

12503 Bel-Red Road, Suite 100 Bellevue, Washington 98005 (425) 450-4075

JOB RIVERFRONT B HVAC	
SHEET NO. COVER	OF
CALCULATED BY AH	DATE 7/3/2025
CHECKED BY CT	DATE
SCALE	
JOB NUMBER 25-01.82	

STRUCTURAL CALCULATIONS FOR:

HVAC STRUCTURAL SUPPORT RIVERFRONT INDUSTRIAL PARK BLDG B 1601 INDUSTRIAL PARKWAY PUYALLUP, WASHINGTON

PROPOSED BY:

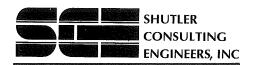
FRANKLIN ENGINEERING MECHANICAL CONSULTING 625 4TH AVE, SUITE 202 KIRKLAND, WASHINGTON

PRCTI20250997

Calculations required to be provided by the Permittee on site for all Inspections

City of Puyallup Development & Permitting Services ISSUED PERMIT								
Building	Planning							
Engineering	Public Works							
Fire OF V	Traffic							

DESIGN CRITERIA:


SEISMIC DESIGN INFORMATION:

 $S_S = 128.3\%$ $S_d = 1.026$ $S_1 = 44.1\%$ $S_d = 0.547$

ap = 2.5

 $R_p = 6.0$ $\Omega_0 = 2.0$ Ie = 1.0

SÎTE SOIL CLASS 'D' (DEFAULT) SEISMIC DESIGN CATEGORY 'D'

12503 NE Bel-Red Rd, Suite 100 Bellevue, WA 98005 (425) 450-4075

JOB RIVERFRONT BH	WAC .	
SHEET NO	OF	
CALCULATED BY AH		
DATE 7/3/2025		

					(425	5) 45	0-40	75							SCA	LE_													
	PA	ZTIAL		200	7	FR	Jul	110	8	UA	: 14								ļ						-			ļ	
			-	-	_												ļ									_		<u> </u>	
	- Care	Den.	V= 1											-														-	
			5	10		ļ.,.				\$23			-				-									-	<u> </u>		
		Wor War	est.	10/2	(15)	(Rt)		emis coin	75'					-	-	-	-			(E) (I	NCT			185000000		_	-	<u> </u>	
·		Wsi		/2	1351	PU		Mags Mags	1 6/2					-	-	,	-			170	100	計	~ F	M-1	- Marine and a second		-		
		4)	600	1,	1/200	# VI	101	tion too'	0-1	*		-	-	-		***************************************				(E)	Y F.	H	BW.				-		
		Won		8	(1300		(8)		87								-	-	day countries			General			-		-		
		b -	, 7	15*	F														personal								-		
		W:	9,	W#1											<u> </u>	H													
		lat.	- 10													H			40000			l l		an Angles Comment			 		
		~	Hxk	D	F F	12	WE	MBI	ER					+	_	╁	-					\mathbb{W}^{-}			-				
		A			.25	+	_			FV	2	37	Psi																
		6	_	17	1,65	N3				Fb	1	1	psi	1															
		1	ur ye.	48	3.53	NY				Δ	2 (.06	"	>4	1100														
		BM-															<u> </u>												
			1 -	0'	1								-	-											ļ	ļ	<u> </u>		
		Wpt			15/5		66	15	# / /								-								-			<u> </u>	
		Wsi	5) (25 ps	F)	6	25	-600								-	-						,			-	-	
			+-	1 1	// / / / /	n#1	11	\ _	46	类儿				to. 4						-						-			
		V	7/1	1	4(13	w j	/7	/_	710	7 1	F	RON	10	-7												-			-
		Per	1	*** **	115#	@	7!	n'ii					-		-														
		164	0-1	-			,	V									-							-			-		
		R	2	8	15 [#]	-																							
		M		20	360°	-1																							
	set.				1																								
		~	4	x 8	DE	中风	W	€W5	ER																				
		A	_	2	5.38	111	2				Fv	13	33	296	L														
		5		30	66	IN	3				たか	1,1	88	50	si =`														
		Z,	13	111	15	IN	4				Δ	2	0,6	5"	2	> 1	/48()											

Shutler Consulting Engineers, Inc. 12503 Bel-Red Road Suite 100 Bellevue, WA 98005 (425) 450-4075 Project Title: Engineer: Project ID: Project Descr:

5-2

General Beam Analysis

LIC#: KW-06015511, Build:20.25.06.05 **DESCRIPTION:** Beam - 2

SHUTLER CONSULTING ENGINEERS

(c) ENERCALC, LLC 1982-2025

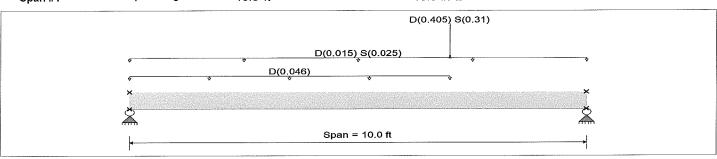
Project File: ENERCALC_20

Code References

Calculations per IBC 2018, CBC 2019 Load Combinations Used: ASCE 7-16

General Beam Properties

Elastic Modulus Span #1 1,500.0 ksi


Span Length = 10.0 ft

Area =

10.0 in^2

Moment of Inertia =

100.0 in^4

Applied Loads

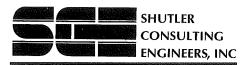
Service loads entered. Load Factors will be applied for calculations.

Uniform Load: D = 0.0150, S = 0.0250 k/ft, Tributary Width = 1.0 ft

Uniform Load: D = 0.0460 k/ft, Extent = 0.0 -->> 7.0 ft, Tributary Width = 1.0 ft

Point Load: D = 0.4050, S = 0.310 k @ 7.0 ft

DESIGN SUMMARY


Maximum Bending = Load Combination	2.260 k-ft +D+S	Maximum Shear = Load Combination	0.8132 k +D+S
Span # where maximum occurs	Span # 1	Span # where maximum occurs	Span # 1
Location of maximum on span	7.000 ft	Location of maximum on span	10.000 ft
Maximum Deflection Max Downward Transient Deflection	0.098 in	1229	
Max Upward Transient Deflection	0.001 in	84958	
Max Downward Total Deflection Max Upward Total Deflection	0.253 in 0.001 in	473 85629	

Vertical Reactions

Support notation : Far left is #

Values in KIPS

Load Combination	Support 1	Support 2	
Overall MAXimum	0.624	0.813	
Overall MINimum			
D Only	0.406	0.471	
+D+S	0.624	0.813	
+D+0.750S	0.569	0.728	
+0.60D	0.243	0.283	
S Only	0.218	0.342	

12503 NE Bel-Red Rd, Suite 100 Bellevue, WA 98005 (425) 450-4075

JOB RIVERTRONI	<u> 6</u>	HWC.	
SHEET NO. <u>\$ 3</u>		OF	
CALCULATED BY			
DATE 7/3/25			

	(423) 430-40/3		SCALE	
EXISTING	FRANNS CH	ECKS		
- ORVINAA	L GOIST EN	NELDOR:		
L= 5		2626.		
	10	0 \$(1)		
Wz =	10'(20 psf) =	200		
W _{5€} =	10. (82624) =	250 "		
Pa =	500# ANY	WHERE		
RNAX	= 11.75			
KANM				
	,,,,,			
- TOIST	ENVELOPE W	TH MIAN		
		i i i nvac		
	50			
W ₁₈₄ =				
Ws. 5	10 (25 958)			
	815# @ 24	E 29		
RE	10.9K	11.754 -	- JOIST IS ACCEPT	ABLE
W =		146.94	SEE ATTACH	ΙΕD .
- EXISTING	BEAM CHE	UL IS ATTACI	122	
7 7731776	BEAM CHE	Se 15 ATTACI	NPD	

Shutler Consulting Engineers, Inc. 12503 Bel-Red Road Suite 100 Bellevue, WA 98005 (425) 450-4075

Project Title: Engineer: Project ID: Project Descr:

5-4

General Beam Analysis

LIC#: KW-06015511, Build:20.25.06.05

SHUTLER CONSULTING ENGINEERS

(c) ENERCALC, LLC 1982-2025

Project File: ENERCALC_20

DESCRIPTION: Joist Envelope with HVAC

Code References

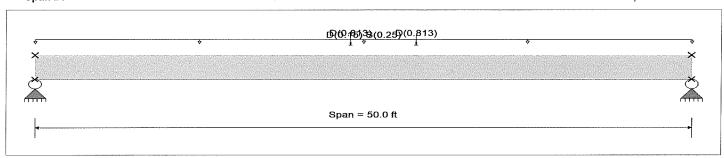
Calculations per IBC 2018, CBC 2019 Load Combinations Used: ASCE 7-16

General Beam Properties

Elastic Modulus

Span #1

29,000.0 ksi


Span Length = 50.0 ft

Area =

100.0 in^2

Moment of Inertia =

1,000.0 in^4

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Uniform Load: D = 0.0150, S = 0.0250 ksf, Tributary Width = 10.0 ft

Point Load: D = 0.8130 k @ 24.0 ft

Point Load: D = 0.8130 k @ 29.0 ft

DESIGN SUMMARY

Maximum Bending = Load Combination	143.293 k-ft +D+S	Maximum Shear = Load Combination	10.862 k +D+S
Span # where maximum occurs	Span # 1	Span # where maximum occurs	Span # 1
Location of maximum on span	25.000 ft	Location of maximum on span	50.000 ft
Maximum Deflection Max Downward Transient Deflection	1.222 in	491	
Max Upward Transient Deflection	0.019 in	30933	
Max Downward Total Deflection Max Upward Total Deflection	2.204 in 0.009 in	272 65368	

Vertical Reactions

Support notation : Far left is #

Values in KIPS

Support 1	Support 2	
10.764	10.862	
4.514	4.612	
10.764	10.862	
9.202	9.299	
2.709	2.767	
6.250	6.250	
	10.764 4.514 10.764 9.202 2.709	10.764 10.862 4.514 4.612 10.764 10.862 9.202 9.299 2.709 2.767

Shutler Consulting Engineers, Inc. 12503 Bel-Red Road Suite 100 Bellevue, WA 98005 (425) 450-4075

Project Title: Engineer: Project ID: Project Descr:

Steel Beam

SHUTLER CONSULTING ENGINEERS

Project File: ENERCALC_20

LIC#: KW-06015511, Build:20.25.06.05

(c) ENERCALC, LLC 1982-2025

Design OK

DESCRIPTION: Existing Node Beam with HVAC

CODE REFERENCES

Calculations per AISC 360-16, IBC 2018, CBC 2019

Load Combination Set: ASCE 7-16

Bending Axis: Major Axis Bending

Material Properties

Analysis Method 'Allowable Strength Design

Beam Bracing: Beam is Fully Braced against lateral-torsional buckling

Fy: Steel Yield:

50.0 ksi

E: Modulus:

29,000.0 ksi

D(0.20) S(0.250) D(0.8159) D(0.8150) W30x90

Span = 50.0 ft

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Beam self weight calculated and added to loading

Uniform Load : D = 0.020, S = 0.0250 ksf, Tributary Width = 10.0 ft Point Load : D = 0.8150 k @ 24.0 ft

Point Load: D = 0.8150 k @ 29.0 ft

DESIGN SUMMARY

				7200000
Maximum Bending Stress Ratio =	0.265:	1 Maximum Shear Stress Ratio =	0.058 : 1	
Section used for this span	W30x90	Section used for this span	W30x90	
Ma : Applied	187.089 k-ft	Va : Applied	14.364 k	
Mn / Omega : Allowable	706.088 k-ft	Vn/Omega : Allowable	249.072 k	
Load Combination		Load Combination		
		+D+S	+1	D+S
		Location of maximum on span	50.000 ft	
Span # where maximum occurs	Span # 1	Span # where maximum occurs	Span # 1	
Maximum Deflection				
Max Downward Transient Deflection	0.337 in Ratio =	1,778 >=360 Span: 1 : S Only		
Max Upward Transient Deflection	0 in Ratio =	0 <360 n/a		
Max Downward Total Deflection	0.798 in Ratio =	752 >=180 Span: 1 : +D+S		
Max Upward Total Deflection	0 in Ratio =	0 <180 n/a		

Overall Maximum Deflections

Span	Load Combination	Max. "-" Defi	Location in Span	Load Combination	Max. "+" Defl	Location in Span
1 +D+S		0.7977	25,143		0.0000	0.000

Vertical Reactions		Sup	port notation : Far left is #	Values in KIPS	
Load Combination	Support 1	Support 2			
Max Upward from all Load Conditions	14.266	14.364			
Max Upward from Load Combinations	14.266	14.364			
Max Upward from Load Cases	8.016	8.114			
D Only	8.016	8.114			
+D+S	14,266	14.364			
+D+0.750S	12.704	12.801			
+0.60D	4.810	4.868			
S Only	6.250	6.250			

12503 Bel-Red Road, Suite 100 Bellevue, WA 98005 (425) 450-4075 * FAX (425) 450-4076

JOB RIVERFRONT B	HWC
SHEET No	OF
CALCULATED BY A 1	
DATE 7/3/25	
SCALE	

Basic Wind Speed

Wind and Seismic forces on HVAC Unit - RTU 1

Unit data:

Unit base weight 1145 lbs. **Unit Dimensions Curb Dimensions** 55 lbs. Height = 51 in. Height = 10 in. Economize Accessories 100 lbs. Length = 89 in. Length = 89 in. Width = Width = 1300 lbs. 59 in. 59 in. Total weight

Weight used in calculations 1300 lbs., to include duct work, etc.

Seismic:

 $F_p = (0.4*a_p*S_{DS}*W_p)*(1+2*(z/h))/(R_p/I_p)$ $W_p =$ 1300 lbs. 667 lbs. <== Controls 1.026 $S_{DS} =$ $F_{p(max)} = 1.6 * S_{DS} * I_p * W_p$ a_p = 2.5 2134 lbs. $R_p =$ $F_{p(max)} =$ 6.0 1.0 $F_{p(min)} = 0.3*S_{DS}*I_{p}*W_{p}$ |_n = z = h => z/h =1.00 400 lbs $F_{p(min)} =$ 467 lbs. (ASD) ◀ F_p =

Wind: (Section 29.4.1 of ASCE 7-16)

 $q_h = 0.00256 * K_z * K_{zt} * K_d * K_e * V^2 =$

 $F_h = q_h^*(GC_r)^*A_f$ (Horizontal Force) $F_v = q_h^*(GC_r)^*A_r$ (Vertical Uplift Force)

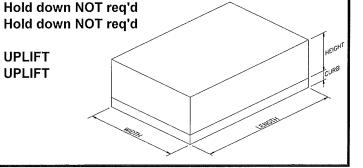
	$F_h =$	28.94	*A _f PSF	Exposure	9	В	
	$F_v =$	22.85	*A _r PSF	Average	roof height	27.00 f	t.
	F _h =	655	lbs.(Transverse Horizontal Force) ASD	$K_z =$	0.700 Table	30.3-1	
	F _h =	434	lbs.(Longitudinal Horizontal Force) ASD	$K_d =$	0.85 Table	26.6-1	
	F _v =	500	lbs.(Vertical Uplift Force) ASD	$K_{zt} =$	1.0 Section	on 26.8.2	
				K _e =	1.0 Section	on 26.9	
	$M_{OT} =$	20,541	inlbs. (Seismic)	$(GC_r) = F$	lorizontal Gust	Factor =	1.9
	M _{OT} =	19,967	inlbs. (Wind - Transverse)	$(GC_r) = V$	ert Uplift Gust	Factor =	1.5

15.23 PSF

37.7 ft⁴ A_f = Vert Proj Area (Transvese) = 24.99 ft²

Load combinations:

Transverse Seismic Hold Down Force =


 $M_{OT} =$

A_f = Vert Proj Area (Longitudinal) = A_r = Horizontal Projected Area = 36.47 ft⁴ Case I 0.60 Dead + 0.6 Wind Case II 0.60 Dead + 0.7 Seismic

-42 lbs


Longitudinal Seismic Hold Down Force = -159 lbs Transverse Wind Hold Down Force 198 lbs **UPLIFT** Longitudinal Wind Hold Down Force 9 lbs **UPLIFT**

13,237 in.-lbs. (Wind - Longitudinal)

100 MPH

File:HVAC wind seismic.xls, modified 6-22-2021

12503 NE Bel-Red Rd, Suite 100 Bellevue, WA 98005 (425) 450-4075

JOB RIVER FRONT	6 HWC	
SHEET NO. 5 7	OF	
CALCULATED BY AH		
DATE 7/3/25		

		(4	425) 450	0-4075	,					SCA	'TE												
Attac	LH -	70	STRV	ICTU	IPE_			150;															
Y	= 19°	7a =	328	#				Y18*				7		83#								 	
R	= 38	83#								Ø:	31	20	- 30	8#									
- AT	ITACH	0	URB	u)/	-特10	SCR	EWG		E AA			178	AA	MIN	R LAAA								
	W\$ = 2' =	135	*(1.1		1/0"pe 7/9)	N) (R	73)		2	17#	+	R	100	191	- Gar								
	Z'X .	Wo	Wy':	2'	NRO		2		205	216	(14°	1)	GIN	(31.7	1)2		PO#	1/30	REV	b			
		***							- A				2		1	· N	บร	E	4	DEP.	S1D	1-12	
see Art	TACH	10	STRI	JCTU	NAZ		ELDU	J	10/	LAG	5 S	LPE	w										
	WP' =	ane	5"1(1,09 1	(1.6)) =	= 2	32 ³															
	2 _X		394(132))			2	1	20 ^{\$} (150	& W											
		394	cos(3)	2)2 1?)	(31.2))2							~	USE	- 4	pe:	R S	IDE	100-0			
																							
										•													
]															

Address:

No Address at This Location

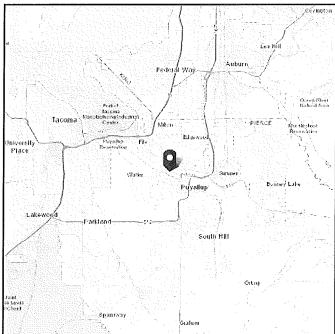
ASCE Hazards Report

Standard:

ASCE/SEI 7-16

Latitude: 47.206672

Risk Category: ^Ⅱ


Longitude: -122.310253

Soil Class: D - Default (see Section 11.4.3)

Elevation: 33.752950610934285 ft

(NAVD 88)

Seismic

Site Soil Class:

D - Default (see Section 11.4.3)

Results:

S _s :	1.283	S _{D1} :	N/A
S ₁ :	0.441	T _L :	6
F _a :	1.2	PGA:	0.5
F _v :	N/A	PGA _M :	0.6
S _{MS} :	1.539	F _{PGA} :	1.2
S _{M1} :	N/A	l _e :	1
S _{DS} :	1.026	C _v :	1.357

Ground motion hazard analysis may be required. See ASCE/SEI 7-16 Section 11.4.8.

Data Accessed:

Thu Jul 03 2025

Date Source:

USGS Seismic Design Maps

12503 Bel-Red Road, Suite 100 Bellevue, WA 98005 (425) 450-4075

JOB	WERFRONT B	HUAC	
SHEET No.	5-10		
CALCULATED	BY AH		
DATE7	325		
SCALE			

CALCULATION OF SEISMIC DESIGN PARAMETERS BASED ON IBC 2021 & ASCE 7-16

(For Site Class A, B, C, D, D-Default, E with period less than 0.50 seconds)

Seismic Criteria:

ismic Chteria.			
Site Specific Report		Yes	
Risk Category, I, II, III or IV (Table 1.5-1 of ASCE 7-16)	=	11	
Seismic importance factor, I _e (Table 1.5-2 of ASCE 7-16)	=	1.00	
Mapped spectral response for short periods, S _S (Site specific)	=	128.30	%
Mapped spectral response acceleration at a period of 1 second, S ₁ (Site specific)	= -	44.10	%
Site soil class (From soils report)	= 1	D-Defau	lt
Response modification factor, R (Table 12.2-1 of ASCE 7-16) $\Omega_{\rm o}$ (Table 12.2-1 of ASCE 7-16, footnote b for flexible diaphragms)	= = 1	5.00 2.00	
C _t (Table 12.8-2 of ASCE 7-16)	=	0.02	
x (Table 12.8-2 of ASCE 7-16)	=	0.75	
Average roof height	=	26.00	ft.
Long period transition period, T _L (Figure 22-14 of ASCE 7-16)	=	6.00	
$T_a = C_t * (h_n)^x$	=	0.230	Sec.
F (T-b)- 4040 0 0(4) -61D0 0040)			
F _a (Table 1613.2.3(1) of IBC 2018)	=	1.200	
F _ν (Table 1613.2.3(2) of IBC 2018)	=	1.859	•
Maximum spectral response acceleration at short periods, $S_{MS} = F_a * S_S$	=	1.540	
Maximum spectral response acceleration at 1-second, $S_{M1} = F_v * S_1$	=	0.820	
Design spectral response acceleration at short periods, $S_{DS} = 2/3 * S_{MS}$	=	1.026	
Design spectral response acceleration at 1-second, $S_{D1} = 2/3 * S_{M1}$	=	0.547	
Seismic Design Category based on short period response acceleration	=	D	
Seismic Design Category based on 1-second period response acceleration	=	D	
Seismic Design Category, choose most severe of above two.	=	D	
$C_S = S_{DS} / (R/I_e)$	=	0.205	Controls
If T < T _L then $C_{s(max)} = S_{D1} / (T * (R/le))$	=	0.475	
If T > T_L then $C_{S(max)} = S_{D1} * T_L / (T^2 * (R / le))$	=	N.A.	
$C_{S(min)} = 0.044 * S_{DS} * I_{e} => 0.01$	=	0.045	
If S_1 is equal to or greater than 0.6g, then $C_{S(min)} = 0.50 * S_1 / (R/le)$	=	N.A.	

Seismic Design Force

$$V = C_S * W = 0.205 W$$

Diaphragm Shear force

ASCE 7-16 section 12.10.1.1

$$F_{px (min)} = 0.2 * S_{DS} * I_e * W_{PX}$$
 = 0.205 W_{PX}
 $F_{px (max)} = 0.4 * S_{DS} * I_e * W_{PX}$ = 0.411 W_{PX}

York® Sun™ Pro 3-12.5 Ton Package

Single Package R-410A Heat Pump

Project Name: Riverfront TI
Quantity: 1 Tag #: In Stock

Refrigerant type

Sys1

Unit Model #: XP090C00P4B1BCA1A2

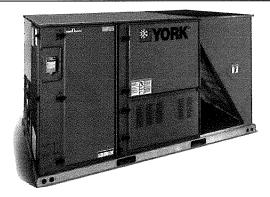
System: XP090C00P4B1BCA1A2

Page: 14

Cooling Performance						
Total gross capacity	96.6 MBH					
Sensible gross capacity	65.4 MBH					
Total net capacity	92.2 MBH					
Sensible net capacity	61.0 MBH					
Efficiency (at ARI)	11.20 EER					
Integrated eff. (at ARI)	14.60 IEER					
Ambient DB temp.	95.0 °F					
Entering DB temp.	80.0 °F					
Entering WB temp.	67.0 °F					
Evap Coil Leaving DB temp.	56.7 °F					
Evap Coil Leaving WB temp.	55.0 °F					
Unit Leaving DB temp.	58.3 °F					
Unit Leaving WB temp.	55.7 °F					
Leaving air temp dew point	53.8 °F					
Power input (w/o blower)	7.30 kW					
Sound power	83 dB(a)					

Refrigerant

Sys2	13 lb	2 oz			
Heat Pump Performance					
Supply air	3000	cfm			
Ambient DB temp.	47	°F			
Entering DB temp.		°F			
Leaving DB temp.	88.6	°F			
Air temp. rise	28.6	°F			
Design Gross Capacity	80.4	MBH			
Design Power Input	5.3	kW			
Capacity @ 47(°F)	87.00	MBH			
COP @ 47(°F)`	3.50	COP			
Capacity @ 17(°F)	51.00	MBH			
COP @ 17(°F)` ′	2.25	COP			
Applied electric heat	24	kW			
Handler of Danfaron and					


Heating Performs	ance
Entering DB temp.	60 °F
Heating output capacity (Max)	81.8 MBH
Nominal electric heat	24 kW
Applied electric heat	24.0 kW
Installed	Field
Supply air	2600 cfm
Leaving DB temp.	89.1 °F
Air temp. rise	29.1 °F
Stages	2
0 I . A'. DI D.	

Supply Air Blower Performance					
Supply air	2600	cfm			
Ext. static pressure	0.55	IWG			
Addl. Unit Losses (Options/Accessories)	0.3	IWG			
Blower speed	897	rpm			
Max BHP of Motor (including service factor)	1.73	Η̈́Р			
Duct location	Bottom				
Motor rating	1.50	HP			
Actual required BHP	1.39	HP			
Power input	1.30	kW			
Elevation	0	ft			
Drive type	BELT				

151116 () 56							_		
		Electr	ical Da	ata					
Power supply					46	460-3-60			
Unit min circuit ampacity						54.9 A			
Unit max over-current protection						60 A			
Dimensions & Weight									
Hgt 51 in Len 89 in					Wth 59 in				
Weight with factory installed options						1185 lb			
Clearances									
Right	12 in	Front	36 i	n	Rear	36 in			
Тор	72 in	Bottom	0 i	n	Left	36 in			

Note: Please refer to the tech guide for listed maximum static pressures

7.5 Tor

R-410A

13 lb

 York Sun Pro units are manufactured at an ISO 9001 registered facility and each rooftop is completely computer-run tested prior to shipment.

Unit Features

- · Field Installed Electric Heat
- · Full perimeter base rails with built in rigging capabilities
- Unit Cabinet Constructed of Powder Painted Steel, Certified At 750 Hours Salt Spray Test (ASTM B-117 Standards)
- Scroll Compressor[s]
- Dry Bulb Low Leak Economizer w/Barometric Relief and Hoods (Bottom or Horizontal End Return Only) with Economizer Fault Detection & Diagnostic (Meets ASHRAE 90.1-2013, IECC 2015, California Title 24, AMCA 511).
- · 1.5 HP Standard Static Belt Drive Blower
- · Solid Core Liquid Line Filter Driers
- · Unit Ships with 2" Throwaway Filters
- · Replacement Filters: 4 (24" x 20").
- · Dual refrigerant circuits for efficient part load operation
- Single Point Power Connection
- Through-the-Curb and Through-the-Base Utility Connections
- Short Circuit Current: 5kA RMS Symmetrical
- Copper tube/aluminum fin condenser coil, Copper tube/aluminum fin evaporator coil
- Composite Drain Pan Front Connection
- Tool-free maintenance with features like hinged doors for all-access panels, slide-out blower and blower motor tray

BAS Controller

- IntelliSpeed control of the VFD based on stages of cooling. Provides Single Zone VAV Fan Operation as defined by ASHRAE 90.1 section 6.4.3.10.
- Smart Equipment Controller including Discharge Air, Return Air, and Outdoor Air Temperature Sensors. BACNet MS/TP, Modbus and N2 communication card.

Standard Unit Controller: Smart Equipment Control Board

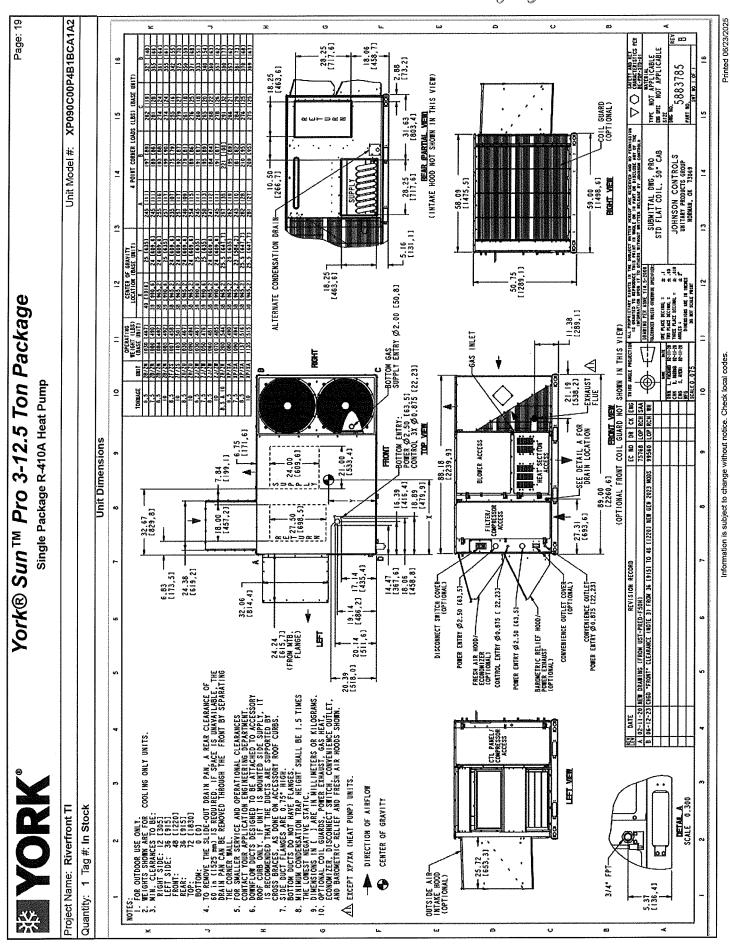
- Safety Monitoring Monitors the High and Low-Pressure Switches, the Freezestats, the Gas Valve, if Applicable, and the Temperature Limit Switch on Gas and Electric Heat Units. The Unit Control Board will Alarm on Ignition Failures, Safety Lockouts and Repeated Limit Switch Trips.
- An Integrated Low-Ambient Control, Anti-Short Cycle Protection, Lead-Lag, Fan On and Fan off Delays, Low Voltage Protection, On-Board Diagnostic and Fault Code Display. Allows all units to operate in the cooling mode down to 0 °F outdoor ambient without additional components or intervention.

Warranty

- One (1) Year Limited Warranty on the Complete Unit
- Five (5) Year Warranty Compressors and Electric Heater Elements

York® Sun™ Pro 3-12.5 Ton Package

Single Package R-410A Heat Pump


Project Name: Riverfront TI Quantity: 1 Tag #: In Stock

Unit Model #: XP090C00P4B1BCA1A2

System: XP090C00P4B1BCA1A2

Page: 16

Additional Electrical Data						
Power supply	460-3-60					
Unit min circuit ampacity	54.9 A					
Unit max over-current protection	60 A					
Min Voltage	432 V					
Max Voltage	504 V					
Comp #1 ŘLA	6.2					
Comp #1 LRA	41.0					
Comp #2 RLA	6.2					
Comp #2 LRA	41					
Indoor Mtr Voltage	460-3-60					
Indoor Mtr FLA	2.6					
Outdoor Mtr Qty	2					
Outdoor Fan Voltage	460-1-60					
OD Fan Mtr FLA (ea.)	1.1					
OD Fan Mtr FLA (ea.) Power Ex Mtr Qty (if applicable) Powered Ex Voltage(if applicable) Power Ex Mtr FLA (ea) (if applicable)	1					
Powered Ex Voltage(if applicable)	460-1-60					
Power Ex Mtr FLA (ea) (if applicable)	2.2					

