

PRCTI20250972

Seattle Tacoma Portland 1011 Western Avenue, Suite 810 | Seattle, WA 98104 | 206.292.5076 1250 Pacific Avenue, Suite 701 | Tacoma, WA 98402 | 253.383.2797 101 SW Main Street, Suite 1602 | Portland, OR 97204 | 503.232.3746

www.pcs-structural.com

STRUCTURAL CALCULATIONS

City of Puyallup Development & Permitting Services ISSUED PERMIT			
Building	Planning		
Engineering	Public Works		
Fire	Traffic		

FOR

Puyallup Fair Barn M Puyallup, MA

PREPARED BY PCS STRUCTURAL SOLUTIONS

July 16, 2025 25-037

Calculations required to be provided by the Permittee on site for all Inspections

Pr	roject: Puy	yallup Fair Grounds Barn M Ph1	Job Number:	25-037
- PCS	Shee	et: of	Name:	КЈН
Structural Solutions	Originating Offic	e:Tacoma	Date:	7/16/2025
DESIGN CRITERIA CHEC	CKLIST			
CODE: IBC	C 2021, ASCE 7-16	LOCATION:	PUYALLU	IP. WA
RISK CATEGORY:	· · · · · · · · · · · · · · · · · · ·	Per ASCE 7-16 Table 1.5-1 & IBC Table 1		,,,,,,,
VERTICAL DESIGN CRITERIA				
	DEAD	LIVE PARTITION	CONCENT	RATED
RC	OOF: 15 PSF	25 PSF		
WIND DESIGN CRITERIA				
BASIC WIND SPEED (· /	(Per ASCE 7-16 Sec. 26.5.1, Fig. 26.5-1A;	1B; 1C & 1D, or as requi	red by Bld'g Dept.)
EXPOSURE CATEGO		(Per ASCE 7-16 Section 26.7.3)		
DIRECTIONALITY FACTOR (GUST EFFECT FACTOR	` ′	(Per ASCE 7-16 Table 26.6-1) (Per ASCE 7-16 Section 26.11)		
TOPOGRAPHIC FEATU	` /	▼ I (See ASCE 7-16 Figure 26.8-1)		
HILL HEIGHT		(See ASCE 7-16 Figure 26.8-1)		
UPWIND DISTANCE TO HALF HILL (` '	(See ASCE 7-16 Figure 26.8-1)		
DISTANCE FROM CREST TO SITE	` ′	UPWIND ▼ (See ASCE 7-16 Figu	ire 26.8-1)	
MEAN ROOF HEIG	. ,	▼ (See ASCE 7-16 Section 26.2 - Definitions)		
ELEVATI		(See ASCE 7-16 Section 26.9)		
ENCLOSURE CLASSIFICATI	-	(See ASCE 7-16 Secion 26.2 & Table 26.13	8-1)	
ROOF TY		(See ASCE 7-16 Figure 27.3-1)	,	
ROOF SLOPE ((Enter vertical rise in 12 horizontal units)	θ (degrees):	33.69
SEISMIC DESIGN CRITERIA				
	[
SITE CLA		(Per IBC Section 1613.2.2, Assumed as "D'	or per Geotech.)	
IMPORTANCE FACTOR	` /	(Per ASCE 7-16 Table 1.5-2)		
STRUCTURAL SYSTEM		(Per ASCE 7-16 Table 12.2-1)		
OVERSTRENGTH FACTOR ((Per ASCE 7-16 Table 12.2-1)		
INFORMATION BELOW FROM "ASCI				1.200
LATITU		$S_S = 1.271$	$F_a =$	1.200
LONGITU	JDE: -122.296	$S_1 = $ 0.438	$F_v = $	1.900
DEFLECTION CRITERIA				
FLOOR (LIVE):	L/ 480	▼ ROOF (LIVE):	L/ 36	so -
FLOOR (TOTAL):		ROOF (TOTAL):	L/ 24	
WALLS:	_	▼ SPECIAL:	L/	· ·
SOIL DESIGN CRITERIA				
REPORT: NO)	SEE SOILS REPORT FOR ACTIVE FRICTION CO		SURES AND
BEARING: 1500				
ACTIVE: 35 Po PASSIVE: 200 P		MINIMUM FOOTING DIMENSION CONTINUOUS:	1'-4	,,
COEFFICIENT OF FRICTION: 0.3		SPREAD:	1'-4	
COLFFICIENT OF FRICTION: 0.3	J	FROST DEPTH:	1'-6	
PILE TYPE: NON	VE.	FROST DEPTH:	1'-0	
VERTICAL CAPACITY: N/A		LATERAL CAPACITY:	N/A	
UPLIFT CAPACITY: N/A		SIZE:	N/A N/A	
OTENTI CAFACITE: N/A	1	SIZE: [11/11	

Project: Puyallup Fair Grounds Barn M Ph1		et: Puyallup Fair Grounds Barn M Ph1		25-037
	Sheet:	of	Name	KIH

Originating Office: Tacoma Date: 07/16/25

DESIGN CRITERIA - WIND

BASIC WIND SPEED (V): 98 MPH RISK CATEGORY: II EXPOSURE CATEGORY: В 0.85 DIRECTIONALITY FACTOR (K_d): GUST EFFECT FACTOR (G): 0.85

MEAN ROOF HEIGHT: GROUND ELEVATION FACTOR (Ke): 1.00 ENCLOSURE CLASSIFICATION: Enclosed ROOF TYPE: Gable

ROOF SLOPE (:12): 8.0:12 θ (degrees): 33.69

		ROOF P	RESSURES (Figure 27	3-1)	
		Exter	nal Pressures (qh*(GCp)):		Internal Pressures (±q _i *(GC _{pi}))
Wind Direction:	h/L:	Windward (Positive)	Windward (Negative)	Leeward	All Roofs
	≤0.25	3.0	-0.4	-4.8	i i
Normal to Ridge for	0.50	2.2	-1.6	-4.8	1.7
θ ≥ 10°	≥1.0	1.6	-1.8	-4.8	1.,
	h/L:	Horizontal Distance from	External Pressu	res (q*(GC _p)):	Internal Pressures (±q _i *(GC _{pi}))
	II/L.	Windward Edge	Positive Pressure	Negative Pressure	All Roofs
Normal to Ridge for		0 to h		-7.2	
θ < 10° and Parallel	≤0.5	h to 2h	-1.4	-4.0	
to Ridge for All θ		>2h		-2.4	1.7
			-1.4	-10.4	
		>h/2	-1.4	-5.6	

AS				ON BUILDINGS: MWI ALLY ENCLOSED BU	,	,
				WALL PRESSURES (F		210112
Windward Extern	al Pressures (q _z *(GC _p)):	Leeward	& Sidewall External Pres	ssures (q _h *(GC _p)):	Internal Pressur
Height Above Ground Level, z	K _{zt}	Windward wall	L/B:	Leeward wall	Sidewall	All
15	0.70	5.7	0-1	-4.0		
20	0.72	6.4	2	-2.4	-5.6	1
25	0.74	7.0	≥4	-1.6		
30	0.76	7.6		•		•
40	0.80	8.6		NOTES:		
50	0.82	9.5	1)	Minimum Design Wir	nd Loads (Per ASCE 7-	16 27.1.5): The wir
60	0.85	10.3		design of the MWFRS	shall not be less than 16	6 PSF multiplied by
70	0.87	11.0		the building, and 8 PSI	F multiplied by the roof	area of the buildin
80	0.89	11.8		vertical plane normal to	o the assumed wind dir	ection. Wall and ro
90	0.91	12.4			applied simultane	eously.
100	0.92	12.9	2)	qi has conservatively bee	en taken equal to q _h	
120	0.94	13.9		$K_{ht} = 0.72$		
140	0.96	14.8		$q_h = 9.4 PSF$		
160	0.97	15.6				
180	0.98	16.3				
200	0.98	16.8				
250	0.99	18.1				
300	1.00	19.1				
350	1.00	20.0				
400	1.00	20.9				
450	1.00	21.6				
500	1.00	22.2				

1) Minimum Design Wind Loads (Per ASCE 7-16 27.1.5): The wind load used for design of the MWFRS shall not be less than 16 PSF multiplied by the wall area of the building, and 8 PSF multiplied by the roof area of the building projected on a vertical plane normal to the assumed wind direction. Wall and roof loads shall be applied simultaneously.

Internal Pressures (±qi*(GCpi))

All walls

1.7

Project:	Puyallu	Puyallup Fair Grounds Barn M Ph1		Job Number:	25-037
	Sheet:	of		Name:	КЈН
	Originating Office:	Tacoma		Date:	07/16/25

DESIGN CRITERIA - WIND

FIGURE 27.3-8: Main Wind Force Resisting System, Part 1 (All Heights): Design Wind Load Cases per ASCE 7-16

Notation

 P_{WX} , P_{WY} = Windward face design pressure acting in the x, y principal axis, respectively.

 P_{LX} , P_{LY} = Leeward face design pressure acting in the x, y principal axis, respectively.

 $e(e_X, e_Y)$ = Eccentricity for the x, y principal axis of the structure, respectively.

 M_T = Torsional moment per unit height acting about a vertical axis of the building.

- Case 1. Full design wind pressure acting on the projected area perpendicular to each principal axis of the structure, considered separately along each principal axis.
- Case 2. Three-quarters of the design wind pressure acting on the projected area perpendicular to each principal axis of the structure in conjunction with a torsional moment as shown, considered separately for each principal axis.

Case 3. Wind loading as defined in Case 1, but considered to act simultaneously at 75% of the specified value.

Case 4. Wind loading as defined in Case 2, but considered to act simultaneously at 75% of the specified value.

Notes

- Design wind pressures for windward and leeward faces shall be determined in accordance with the provisions of Sections 27.3.1 and 27.3.2 as applicable for buildings of all heights.
- 2. Diagrams show plan views of buildings.

Project:	ct: Puyallup Fair Grounds Barn M Ph1		Job Number:	25-037	
	Sheet:	of	Name:	KJH	

Originating Office: Tacoma

DESIGN CRITERIA - SEISMIC

ASCE 7-16 SECTION 12.8 - EQUIVALENT LATERAL FORCE PROCEDURE

RISK CATEGORY: Π LATITUDE: 47.183 SITE CLASS: D LONGITUDE: -122.296 IMPORTANCE FACTOR (IE): 1 $S_S =$ 1.271 STRUCTURAL SYSTEM (R): 6.5 $S_1 =$ 0.438 OVERSTRENGTH FACTOR (Ω_o): 3 $F_a =$ 1.200 $F_{\rm v} =$ 1.900

ASCE 7-16 SECTION 11.4 SEISMIC GROUND MOTION VALUES

Section 11.4.4 - Coefficients and Risk-Targeted Maximum Considered Earthquake (MCER) Spectral Response Acceleration Parameters

 $S_{MS} = F_a * S_S =$

SM1 = 1.5*Fv*S1 =

Section 11.4.5 - Design Spectral Response Acceleration Parameters

 $S_{DS} = 2/3*S_{MS} =$ 1.017 $S_{D1} = 2/3*S_{M1} =$

0.832

ASCE 7-16 SECTION 11.6 - SEISMIC DESIGN CATEGORY - SECTION 12.8.2 - PERIOD DETERMINATION

ASCE 7-16 TABLE 11.6-1						
SEISMIC DESIGN CATEGORY BASED ON S _{DS}						
RISK CATEGORY:						
	I & II III IV					
< 0.167g	A	A	A			
< 0.33g	B B C					
< 0.50g	og C C D					
>= 0.50g D D						
_	D					

ASCE 7-16 TABLE 11.6-2 SEISMIC DESIGN CATEGORY BASED ON SD1 RISK CATEGORY: I & II Ш IV < 0.067g A Α A < 0.133g В В \mathbf{C} C C < 0.20g D >= 0.20gD D D D

Each building and structure shall be assigned to the most severe Seismic Design Category in accordance with Table 11.6-1 or Table 11.6-2, irrespective of the fundamental period of vibration of the structure.

07/16/25

Date:

PERIOD DETERMINATION:				
C _t =	0.02			
$h_n =$	40 FT			
$_{\mathbf{X}}=$	0.75			
$T_a = C_t * h_n^x = 0.318$				

ASCE 7-16 SECTION 12.8.1.1 - SEISMIC RESPONSE COEFFICIENT

GENERAL EQUATION: $C_S = S_{DS}/(R/I) =$ 0.156 <--CONTROLS EQ. 12.8-2

> MAXIMUM: $C_S = S_{D1}/(T*(R/I)) =$ 0.402 EQ. 12.8-3

 $C_S = 0.044*S_{DS}*I > 0.01 =$ MINIMUM: 0.045 EQ. 12.8-5

For structures located where S1 > 0.6g

 $C_S = 0.5*S_1/(R/I) =$ EQ. 12.8-6

ASCE 7-16 SECTION 12.8.1 - SEISMIC BASE SHEAR

 $V = C_S*W =$ 0.156*W

W = the total dead load and applicable portion of other loads as indicated in Section 12.7.2

Address:

110 9th Ave SW Puyallup, Washington

98371

ASCE Hazards Report

Standard: ASCE/SEI 7-16 Latitude: 47.183993
Risk Category: II Longitude: -122.296295

Soil Class: D - Default (see Elevation: 44.94265765207576 ft

Section 11.4.3) (NAVD 88)

Wind

Results:

Wind Speed 98 Vmph 10-year MRI 67 Vmph 25-year MRI 73 Vmph 50-year MRI 78 Vmph 100-year MRI 83 Vmph

Data Source: ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2

Date Accessed: Mon Jun 23 2025

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is not in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2.

Seismic

Site Soil Class: D - Default (see Section 11.4.3)

Results:

 $S_{\mbox{\scriptsize S}}$: S_{D1} : 1.271 N/A T_L : S₁ : 6 0.438 F_a : 1.2 PGA: 0.5 F_v : N/A PGA_M: 0.6 S_{MS} : F_{PGA} : 1.525 1.2 S_{M1} : N/A I_e : 1 S_{DS} : 1.017 C_{ν} : 1.354

Ground motion hazard analysis may be required. See ASCE/SEI 7-16 Section 11.4.8.

Data Accessed: Mon Jun 23 2025

Date Source: <u>USGS Seismic Design Maps</u>

Project:			
Subject:	Sheet		Name:
Originating Office: Seattle	☐ Tacoma	☐ Portland	Date:

Project:		Job No:	_
Subject:	Sheet	Name:	
Originating Office: Seattle	☐ Tacoma ☐ Port	tland Date:	

Project: Puyallup Fairgrounds Barn M Job No: 25-037
Subject: Lateral Sheet Name: KJH

Originating Office: Seattle F Tacoma Portland Date: 6/27/25

Roof Weight = (15 PSF) (57.3' ×48') = 41256 16

Weight for VNS = 41256 16 + 2928 16 + 2878 16 = 47062 16 = WNS Weight for VEW = 41256 16 + 2673 16 + 2614 16 = 46543 16 = WEN

Base shear, V:

S ASCE 7-16 Ch 12.8.1

VNS = CSWNS = (0.156)(4706216) = 7.34 K → 0.7E = 5.2 K

NEW = CSWEW = (0.156) (4654316) = 7.26 € -> 0.76 = 5.1 €

Wind

S ASCE 7-16 Ch 27.3.1

All calculated wind pressures were less than 16 psf : use 16 psf.

16 psf for all walls

Resultant Forces:

on EW face: 16 psf (51.3' x 10.16') = 8.34 k > 0.6W = 5.0 k on NS face: 16 psf (48' x 10.16') = 7.81k -> 0.6W = 4.7 k

Project:			Job No:
Subject:	Sheet		Name:
Originating Office: Seattle	☐ Tacoma	Portland	Date:

Project:			. Job No:
Subject:	Sheet		Name:
Originating Office: Seattle	☐ Tacoma	Portland	Date:

Project: Puyally Fairgrounds Barn M Job No: 25-037 Subject: Lateral Sheet 1965 Plans Name: KJH 6130125 Originating Office: Seattle Tacoma Portland Date: ___

Size Sheathing for New Shear walls

All sheathing is blocked, uses min. of 2×4 studs @ 16"00, and is rated for exterior use

Ref: 2021 SDPWS Table 4.3A

NS Walls: $\frac{2.6k}{20^{\circ}} = 0.13 \text{ kif} = 130 \text{ pif}$ use $\frac{3}{8}$ "Structural 1 Sht'g 8d@6" O.C.

EW Walls: $\frac{2.55k}{12'} = 0.2125 \text{ kif} = 212.5 \text{ pif}$ $\frac{645 \text{ pif}}{450} = 230.4 \text{ pif}$

130 PIF & VCAP 212.5 plf & Veap V

3/8" struct. 1 shtig 8d 6"00 will bik'g & 2 x 4 studs @ 16"00 > for all shear walls (minimum)

Project: Puyallup Fairgrounds Barn M Job No: 25-037

Subject: Lateral

Sheet 1965 Plans Name:

Originating Office: Seattle Tacoma Portland

6/30/25

Shear Walls - Overturning

NS - New Shear Walls:

NEW NS Shear Wall (conservative wout col)

ROOF: (15 psf)(20.67')(12') = 3.73 K

Wall: (12 psf)(10') (10.16')= 1.22 K

5 = 4.95 K

factored = (0.46) (4.95k) = 2.3k

MRES = 2.3 K x 10' = 11.5 K. Ft

Mot = 1.3 K x 10.16 = 13.2 K.ft

T = 13.2 k. ft - 11.5 k. ft = 0.17 k = 170 16 < 200 16

no holdown needed

Project: Puyallup Fairgrounds Barn M Job No: 25-037

Subject: Uateral Sheet 1965 Plans Name: KJH

Originating Office: Seattle Tacoma Portland Date: 7/2/25

NS - Existing Wall:

B Existing Wall (conservative wout col)

Roof: (15 psf)(51.3')(12') = 9.2 kWall: (12 psf)(51.3')(10.16') = 6.3 k E = 15.5 kfactored = (0.46)(15.5 k) = 7.1 k

MRES = 7.1 k x $\frac{51.3'}{2}$ = 366 k·ft MoT = 2.6 k x 10.61' = 26.4 k·ft

T = 26.4 k.ft - 366 k.ft = -6.6 k : no holdown needed

Project: Puyallup Fairgrounds Barn M Job No: 25-037

Subject: Lateral Sheet 1965 Plans Name: KJH

Originating Office: Seattle F Tacoma Portland Date: 6130125

EW - New Shear Walls:

New EW snear Wall (conservative w/out col)

 $ROOf: (15 psf) \left(\frac{51.3}{2}\right) (61) = 2.34 \text{ K}$

Wall: (12 psf) (6') (10.16') = 0.74 K

Z = 3.1K

factored = (0.46)(3.1K) = 1.43 K

MRES = 1.43 K x 2 = 4.3 K.ft

MOT = 1.2 K x 10.16' = 12.2 K. Ft

 $T = \frac{12.2 \text{ k.ft} - 4.3 \text{ k.ft}}{6'} = 1.3 \text{ k.} \ge 0.2 \text{ k.}$

.. Need holdown

4 USE HD3B for ZX4 members

Tallow = 1.895 K = 1.3 K V

Project: Puyallup Fairgrounds Barn M Job No: 25-037

Subject: Sheet 1965 Plans Name: KJH

Originating Office: Seattle Facoma Portland Date: 7/2/25

EW - Existing Shear Wall:

D Existing Wall (conservative w/out col)

Roof:
$$(15 psf)(\frac{51.3}{2})(24) = 9.23 k$$