City of Puyallup Building REVIEWED FOR COMPLIANCE

SKinnear 06/30/2025 1:56:54 PM

PRCTI20250870

Calculations required to be provided by the Permittee on site for all Inspections

City of Puyallup Development & Permitting Services ISSUED PERMIT						
Building Planning						
Engineering	Public Works					
Fire	Traffic					

STRUCTURAL CALCULATIONS

FORE

SOUTH HILL CENTER

PLANET FITNESS

T. I.

4102 S. MERIDIANI

PUYALUP, WA 98373

ARCHITECT
TREASON MAIN ARCHITECTURE

Planet Frenen

DATE

Cover

Wholesale

1.00

Importance Factor, Is

Criteria Sheet

Codes

Structural IBC 2021

Loading ASCE 7-16

Loading ASCE /-10

Wood: NDS 2018 / SDPWS 2021

Steel: AISC 360-16 Concrete: ACI 318-19 Masonry: TMS 402/602-16

Project Location

Street & Number 4102 s meridian

City: puyallup ZIP: 98373

State: WA

459 ft

Latitude: 47.1519 N Longitude: -122.2952 W

Ground Elevation

Occupancy Category

Risk Category:

ASCE 7 Table 1.5-1

Seismic Load Summary:

Analysis Procedure: Equivalent Lateral Force Procedure

Lateral System: Intermediate Precast Shear Walls

Story Information

Stories Above Grade (Including Mezzanine Levels)

South Hill Map data @2025

Horizontal and Vertical Irregularities:

Is the building a "Regular Structure"? (No horizontal or vertical irregularities)

Yes

Wind Load Summary:

V= 98 K_{ZT}= 1.00 Exposure = B

Dead Loads:

Dead Loads:						
Roof			Floor	NA		
Roofing	3	psf	Finish Floor		psf	
Decking	2	psf	3/4" Sheathing		psf	
Framing	2.5	psf	Joists @ 16" oc		psf	
Misc./Mech.	1	psf	Misc./Mech.		psf	
Ceiling Finish	2.5	psf	Ceiling Finish			
		psf		0	psf	
	11.0	psf	Use		psf	
Use	10	psf	Add'l Seismic Weight		psf	
Add'l Seismic Weight	5	psf	Seismic Weight	0	psf	
Seismic Weight	15	psf				

Live Loads:

Roof 20 psf Floor 40 psf

Snow Loading Criteria:

Ground Snow, pg	25 psf	Flat Roof Snow Load, p _f	25.0 psf	
Exposure Factor, C _e	1.00	Sloped Roof Snow Load, p _s	25.0 psf	
Thermal Factor, Ct	1.00	Slope Factor, C _s	1.00	

Soils:

						_
Allowable Bearing	1500	psf	Active	55/35	pcf (Restrained/Unrestrained)	
Sliding, μ	0.3		Seismic Surcharge	8H		
Passive	250	pcf				

Soils Report Provided? No To be approved by the authority having jurisdiction, per 11.8.2 exception.

Site Specific Ground Motion Hazard Analysis Provided? No

anet Fitness	DATE	4/30/2025
riteria	PROJ.#	
	DESIGN	ENG
	SHEET	1

ASCE 7-10 Seisiffic Arialysis	Equivalen	Lateral Force Frocedure	 1115524
Seismic Force Resisting System Per	System	Bearing Wall Systems	
Table 12.2-1	Туре:	Intermediate Precast Shear Walls	

Seismic Design Cat.	D
Risk Category	II .
Site Class	D (Default)
Diaphragm Flexibility	Flexible

7	Section 12.8.1.3	
I, II, or III, or IV per Table 1.5-1	1. Regular Structure	Yes
Assumed default soil properties, per 11.4.3.	2. ≤ 5 Stories above grade	Yes
	3. T ≤ 0.5s	Yes
-	4. ρ = 1.0	Yes
0 yr, Latitude & Longitude lookup	5. Not Site Class E or F	Yes
0 yr, Latitude & Longitude lookup	6. Risk Category I or II	Yes

If all items above are met, $S_{\rm DS}$ may be taken as 1.0, but not less than 0.7*(Calculated S_{DS})

		UJ
$T_a = C_t h_n^x$	Eq. 12.8.7	
$S_{MS} = F_a S_S$ $S_{M1} = F_v S_1$ $S_{DS} = \frac{2}{3} S_{MS}$ $S_{D1} = \frac{2}{3} S_{M1}$	Eq. 11.4-1 Eq. 11.4-2 Eq. 11.4-3 Eq. 11.4-4	
$C_S = \frac{S_{DS}}{(R/I_e)}$ $C_S = \frac{S_{D1}}{T(R/I_e)}$ $C_S = \frac{S_{D1}T_L}{T^2(R/I_e)}$ $C_S \ge 0.044S_{DS}I_e$ $C_S \ge 0.01$	Eq. 12.8-2 Eq. 12.8-3 Eq. 12.8-4 Eq. 12.8-5 Eq. 12.8-5	
05 = 0.01	14. 12.0 3	

-3 —	•
$C_{VX} = w_x h_x^k / \sum_{i=1}^n w_x h_i^k$	Eq. 12.8-12
$F_{px} = \frac{\sum_{i=x}^{n} F_i}{\sum_{i=x}^{n} w_i} w_{px}$ $F_{px} \ge 0.2S_{DS} I_e w_{px}$	Eq. 12.10-1
$F_{px} \geq 0.2 S_{DS} I_e w_{px}$	Eq. 12.10-2

DATE

PROJ. #

DESIGN

SHEET

4/30/2025

ENG

Diaphragn	1 Flexibility	Flexible		
	4.004	200/ 1 5		toda 8 I zastoda la alema
S _s	1.261 g			itude & Longitude lookup
S ₁	0.435 g	2% in 5	ou yr, Lat	itude & Longitude lookup
R	4.00			
Cd	4.0			
Ω,	2			
l _e	1.00	Table 1	.5-2	
h _n	25.0 ft			
Ct	0.02	Table 1	2.8-2	
×	0.75	Table 1	2.8-2	Building Period Pe
T _a	0.22 se			Alternate Analysis
T	0.22 se	c Eq. 12.8	3-7	T (sec)
To	0.16 se	С		
T _s	0.81 se	С		Per Geotech Repo
Τι	6.00 se	С		F _a
F _a	1.20	Table 1	1.4-1	F _v
F _v	1.87	Table 1	1.4-2	
S _{MS}	1.51 g	Eq. 11.4	⊢1	
S _{M1}	1.22 g	Eq. 11.4	-2	
S _{DS}	1.000 g	Eq. 11.4	-3	
S _{D1}	0.811 g	Eq. 11.4	-4	
	0.250 Cd	ntrols Eq. 12.8	3-2	
C _s	0.907	Eq. 12.8	3-3 need	not exceed, $T \le T_L$
	0.010	Eq. 12.8	8-5 or 12.	8-6 minimum
C₅, design	0.250			
Bldg. Weight	860.0 k			
V = C _s W	215.0 k	Eq. 12.8	3-1, Stren	gth Level Base Shear
V = C _{Sasd} W	150.5 k	Ea. 12.8	3-1 ASD E	Base Shear

Vertical Distri	bution	ASD	ρ=	1	k=	1.000						
Level	h _x (ft)	W _x (k)	h _x ^k (ft)	W _x h _x ^k	:	Story Shea ASD	r		Forc	Diaphragn e (p not inc		
20101	., , , , ,			x.x	C _{vx} (%)	F _x (k)	SV (k)	F _{px,calc}	F _{px,min}	F _{px,max}	F _{px,design}	γ=F _{px} /F
	-											
-1	25.0	860	25.0	21500	1.000	150.5	150.5	150.5	120.4	240.8	150.5	1.00
Σ		860.0		21500		150.5						

nic Criteria		_

Wind Design - MWFRS ASCE 7 Chapter 27 - Directional Procedure

Design	ASD	
Wind Coefficier	nts	
Exposure	В	
V=	98	mph
K _d =	0.85	Table 26.6-1
K _h =	0.67	Table 27.3-1
K _e =	0.98	Table 26.9-1
G=	0.85	26.9.4

Transverse Wind Pressures

L/B = 0.70 h/L = 0.17

Pressure Coefficients from Figure 27.4-1:

Bldg Face	C _p
Windward Wall	0.8
Leeward Wall	-0.50
Windward Roof	-0.9 / -0.18
Leeward Roof	-0.30

Location and Building Dimensions

Calculate Kzt?	Yes	
Kzt	1.00	
Roof Type	Monoslo	ре
Roof Slope - Transverse Dir	0	degrees
Roof Slope - Long Dir	0	degrees
Ground to top of roof	25	ft
Bot of roof to top of roof	0	ft
Mean Roof Height, h	25	ft
Short Plan Dimension	150	ft
Long Plan Dimension	215	ft
Parapet ?	Yes	
Ground to top of parapet	27	ft
Average Parapet Height	1	ft

Velocity Pressure at Mean	13.7	psf
Roof Height, q _h =	15.7	рзі

Wall Pressures (Unfactored):

ASD

Ht	K _z	q _z	P _{ww walls}	P _{iwwalls}	P _{walls} (psf)
0-15	0.57	11.72	7.97	5.81	9.6
15-20	0.62	12.74	8.67	5.81	9.6
20-25	0.66	13.57	9.22	5.81	9.6
25-30	0.7	14.39	9.78	5.81	9.6
30-40	0.76	15.62	10.62	5.81	9.9
41-50	0.81	16.65	11.32	5.81	10.3
51-60	0.85	17.47	11.88	5.81	10.6
61-70	0.89	18.29	12.44	5.81	10.9
71-80	0.93	19.11	13.00	5.81	11.3
81-90	0.96	19.73	13.42	5.81	11.5
91-100	0.99	20.35	13.84	5.81	11.8

ASD	Roof Pressures (Unfactored)		
Horiz Proj	Leeward	Windward	
(psf)	Leeward	Min	Max
4.80	-35	-10.5	-21

Longitudinal Wind Pressures

L/B = 1.43

h/L = 0.12

Pressure Coefficients from Figure 27.4-1:

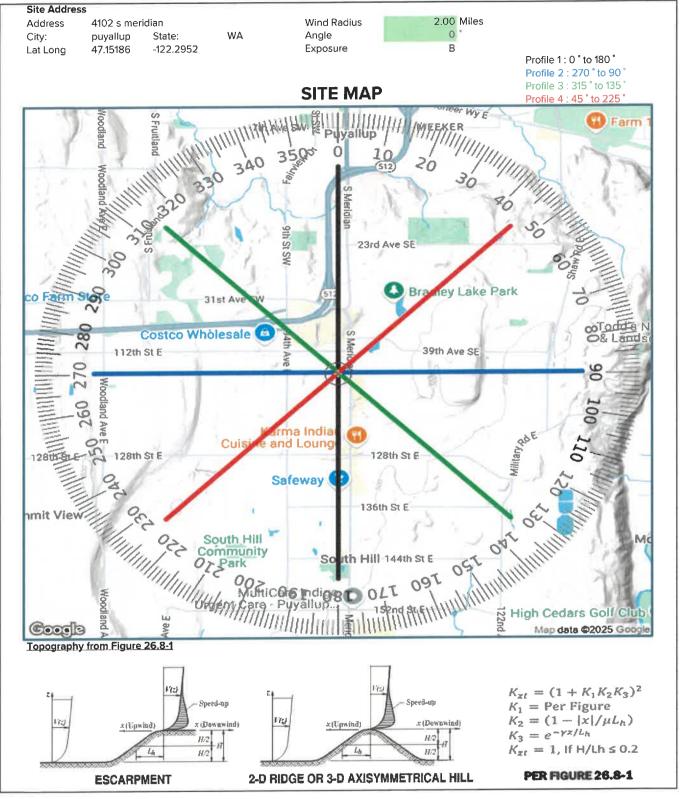
Bldg Face	C _p
Windward Wall	0.8
Leeward Wall	-0.41
Windward Roof	-0.9 / -0.18
Leeward Roof	-0.30

ASD

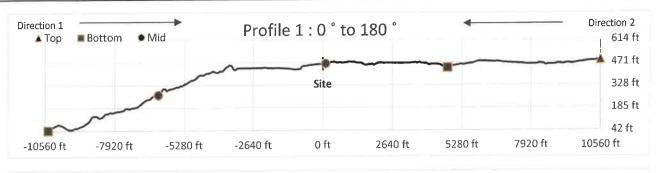
Ht	Kz	qz	P _{ww walls}	P _{lwwalls}	P _{walls} (psf)
0-15	0.57	11.72	7.97	4.80	9.60
15-20	0.62	12.74	8.67	4.80	9.60
20-25	0.66	13.57	9.22	4.80	9.60
25-30	0.7	14.39	9.78	4.80	9.60
30-40	0.76	15.62	10.62	4.80	9.60
41-50	0.81	16.65	11.32	4.80	9.6
51-60	0.85	17.47	11.88	4.80	10.0
61-70	0.89	18.29	12.44	4.80	10.3
71-80	0.93	19.11	13.00	4.80	10.6
81-90	0.96	19.73	13.42	4.80	10.9
91-100	0.99	20.35	13.84	4.80	11.1

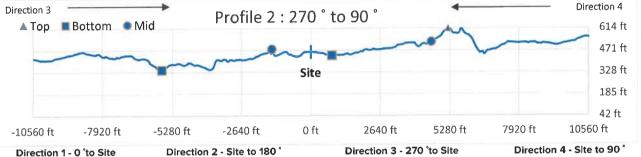
Roof Pressures	(Unfactored)
----------------	--------------

ASD


Winc	lward	Leeward	Horiz Proj
Max	Min	Leeward	(psf)
-2.1	-10.5	-3.5	4.80

ind Criteria			


DATE	4/30/2025
PROJ.#	
DESIGN	ENG
SHEET	3



Planet Fitness	DATE	4/30/2025
Kzt Calculations	PROJ. #	
	DESIGN	ENG
	SHEET	4

Site Conditions (26.8.1)

1. Unubstructed	Yes	1
2. Isolated	Yes	ı
3. Upper Half Hill	Yes	1
4. H/Lh ≥ 0.2	No	Kzt=1
5. H≥ 60'	Yes	1

Site Conditions (26.8.1)

1. Unubstructed	Yes	ı
2. Isolated	Yes	1
3. Upper Half Hill	No	Kzt=1
4. H/Lh ≥ 0.2	No	Kzt=1
5. H≥ 60'	Yes	ļ

Site Conditions (26.8.1)

1. Unubstructed	Yes	1
2. Isolated	Yes	
3. Upper Half Hill	No	Kzt=1
4. H/Lh ≥ 0.2	No	Kzt=1
5. H≥ 60'	Yes]

1. Unubstructed	Yes	
2. Isolated	Yes	
3. Upper Half Hill	No	Kzt=1
4. H/Lh ≥ 0.2	Yes	
5. H≥ 60′	Yes	l

Site Conditions (26.8.1)

Terrain Data

Terrain	Ridge
Top of Hill Dist.	10560
Bott. of Hill Dist.	-10454
L @ H/2	-6262
Site	upwind
Top of Hill Elev.	487
Bott. of Hill Elev.	42
Site Elev.	459.3
Site Dist.	0
H/2	264

Terrain Data

Terrain	Ridge
Top of Hill Dist.	10560
Bott. of Hill Dist.	4723
L @ H/2	106
Site	downwnd
Top of Hill Elev.	487
Bott. of Hill Elev.	436
Site Elev.	459.3
Site Dist.	0
H/2	461

Terrain Data

Terrain	Ridge
Top of Hill Dist.	5200
Bott. of Hill Dist.	-5678
L @ H/2	-1486
Site	upwind
Top of Hill Elev.	614
Bott. of Hill Elev.	341
Site Elev.	459.3
Site Dist.	0
H/2	477

Terrain Data

Terrain	Ridge
Top of Hill Dist.	5200
Bott. of Hill Dist.	796
L @ H/2	4564
Site	downwnd
Top of Hill Elev.	614
Bott. of Hill Elev.	437
Site Elev.	459.3
Site Dist.	0
H/2	526

Kzt Calculations

H=	445
Lh≂	16822
χ=	10560
z=	25
μ=	1.5
γ=	3
K1 value =	1.3
K1=	0.03
K2=	0.58
k3=	1.00
H/Lh =	0.03
Kzt =	1.00

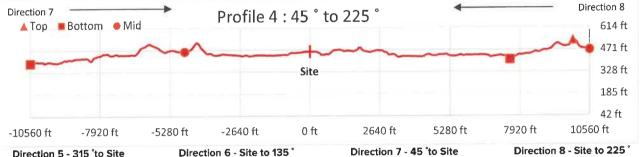
Kzt Calculations

KZT Calculations		
H=	51	
Lh=	10454	
x=	10560	
z=	25	
μ=	1.5	
γ=	3	
K1 value =	1.3	
K1=	0.01	
K2=	0.33	
k3=	0.99	
H/Lh =	0.00	
Kzt =	1.00	

Kzt Calculations

KZI Calculations		
H=	273	
Lh≕	6686	
X=	5200	
Z=	25	
μ=	1.5	
γ=	3	
K1 value =	1.3	
K1=	0.05	
K2=	0.48	
k3=	0.99	
H/Lh =	0.04	
Kzt =	1.00	

Kzt Calculations


177 636
636
5200
25
1.5
3
1.3
0.36
0.00
0.89
0.28
1.00

zt Calculations		
KZI Calculations		

DATE	4/30/2025
PROJ. #	8
DESIGN	ENG
SHEET	5

Direction 5 - 315 °to Site Site Conditions (26.8.1)

		_
1. Unubstructed	Yes	1
2. Isolated	Yes	1
3. Upper Half Hill	Yes	1
4. H/Lh ≥ 0.2	No	Kzt=1
5. H≥ 60'	Yes	1

Direction 6 - Site to 135° Site Conditions (26.8.1)

1. Unubstructed	Yes	
2. Isolated		
3. Upper Half Hill	No	Kz
4. H/Lh ≥ 0.2	No	K
5. H≥ 60'	Yes	1

Site Conditions (26.8.1)

1. Unubstructed	Yes	1
2. Isolated	Yes	1
3. Upper Half Hill	Yes	l
4. H/Lh ≥ 0.2	No	Kzt=1
5. H≥ 60'	Yes]

1. Unubstructed	Yes	
2. Isolated	Yes	
3. Upper Half Hill	No	Kzt=1
4. H/Lh ≥ 0.2	No	Kzt=1
5. H≥ 60'	Yes	

Site Conditions (26.8.1)

Terrain Data

Terrain	Ridge
Top of Hill Dist.	10189
Bott. of Hill Dist.	-9021
L @ H/2	-3025
Site	upwind
Top of Hill Elev.	573
Bott. of Hill Elev.	228
Site Elev.	459.3
Site Dist.	0
H/2	401

Terrain Data

Terrain	Ridge
Top of Hill Dist.	10189
Bott. of Hill Dist.	5731
L @ H/2	7429
Site	downwnd
Top of Hill Elev.	573
Bott. of Hill Elev.	442
Site Elev.	459.3
Site Dist.	0
H/2	507

Terrain Data

Terrain	Ridge
Top of Hill Dist.	9923
Bott. of Hill Dist.	-10560
L @ H/2	-4723
Site	upwind
Top of Hill Elev.	532
Bott. of Hill Elev.	386
Site Elev.	459.3
Site Dist.	0
H/2	459

Terrain Data

Terrain	Ridge
Top of Hill Dist.	9923
Bott. of Hill Dist.	7535
L @ H/2	10560
Site	downwnd
Top of Hill Elev.	532
Bott. of Hill Elev.	406
Site Elev.	459.3
Site Dist.	0
H/2	469

Kzt Calculations

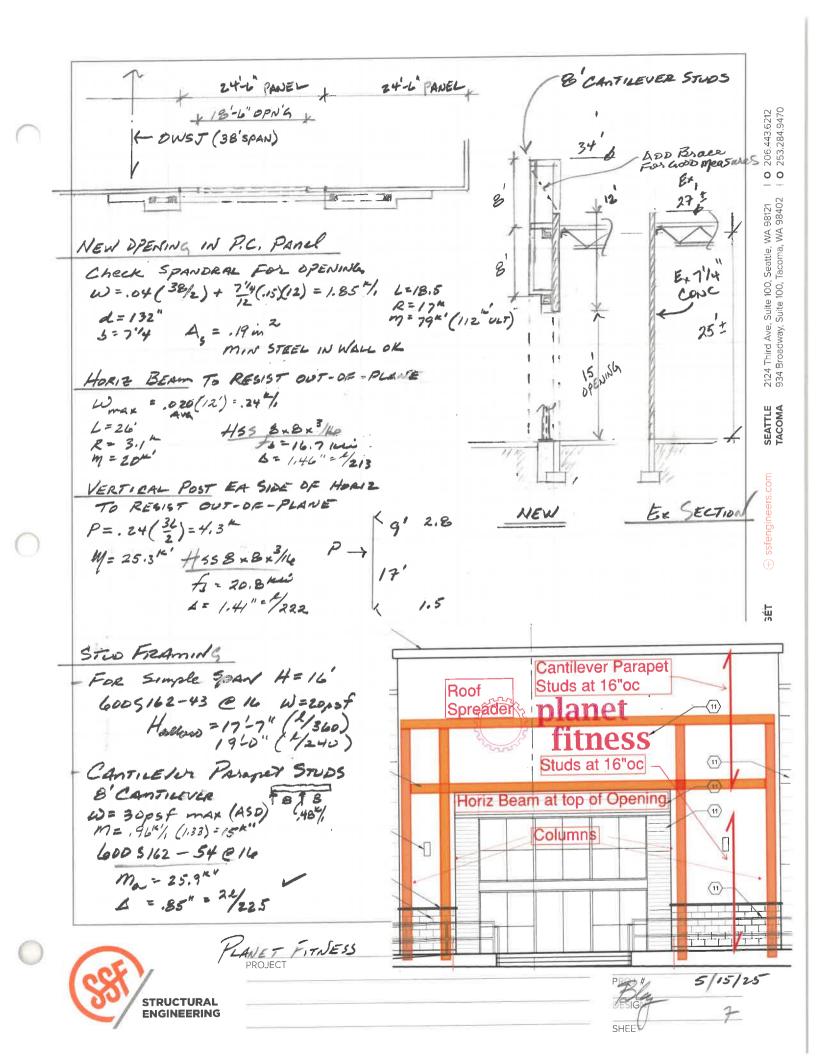
H=	345
Lh=	13214
X=	10189
z=	25
μ=	1.5
γ=	3
K1 value =	1.3
K1=	0.03
K2=	0.49
k3=	0.99
H/Lh =	0.03
Kzt =	1.00

Kzt Calculations

H=	131
Lh=	2760
.x=	10189
z=	25
μ=	1.5
γ=	3
K1 value =	1.3
K1=	0.06
K2=	0.00
k3=	0.97
H/Lh =	0.05
Kzt =	1.00

Kzt Calculations

H=	147	
Lh=	14646	
X=	9923	
z=	25	
μ=	1.5	
γ=	3	
K1 value =	1.3	
K1=	0.01	
K2=	0.55	
k3=	0.99	
H/Lh =	0.01	
Kzt =	1.00	


Kzt Calculations

126 637 9923 25 1.5
9923 25 1.5
25 1.5
1.5
3
J
1.3
0.26
0.00
0.89
0.20
1.00
F

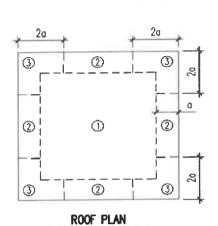
zt Calculations	
ter ourous and the	

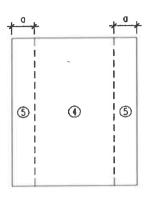
DATE	4/30/2025
PROJ. #	
DESIGN	ENG
SHEET	6

Project

V= 98 mph (Design Wind Speed)

Kzt= Kd= 1 (default 1.0) 0.85 (default 1.0)


l=


1 (default 1.0) 0.18 (+ or -)(default 0.18)

Gcpi= **0.18** (+ or -)(default 0.18) h= **25** ft (mean roof height above grade)

Exposure=

В

WALL ELEVATION

ULTIMATE WIND PRESSURES - COMPONENTS AND CLADDING

ZONE	COMPONENT AREA	DESIGN PRESSURE (PSF)
(1)	10 SQFT (OR LESS)	-23
	500 SQFT (OR MORE)	-16
	10 SQFT (OR LESS)	-36
2	500 SQFT (OR MORE)	-26
(3)	10 SQFT (OR LESS)	-49
	500 SQFT (OR MORE)	-36
(4)	20 SQFT (OR LESS)	-16 /+ 16
4	500 SQFT (OR MORE)	-13 / + 11
(6)	20 SQFT (OR LESS)	-29 /+ 16
(5)	500 SQFT (OR MORE)	-17 /+ 11

NOTES:

- PRESSURES MAY BE INTERPOLATED FOR COMPONENT AREAS BETWEEN AREA LIMITS AS LISTED
- a = 10% OF LEAST HORIZONTAL BUILDING DIMENSION (BUT NOT LESS THAN 3'-0")
- POSITIVE VALUES INDICATE PRESSURE TOWARDS SURFACE, NEGATIVE VALUES INDICATE PRESSURE AWAY FROM SURFACE (SUCTION)

COMPONENT AND CLADDING WIND PRESSURE DIAGRAM

PLANET FITNESS

Bhy 8

LATERAL CHECK Existing Drawings Not Available REMODEL Consists OF CREATING 18-6" 150 OPENING IN ONE OF The Ex PC PANELS ALONG THE EAST ELEVATION (7"4"PAMES) 18.81 1.81 NEW SPACE GLOBAL LOADING OPET Wp = ,015 (150 × 215) + ,09 (1+1) (150) (2) = 862 1 Cs = . 2 / = 172 (120 ASD) Lwall (EAST) = 215 - 48' = 167' = 2004" Jall (EAS),

V = 120 to 1/2 2004 (7/4) = 4 pri

Clearly INSIGNIFICANT OPEN 20 Existing BARN 1 N

STRUCTURAL **ENGINEERING**

PLANET FITNESS

5-15-25