¬] F_{by} := 9057.65 psi[¬] $\Delta_{xall} := (2 \cdot L) \div (120) = 0.8$ in $\Delta_{yall} := (2 \cdot L_b) \div (120) = 0.8$ in

 $I_{bxLC6} := \left(f_{bxLC6} \right) \div \left(F_{bx} \right) = \overline{0.37}$ LC6 Strong Axis Deflection:

 $\Delta_{xLC6} := 0.07$ in [¬]

$$I_{\Delta \times LC6} := \left(\Delta_{\times LC6} \right) \div \left(\Delta_{\times a \parallel} \right) = 0.09$$

Lateral Wind Load:

 M_{VOL} := 330.46 lbf·in[¬] Wind load applied to outrigger $M_{\text{VEL}} := 108.81 \text{ Ibf} \cdot \text{in}^{\neg}$ Wind load applied to fascia

$$f_{by} := (Max(M_{yFL}, M_{yOL})) + (S_{y1}) = 1168.26$$

R_{VOLC6}:=247.82 lbf[¬] vertical rxn @ thru-bolts

 $f_{bxLC6} := (M_{xOLC6}) \div (S_{x1}) = 3004 \text{ psi}$

$$I_{by} := (f_{by}) \div (F_{by}) = 0.13$$

$$I_{\Delta y} := \left(\Delta_{y}\right) \div \left(\Delta_{yall}\right) = 0.1$$

Use 2" x 8" x 1/8" thk End Outrigger
AL. tube as shown (6005-T5)

END_OUTRIGGER =	"0.53 ≤ 1.00 ∴ PASS"
	"0.37 ≤ 1.00 ∴ PASS"
	"0.13 ≤ 1.00 ∴ PASS"
	"0.13 ≤ 1.00 · · PASS"
	"0.09 ≤ 1.00 ∴ PASS"
	"0.1 ≤ 1.00 ∴ PASS"

psi

ENGINEERING

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

INTERMEDIATE OUTRIGGER

System	Data:
--------	-------

Outrinner Data

Description:

Project Name:

48" Typical System

<u>System Data:</u>	<u>Outrigger Data:</u>		Outrigger Shape:
$L_c = 80$ in	$b := b_{io} = 2$ in $L := Proj = 48$ in		Channel 🖌
$DL_{dn} = 49 \text{ psf}$	$d := d_{io} = 6$ in $L_b := L$	\Box Welded within 1 inch of Mmax	Outrigger Material:
LC6 = 29.49 psf $DL_{up} = 6 \text{ psf}$ $WL_{Lat} = 10 \text{ psf}$ DeadL = 6.54 psf $SPA_s = 25 \text{ in}$	$S_b = 21 \text{ psr}$ $P_{d1} = 41.4 \text{ psf}$ $P_{d2} = 0 \text{ psf}$	Section Properties: $I_{\chi 1} = 6.3 \text{ in}^4$ $A_1 = 1.22 \text{ in}^2$ $I_{y1} = 0.43 \text{ in}^4$ $J_1 = 0.01 \text{ in}^4$ $S_{\chi 1} = 2.1 \text{ in}^3$ $Z_{\chi 1} = 2.5 \text{ in}^3$ $S_{y1} = 0.27 \text{ in}^3$ $Z_{y1} = 0.41 \text{ in}^3$	$I_{yio} := I_{y1} = 0.43 \text{ in}^{4} \text{ intermediate outrigger}$ $I_{yeo} := 1.8721 \text{ in}^{4} \text{ end outrigger}$ $W_{y} := WL_{Lat} \cdot d = 0.42 \text{ pli}$

McDonalds - Puyallup, WA. L2401075

CALCULATIONS

TW = 15 in

Check Intermediate Outrigger:

LC3 Drift Dist. Loads:

 $w_{owall2wayLC3} = 7.33$ pli $w_{omiddrift} = 2.47$ pli $w_{omiduniLC3} = 3.51$ pli $w_{oend2wayLC3} = 3.51 \text{ pli}$ $w_{owallb} = 0.57$ pli $w_{ounib} = 0.38$ pli $w_{owall1wayLC3} =$ 4.31 pli $w_{ouniLC3} = 2.87$ pli

LC3 Point Loads:

 $F_{wall2wavLC3} = 45.83$ lbf $F_{middrift} = 22.24$ lbf $F_{miduniLC3} = 63.25$ lbf $F_{end2wayLC3} = 21.96$ lbf $F_{wallb} = 13.8 \text{ lbf}$ $F_{unib} = 18.36$ lbf $F_{wall1wayLC3} = 103.5$ lbf $F_{uniLC3} = 137.7$ lbf $R_{\rm ffd/LC3} = 199.91 \; \rm lbf$

R_{VOLC3}:= 385.33 lbf " vertical rxn @ thru-bolts

LC3 Strong Axis Moment:

M_{xOLC3} := 13534.54 lbf ·in[¬]

$$f_{bxLC3} := (M_{xOLC3}) \div (S_{x1}) = 6450 \text{ psi}$$

$$I_{bxLC3} := \left(f_{bxLC3}\right) \div \left(F_{bx}\right) = 0.74$$

LC3 Strong Axis Deflection:

 Δ_{xLC3} := 0.21 in [¬]

$$I_{\Delta x L C 3} := \left(\Delta_{x L C 3}\right) \div \left(\Delta_{x a l l}\right) = 0.26$$

LC6 Uniform Dist. Load: $w_{LC6uni} = 3.07$ pli

LC6 Point Load:

 $F_{wall2wayLC6} = 23.04$ lbf $F_{miduniLC6} = 55.29$ lbf $F_{end2wayLC6} = 23.04$ lbf $R_{ffdlLC6} = 146.45$ lbf

R_{vOLC6}:=247.82 lbf[¬] vertical rxn @ thru-bolts

LC6 Strong Axis Moment:

M_{xOLC6} := 9462.6 lbf · in [¬]

$$f_{bxLC6} := \left(M_{xOLC6} \right) \div \left(S_{x1} \right) = 4509 \text{ psi}$$

$$I_{bxLC6} := (f_{bxLC6}) \div (F_{bx}) = 0.52$$

LC6 Strong Axis Deflection:

$$I_{\Delta \times LC6} := (\Delta_{\times LC6}) \div (\Delta_{\times a \parallel}) = 0.19$$

Lateral Wind Load:

 $M_{VOL} := 247.38 \text{ lbf} \cdot \text{in}^{\neg}$ Wind load applied to outrigger

 $M_{vFL} := 82.34$ lbf in [¬] Wind load applied to fascia

$$f_{by} := \left(\operatorname{Max} \left(M_{yFL} , M_{yOL} \right) \right) \div \left(S_{y1} \right) = 900.15 \text{ ps}$$

$$I_{by} := \left(f_{by} \right) \div \left(F_{by} \right) = 0.07$$

Weak Axis Deflection:

$$\Delta_{v} := 0.0641$$
 in [¬]

$$I_{\Delta y} := \left(\Delta_y\right) \div \left(\Delta_{yall}\right) = 0.08$$

Use 2" x 6" x 1/8" thk Int. Outrigger AL. tube as shown (6061-T6)

$$INT_OUTRIGGER = \begin{bmatrix} "0.74 \le 1.00 & \therefore & PASS" \\ "0.52 \le 1.00 & \therefore & PASS" \\ "0.07 \le 1.00 & \therefore & PASS" \\ "0.26 \le 1.00 & \therefore & PASS" \\ "0.19 \le 1.00 & \therefore & PASS" \\ "0.08 \le 1.00 & \therefore & PASS" \end{bmatrix}$$

Х 4

Outrigger Allowables:

F_{bx} := 8748.53 psi[¬] F_{bv} := 12076.87 psi[¬] $\Delta_{xall} := (2 \cdot L) \div (120) = 0.8$ in $\Delta_{yall} := (2 \cdot L_b) \div (120) = 0.8$ in

Sheet No: 3.08 Initials: SWP Date: 2/26/2025 Revision: --/--/----

ENGINEERING

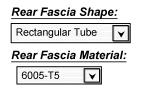
105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

Project Name:

 $R_{yOLC3} = 385.33 \text{ lbf}$ $R_{yOLC6} = 247.82 \text{ lbf}$ $M_{XOLC3} = 13534.54 \text{ lbf} \cdot \text{in}$ $M_{XOLC6} = 9462.6 \text{ lbf} \cdot \text{in}$

Description:


McDonalds - Puyallup, WA. L2401075

Sheet No: 3.09 Initials: SWP Date: 2/26/2025 Revision: --/--/----

REAR FASCIA				
System Data:	Rear Fascia	a Data:		
Proj = 48 in	$b = b_{rf} = 2$ in	$L := L_c - 2$ in = 78 in		
DL _{dn} =49 psf	$d := d_{rf} = 8$ in	$L_b := L$	Welded within	1 inch of Mmax
$DL_{up} = 6 \text{ psf}$	$t := t_{rf} = 0.12$ in	E _{alum} = 10100000 psi	Section Dr	on ortion (
$WL_{Lat} = 10 \text{ psf}$			Section Pr	operties:
$SPA_s = 25$ in			<i>I_{x1} =</i> 17.45 in⁴	$A_1 = 2.44 \text{ in}^2$

48" Typical System

 $I_{\chi 1} = 17.45 \text{ in}^4$ $A_1 = 2.44 \text{ in}^2$
$$\begin{split} I_{y1} &= 1.87 \text{ in}^4 \qquad J_1 = 5.59 \text{ in}^4 \\ S_{\chi1} &= 4.36 \text{ in}^3 \qquad Z_{\chi1} = 5.72 \text{ in}^3 \end{split}$$
 $S_{v1} = 1.87 \text{ in}^3 \qquad Z_{v1} = 2.07 \text{ in}^3$

CALCULATIONS

 $TL := Max \left(DL_{dn} , DL_{up} \right) = 49 \text{ psf}$

a = 12.5 in

 $N_{int} = 2$

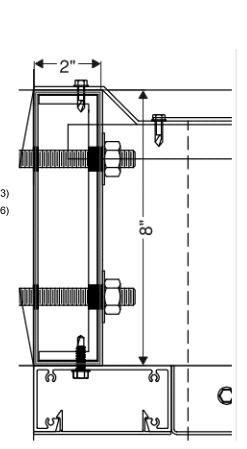
$w_{\chi} := TL \cdot \dot{S}PA_{S} = 8.51$ pli $w_y := WL_{Lat} \cdot d = 0.56$ pli Check Rear Fascia: j := 1while $j \cdot \frac{L}{N_{int} + 1} < \frac{L}{2}$ $\begin{vmatrix} x \\ j &:= j \\ j &:= j+1 \end{vmatrix}$ Downward Load: R_{rfdlLC3} := 274.26 lbf [¬] Rear fascia vertical rxn @ anchors (LC3) R_{rfdlLC6} := 144.61 lbf[¬] Rear fascia vertical rxn @ anchors (LC6) *M_{×rfLC3}* := 6444.45 lbf · in [¬] 2400 0 lbf :

$$\begin{split} M_{xrfLC6} &:= 3408.8 \text{ lbf} \cdot \text{in } \\ M_{x} &:= Max \left(M_{xrfLC3} \text{ , } M_{xrfLC6} \right) = 6444.45 \text{ lbf} \cdot \text{in} \\ f_{bx} &:= \left(M_{x} \right) \div \left(S_{x1} \right) = 1477 \text{ psi} \end{split}$$

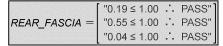
F_{bx} :=7878.79 psi[¬]

$$I_{bx} := (f_{bx}) \div (F_{bx}) = 0.19$$
$$\Delta_{x} := 0.02 \text{ in } \neg$$

 $\Delta_{xall} := (L) \div (120) = 0.65$ in


$$I_{\Delta x} := \left(\Delta_{x}\right) \div \left(\Delta_{xall}\right) = 0.04$$

Torsion Due to Outrigger:


$$Tor_{rf} := 15172.21 \text{ lbf} \cdot \text{in}^{\neg}$$
$$r_{rf} := \frac{Tor_{rf}}{2 \cdot t \cdot (b - t) \cdot (d - t)} = 4110.14 \text{ psi}$$

F₇ := 7483.08 psi[¬]

 $\left|I_{\tau} := \left(\tau_{f}\right) \div \left(F_{\tau}\right) = 0.55$

Х - 4

<u>RICE</u>

ENGINEERING

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

SOFFIT

$$\begin{split} t_{sp} &:= 0.1 \text{ in soffit panel thickness} & W_{upASD} = 9.92 \text{ psf} \\ N_{ss} &:= 5 \text{ # of soffit stiffeners} & L_{stiff} = 44 \text{ in } \text{ stiffener length} \\ Sp_{ss} &:= (96 \text{ in}) \div ((N_{ss} - 1)) = 24 \text{ in soffit stiffener spacing} \end{split}$$

Check Soffit Panel Bending:

$$L_{bpanel} := Sp_{ss} = 24 \text{ in}$$

$$w_{panel} := W_{upASD} \cdot Proj = 3.31 \text{ pli}$$

$$M_{ypanel} := \frac{168 \cdot w_{panel} \cdot L_{bpanel}}{1568} = 204.15 \text{ lbf} \cdot \text{in}$$

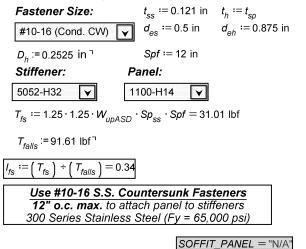
$$S_{ypanel} := \frac{t_{sp}^2 \cdot (Proj - 4.5 \text{ in})}{6} = 0.07 \text{ in}^3$$

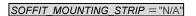
$$f_{bpanel} := (M_{ypanel}) \div (S_{ypanel}) = 2815.87 \text{ psi}$$

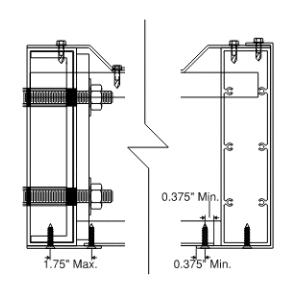
$$F_{bpanel} := 11500 \text{ psi}$$

$I_{bpanel} := (f_{bpanel}) \div (F_{bpanel}) = 0.24$

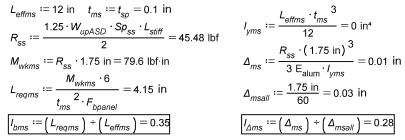
Check Panel Deflection:


L/60 Panel Deflection Criteria $I_{yp} := \frac{t_p^{-3} \cdot (Proj - 4.5 \text{ in})}{12} = 0.0036 \text{ in}^4$


$$\begin{split} \Delta_{yp} &:= 0.00541 \cdot \frac{w_{panel} \cdot L_{bpanel}}{\mathsf{E}_{alum} \cdot l_{yp}} = 0.16 \text{ in} \\ \Delta_{ypall} &:= \frac{L_{bpanel}}{Deflection \ Criteria} = 0.4 \text{ in} \end{split}$$


 $I_{\Delta yp} := \left(\Delta_{yp}\right) \div \left(\Delta_{ypall}\right) = 0.41$

Using L /60 Deflection Limit:
Use0.100 " Thick
Panel Type = 1100–H14 Aluminum
Maximum Span = 24.00"


Check Fasteners (to stiffeners):

Check Soffit Mounting Strip:

Check Soffit Mounting Strip Fasteners:

$$T_{fmsp} := R_{ss} = 45.48 \text{ lbf}$$

$$T_{fmsrf} := \frac{R_{ss} \cdot 0.6033 \text{ in}}{1.056 \text{ in}} = 25.99 \text{ lbf}$$

$$T_{povrms} := \left(\left(0.27 + 1.45 \cdot \frac{t_{ms}}{0.19 \text{ in}} \right) \cdot 0.19 \text{ in} \cdot t_{ms} \cdot 14 \text{ ksi} \right) + (3) = 91.61 \text{ lbf}$$

$$T_{fasms} := 477 \text{ lbf}$$

$$T_{poutp} := (1.2 \cdot 0.19 \text{ in} \cdot t_{sp} \cdot 14 \text{ ksi}) + (3) = 106.4 \text{ lbf}$$

$$T_{poutr} := (1.2 \cdot 0.19 \text{ in} \cdot t_{rf} \cdot 35 \text{ ksi}) + (3) = 332.5 \text{ lbf}$$

$$I_{fmsp} := (T_{fmsp}) + \left(\text{Min} \left(T_{povrms} , T_{fasms} , T_{poutp} \right) \right) = 0.5$$

$$I_{msrf} := (T_{fmsrf}) + \left(\text{Min} \left(T_{povrms} , T_{fasms} , T_{poutp} \right) \right) = 0.28$$

$$I_{fmsrf} := (T_{fmsrf}) + \left(\text{Min} \left(T_{povrms} , T_{fasms} , T_{poutr} \right) \right) = 0.28$$

$$I_{fmsrf} := (T_{fmsrf}) + \left(\text{Min} \left(T_{povrms} , T_{fasms} , T_{poutr} \right) \right) = 0.28$$

$$I_{msrf} := (T_{fmsrf}) + \left(\text{Min} \left(T_{povrms} , T_{fasms} , T_{poutr} \right) \right) = 0.28$$

$$I_{msrf} := (T_{fmsrf}) + \left(\text{Min} \left(T_{povrms} , T_{fasms} , T_{poutr} \right) \right) = 0.28$$

$$I_{msrf} := (T_{fmsrf}) + \left(\text{Min} \left(T_{povrms} , T_{fasms} , T_{poutr} \right) \right) = 0.28$$

$$I_{msrf} := (T_{fmsrf}) + \left(\text{Min} \left(T_{povrms} , T_{fasms} , T_{poutr} \right) \right) = 0.28$$

$$I_{msrf} := (T_{fmsrf}) + \left(\text{Min} \left(T_{povrms} , T_{fasms} , T_{poutr} \right) \right) = 0.28$$

$$I_{msrf} := (T_{fmsrf}) + \left(\text{Min} \left(T_{povrms} , T_{fasms} , T_{poutr} \right) \right) = 0.28$$

$$I_{msrf} := (T_{fmsrf}) + \left(\text{Min} \left(T_{povrms} , T_{fasms} , T_{poutr} \right) \right) = 0.28$$

$$I_{msrf} := (T_{fmsrf}) + \left(\text{Min} \left(T_{povrms} , T_{fasms} , T_{poutr} \right) \right) = 0.28$$

$$I_{msrf} := (T_{fmsrf}) + \left(\text{Min} \left(T_{povrms} , T_{fasms} , T_{poutr} \right) \right) = 0.28$$

$$I_{msrf} := (T_{fmsrf}) + (T_{fasm}) + (T_$$

MOUNTING_STRIP_FASTENERS = "N/A"

 Sheet No:
 3.10

 Initials:
 SWP

 Date:
 2/26/2025

 Revision:
 --/--/---

Project Name:

Description:

48" Typical System

McDonalds - Puyallup, WA. L2401075

Description: 48" Typical System

ENGINEERING 105 School Creek Trail | Luxemburg, WI 54217

(Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

Stiffener Angle:

 $L_{1s} := 1.75$ in $L_{28} := 1.75$ in $t_{ss} = 0.121$ in C_{bs} := 1.0 $Alum_{Den} := 158 \text{ pcf}$

Check Stiffener Bending:

 $w_{upstiff} := W_{upASD} \cdot T_{ws} = 1.65 \text{ pli}$

 $f_{bxsu} := \frac{M_{xsu}}{S_{xsbot}} = 1633.75 \text{ psi}$

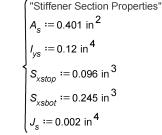
 $I_{bsu} := \left(f_{bxsu} \right) \div \left(F_{bxsu} \right) = 0.18$

 $\Delta_{ysu} := \frac{5 \cdot w_{upstiff} \cdot L_{stiff}}{384 \text{ E}_{alum} \cdot l_{ys}} = 0.07 \text{ in}$

 $I_{\Delta y s u} := (\Delta_{y s u}) \div (\Delta_{y s u a ll}) = 0.09$

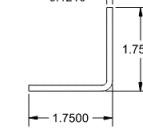
 $\Delta_{ysuall} := Min (1.5 \text{ in }, (L_{stiff}) \div (60)) = 0.73 \text{ in}$

F_{bxsu} := 9087.68 psi[¬]


Uplift Deflection:

 $M_{xsu} := \frac{w_{upstiff} \cdot L_{stiff}}{8} = 400.27 \text{ lbf in}$

Uplift:


5052-H32 ¥ $L_{stiff} = 44$ in stiffener length $T_{ws} = 24$ in \neg stiffener trib. width $W_{upASD} = 9.92 \text{ psf}$ $P_{light} := 5 \text{ lbf}$

F_{bxsuF.5.a.2} = 9087.68 psi [¬] uniform compression local buckling

McDonalds - Puyallup, WA. L2401075

0.1210 1.7500

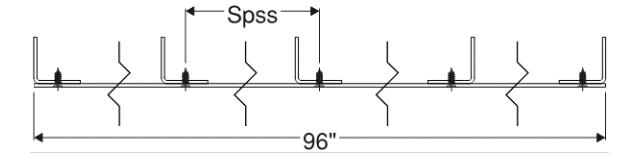
Dead Load:

$$w_{DLstiff} := Alum_{Den} \cdot \left(A_s + t_{sp} \cdot T_{ws}\right) = 0.26 \text{ pli}$$

$$M_{xsDL} := \frac{w_{DLstiff} \cdot L_{stiff}^2}{8} + \frac{P_{light} \cdot L_{stiff}}{4} = 116.98 \text{ lbf in}$$

$$f_{bxsDL} := \frac{M_{xsDL}}{S_{xstop}} = 1218.53 \text{ psi}$$

*F*_{bxsDLF.5.a.1} = 10685.01 psi[¬] leg tip max. compression local buckling


F_{bxsDLLTB} = 25099.64 psi[¬] leg tip max. compression LTB

F_{bxsDL} := 10685.01 psi[¬]

$$I_{bsDL} := (f_{bxsDL}) \div (F_{bxsDL}) = 0.11$$

Dead Load Deflection:

$$\Delta_{ysDL} = \frac{5 \cdot w_{DLstiff} \cdot L_{stiff}}{384 \text{ } \text{E}_{alum} \cdot l_{ys}} + \frac{P_{light} \cdot L_{stiff}}{48 \text{ } \text{E}_{alum} \cdot l_{ys}} = 0.02 \text{ in } \text{}^{-1}$$
$$\Delta_{ysDLall} := \text{Min} \left(1.5 \text{ in }, \left(L_{stiff}\right) \div (60)\right) = 0.73 \text{ in}$$
$$\overline{l_{\Delta ysDL}} := \left(\Delta_{ysDL}\right) \div \left(\Delta_{ysDLall}\right) = 0.02$$

Use (5) 1-3/4" x 1-3/4" x 0.121" Formed Alum. Angles (2) @ each panel end and spaced 24.0 " max. along 8' panel length as shown (5052-H32)

STIFFENER = "N/A"

Initials: SWP Date: 2/26/2025

Revision: --/--/----

Sheet No: 3.11

Project Name:

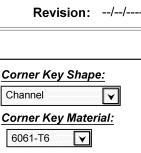
ENGINEERING 105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

ANCHOR BRACKET

System Data:

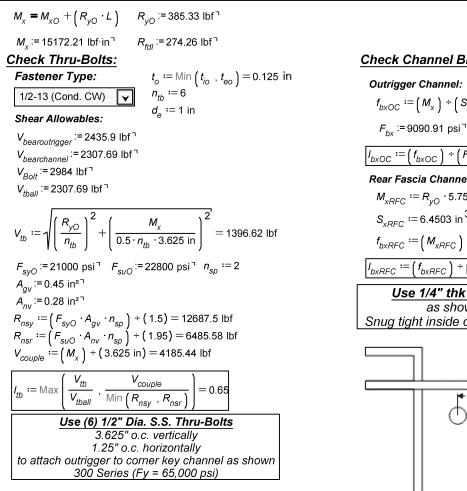
Proj = 48 in $DL_{dn} = 49 \text{ psf}$ $DL_{up} = 6 \text{ psf}$ $WL_{Lat} = 10 \text{ psf}$


Channel Anchor Data: $b := b_{cb} = 1.69$ in L := 4.25 in $d := d_{cb} = 5.69$ in $L_h := L$ E_{alum} = 10100000 psi $t := t_{cb} = 0.25$ in

 $R_{rfdILC3} = 274.26$ lbf $R_{rfdll \ C6} = 144.61 \ lbf$ $R_{yOLC3} = 385.33$ lbf $R_{vOl \ C6} = 247.82$ lbf $M_{xOLC3} = 13534.54$ lbf·in $M_{xOLC6} = 9462.6$ lbf·in

 Welded within 1 inch of Mmax

Section Properties:


I_{x1} = 9.19 in⁴ $A_1 = 2.14 \text{ in}^2$ I_{y1} = 0.47 in^₄ $J_1 = 0.05 \text{ in}^4$ $S_{\chi \uparrow} = 3.23 \text{ in}^3$ $Z_{\chi 1} = 3.99 \text{ in}^3$ $Z_{v1} = 0.45 \text{ in}^3$ $S_{v1} = 0.37 \text{ in}^3$

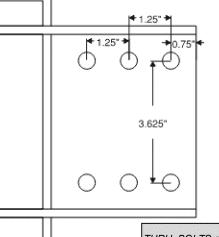
X

Weld Filler: 4043 $\mathbf{\vee}$ **Outrigger Material:** 6061-T6 ¥

CALCULATIONS

Check Channel Bracket:

Outrigger Channel: $f_{h_{YOC}} := (M_{Y}) \div (S_{Y1}) = 4701 \text{ psi}$


$$I_{h \times OC} := (f_{h \times OC}) \div (F_{h \times}) = 0.52$$

Rear Fascia Channel:

$$M_{xRFC} := R_{yO} \cdot 5.75$$
 in = 2215.67 lbf in
 $S_{xRFC} := 6.4503$ in ³

$$f_{bxRFC} := (M_{xRFC}) \div (S_{xRFC}) = 343.5 \text{ psi}$$

$$I_{bxRFC} := \left(f_{bxRFC} \right) \div \left(F_{bx} \right) = 0.04$$

THRU_BOLTS =	"0.61 ≤ 1.00 "0.65 ≤ 1.00	 PASS" PASS"
	["0.52 ≤ 1.00	

CHANNEL_BRACKET "0.04 ≤ 1.00 ... PASS"

Rear fascia tube torsion due to outrigger moment check on page 3.09

Description: 48" Typical System

Project Name:

McDonalds - Puyallup, WA. L2401075

Sheet No: 3.12 Initials: SWP Date: 2/26/2025

Revision: --/--/----

<u>RICE</u> ENGINEERING

Description: 48" Typical System

Project Name:

McDonalds - Puyallup, WA. L2401075

 Sheet No:
 3.13

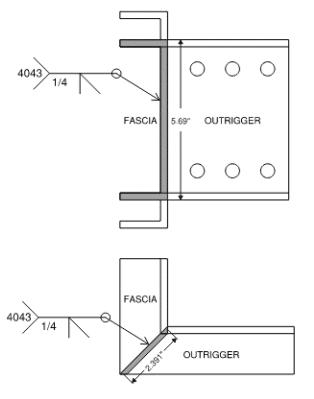
 Initials:
 SWP

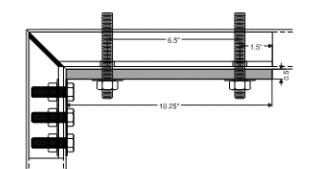
 Date:
 2/26/2025

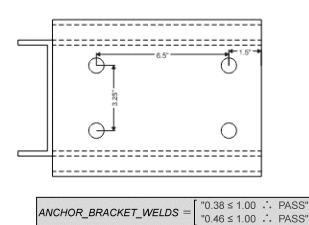
 Revision:
 --/--/---

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042


Check Channel Bracket Welds:


$$\begin{aligned} d_{w} &:= d = 5.69 \text{ in } \qquad M_{x} = 15172.21 \text{ lbf in } \\ b_{w} &:= 2.391 \text{ in } \qquad R_{yO} = 385.33 \text{ lbf } \\ t_{w} &:= 0.25 \text{ in } \end{aligned}$$


$$\begin{aligned} A_{w} &:= t_{w} \cdot \left(2 \cdot b_{w} + d_{w}\right) = 2.62 \text{ in}^{2} \\ S_{w1} &:= t_{w} \cdot \left(\frac{2 \cdot b_{w} + d_{w}}{6}\right) = 4.75 \text{ in}^{3} \\ S_{w2} &:= \frac{t_{w} \cdot \left(2 \cdot b_{w} + d_{w}\right)^{2}}{6} = 4.57 \text{ in}^{3} \\ f_{w} &:= \sqrt{\left(\frac{0.7071 \cdot M_{x}}{S_{w1}}\right)^{2}} + \left(\frac{0.7071 \cdot M_{x}}{S_{w2}} + \frac{R_{yO}}{A_{w}}\right)^{2}} = 3362.92 \text{ psi } \\ F_{tub} &:= 24000 \text{ psi}^{-1} \qquad F_{tuw} = 24000 \text{ psi } \\ F_{sbT} &:= \frac{F_{tub}}{1.95} = 12307.69 \text{ psi } \qquad F_{swT} := \frac{0.6 \cdot F_{tuw}}{1.95} = 7384.62 \text{ psi } \\ F_{sbV} &:= \frac{0.6 \cdot F_{tub}}{1.95} = 7384.62 \text{ psi } \qquad F_{swV} := \frac{0.6 \cdot F_{tuw}}{1.95} = 7384.62 \text{ psi } \\ I_{wbm} &:= \sqrt{\left(\frac{0.7071 \cdot M_{x}}{F_{sbT} \cdot S_{w1}}\right)^{2} + \left(\frac{0.7071 \cdot M_{x}}{F_{sbV} \cdot S_{w2}} + \frac{R_{yO}}{F_{sbV} \cdot A_{w}}\right)^{2}} = 0.38 \\ I_{wt} &:= \sqrt{\left(\frac{0.7071 \cdot M_{x}}{F_{swT} \cdot S_{w1}}\right)^{2} + \left(\frac{0.7071 \cdot M_{x}}{F_{swV} \cdot S_{w2}} + \frac{R_{yO}}{F_{swV} \cdot A_{w}}\right)^{2}} = 0.46 \\ \hline \frac{Use 1/4^{*} \text{ Bevel Groove Welds}}{Full perimeter of outrigger channel to attach outrig$$

Check Front Reinforcing Plate:

$$\begin{split} t_{R\rho} &:= 0.5 \text{ in} \\ P_w &:= \frac{M_x}{5.1937 \text{ in}} = 2921.27 \text{ lbf} \\ M_{wkR\rho} &:= P_w \cdot 2.1746 \text{ in} = 6352.6 \text{ lbf} \cdot \text{in} \\ S_{yR\rho} &:= \left(\left(t_{R\rho} \right)^2 \cdot 0.85 \cdot 7.5 \text{ in} \right) \div (6) = 0.27 \text{ in}^3 \\ f_{wkR\rho} &:= \left(M_{wkR\rho} \right) \div \left(S_{yR\rho} \right) = 23915.66 \text{ psi} \\ F_{bwkR\rho} &:= 31800 \text{ psi} \\ \hline \\ I_{R\rho} &:= \left(f_{wkR\rho} \right) \div \left(F_{bwkR\rho} \right) = 0.75 \end{split}$$

REINFORCING_PLATE = ["0.75 ≤ 1.00 ∴ PASS"]

El Project # R25-01-042	Project Name:			nls: SWP nte: 2/26/2025
	McDonalds -	Puyallup, WA. L2401075	Revisio	on://
Check Thru-Bolt Anchors (Wood Bi $n_a := 4$ $V_a := \frac{R_{yO} \cdot 9.6 \text{ in}}{0.5 \cdot n_a \cdot 6.5 \text{ in}} + \frac{R_{fdl}}{n_a} = 353.12 \text{ lb}$ $T_a := 3265.94 \text{ lbf}^{-1}$	L	□ Brick Fascia Present Pipe Sleeve Data: OD := 1.05 in $t_{sleeve} := 0.154$ in	Washer Data: $b_{wp} := 3$ in $t_{wp} := 0.375$ in $d_{wp} := 3$ in $F_{ywp} := 36$ ksi	Substrate Data: $t_p := t_{Rp}$ $e_s := 4.5 \text{ in }$ $l_m := 4.5 \text{ in}$ G := 0.42 $F_c := 425 \text{ psi}$
Anchor Diameter: 5/8" Anchor Type: Thru-Bolt	$F_u := 120 \text{ ksi}$ $F_{es} := 43000$	psi	Ω _{tb} := 2.5	$\begin{split} & C_M := 1.0 \\ & C_t := 1.0 \\ & C_g := 1.0 \\ & C_\Delta := 1.0 \\ & C_{eg} := 1.0 \\ & C_{di} := 1.0 \\ & C_D := 1.15 \end{split}$
515.5 lbf in "Mb" 21507.59 <u>lbf</u> "fb" [1073.53	$\frac{1}{C_{di}} = 594.77 \text{ lbf}$ $\frac{1}{C_{di}} = 1365.2 \text{ lbf}$	Tension: W' = 1386.19 lbf $T_{wood} = "N/A"$ Bolt Allowables: $V_{bolt} := \frac{F_u}{\Omega_{tb} \cdot \sqrt{3}} \cdot A_r = 5739.4$ $T_{bolt} := \frac{F_u}{\Omega_{tb}} \cdot A_S = 10848.08 \text{ lb}$	Required Washer Minimum. $F_{bwp} := 0.75 \cdot F_{ywp} = 27000 \text{ ps}$ $A_{wreq} := \frac{T_a}{C_D \cdot F_c} = 6.68 \text{ in}^2$ 61 lbf $b_{wpmin} := \sqrt{A_{wreq}} = 2.59 \text{ in}$ $d_{wpmin} := b_{wpmin} = 2.59 \text{ in}$ of $t_{wpmin} := \sqrt{\frac{T_a \cdot b_{wpmin} \cdot 6}{F_{bwp} \cdot 8 \cdot d_{wpmin}}} =$	I

_

Description: 36" Underscore
 Sheet No:
 4.00

 Initials:
 SWP

 Date:
 2/26/2025

 Revision:
 --/--/---

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100 **Project Nam**

REI Project # R25-01-042

Project Name: McDonalds - Puyallup, WA. L2401075

Loading Information:

$W_{up} := 16 \text{ psf}$	unfactored uplift
P _{light} := 5 lbf	weight of light

System Information:

 $\begin{array}{ll} L_{us} \coloneqq 108 \text{ in} & underscore \ length \\ Light_Spacing \coloneqq 60 \text{ in} \\ Proj_UF \coloneqq 38 \text{ in} & underscore \ projection \\ Light_Gap \coloneqq 12.8 \text{ in} \\ W_{panel} \equiv 30 \text{ in} \\ \end{array}$

¥

(2) Infill Panel Stiffeners

Underscore Panel:

 $t_p := 0.077$ in *panel thickness*

Underscore Panel Stiffener:

L _{1s} := 1.75 in	stiffener leg length
L _{2s} := 1.75 in	stiffener leg length
t _s ≔ 0.121 in	stiffener thickness

Outrigger:

<i>b_o</i> ≔ 1.9185 in	outrigger width
<i>d</i> _o := 4 in	outrigger depth
<i>t_{of}</i> ≔ 0.1 in	outrigger flange thickness
t _{ow} ≔ 0.125 in	outrigger web thickness

Rear Fascia:

<i>b_{rf}</i> ≔ 1.9185 in	rear fascia width
<i>d_{rf}</i> := 4 in	rear fascia depth
$t_{rff} := 0.1$ in	rear fascia flange thickness
<i>t_{rfw}</i> ≔ 0.125 in	rear fascia web thickness

Front Fascia:

<i>b_{ff}</i> ≔ 1.9185 in	front fascia width
$d_{\rm ff} := 4$ in	front fascia depth
$t_{fff} := 0.1$ in	front fascia flange thickness
<i>t_{ffw}</i> ≔ 0.125 in	front fascia web thickness

ENGINEERING

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

Underscore Panel:

 $t_p = 0.08$ in \neg panel thickness $N_s = 2^{\neg} \#$ of underfill stiffeners $Sp_{stiff} = 8.6$ in \neg stiffener spacing

Check Panel Bending:

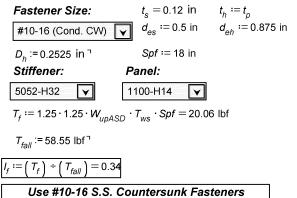
 $L_{effp} := 1 \text{ in}$ $w_{panel} := W_{upASD} \cdot L_{effp} = 0.07 \text{ pli}$ $L_{bpanel} = 12.8 \text{ in}^{-1}$ $M_{ypanel} := \frac{w_{panel} \cdot L_{bpanel}}{8} = 1.37 \text{ lbf-in}$ $F_{bpanel} := 11500 \text{ psi}$ $L_{max} := \frac{M_{ypanel} \cdot 6}{8} = 0.12 \text{ in}$

$$\frac{L_{reqp}}{t_p} \frac{t_p^2 \cdot F_{bpanel}}{F_{bpanel}} = 0.12$$

Check Panel Deflection:

L/60 Panel Deflection Criteria

$$I_{yp} := \frac{t_p^3 \cdot L_{effp}}{12} = 0 \text{ in}^4$$


$$\Delta_{yp} := \frac{5 \cdot w_{panel} \cdot L_{bpanel}}{384 \text{ E}_{alum} \cdot l_{yp}} = 0.06 \text{ in}$$

$$\Delta_{ypall} := \frac{L_{bpanel}}{Deflection Criteria} = 0.21$$
 in

 $I_{\Delta yp} := \left(\Delta_{yp}\right) \div \left(\Delta_{ypall}\right) = 0.28$

Using L /60 Deflection Limit: Use0.077 " Thick Panel Type = 1100–H14 Aluminum Maximum Span = 12.80"

Check Fasteners (to stiffeners):

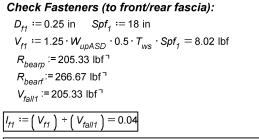
18" o.c. max. to attach panel to stiffeners 300 Series Stainless Steel (Fy = 65,000 psi)

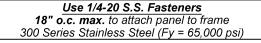
Description: 36" Underscore

Project Name:

McDonalds - Puyallup, WA. L2401075

 Sheet No:
 4.01


 Initials:
 SWP


 Date:
 2/26/2025

 Revision:
 --/--/---

Proj_UF

Lus

UNDERSCORE_PANEL =	["0.12 ≤ 1.00 ∴ PASS"]
	$["0.28 \le 1.00" + PA33"]$ $["RS = ["0.34 \le 1.00" + PA35"]$
PAN TO ERAME EASTEN	IERS = ["0.04 ≤ 1.00 ∴ PASS"

RICE **Description:** 36" Underscore ENGINEERING

5052-H32

V

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

Stiffener Angle:

 $L_{1s} = 1.75$ in L_{stiff} = 100 in [¬] stiffener length T_{ws} = 10.7 in " stiffener trib. width $L_{2s} = 1.75$ in $t_{\rm s} = 0.121$ in $W_{upASD} = 9.6 \text{ psf}$ C_{bs} := 1.0 $P_{light} = 5$ lbf $Alum_{Den} := 158 \text{ pcf}$

Check Stiffener Bending:

Uplift:

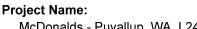
 $w_{upstiff} := W_{upASD} \cdot T_{ws} = 0.71$ pli $M_{xsu} := \frac{w_{upstiff} \cdot L_{stiff}}{8} = 891.67 \text{ lbf-in}$ $f_{bxsu} := \frac{M_{xsu}}{S_{xsbot}} = 3639.46 \text{ psi}$

 $F_{bxsuF.5.a.2}$ = 9087.68 psi [¬] uniform compression local buckling

F_{bxsu} := 9087.68 psi[¬]

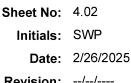
 $I_{bsu} := (f_{bxsu}) \div (F_{bxsu}) = 0.4$

Uplift Deflection:


$$\Delta_{ysu} := \frac{5 \cdot w_{upstiff} \cdot L_{stiff}}{384 \text{ E}_{alum} \cdot l_{ys}} = 0.77 \text{ in}$$

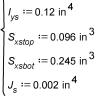
$$\Delta_{ysuall} := \text{Min} \left(1.5 \text{ in}, \left(L_{stiff}\right) \div (60)\right) = 1.5 \text{ in}$$

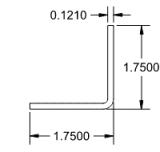
$$\overline{l_{\Delta ysu}} := \left(\Delta_{ysu}\right) \div \left(\Delta_{ysuall}\right) = 0.51$$


Check Stiffener Fasteners:

 $R_{s} := \operatorname{Max}\left(0.5 \cdot w_{upstiff} \cdot L_{stiff}, 0.5 \cdot w_{DLstiff} \cdot L_{stiff} + 2 \cdot P_{light}\right) = 35.67 \text{ lbf}$

V_{falls}:=443.67 lbf[¬]


$$I_{f_{\rm S}} := \left(R_{\rm S}\right) \div \left(V_{falls}\right) = 0.08$$



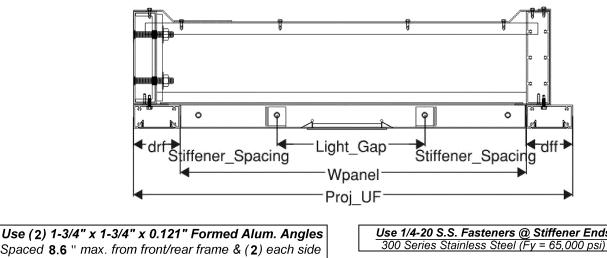
Revision: --/--/----

 $A_{s} := 0.401 \text{ in}^{2}$

"Stiffener Section Properties"

Dead Load:

$$\begin{split} w_{DLstiff} &:= Alum_{Den} \cdot \left(A_{s} + t_{p} \cdot T_{ws}\right) = 0.11 \text{ pli} \\ M_{xsDL} &:= \frac{w_{DLstiff} \cdot L_{stiff}}{8} + P_{light} \cdot \left(\frac{L_{stiff} - Light_Spacing}{2}\right) = 240 \text{ lbf} \cdot \text{in} \\ f_{bxsDL} &:= \frac{M_{xsDL}}{S_{xstop}} = 2499.99 \text{ psi} \end{split}$$


F_{bxsDLF.5.a.1} = 10685.01 psi[¬] leg tip max. compression local buckling

F_{bxsDLLTB} = 18574.04 psi [¬] leg tip max. compression LTB

$$I_{bsDL} := (f_{bxsDL}) \div (F_{bxsDL}) = 0.23$$

Dead Load Deflection:

$$\Delta_{ysDL} = \frac{5 \cdot w_{DLstiff} \cdot L_{stiff}}{384 E_{alum} \cdot l_{ys}}^{4} + \frac{P_{light} \cdot a}{24 E_{alum} \cdot l_{ys}} \cdot \left(3 \cdot L_{stiff}^{2} - 4 \cdot a^{2}\right) = 0.22 \text{ in } \neg$$

$$\Delta_{ysDLall} := \operatorname{Min}\left(1.5 \text{ in }, \left(L_{stiff}\right) \div (60)\right) = 1.5 \text{ in}$$

$$\overline{\Delta_{ysDL}} := \left(\Delta_{ysDL}\right) \div \left(\Delta_{ysDLall}\right) = 0.15$$

STIFF_TO_FRAME_FASTENERS = ["0.08 ≤ 1.00 ∴ PASS"]

of light hole, **12.8** " max. (centered by light) as shown (5052-H32)

Use 1/4-20 S.S. Fasteners @ Stiffener Ends

STIFFENER =	["0.4 ≤ 1.00 ∴ PASS"]
	"0.51 ≤ 1.00 ∴ PASS"
	"0.23 ≤ 1.00 ∴ PASS"
	"0.15≤1.00 ∴ PASS"

ENGINEERING

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

OUTRIGGER

System Data: Proj UF = 38 in

 $W_{upASD} = 9.6 \text{ psf}$

Outrigger Data:

 $b := b_o = 1.92$ in $L := W_{panel} = 30$ in $L_b := L$ $d := d_0 = 4$ in $tw := t_{ow} = 0.12$ in $E_{alum} = 10100000$ psi $tf := t_{of} = 0.1$ in

CALCULATIONS

Check Outrigger:

 $R_{s} = 35.67 \text{ lbf}$

 $\begin{vmatrix} x \\ j &:= j \\ j &:= j + 1 \end{vmatrix}$

j ≔ 1

Uplift:

 $w_{ou} := d_o \cdot W_{\mu \rho ASD} = 0.27 \text{ pli}$

while $j \cdot \frac{W_{panel}}{N_s + 1} < \frac{W_{panel}}{2}$

M_{vou} := 336.73 lbf⋅in[¬]

F_{by} := 9168.29 psi[¬]

∆_{vou} := 0.01 in ¬

Fastener Type:

#10-16 (Cond. CW)

Shear Allowables: V_{bearoutrigger} := 198 lbf[¬] V_{bearfascia} := 198 lbf[¬] V_{fast} := 275 lbf[¬] V_{fall} := 198 lbf[¬]

 $I_{byou} := (f_{byou}) \div (F_{by}) = 0.07$

 $f_{byou} := (M_{you}) \div (S_{y1}) = 644 \text{ psi}$

 $\Delta_{vouall} := (L) \div (120) = 0.25$ in

 $R_{ou} \coloneqq \frac{N_{\rm s}\cdot R_{\rm s} + w_{ou}\cdot L}{2} = 39.67 \text{ lbf}$

 $V_{fou} := (R_{ou}) \div (0.5 \cdot n_f) = 19.83$ lbf

 $I_{fou} := (V_{fou}) \div (V_{fall}) = 0.1$

Check Fasteners (to Fascia Frame):

V

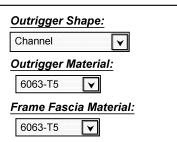
 $n_f := 4$

 $d_{_{\!\Omega}} := 0.27$ in

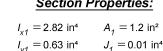
 $I_{\Delta you} := (\Delta_{you}) \div (\Delta_{youall}) = 0.02$

36" Underscore **Project Name:**

Description:


McDonalds - Puyallup, WA. L2401075

Sheet No: 4.03 Initials: SWP Date: 2/26/2025 Revision: --/--/----


Section Properties:

A ₁ = 1.2 in ²
J ₁ =0.01 in⁴
$Z_{x1} = 1.71$ in
$Z_{y1} = 0.74 \text{ int}$

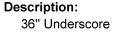
4.0000 ക ന 0.1250 - 0.1000 1.9185 C Use 1.9185" x 4" x 1/8" thk Outrigger AL. channel as shown (6063-T5) Use (4) #10 S.S. Fasteners to attach outrigger to fascia frame as shown 5/8" min. thread engagement into fascia screw chase 300 Series (Fy = 65,000 psi) "0.07 ≤ 1.00 ... PASS" OUTRIGGER = "0.02 ≤ 1.00 ... PASS"

OUTRIGGER_TO_FRAME_FASTENERS = ["0.1 ≤ 1.00 ... PASS"]

ENGINEERING

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

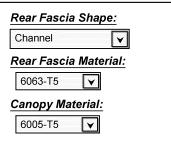

REAR FASCIA

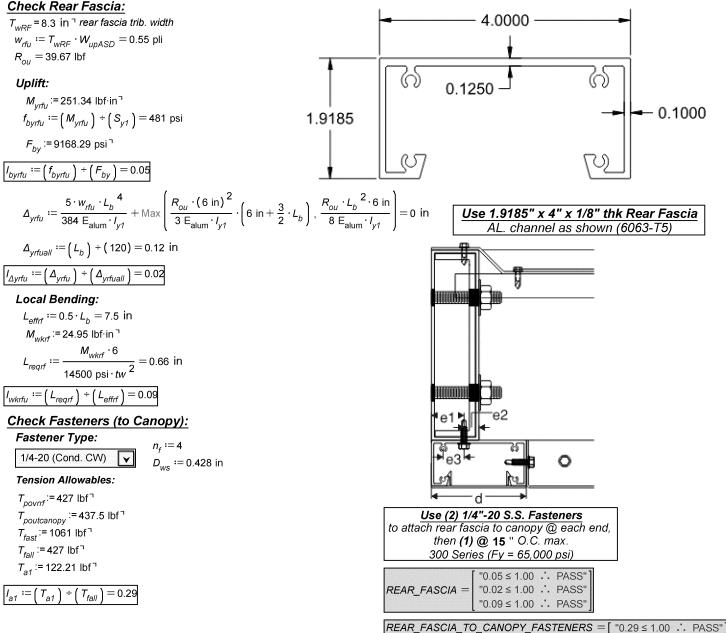
System Data

System Data:	<i>e1</i> ≔ 1.3703 in
Proj UF = 38 in	er - 1.3703 III
	e2 := 0.6297 in
$W_{upASD} = 9.6 \text{ psf}$	e3 ≔ 0.8707 in

Rear Fascia Data: $b := b_{rf} = 1.92$ in $L := L_{us} = 108$ in $d := d_{rf} = 4$ in L_b := 15 in $tw := t_{rfw} = 0.12$ in $E_{alum} = 10100000$ psi $tf := t_{rff} = 0.1$ in

CALCULATIONS




Project Name: McDonalds - Puyallup, WA. L2401075 Sheet No: 4.04 Initials: SWP Date: 2/26/2025 Revision: --/--/

	Welded	within	1	inch	of	Mmax

Section Properties:

I _{x1} = 2.82 in⁴	$A_1 = 1.2 \text{ in}^2$
I _{y1} =0.63 in⁴	J ₁ =0.01 in⁴
$S_{x1} = 1.41 \text{ in}^3$	$Z_{x1} = 1.71 \text{ in}^3$
$S_{\gamma 1} = 0.52 \text{ in}^3$	$Z_{v1} = 0.74 \text{ in}^3$

ENGINEERING

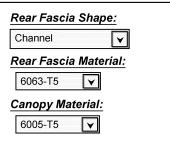
105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

FRONT FASCIA

System Data

System Data.	<i>e1</i> ≔ 0.4831 in
$Proj_UF = 38$ in	e2 ≔ 1.5169 in
$W_{upASD} = 9.6 \text{ psf}$	e3 ≔ 1.0170 in
Front Fascia D	ata:
$b := b_{ff} = 1.92$ in	$L := L_{us} = 108$ in
$d := d_{ff} = 4$ in	L _b := 15 in
$tw := t_{ffw} = 0.12$ in	E _{alum} = 10100000 psi
$tf := t_{fff} = 0.1$ in	


CALCULATIONS

Description: 36" Underscore

Project Name: McDonalds - Puyallup, WA. L2401075 Sheet No: 4.05 Initials: SWP Date: 2/26/2025 Revision: --/--/----

Section Properties:

I _{x1} = 2.82 in⁴	$A_1 = 1.2 \text{ in}^2$
<i>I_{v1}</i> = 0.63 in⁴	$J_1^{'} = 0.01 \text{ in}^4$
$S_{\chi 1} = 1.41 \text{ in}^3$	$Z_{x1} = 1.71 \text{ in}^3$
$S_{v1} = 0.52 \text{ in}^3$	$Z_{v1} = 0.74 \text{ in}^3$

Check Front Fascia: 4.0000 T_{wFF} = 8.3 in [¬] rear fascia trib. width $w_{ffu} \coloneqq T_{wFF} \cdot W_{upASD} = 0.55$ pli $R_{ou} = 39.67 \text{ lbf}$ ക്ര \bigcirc Uplift: 0.1250 *M_{vffu}* := 251.34 lbf in[¬] 0.1000 1.9185 $f_{byffu} := (M_{yffu}) \div (S_{y1}) = 481 \text{ psi}$ F_{by} := 9168.29 psi[¬] (U $I_{byffu} := \left(f_{byffu}\right) \div \left(F_{by}\right) = 0.05$ $\Delta_{yffu} := \frac{5 \cdot w_{ffu} \cdot L_b^{4}}{384 \, \mathsf{E}_{alum} \cdot I_{v1}} + \operatorname{Max} \left(\frac{R_{ou} \cdot (6 \text{ in})^2}{3 \, \mathsf{E}_{alum} \cdot I_{v1}} \cdot \left(6 \text{ in} + \frac{3}{2} \cdot L_b \right), \frac{R_{ou} \cdot L_b^{2} \cdot 6 \text{ in}}{8 \, \mathsf{E}_{alum} \cdot I_{v1}} \right) = 0 \text{ in}$ Use 1.9185" x 4" x 1/8" thk Front Fascia AL. channel as shown (6063-T5) $\Delta_{yffuall} := (L_b) \div (120) = 0.12$ in $I_{\Delta y ffu} := \left(\Delta_{y ffu}\right) \div \left(\Delta_{y ffu all}\right) = 0.02$ Local Bending: $L_{\rm effff} := 0.5 \cdot L_b = 7.5$ in *M*_{wkff} := 23.56 lbf · in [¬] $L_{reqff} := \frac{M_{wkff} \cdot 6}{14500 \text{ psi} \cdot tw^2} = 0.62 \text{ in}$ $I_{wkffu} := (L_{reqff}) \div (L_{effff}) = 0.08$ Check Fasteners (to Canopy): Fastener Type: $n_f := 4$ 0 e3 1/4-20 (Cond. CW) $D_{_{WS}} := 0.428$ in **Tension Allowables:** T_{povrff} := 427 lbf[¬] Use (2) 1/4"-20 S.S. Fasteners $T_{poutcanopy} := 437.5 \text{ lbf}^{\neg}$ to attach front fascia to canopy @ each end, *T_{fast}* := 1061 lbf[¬] then (1) @ 15 " O.C. max. *T_{fall}* := 427 lbf[¬] 300 Series (Fy = 65,000 psi) T_{a2}:= 100.86 lbf[¬] "0.05 ≤ 1.00 ∴ PASS" FRONT_FASCIA = "0.02 ≤ 1.00 ... PASS" $\div (T_{fall}) = 0.24$ $:= (T_{a2})$ "0.08 ≤ 1.00 ... PASS" FRONT FASCIA TO CANOPY FASTENERS = ["0.24 ≤ 1.00 ... PASS"]

Description: 48" Underscore
 Sheet No:
 5.00

 Initials:
 SWP

 Date:
 2/26/2025

 Revision:
 --/--/---

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100 **Project Nam**

REI Project # R25-01-042

Project Name: McDonalds - Puyallup, WA. L2401075

Loading Information:

$W_{up} := 16 \text{ psf}$	unfactored uplift
P _{light} := 5 lbf	weight of light

System Information:

 $\begin{array}{ll} L_{us}:=68 \text{ in} & underscore \ length\\ Light_Spacing:=41 \ \text{in} \\ Proj_UF:=52 \ \text{in} & underscore \ projection\\ Light_Gap:=12.8 \ \text{in} \\ W_{panel}=42 \ \text{in} \\ \end{array}$

¥

(2) Infill Panel Stiffeners

Underscore Panel:

 $t_p := 0.077$ in panel thickness

Underscore Panel Stiffener:

L _{1s} := 1.75 in	stiffener leg length
L _{2s} := 1.75 in	stiffener leg length
$t_{s} := 0.121$ in	stiffener thickness

Outrigger:

<i>b_o</i> ≔ 1.9185 in	outrigger width
<i>d</i> _o := 4 in	outrigger depth
<i>t_{of}</i> ≔ 0.1 in	outrigger flange thickness
t _{ow} ≔ 0.125 in	outrigger web thickness

Rear Fascia:

<i>b_{rf}</i> ≔ 1.9185 in	rear fascia width
<i>d_{rf}</i> := 4 in	rear fascia depth
$t_{rff} := 0.1$ in	rear fascia flange thickness
<i>t_{rfw}</i> ≔ 0.125 in	rear fascia web thickness

Front Fascia:

front fascia width
front fascia depth
front fascia flange thickness
front fascia web thickness

RICE

ENGINEERING

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

Underscore Panel:

 $t_p = 0.08$ in \neg panel thickness $N_s = 2 \neg$ # of underfill stiffeners $Sp_{stiff} = 14.6$ in \neg stiffener spacing

Check Panel Bending:

 $L_{effp} := 1 \text{ in}$ $w_{panel} := W_{upASD} \cdot L_{effp} = 0.07 \text{ pli}$ $L_{bpanel} = 14.6 \text{ in }^{7}$ $M_{ypanel} := \frac{w_{panel} \cdot L_{bpanel}}{8} = 1.78 \text{ lbf} \cdot \text{in}$ $F_{bpanel} := 11500 \text{ psi}$ $L_{reqp} := \frac{M_{ypanel} \cdot 6}{t_{p}^{2} \cdot F_{bpanel}} = 0.16 \text{ in}$

$$I_{bpanel} := (L_{reqp}) \div (L_{effp}) = 0.16$$

Check Panel Deflection:

L/60 Panel Deflection Criteria $I_{yp} := \frac{t_p^3 \cdot L_{effp}}{12} = 0 \text{ in}^4$

$$\Delta_{yp} := \frac{5 \cdot w_{panel} \cdot L_{bpanel}}{384 \text{ E}_{alum} \cdot I_{yp}} = 0.1 \text{ in}$$

$$\Delta_{ypall} := \frac{L_{bpanel}}{Deflection Criteria} = 0.24$$
 in

 $I_{\Delta yp} := \left(\Delta_{yp}\right) \div \left(\Delta_{ypall}\right) = 0.42$

Using L / 60 Defl	ection Limit:	
Use0.077 '	' Thick	
Panel Type = 1100-	-H14 Aluminum	
Maximum Spa		
Check Fasteners (to s	stiffeners):	
Fastener Size:	$t_{s} = 0.12$ in	$t_h := t_p$

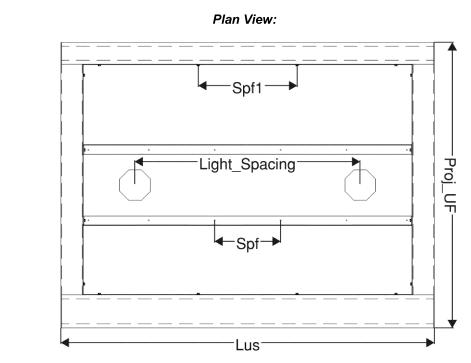
#10-16 (Cond. CW)	d _{es} ≔ 0.5 in	<i>d_{eh}</i> ≔ 0.875 in
D _h := 0.2525 in [¬]	<i>Spf</i> := 18 in	

Panel:	
1100-H14 🔽	

 $T_f := 1.25 \cdot 1.25 \cdot W_{upASD} \cdot T_{ws} \cdot Spf = 25.69 \text{ lbf}$

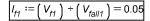
 $I_f := (T_f) \div (T_{fall}) = 0.44$

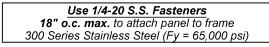
Use #10-16 S.S. Countersunk Fasteners 18" o.c. max. to attach panel to stiffeners 300 Series Stainless Steel (Fy = 65,000 psi)


Description: 48" Underscore

Project Name: McDonalds - Puyallup, WA. L2401075
 Sheet No:
 5.01

 Initials:
 SWP


 Date:
 2/26/2025


 Revision:
 --/--/---

Check Fasteners (to front/rear fascia):

$$\begin{split} D_{f1} &:= 0.25 \text{ in } Spf_1 &:= 18 \text{ in } \\ V_{f1} &:= 1.25 \cdot W_{upASD} \cdot 0.5 \cdot T_{ws} \cdot Spf_1 &= 10.28 \text{ lbf} \\ R_{bearp} &:= 205.33 \text{ lbf}^{\neg} \\ R_{bearf} &:= 266.67 \text{ lbf}^{\neg} \\ V_{fall1} &:= 205.33 \text{ lbf}^{\neg} \end{split}$$

UNDERSCORE_PANEL =	"0.16 ≤ 1.00 ∴ PASS" "0.42 ≤ 1.00 ∴ PASS"
	["0.44 ≤ 1.00 ∴ PASS"]
PAN_TO_FRAME_FASTEN	IERS = ["0.05 ≤ 1.00 ∴ PASS"

RICE **Description:** ENGINEERING

5052-H32

¥

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

Stiffener Angle:

L_{stiff}=60 in [¬] stiffener length $L_{1s} = 1.75$ in T_{ws} = 13.7 in \neg stiffener trib. width $L_{2s} = 1.75$ in $t_{\rm s} = 0.121$ in $W_{upASD} = 9.6 \text{ psf}$ C_{bs} := 1.0 $P_{light} = 5 \text{ lbf}$ $Alum_{Den} := 158 \text{ pcf}$

Check Stiffener Bending:

Uplift:

 $w_{upstiff} := W_{upASD} \cdot T_{ws} = 0.91$ pli $M_{xsu} \coloneqq \frac{w_{upstiff} \cdot L_{stiff}}{8} = 411 \text{ lbf-in}$ $f_{bxsu} := \frac{M_{xsu}}{S_{xsbot}} = 1677.55 \text{ psi}$

 $F_{bxsuF.5.a.2}$ = 9087.68 psi [¬] uniform compression local buckling

F_{bxsu} := 9087.68 psi[¬]

$$I_{bsu} := \left(f_{bxsu}\right) \div \left(F_{bxsu}\right) = 0.18$$

Uplift Deflection:

$$\Delta_{ysu} := \frac{5 \cdot w_{upstiff} \cdot L_{stiff}}{384 E_{alum} \cdot I_{ys}} = 0.13 \text{ in}$$
$$\Delta_{ysuall} := \operatorname{Min} \left(1.5 \text{ in}, \left(L_{stiff} \right) + (60) \right) = 1 \text{ in}$$
$$\overline{I_{\Delta ysu}} := \left(\Delta_{ysu} \right) \div \left(\Delta_{ysuall} \right) = 0.13$$

Check Stiffener Fasteners:

 $R_s := \mathsf{Max} \left(0.5 \cdot w_{upstiff} \cdot L_{stiff} , 0.5 \cdot w_{DLstiff} \cdot L_{stiff} + 2 \cdot P_{light} \right) = 27.4 \ \mathsf{lbf}$

V_{falls}:=443.67 lbf[¬]

$$I_{fs} := \left(R_{s}\right) \div \left(V_{falls}\right) = 0.06$$

Project Name:

McDonalds - Puyallup, WA. L2401075

Sheet No: 5.02 Initials: SWP Date: 2/26/2025 Revision: --/--/----

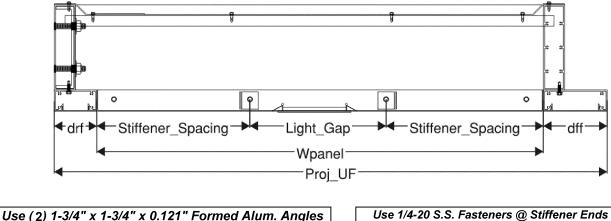
"Stiffener Section Properties"

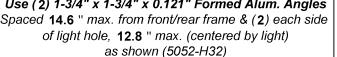
$$A_s := 0.401 \text{ in}^2$$

 $l_{ys} := 0.12 \text{ in}^4$
 $S_{xstop} := 0.096 \text{ in}^3$
 $S_{xsbot} := 0.245 \text{ in}^3$
 $J_s := 0.002 \text{ in}^4$
 0.1210

Dead Load:

$$\begin{split} w_{DLstiff} &:= Alum_{Den} \cdot \left(A_{s} + t_{p} \cdot T_{ws}\right) = 0.13 \text{ pli} \\ M_{xsDL} &:= \frac{w_{DLstiff} \cdot L_{stiff}}{8} + P_{light} \cdot \left(\frac{L_{stiff} - Light_Spacing}{2}\right) = 107.4 \text{ lbf} \cdot \text{in} \\ f_{bxsDL} &:= \frac{M_{xsDL}}{S_{xstop}} = 1118.79 \text{ psi} \end{split}$$


F_{bxsDLF.5.a.1} = 10685.01 psi[¬] leg tip max. compression local buckling


F_{bxsDLLTB}=23146.8 psi [¬] leg tip max. compression LTB

$$I_{bsDL} := (f_{bxsDL}) \div (F_{bxsDL}) = 0.1$$

Dead Load Deflection:

$$\Delta_{ysDL} = \frac{5 \cdot w_{DLstiff} \cdot L_{stiff}}{384 E_{alum} \cdot l_{ys}}^{4} + \frac{P_{light} \cdot a}{24 E_{alum} \cdot l_{ys}} \cdot \left(3 \cdot L_{stiff}^{2} - 4 \cdot a^{2}\right) = 0.04 \text{ in } 7$$
$$\Delta_{ysDLall} := \text{Min} \left(1.5 \text{ in }, \left(L_{stiff}\right) \div (60)\right) = 1 \text{ in}$$
$$\frac{I_{AysDL} := \left(\Delta_{ysDL}\right) \div \left(\Delta_{ysDLall}\right) = 0.04}{24 E_{alum} \cdot l_{ys}}$$

Use 1/4-20 S.S. Fasteners @ Stiffener Ends
300 Series Stainless Steel (Fy = 65,000 psi)

STIFFENER =

"0.18 ≤ 1.00 ∴ PASS"

"0.13 ≤ 1.00 ∴ PASS"

"0.1 ≤ 1.00 ∴ PASS"

"0.04 ≤ 1.00 ... PASS"

STIFF_TO_FRAME_FASTENERS = ["0.06 ≤ 1.00 ... PASS"]

ENGINEERING ol Creek Trail | Luxemburg, WI 54217

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

OUTRIGGER

<u>System Data:</u> Proj UF = 52 in

 $W_{upASD} = 9.6 \text{ psf}$

Outrigger Data:

$$\begin{split} b &:= b_o = 1.92 \text{ in } L := W_{panel} = 42 \text{ in} \\ d &:= d_o = 4 \text{ in } L_b := L \\ tw &:= t_{ow} = 0.12 \text{ in } E_{alum} = 10100000 \text{ psi} \\ tf &:= t_{of} = 0.1 \text{ in} \end{split}$$

CALCULATIONS

Check Outrigger:

 $R_{s} = 27.4 \text{ lbf}$

 $\begin{vmatrix} x \\ j &:= j \\ j &:= j + 1 \end{vmatrix}$

Uplift:

 $w_{ou} := d_o \cdot W_{\mu \rho ASD} = 0.27 \text{ pli}$

while $j \cdot \frac{W_{panel}}{N_s + 1} < \frac{W_{panel}}{2}$

*M*_{vou} := 458.84 lbf · in[¬]

F_{by} := 9168.29 psi[¬]

 $I_{byou} := (f_{byou}) \div (F_{by}) = 0.1$ $\Delta_{you} := 0.01 \text{ in }^{\neg}$

 $f_{byou} := (M_{you}) \div (S_{y1}) = 877 \text{ psi}$

 $\Delta_{vouall} := (L) \div (120) = 0.35$ in

Check Fasteners (to Fascia Frame):

V

 $n_f := 4$

 $d_{_{\!\Omega}} := 0.27$ in

 $I_{\Delta you} := (\Delta_{you}) \div (\Delta_{youall}) = 0.04$

 $R_{ou} \coloneqq \frac{N_s \cdot R_s + w_{ou} \cdot L}{2} = 33 \text{ lbf}$

 $I_{fou} := (V_{fou}) \div (V_{fall}) = 0.08$

 $V_{fou} := (R_{ou}) \div (0.5 \cdot n_f) = 16.5 \text{ lbf}$

Fastener Type:

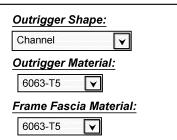
#10-16 (Cond. CW)

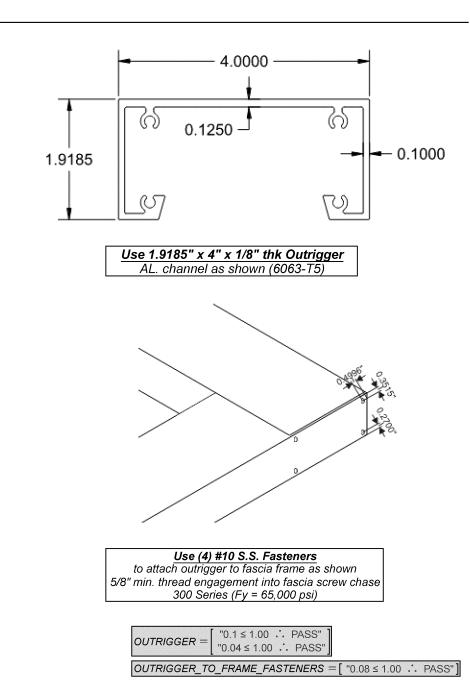
Shear Allowables: V_{bearoutrigger} := 198 lbf[¬] V_{bearfascia} := 198 lbf[¬] V_{fast} := 275 lbf[¬] V_{fall} := 198 lbf[¬]

Description: 48" Underscore

Project Name: McDonalds - Puyallup, WA. L2401075
 Sheet No:
 5.03

 Initials:
 SWP


 Date:
 2/26/2025


 Revision:
 --/--/---

Section Properties:

I _{×1} = 2.82 in⁴	$A_1 = 1.2 \text{ in}^2$
I _{v1} = 0.63 in⁴	J ₁ = 0.01 in⁴
$S_{x1} = 1.41 \text{ in}^3$	$Z_{\chi 1} = 1.71 \text{ in}^3$
$S_{y1} = 0.52 \text{ in}^3$	$Z_{y1} = 0.74 \text{ in}^3$

ENGINEERING 105 School Creek Trail | Luxemburg, WI 54217

e1 := 1.3703 in

e2 := 0.6297 in

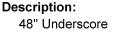
e3 := 0.8707 in

(Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

REAR FASCIA

Svstem	Data
System	Data:


<i>Proj_UF</i> = 52 ir

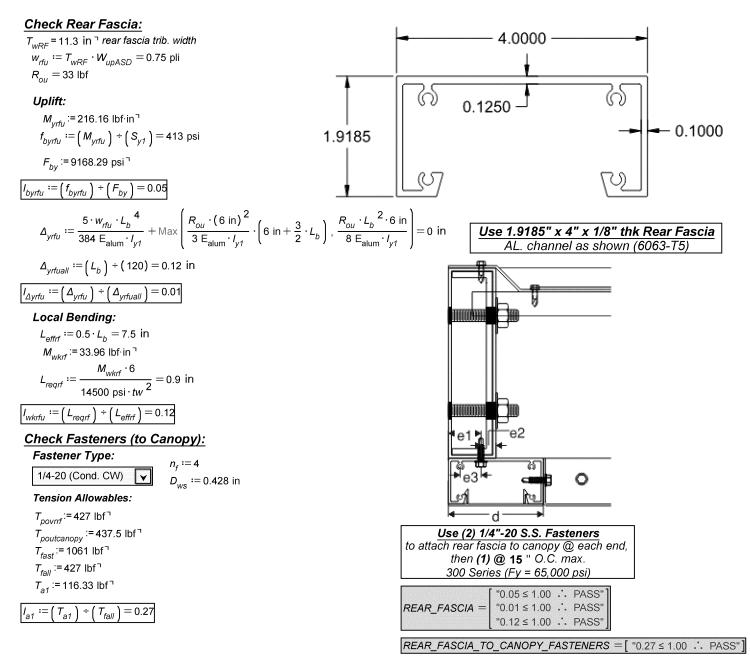
 $W_{upASD} = 9.6 \text{ psf}$

Rear Fascia Data: $b := b_{rf} = 1.92$ in $L := L_{us} = 68$ in $d := d_{rf} = 4$ in L_b := 15 in

 $tw := t_{rfw} = 0.12$ in $E_{alum} = 10100000$ psi $tf := t_{rff} = 0.1$ in

CALCULATIONS




Project Name: McDonalds - Puyallup, WA. L2401075 Sheet No: 5.04 Initials: SWP Date: 2/26/2025 Revision: --/--/----

□ Welded within 1 inch of Mmax

Section Properties:

I _{×1} = 2.82 in⁴	A ₁ = 1.2 in ²
I _{y1} =0.63 in⁴	J ₁ =0.01 in⁴
$S_{x1} = 1.41 \text{ in}^3$	$Z_{x1} = 1.71 \text{ in}^3$
$S_{\gamma 1} = 0.52 \text{ in}^3$	$Z_{v1} = 0.74 \text{ in}^3$

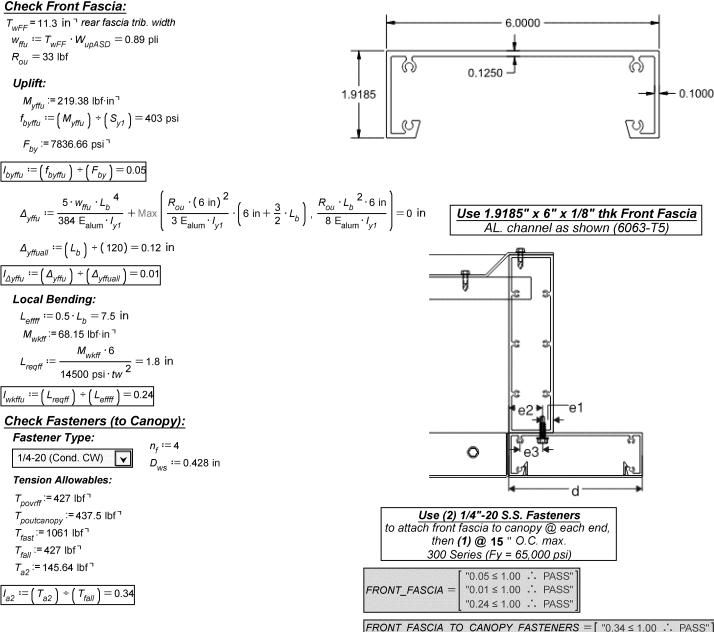
ENGINEERING

e1 := 0.4831 in

e2 := 1.5169 in

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042


FRONT FASCIA

System	Data:
Proj_UF	=52 in

- $W_{upASD} = 9.6 \text{ psf}$
- e3 := 1.0170 in Front Fascia Data: $b := b_{ff} = 1.92$ in $L := L_{US} = 68$ in *L_b* ≔ 15 in

 $d := d_{\rm ff} = 6$ in $tw := t_{ffw} = 0.12$ in $E_{alum} = 10100000$ psi $tf := t_{fff} = 0.1$ in

CALCULATIONS

Description: 48" Underscore

Project Name: McDonalds - Puyallup, WA. L2401075

□ Welded within 1 inch of Mmax

I_{x1} = 7.52 in⁴

I_{v1} = 0.72 in^₄

 $S_{x1} = 2.51 \text{ in}^3$

 $S_{v1} = 0.55 \text{ in}^3$

Section Properties:

 $A_1 = 1.45 \text{ in}^2$

 $J_1 = 0.01 \text{ in}^4$

 $Z_{\chi 1} = 3.03 \text{ in}^3$

 $Z_{v1} = 0.78 \text{ in}^3$

Sheet No: 5.05 Initials: SWP Date: 2/26/2025 Revision: --/--/

¥

Rear Fascia Shape:

Rear Fascia Material:

Canopy Material:

¥

V

Channel

6063-T5

6005-T5

RIC ENGINEERING

Description:

load case 6 w/o drift (from design load template)

36" Cantilevered Corner System

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100 **REI Project #** R25-01-042

Loading Information:

 $DL_{dn} := 44 \text{ psf}$

 $DL_{\mu\nu} := 6 \text{ psf}$

 $S_h := 21 \text{ psf}$

 $P_{d2} := 0 \text{ psf}$

□ Standalone

L, := 138.67 in

 $L_{cant} := 44$ in

Proj := 36 in

 $WL_{Lat} := 10 \text{ psf}$

DeadL := 7.36 psf

P_{d1} := 31.05 psf

System Information:

LC6 := 30.31 psf

Project Name:

worst case downward load

uplift load

dead load

lateral wind load

balanced snow load

snow drift (at wall) snow drift (at front fascia)

Soffit Panel

Total canopy length

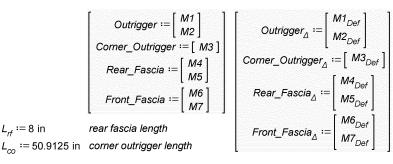
canopy projection

Cantilevered canopy length Intermediate canopy length

McDonalds - Puyallup, WA. L2401075

 $L_{rf} := 8$ in

RISA Corner Member Data:


RISA Load Combinations:

LC1 - Dead Load (DL)

LC2 - Lateral Wind Load (WLx)

- LC3 Lateral Wind Load (WLz) LC4 - Snow Drift Load (DL + Sb + Sd)
- LC5 Balanced Snow Load (DL + 0.75(0.6WLdn) + 0.75Sb) LC6 - Snow Drift Load (One Side) [DL + Sb + Sd(One Side)]

RISA Corner Member Labels:

Member Section Information:

 $L_c := L_t - L_{cant} = 94.67$ in

Top Panel:		Corner Front Fascia:	
$t_p := 0.1$ in	panel thickness	Axial _{cff} ∶= 13.82 lbf [¬]	∆ _{xcff} :=0.102 in ¬
Panel Stiffener:		V _{ycff} :=139.4 lbf	⊿ _{ycff} :=0.001 in ¬
$b_s := 1$ in $d_s := 1$ in $t_s := 0.125$ in Front Fascia:	stiffener width stiffener depth stiffener thickness	V _{zcff} := 17.17 lbf [¬] Tor _{cff} := 785.18 lbf·in [¬] M _{ycff} := 97.4 lbf·in [¬] M _{zcff} := 4802.22 lbf·in [¬]	$b_{cff} := b_{ff}$ $d_{cff} := d_{ff}$ $t_{cff} := t_{ff}$
$b_{ff} := 2$ in $d_{ff} := 8$ in $t_{ff} := 0.125$ in	front fascia width front fascia depth front fascia thickness	Corner Rear Fascia: Axial _{crf} := 2.78 lbf [¬] V _{ycrf} := 48.37 lbf [¬] V _{zcrf} := 1.9 lbf [¬]	Δ _{xcrf} := 0.007 in ¬ Δ _{ycrf} := 0 ¬
Rear Fascia: $b_{rf} := 2$ in $d_{rf} := 8$ in $t_{rf} := 0.125$ in	rear fascia width rear fascia depth rear fascia thickness	Tor _{crf} := 2237.92 lbf·in [¬] M_{ycrf} := 25.26 lbf·in [¬] M_{zcrf} := 349.76 lbf·in [¬] Adjacent Corner Outrigge	$b_{crf} := b_{rf}$ $d_{crf} := d_{rf}$ $t_{crf} := t_{rf}$
End Outrigger:		Axial _{ao} := 16.45 lbf [¬]	Δ _{xao} := 0.001 in [¬]
$b_{eo} := 2 \text{ in}$ $d_{eo} := 8 \text{ in}$ $t_{eo} := 0.125 \text{ in}$ Intermediate Outrigg $b_{io} := 2 \text{ in}$ $d_{io} := 6 \text{ in}$	end outrigger width end outrigger depth end outrigger thickness ger: intermediate outrigger width intermediate outrigger depth	$V_{yao} := 183.64 \text{ lbf}^{-1}$ $V_{zao} := 13.82 \text{ lbf}^{-1}$ $Tor_{ao} := 0^{-1}$ $M_{yao} := 82.64 \text{ lbf} \cdot \text{in}^{-1}$ $M_{zao} := 2237.92 \text{ lbf} \cdot \text{in}^{-1}$ Corner Outriggers:	$\begin{aligned} \Delta_{xao} &: 0.001 \text{ m} \\ \Delta_{yao} &:= 0^{\neg} \\ b_{ao} &:= b_{eo} \\ d_{ao} &:= d_{eo} \\ t_{ao} &:= t_{eo} \end{aligned}$
<i>t_{io}</i> ≔0.125 in	intermediate outrigger thickness	axial _{co} ≔ 3.06 lbf ¬	∆ _{xco} ≔0.102 in ¬
Anchor Channel Bra $b_{cb} := 1.6913$ in $d_{cb} := 5.6937$ in $t_{cb} := 0.25$ in	acket: anchor channel flange length anchor channel depth anchor channel thickness	V _{yco} := 177.94 lbf [¬] V _{zco} := 1.68 lbf [¬] Tor _{co} := 4802.22 lbf·in [¬] M _{yco} := 56.26 lbf·in [¬] M _{zco} := 5680.95 lbf·in [¬]	$\begin{split} \Delta_{yco} &\coloneqq 0.001 \text{ in } \neg \\ b_{co} &\coloneqq b_{eo} \\ d_{co} &\coloneqq d_{eo} \\ t_{co} &\coloneqq t_{eo} \end{split}$

RISA Corner Thru-Bolt Reactions:

Snow Drift Load (RISA LC4):

R_{vN7Drift} := − 101.82 lbf R_{vN8Driff} := 38.51 lbf[¬] *R_{vN9Drift}* := 325.28 lbf[¬] R_{vN10Drift} := - 101.82 lbf[¬] R_{yN11Drift} := 38.51 lbf[¬] R_{yN12Drift} := 325.28 lbf[¬]

Balanced Snow Load (RISA LC5):

R_{yN7Bal}:=-103.26 lbf[¬] R_{vN8Bal} := 30.47 lbf[¬] R_{vN9Bal}:=269.81 lbf[¬] *R_{yN10Bal}* := − 103.26 lbf[¬] R_{yN11Bal} := 30.47 lbf[¬] R_{yN12Bal} := 269.81 lbf[¬]

Snow Drift Load (One Side RISA LC6):

R_{vN7DriftOS} := − 92.4 lbf[¬] R_{vN8DriftOS} := 36.47 lbf[¬] R_{yN9DriftOS} := 295.14 lbf[¬] R_{yN10DriftOS} := - 106.04 lbf R_{yN11DriftOS} := 30.54 lbf[¬] *R_{yN12DriftOS}* := 282.59 lbf[¬]

Sheet No: 6.00 Initials: SWP

Date: 2/26/2025

Revision: --/--/----

RICE ENGINEERING

Description:

Project Name:

36" Cantilevered Corner System

McDonalds - Puyallup, WA. L2401075

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

36" Projection System:

 $L_{c} = 94.67$ in Proj = 36 in $t_{p} = 0.1$ in $L_{eff} := 1$ in

 $DL_{up} = 6 \text{ psf}$ $q := Max \left(DL_{dn} , DL_{up} \right) = 44 \text{ psf}$

L/60

Panel Deflection Criteria

SPA := 22.67 in " Panel Stiffener Spacing

Check Panel:

coef_a := [0 12.5 25 50 75 100 125 150 175 200 250] [¬]

 $DL_{dn} =$ 44 psf

*coef*_v := [0 0.62 0.88 1.18 1.37 1.53 1.68 1.77 1.88 1.96 2.12] [¬]

coef_{ad}:=[0 1.06 2.11 3.78 5.18 6.41 7.65 8.6 9.55 10.6 12.3][¬]

$$coef_{a} := [0 4.48 6.81 9.92 12.25 14.22 16 17.5 18.9 20.3 22.8]$$

 σ_{all} := 8205.13 psi[¬] - Allowable Stress, used for Design

y_{all}:=0.38 in [¬] - Allowable Deflection

The relations among load, deflection and stress are expressed by numerical values of the dimensionless coefficients shown below (It is assumed that v is equal to or near 0.316):

$$coef_{q} = \frac{q_{adj} \cdot b^{-4}}{E \cdot t^{-4}} \qquad coef_{y} = \frac{y}{t}$$
$$coef_{od} = \frac{\sigma_{d} \cdot b^{-2}}{E \cdot t^{-2}} \qquad coef_{\sigma} = \frac{\sigma \cdot b^{-2}}{E \cdot t^{-2}}$$

The collected data for these coefficients is listed below. For any given value of gb4/Et4, values for the other three coefficients may be interpolated.

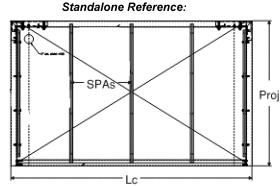
$$y_{act} = \text{linterp} \left(coef_q \ , coef_y \ , \frac{q \cdot b \cdot 4}{E \cdot t_1 \cdot 4} \right) \cdot t_1 \cdot 1.5 \qquad \qquad y_{act} := 0.21 \text{ in } \gamma_{y_{all}} = 0.38 \text{ in}$$

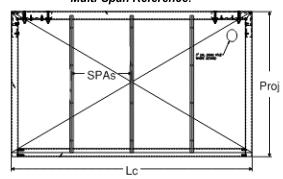
$$\sigma_d := \text{linterp} \left(coef_q \ , coef_{\sigma d} \ , \frac{q \cdot \left(SPA_s\right)^4}{E_{alum} \cdot t_p \cdot 4} \right) \cdot \left(\frac{E_{alum} \cdot t_p \cdot 2}{\left(SPA_s\right)^2} \right) \qquad \qquad \sigma_d = 1065.32 \text{ psi}$$

$$\sigma_{all} = 8205 \text{ psi}$$

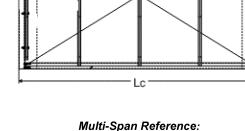
$$\sigma := \left(\text{linterp} \left(coef_q \ , coef_{\sigma} \ , \frac{q \cdot \left(SPA_s\right)^4}{E_{alum} \cdot t_p \cdot 4} \right) \cdot \frac{E_{alum} \cdot t_p \cdot 2}{\left(SPA_s\right)^2} \right) \qquad \qquad \sigma = 2483.4 \text{ psi}$$

$$\sigma_{all} = 8205 \text{ psi}$$


Using L /60 Deflection Limit: Use0.100 " Thick Panel Type = 1100-H14 Aluminum Maximum Span = 22.67"


Number of Intermediate Stiffeners:

○ 1 Int. Stiffener
O 2 Int. Stiffeners
③ 3 Int. Stiffeners
O 4 Int. Stiffeners
○ 5 Int. Stiffeners


in 7

psi psi

"0.56 ≤ 1.00 . PASS" PANEL := stack $(I_{\Delta}, I_{\sigma d}, I_{\sigma}) =$ "0.13 ≤ 1.00 ∴ PASS" "0.3 ≤ 1.00 ∴ PASS"

Sheet No: 6.01 Initials: SWP Date: 2/26/2025 Revision: --/--/----

RICE ENGINEERING

Description:

Tension Allowables:

T_{poutstiffener} ≔ 378 lbf[¬]

7_{povrpanel} := 221.67 lbf[¬] T_{fast}:=645 lbf[¬]

T_{fall} := 221.67 lbf[¬]

36" Cantilevered Corner System

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

Project Name: McDonalds - Puyallup, WA. L2401075 Sheet No: 6.02 Initials: SWP Date: 2/26/2025 Revision: --/--/----

Check Panel Fasteners (to Stiffener):			
Fastener Type:	Stiffener Material:		
#12-14 (Cond. CW)	6061-T6 🔽		
$D_{ws} := 0.305$ in $SP_f := 12$ in	$d_{_{ m e}} := 0.5$ in $t_{_{ m S}} = 0.125$ in		

Shear Allowables:

V_{bearstiffener} := 684 lbf[¬] V_{bearpanel} := 230.4 lbf[¬] V_{fast} := 373 lbf[¬] V_{fall} := 230.4 lbf[¬]

 $w_{dl} := q \cdot SPA_s = 6.93$ pli

 $T_f := 1.25 \cdot w_{dl} \cdot SP_f = 103.89$ lbf

$$I_f := \frac{T_f}{T_{fall}} = 0.47$$

Use #12-14 S.S. Fasteners 12" o.c. max. to attach panel to stiffener as shown 300 Series (Fy = 65,000 psi) Min. 1/2" edge/end distance w/ full engagement into stiffener on load bearing length of fastener per manufacturer specifications.

Check Panel Fasteners (to Outriggers):

Fastener Type:	Outrigger Material:		
#12-14 (Cond. CW)	6005-T5 🔽		
$\textit{D}_{_{\rm WS1}} := 0.305$ in $\textit{SP}_{_{f1}} := 12$ in	$d_{e1} := 0.5$ in $t_{io} = 0.12$ in		

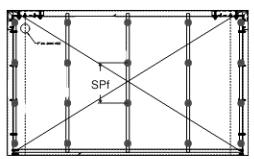
Shear Allowables:

V_{bearoutrigger} := 684 lbf[¬] V_{bearpanel1} := 230.4 lbf[¬] *V_{fast1}* := 373 lbf[¬] V_{fall1} := 230.4 lbf [¬]

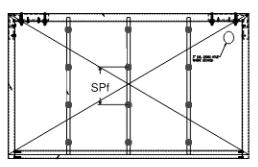
Tpoutoutrigger := 378 lbf *T_{povrpanel1}* := 221.67 lbf[¬] *T_{fast1}* :=645 lbf[¬] *T_{fall1}* := 221.67 lbf[¬]

Tension Allowables:

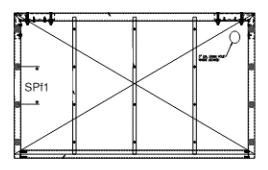
 $w_{dl1} := q \cdot 0.5 \cdot SPA_s = 3.46$ pli


 $T_{f1} := 1.25 \cdot w_{dl1} \cdot SP_{f1} = 51.95$ lbf

$$I_{f1} := \frac{T_{f1}}{T_{fall1}} = 0.23$$


Use #12-14 S.S. Fasteners **12" o.c. max.** to attach panel to outrigger as shown 300 Series (Fy = 65,000 psi) Min. 1/2" edge/end distance w/ full engagement into outrigger on load bearing length of fastener per manufacturer specifications.

** Multi-span systems only **


Standalone Reference:

Multi-Span Reference:

Multi-Span Reference:

Description:

36" Cantilevered Corner System

 Sheet No:
 6.03

 Initials:
 SWP

 Date:
 2/26/2025

 Revision:
 --/--/---

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

Project Name:

McDonalds - Puyallup, WA. L2401075

Check	Panel	Fasteners	(to	Front/Rear	Fascia):
011001	, anoi	1 40101010	100	1 10110110001	1 40014	

Fastener 1	Type:
------------	-------

Shear Allowables:

#12-24 (Cond. CW)

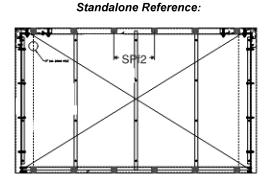
	Fascia Mate	erial:
V	6005-T5	V

$D_{ws2} := 0.305$ in $SP_{f2} := 12$ in
--

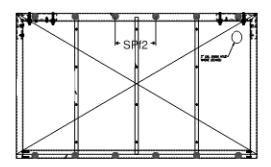
Tension Allo	wables:
--------------	---------

V _{bearfascia} :=684 lbf [¬]	
V _{bearpanel2} := 230.4 lbf [¬]	
V _{fast2} ≔ 411 lbf [¬]	
V _{fall12} =230.4 lbf [¬]	

$$\begin{split} & T_{poutfascia} \coloneqq 378 \; \text{lbf}^{\neg} \\ & T_{povrpanel2} \coloneqq 241.5 \; \text{lbf}^{\neg} \\ & T_{fast2} \coloneqq 805 \; \text{lbf}^{\neg} \\ & T_{fall2} \coloneqq 241.5 \; \text{lbf}^{\neg} \end{split}$$


 $d_{e2} := 0.5$ in $t_f := 0.125$ in

 $w_{dl2} \coloneqq q \cdot 0.5 \cdot SPA_s = 3.46$ pli


 $T_{f2} := 1.25 \cdot w_{d/2} \cdot SP_{f2} = 51.95$ lbf

$$I_{f2} := \frac{T_{f2}}{T_{fall2}} = 0.22$$

Use #12-24 S.S. Fasteners 12" o.c. max. to attach panel to front/rear fascia as shown 300 Series (Fy = 65,000 psi) Min. 1/2" edge/end distance w/ full engagement into outrigger on load bearing length of fastener per manufacturer specifications.

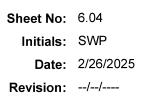
Multi-Span Reference:

		"0.47 ≤ 1.00 ∴	PASS"
PANEL_FASTENERS = stack	$(I_{f}, I_{f1}, I_{f2}) =$	"0.23 ≤ 1.00 .".	PASS"
	(, ,, ,2)	"0.22 ≤ 1.00	PASS"

ENGINEERING

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042


PANEL STIFFENER

C)es	cr	ip	tic	n:

36" Cantilevered Corner System

Project Name:

McDonalds - Puyallup, WA. L2401075

System Data:	Stiffener Da	ata:	Outrigge	er Material:	Stiffener Shape:
Proj = 36 in	3	L := Proj - 4 in = 32 in	6005-T5	5 🔽	Rectangular Tube
$DL_{dn} =$ 44 psf $DL_{up} =$ 6 psf $WL_{Lat} =$ 10 psf	$d := d_s = 1 \text{ in}$ $t := t_s = 0.12 \text{ in}$	<i>L_b</i> ≔ <i>L</i> E _{alum} = 10100000 psi	•	n t _o ≔ t _{eo} = 0.12 in Properties:	Stiffener Material:
SPA _s = 22.67 in		/ <u>,</u>	.1 = 0.06 in⁴	$A_{1} = 0.44 \text{ in}^{2}$	Fascia Material:
$\frac{Fascia Data:}{t_f := Min(t_{ff}, t_{rf}) = 0.1$	2 in	Ś	$g_{\chi 1} = 0.06 \text{ in}^4$ $g_{\chi 1} = 0.11 \text{ in}^3$ $g_{\chi 1} = 0.11 \text{ in}^3$	$J_1 = 0.08 \text{ in}^4$ $Z_{\chi 1} = 0.14 \text{ in}^3$ $Z_{\chi 1} = 0.14 \text{ in}^3$	6005-T5 V

CALCULATIONS

a = 11.33 in
$TL := Max \left(DL_{dn} , DL_{up} \right) = 44 \text{ psf}$
$w_{\chi} := TL \cdot \dot{S}PA_{S} = 6.93$ pli

Check Panel Stiffener:

*M*_v:=738.27 lbf·in[¬] $f_{bx} := (M_x) \div (S_{x1}) = 6480 \text{ psi}$ *F_{bx}* := 21212.12 psi[¬]

$$I_{bx} := \left(f_{bx}\right) \div \left(F_{bx}\right) = 0.31$$

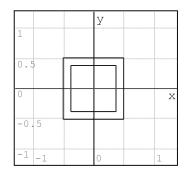
 $\Delta_x := 0.13$ in [¬] $\Delta_{xall} := (L) \div (60) = 0.53$ in

 $I_{\Delta} := \left(\Delta_{\chi}\right) \div \left(\Delta_{\chi a \parallel}\right) = 0.25$

Check Stiffener Bearing on Fascia:

$$R_{bear} := \operatorname{Max} \left(R_{sRLC3} , R_{sFLC3} , R_{sLC6} \right) = 78.86 \text{ lbf}$$

$$A_{bear} := b_s \cdot \operatorname{Min} \left(t_{ff} , t_{rf} \right) = 0.12 \text{ in}^2$$


$$R_{ball} := \frac{1.33 \cdot ADM_{-}F_{tu} \left(alloy_3 , 0 \right) \cdot A_{bear}}{1.95} = 3239.74 \text{ lbf}$$

$$I_{bear} := \left(R_{bear} \right) + \left(R_{ball} \right) = 0.02$$

Use 1" x 1" x 1/8" thk @ 22.67" o.c. AL. tube as shown (6061-T6)

R_{sRLC3} := 78.86 lbf [¬] LC3 stiffener reaction (rear fascia) R_{sFLC3} := 63.9 lbf [¬] LC3 stiffener reaction (front fascia) R_{sLC6} := 49.3 lbf [¬] LC6 stiffener reaction

Check Fasteners (to Ou	trigger):
Fastener Type:	<i>SP_f</i> := 12 in
1/4-14" (Cond. CW)	$D_{_{WS}} := 0.428$ in
$V_f := 1.25 \cdot 0.5 \cdot w_{\chi} \cdot SP_f = 51$.95 lbf
$T_f := \frac{V_f \cdot 0.5 \cdot b}{0.5 \cdot d} = 51.95 \text{ lbf}$	
0.5 · d	
Shear Allowables:	Tension Allowa
V _{bearstiffener} ≔791.67 lbf [¬]	T _{povrstiffener} := 9
V _{bearoutrigger} ≔791.67 lbf [¬]	T _{poutoutrigger} := 4
V _{fast} ∶=517 lbf [¬]	T _{fast} := 896 lbf [¬]
<i>V_{fall}</i> := 517 lbf [¬]	<i>T_{fall}</i> ≔437.5 lbf

ables:

34.06 lbf[¬] 437.5 lbf[¬] T_{fall} := 437.5 lbf [¬]

$$I_f := \left(\frac{V_f}{V_{fall}}\right)^2 + \left(\frac{T_f}{T_{fall}}\right)^2 = 0.0$$

Check Fastener Tilting (to Outrigger):

$$R_{tilt} := \frac{4.2 \cdot \sqrt{\left(t_{eo}^{3} \cdot Dia_{b1}\right)} \cdot ADM_{-}F_{tu} (alloy_{3}, 0)}{3} = 1175.57 \text{ lbf}$$

$$\overline{I_{tilt} := \left(V_{f}\right) \div \left(R_{tilt}\right) = 0.04}$$

$$\overline{I2" \text{ o.c. } \frac{Use 1/4-14 \text{ S.S. Fasteners}}{max. \text{ to attach stiffener to outrigger}}_{as shown}_{300 \text{ Series } (Fy = 65,000 \text{ psi})}$$

300 Series (Fy = 65,000 psi)

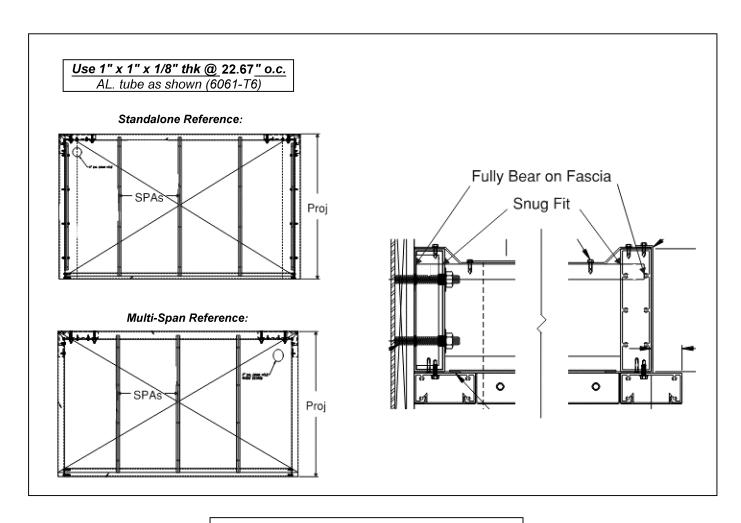
** Standalone systems only **

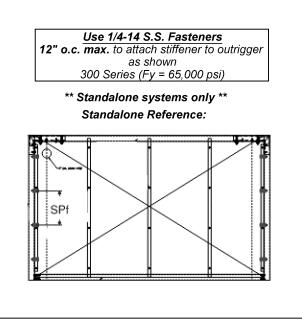
STIFFENER =["0.31 ≤ 1.00 ∴ PASS" "0.25 ≤ 1.00 ∴ PASS"]
BEARING = "0.0	2≤1.00 ∴ PASS"
FASTENERS =	"0.02 ≤ 1.00 · PASS" "0.04 ≤ 1.00 · PASS"

Description: 36" Cantilevered Corner

36" Cantilevered Corner System

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100


REI Project # R25-01-042


Project Name: McDonalds - Puyallup, WA. L2401075
 Sheet No:
 6.05

 Initials:
 SWP

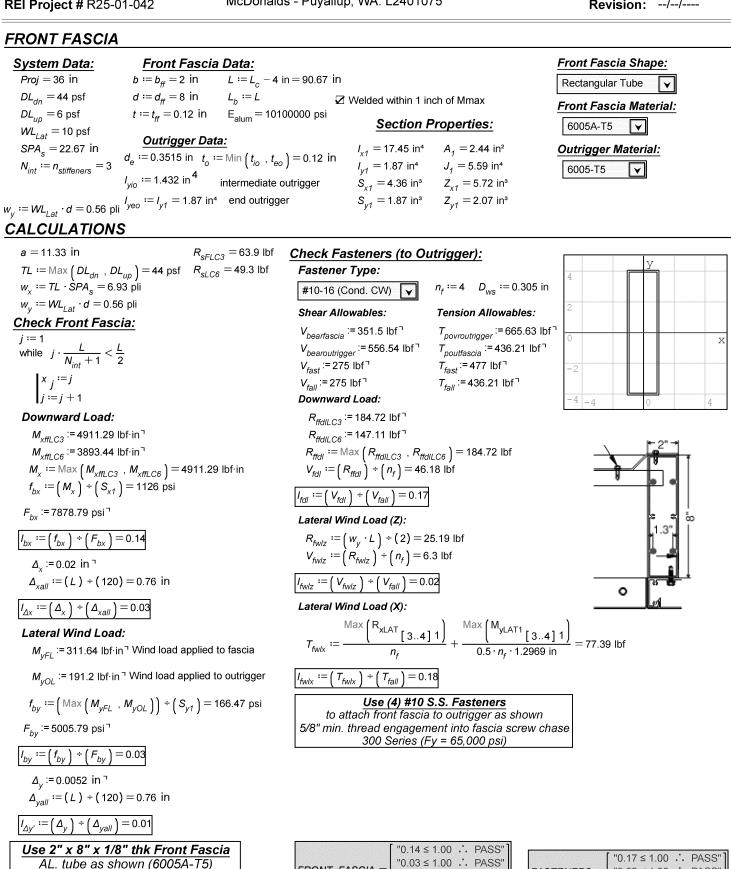
 Date:
 2/26/2025

 Revision:
 --/--/---

ENGINEERING 105 School Creek Trail | Luxemburg, WI 54217

(Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042


Description:

36" Cantilevered Corner System

Project Name:

McDonalds - Puyallup, WA. L2401075

Sheet No: 6.06 Initials: SWP Date: 2/26/2025 Revision: --/--/----

FRONT_FASCIA =

"0.03 ≤ 1.00 ∴ PASS"

"0.01 ≤ 1.00 . PASS"

FASTENERS =

"0.02 ≤ 1.00 . PASS"

"0.18 ≤ 1.00 ... PASS"

ENGINEERING

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

FRONT FASCIA (CORNER)

<u>System Data:</u>	Corner Front Fascia Data:	Max Member Forces:	Front Fascia Shape:
<i>Proj</i> = 36 in	$b := b_{cff} = 2$ in	Axial _{cff} = 13.82 lbf	Rectangular Tube
DL _{dn} = 44 psf	$d := d_{cff} = 8$ in	$V_{ycff} = 139.4$ lbf	Front Fascia Material:
$DL_{up} = 6 \text{ psf}$	$t := t_{cff} = 0.12$ in	$V_{zcff} = 17.17$ lbf	
$WL_{Lat} = 10 \text{ psf}$	$L := L_{cant} = 44$ in	<i>Tor_{cff}</i> = 785.18 lbf in	6005-T5
SPA _s = 22.67 in	$L_b := L$	$M_{\rm vcff} = 97.4$ lbf in	Section Properties:
$N_{int} := n_{stiffeners} = 3$	E _{alum} = 10100000 psi	M _{zcff} = 4802.22 lbf in	$I_{x1} = 17.45 \text{ in}^4$ $A_1 = 2.44 \text{ in}^2$
			I _{y1} = 1.87 in⁴
			$S_{\chi 1} = 4.36 \text{ in}^3$ $Z_{\chi 1} = 5.72 \text{ in}^3$
		Welded within 1 inch of Mmax	$S = 1.87 \text{ in}^3$ $7 = 2.07 \text{ in}^3$

CALCULATIONS

Check Corner Front Fascia:

Axial:

$f_c := (Axial_{cff}) \div (A_1) = 5.67 \text{ psi}$	
<i>F_c</i> ≔ 5857.26 psi [¬]	

$$I_{axial} := (f_c) \div (F_c) = 0$$

Shear:

$$f_{vy} := (V_{ycff}) \div (2 \cdot (d - 2 \cdot t) \cdot t) = 71.95 \text{ psi}$$

$$f_{vz} := (V_{zcff}) \div (2 \cdot (b - 2 \cdot t) \cdot t) = 39.25 \text{ psi}$$

$$F_{v} := 4285.74 \text{ psi}^{7}$$

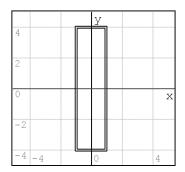
$$I_{v} := \sqrt{\left(\frac{f_{vy}}{F_{v}}\right)^{2} + \left(\frac{f_{vz}}{F_{v}}\right)^{2}} = 0.02$$

$$f_{\tau} := (Tor_{cff}) + (2 \cdot b \cdot d \cdot t) = 196.29 \text{ psi}$$

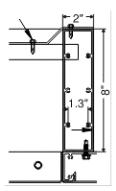
 $F_{\tau} := 4285.74 \text{ psi}^{\neg}$

 $I_{\tau} := \left(f_{\tau}\right) \div \left(F_{\tau}\right) = 0.05$

Bending:


 $f_{bx} := (M_{zoff}) \div (S_{x1}) = 1101 \text{ psi}$ F_{bx} := 7878.79 psi[¬] $I_{bx} := (f_{bx}) \div (F_{bx}) = 0.14$ $f_{by} := (M_{ycff}) \div (S_{y1}) = 52.03 \text{ psi}$ F_{by} := 5005.79 psi[¬] $I_{by} := (f_{by}) \div (F_{by}) = 0.01$

$$I_{FFCorner} := Max \left(I_{axial} + \left(I_{bx} + I_{by} \right)^n + \left(I_v + I_\tau \right)^2, I_{axial} + \left(I_{bx} + I_{by} \right) \right) = 0.15$$


Use 2" x 8" x 1/8" thk Front Fascia AL. tube as shown (6005-T5)

Deflection:

 $\Delta_{xcff} = 0.1$ in $\Delta_{xall} := (2 \cdot L_{cant}) \div (120) = 0.73$ in $I_{\Delta x} := \left(\Delta_{x c f f}\right) \div \left(\Delta_{x a l l}\right) = 0.14$ $\Delta_{vcff} = 0$ in $\Delta_{yall} := (2 \cdot L_{cant}) \div (120) = 0.73$ in $I_{\Delta y} := \left(\Delta_{ycff} \right) \div \left(\Delta_{yall} \right) = 0$

 $S_{v1} = 1.87 \text{ in}^3 \qquad Z_{v1} = 2.07 \text{ in}^3$

	"0 ≤ 1.00 . PASS"
CORNER_FRONT_FASCIA =	"0.02 ≤ 1.00 ∴ PASS"
	"0.05 ≤ 1.00 ∴ PASS"
	"0.14 ≤ 1.00 ∴ PASS"
	"0.01 ≤ 1.00 ∴ PASS"
	"0.15 ≤ 1.00 ∴ PASS"
	"0.14 ≤ 1.00 PASS"
	"0 ≤ 1.00 PASS"

Description:

36" Cantilevered Corner System

Project Name:

McDonalds - Puyallup, WA. L2401075

Sheet No: 6.07 Initials: SWP Date: 2/26/2025 Revision: --/--/----

ENGINEERING

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

END OUTRIGGER

Outrigger Data:

<u>System Data:</u>	Outrigger D	ata:
$L_{c} = 94.67$ in	$b := b_{eo} = 2$ in	L := Proj = 36 in
DL _{dn} = 44 psf	$d := d_{eo} = 8$ in	$L_b := L$
LC6 = 30.31 psf	$t := t_{eo} = 0.12$ in	E _{alum} = 10100000
$DL_{up} = 6 \text{ psf}$	Drift Datas	
$WL_{Lat} = 10 \text{ psf}$	<u>Drift Data:</u>	
DeadL = 7.36 psf	$S_b = 21 \text{ psf}$	
SPA = 22.67 in	$P_{d1} = 31.05 \text{ psf}$	
5	<i>P_{d2}</i> = 0 psf	

CALCULATIONS

Check End Outrigger: TW:= 13.33 in 7 LC3 Drift Dist. Loạds: $w_{owall2wayLC3} \coloneqq (2 \cdot P_{dO1} + S_b + DeadL) \cdot a = 5.31 \text{ pli}$ $w_{omiddriff} := P_{dO1} \cdot a = 1.54$ pli $w_{omiduniLC3} := (P_{dO2} + S_b + DeadL) \cdot a = 3.14 \text{ pli}$ $w_{oend2wayLC3} := (P_{dO2} + S_b + DeadL) \cdot a = 3.14 \text{ pli}$ $w_{owallb} := P_{d1} \cdot \dot{b} = 0.43$ pli $w_{ounib} := (S_b + DeadL) \cdot b = 0.39$ pli $w_{owall1wayLC3} \coloneqq P_{d1} \cdot TW = 2.88 \text{ pli}$ $w_{ouniLC3} := (S_b + DeadL) \cdot TW = 2.63 \text{ pli}$

LC3 Point Loads:

 $F_{wall2wayLC3} := 0.5 \cdot a \cdot w_{owall2wayLC3} = 30.09$ lbf $F_{middrift} \coloneqq 0.5 \cdot (L - 2 \cdot TW) \cdot w_{omiddrift} = 7.18$ lbf $F_{miduniLC3} := (L - 2 \cdot TW) \cdot (P_{dO2} + S_b + DeadL) \cdot a = 29.28 \text{ lbf}$ $F_{end2wayLC3} := 0.5 \cdot a \cdot w_{oend2wayLC3} = 17.78$ lbf $F_{wallb} := 0.5 \cdot L \cdot w_{owallb} = 7.76$ lbf $F_{unib} := L \cdot w_{ounib} = 14.18$ lbf $F_{wall1wayLC3} := 0.5 \cdot L \cdot w_{owall1wayLC3} = 51.75$ lbf $F_{uniLC3} := L \cdot w_{ouniLC3} = 94.54$ lbf $R_{\rm ffdILC3} = 184.72 \; \rm lbf$ $R_{vN7Drift} = -101.82$ lbf $R_{yN7DriftOS} = -92.4$ lbf $R_{yN8DriftOS} = 36.47$ lbf $R_{yN8Drift} = 38.51$ lbf $R_{yN9DriftOS} = 295.14$ lbf $R_{\gamma N9Drift} = 325.28$ lbf $R_{yN10Drift} = -101.82$ lbf $R_{yN10DriftOS} = -106.04$ lbf $R_{yN11Drift} = 38.51$ lbf $R_{yN11DriftOS} = 30.54$ lbf $R_{yN12Drift} = 325.28$ lbf $R_{yN12DriftOS} = 282.59$ lbf R_{vOLC3C} := 552.95 lbf " vertical rxn @ thru-bolts

LC3 Strong Axis Moment:

$$M_{xOLC3C} := 17806.26 \text{ lbf in }$$

 $f_{bxLC3} := (M_{xOLC3C}) \div (S_{x1}) = 5652 \text{ psi}$

$$I_{bxLC3} := \left(f_{bxLC3}\right) \div \left(F_{bx}\right) = 0.6$$

LC3 Strong Axis Deflection:

∆_{xLC3} := 0.07 in ¬

= 0.12 $I_{\Delta x L C 3} := \left(\Delta_{x L C 3} \right)$ $\div \left(\Delta_{xall} \right)$

Description: 36" Cantilevered Corner System

Project Name:

= 0.12 in $E_{alum} =$ 10100000 psi

McDonalds - Puyallup, WA. L2401075

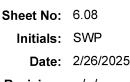
□ Welded within 1 inch of Mmax

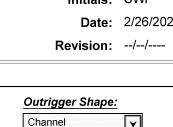
Section Properties:

 $I_{x1} = 12.6 \text{ in}^4$

 $I_{v1} = 0.46 \text{ in}^4$

 $S_{x1} = 3.15 \text{ in}^3$

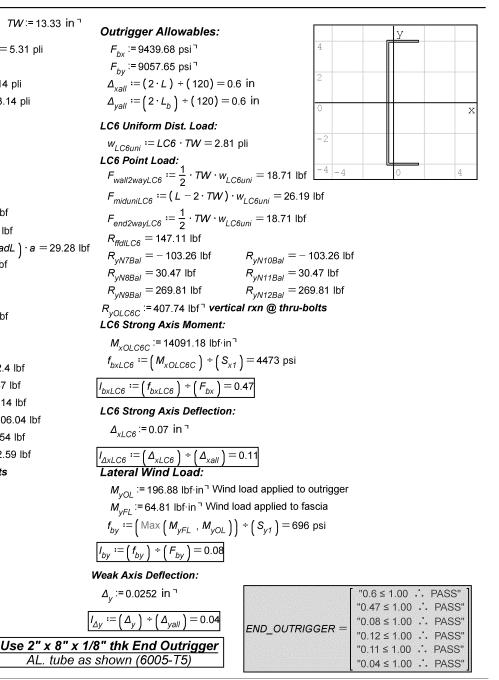

 $S_{v1} = 0.28 \text{ in}^3$


 $A_1 = 1.47 \text{ in}^2$

 $J_1 = 0.01 \text{ in}^4$

 $Z_{x1} = 3.85 \text{ in}^3$

 $Z_{v1} = 0.22 \text{ in}^3$



Outrigger Material:

6005-T5 V

 $I_{vio} := I_{v1} = 0.46$ in⁴ end outrigger $I_{veo} := 1.8721 \text{ in}^4$ end outrigger $w_v := WL_{Lat} \cdot d = 0.56$ pli

ENGINEERING

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

INTERMEDIATE OUTRIGGER

Autriagor Dotos

Description:

Project Name:

<u>System Data:</u>	<u>Outrigger Data:</u>		Outrigger Shape:
$L_{c} = 94.67$ in	$b := b_{io} = 2$ in $L := Proj = 36$ in		Channel 🗸
DL _{dn} = 44 psf	$d := d_{io} = 6$ in $L_b := L$	\Box Welded within 1 inch of Mmax	Outrigger Material:
<i>LC6</i> = 30.31 psf	$t := t_{jo} = 0.12$ in $E_{alum} = 10100000$ psi	Section Properties:	6061-T6 V
$DL_{up} = 6 \text{ psf}$	Drift Data:		
$WL_{Lat} = 10 \text{ psf}$	$S_{\rm c} = 21 \rm psf$	$I_{\chi 1} = 6.3 \text{ in}^4$ $A_1 = 1.22 \text{ in}^2$	$I_{yio} := I_{y1} = 0.43$ in ⁴ intermediate outrigger
DeadL = 7.36 psf	$P_{d1} = 31.05 \text{ psf}$	$I_{y1} = 0.43 \text{ in}^4 \qquad J_1 = 0.01 \text{ in}^4$	
SPA _s = 22.67 in	$P_{d2} = 0 \text{ psf}$	$S_{\chi 1} = 2.1 \text{ in}^3 \qquad Z_{\chi 1} = 2.5 \text{ in}^3$	$I_{yeo} := 1.8721 \text{ in }^4$ end outrigger
	$r_{d2} = 0.031$	$S_{\gamma 1} = 0.27 \text{ in}^3 \qquad Z_{\gamma 1} = 0.41 \text{ in}^3$	$w_{V} := WL_{Lat} \cdot d = 0.42$ pli

36" Cantilevered Corner System

McDonalds - Puyallup, WA. L2401075

CALCULATIONS

TW = 13.33 in

Check Intermediate Outrigger:

LC3 Drift Dist. Loads:

 $w_{owall2wayLC3} = 5.31 \text{ pli}$ $w_{omiddrift} = 1.54$ pli $w_{omiduniLC3} = 3.14$ pli $w_{oend2wayLC3} = 3.14$ pli $w_{owallb} = 0.43$ pli $w_{ounib} = 0.39$ pli $w_{owall1wayLC3} = 2.88 \text{ pli}$ $w_{ouniLC3} =$ 2.63 pli

LC3 Point Loads:

 $F_{wall2wayLC3} = 30.09$ lbf $F_{middrift} = 7.18$ lbf $F_{miduniLC3} = 29.28$ lbf $F_{end2wayLC3} = 17.78$ lbf $F_{wallb} = 7.76$ lbf $F_{unib} = 14.18$ lbf $F_{wall1wayLC3} = 51.75$ lbf $F_{uniLC3} = 94.54$ lbf $R_{\rm ffdILC3} = 184.72 \; \rm lbf$

R_{VOLC3}:= 290.98 lbf " vertical rxn @ thru-bolts

LC3 Strong Axis Moment:

M_{xOLC3} := 8392.72 lbf · in [¬]

$$f_{bxLC3} := \left(M_{xOLC3}\right) \div \left(S_{x1}\right) = 3999 \text{ psi}$$

$$I_{bxLC3} := (f_{bxLC3}) \div (F_{bx}) = 0.42$$

LC3 Strong Axis Deflection:

∆_{xLC3} := 0.08 in ¬

$$I_{\Delta x L C 3} := \left(\Delta_{x L C 3}\right) \div \left(\Delta_{x a l l}\right) = 0.13$$

LC6 Uniform Dist. Load: $w_{LC6uni} = 2.81 \text{ pli}$

LC6 Point Load:

 $F_{wall2wayLC6} = 18.71$ lbf $F_{miduniLC6} = 26.19$ lbf $F_{end2wayLC6} = 18.71$ lbf $R_{\rm ffdlLC6} = 147.11 \; \rm lbf$

R_{vOLC6}:=210.73 lbf[¬] vertical rxn @ thru-bolts

LC6 Strong Axis Moment:

M_{xOLC6} := 6441.1 lbf·in[¬]

$$f_{bxLC6} := \left(M_{xOLC6} \right) \div \left(S_{x1} \right) = 3069 \text{ psi}$$

$$I_{byl,C6} := (f_{byl,C6}) \div (F_{by}) = 0.33$$

LC6 Strong Axis Deflection:

 Δ_{xLC6} := 0.06 in [¬]

$$I_{\Delta x L C 6} := \left(\Delta_{x L C 6}\right) \div \left(\Delta_{x a l l}\right) = 0.1$$

Lateral Wind Load:

 $M_{VOL} := 147.66 \text{ lbf} \cdot \text{in}^{\neg}$ Wind load applied to outrigger

 $M_{vFL} := 48.61 \text{ lbf} \cdot \text{in}$ Wind load applied to fascia

$$f_{by} := \left(\operatorname{Max} \left(M_{yFL} \ , \ M_{yOL} \right) \right) \div \left(S_{y1} \right) = 537.28 \text{ psi}$$

$$I_{by} := \left(f_{by}\right) \div \left(F_{by}\right) = 0.04$$

Weak Axis Deflection:

$$I_{\Delta y} := \left(\Delta_y\right) \div \left(\Delta_{yall}\right) = 0.03$$

Use 2" x 6" x 1/8" thk Int. Outrigger AL. tube as shown (6061-T6)

INT_OUTRIGGER =	"0.42 ≤ 1.00 . PASS"
	"0.33 ≤ 1.00 ∴ PASS"
	"0.04 ≤ 1.00 PASS"
	"0.13 ≤ 1.00 . PASS"
	"0.1≤1.00 . PASS"
	"0.03 ≤ 1.00 ∴ PASS"

X - 4

Outrigger Allowables:

F_{bx} := 9439.68 psi[¬] *F_{by}* := 12076.87 psi[¬] $\Delta_{xall} := (2 \cdot L) \div (120) = 0.6$ in $\Delta_{vall} := (2 \cdot L_b) \div (120) = 0.6$ in

Initials: SWP Date: 2/26/2025

Revision: --/--/----

Sheet No: 6.09

ENGINEERING

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

ADJACENT CORNER OUTRIGGER

System Data:	Adjacent Outrigger Data:	Max Member Forces:	Outrigge
$DL_{dn} = 44 \text{ psf}$	$b := b_{ao} = 2$ in	$Axial_{ao} = 16.45$ lbf	Rectangul
LC6 = 30.31 psf	$d := d_{ao} = 8$ in	$V_{vao} = 183.64$ lbf	Outriese
$DL_{up} = 6 \text{ psf}$	$t := t_{ao} = 0.12$ in	$V_{zao} = 13.82$ lbf	Outrigge
$WL_{Lat} = 10 \text{ psf}$	L := Proj = 36 in	$Tor_{ao} = 0$	6005-T5
<i>DeadL</i> = 7.36 psf	$L_b := L$	$M_{vao} = 82.64$ lbf·in	Section P
$S_b = 21 \text{ psf}$	E _{alum} = 10100000 psi	M _{zao} = 2237.92 lbf∙in	I _{×1} = 17.45 in⁴
P _{d1} = 31.05 psf			I _{v1} = 1.87 in⁴
P _{d2} = 0 psf		_	$S_{x1} = 4.36 \text{ in}^3$
		Welded within 1 inch of Mmax	S _{v1} = 1.87 in³
CALCULATIONS			

Description:

Project Name:

36" Cantilevered Corner System

McDonalds - Puyallup, WA. L2401075

Check Adjacent Corner Outriggers:

Axial:

$f_c := (Axial_{ao}) \div (A_1) = 6.75 \text{ psi}$
<i>F_c</i> ≔ 5857.26 psi [¬]

$$I_{axial} := \left(f_{c}\right) \div \left(F_{c}\right) = 0$$

Shear:

$$f_{vy} := (V_{yao}) + (2 \cdot (d - 2 \cdot t) \cdot t) = 94.78 \text{ psi}$$

$$f_{vz} := (V_{zao}) + (2 \cdot (b - 2 \cdot t) \cdot t) = 31.59 \text{ psi}$$

$$F_{v} := 4285.74 \text{ psi}^{\neg}$$

$$I_{v} := \sqrt{\left(\frac{f_{vy}}{F_{v}}\right)^{2} + \left(\frac{f_{vz}}{F_{v}}\right)^{2}} = 0.02$$

Torsion:

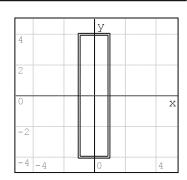
$$f_{\tau} := (Tor_{ao}) \div (2 \cdot b \cdot d \cdot t) = 0$$
$$F_{\tau} := 4285.74 \text{ psi}^{\neg}$$

$$I_{\tau} := \left(f_{\tau}\right) \div \left(F_{\tau}\right) = 0$$

Bending:

$$f_{bx} := (M_{zao}) \div (S_{x1}) = 513 \text{ psi}$$

 $F_{bx} := 7878.79 \text{ psi}$
 $I_{bx} := (f_{bx}) \div (F_{bx}) = 0.07$


$$f_{by} := (M_{yao}) \div (S_{y1}) = 44.14 \text{ psi}$$
$$F_{by} := 5005.79 \text{ psi} \urcorner$$
$$I_{by} := (f_{by}) \div (F_{by}) = 0.01$$

$$I_{AOComer} := \operatorname{Max} \left(I_{axial} + \left(I_{bx} + I_{by} \right)^{n} + \left(I_{v} + I_{\tau} \right)^{2}, I_{axial} + \left(I_{bx} + I_{by} \right) \right) = 0.08$$

Use 2" x 8" x 1/8" thk Outriggers AL. tube as shown (6005-T5)

Deflection: $\Delta_{xao} = 0$ in $\Delta_{xall} := (2 \cdot L) \div (120) = 0.6$ in $I_{\Delta x} := \left(\Delta_{xao} \right) \div \left(\Delta_{xall} \right) = 0$ $\Delta_{yao} = 0$ $\Delta_{yall} := (2 \cdot L) \div (120) = 0.6$ in

 $I_{\Delta y} := \left(\Delta_{yao}\right) \div \left(\Delta_{yall}\right) = 0$

	"0 ≤ 1.00 ∴ PASS"
ADJ_OUTRIGGER =	"0.02 ≤ 1.00 . PASS
	"0 ≤ 1.00 ∴ PASS"
	"0.07 ≤ 1.00 ∴ PASS
	"0.01 ≤ 1.00 ∴ PASS
	"0.08 ≤ 1.00 ∴ PASS
	"0 ≤ 1.00 . PASS"
	"0 ≤ 1.00 ∴ PASS"

Sheet No: 6.10 Initials: SWP

Date: 2/26/2025

¥

Revision: --/--/----

 $\mathbf{\vee}$

 $A_1 = 2.44 \text{ in}^2$ J₁ = 5.59 in^₄

 $Z_{_{\chi1}} = 5.72 \text{ in}^3$ $Z_{v1} = 2.07 \text{ in}^3$

Outrigger Shape: Rectangular Tube

Outrigger Material:

Section Properties:

ENGINEERING

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

CORNER OUTRIGGER

System Data: $DL_{dn} =$ 44 psf LC6 = 30.31 psf $DL_{up} = 6 \text{ psf}$ $WL_{Lat} = 10 \text{ psf}$ DeadL = 7.36 psf $S_b = 21 \text{ psf}$ P_{d1} = 31.05 psf $P_{d2} = 0 \text{ psf}$

Corner Outrigger Data: $b := b_{co} = 2$ in $d := d_{co} = 8$ in $t := t_{co} = 0.12$ in $L := L_{co} = 50.91$ in $L_b := L$ $E_{alum} = 10100000 \text{ psi}$

Max Member Forces: $Axial_{co} = 3.06$ lbf $V_{vco} = 177.94$ lbf $V_{zco} = 1.68$ lbf $\mathit{Tor}_{co} = 4802.22 \; lbf \cdot in$ $M_{yco} = 56.26$ lbf·in $M_{zco} = 5680.95 \text{ lbf} \cdot \text{in}$

Welded within 1 inch of Mmax

Outrigger	r Shape:
Rectangul	ar Tube 🛛 🖌
Outrigger	r Material:
6005-T5	V
Section P	roperties:
I _{x1} = 17.45 in⁴	$A_1 = 2.44 \text{ in}^2$
I _{v1} = 1.87 in⁴	J ₁ = 5.59 in⁴
$S_{x1} = 4.36 \text{ in}^3$	$Z_{\chi 1} = 5.72 \text{ in}^3$
$S_{y1} = 1.87 \text{ in}^3$	$Z_{y1} = 2.07 \text{ in}^3$

CALCULATIONS

Check Corner Outriggers:

Axial:

buitten	
$f_{c} := \left(Axial_{co}\right) \div \left(A_{1}\right) = 1.25 \text{ ps}$	j
<i>F_c</i> ≔ 5857.26 psi [¬]	

$$I_{axial} := \left(f_{c}\right) \div \left(F_{c}\right) = 0$$

Shear:

$$f_{vy} := (V_{yco}) + (2 \cdot (d - 2 \cdot t) \cdot t) = 91.84 \text{ psi}$$

$$f_{vz} := (V_{zco}) + (2 \cdot (b - 2 \cdot t) \cdot t) = 3.84 \text{ psi}$$

$$F_{v} := 4285.74 \text{ psi}^{\neg}$$

$$I_{v} := \sqrt{\left(\frac{f_{vy}}{F_{v}}\right)^{2} + \left(\frac{f_{vz}}{F_{v}}\right)^{2}} = 0.02$$

Torsion:

 $f_{\tau} := (Tor_{co}) \div (2 \cdot b \cdot d \cdot t) = 1200.55 \text{ psi}$ F₇:=4285.74 psi[¬] $I_{\tau} := (f_{\tau}) \div (F_{\tau}) = 0.28$

Bending:

$$f_{bx} := (M_{zco}) \div (S_{x1}) = 1302 \text{ psi}$$
$$F_{bx} := 7878.79 \text{ psi} \urcorner$$
$$I_{bx} := (f_{bx}) \div (F_{bx}) = 0.17$$

$$f_{by} := (M_{yco}) \div (S_{y1}) = 30.05 \text{ psi}$$

 $F_{by} := 5005.79 \text{ psi}$
 $I_{by} := (f_{by}) \div (F_{by}) = 0.01$

$$I_{OComer} := Max \left(I_{axial} + (I_{bx} + I_{by})^{n} + (I_{v} + I_{r})^{2}, I_{axial} + (I_{bx} + I_{by}) \right) = 0.17$$

Use 2" x 8" x 1/8" thk Outriggers AL. tube as shown (6005-T5)

Deflection: $\Delta_{_{XCO}} = 0.1$ in

 $\Delta_{xall} := (2 \cdot L) \div (120) = 0.85$ in $I_{\Delta x} := \left(\Delta_{xco}\right) \div \left(\Delta_{xall}\right) = 0.12$ $\Delta_{vco} = 0$ in $\Delta_{vall} := (2 \cdot L) \div (120) = 0.85$ in $I_{\Delta V} := (\Delta_{yco})$ $\div \left(\Delta_{yall} \right) = 0$

	У	
4		
2		
0		X
-2		
-4 -4	 0	4

COR_OUTRIGGER =	"0 ≤ 1.00 ↓ PASS"
	"0.02 ≤ 1.00 ∴ PASS"
	"0.28 ≤ 1.00 ∴ PASS"
	"0.17 ≤ 1.00 ∴ PASS"
	"0.01 ≤ 1.00 ∴ PASS"
	"0.17 ≤ 1.00 ∴ PASS"
	"0.12 ≤ 1.00 ∴ PASS"
	"0 ≤ 1.00 ∴ PASS"

Sheet No: 6.11 Initials: SWP

Date: 2/26/2025

Revision: --/--/----

Description: 36" Cantilevered Corner System

Project Name:

McDonalds - Puyallup, WA. L2401075

ENGINEERING

 $M_{xOLC6} = 6441.1$ lbf·in

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

REAR FASCIA

System Data: Proj = 36 in

 $DL_{dn} =$ 44 psf

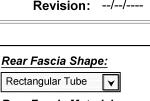
 $DL_{up} = 6 \text{ psf}$

Rear Fascia Data: $b := b_{rf} = 2$ in $L := L_c - 2$ in = 92.67 in $d := d_{rf} = 8$ in $L_b := L$ $t := t_{rf}$

Outri

Description:

Project Name:


 $WL_{Lat} = 10 \text{ psf}$ $SPA_{s} = 22.67$ in $N_{int} = 3$

$t := t_{rf} = 0.12$ in	E _{alum} = 10100000 psi
Outrigger Re	actions:
$R_{yOLC3} = 290.98 \text{ lbf}$	$R_{yOLC3C} = 552.95$ lbf
$M_{xOLC3} = 8392.72$ lbf in	$M_{xOLC3C} = 17806.26$
$R_{yOLC6} = 210.73 \text{ lbf}$	$R_{yOLC6C} = 407.74$ lbf

lbf∙in $R_{yOLC6C} = 407.74$ lbf $M_{xOLC6C} = 14091.18$ lbf·in

36" Cantilevered Corner System

McDonalds - Puyallup, WA. L2401075

Rear Fascia Material:

6005-T5 $\mathbf{\vee}$

Section Properties:

<i>I_{×1}</i> = 17.45 in⁴	A ₁ = 2.44 in ²	
I _{y1} = 1.87 in⁴	J ₁ = 5.59 in⁴	
$S_{x1} = 4.36 \text{ in}^3$	$Z_{x1} = 5.72 \text{ in}^3$	
$S_{\gamma 1} = 1.87 \text{ in}^3$	$Z_{v1} = 2.07 \text{ in}^3$	

CALCULATIONS

a = 11.33 in $TL := Max \left(DL_{dn} , DL_{up} \right) = 44 \text{ psf}$ $W_x := TL \cdot SPA_s = 6.93$ pli $w_v := WL_{Lat} \cdot d = 0.56$ pli

Check Rear Fascia:

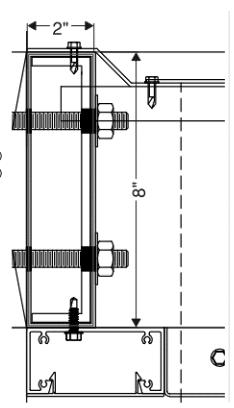
j := 1while $j \cdot \frac{L}{N_{int} + 1} < \frac{L}{2}$ $\begin{vmatrix} x \\ j &:= j \\ j &:= j + 1 \end{vmatrix}$

Downward Load:

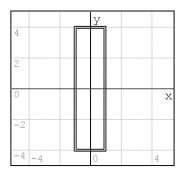
R_{rfdlLC3} := 241.55 lbf [¬] Rear fascia vertical rxn @ anchors (LC3) R_{rfdlLC6} := 147.53 lbf [¬] Rear fascia vertical rxn @ anchors (LC6) *M_{xrfLC3}* := 6634.32 lbf · in[¬] *M_{xrfLC6}* := 4063.45 lbf · in [¬] $M_x := Max (M_{xrfLC3}, M_{xrfLC6}) = 6634.32$ lbf·in $f_{bx} := (M_x) \div (S_{x1}) = 1521 \text{ psi}$

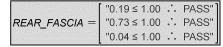
F_{bx} := 7878.79 psi[¬]

$$\begin{aligned} \overline{l_{bx}} &:= (f_{bx}) \div (F_{bx}) = 0.19 \\ \Delta_{x} &:= 0.03 \text{ in }^{\neg} \\ \Delta_{xall} &:= (L) \div (120) = 0.77 \text{ in} \end{aligned}$$


$$I_{\Delta x} := (\Delta_x) \div (\Delta_{xall}) = 0.04$$

Torsion Due to Outrigger:


$$Tor_{rf} := 20156.3 \text{ lbf} \cdot \text{in}^{\neg}$$
$$r_{rf} := \frac{Tor_{rf}}{2 \cdot t \cdot (b - t) \cdot (d - t)} = 5460.33 \text{ psi}$$


F. := 7483.08 psi 7

 $I_{\tau} := (\tau_{rf}) \div (F_{\tau}) = 0.73$

Welded within 1 inch of Mmax

Sheet No: 6.12

Initials: SWP

Date: 2/26/2025

Revision: --/--/----

ENGINEERING

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

REAR FASCIA (CORNER)

<u>System Data:</u>
<i>Proj</i> = 36 in
DL _{dn} = 44 psf
$DL_{up} = 6 \text{ psf}$
$WL_{Lat} = 10 \text{ psf}$
$SPA_s = 22.67$ in
$N_{int} \coloneqq n_{stiffeners} = 3$

Max Member Forces: $Axial_{crf} = 2.78$ lbf $V_{ycrf} = 48.37$ lbf $V_{zcrf} = 1.9$ lbf $Tor_{crf} = 2237.92$ lbf·in $M_{ycrf} = 25.26$ lbf·in $M_{zcrf} = 349.76$ lbf·in

Welded within 1 inch of Mmax

Date:	2/26/2025		
Revision:	//		
Corner Rear Fascia Shane			

Sheet No: 6.13

<u>Corner Rea</u>	r Fascia Shape:
Rectangular	Tube
<u>Corner Rea</u>	r Fascia Material:
6005-T5	V
Section P	ronerties:
	000111001
$I_{x1} = 17.45 \text{ in}^4$	$A_1 = 2.44 \text{ in}^2$
$I_{\chi 1} = 17.45 \text{ in}^4$	$A_1 = 2.44$ in ²

CALCULATIONS

Check Corner Rear Fascia:

Axial:

$f_c := (Axial_{crf}) \div (A_1) = 1.14 \text{ ps}$	i
<i>F_c</i> ∶=5857.26 psi [¬]	

$$I_{axial} := (f_c) \div (F_c) = 0$$

Shear:

$$f_{Vy} := (V_{ycrf}) + (2 \cdot (d - 2 \cdot t) \cdot t) = 24.96 \text{ psi}$$

$$f_{Vz} := (V_{zcrf}) + (2 \cdot (b - 2 \cdot t) \cdot t) = 4.34 \text{ psi}$$

$$F_{v} := 4285.74 \text{ psi}^{\neg}$$

$$I_{v} := \sqrt{\left(\frac{f_{vy}}{F_{v}}\right)^{2} + \left(\frac{f_{vz}}{F_{v}}\right)^{2}} = 0.01$$

Torsion:

 $f_{\tau} := (Tor_{crf}) \div (2 \cdot b \cdot d \cdot t) = 559.48 \text{ psi}$ $F_{\tau} := 4285.74 \text{ psi}^{\neg}$ $I_{\tau} := (f_{\tau}) \div (F_{\tau}) = 0.13$

Bending:

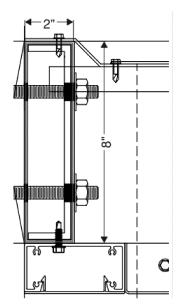
$$f_{bx} := (M_{zcrf}) + (S_{x1}) = 80 \text{ psi}$$

$$F_{bx} := 7878.79 \text{ psi}^{7}$$

$$I_{bx} := (f_{bx}) + (F_{bx}) = 0.01$$

$$f_{by} := (M_{ycrf}) + (S_{y1}) = 13.49 \text{ psi}$$

$$I_{by} := \left(f_{by}\right) \div \left(F_{by}\right) = 0$$


$$I_{RFCorner} := Max \left(I_{axial} + (I_{bx} + I_{by})^{n} + (I_{v} + I_{r})^{2}, I_{axial} + (I_{bx} + I_{by}) \right) = 0.02$$

Use 2" x 8" x 1/8" thk Front Fascia AL. tube as shown (6005-T5)

Deflection:

 $\begin{aligned} \Delta_{xcrf} &= 0.01 \text{ in} \\ \Delta_{xall} &:= (2 \cdot L) + (120) = 0.13 \text{ in} \\ \hline \\ \hline \\ \Delta_{\Delta x} &:= (\Delta_{xcrf}) + (\Delta_{xall}) = 0.05 \end{aligned}$

$$\begin{aligned} \Delta_{ycrf} &= 0\\ \Delta_{yall} &:= (2 \cdot L) \div (120) = 0.13 \text{ in}\\ \hline I_{\Delta y} &:= (\Delta_{ycrf}) \div (\Delta_{yall}) = 0 \end{aligned}$$

	"0 ≤ 1.00 . PASS"
	"0.01 ≤ 1.00 ∴ PASS"
	"0.13 ≤ 1.00 ∴ PASS"
	"0.01 ≤ 1.00 ∴ PASS"
CORNER_REAR_FASCIA =	"0 ≤ 1.00 ∴ PASS"
	"0.02 ≤ 1.00 ∴ PASS"
	"0.05 ≤ 1.00 ∴ PASS"
	"0≤1.00 . PASS"

Description: 36" Cantilevered Corner System

Project Name:

McDonalds - Puyallup, WA. L2401075

ENGINEERING

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

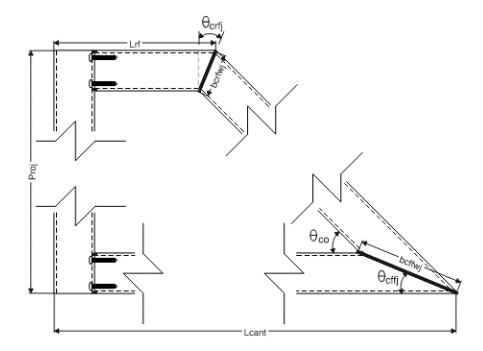
REI Project # R25-01-042

Corner System Welds

Corner Weld Geometry:

Front Fascia - Corner Outrigger Location:

$$\begin{split} & L_{cffo} \coloneqq L_{cant} - L_{rf} \equiv 36 \text{ in} \\ & \theta_{co} \coloneqq \tan\left(\frac{Proj}{L_{cffo}}\right) \equiv 45 \text{ deg} \\ & b_{coj} \coloneqq \frac{b_{co}}{\cos\left(\theta_{co}\right)} \equiv 2.83 \text{ in} \\ & L_{cffi} \coloneqq L_{cffo} - b_{coj} - \frac{b_{cff}}{\sin\left(\theta_{co}\right)} \equiv 30.34 \text{ in} \\ & \theta_{cffj} \coloneqq \frac{180 \text{ deg} - \left(90 \text{ deg} + \left(90 \text{ deg} - \theta_{co}\right)\right)}{2} \equiv 22.5 \text{ deg} \quad \text{weld angle at miter} \\ & b_{cffwj} \coloneqq \sqrt{b_{cff}^2 + \left(L_{cffo} - L_{cffi}\right)^2} \equiv 6 \text{ in} \quad \text{weld width} \\ & d_{cffwj} \coloneqq d_{cff} \equiv 8 \text{ in} \quad \text{weld depth} \\ & t_{cffwj} \coloneqq t_{cff} = 0.12 \text{ in} \quad \text{weld thickness} \end{split}$$


Rear Fascia - Corner Outrigger Location:

$$\theta_{crfj} := \theta_{cffj} = 22.5 \text{ deg}$$
 weld angle at miter

$$b_{crfwj} := \frac{b_{crf}}{\cos\left(\theta_{crfj}\right)} = 2.16$$
 in weld width

$$d_{crfwj} := d_{crf} = 8$$
 in weld depth

 $t_{crfwj} := t_{crf} = 0.12$ in weld thickness

 Sheet No:
 6.14

 Initials:
 SWP

 Date:
 2/26/2025

 Revision:
 --/--/---

Description: 36" Cantilevered Corner System

Project Name: McDonalds - Puyallup, WA. L2401075

ENGINEERING

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

Weld Section Properties:

Front Fascia - J End:

 $A_{wffj} := 3.44 \text{ in}^{27}$ $S_{wxffj} := 8.24 \text{ in}^{37}$

A_{wyffj}:=1.94 in² S_{wyffj}:=7.07 in³

 $A_{wzffj} := 1.44 \text{ in}^{2} \text{ J}_{wffj} := 19.46 \text{ in}^{4}$

 Rear Fascia - J End:

 $A_{wrfj} := 2.48 \text{ in}^2$ $S_{wxrfj} := 4.52 \text{ in}^3$
 $A_{wyrfj} := 1.94 \text{ in}^2$ $S_{wyrfj} := 2.06 \text{ in}^3$
 $A_{wzrfj} := 0.48 \text{ in}^2$ $J_{wrfj} := 3.25 \text{ in}^4$

Check Corner Welds:

Front Fascia - Corner Outrigger Location:

Axial _{cff} = 13.82 lbf	$Axial_{cffjW} := Axial_{cff} \cdot \sin\left(\theta_{cffj}\right) + V_{zcff} \cdot \cos\left(\theta_{cffj}\right) = 21.15 \text{ lbf}$
$V_{ycff} = 139.4$ lbf	$V_{ycffjW} := V_{ycff} = 139.4 \text{ lbf}$
$V_{zcff} = 17.17$ lbf	$V_{zcffjW} := Axial_{cff} \cdot \cos\left(\theta_{cffj}\right) + V_{zcff} \cdot \sin\left(\theta_{cffj}\right) = 19.34$ lbf
<i>Tor_{cff}</i> =785.18 lbf∙in	$Tor_{cffjW} := Tor_{cff} \cdot \sin\left(\dot{\theta}_{cffj}\right) + M_{zcff} \cdot \cos\left(\dot{\theta}_{cffj}\right) = 4737.15$ lbf in
$M_{ycff} = 97.4$ lbf in	$M_{ycffjW} := M_{ycff} = 97.4$ lbf in
$M_{zcff} =$ 4802.22 lbf·in	$M_{zcffjW} \coloneqq Tor_{cff} \cdot \cos\left(\theta_{cffj}\right) + M_{zcff} \cdot \sin\left(\theta_{cffj}\right) = 2563.14 \text{ lbf} \cdot \text{in}$

corner outrigger mitered connection. (4043 Filler)

Front Fascia - Adjacent Corner Outrigger Location:

$Axial_{cff} = 13.82$ lbf $Tor_{cff} = 785.18$ lbf·in $V_{ycff} = 139.4$ lbf $M_{ycff} = 97.4$ lbf·in $V_{zcff} = 17.17$ lbf $M_{zcff} = 4802.22$ lbf·in
$L_{worff} := 6$ in $t_{worff} := 0.125$ in $n_{worff} := 2$
$A_{\rm wcff} := L_{\rm wcff} \cdot t_{\rm wcff} = 0.75 \; {\rm in^2}$
$V_{wcff} := \sqrt{\left(\frac{V_{ycff}}{n_{wcff}} + \frac{Tor_{cff}}{b_{cff}}\right)^2 + \left(\frac{V_{zcff}}{n_{wcff}}\right)^2} = 462.37 \text{ lbf}$
$T_{wcff} := Axial_{cff} + \frac{M_{ycff}}{b_{cff}} = 62.52$ lbf
$f_{wfcff} := \sqrt{\left(\frac{V_{wcff}}{A_{wcff}}\right)^2 + \left(\frac{T_{wcff}}{A_{wcff}}\right)^2} = 622.1 \text{ psi}$
$I_{wfcff} := \left(f_{wfcff}\right) \div \left(\operatorname{Min}\left(F_{sw}, F_{sb}\right)\right) = 0.1$
Use (2) 6" Vertical Full Penetration Line Welds To attach corner front fascia to adjacent tube outrigger. (4043 Filler)

$t_h := t_{ao}$				
0.352 in d _{eh} ≔ 0.352 in				
$D_b := 0.201 \text{ in }^{\neg}$ $t_{sb} := 0.625 \text{ in } D_{ws} := 0.363 \text{ in }$				
Substrate: Material Under Head:				
6005-T5 ▼ 6061-T6 ▼ n _{fcff} := 4				
$\frac{\text{Tor}_{cff}}{5 \cdot n_{fcff} \cdot 4.5 \text{ in}} \right)^2 = 97.94 \text{ lbf}$				
9 in =41.01 lbf				
=359.69 lbf [¬]				
$I_{fcff} := \left(\frac{V_{fcff}}{V_{fall}}\right)^2 + \left(\frac{T_{fcff}}{T_{fall}}\right)^2 = 0.19$				
Fasteners				
corner outrigger.				
nto fascia screw chase 65,000 psi)				

Description: 36" Cantilevered Corner System

Project Name:

McDonalds - Puyallup, WA. L2401075

Sheet No: 6.15 Initials: SWP Date: 2/26/2025 Revision: --/--/---

Frame Material: 6005-T5 V Weld Filler:

	_	

 $F_{sw} := \frac{0.6 \cdot 0.85 \cdot F_{tuw}}{1.95} = 6276.92 \text{ psi}$

F_{tub} := 24000 psi[¬]

$$F_{\rm sb} := \frac{0.6 \cdot F_{tub}}{1.95} = 7384.62 \ \rm psi$$

RICE **Description: ENGINEERING Project Name:**

36" Cantilevered Corner System

McDonalds - Puyallup, WA. L2401075

Sheet No: 6.16 Initials: SWP Date: 2/26/2025 Revision: --/--/----

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

Check Corner Welds (Continued):

Rear Fascia - Corner Outrigger Location:

	33		
Axial _{crf} = 2.78 lbf	$Axial_{crfjW} := Axial_{crf} \cdot \cos\left(\theta_{crfj}\right) + V_{zcrf} \cdot \sin\left(\theta_{crfj}\right) = 3.29 \text{ lbf}$		
V _{ycrf} = 48.37 lbf	$V_{ycrfjW} := V_{ycrf} = 48.37$ lbf		
$V_{zcrf} = 1.9$ lbf	$V_{zcrfjW} := Axial_{crf} \cdot \sin\left(\theta_{crfj}\right) + V_{zcrf} \cdot \cos\left(\theta_{crfj}\right) = 2.82 \text{ lbf}$		
<i>Tor_{crf}</i> = 2237.92 lbf∙in	$Tor_{crfjW} := Tor_{crf} \cdot \cos\left(\theta_{crfj}\right) + M_{zcrf} \cdot \sin\left(\theta_{crfj}\right) = 2201.42 \text{ lbf} \cdot \text{in}$		
$M_{ycrf} = 25.26 \text{ lbf} \cdot \text{in}$	$M_{ycrfjW} := M_{ycrf} = 25.26$ lbf in		
$M_{zcrf} = 349.76$ lbf in	$M_{zcrfjW} := Tor_{crf} \cdot \sin\left(\theta_{crfj}\right) + M_{zcrf} \cdot \cos\left(\theta_{crfj}\right) = 1179.55 \text{ lbf-in}$		
	<i>.</i> . <i>.</i>		
$f_{arfj} := (Axial_{crfjW}) \div (A_{wrfj}) =$	= 1.33 psi $f_{torrfj} := (Tor_{crfjW}) \div (2 \cdot b_{crfwj} \cdot d_{crfwj} \cdot t_{crfwj}) = 508.46$ psi		
$f_{vyrfj} := \left(V_{ycrfjW}\right) \div \left(A_{wyrfj}\right) =$	24.96 psi $f_{byrfj} := (M_{ycrfjW}) \div (S_{wyrfj}) = 12.27$ psi		
$f_{vzrfj} := \left(V_{zcrfjW}\right) \div \left(A_{wzrfj}\right) =$	5.88 psi $f_{bzrfj} := (M_{zcrfjW}) \div (S_{wxrfj}) = 260.83$ psi		
$f_{wrfj} := \sqrt{f_{bzrfj}^2 + f_{byrfj}^2 + f_{vyrfj}^2 + f_{vzrfj}^2} + f_{torrfj} + f_{arfj} = 772.17 \text{ psi}$			
$I_{wrfj} := (f_{wrfj}) \div (Min(F_{sw}, F_{st}))$	()) = 0.12		
Use Full Penetration V			
Around entire perimeter of r corner outrigger mitered co	ear fascia		

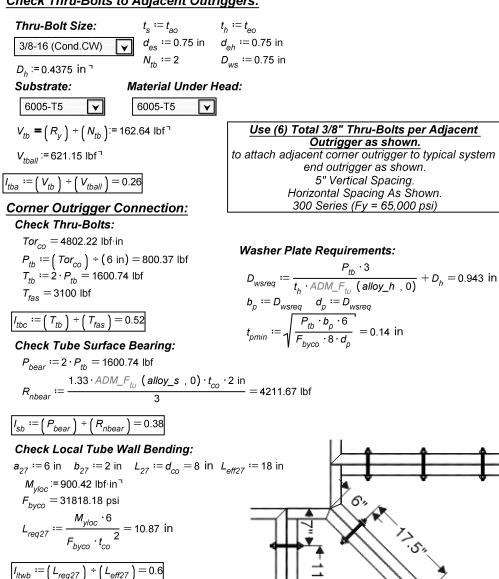
Rear Fascia - Adjacent Corner Outrigger Location:

(4043 Filler)

$Axial_{crf} = 2.78$ lbf $Tor_{crf} = 2237.92$ lbf·in $V_{ycrf} = 48.37$ lbf $M_{ycrf} = 25.26$ lbf·in $V_{zcrf} = 1.9$ lbf $M_{zcrf} = 349.76$ lbf·in
$L_{wcrf} := 6 \text{ in } t_{wcrf} := 0.125 \text{ in } n_{wcrf} := 2$
$A_{\rm wcrf}:=L_{\rm wcrf}\cdot t_{\rm wcrf}=0.75~{ m in^2}$
$V_{wcrf} := \sqrt{\left(\frac{V_{ycrf}}{n_{wcrf}} + \frac{Tor_{crf}}{b_{crf}}\right)^2 + \left(\frac{V_{zcrf}}{n_{wcrf}}\right)^2} = 1143.15 \text{ lbf}$
$T_{wcrf} := Axial_{crf} + rac{M_{ycrf}}{b_{crf}} = 15.41$ lbf
$f_{wforf} := \sqrt{\left(\frac{V_{worf}}{A_{worf}}\right)^2 + \left(\frac{T_{worf}}{A_{worf}}\right)^2} = 1524.33 \text{ psi}$
$I_{wforf} := (f_{wforf}) \div (\operatorname{Min}(F_{sw}, F_{sb})) = 0.24$
Use (2) 6" Vertical Full Penetration Line Welds To attach corner rear fascia to adjacent tube
outrigger. (4043 Filler)

Fastener Size:	$t_{s} := t_{cff}$	$t_h := t_{ao}$		
#10-16 (Cond. CW)		<i>d_{eh}</i> ≔0.352 in		
D _h := 0.201 in ¬	$t_{sb} := 0.625$ in	D _{ws} := 0.363 in		
Substrate:	Material Under H	Head:		
6005-T5 Y	6061-T6 ¥	$n_{fcrf} := 4$		
$V_{forf} := \sqrt{\left(\frac{V_{yorf}}{n_{forf}}\right)^2 + \left(\frac{V_{forf}}{n_{forf}}\right)^2}$	$\frac{1}{2crf}_{fcrf} + \frac{Tor_{crf}}{0.5 \cdot n_{fcrf} \cdot 4}$	$\overline{(.5 \text{ in })^2} = 249.43 \text{ lbf}$		
$T_{fcrf} \coloneqq \frac{Axial_{crf}}{n_{fcrf}} + \frac{M_{ycrf}}{0.5 \cdot n_{fcrf} \cdot 1.2969 \text{ in}} = 10.43 \text{ lbf}$				
V _{fall} ≔ 232.15 lbf [¬]	<i>T_{fall}</i> := 359.69 ∥	bf		
$I_{fcrf} := \left(\frac{V_{fcrf}}{V_{fall}}\right)^2 + \left(\frac{T_{fcrf}}{T_{fall}}\right)^2 = 1.16 \qquad \qquad < \cdots \text{Okay w/ welds}$				
	10 S.S. Fastene			
to attach corner re	ar fascia to adja outrigger.	cent tube		
5/8" min. thread engag				

CORNER_CONNECTIONS =	"0.11 ≤ 1.00 ∴ PASS" "0.1 ≤ 1.00 ∴ PASS"
CORNER_CONNECTIONS =	"0.12 ≤ 1.00 ∴ PASS"
	"0.24 ≤ 1.00 ∴ PASS"


ENGINEERING

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

Corner System Thru-Bolts

Check Thru-Bolts to Adjacent Outriggers:

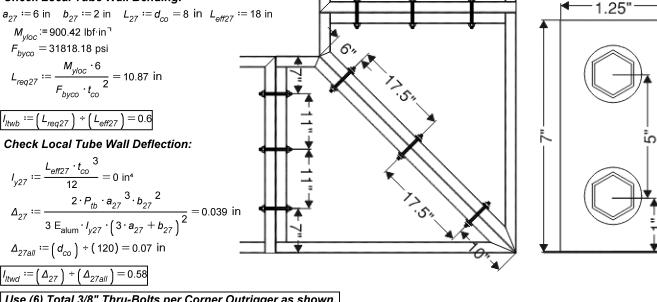
Check Local Tube Wall Deflection:

$$I_{y27} := \frac{L_{eff27} \cdot t_{c0}^{3}}{12} = 0 \text{ in}^{4}$$
$$\Delta_{27} := \frac{2 \cdot P_{tb} \cdot a_{27}^{3} \cdot b_{27}^{2}}{3 E_{alum} \cdot I_{y27} \cdot (3 \cdot a_{27} + b_{27})^{2}} = 0.039$$
$$\Delta_{27all} := (d_{c0}) \div (120) = 0.07 \text{ in}$$

Use (6) Total 3/8" Thru-Bolts per Corner Outrigger as shown. to attach corner outriggers together as shown. 5" Vertical Spacing. Horizontal Spacing As Shown. 300 Series (Fy = 65,000 psi) Use 1-1/4" x 7" x 3/16" Washer Plates per Thru-Bolt Group. (6061-T6 Min.)

ADJ_CORNER_THRU_BOLTS =	["0.26≤1.00 · PASS"]
CORNER_THRU_BOLTS =	"0.52 ≤ 1.00 PASS" "0.38 ≤ 1.00 PASS" "0.6 ≤ 1.00 PASS" "0.58 ≤ 1.00 PASS"

īω


Sheet No: 6.17 Initials: SWP

Date: 2/26/2025

Revision: --/--/----

Vertical Node Reactions:

["LC"	"Node"	"Ry"
[4]	["N7"]	[- 101.82 lbf]
4	"N9"	325.28 lbf
4	"N10"	- 101.82 lbf
4	"N12"	325.28 lbf
4	"N11"	38.51 lbf
[4]	"N8"	38.51 lbf
- "LC"	"Node"	"Ry"
[5]	["N7"]	[- 103.26 lbf]
5	"N9"	269.81 lbf
5	"N10"	- 103.26 lbf
5	"N12"	269.81 lbf
5	"N11"	30.47 lbf
[5]	"N8"	30.47 lbf
- "LC"	"Node"	"Ry"
[6]	["N7"]	[-92.4 lbf]
6	"N9"	295.14 lbf
6	"N10"	- 106.04 lbf
6	"N12"	282.59 lbf
6	"N11"	30.54 lbf
6	"N8"	36.47 lbf

Description:

36" Cantilevered Corner System

Project Name:

McDonalds - Puyallup, WA. L2401075

ENGINEERING

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

SOFFIT

$t_{sp} := 0.1$ in soffit panel thickness $W_{upASD} = 10.42 \text{ psf}$ $N_{ss} := 5$ # of soffit stiffeners L_{stiff}=32 in [¬] stiffener length

 $Sp_{ss} := (96 \text{ in}) \div ((N_{ss} - 1)) = 24 \text{ in soffit stiffener spacing}$

Check Soffit Panel Bending:

$$L_{bpanel} := Sp_{ss} = 24 \text{ in}$$

$$w_{panel} := W_{upASD} \cdot Proj = 2.6 \text{ pli}$$

$$M_{ypanel} := \frac{168 \cdot w_{panel} \cdot L_{bpanel}}{1568} = 160.7 \text{ lbf} \cdot \text{in}$$

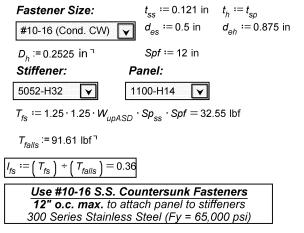
$$S_{ypanel} := \frac{t_{sp}^{2} \cdot (Proj - 4.5 \text{ in})}{6} = 0.05 \text{ in}^{3}$$

$$f_{bpanel} := (M_{ypanel}) \div (S_{ypanel}) = 3061.03 \text{ psi}$$

$$F_{bpanel} := 11500 \text{ psi}$$

 $I_{bpanel} := (f_{bpanel}) \div (F_{bpanel}) = 0.27$

Check Panel Deflection:


L/60	\checkmark	Panel Deflection Criteria
$I_{\nu p} := \frac{t_p^3}{2}$	· (Proj –	4.5 in) ——— =0.0026 in⁴

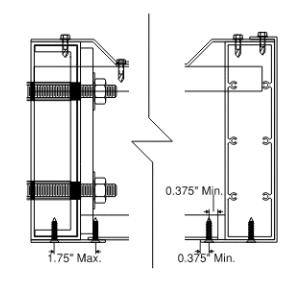
$$\Delta_{yp} := 0.00541 \cdot \frac{w_{panel} \cdot L_{bpanel}}{E_{alum} \cdot l_{yp}} = 0.18 \text{ in}$$
$$\Delta_{ypall} := \frac{L_{bpanel}}{Deflection Criteria} = 0.4 \text{ in}$$

 $I_{\Delta yp} := \left(\Delta_{yp}\right) \div \left(\Delta_{ypall}\right) = 0.44$

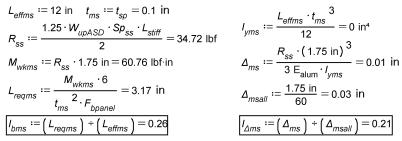
Using L /60 Deflection Limit:
Use0.100 " Thick
Panel Type = 1100–H14 Aluminum
Maximum Span = 24.00"

Check Fasteners (to stiffeners):

"0.27 ≤ 1


"0.44 ≤ 1

SOFFIT_PANEL =


SOFFIT_MOUNTING_STRIP =

36" Cantilevered Corner System

McDonalds - Puyallup, WA. L2401075

Check Soffit Mounting Strip:

Check Soffit Mounting Strip Fasteners:

$$T_{fmsp} := R_{ss} = 34.72 \text{ lbf}$$

$$T_{fmsrf} := \frac{R_{ss} \cdot 0.6033 \text{ in}}{1.056 \text{ in}} = 19.84 \text{ lbf}$$

$$T_{povrms} := \left(\left(0.27 + 1.45 \cdot \frac{t_{ms}}{0.19 \text{ in}} \right) \cdot 0.19 \text{ in} \cdot t_{ms} \cdot 14 \text{ ksi} \right) + (3) = 91.61 \text{ lbf}$$

$$T_{fasms} := 477 \text{ lbf}$$

$$T_{poutp} := (1.2 \cdot 0.19 \text{ in} \cdot t_{sp} \cdot 14 \text{ ksi}) + (3) = 106.4 \text{ lbf}$$

$$T_{poutp} := (1.2 \cdot 0.19 \text{ in} \cdot t_{sp} \cdot 14 \text{ ksi}) + (3) = 332.5 \text{ lbf}$$

$$I_{fmsp} := \left(T_{fmsp} \right) + \left(\text{Min} \left(T_{povrms} \cdot T_{fasms} \cdot T_{poutp} \right) \right) = 0.38$$

$$\frac{Use \#10-16 \text{ S.S. Undercut Fasteners}}{12" \text{ o.c. max. to attach soffit panel to mounting strip}}$$

$$300 \text{ Series Stainless Steel } (Fy = 65,000 \text{ psi})$$

$$I_{fmsrf} := \left(T_{fmsrf} \right) + \left(\text{Min} \left(T_{povrms} \cdot T_{fasms} \cdot T_{poutr} \right) \right) = 0.22$$

$$\frac{Use \#10-16 \text{ S.S. Undercut Fasteners}}{12" \text{ o.c. max. to attach mounting strip to rear fascia.} Fastener must be in-line with each stiffener end.} 300 \text{ Series Stainless Steel } (Fy = 65,000 \text{ psi})$$

$$\frac{(0.27 \le 1.00 \therefore \text{ PASS"}}{(0.24 \le 1.00 \therefore \text{ PASS"}}$$

$$\frac{STIFFENER_FASTENERS}{(0.24 \le 1.00 \therefore \text{ PASS"}}$$

Sheet No: 6.18 Initials: SWP Date: 2/26/2025 Revision: --/--/----

Project Name:

Description:

ENGINEERING

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

- Stiffener Angle:
- $L_{1s} := 1.75$ in $L_{28} := 1.75$ in $t_{\rm ss} = 0.121$ in $C_{bs} := 1.0$

 $Alum_{Den} := 158 \text{ pcf}$

Uplift:

Check Stiffener Bending:

 $w_{upstiff} := W_{upASD} \cdot T_{ws} = 1.74$ pli

 $f_{bxsu} := \frac{M_{xsu}}{S_{xsbot}} = 906.97 \text{ psi}$

F_{b×su} := 9087.68 psi[¬]

Uplift Deflection:

 $I_{bsu} := \left(f_{bxsu} \right) \div \left(F_{bxsu} \right) = 0.1$

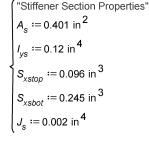
 $\Delta_{ysu} := \frac{5 \cdot w_{upstiff} \cdot L_{stiff}}{384 \text{ E}_{alum} \cdot l_{ys}} = 0.02 \text{ in}$

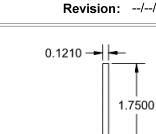
 $I_{\Delta y s u} := (\Delta_{y s u}) \div (\Delta_{y s u a ll}) = 0.04$

 $\Delta_{ysuall} := Min (1.5 \text{ in }, (L_{stiff}) \div (60)) = 0.53 \text{ in}$

 $M_{xsu} := \frac{w_{upstiff} \cdot L_{stiff}}{8} = 222.21 \text{ lbf in}$

5052-H32 ¥ $L_{stiff} = 32$ in stiffener length $T_{ws} = 24$ in \neg stiffener trib. width $W_{upASD} = 10.42 \text{ psf}$ $P_{light} := 5 \text{ lbf}$


F_{bxsuF.5.a.2} = 9087.68 psi [¬] uniform compression local buckling


Description:

Project Name:

36" Cantilevered Corner System

McDonalds - Puyallup, WA. L2401075

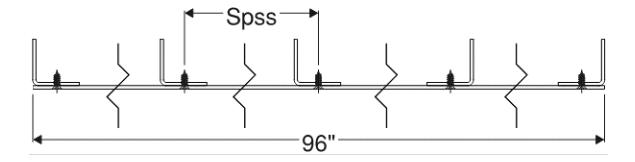
- 1.7500 -

Dead Load:

$$w_{DLstiff} := Alum_{Den} \cdot (A_s + t_{sp} \cdot T_{ws}) = 0.26 \text{ pli}$$

$$M_{xsDL} := \frac{w_{DLstiff} \cdot L_{stiff}^2}{8} + \frac{P_{light} \cdot L_{stiff}}{4} = 72.78 \text{ lbf} \cdot \text{in}$$

$$f_{bxsDL} := \frac{M_{xsDL}}{S_{xstop}} = 758.15 \text{ psi}$$


*F*_{bxsDLF.5.a.1} = 10685.01 psi[¬] leg tip max. compression local buckling

F_{bxsDLLTB} = 26548.53 psi [¬] leg tip max. compression LTB

$$I_{bsDL} := \left(f_{bxsDL}\right) \div \left(F_{bxsDL}\right) = 0.07$$

Dead Load Deflection:

$$\Delta_{ysDL} = \frac{5 \cdot w_{DLstiff} \cdot L_{stiff}}{384 E_{alum} \cdot l_{ys}} + \frac{P_{light} \cdot L_{stiff}}{48 E_{alum} \cdot l_{ys}} = 0.01 \text{ in } T$$

$$\Delta_{ysDLall} := \text{Min} \left(1.5 \text{ in }, \left(L_{stiff} \right) \div (60) \right) = 0.53 \text{ in}$$

$$\overline{l_{\Delta ysDL}} := \left(\Delta_{ysDL} \right) \div \left(\Delta_{ysDLall} \right) = 0.01$$

Use (5) 1-3/4" x 1-3/4" x 0.121" Formed Alum. Angles (2) @ each panel end and spaced 24.0 " max. along 8' panel length as shown (5052-H32)

STIFFENER =	["0.1 ≤ 1.00 ∴ PASS"]
	"0.04 ≤ 1.00 ∴ PASS"
	"0.07 ≤ 1.00 ∴ PASS"
	"0.01 ≤ 1.00 ∴ PASS"

Sheet No: 6.19 Initials: SWP

Date: 2/26/2025

Revision: --/--/----

ENGINEERING

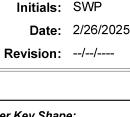
Description: 36" Cantilevered Corner System

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

ANCHOR BRACKET (TYPICAL)

System Data: Channel Anchor Data:

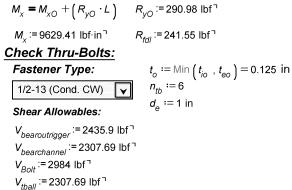

<i>Proj =</i> 36 in		
$DL_{dn} =$ 44 psf		
$DL_{up} = 6 \text{ psf}$		
$WL_{Lat} = 10 \text{ psf}$		

 $b = b_{cb} = 1.69 \text{ in } L = 4.25 \text{ in}$ $d = d_{cb} = 5.69 \text{ in } L_b = L$ $t = t_{cb} = 0.25 \text{ in } E_{alum} = 10100000 \text{ psi}$ Outrigger Reactions:


 $\begin{array}{ll} R_{rfdlLC3} = 241.55 \; \text{lbf} & R_{rfdlLC6} = 147.53 \; \text{lbf} \\ R_{yOLC3} = 290.98 \; \text{lbf} & R_{yOLC6} = 210.73 \; \text{lbf} \\ M_{xOLC3} = 8392.72 \; \text{lbf} \; \text{in} & M_{xOLC6} = 6441.1 \; \text{lbf} \cdot \text{in} \end{array}$

Welded within	1 inch of Mmax		
Section Properties:			
I _{×1} =9.19 in⁴	A ₁ = 2.14 in ²		

 $\begin{array}{ll} & J_{\gamma 1} = 0.47 \; \mathrm{in}^4 & J_{\gamma} = 0.05 \; \mathrm{in}^4 \\ S_{\chi 1} = 3.23 \; \mathrm{in}^3 & Z_{\chi 1} = 3.99 \; \mathrm{in}^3 \\ S_{\gamma 1} = 0.37 \; \mathrm{in}^3 & Z_{\gamma 1} = 0.45 \; \mathrm{in}^3 \end{array}$



Sheet No: 6.20

X

CALCULATIONS

 $V_{tb} := \sqrt{\left(\frac{R_{yO}}{n_{tb}}\right)^2 + \left(\frac{M_{\chi}}{0.5 \cdot n_{tb} \cdot 3.625 \text{ in}}\right)^2} = 886.79 \text{ lbf}$

$$\begin{split} F_{syO} &:= 21000 \text{ psi}^{\neg} \quad F_{suO} &:= 22800 \text{ psi}^{\neg} \quad n_{sp} &:= 2\\ A_{gv} &:= 0.45 \text{ in}^{2 \neg} \\ A_{nv} &:= 0.28 \text{ in}^{2 \neg} \\ R_{nsy} &:= \left(F_{syO} \cdot A_{gv} \cdot n_{sp}\right) \div (1.5) = 12687.5 \text{ lbf} \\ R_{nsr} &:= \left(F_{suO} \cdot A_{nv} \cdot n_{sp}\right) \div (1.95) = 6485.58 \text{ lbf} \\ V_{couple} &:= \left(M_{\chi}\right) \div (3.625 \text{ in}) = 2656.39 \text{ lbf} \end{split}$$

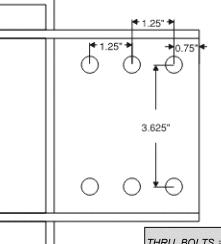
I _{tb} := Max	$\left[\frac{V_{tb}}{V_{tball}}, \frac{V_{couple}}{\min\left(R_{nsy}, R_{nsr}\right)}\right] = 0.41$
<u> </u>	Jse (6) 1/2" Dia. S.S. Thru-Bolts
	3.625" o.c. vertically
	1.25" o.c. horizontally
to attach	outrigger to corner key channel as shown
	300 Series (Fy = 65,000 psi)

Check Channel Bracket:

Outrigger Channel: $f_{bxOC} := (M_x) \div (S_{x1}) = 2984 \text{ psi}$

$$I_{bxOC} := (f_{bxOC}) \div (F_{bx}) = 0.33$$

Rear Fascia Channel:


F_{by} := 9090.91 psi[¬]

$$M_{xRFC} := R_{yO} \cdot 5.75$$
 in = 1673.16 lbf in
 $S_{xRFC} := 6.4503$ in ³

$$f_{bxRFC} := (M_{xRFC}) \div (S_{xRFC}) = 259.39 \text{ psi}$$

$$\left[I_{bxRFC} := \left(f_{bxRFC}\right) \div \left(F_{bx}\right) = 0.03$$

<u>Use 1/4" thk Anchor Channels</u> as shown (6061-T6) Snug tight inside outrigger and rear fascia

C

THRU_BOLTS =	"0.38 ≤ 1.00 "0.41 ≤ 1.00	2	PASS" PASS"
HANNEL_BRACKET =	["0.33 ≤ 1.00		PASS'
HANNEL_BRACKET =	"0.03 ≤ 1.00		PASS'

Rear fascia tube torsion due to outrigger moment check on page 6.12

54217 100 **Project Name**:

McDonalds - Puyallup, WA. L2401075

<u>RICE</u> ENGINEERING

Description:

36" Cantilevered Corner System

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

(Fax) 920.617.1100 **Project Name:**

McDonalds - Puyallup, WA. L2401075

Sheet No: 6.21 Initials: SWP Date: 2/26/2025 Revision: --/--/----

REI Project # R25-01-042

$$d_{w} := d = 5.69 \text{ in} \qquad M_{x} = 9629.41 \text{ lbf} \cdot \text{in}$$

$$b_{w} := 2.391 \text{ in} \qquad R_{yO} = 290.98 \text{ lbf}$$

$$t_{w} := 0.25 \text{ in}$$

$$A_{w} := t_{w} \cdot \left(2 \cdot b_{w} + d_{w}\right) = 2.62 \text{ in}^{2}$$

$$S_{w1} := t_{w} \cdot \left(b_{w} \cdot d_{w} + \frac{d_{w}^{2}}{6}\right) = 4.75 \text{ in}^{3}$$

Check Channel Bracket Welds:

$$S_{w2} := \frac{t_w \cdot (2 \cdot b_w + d_w)^2}{6} = 4.57 \text{ in}^3$$
$$f_w := \sqrt{\left(\frac{0.7071 \cdot M_x}{S_{w1}}\right)^2 + \left(\frac{0.7071 \cdot M_x}{S_{w2}} + \frac{R_{y0}}{A_w}\right)^2} = 2147.53 \text{ psi}$$

$$F_{sbT} := \frac{F_{tub}}{1.95} = 12307.69 \text{ psi}$$
 $F_{swT} := \frac{0.6 \cdot F_{tuw}}{1.95} = 7384.62 \text{ psi}$

$$F_{sbV} := \frac{0.6 \cdot F_{tub}}{1.95} = 7384.62 \text{ psi}$$
 $F_{swV} := \frac{0.6 \cdot F_{tuw}}{1.95} = 7384.62 \text{ ps}$

$$I_{wbm} := \sqrt{\left(\frac{0.7071 \cdot M_{\chi}}{F_{sbT} \cdot S_{w1}}\right)^{2} + \left(\frac{0.7071 \cdot M_{\chi}}{F_{sbV} \cdot S_{w2}} + \frac{R_{y0}}{F_{sbV} \cdot A_{w}}\right)^{2}} = 0.25$$
$$I_{wf} := \sqrt{\left(\frac{0.7071 \cdot M_{\chi}}{F_{swT} \cdot S_{w1}}\right)^{2} + \left(\frac{0.7071 \cdot M_{\chi}}{F_{swV} \cdot S_{w2}} + \frac{R_{y0}}{F_{swV} \cdot A_{w}}\right)^{2}} = 0.29$$

$$I_{w} := Max (I_{wbm}, I_{wf}) = 0.29$$

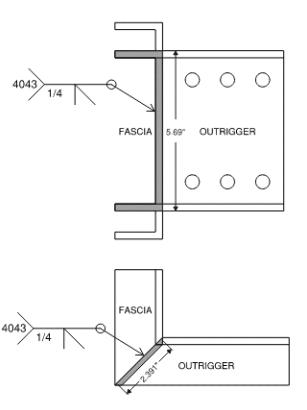
Use 1/4" Bevel Groove Welds Full perimeter of outrigger channel to attach outrigger channel to anchor channel. (4043 Filler)

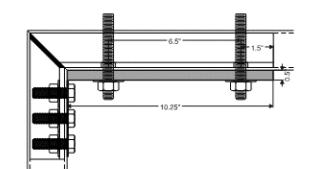
Check Front Reinforcing Plate:

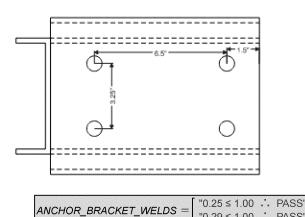
$$t_{Rp} := 0.5 \text{ in}$$

$$P_w := \frac{M_x}{5.1937 \text{ in}} = 1854.06 \text{ lbf}$$

$$M_{wkRp} := P_w \cdot 2.1746 \text{ in} = 4031.83 \text{ lbf} \text{ in}$$


$$S_{yRp} := \left(\left(t_{Rp}\right)^2 \cdot 0.85 \cdot 7.5 \text{ in}\right) \div (6) = 0.27 \text{ in}^3$$


$$f_{wkRp} := \left(M_{wkRp}\right) \div \left(S_{yRp}\right) = 15178.65 \text{ psi}$$


$$F_{bwkRp} := 31800 \text{ psi}$$

$$\frac{U_{Rp} := (T_{wkRp}) + (F_{bwkRp}) = 0.48}{Use 7-1/2" x 10-1/4" 1/2" thk}$$

$$\frac{Rein. Plate}{(6061-T6)}$$

 $\frac{CHOR_BRACKEI_WELDS}{REINFORCING_PLATE} = \begin{bmatrix} "0.29 \le 1.00 & \therefore PASS" \end{bmatrix}$

105 School Creek Trail Luxemburg, WI 54217 (Phone) 920.617.1042 (Fax) 920.617.1100 Project Name:	ered Corner System Puyallup, WA. L2401075 Brick Fascia Present <i>Pipe Sleeve Data:</i> OD := 1.05 in $t_{sleeve} := 0.154$ in	Date Revision $\frac{Washer Data:}{b_{wp} := 4 \text{ in } t_{wp} := 0.375 \text{ in}}$	s: SWP e: 2/26/2025 n:// <u>Substrate Data:</u>
Anchor Diameter: $5/8$ " Anchor Type: F _u := 120 ksi Thru-Bolt	psi	Ω _{tb} := 2.5	$\begin{array}{l} C_{M} \coloneqq 1.0 \\ C_{t} \coloneqq 1.0 \\ C_{g} \coloneqq 1.0 \\ C_{\Delta} \coloneqq 1.0 \\ C_{\Delta g} \coloneqq 1.0 \\ C_{eg} \coloneqq 1.0 \\ C_{di} \coloneqq 1.0 \\ C_{D} \coloneqq 1.15 \end{array}$
Wood Allowables: Shear: $Z_{Im} = 1013.68 \text{ lbf} Z_{IIIm} = 669.4 \text{ lbf} \\ Z_{Is} = 2208.13 \text{ lbf} Z_{IIIS} = 623.63 \text{ lbf} \\ Z_{II} = 517.19 \text{ lbf} Z_{IV} = 745.84 \text{ lbf} \\ Z_{I} := \text{Min} \left(Z_{Im} , Z_{Is} , Z_{II} , Z_{IIIm} , Z_{IIIS} , Z_{IV} \right) = 517.19 \text{ lbf} \\ V_{wood} := Z_{I} \cdot C_{D} \cdot C_{M} \cdot C_{t} \cdot C_{g} \cdot C_{\Delta} \cdot C_{eg} \cdot C_{di} = 594.77 \text{ lbf} \\ R_{\alpha} := \sqrt{T_{\alpha}}^{2} + V_{\alpha}^{2} = 2922.96 \text{ lbf} \\ \alpha := \text{atan} \left(\frac{T_{a}}{V_{a}} \right) = 84.6 \text{ deg} \\ Z_{\alpha} := \frac{W' \cdot V_{wood}}{W' \cdot (\cos(\alpha))^{2} + V_{wood} \cdot (\sin(\alpha))^{2}} = 1370.02 \text{ lbf} \\ \text{Check Bolt Bending:} \\ \left[\left(\begin{array}{c} \text{"Thru-Bolt"} & \text{"Pipe Sleeve"} \\ 401.85 \text{ lbf in} & \text{"Mb"} \\ 16765.99 & \frac{\text{lbf}}{\text{in}^{2}} & \text{"fb"} \\ 69000 & \frac{\text{lbf}}{\text{in}^{2}} & \text{"Fb"} \\ 0.06 \text{ in} & \text{"Space"} \\ 0.24 & \text{"Bend Int."} \\ 0.94 & \text{"Space Int."} \end{array} \right] \left[\begin{array}{c} \text{836.86 lbf in} & \text{"Mbs"} \\ 9809.84 & \frac{\text{lbf}}{\text{in}^{2}} & \text{"fbs"} \\ 2500 & \frac{\text{lbf}}{\text{in}^{2}} & \text{"fbs"} \\ 2500 & \frac{\text{lbf}}{\text{in}^{2}} & \text{"fbs"} \\ 0.44 & \text{"Int."} \end{array} \right] \right] $	Tension: W' = 1386.19 lbf $T_{wood} = "N/A"$ Bolt Allowables: $V_{bolt} := \frac{F_u}{\Omega_{tb}} \cdot A_r = 5739.61 \text{ lb}$ $T_{bolt} := \frac{F_u}{\Omega_{tb}} \cdot A_S = 10848.08 \text{ lbf}$	Required Washer Minimums: $F_{bwp} := 0.75 \cdot F_{ywp} = 27000 \text{ psi}$ $A_{wreq} := \frac{T_a}{C_D \cdot F_c} = 5.95 \text{ in}^2$ $b_{wpmin} := \sqrt{A_{wreq}} = 2.44 \text{ in}$ $d_{wpmin} := b_{wpmin} = 2.44 \text{ in}$ $t_{wpmin} := \sqrt{\frac{T_a \cdot b_{wpmin} \cdot 6}{F_{bwp} \cdot 8 \cdot d_{wpmin}}} = 0$	

Use 1.05" O.D. x 0.154" Thick

SCH. 80 Pipe Sleeves (300 Series SS, Fy = 30 ksi Min.) Use (4) 0.625"-11 HD Galvanized Steel Thru-Bolts (Grade 5, Fy = 92,000 psi, Fu = 120,000 psi) w/ 4" x 4" x 0.375" A36 Steel Backer Plates 2.5" min. edge dist. 2.5" min. end distance. (3) layers of Spruce Pine-Fir (S.G. = 0.42 MIN.) wood blocking or stronger. Wood blocking by others not by Rice Engineering, Inc.

THRU_BOLT_ANCHORS = "PASS"

ENGINEERING

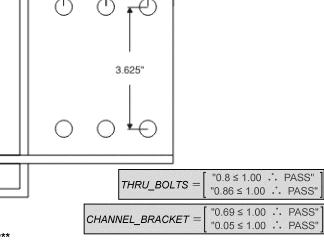
105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

ANCHOR BRACKET (CORNER)

<u>System Data:</u>	Channel Ancho	or Data:			Corner Key Shape:
<i>Proj</i> = 36 in	$b := b_{cb} = 1.69$ in	L ≔ 4.25 in			Channel 🗸
$DL_{dn} =$ 44 psf	CD	5	Welded within 1 incl	n of Mmax	Corner Key Material:
$DL_{up} = 6 \text{ psf}$		E _{alum} = 10100000 psi	Section F	Properties:	6061-T6 V
WL _{Lat} = 10 psf	<u>Outrigger</u>	<u>Reactions:</u>	0000000	<u>roperties.</u>	0001-10
	$R_{yOLC3} = 290.98$ lbf	$R_{yOLC3C} = 552.95$ lbf	I _{x1} =9.19 in⁴	A ₁ = 2.14 in ²	Weld Filler:
$R_{rfdILC3} = 241.55$ lbf	$M_{xOLC3} = 8392.72$ lbf·in	$M_{xOLC3C} = 17806.26 \text{ lbf} \cdot \text{i}$		J ₁ = 0.05 in⁴	4043
$R_{rfdlLC6} = 147.53$ lbf	$R_{yOLC6} = 210.73$ lbf	$R_{yOLC6C} = 407.74$ lbf	$S_{\chi 1} = 3.23 \text{ in}^3$	$Z_{\chi 1} = 3.99 \text{ in}^3$	Outrigger Material:
	<i>M_{xOLC6}</i> =6441.1 lbf·in	$M_{xOLC6C} = 14091.18 \text{ lbf} \cdot \text{i}$	n $S_{y1} = 0.37 \text{ in}^3$	$Z_{y1} = 0.45 \text{ in}^3$	

CALCULATIONS


R_{vO} := 552.95 lbf[¬] $M_{x} = M_{xO} + (R_{yO} \cdot L)$ M := 20156.3 lbf in[¬] *R_{fdl}* := 241.55 lbf[¬] Check Thru-Bolts: **Check Channel Bracket:** $\begin{array}{l} t_{o} := \operatorname{Min}\left(t_{io} \ , \ t_{eo} \right) = 0.125 \ \mathrm{in} \\ n_{tb} := 6 \end{array}$ Fastener Type: Outrigger Channel: 1/2-13 (Cond. CW) $f_{bxOC} := (M_{\chi}) \div (S_{\chi 1}) = 6245 \text{ psi}$ $d_{a} := 1$ in Shear Allowables: *F_{bx}* := 9090.91 psi[¬] V_{bearoutrigger} := 2435.9 lbf[¬] V_{bearchannel} := 2307.69 lbf[¬] $\left|I_{bxOC} := \left(f_{bxOC}\right) \div \left(F_{bx}\right) = 0.69$ V_{Bolt} := 2984 lbf[¬] Rear Fascia Channel: V_{tball} := 2307.69 lbf[¬] $M_{xRFC} := R_{VO} \cdot 5.75$ in = 3179.46 lbf·in $V_{tb} := \sqrt{\left(\frac{R_{yO}}{n_{tb}}\right)^2 + \left(\frac{M_x}{0.5 \cdot n_{tb} \cdot 3.625 \text{ in}}\right)^2} = 1855.74 \text{ lbf}$ $S_{xRFC} := 6.4503 \text{ in}^3$ $f_{bxRFC} := (M_{xRFC}) \div (S_{xRFC}) = 492.92 \text{ psi}$ $I_{bxRFC} := (f_{bxRFC}) \div (F_{bx}) = 0.05$ $F_{syO} := 21000 \text{ psi}$ $F_{suO} := 22800 \text{ psi}$ $n_{sp} := 2$ A_{gv}:=0.45 in²[¬] Use 1/4" thk Anchor Channels $A_{nv} := 0.28 \text{ in}^{27}$ as shown (6061-T6) $R_{nsy} \coloneqq \left(F_{syO} \cdot A_{gv} \cdot n_{sp}\right) \div (1.5) = 12687.5 \text{ lbf}$ $R_{nsr} := (F_{suO} \cdot A_{nv} \cdot n_{sp}) \div (1.95) = 6485.58 \text{ lbf}$ $V_{couple} := (M_x) \div (3.625 \text{ in}) = 5560.36 \text{ lbf}$ V_{tb} V_{couple} I_{tb} := Max = 0.86V_{tball} ' Min (R_{nsv} , R_{nsr} Use (6) 1/2" Dia. S.S. Thru-Bolts 3.625" o.c. vertically 1.25" o.c. horizontally to attach outrigger to corner key channel as shown 300 Series (Fy = 65,000 psi) 3.625"

Rear fascia tube torsion due to outrigger moment check on page 6.12

Sheet No: 6.24 Initials: SWP Date: 2/26/2025 Revision: --/--/----

6005-T5 🖌 Х

Snug tight inside outrigger and rear fascia

Project Name: McDonalds - Puyallup, WA. L2401075

Cantilevered Corner System

RICE ENGINEERING

Description:

Project Name:

36" Cantilevered Corner System

McDonalds - Puyallup, WA. L2401075

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

Check Channel Bracket Welds:

Sheet No: 6.25 Initials: SWP Date: 2/26/2025 Revision: --/--/----

$d_{_{W}} := d = 5.69$ in $M_{\chi} = 20156.3 \text{ lbf} \cdot \text{in}$ $b_w := 2.391$ in $R_{yO} = 552.95$ lbf $t_w := 0.25$ in $A_{w} := t_{w} \cdot \left(2 \cdot b_{w} + d_{w}\right) = 2.62 \text{ in}^{2}$

$$S_{w1} := t_w \cdot \left(b_w \cdot d_w + \frac{{d_w}^2}{6} \right) = 4.75 \text{ in}^3$$
$$S_{w2} := \frac{t_w \cdot \left(2 \cdot b_w + d_w \right)^2}{6} = 4.57 \text{ in}^3$$

$$f_{w} := \sqrt{\left(\frac{0.7071 \cdot M_{\chi}}{S_{w1}}\right)^{2} + \left(\frac{0.7071 \cdot M_{\chi}}{S_{w2}} + \frac{R_{yO}}{A_{w}}\right)^{2}} = 4479.27 \text{ psi}$$

$$F_{tub} := 24000 \text{ psi}^{\neg} \qquad F_{tuw} = 24000 \text{ psi}$$

$$F_{sbT} := \frac{F_{tub}}{1.95} = 12307.69 \text{ psi}$$
 $F_{swT} := \frac{0.6 \cdot F_{tuw}}{1.95} = 7384.62 \text{ ps}$

$$F_{sbV} := \frac{0.6 \cdot F_{tub}}{1.95} = 7384.62 \text{ psi}$$
 $F_{swV} := \frac{0.6 \cdot F_{tuw}}{1.95} = 7384.62 \text{ ps}$

$$I_{wbm} := \sqrt{\left(\frac{0.7071 \cdot M_{\chi}}{F_{sbT} \cdot S_{w1}}\right)^{2} + \left(\frac{0.7071 \cdot M_{\chi}}{F_{sbV} \cdot S_{w2}} + \frac{R_{yO}}{F_{sbV} \cdot A_{w}}\right)^{2}} = 0.51$$
$$I_{wf} := \sqrt{\left(\frac{0.7071 \cdot M_{\chi}}{F_{swT} \cdot S_{w1}}\right)^{2} + \left(\frac{0.7071 \cdot M_{\chi}}{F_{swV} \cdot S_{w2}} + \frac{R_{yO}}{F_{swV} \cdot A_{w}}\right)^{2}} = 0.61$$

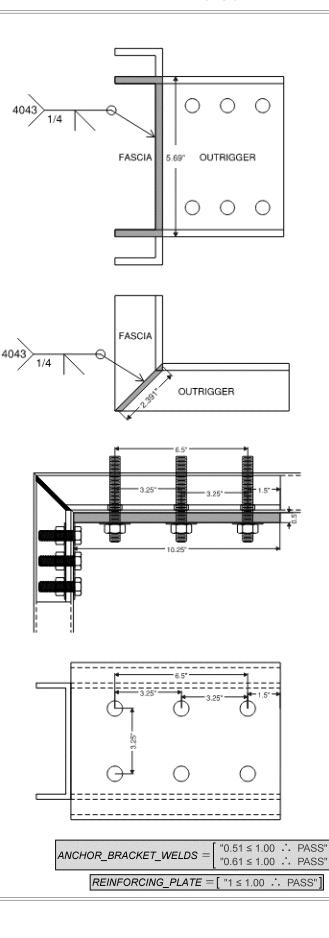
$$I_{w} := Max (I_{wbm}, I_{wf}) = 0.6$$

Use 1/4" Bevel Groove Welds Full perimeter of outrigger channel to attach outrigger channel to anchor channel. (4043 Filler)

Check Front Reinforcing Plate:

$$t_{R\rho} := 0.5 \text{ in}$$

$$P_w := \frac{M_x}{5.1937 \text{ in}} = 3880.91 \text{ lbf}$$


$$M_{wkR\rho} := P_w \cdot 2.1746 \text{ in} = 8439.43 \text{ lbf} \cdot \text{in}$$

$$S_{yR\rho} := \left(\left(t_{R\rho}\right)^2 \cdot 0.85 \cdot 7.5 \text{ in}\right) + (6) = 0.27 \text{ in}$$

$$f_{wkR\rho} := \left(M_{wkR\rho}\right) + \left(S_{yR\rho}\right) = 31771.98 \text{ psi}$$

$$F_{bwkR\rho} := 31800 \text{ psi}$$

$$\boxed{I_{R\rho} := \left(f_{wkR\rho}\right) \div \left(F_{bwkR\rho}\right) = 1}$$

<u>RICE</u> ENGINEERING	Description: 36" Cantilevered Corr	ner System	
105 School Creek Trail Luxemburg, WI 54217 (Phone) 920.617.1042 (Fax) 920.617.1100	Project Name:		
REI Project # R25-01-042	McDonalds - Puyallup	o, WA. L2401075	
Check Thru-Bolt Anchors (Wood	Blocking):	Fascia Present	Was

BOLT :=

Washer I	Data:	Substrate Data:
<i>b_{wp}</i> := 4 in	<i>t_{wp}</i> ≔0.5 in	$t_{\rho} := t_{R\rho}$
<i>d_{wp}</i> ≔ 4 in	F _{ywp} ≔ 36 ksi	e _s :=4.5 in ¬
Pipe Slee	wo Data:	<i>I_m</i> ≔ 4.5 in
i ipe Siee	ve Data.	G := 0.42
OD = 1.0)5 in	<i>F_c</i> ≔ 425 psi

 $t_{sleeve} = 0.15$ in

 $\begin{array}{c|c} \hline \text{Anchor Diameter:} & & & & & \\ \hline \text{Anchor Diameter:} & & & & \\ \hline \text{5/8"} & & & & \\ \hline \text{Anchor Type:} & & & \\ \hline \text{Anchor Type:} & & & \\ \hline \text{Thru-Bolt} & & & & \\ \hline \text{F}_{g} \coloneqq 120 \text{ ksi} & & & & \\ \hline \text{F}_{es} \coloneqq 43000 \text{ psi} & & & \\ \hline \text{C}_{D} \coloneqq 1.15 & & \\ \hline \text{C}_{D} \boxtimes 1.15 & & \\ \hline$

"#4"

"#5"

"#6"

"BOLT #" "X" "Y" "Dia"

"#1" 3 in 1 in *D1* in "#2" 3 in 5 in *D1* in

"#3" 6.25 in 1 in *D1* in

6.25 in 5 in D1 in

9.5 in 1 in D1 in

9.5 in 5 in D1 in

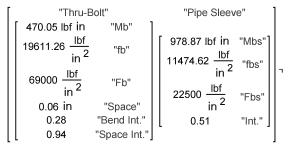
Wood Allowables:

 $e_{x'} := 0$ in

 $e_{v'} := 3$ in

T₂:=6376.78 lbf[¬]

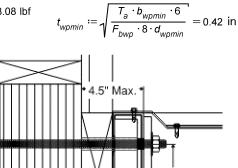
 $V_a = V_{elastic} + \frac{R_{fcll}}{n_o} = 321.98 \text{ lbf}^{\neg}$


Shear:

$$\begin{split} & Z_{Im} = 1013.68 \text{ lbf} \qquad Z_{IIIm} = 669.4 \text{ lbf} \\ & Z_{Is} = 2208.13 \text{ lbf} \qquad Z_{IIIs} = 623.63 \text{ lbf} \\ & Z_{II} = 517.19 \text{ lbf} \qquad Z_{IV} = 745.84 \text{ lbf} \\ & Z_{I} := \text{Min} \left(Z_{Im} , Z_{Is} , Z_{II} , Z_{IIIm} , Z_{IIIs} , Z_{IV} \right) = 517.19 \text{ lbf} \\ & V_{wood} := Z_{I} \cdot C_{D} \cdot C_{M} \cdot C_{I} \cdot C_{g} \cdot C_{\Delta} \cdot C_{eg} \cdot C_{dI} = 594.77 \text{ lbf} \\ & R_{\alpha} := \sqrt{T_{\alpha}^{2} + V_{\alpha}^{2}} = 6384.91 \text{ lbf} \\ & \alpha := \text{atan} \left(\frac{T_{a}}{V_{a}} \right) = 87.11 \text{ deg} \\ & Z_{\alpha} := \frac{W' \cdot V_{wood}}{W' \cdot (\cos(\alpha))^{2} + V_{wood} \cdot (\sin(\alpha))^{2}} = 1381.51 \text{ lbf} \end{split}$$

Eccentricity of Load

Eccentricity of Load


Check Bolt Bending:

Use 1.05" O.D. x 0.154" Thick

SCH. 80 Pipe Sleeves (300 Series SS, Fy = 30 ksi Min.)

Tension:Required Washer Minimums:W' = 1386.19 lbf $F_{bwp} := 0.75 \cdot F_{ywp} = 27000$ psi $T_{wood} = "N/A"$ $A_{wreq} := \frac{T_a}{C_D \cdot F_c} = 13.05$ in²Bolt Allowables: $b_{wprin} := \sqrt{A_{wreq}} = 3.61$ in $V_{bolt} := \frac{F_u}{\Omega_{tb} \cdot \sqrt{3}} \cdot A_r = 5739.61$ lbf $b_{wprin} := \sqrt{A_{wreq}} = 3.61$ in $T_{bolt} := \frac{F_u}{\Omega_{tb}} \cdot A_S = 10848.08$ lbf $t_{wprin} := \sqrt{\frac{T_a \cdot b_{wprin} \cdot 6}{F_a \cdot 8 \cdot d_{wreq}}} = 0.42$

Use (6) 0.625"-11 HD Galvanized Steel Thru-Bolts (Grade 5, Fy = 92,000 psi, Fu = 120,000 psi) w/ 4.00" x 4.00" x 0.500" A36 Steel Backer Plates 2.5" min. edge dist. 2.5" min. end distance. (3) layers of Spruce Pine-Fir (S.G. = 0.42 MIN.) wood blocking or stronger. Wood blocking by others not by Rice Engineering, Inc.

THRU BOLT ANCHORS = "PASS"

Sheet No: 6.26

Initials: SWP

Revision: --/--/----

Date: 2/26/2025

Description: References
 Sheet No:
 R.00

 Initials:
 SWP

 Date:
 2/26/2025

 Revision:
 --/--/---

ENGINEERING 105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100 **REI Project #** R25-01-042

Project Name: McDonalds - Puyallup, WA. L2401075

Load Data

DESIGN AND LOADING

- THE STRUCTURAL DESIGN OF THIS BUILDING WAS BASED ON THE DESIGN CRITERIA:
 - A. BUILDING CODE: 2021 INTERNATIONAL BUILDING CODE
 - D. SNOW:

GROUND SNOW LOAD: 25 PSF

E. WIND:

BASIC WIND SPEED: 98 MPH (3-SECOND GUST ULTIMATE) IMPORTANCE FACTOR: 1.00 BUILDING OCCUPANCY CATEGORY: II WIND EXPOSURE: B PRESSURES PER ASCE7-16

F. SEISMIC:

OCCUPANCY CATEGORY: II IMPORTANCE FACTOR: 1.00 SITE CLASS: D (DEFAULT) SS = 1.254 S1= 0.432

NC Ref

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

Fastener Data

									100						
				STA	INLESS ST	TEL - Alloy	Groups 1, I	2 and 3, Col	ndition GW (
											laterial Thick				
Nominal	D		A(R)							to Equa	l Tensile Ca	pacity of	Maximum	Tensile Loa	id (lbs) for
Fastener	Nominal	A(S)	Thread		Allow ab	le Shear	Allow able Bearing (lbs)			Fastener (in)			Available 3/8" Plate Thickness		
Diameter	Thread	Tensile	Root	Allow able			1/8*	1/8"	1/8"				3/8"	3/8"	3/8"
& Threads	Diameter	Stress Area	Area	Tension	Single	Double	Steel	Aluminum	Aluminum				Steel	Aluminum	Aluminum
par hch	(in)	(in2)	(in2)	(lbs)	(lbs)	(lbs)	A36	6063-T5	6063-T6	A36	6063-T5	6063-T6	A36	6063-T5	6063-T6
#6-32	0.1380	0.0091	0.0078	303	150	300	900	253	345	0.1335	0.2538	0.1943	303	303	303
#8-32	0.1640	0.0140	0.0124	467	239	477	1,070	301	410	0.1733	0.3356	0.2466	467	467	467
#10-24	0.1900	0.0175	0.0151	584	292	583	1,240	348	475	0.1872	0.3410	0.2501	584	584	584
#12-24	0.2160	0.0242	0.0214	805	411	822	1,409	396	540	0.2269	> 3/8*	0.3016	805	734	805
1/4-20	0.2500	0.0318	0.0280	1,061	538	1,076	1,631	458	625	0.2534	> 3/8"	0.3373	1,061	865	1,061
5/18-18	0.3125	0.0524	0.0469	2,097	1,083	2,166	2,039	573	781	0.2867	> 3/8"	> 3/8*	2,097	1,303	1,776
3/8-16	0.3750	0.0775	0.0699	3,100	1,614	3,228	2,447	688	938	0.3181	> 3/8*	> 3/8*	3,100	1,572	2,144
7/16-14	0.4375	0.1063	0.0961	4,252	2,220	4,440	2,855	802	1,094	0.3442	> 3/8"	> 3/8*	4,252	1,873	2,554
1/2-13	0.5000	0.1419	0.1292	5,676	2,984	5,968	3,263	917	1,250	> 3/8*	> 3/8"	> 3/8*	5,642	2,140	2,918
9/16-12	0.5625	0.1819	0.1664	7,278	3,842	7,685	3,670	1,031	1,406	> 3/8*	> 3/8"	> 3/8*	6,444	2,444	3,333
5/8-11	0.6250	0.2260	0.2071	9,040	4,782	9,564	4,078	1,146	1,563	> 3/8"	> 3/8*	> 3/8*	7,148	2,711	3,697
3/4-10	0.7500	0.3345	0.3091	11,372	6,022	12,045	4,894	1,375	1,875	> 3/8*	> 3/8"	> 3/8*	8,612	3,266	4,454
7/8-9	0.8750	0.4617	0.4285	15,583	8,351	16,701	5,709	1,604	2,188	> 3/8*	> 3/8*	> 3/8*	10,158	3,853	5,254
1-8	1.0000	0.6057	0.5630	20,444	10,970	21,940	6,525	1,833	2,500	> 3/8*	> 3/8*	> 3/8*	11,696	4,437	6,050
				STAN	LESS STEE	L - Aloy G	roups 1, 2 a	and 3, Condi	ition CW (Sp	aced Three	ads)				
										l. Carlos and S	Aaterial Thick	and the second			
Advantant.			A 1776										A description of the	Tanalalaa	al (Barry) Same
Nominal	D		A(R)		Allow ab	La Olivana	6 Base	able Bearin	a dika i		l Tensile Cap	+		Tensile Loa 3/8" Plate 1	
Fastener	Nominal	K	Thread	A.H	Allow ap	ve Stiear			212		Fastener (in	9			
Diameter	Thread	Basic Minor	Root	Allow able	.		1/8*	1/8*	1/8"				3/8*	3/8"	3/8"
& Threads	Diameter	Diameter	Area	Tension	Single	Double	Steel	Aluminum			0000 75	0000 70	Steel	Aluminum	Aluminum
per hch	(in)	(in)	(in2)	(lbs)	(bs)	(Ibs)	A36	6063-T5	6063-T6	A36	6063-T5	6063-T6	A36	6063-T5	6063-T6
#6-20	0.1380	0.0990	0.0077	257	148	296	900	253	345	0.1191	0.1695	0.1378	257	257	257
#8-18	0.1640	0.1160	0.0106	352	203	407	1,070	301	410	0.1437	0.1930	0.1567	352	352	352
#10-16	0.1900	0.1350	0.0143	477	275	551	1,240	348	475	0.1528	0.2225	0.1805	477	477	477
#12-14	0.2160	0.1570	0.0194	645	373	745	1,409	396	540	0.1820	0.2610	0.2115	645	645	645
1/4-14	0.2500	0.1850	0.0269	896	517	1,035	1,631	458	625	0.2181	0.2994	0.2379	896	896	896
5/16-12 3/8-12	0.3125	0.2360 0.2990	0.0437 0.0702	1,750 2,809	1,010 1.622	2,020 3,243	2,039 2,447	573 688	781 938	0.2839 > 3/8*	> 3/8* > 3/8*	0.2990 > 3/8*	1,750 2,773	1,681 2.017	1,750 2,751
ə/o-12	0.3730	0.2990	0.0702	2,008	1,022	3,243	₹' dd (000	830	<i>≥</i> 3/0	≥ 3/0	016 ×	2,113	2,017	2,101
Grou	ip 1,2,3-Cor	nd, CW	5	5/8" Dia.	≥ 3/4	" Dia.	For	Diameters <	: 3/4"	Effective	Area (UNC	Threads)	Effective	Area (Spaced	Threads)
segretario per de actual	imate Tensili		100	.000 psi	85	,000 psi		Fr = Fr/SF			π (D-1.226	-		$A(R) = \pi K^2$	/4
	ensile Stress			,333 psi		N/A psi	A Berry who			5 2					
and the second second				000 psi		,750 psi		le Tension =		A(3) =	-π (D-0.974	o/N/ 14		$A(S) = \pi K^2/$	4
	ensile Stress				33			u/(SFx so	decourse of the second						
	le Shear Stri			245 psi		N/A psi	Allowable	Single Shear	=Fv[A(R)]						
Fy (Allowab	le Shear Stra	ass; D>1/4")	23	.094 psi	19	.486 psi									

 Sheet No:
 R.01

 Initials:
 SWP

 Date:
 2/26/2025

 Revision:
 --/--/---

Description: References

Project Name:

McDonalds - Puyallup, WA. L2401075

ENGINEERING

105 School Creek Trail | Luxemburg, WI 54217 (Phone) 920.617.1042 | (Fax) 920.617.1100

REI Project # R25-01-042

Fastener Data

References **Project Name:** McDonalds - Puyallup, WA. L2401075

Description:

 Sheet No:
 R.02

 Initials:
 SWP

 Date:
 2/26/2025

 Revision:
 --/--/---

					SAE Grad	le 5 Steel fa	r Diameters	i up thru 9/1	6" (UNC Th	reads)					
					ASTMA 4	49 Steel for	Diameters	5/8" and Ov	er (UNC Th	reads)					
										Mnimum M	laterial Thick	kness (lbs)			
Nominal	D		A(R)							to Equal	Tensile Ca	pacity of	Maximum	Tensile Loa	id (lbs) for
Fastener	Nominal	A(S)	Thread		Allow ab	de Shear	Allow	able Bearin	g (lbs)		Fastener (in)	Available	3/8" Plate 1	Thickness
Diameter	Thread	Tensile	Root	Allow able			1/8*	1/8"	1/8"				3/8*	3/8*	3/8*
& Threads	Diameter	Stress Area	Area	Tension	Single	Double	Steel	Aluminum	Aluminum				Steel	Aluminum	Aluminum
per Inch	(in)	(in2)	(in2)	(lbs)	(bs)	(bs)	A36	6063-T5	6063-T6	A36	6063-T5	6063-T6	A36	6063-T5	6063-T6
#6-32	0.1380	0.0091	0.0078	363	180	360	900	253	345	0.1602	0.3046	0.2268	363	363	363
#8-32	0.1640	0.0140	0.0124	560	286	573	1,070	301	410	0.2079	> 3/8"	0.2953	560	522	560
#10-24	0.1900	0.0175	0.0151	701	350 493	700 986	1,240	348 396	475	0.2246 0.2594	> 3/8"	0.3001	701	643 734	701
#12-24 1/4-20	0.2160	0.0242	0.0214	967 1,273	493 646	1.291	1,409 1,631	396 458	540 625	0.2594	> 3/8" > 3/8"	0.3619 > 3/8"	967 1.273	734 865	967 1,179
5/16-18	0.2500	0.0518	0.0260	2,517	1.299	2.599	2.039	400 573	781	0.2743	> 3/8"	> 3/8"	2,517	1.303	1,179
3/8-16	0.3750	0.0524	0.0409	3.719	1,255	3.874	2,035	688	938	0.3518	> 3/8"	> 3/8"	3,719	1,503	2,144
7/16-14	0.4375	0.1063	0.0961	5,103	2.664	5,328	2,855	802	1.094	> 3/8"	> 3/8"	> 3/8"	4,937	1,873	2.554
1/2-13	0.5000	0.1419	0.1292	6,811	3.581	7,162	3,263	917	1,250	> 3/8"	> 3/8"	> 3/8"	5.642	2,140	2,918
9/16-12	0.5625	0.1819	0.1664	8,733	4,611	9,222	3,670	1,031	1,406	> 3/8"	> 3/8"	> 3/8"	6,444	2,444	3,333
5/8-11	0.6250	0.2260	0.2071	10,848	5,738	11,477	4,078	1,146	1,563	> 3/8"	> 3/8"	> 3/8"	7,148	2,711	3,697
3/4-10	0.7500	0.3345	0.3091	16,054	8,565	17,130	4,894	1,375	1,875	> 3/8"	> 3/8"	> 3/8"	8,612	3,266	4,454
7/8-9	0.8750	0.4817	0.4285	22,163	11,876	23,753	5,709	1,604	2,188	> 3/8"	> 3/8"	> 3/8"	10,158	3,853	5,254
1-8	1.0000	0.6057	0.5630	29,076	15,601	31,203	6,525	1.833	2,500	> 3/8"	> 3/8"	> 3/8"	11,696	4,437	6,050
							1								
	I	I	1		1	SAEGra	de 5 Steel (Spaced Thr							
						SAE Grat	le 5 Steel (Spaced Thr			laterial Thick	kness (lbs)			
Nominal	D		A(R)			SAE Gra	de 5 Steel (Spaced Thr			laterial Thicl Tensile Caj	kness (lbs)	Maximum	Tensile Loa	ad (ibs) for
Nominal Fastener	D Nominal	к	A(R) Thread		Allow ab		Allow	able Bearin	eads) g (bs)	to Equal		kness (Ibs) pacity of	Available	3/8" Plate 1	Thickness
		K Basic Minor		Allow able	Allow ab				eads)	to Equal	Tensile Ca	kness (Ibs) pacity of		3/8" Plate 1 3/8"	
Fastener Diameter & Threads	Nominal Thread Diameter	Basic Minor Diameter	Thread Root Area	Tension	Single	le Shear Double	Allow 1/8* Steel	able Bearin 1/8" Aluminum	eads) g (lbs) 1/8* Aluminum	to Equal	Tensile Caj Fastener (in	kness (Ibs) pacity of I)	Available 3/8" Steel	3/8" Plate 1 3/8" Aluminum	Thickness 3/8* Aluminum
Fastener Diameter & Threads per Inch	Nominal Thread Diameter (in)	Basic Minor Diameter (in)	Thread Root Area (in2)	Tension (Ibs)	Single (bs)	le Shear Double (Ibs)	Allow 1/8* Steel A36	able Bearin 1/8" Aluminum 6063-T5	eads) 2 (lbs) 1/8" Aluminum 6063-T6	to Equal I A36	Tensile Cap Fastener (in 6063-T5	kness (lbs) pacity of)) 6063-T6	Available 3/8" Steel A36	3/8" Plate 1 3/8" Aluminum 6063-T5	Thickness 3/8" Aluminum 6063-T6
Fastener Diameter & Threads per Inch #6-20	Nominal Thread Diameter (in) 0.1380	Basic Minor Diameter (in) 0.0990	Thread Root Area (in2) 0.0077	Tension (Ibs) 308	Single (lbs) 178	le Shear Double (Ibs) 356	Allow 1/8* Steel A36 900	able Bearin 1/8" Aluminum 6063-T5 253	eads) (lbs) 1/8" Aluminum 6063-T6 345	to Equal A36 0.1358	Tensile Ca Fastener (in 6063-T5 0.1907	kness (lbs) pacity of 1) 6063-T6 0.1543	Available 3/8* Steel A36 308	3/8" Plate 1 3/8" Aluminum 6063-T5 308	Thickness 3/8* Aluminum 6063-T6 308
Fastener Diameter & Threads per Inch #6-20 #8-18	Nominal Thread Diameter (in) 0.1380 0.1640	Basic Minor Diameter (in) 0.0990 0.1160	Thread Root Area (in2) 0.0077 0.0106	Tension (lbs) 308 423	Single (Ibs) 178 244	le Shear Double (Ibs) 356 488	Allow 1/8* Steel A36 900 1,070	able Bearin 1/8" Aluminum 6063-T5 253 301	eads) 1/8" Aluminum 6063-T6 345 410	to Equal A36 0.1358 0.1569	Tensile Ca Fastener (in 6063-T5 0.1907 0.2175	kness (lbs) pacity of 1) 6063-T6 0.1543 0.1758	Available 3/8* Steel A36 308 423	3/8" Plate 1 3/8" Aluminum 6063-T5 308 423	Thickness 3/8* Aluminum 6063-T6 308 423
Fastener Diameter & Threads per Inch #6-20 #8-18 #10-16	Nominal Thread Diameter (in) 0.1380 0.1640 0.1900	Basic Minor Diameter (in) 0.0990 0.1160 0.1350	Thread Root Area (in2) 0.0077 0.0106 0.0143	Tension (lbs) 308 423 573	Single (lbs) 178 244 331	le Shear Double (lbs) 356 488 661	Allow 1/8* Steel A36 900 1,070 1,240	able Bearin 1/8" Aluminum 6063-T5 253 301 348	eeds) 1/8" Aluminum 6063-T6 345 410 475	to Equal A36 0.1358 0.1569 0.1834	Tensile Caj Fastener (in 6063-T5 0.1907 0.2175 0.2517	kness (lbs) pacity of)) 6063-T6 0.1543 0.1758 0.2028	Available 3/8* Steel A36 308 423 573	3/8" Plate 1 3/8" Aluminum 8063-T5 308 423 573	Thickness 3/8* Aluminum 6063-T6 308 423 573
Fastener Diameter & Threads per Inch #6-20 #8-18 #10-16 #12-14	Nominal Thread Diameter (in) 0.1380 0.1640 0.1900 0.2160	Basic Minor Diameter (in) 0.0990 0.1160 0.1350 0.1570	Thread Root Area (in2) 0.0077 0.0106 0.0143 0.0194	Tension (lbs) 308 423 573 774	Single (lbs) 178 244 331 447	le Shear Double (Ibs) 356 488 661 894	Allow 1/8* Steel A36 900 1,070 1,240 1,409	able Bearin 1/8" Aluminum 6063-T5 253 301 348 396	ads) (lbs) 1/8" Aluminum 6063-T6 345 410 475 540	to Equal A36 0.1358 0.1569 0.1834 0.2182	Tensile Caj Fastener (in 6063-T5 0.1907 0.2175 0.2517 0.2995	kness (lbs) pacity of)) 6063-T6 0.1543 0.1543 0.1758 0.2028 0.2380	Available 3/8" Steel A36 308 423 573 774	3/8" Plate 1 3/8" Aluminum 6063-T5 308 423 573 774	Thickness 3/8* Aluminum 6063-T6 308 423 573 573 774
Fastener Diameter & Threads per Inch #6-20 #8-18 #10-16 #12-14 1/4-14	Nominal Thread Diameter (in) 0.1380 0.1640 0.1900 0.2160 0.2500	Basic Minor Diameter (in) 0.0990 0.1160 0.1350 0.1570 0.1850	Thread Root Area (in2) 0.0077 0.0106 0.0143 0.0194 0.0269	Tension (lbs) 308 423 573 774 1,075	Single (lbs) 178 244 331 447 621	le Shear (lbs) 356 488 661 894 1,242	Allow 1/8* Steel A36 900 1,070 1,240 1,409 1,631	able Bearin 1/8" Aluminum 6063-T5 253 301 348 396 458	a (lbs) 1/8" Aluminum 6063-T6 345 410 475 540 625	to Equal A36 0.1358 0.1569 0.1834 0.2182 0.2617	Tensile Caj Fastener (in 6063-T5 0.1907 0.2175 0.2517 0.2995 0.3593	kness (lbs) pacity of) 6063-T6 0.1543 0.1758 0.2028 0.2380 0.2696	Availabk 3/8* Steel A36 308 423 573 774 1,075	3/8" Plate 1 3/8" Aluminum 6063-T5 308 423 573 774 1,075	Thickness 3/8* Aluminum 6063-T6 308 423 573 573 774 1,075
Fastener Diameter & Threads per Inch #6-20 #8-18 #10-16 #12-14	Nominal Thread Diameter (in) 0.1380 0.1640 0.1900 0.2160	Basic Minor Diameter (in) 0.0990 0.1160 0.1350 0.1570	Thread Root Area (in2) 0.0077 0.0106 0.0143 0.0194	Tension (lbs) 308 423 573 774	Single (lbs) 178 244 331 447	le Shear Double (Ibs) 356 488 661 894	Allow 1/8* Steel A36 900 1,070 1,240 1,409	able Bearin 1/8" Aluminum 6063-T5 253 301 348 396	ads) (lbs) 1/8" Aluminum 6063-T6 345 410 475 540	to Equal A36 0.1358 0.1569 0.1834 0.2182	Tensile Caj Fastener (in 6063-T5 0.1907 0.2175 0.2517 0.2995	kness (lbs) pacity of)) 6063-T6 0.1543 0.1543 0.1758 0.2028 0.2380	Available 3/8" Steel A36 308 423 573 774	3/8" Plate 1 3/8" Aluminum 6063-T5 308 423 573 774	Thickness 3/8" Aluminum 6063-T6 308 423 573 573 774
Fastener Diameter & Threads per Inch #6-20 #8-18 #10-16 #12-14 1/4-14 5/16-12	Nominal Thread Diameter (in) 0.1380 0.1640 0.1900 0.2160 0.2500 0.3125	Basic Minor Diameter (in) 0.0990 0.1160 0.1350 0.1570 0.1850 0.2360	Thread Root Area (in2) 0.0077 0.0106 0.0143 0.0194 0.0269 0.0437	Tension (lbs) 308 423 573 774 1,075 2,100	Single (lbs) 178 244 331 447 621 1,212	le Shear Double (lbs) 356 488 661 894 1,242 2,425	Allow 1/8* Steel A36 900 1,070 1,240 1,409 1,631 2,039	able Bearin 1/8" Aluminum 6063-T5 253 301 348 396 458 573	aads) 1/8" Aluminum 8063-T6 345 410 475 410 475 625 781	to Equal A36 0.1358 0.1569 0.1834 0.2182 0.2617 0.3407	Tensile Ca Fastener (in 6063-T5 0.1907 0.2175 0.2517 0.2995 0.3593 > 3/8"	kness (lbs) pacity of 1) 6063-T6 0.1543 0.1758 0.2028 0.2028 0.2696 0.3430	Availabk 3/8* Steel A36 308 423 573 774 1,075 2,100	3/8" Pate 1 3/8" Aluminum 6063-T5 308 423 573 774 1,075 1,681	Thickness 3/8* Aluminum 6063-T6 308 423 573 573 573 774 1,075 2,100
Fastener Diameter & Threads per Inch #6-20 #8-18 #10-16 #12-14 1/4-14 5/16-12	Nominal Thread Diameter (in) 0.1380 0.1640 0.1900 0.2160 0.2500 0.3125	Basic Minor Diarneter (in) 0.0990 0.1160 0.1350 0.1570 0.1570 0.2360 0.2360 0.2990	Thread Root Area (in2) 0.0077 0.0106 0.0143 0.0194 0.0269 0.0437	Tension (lbs) 308 423 573 774 1,075 2,100 3,370	Single (Ibs) 178 244 331 447 621 1,212 1,946	le Shear Double (lbs) 356 488 661 894 1,242 2,425	Allow 1/8* Steel A36 900 1,070 1,240 1,631 2,039 2,447	able Bearin 1/8" Aluminum 6063-T5 253 301 348 396 458 573	ads) 1/8" Aluminum 8063-45 410 475 540 625 781 938	to Equal A36 0.1358 0.1569 0.1834 0.2182 0.2617 0.3407 > 3/8"	Tensile Ca Fastener (in 6063-T5 0.1907 0.2175 0.2517 0.2995 0.3593 > 3/8"	kness (lbs) pacity of)) 6063-T6 0.1543 0.2028 0.2028 0.2038 0.2038 0.2038 0.2038 0.2380 0.2430 > 3/8"	Available 3/8* Steel A36 308 423 573 774 1,075 2,100 2,773	3/8" Pate 1 3/8" Aluminum 6063-T5 308 423 573 774 1,075 1,681	Thickness 3/8* Aluminum 6063-T6 308 423 573 774 1,075 2,100 2,751
Fastener Diameter & Threads per Inch #6-20 #8-18 #10-16 #12-14 1/4-14 5/16-12 3/8-12	Nominal Thread Diameter (in) 0.1380 0.1640 0.1900 0.2160 0.2500 0.3125	Basic Minor Diameter (in) 0.0990 0.1160 0.1350 0.1350 0.1850 0.2360 0.2990	Thread Root Area (in2) 0.0077 0.0106 0.0143 0.0194 0.0269 0.0437 0.0702 SAE Grade	Tension (lbs) 308 423 573 774 1,075 2,100 3,370	Single (lbs) 178 244 331 447 621 1.212 1.946 ASTMA4	le Shear Double (Ibs) 356 488 661 894 1,242 2,425 3,892	Allow 1/8* Steel A36 900 1,070 1,240 1,631 2,039 2,447	able Bearin 1/8" Aluminum 6063-T5 253 301 348 396 458 573 688	ads) 1/8" Aluminum 8063-45 410 475 540 625 781 938	to Equal A36 0.1358 0.1669 0.1834 0.2182 0.2617 0.3407 > 3/8" Effective	Tensile Ca Fastener (in 6063-T5 0.1907 0.2175 0.2517 0.2995 0.3593 > 3/8" > 3/8"	kness (lbs) pacity of)) 6063-T6 0.1543 0.1558 0.2028 0.2080 0.2380 0.2380 0.2380 0.2380 0.3430 > 3/8"	Available 3/8* Steel A36 308 423 573 774 1,075 2,100 2,773	3/8" Plate 1 3/8" Aluminum 6063-15 308 423 573 774 1,075 1,681 2,017	Bickness 3/8* Aluminum 6063-T6 308 423 573 774 1,075 2,100 2,751
Fastener Diameter & Threads per Inch #6-20 #8-18 #10-16 #12-14 1/4-14 5/16-12 3/8-12 Fu (Min. Utili	Nominal Thread Diameter (in) 0.1380 0.1640 0.1900 0.2160 0.2500 0.3125 0.3750	Basic Minor Diameter (in) 0.0990 0.1160 0.1350 0.1350 0.1350 0.1350 0.1350 0.2360 0.2990	Thread Root Area (in2) 0.0077 0.0106 0.0143 0.0194 0.0269 0.0437 0.0702 SAE Grade 120	Tension (lbs) 308 423 573 774 1,075 2,100 3,370 5 (\$ 9/16")	Single (lbs) 178 244 331 447 621 1.212 1.946 ASTMA4	le Shear Double (lbs) 356 468 661 894 1,242 2,425 3,892 3,892 49 (≥ 5/8*)	Allow 1/8* Steel A36 900 1,070 1,240 1,409 1,631 2,039 2,447 Fc	able Bearing 1/8" Aluminum 6063-T5 253 301 348 396 458 573 688 r All Diamet	ads) 1/8" Aluminum 606345 345 410 475 540 625 781 938 ers	to Equal A36 0.1358 0.1569 0.1834 0.2182 0.2617 0.3407 > 3/6" Effective A(R) =	Tensile Car Fastener (in 6063-T5 0.1907 0.2175 0.2517 0.2985 0.3593 > 3/8" > 3/8" > 3/8"	kness (lbs) pacity of)) 6063-T6 0.1543 0.1758 0.2028 0.2088 0.2088 0.2088 0.2088 0.2089 0.3430 > 3/8" Threads) 99(N) ² / 4	Available 3/8* Steel A36 308 423 573 774 1,075 2,100 2,773	3/8" Plate 1 3/8" Aluminum 6063-15 308 423 573 774 1,075 1,681 2,017 Area (Spaced	Thickness 3/8 Aluminum 6063-T6 308 423 573 774 1,075 2,100 2,751 Threads) /4
Fastener Diameter & Threads per Inch #6-20 #8-18 #10-16 #12-14 1/4-14 5/16-12 3/8-12 Fu (Min. Utili Fr (Allow: Tr	Nominal Thread Diameter (in) 0.1380 0.1640 0.1900 0.2160 0.2500 0.3125 0.3750	Basic Minor Diameter (in) 0.0990 0.1160 0.1350 0.1350 0.1350 0.1350 0.1350 0.2360 0.2990 \$ e Strength) s, Ds1/4")	Thread Root Area (in2) 0.0176 0.0106 0.0143 0.0184 0.0269 0.0437 0.0702 SAE Grade 1 120 40	Tension (lbs) 308 423 573 774 1,075 2,100 3,370 5 (\$ 9/16") ,000 psi	Single (Ibs) 178 244 331 447 621 1,212 1,946 ASTMA4 1	le Shear Double (Bs) 356 488 661 894 1,242 2,425 3,892 49 (≥ 5/8") 20,000 psi N/A	Allow 1/8* Steel A36 900 1,070 1,240 1,409 1,631 2,039 2,447 Fc Allow ab	able Bearin 1/8" Aluminum 6063-T5 253 301 348 396 458 573 688 or All Diamete F _T = F _U /SF le Tension =	ads) 1/8" Aluminum 606345 345 410 475 540 625 781 938 ers Fr[A(S)]	to Equal A36 0.1358 0.1569 0.1834 0.2182 0.2617 0.3407 > 3/6" Effective A(R) =	Tensile Car Fastener (in 6063-T5 0.1907 0.2175 0.2517 0.2985 0.3593 > 3/8" Area (UNC π (D-1.226	kness (lbs) pacity of)) 6063-T6 0.1543 0.1758 0.2028 0.2088 0.2088 0.2088 0.2088 0.2089 0.3430 > 3/8" Threads) 99(N) ² / 4	Available 3/8* Steel A36 308 423 573 774 1,075 2,100 2,773	 3/8" Plate 1 3/8" Aluminum 6063-T5 308 423 573 774 1,075 1,661 2,017 Area (Spaced A(R) = nK²/ 	Thickness 3/8* Aluminum 6063-T6 308 423 573 774 1,075 2,100 2,751 Threads) /4
Fastener Diameter & Threads per Inch #6-20 #8-18 #10-16 #12-14 1/4-14 5/16-12 3/8-12 Fu (Min. Ulti Ft (Allow. Tr Ft (Allow. Tr	Nominal Thread Diameter (in) 0.1380 0.1640 0.1900 0.2160 0.2500 0.3125 0.3750 imate Tensil inste Tensil	Basic Minor Diameter (in) 0.0990 0.1160 0.1350 0.1570 0.1850 0.2360 0.2990 0.2990 s, Ds1/4") s, D> 1/4")	Thread Root Area (in2) 0.0076 0.0106 0.0143 0.0194 0.0269 0.0437 0.0702 SAE Grade 120 40 48	Tension (lbs) 308 423 573 774 1,075 2,100 3,370 5 (≤ 9/16°) ,000 psi ,000 psi	Single (Ibs) 178 244 331 447 621 1,212 1,946 ASTMA4 1	le Shear Double (Ibs) 356 488 661 894 1,242 2,425 3,892 49 (≥ 5/8") 20,000 psi	Allow 1/8* Steel A36 900 1,070 1,240 1,631 2,039 2,447 Fc Allowab F _V = F	able Bearing 1/8" Aluminum 6063-T5 253 301 348 396 458 573 688 r All Diamete F _T = F _b /SF	a (bs) 1/8" Aluminum 606345 345 410 475 540 625 781 938 ers Fr[A(S)] rt (3))	to Equal A36 0.1358 0.1569 0.1834 0.2182 0.2617 0.3407 > 3/6" Effective A(R) =	Tensile Car Fastener (in 6063-T5 0.1907 0.2175 0.2517 0.2985 0.3593 > 3/8" Area (UNC π (D-1.226	kness (lbs) pacity of)) 6063-T6 0.1543 0.1758 0.2028 0.2088 0.2088 0.2088 0.2088 0.2089 0.3430 > 3/8" Threads) 99(N) ² / 4	Available 3/8* Steel A36 308 423 573 774 1,075 2,100 2,773	 3/8" Plate 1 3/8" Aluminum 6063-T5 308 423 573 774 1,075 1,661 2,017 Area (Spaced A(R) = nK²/ 	Thickness 3/8* Aluminum 6063-T6 308 423 573 774 1,075 2,100 2,751 Threads) /4